Sample records for acid poly ic

  1. Poly IC therapy in aleutian disease of mink.

    PubMed Central

    Russell, A S; Percy, J S; Cho, H J

    1975-01-01

    Twenty-four virgin female aleutian mink were infected with aleutian disease agent and after 24 hours, 12 of these were treated with a course of polyinosinic acid-polycytidilic acid (Poly IC) injections. After six weeks the gammaglobulin level was significantly lower in the treated group but at 12 weeks this difference was no longer present. Four of the treated mink had normal target organ histology when killed at 20 weeks. The untreated group all showed moderate to marked changes but this difference was not statistically significant. There was a marked increase in the reactive lymphocyte blastogenesis index during the first weeks of infection and the phytohaemagglutinin response was seen to fall progressively. The antiglobulin reaction usually became positive after infection but neither antinuclear nor antierythrocyte antibodies were found. Precipitating antibodies to several polynucleotides were frequently present and were unrelated to infection or to Poly IC treatment. Images Fig. 1. Fig. 2A Fig. 2B. PMID:1095164

  2. Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine.

    PubMed

    Park, Hye-Mi; Cho, Hyun-Il; Shin, Chang-Ae; Shon, Hyun-Jung; Kim, Tai-Gyu

    2016-03-04

    Zoledronic acid (ZA) is used for treating osteoporosis and for preventing skeletal fractures in cancer patients suffering from myeloma and prostate cancer. It is also reported to directly induce cancer cell apoptosis and indirectly modulate T-cell immune response as an antitumor agent. In this study, the effect of ZA following peptide/polyinosinic-polycytidylic acid (poly-IC) vaccination was investigated in a murine tumor model. The combination of ZA with peptide/poly-IC vaccine showed a synergistic effect on the induction of antigen-specific CD8 T-cell response. Three consecutive intravenous administrations of ZA was defined to induce the highest CD8 T-cell response. Further, total splenocyte counts and antigen-specific CD8 T-cell response gradually increased depending on the dose of ZA. In tumor-bearing mice, ZA showed a dose-dependent decrease of growth and prolonged survival. Treatment with ZA only decreased the number of CD11b(+)Gr1(+) myeloid cells in blood. Our results demonstrate that the use of ZA could improve antitumor immune responses induced by the peptide/poly-IC vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Intraluminal Administration of Poly I:C Causes an Enteropathy That Is Exacerbated by Administration of Oral Dietary Antigen

    PubMed Central

    Araya, Romina E.; Jury, Jennifer; Bondar, Constanza

    2014-01-01

    Systemic administration of polyinosinic:polycytidylic acid (poly I:C), mimics virally-induced activation of TLR3 signalling causing acute small intestine damage, but whether and how mucosal administration of poly I:C causes enteropathy is less clear. Our aim was to investigate the inflammatory pathways elicited after intraluminal administration of poly I:C and determine acute and delayed consequences of this locally induced immune activation. Intraluminal poly I:C induced rapid mucosal immune activation in C57BL/6 mice involving IFNβ and the CXCL10/CXCR3 axis, that may drive inflammation towards a Th1 profile. Intraluminal poly I:C also caused enteropathy and gut dysfunction in gliadin-sensitive NOD-DQ8 mice, and this was prolonged by concomitant oral administration of gliadin. Our results indicate that small intestine pathology can be induced in mice by intraluminal administration of poly I:C and that this is exacerbated by subsequent oral delivery of a relevant dietary antigen. PMID:24915573

  4. Intraluminal administration of poly I:C causes an enteropathy that is exacerbated by administration of oral dietary antigen.

    PubMed

    Araya, Romina E; Jury, Jennifer; Bondar, Constanza; Verdu, Elena F; Chirdo, Fernando G

    2014-01-01

    Systemic administration of polyinosinic:polycytidylic acid (poly I:C), mimics virally-induced activation of TLR3 signalling causing acute small intestine damage, but whether and how mucosal administration of poly I:C causes enteropathy is less clear. Our aim was to investigate the inflammatory pathways elicited after intraluminal administration of poly I:C and determine acute and delayed consequences of this locally induced immune activation. Intraluminal poly I:C induced rapid mucosal immune activation in C57BL/6 mice involving IFNβ and the CXCL10/CXCR3 axis, that may drive inflammation towards a Th1 profile. Intraluminal poly I:C also caused enteropathy and gut dysfunction in gliadin-sensitive NOD-DQ8 mice, and this was prolonged by concomitant oral administration of gliadin. Our results indicate that small intestine pathology can be induced in mice by intraluminal administration of poly I:C and that this is exacerbated by subsequent oral delivery of a relevant dietary antigen.

  5. Polysaccharide of radix pseudostellariae improves chronic fatigue syndrome induced by poly I:C in mice.

    PubMed

    Sheng, Rong; Xu, Xianxiang; Tang, Qin; Bian, Difei; Li, Ying; Qian, Cheng; He, Xin; Gao, Xinghua; Pan, Rong; Wang, Chong; Luo, Yubin; Xia, Yufeng; Dai, Yue

    2011-01-01

    Radix Pseudostellariae is used as a tonic drug in traditional Chinese medicine with immunomodulating and anti-fatigue activities, and the polysaccharide is considered as the main active component. The purpose of this study is to examine the effect of the polysaccharide isolated from Radix Pseudostellariae (PRP) on mouse chronic fatigue syndrome (CFS) induced by intraperitoneal injection of polyriboinosinic:polyribocytidylic acid (poly I:C), a double-stranded synthetic RNA. It has shown that the fatigue symptom of mice lasted at least 1 week as evaluated by forced swimming time. PRP (100, 200, 400 mg kg(-1)), orally administered 3 days before poly I:C injection, showed dose-dependent anti-fatigue effects. In addition, poly I:C led to evident alternations in neuroendocrine and immune systems of mice, such as reduced spontaneous activity and learning ability, declined serum level of corticosterone, increased weight indexes and T lymphocyte numbers in thymuses and spleens, and increased CD4(+)/CD8(+) ratio but decreased proliferation ability of T lymphocytes in spleens. PRP alleviated the abnormalities caused by poly I:C, and restored the function of hosts to normal conditions. The findings suggest that PRP is beneficial to CFS, and the underlying mechanisms of action involve neuroendocrine and immune systems.

  6. The effect of synthetic homopolymer poly I:C on the synthesis of nucleic acids, protein and interferon in spleen cells normally and with radiation

    NASA Technical Reports Server (NTRS)

    Antropova, Y. N.; Konstantinova, I. V.; Fuks, B. B.; Talosh, M. Y.; Veysfeyler, Y. K.

    1974-01-01

    A comparative study is reported of the effect of the synthetic homopolymer poly I:C and Newcastle Disease virus on the synthesis of RNA, DNA, total protein and interferon in the spleen of nonradiated and radiated mice. In radiated animals, poly I:C and NDV had no stimulating effect on the synthesis of RNA; administration of both inducers to radiated mice did not significantly affect the content of lymphoid cellular elements in the spleen. However, while reduction of RNA synthesis, caused by radiation, also increases slightly under the effect of poly I:C and the virus, the synthesis of interferon in spleen cells and in the entire body is activated.

  7. Innate immune activation by the viral PAMP poly I:C potentiates pulmonary graft-versus-host disease after allogeneic hematopoietic cell transplant.

    PubMed

    Kinnier, Christine V; Martinu, Tereza; Gowdy, Kymberly M; Nugent, Julia L; Kelly, Francine L; Palmer, Scott M

    2011-01-15

    Respiratory viral infections cause significant morbidity and increase the risk for chronic pulmonary graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT). Our overall hypothesis is that local innate immune activation potentiates adaptive alloimmunity. In this study, we hypothesized that a viral pathogen-associated molecular pattern (PAMP) alone can potentiate pulmonary GVHD after allogeneic HCT. We, therefore, examined the effect of pulmonary exposure to polyinosinic:polycytidylic acid (poly I:C), a viral mimetic that activates innate immunity, in an established murine HCT model. Poly I:C-induced a marked pulmonary T cell response in allogeneic HCT mice as compared to syngeneic HCT, with increased CD4+ cells in the lung fluid and tissue. This lymphocytic inflammation persisted at 2 weeks post poly I:C exposure in allogeneic mice and was associated with CD3+ cell infiltration into the bronchiolar epithelium and features of epithelial injury. In vitro, poly I:C enhanced allospecific proliferation in a mixed lymphocyte reaction. In vivo, poly I:C exposure was associated with an early increase in pulmonary monocyte recruitment and activation as well as a decrease in CD4+FOXP3+ regulatory T cells in allogeneic mice as compared to syngeneic. In contrast, intrapulmonary poly I:C did not alter the extent of systemic GVHD in either syngeneic or allogeneic mice. Collectively, our results suggest that local activation of pulmonary innate immunity by a viral molecular pattern represents a novel pathway that contributes to pulmonary GVHD after allogeneic HCT, through a mechanism that includes increased recruitment and maturation of intrapulmonary monocytes. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model

    PubMed Central

    Osborne, Ashleigh L; Solowij, Nadia; Babic, Ilijana; Huang, Xu-Feng; Weston-Green, Katrina

    2017-01-01

    Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required. Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties; however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction. Time-mated pregnant Sprague-Dawley rats (n=16) were administered polyinosinic-polycytidilic acid (poly I:C) (POLY; 4 mg/kg) or saline (CONT) at gestation day 15. Male offspring (PN56) were injected twice daily with 10 mg/kg CBD (CONT+CBD, POLY+CBD; n=12 per group) or vehicle (VEH; CONT+VEH, POLY+VEH; n=12 per group) for 3 weeks. Body weight, food and water intake was measured weekly. The Novel Object Recognition and rewarded T-maze alternation tests assessed recognition and working memory, respectively, and the social interaction test assessed sociability. POLY+VEH offspring exhibited impaired recognition and working memory, and reduced social interaction compared to CONT+VEH offspring (p<0.01). CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model (p<0.01 vs POLY+VEH), did not affect total body weight gain, food or water intake, and had no effect in control animals (all p>0.05). In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection. These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia. PMID:28230072

  9. Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model.

    PubMed

    Osborne, Ashleigh L; Solowij, Nadia; Babic, Ilijana; Huang, Xu-Feng; Weston-Green, Katrina

    2017-06-01

    Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required. Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties; however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction. Time-mated pregnant Sprague-Dawley rats (n=16) were administered polyinosinic-polycytidilic acid (poly I:C) (POLY; 4 mg/kg) or saline (CONT) at gestation day 15. Male offspring (PN56) were injected twice daily with 10 mg/kg CBD (CONT+CBD, POLY+CBD; n=12 per group) or vehicle (VEH; CONT+VEH, POLY+VEH; n=12 per group) for 3 weeks. Body weight, food and water intake was measured weekly. The Novel Object Recognition and rewarded T-maze alternation tests assessed recognition and working memory, respectively, and the social interaction test assessed sociability. POLY+VEH offspring exhibited impaired recognition and working memory, and reduced social interaction compared to CONT+VEH offspring (p<0.01). CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model (p<0.01 vs POLY+VEH), did not affect total body weight gain, food or water intake, and had no effect in control animals (all p>0.05). In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection. These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia.

  10. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  11. Modulation of hepatocyte growth factor secretion in human female reproductive tract stromal fibroblasts by poly (I:C) and estradiol.

    PubMed

    Coleman, Kimberly D; Ghosh, Mimi; Crist, Sarah G; Wright, Jacqueline A; Rossoll, Richard M; Wira, Charles R; Fahey, John V

    2012-01-01

    Hepatocyte Growth Factor (HGF) secretion facilitates epithelial cell growth and development in the female reproductive tract (FRT) and may contribute to pathological conditions such as cancer and endometriosis. We hypothesized that estradiol and poly (I:C), a synthetic RNA mimic, may have a regulatory effect on HGF secretion by stromal fibroblasts from FRT tissues. Following hysterectomies, normal tissue from the uterus, endocervix, and ectocervix were dispersed into stromal cell fractions by enzymatic digestion and differential filtering. Stromal fibroblasts were cultured and treated with estradiol and/or poly (I:C), and conditioned media were analyzed for HGF via enzyme-linked immunosorbent assay. Treating uterine fibroblasts with estradiol or poly (I:C) significantly increased HGF secretion. When uterine fibroblasts were co-treated with estradiol and poly (I:C), the effect on HGF secretion was additive. In contrast, stromal fibroblasts from endo- and ecto-cervix were unresponsive to estradiol, but were stimulated to secrete HGF by poly (I:C). HGF secretion is uniquely regulated in the uterus, but not in ecto- and endo-cervix, by estradiol. Moreover, potential viral pathogens further induce HGF. These findings have potential applications in understanding both hormonal regulation of normal tissue as well as the role of HGF in tumorogenesis, endometriosis, and human immunodeficiency virus infection. © 2011 John Wiley & Sons A/S.

  12. INHIBITORY EFFECT OF EMODIN ON RAW 264.7 ACTIVATED WITH DOUBLE STRANDED RNA ANALOGUE POLY I:C.

    PubMed

    Kim, Young-Jin; Lee, Ji Young; Kim, Hyun-Ju; Kim, Do-Hoon; Lee, Tae Hee; Kang, Mi Suk; Choi, You-Kyung; Lee, Hye Lim; Kim, Jaieun; An, Hyo-Jin; Park, Wansu

    2017-01-01

    Emodin (3-methyl-1, 6, 8-trihydroxyanthraquinone) is a compound which can be found in Polygoni Multiflori Radix (PMR). PMR is the root of Polygonum multiflorum . PMR is used to treat dizziness, spermatorrhea, sores, and scrofula as well as chronic malaria traditionally in China and Korea. The anti-tumor property of emodin was already reported. However, anti-viral activity of emodin on macrophages are not fully reported. Effects of emodin on RAW 264.7 mouse macrophages induced by polyinosinic-polycytidylic acid (poly I:C), a synthetic analog of double-stranded RNA, were evaluated. Emodin restored the cell viability in poly I: C-induced RAW 264.7 at concentrations of up to 50 μM. Emodin significantly inhibited the production of nitric oxide, IL-1α, IL-Ιβ, IL-6, GM-CSF, G-CSF, M-CSF, MCP-1, MIP-1a, MIP-Ιβ, MIP-2, RANTES, and IP-10 as well as calcium release and mRNA expression of signal transducer and activated transcription 1 (STAT1) in poly I:C-induced RAW 264.7 ( P < 0.05). This study shows the inhibitory effect of emodin on poly I: C-induced RAW 264.7 via calcium-STAT pathway.

  13. Inflammation and emphysema in cigarette smoke-exposed mice when instilled with poly (I:C) or infected with influenza A or respiratory syncytial viruses.

    PubMed

    Mebratu, Yohannes A; Smith, Kevin R; Agga, Getahun E; Tesfaigzi, Yohannes

    2016-07-01

    The length of time for cigarette smoke (CS) exposure to cause emphysema in mice is drastically reduced when CS exposure is combined with viral infection. However, the extent of inflammatory responses and lung pathologies of mice exposed to CS and infected with influenza A virus (IAV), respiratory syncytial virus (RSV), or treated with the viral derivative dsRNA (polyinosine-polycytidylic acid [poly (I:C)] have not been compared. Mice were exposed to CS or filtered air for 4 weeks and received a single dose of vehicle, AV, or RSV infection and extent of inflammation and emphysema was evaluated 14 d later. In another set of experiments, mice were instilled with poly (I:C) twice a week during the third and fourth weeks of CS exposure and immediately analyzed for extent of inflammation and lung pathologies. In CS-exposed mice, inflammation was characterized mainly by macrophages, lymphocytes, and neutrophils after IAV infection, mainly by lymphocytes, and neutrophils after RSV infection, and mainly by lymphocytes and neutrophils after poly (I:C) instillations. Despite increased inflammation, extent of emphysema by poly (I:C) was very mild; but was robust and similar for both IAV and RSV infections with enhanced MMP-12 mRNA expression and TUNEL positivity. Both IAV and RSV infections increased the levels of IL-17, IL-1β, IL-12b, IL-18, IL-23a, Ccl-2, Ccl-7 mRNAs in the lungs of CS-exposed mice with IAV causing more increases than RSV. CS-induced inflammatory responses and extent of emphysematous changes differ depending on the type of viral infection. These animal models may be useful to study the mechanisms by which different viruses exacerbate CS-induced inflammation and emphysema.

  14. INHIBITORY EFFECT OF EMODIN ON RAW 264.7 ACTIVATED WITH DOUBLE STRANDED RNA ANALOGUE POLY I:C

    PubMed Central

    Kim, Young-Jin; Lee, Ji Young; Kim, Hyun-Ju; Kim, Do-Hoon; Lee, Tae Hee; Kang, Mi Suk; Choi, You-Kyung; Lee, Hye Lim; Kim, Jaieun; An, Hyo-Jin; Park, Wansu

    2017-01-01

    Background: Emodin (3-methyl-1, 6, 8-trihydroxyanthraquinone) is a compound which can be found in Polygoni Multiflori Radix (PMR). PMR is the root of Polygonum multiflorum. PMR is used to treat dizziness, spermatorrhea, sores, and scrofula as well as chronic malaria traditionally in China and Korea. The anti-tumor property of emodin was already reported. However, anti-viral activity of emodin on macrophages are not fully reported. Materials and Methods: Effects of emodin on RAW 264.7 mouse macrophages induced by polyinosinic-polycytidylic acid (poly I:C), a synthetic analog of double-stranded RNA, were evaluated. Results: Emodin restored the cell viability in poly I: C-induced RAW 264.7 at concentrations of up to 50 μM. Emodin significantly inhibited the production of nitric oxide, IL-1α, IL-Ιβ, IL-6, GM-CSF, G-CSF, M-CSF, MCP-1, MIP-1a, MIP-Ιβ, MIP-2, RANTES, and IP-10 as well as calcium release and mRNA expression of signal transducer and activated transcription 1 (STAT1) in poly I:C-induced RAW 264.7 (P < 0.05). Conclusion: This study shows the inhibitory effect of emodin on poly I: C-induced RAW 264.7 via calcium-STAT pathway. PMID:28480427

  15. Zinc Oxide Nanoparticle-Poly I:C RNA Complexes: Implication as Therapeutics against Experimental Melanoma.

    PubMed

    Ramani, Meghana; Mudge, Miranda C; Morris, R Tyler; Zhang, Yuntao; Warcholek, Stanislaw A; Hurst, Miranda N; Riviere, Jim E; DeLong, Robert K

    2017-03-06

    There is current interest in harnessing the combined anticancer and immunological effect of nanoparticles (NPs) and RNA. Here, we evaluate the bioactivity of poly I:C (pIC) RNA, bound to anticancer zinc oxide NP (ZnO-NP) against melanoma. Direct RNA association to unfunctionalized ZnO-NP is shown by observing change in size, zeta potential, and absorption/fluorescence spectra upon complexation. RNA corona was visualized by transmission electron microscopy (TEM) for the first time. Binding constant (K b = 1.6-2.8 g -1 L) was determined by modified Stern-Volmer, absorption, and biological surface activity index analysis. The pIC-ZnO-NP complex increased cell death for both human (A375) and mouse (B16F10) cell lines and suppressed tumor cell growth in BALB/C-B16F10 mouse melanoma model. Ex vivo tumor analysis indicated significant molecular activity such as changes in the level of phosphoproteins JNK, Akt, and inflammation markers IL-6 and IFN-γ. High throughput proteomics analysis revealed zinc oxide and poly I:C-specific and combinational patterns that suggested possible utility as an anticancer and immunotherapeutic strategy against melanoma.

  16. Characteristics of the interferon regulatory factor 5 (IRF5) and its expression in response to LCDV and poly I:C challenges in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui

    2012-10-01

    Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. ASSAY OF POLY-β-HYDROXYBUTYRIC ACID

    PubMed Central

    Law, John H.; Slepecky, Ralph A.

    1961-01-01

    Law, John H. (Harvard University, Cambridge, Mass.) and Ralph A. Splepecky. Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 82:33–36. 1961—A convenient spectrophotometric assay of bacterial poly-β-hydroxybutyric acid has been devised. Quantitative conversion of poly-β-hydroxybutyric acid to crotonic acid by heating in concentrated sulfuric acid and determination of the ultraviolet absorption of the produce permits an accurate determination of this material in quantities down to 5 μg. This method has been used to follow the production of poly-β-hydroxybutyric acid by Bacillus megaterium strain KM. PMID:13759651

  18. Molecular cloning of Japanese eel Anguilla japonica TNF-α and characterization of its expression in response to LPS, poly I:C and Aeromonas hydrophila infection

    NASA Astrophysics Data System (ADS)

    Feng, Jianjun; Guan, Ruizhang; Guo, Songlin; Lin, Peng; Zadlock, Frank

    2014-09-01

    As a potent pleiotropic cytokine, tumor necrosis factor-alpha (TNF-α) plays an important role in innate immune responses. The cDNA sequence and genomic structure of the TNF-α gene ( Aj TNF-α) in the Japanese eel ( Anguilla japonica) were identified and characterized. The full-length AjTNF-α cDNA was 1 546 bp, including a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 879 bp and an open reading frame of 654 bp encoding a protein of 218 amino acids. The full-length genomic sequence of AjTNF-α was 2 392 bp and included four exons and three introns. The putative AjTNF-α protein contained TNF family signature motifs, including a protease cleavage site, a transmembrane domain and two conserved cysteine residues. Quantitative real-time reverse transcription PCR analysis revealed AjTNF-α expression in a wide range of tissues, with predominant expression in blood and liver. Lower levels of expression were seen in spleen, gills, kidney, intestine, heart, and skin, with very low levels in muscle. The modulation of AjTNF-α expression after injection of eels with lipopolysaccharide (LPS), the viral mimic, poly I:C, or Aeromonas hydrophila was assessed in blood, liver, and kidney. In blood, TNF-α mRNA levels increased rapidly and then rapidly decreased after stimulation with LPS, poly I:C or A. hydrophila. However, the response to LPS and A. hydrophila peaked at 6 h while for poly I:C the peak was at 12 h. In liver, after injection with A. hydrophila, an up- and down-regulation of AjTNF-α expression occurred twice, peaking at 6 h and 24 h, respectively. No remarkable increase of AjTNF-α expression appeared in liver until 72 h after LPS or poly I:C treatment. In kidney, AjTNF-α expression increased significantly only at 72 h post-stimulation with LPS or A. hydrophila. Our results suggest that AjTNF-α plays an important role in fish in the defense against viral and bacterial infection.

  19. Innate immune responses against rock bream iridovirus (RBIV) infection in rock bream (Oplegnathus fasciatus) following poly (I:C) administration.

    PubMed

    Jung, Myung-Hwa; Jung, Sung-Ju

    2017-12-01

    Poly (I:C) showed promise as an immunoprotective agents in rock bream against rock bream iridovirus (RBIV) infection. In this study, we evaluated the time-dependent virus replication pattern and antiviral immune responses in RBIV-infected rock bream with and without poly (I:C) administration. In the poly (I:C)+virus-injected group, virus copy numbers were more than 18.9-, 24.0- and 479.2-fold lower than in the virus only injected group at 4 (4.73 × 10 4 and 8.95 × 10 5 /μl, respectively), 7 (3.67 × 10 5 and 8.81 × 10 6 /μl, respectively) and 10 days post infection (dpi) (1.26 × 10 5 and 6.02 × 10 7 /μl, respectively). Moreover, significantly high expression levels of TLR3 (8.6- and 7.7-fold, at 4 and 7 dpi, respectively) and IL1β (3.6-fold at 2 dpi) were observed in the poly (I:C)+virus-injected group, but the expression levels were not significantly in the virus-injected group. However, IL8 and TNFα expression levels showed no statistical significance in both groups. Mx, ISG15 and PKR were significantly highly expressed from 4 to 10 dpi in the virus-injected group. Nevertheless, in the poly (I:C)+virus-injected group, Mx and ISG15 expression were significantly expressed from 2 dpi. In summary, poly (I:C) administration in rock bream induces TLR3, IL1β, Mx and ISG15-mediated immune responses, which could be a critical factor for inhibition of virus replication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Protective immunity against rock bream iridovirus (RBIV) infection and TLR3-mediated type I interferon signaling pathway in rock bream (Oplegnathus fasciatus) following poly (I:C) administration.

    PubMed

    Jung, Myung-Hwa; Jung, Sung-Ju

    2017-08-01

    In this study, we evaluated the potential of poly (I:C) to induce antiviral status for protecting rock bream from RBIV infection. Rock bream injected with poly (I:C) at 2 days before infection (1.1 × 10 4 ) at 20 °C had significantly higher protection with RPS 13.4% and 33.4% at 100 and 200 μg/fish, respectively, through 100 days post infection (dpi). The addition of boost immunization with poly (I:C) at before/post infection at 20 °C clearly enhanced the level of protection showing 33.4% and 60.0% at 100 and 200 μg/fish, respectively. To investigate the development of a protective immune response, rock bream were re-infected with RBIV (1.1 × 10 7 ) at 200 dpi. While 100% of the previously unexposed fish died, 100% of the previously infected fish survived. Poly (I:C) induced TLR3 and Mx responses were observed at several sampling time points in the spleen, kidney and blood. Moreover, significantly high expression levels of IRF3 (2.9- and 3.1-fold at 1 d and 2 days post administration (dpa), respectively), ISG15 and PKR expression (5.4- and 10.2-fold at 2 dpa, respectively) were observed in the blood, but the expression levels were low in the spleen and kidney after poly (I:C) administration. Our results showed the induction of antiviral immune responses and indicate the possibility of developing long term preventive measures against RBIV using poly (I:C). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Interferon induction by and toxicity of polyriboinosinic acid [poly(rI)].polyribocytidylic acid [poly (rC)], mismatched analog poly (rI).poly[r(C12Uracil)n], and poly(rI).poly(rC) L-lysine complexed with carboxymethylcellulose.

    PubMed Central

    Stringfellow, D A; Weed, S D

    1980-01-01

    The ability of polyriboinosionic acid [poly(rI)].polyribocytidylic acid [poly(rC)], mismatched analog poly (rI).poly[r(C12Uracil)n], and poly(rI).poly(rC) complexed with poly L-lysine and carboxymethylcellulose [poly(ICLc)] to induce interferon and the comparative toxicity of each in cats were evaluated. Each induced high levels of circulating interferon, although poly(ICLC) injected intravenously at 1 to 4 mg/kg induced up to 10 times more interferon than the other compounds. Each compound was pyrogenic and caused a transient decrease in leukocyte numbers. Poly(rI).poly(rC) and the mismatched analog caused severe diarrhea and nausea at the highest drug concentrations (1 to 4 mg/kg), but poly (ICLC) did not. Each compound also caused depression and lethargy and impaired coordination. PMID:6157363

  2. RIPK3 expression in cervical cancer cells is required for PolyIC-induced necroptosis, IL-1α release, and efficient paracrine dendritic cell activation.

    PubMed

    Schmidt, Susanne V; Seibert, Stefanie; Walch-Rückheim, Barbara; Vicinus, Benjamin; Kamionka, Eva-Maria; Pahne-Zeppenfeld, Jennifer; Solomayer, Erich-Franz; Kim, Yoo-Jin; Bohle, Rainer M; Smola, Sigrun

    2015-04-20

    Previous studies have shown that cervical cancer cells only release low levels of pro-inflammatory cytokines owing to infection with human papillomaviruses. This results in low immunogenicity of the cancer cells. The viral dsRNA analog PolyIC has been suggested as a promising adjuvant for cervical cancer immunotherapy. However, little is known about the molecular requirements resulting in successful immune activation. Here, we demonstrate that stimulation of cervical cancer cells with PolyIC induced necroptotic cell death, which was strictly dependent on the expression of the receptor-interacting protein kinase RIPK3. Necroptotic cancer cells released interleukin-1α (IL-1α), which was required for powerful activation of dendritic cells (DC) to produce IL-12, a cytokine critical for anti-tumor responses. Again both, IL-1α release and DC activation, were strictly dependent on RIPK3 expression in the tumor cells. Of note, our in situ analyses revealed heterogeneous RIPK3 expression patterns in cervical squamous cell carcinomas and adenocarcinomas. In summary, our study identified a novel RIPK3-dependent mechanism that explains how PolyIC-treatment of cervical cancer cells leads to potent DC activation. Our findings suggest that the RIPK3 expression status in cervical cancer cells might critically influence the outcome of PolyIC-based immunotherapeutic approaches and should therefore be assessed prior to immunotherapy.

  3. Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s

    PubMed Central

    Tsuji, Hideto; Eto, Takehiko; Sakamoto, Yuzuru

    2011-01-01

    Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected. PMID:28824149

  4. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  5. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  6. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  7. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation.

    PubMed

    Swetha, Medchalmi; Ramaiah, Kolluru V A

    2015-11-01

    Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  9. Evaluation of the Protective Efficacy of Poly I:C as an Adjuvant for H9N2 Subtype Avian Influenza Inactivated Vaccine and Its Mechanism of Action in Ducks.

    PubMed

    Zhang, Aiguo; Lai, Hanzhang; Xu, Jiahua; Huang, Wenke; Liu, Yufu; Zhao, Dawei; Chen, Ruiai

    2017-01-01

    Current commercial H9 avian influenza vaccines cannot provide satisfactory protective immunity against antigenic variant influenza viruses in ducks. Poly I:C, when used as an adjuvant, improves humoral and cellular immunity in many animals but has not been tested in ducks. In this study, we investigated the protective efficacy of Poly I:C as an adjuvant for an inactivated H9N2 Avian influenza vaccine in ducks. We found that an H9N2 vaccine administered with poly I:C (H9-PIC vaccine) induced a significantly more rapid response with higher anti-influenza antibody titers than those of the vaccine alone (H9 vaccine). Moreover, virus shedding was reduced in ducks immunized with the H9-PIC vaccine after challenge with an H9 subtype antigenic variant viruses. IFN-α, IFN-γ, IL-6 and MHC-II mRNA levels were all elevated in ducks receiving the H9-PIC vaccine. In addition, lower expression level of MHC-I may be a reason for inefficient protective ability against heterologous influenza viruses in H9-PIC vaccination of ducks. In conclusion, poly I:C adjuvant enhanced both humoral and cellular immune responses in ducks induced by immunization of inactivated H9N2 vaccine.

  10. Evaluation of the Protective Efficacy of Poly I:C as an Adjuvant for H9N2 Subtype Avian Influenza Inactivated Vaccine and Its Mechanism of Action in Ducks

    PubMed Central

    Zhang, Aiguo; Lai, Hanzhang; Xu, Jiahua; Huang, Wenke; Liu, Yufu; Zhao, Dawei; Chen, Ruiai

    2017-01-01

    Current commercial H9 avian influenza vaccines cannot provide satisfactory protective immunity against antigenic variant influenza viruses in ducks. Poly I:C, when used as an adjuvant, improves humoral and cellular immunity in many animals but has not been tested in ducks. In this study, we investigated the protective efficacy of Poly I:C as an adjuvant for an inactivated H9N2 Avian influenza vaccine in ducks. We found that an H9N2 vaccine administered with poly I:C (H9-PIC vaccine) induced a significantly more rapid response with higher anti-influenza antibody titers than those of the vaccine alone (H9 vaccine). Moreover, virus shedding was reduced in ducks immunized with the H9-PIC vaccine after challenge with an H9 subtype antigenic variant viruses. IFN-α, IFN-γ, IL-6 and MHC-II mRNA levels were all elevated in ducks receiving the H9-PIC vaccine. In addition, lower expression level of MHC-I may be a reason for inefficient protective ability against heterologous influenza viruses in H9-PIC vaccination of ducks. In conclusion, poly I:C adjuvant enhanced both humoral and cellular immune responses in ducks induced by immunization of inactivated H9N2 vaccine. PMID:28135294

  11. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    PubMed

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  12. Prophylactic and therapeutic intranasal administration with an immunomodulator, Hiltonol® (Poly IC:LC), in a lethal SARS-CoV-infected BALB/c mouse model.

    PubMed

    Kumaki, Yohichi; Salazar, Andres M; Wandersee, Miles K; Barnard, Dale L

    2017-03-01

    Hiltonol ® , (Poly IC:LC), a potent immunomodulator, is a synthetic, double-stranded polyriboinosinic-polyribocytidylic acid (poly IC) stabilized with Poly-L-lysine and carboxymethyl cellulose (LC). Hiltonol ® was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. Hiltonol ® at 5, 1, 0.5 or 0.25 mg/kg/day by intranasal (i.n.) route resulted in significant survival benefit when administered at selected times 24 h prior to challenge with a lethal dose of mouse-adapted severe acute respiratory syndrome coronavirus (SARS-CoV). The infected BALB/c mice receiving the Hiltonol ® treatments were also significantly effective in protecting mice against weight loss due to infection (p < 0.001). Groups of 20 mice were dosed with Hiltonol ® at 2.5 or 0.75 mg/kg by intranasal instillation 7, 14, and 21 days before virus exposure and a second dose was given 24 h later, prophylactic Hiltonol ® treatments (2.5 mg/kg/day) were completely protective in preventing death, and in causing significant reduction in lung hemorrhage scores, lung weights and lung virus titers. Hiltonol ® was also effective as a therapeutic when give up to 8 h post virus exposure; 100% of the-infected mice were protected against death when Hiltonol ® was administered at 5 mg/kg/day 8 h after infection. Our data suggest that Hiltonol ® treatment of SARS-CoV infection in mice leads to substantial prophylactic and therapeutic effects and could be used for treatment of other virus disease such as those caused by MERS-CoV a related coronavirus. These properties might be therapeutically advantageous if Hiltonol ® is considered for possible clinical use. Published by Elsevier B.V.

  13. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    PubMed

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  14. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid)

    PubMed Central

    Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Jiang, Tao; Krogman, Nicholas R.; Singh, Anurima; Allcock, Harry R.; Laurencin, Cato T.

    2007-01-01

    Previously we demonstrated the ability of ethyl glycinato substituted polyphosphazenes to neutralize the acidic degradation products and control the degradation rate of poly(lactic acid-glycolic acid) by blending. In this study, blends of high strength poly[(50% ethyl alanato) (50% p-phenyl phenoxy) phosphazene] (PNEA50PhPh50) and 85:15 poly(lactic acid-glycolic acid) (PLAGA) were prepared using a mutual solvent approach. Three different solvents, methylene chloride (MC), chloroform (CF) and tetrahydrofuran (THF) were studied to investigate solvent effects on blend miscibility. Three different blends were then fabricated at various weight ratios namely 25:75 (BLEND25), 50:50 (BLEND50), and 75:25 (BLEND75) using THF as the mutual solvent. The miscibility of the blends was evaluated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Among these, BLEND25 was miscible while BLEND50 and BLEND75 were partially miscible. Furthermore, BLEND25 formed apatite layers on its surface as evidenced in a biomimetic study performed. These novel blends showed cell adhesion and proliferation comparable to PLAGA. However, the PNEA50PhPh50 component in the blends was able to increase the phenotypic expression and mineralized matrix synthesis of the primary rat osteoblasts (PRO) in vitro. Blends of high strength poly[(50% ethyl alanato) (50% p-phenyl phenoxy) phosphazene] (PNEA50PhPh50) and 85:15 poly(lactic acid-glycolic acid) (PLAGA) are promising biomaterials for a variety of musculoskeletal applications. PMID:17942150

  15. Lignin poly(lactic acid) copolymers

    DOEpatents

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  16. Ameliorating effect of an interferon inducer polyinosinic-polycytidylic acid on bleomycin-induced lung fibrosis in hamsters. Morphologic and biochemical evidence.

    PubMed Central

    Giri, S. N.; Hyde, D. M.

    1988-01-01

    The effects of polyinosinic-polycytidylic acid (Poly I:C), an inducer of interferons, on bleomycin (Bleo)-induced lung fibrosis was studied in hamsters. Poly I:C (10 mg/kg intraperitoneally) was administered for two days and immediately before intratracheal instillation of bleomycin (7.5 U/kg) or an equivalent volume of saline and thereafter daily for 13 days. The lung hydroxyproline in control, Poly I:C, Bleo, and Bleo + Poly I:C groups averaged 791, 752, 1177, and 766 micrograms/lung. As compared to control, the prolyl hydroxylase activity in the Bleo group was increased by 83% whereas in Bleo + Poly I:C group, the activity was increased by 42%. Protein in the bronchoalveolar lavage supernatant in Poly I:C, Bleo and Bleo + Poly I:C groups were 72, 286, and 206% of the control, respectively. There was no difference in total leukocyte counts between Bleo + Poly I:C and Bleo groups, but the differential cell counts were changed. The numbers of neutrophils, monocytes, lymphocytes, and eosinophils were 50, 84, 91, and 10% of Bleo group, respectively. Morphometric estimates of the volume of parenchymal lesion within the lung showed that hamsters in Bleo + Poly I:C group had significantly less volume of lesion (1.0 cucm) than the Bleo group (1.6 cucm). In addition, the fibrotic lesions in Bleo + Poly I:C group were multifocal and primarily proximal acinar in location, had fewer extracellular fibers, neutrophils and monocytes. Poly I:C treatment ameliorated bleomycin-induced lung collagen accumulation. Images Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:2462354

  17. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  18. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  19. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    PubMed

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes.

    PubMed

    Dellacasa, Elena; Zhao, Li; Yang, Gesheng; Pastorino, Laura; Sukhorukov, Gleb B

    2016-01-01

    The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA) n stereocomplex and the cores with and without the polymeric (PSS/PAH) n /PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

  1. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  2. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    PubMed

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  3. From honeycomb- to microsphere-patterned surfaces of poly(lactic acid) and a starch-poly(lactic acid) blend via the breath figure method.

    PubMed

    Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio

    2017-01-26

    This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.

  4. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    PubMed Central

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  5. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    USDA-ARS?s Scientific Manuscript database

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  6. Microbial production of poly-γ-glutamic acid.

    PubMed

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  7. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  8. Miscibility and Morphology of Poly(lactic ACID)/POLY(Β-HYDROXYBUTYRATE) Blends

    NASA Astrophysics Data System (ADS)

    Tri Phuong, Nguyen; Guinault, Alain; Sollogoub, Cyrille

    2011-01-01

    The miscibility and morphology of poly(lactic)acid (PLA)/polyβ-hydroxybutyrate (PHB) prepared by melt blending method were investigated by Fourier transform infrared (FTIR), Differential scanning calorimetry (DSC), melt rheology and scanning electron microscopy (SEM) observations. FTIR and DSC methods present some limits to examine the miscibility state of PLA/PHB blends. This drawback can be overcome with the Cole-Cole method by observing the η" = f(η') curves to confirm the miscibility of semicrystalline PLA/ semicrystalline PHB blends. MEB micrographs of fractured surface of blends were also used to investigate the miscibility of these blends.

  9. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.

    PubMed

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery.

  10. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride).

    PubMed

    Yu, Chengtao; Han, Lili; Bao, Jianna; Shan, Guorong; Bao, Yongzhong; Pan, Pengju

    2016-08-18

    The effects of poly(vinylidene fluoride) (PVDF) on the crystallization kinetics, competing formations of homocrystallites (HCs) and stereocomplexes (SCs), polymorphic crystalline structure, and HC-to-SC crystalline reorganization of the poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemic mixture were investigated. Even though the PLLA/PDLA/PVDF blends are immiscible, blending with PVDF enhances the crystallization rate and SC formation of PLLA/PDLA components at different temperatures that are higher or lower than the melting temperature of the PVDF component; it also facilitates the HC-to-SC melt reorganization upon heating. The crystallization rate and degree of SC crystallinity (Xc,SC) of PLLA/PDLA components in nonisothermal crystallization increase after immiscible blending with PVDF. At different isothermal crystallization temperatures, the crystallization half-time of PLLA/PDLA components decreases; its spherulitic growth rate and Xc,SC increase as the mass fraction of PVDF increases from 0 to 0.5 in the presence of either a solidified or a molten PVDF phase. The HCs formed in primary crystallization of PLLA/PDLA components melt and recrystallize into SCs upon heating; the HC-to-SC melt reorganization is promoted after blending with PVDF. We proposed that the PVDF-promoted crystallization, SC formation, and HC-to-SC melt reorganization of PLLA/PDLA components in PLLA/PDLA/PVDF blends stem from the enhanced diffusion ability of PLLA and PDLA chains.

  11. Neuropathic Pain Following Poly-L-Lactic Acid (Sculptra) Injection.

    PubMed

    Vrcek, Ivan; El-Sawy, Tarek; Chou, Eva; Allen, Theresa; Nakra, Tanuj

    Injectable fillers have become a prevalent means of facial rejuvenation and volume expansion. While typically well tolerated, serious complications have been reported. The authors present a case in which an otherwise healthy female with a history of multiple filler injections including poly-L-lactic acid, developed 3 weeks of neuropathic pain in the left temporal fossa following injection. To the best of the authors knowledge, neuropathic pain has not been reported as a complication following poly-L-lactic acid injection. The patient was treated with an injection of steroid and long-acting anesthetic with resolution of symptoms.

  12. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-06-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  13. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization.

    PubMed

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-10-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy Rat Model.

    PubMed

    Li, Xiangqian; Chen, Lin; Lin, Hong; Cao, Luping; Cheng, Ji'an; Dong, Jian; Yu, Lin; Ding, Jiandong

    2017-04-01

    Experimental animal study. The authors conducted a study to determine the efficacy and safety of the poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel to prevent peridural fibrosis in an adult rat laminectomy model. Peridural fibrosis often occurs after spinal laminectomy. It might cause persistent back and/or leg pain postoperatively and make a reoperation more difficult and dangerous. Various materials have been used to prevent epidural fibrosis, but only limited success has been achieved. The PLGA-PEG-PLGA thermogel was synthesized by us. Total L3 laminectomies were performed on 24 rats. The PLGA-PEG-PLGA thermogel or chitosan (CHS) gel (a positive control group) was applied to the operative sites in a blinded manner. In the control group, the L3 laminectomy was performed and the defect was irrigated with the NS solution 3 times. All the rats were killed 4 weeks after the surgery. The cytotoxicity of this thermogel was evaluated in vitro and the result demonstrated that no evidence of cytotoxicity was observed. The extent of epidural fibrosis, the area of epidural fibrosis, and the density of the fibroblasts and blood vessel were evaluated histologically. There were statistical differences among the PLGA-PEG-PLGA thermogel or CHS gel group compared with the control group. Although there was no difference between the PLGA-PEG-PLGA thermogel and CHS gel, the efficiency of the PLGA-PEG-PLGA thermogel was shown to be slightly improved compared with the CHS gel. The biocompatibility of the PLGA-PEG-PLGA thermogel was proven well. The application of this thermogel effectively reduced epidural scarring and prevented the subsequent adhesion to the dura mater. No side effects were noted in the rats.

  15. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    PubMed Central

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  16. Surface monolayers of well-defined amphiphilic block copolymer composed of poly(acrylic acid) or poly(oxyethylene) and poly(styrene). Interpolymer complexation at the air-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwa, Masazo; Hayashi, Takehiro; Higashi, Nobuyuki

    1990-01-01

    Amphiphilic block polymers (2,3) composed of poly(acrylic acid) (PAA) or poly(oxyethylene) (POE) and chain length controlled poly(styrene) (PSt) have been prepared by using a catalytic system of tribromomethyl-terminated oligomer and manganese carbonyl. All the amphiphilic materials formed well-behaved surface monolayers, and the II-A curves for them expanded systematically with an increase of the PSt chain length.

  17. Fundamentals of poly(lactic acid) microstructure, crystallization behavior, and properties

    NASA Astrophysics Data System (ADS)

    Kang, Shuhui

    Poly(lactic acid) is an environmentally-benign biodegradable and sustainable thermoplastic material, which has found broad applications as food packaging films and as non-woven fibers. The crystallization and deformation mechanisms of the polymer are largely determined by the distribution of conformation and configuration. Knowledge of these mechanisms is needed to understand the mechanical and thermal properties on which processing conditions mainly depend. In conjunction with laser light scattering, Raman spectroscopy and normal coordinate analysis are used in this thesis to elucidate these properties. Vibrational spectroscopic theory, Flory's rotational isomeric state (RIS) theory, Gaussian chain statistics and statistical mechanics are used to relate experimental data to molecular chain structure. A refined RIS model is proposed, chain rigidity recalculated and chain statistics discussed. A Raman spectroscopic characterization method for crystalline and amorphous phase orientation has been developed. A shrinkage model is also proposed to interpret the dimensional stability for fibers and uni- or biaxially stretched films. A study of stereocomplexation formed by poly(l-lactic acid) and poly(d-lactic acid) is also presented.

  18. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films.

    PubMed

    Liu, Rui; Dai, Lin; Hu, Li-Qiu; Zhou, Wen-Qin; Si, Chuan-Ling

    2017-11-01

    The need for green renewable alternatives such as lignin to traditional fillers has driven recent interest in polylactic acid blend materials. Herein, lignin-graft-polylactic acid copolymers (LG-g-PDLA, LG-g-PDLLA, and LG-g-PLLA) have been synthesized via ring-opening polymerization of d-, dl-, and l-lactic acid. Then poly(l-lactic acid)/lignin-graft-polylactic acid (PLLA/LG-g-PDLA, /LG-g-PDLLA, and /LG-g-PLLA) complex films have been prepared. The results showed that, compared with LG-g-PDLA and LG-g-PLLA, a small amount of LG-g-PDLA addition could improve the crystallization rate, reduce the glass transition temperature and cold crystallization temperature of PLLA due to the stereocomplex crystallites. The thermal stability, tensile strength and strain of the stereocomplex films were also enhanced. Moreover, the PLLA/LG-g-PDLA films have good ultraviolet resistance and excellent biocompatibility. This study provides a green approach to design advanced polylactic acid-based blends with renewable natural resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Lipoteichoic Acid of Probiotic Lactobacillus plantarum Attenuates Poly I:C-Induced IL-8 Production in Porcine Intestinal Epithelial Cells

    PubMed Central

    Kim, Kyoung Whun; Kang, Seok-Seong; Woo, Sun-Je; Park, Ok-Jin; Ahn, Ki Bum; Song, Ki-Duk; Lee, Hak-Kyo; Yun, Cheol-Heui; Han, Seung Hyun

    2017-01-01

    Probiotics in livestock feed supplements are considered a replacement for antibiotics that enhance gastrointestinal immunity. Although bacterial cell wall components have been proposed to be associated with probiotic function, little evidence demonstrates that they are responsible for probiotic functions in livestock. The present study demonstrated that lipoteichoic acid (LTA) of Lactobacillus plantarum (Lp.LTA) confers anti-inflammatory responses in porcine intestinal epithelial cell line, IPEC-J2. A synthetic analog of viral double-stranded RNA, poly I:C, dose-dependently induced IL-8 production at the mRNA and protein levels in IPEC-J2 cells. Lp.LTA, but not lipoprotein or peptidoglycan from L. plantarum, exclusively suppressed poly I:C-induced IL-8 production. Compared with LTAs from other probiotic Lactobacillus strains including L. delbrueckii, L. sakei, and L. rhamnosus GG, Lp.LTA had higher potential to suppress poly I:C-induced IL-8 production. Dealanylated or deacylated Lp.LTA did not suppress poly I:C-induced IL-8 production, suggesting that D-alanine and lipid moieties in the Lp.LTA structure were responsible for the inhibition. Furthermore, Lp.LTA attenuated the phosphorylation of ERK and p38 kinase as well as the activation of NF-κB, resulting in decreased IL-8 production. Taken together, these results suggest that Lp.LTA acts as an effector molecule to inhibit viral pathogen-induced inflammatory responses in porcine intestinal epithelial cells. PMID:28983294

  20. Transient Current Behaviour of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2011-07-01

    Transient current behaviour of pristine Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid crystal polymer which is a copolymer of poly ethylene terephthalate and poly p-hydroxybenzoic acid referred as PET/x.PHB polymer liquid crystals have been studied at different biasing electric fields ranging from 13 kV/cm to 104.3 kV/cm and at temperatures 120° C and 250° C for molar ratio x =0.8.

  1. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles.

    PubMed

    Jones, Rachel A; Cheung, Charles Y; Black, Fiona E; Zia, Jasmine K; Stayton, Patrick S; Hoffman, Allan S; Wilson, Mark R

    2003-05-15

    The permeability barrier posed by cell membranes represents a challenge for the delivery of hydrophilic molecules into cells. We previously proposed that poly(2-alkylacrylic acid)s are endocytosed by cells into acidified vesicles and are there triggered by low pH to disrupt membranes and release the contents of endosomes/lysosomes to the cytosol. If this hypothesis is correct, these polymers could be valuable in drug-delivery applications. The present paper reports functional comparisons of a family of three poly(2-alkylacrylic acid)s. Poly(2-propylacrylic acid) (PPAA), poly(2-ethylacrylic acid) (PEAA) and poly(2-methylacrylic acid) (PMAA) were compared in red-blood-cell haemolysis assays and in a lipoplex (liposome-DNA complex) assay. We also directly examined the ability of these polymers to disrupt endosomes and lysosomes in cultured human cells. Our results show that: (i) unlike membrane-disruptive peptides, the endosomal-disruptive ability of poly(2-alkylacrylic acid)s cannot necessarily be predicted from their haemolytic activity at low pH, (ii) PPAA (but not PEAA or PMAA) potently facilitates gene transfection by cationic lipoplexes and (iii) endocytosed poly(2-alkylacrylic acid)s are triggered by luminal acidification to selectively disrupt endosomes (not lysosomes) and release their contents to the cytosol. These results will facilitate the rational design of future endosomal-disrupting polymers for drug delivery.

  2. Miscibility of poly(lactic acid) and poly(ethylene oxide) solvent polymer blends and nanofibers made by solution blow spinning

    USDA-ARS?s Scientific Manuscript database

    The miscibility of blends of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) was studied in polymer solutions by dilute solution viscometry and in solution blow spun nanofibers by microscopy (SEM, TEM) and by thermal and spectral analysis. Three blends of PLA and PEO were solution blended in...

  3. Competing Stereocomplexation and Homocrystallization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture: Effects of Miscible Blending with Other Polymers.

    PubMed

    Bao, Jianna; Xue, Xiaojia; Li, Kai; Chang, Xiaohua; Xie, Qing; Yu, Chengtao; Pan, Pengju

    2017-07-20

    Promoting the stereocomplexation ability of high-molecular-weight poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) is an efficient way to improve the thermal resistance of the resulting materials. Herein, we studied the competing crystallization kinetics, polymorphic crystalline structure, and lamellae structure of the PLLA/PDLA component in its miscible blends with poly(vinyl acetate) (PVAc) and proposed a method to improve the stereocomplexation ability of PLLA and PDLA through miscible blending with the other polymer. Crystallization of the PLLA/PDLA component is suppressed after the addition of PVAc, due to the dilution effect. The stereocomplexation ability of PLLA and PDLA is enhanced by blending with PVAc; this becomes more obvious at a high PVAc content (≥50 wt %) but less significant with the further increase of PLLA, PDLA molecular weights. Almost exclusive formation of SCs is achieved for PLLA and PDLA after blending with a large proportion of PVAc (e.g., 75 wt %). Incorporation of PVAc also facilitates the HC-to-SC structural reorganization upon heating. The increased chain mobility, decreased equilibrium melting point, and enhanced intermolecular interactions may account for the preferential stereocomplexation in PLLA/PDLA/PVAc blends.

  4. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  5. Development of anti-scale poly(aspartic acid-citric acid) dual polymer systems for water treatment.

    PubMed

    Nayunigari, Mithil Kumar; Gupta, Sanjay Kumar; Kokkarachedu, Varaprasad; Kanny, K; Bux, F

    2014-01-01

    The formation of calcium sulphate and calcium carbonate scale poses major problems in heat exchangers and water cooling systems, thereby affecting the performance of these types of equipment. In order to inhibit these scale formations, new types of biodegradable water soluble single polymer and dual poly(aspartic acid-citric acid) polymers were developed and tested. The effectiveness of single polymer and four different compositions of poly aspartic acid and citric acid dual polymer systems as scale inhibitors were evaluated. Details of the synthesis, thermal stability, scale inhibition and the morphological characterization of single and dual polymers are presented in this scientific paper. It was found that the calcium sulphate scale inhibition rate was in the range 76.06-91.45%, while the calcium carbonate scale inhibition rate observed was in the range 23.37-30.0% at 65-70 °C. The finding suggests that the water soluble dual polymers are very effective in sulphate scale inhibition in comparison of calcium carbonate scale inhibition.

  6. Introduction of β-cyclodextrin into poly(aspartic acid) matrix for adsorption and time-release of ibuprofen.

    PubMed

    Sun, Zhao-Yang; Shen, Ming-Xing; Yang, An-Wen; Liang, Cong-Qiang; Wang, Nan; Cao, Gui-Ping

    2011-01-21

    Biodegradable copolymers with molecule inclusion ability was prepared by introduction of β-cyclodextrin into poly(aspartic acid) matrices. The ibuprofen loading and dissolution properties of poly(aspartic acid)-β-cyclodextrin were investigated.

  7. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    PubMed

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.

  8. Emotional Contagion is not Altered in Mice Prenatally Exposed to Poly (I:C) on Gestational Day 9.

    PubMed

    Gonzalez-Liencres, Cristina; Juckel, Georg; Esslinger, Manuela; Wachholz, Simone; Manitz, Marie-Pierre; Brüne, Martin; Friebe, Astrid

    2016-01-01

    Prenatal immune activation has been associated with increased risk of developing schizophrenia. The polyinosinic-polycytidylic acid (Poly(I:C)) mouse model replicates some of the endophenotype characteristic of this disorder but the social deficits observed in schizophrenia patients have not been well studied in this model. Therefore we aimed to investigate social behavior, in particular emotional contagion for pain, in this mouse model. We injected pregnant mouse dams with Poly(I:C) or saline (control) on gestation day 9 (GD9) and we evaluated their offspring in the pre-pulse inhibition (PPI) test at age 50-55 days old to confirm the reliability of our model. Mice were then evaluated in an emotional contagion test immediately followed by the light/dark test to explore post-test anxiety-like behavior at 10 weeks of age. In the emotional contagion test, an observer (prenatally exposed to Poly(I:C) or to saline) witnessed a familiar wild-type (WT) mouse (demonstrator) receiving electric foot shocks. Our results replicate the sensory gating impairments in the Poly(I:C) offspring but we only observed minor group differences in the social tasks. One of the differences we found was that demonstrators deposited fewer feces in the presence of control observers than of observers prenatally exposed to Poly(I:C), which we suggest could be due to the observers' behavior. We discuss the findings in the context of age, sex and day of prenatal injection, suggesting that Poly(I:C) on GD9 may be a valuable tool to assess other symptoms or symptom clusters of schizophrenia but perhaps not comprising the social domain.

  9. Physicochemical Properties and Applications of Poly(lactic-co-glycolic acid) for Use in Bone Regeneration

    PubMed Central

    Félix Lanao, Rosa P.; Jonker, Anika M.; Wolke, Joop G.C.; Jansen, John A.; van Hest, Jan C.M.

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most often used synthetic polymer within the field of bone regeneration owing to its biocompatibility and biodegradability. As a consequence, a large number of medical devices comprising PLGA have been approved for clinical use in humans by the American Food and Drug Administration. As compared with the homopolymers of lactic acid poly(lactic acid) and poly(glycolic acid), the co-polymer PLGA is much more versatile with regard to the control over degradation rate. As a material for bone regeneration, the use of PLGA has been extensively studied for application and is included as either scaffolds, coatings, fibers, or micro- and nanospheres to meet various clinical requirements. PMID:23350707

  10. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Treesearch

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  11. Adhesion of a fluorinated poly(amic acid) with stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Jung, Youngsuk; Song, Sunjin; Kim, Sangmo; Yang, Yooseong; Chae, Jungha; Park, Tai-Gyoo; Dong Cho, Myung

    2013-01-01

    The authors elucidate an origin and probable mechanism of adhesion strength change at an interface of fluorinated poly(amic acid) and stainless steel. Fluorination provides favorable delamination with release strength weaker than 0.08 N/mm from a metal surface, once the amount of residual solvent becomes less than 35 wt. %. However, the release strength critically depends on film drying temperature. Characterization on stainless steel surfaces and thermodynamic analyses on wet films reveal a drying temperature of 80 °C fosters interaction between the metal oxides at stainless steel surface and the free electron donating groups in poly(amic acid).

  12. NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY

    EPA Science Inventory

    Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane p...

  13. Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans.

    PubMed

    Hornof, Margit; Weyenberg, Wim; Ludwig, Annick; Bernkop-Schnürch, Andreas

    2003-05-20

    The aim of the study was to develop a mucoadhesive ocular insert for the controlled delivery of ophthalmic drugs and to evaluate its efficacy in vivo. The inserts tested were based either on unmodified or thiolated poly(acrylic acid). Water uptake and swelling behavior of the inserts as well as the drug release rates of the model drugs fluorescein and two diclofenac salts with different solubility properties were evaluated in vitro. Fluorescein was used as fluorescent tracer to study the drug release from the insert in humans. The mean fluorescein concentration in the cornea/tearfilm compartment as a function of time was determined after application of aqueous eye drops and inserts composed of unmodified and of thiolated poly(acrylic acid). The acceptability of the inserts by the volunteers was also evaluated. Inserts based on thiolated poly(acrylic acid) were not soluble and had good cohesive properties. A controlled release was achieved for the incorporated model drugs. The in vivo study showed that inserts based on thiolated poly(acrylic acid) provide a fluorescein concentration on the eye surface for more than 8 h, whereas the fluorescein concentration rapidly decreased after application of aqueous eye drops or inserts based on unmodified poly(acrylic acid). Moreover, these inserts were well accepted by the volunteers. The present study indicates that ocular inserts based on thiolated poly(acrylic acid) are promising new solid devices for ocular drug delivery.

  14. Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope.

    PubMed

    Wilson, Kirsty L; Xiang, Sue D; Plebanski, Magdalena

    2015-01-01

    The development of practical and flexible vaccines to target liver stage malaria parasites would benefit from an ability to induce high levels of CD8 T cells to minimal peptide epitopes. Herein we compare different adjuvant and carrier systems in a murine model for induction of interferon gamma (IFN-γ) producing CD8 T cells to the minimal immuno-dominant peptide epitope from the circumsporozoite protein (CSP) of Plasmodium berghei, pb9 (SYIPSAEKI, referred to as KI). Two pro-inflammatory adjuvants, Montanide and Poly I:C, and a non-classical, non-inflammatory nanoparticle based carrier (polystyrene nanoparticles, PSNPs), were compared side-by-side for their ability to induce potentially protective CD8 T cell responses after two immunizations. KI in Montanide (Montanide + KI) or covalently conjugated to PSNPs (PSNPs-KI) induced such high responses, whereas adjuvanting with Poly I:C or PSNPs without conjugation was ineffective. This result was consistent with an observed induction of an immunosuppressed environment by Poly I:C in the draining lymph node (dLN) 48 h post injection, which was reflected by increased frequencies of myeloid derived suppressor cells (MDSCs) and a proportion of inflammation reactive regulatory T cells (Treg) expressing the tumor necrosis factor receptor 2 (TNFR2), as well as decreased dendritic cell (DC) maturation. The other inflammatory adjuvant, Montanide, also promoted proportional increases in the TNFR2(+) Treg subpopulation, but not MDSCs, in the dLN. By contrast, injection with non-inflammatory PSNPs did not cause these changes. Induction of high CD8 T cell responses, using minimal peptide epitopes, can be achieved by non-inflammatory carrier nanoparticles, which in contrast to some conventional inflammatory adjuvants, do not expand either MDSCs or inflammation reactive Tregs at the site of priming.

  15. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc.

  16. Preparation and in vitro characterization of retinoic acid-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles.

    PubMed

    Shakiba, Ebrahim; Khazaei, Saeedeh; Hajialyani, Marziyeh; Astinchap, Bandar; Fattahi, Ali

    2017-12-01

    In order to achieve the controlled release of all-trans-retinoic acid (ATRA), poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) copolymer with average molecular weight of 5.34 kDa was synthesized. The nanosized micelles were prepared from copolymer by nano-precipitation method. Critical association concentration (CAC) of micelles was measured by fluorimetry and results indicated low CAC value of micelles (1.9 × 10 -3 g/L). ATRA was encapsulated in the core of micelles using different ratios of drug to copolymer. In the case of 10% drug to polymer ratio, more than 80% of the drug was released within 3 days, whereas for ratio of 2% more than 90% of the drug was released within 3 h. The cytotoxic study performed by MTT assay showed that H1299 survival percent decreased significantly ( P ≤ 0.05) after exposure to drug-loaded micelles, while no proliferation inhibition effect was observed by either free ATRA or blank PCL-PEG-PCL micelles.

  17. Synthesis and characterization of hydrolysed starch-g-poly(methacrylic acid) composite.

    PubMed

    Zahran, Magdy K; Ahmed, Enas M; El-Rafie, Mohamed H

    2016-06-01

    A novel method for the synthesis of starch-g-poly(methacrylic acid) composite was adopted by graft polymerization of hydrolysed starch (HS) and methacrylic acid (MAA) in aqueous medium using an efficient sodium perborate (SPB)-thiourea (TU) redox initiation system. The parameters influencing the redox system efficiency and thence the polymerization method were considered. These parameters comprehended the concentrations of MAA, SPB, TU and SPB/TU molar ratio as well as the polymerization temperature. The polymerization reaction was scrutinized through calculation of the MAA total conversion percent (TC%). The resultant poly(MAA-HS) composite was assessed by evaluating the polymer criteria (the graft yield, GY%; the grafting efficiency, GE%; the homopolymer, HP%; and the total conversion). The comportment of the apparent viscosity of the cooked poly(MAA)-starch composite paste, obtained under diverse polymerization conditions, was examined. Tentative mechanisms, which depict all occasions that happen amid the entire course of the polymerization reaction, have been proffered. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Poly (ethylenimine)-grafted-poly [(aspartic acid)-co-lysine], a potential non-viral vector for DNA delivery.

    PubMed

    Tang, Gu Ping; Yang, Zhi; Zhou, Jun

    2006-01-01

    A potential non-viral gene-transfer vector, poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine] (PSL), has been developed by thermal polycondensation of aspartic acid and lysine under reduced pressure. Low-molecular-mass branch poly(ethylenimine) (PEI600) was conjugated to the backbone. The chemical structure of the resulting co-polymer was identified by 1H-NMR, FT-IR, TGA and X-ray diffraction. The results of the MTT assay showed that at concentration up to 4000 nmol/l of the vector cell viability was over 80% and showed low toxicity. Electrophoretic retardation and ethidum bromide assay showed that at N/P ratios 12-15 (w/w) the DNA could be condensed and neutralized. Using the zeta potential assay we discovered that it had a high positive charge on its surface of the particle (over 30 mV). The particle sizes of the co-polymer/DNA complexes were 150-170 nm, as measured by DLS and AFM. Compared with PEI600, co-polymer/DNA complexes showed a significant enhancement of transfection activity in the absence and presence of serum in NT2 and COS7 cell lines. This means that the PEI600-PSL co-polymer is a promising candidate for gene delivery.

  19. Characterization of Lignocellulosic-Poly(lactic acid) reinforced composites

    Treesearch

    Q.X. Hou; X.S. Chai; R. Yang; T. Elder; A.J. Ragauskas

    2005-01-01

    The effects of adding poly(lactic acid) (PLA) to the physical strength of paper test sheets prepared from three unbleached loblolly pine kraft pulps with different amounts of lignin and an aspen bleached chemothermomechanical pulp were studied. The physical strength studies demonstrated that relatively low levels of PLA addition (0.5-4.0%) could dramatically improve...

  20. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    PubMed

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe 3 O 4 ) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Electrospraying and Electrospinning of Polymers for Biomedical Applications. Poly(Lactic-Co-Glycolic Acid) and Poly(Ethylene-Co-Vinylacetate). Appendix 2

    NASA Technical Reports Server (NTRS)

    Stitzel, Joel D.; Bowlin, Gary L.; Mansfield, Kevin; Wnek, Gary E.; Simpson, David G.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. Specific attention is given here to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options. Of particular interest is the ability to generate polymer fibers of sub-micron dimensions using electrospinning, down to about 0.05 microns (50 nm), a size range that has been traditionally difficult to access. In our work, poly(lactic-co-glycolic acid), PLA/PGA, poly(lactic acid) PLA, and poly(ethylene-co-vinylacetate) (PEVA) have been deposited from solutions in methylene chloride or chloroform by electrospraying or electrospinning to afford morphologically tailored materials for tissue engineering and related applications. Low solution concentrations tend to favor electrostatic spraying ('electro-aerosolization') while higher concentrations lead to spinning on fibrous mats. Preliminary observations of muscle cell growth on PLA electrospun mats are reported.

  2. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Treesearch

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...

  3. GAS PERMEATION PROPERTIES OF POLY(LACTIC ACID). (R826733)

    EPA Science Inventory

    Abstract

    The need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen...

  4. Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application.

    PubMed

    Monmaturapoj, Naruporn; Srion, Autcharaporn; Chalermkarnon, Prasert; Buchatip, Suthawan; Petchsuk, Atitsa; Noppakunmongkolchai, Warobon; Mai-Ngam, Katanchalee

    2017-08-01

    A composite of 70/30 poly(lactic acid)/hydroxyapatite was systematically prepared using various amounts of glycidyl methacrylate as reactive compatibilizer or Joncryl ADR®-4368 containing nine glycidyl methacrylate functions as a chain extension/branching agent to improve the mechanical and biological properties for suitable usage as internal bone fixation devices. The effect of glycidyl methacrylate/Joncryl on mechanical properties of poly(lactic acid)/hydroxyapatite was investigated through flexural strength. Cell proliferation and differentiation of osteoblast-like MC3T3-E1 cells cultured on the composite samples were determined by Alamar Blue assay and alkaline phosphatase expression, respectively. Result shows that flexural strength tends to decrease, as glycidyl methacrylate content increases except for 1 wt.% glycidyl methacrylate. With an addition of dicumyl peroxide, the flexural strength shows an improvement than that of without dicumyl peroxide probably due to the chemical bonding of the hydroxyapatite and poly(lactic acid) as revealed by FTIR and NMR, whereas the composite with 5 wt.% Joncryl shows the best result, as the flexural strength increases getting close to pure poly(lactic acid). The significant morphology change could be seen in composite with Joncryl where the uniform agglomeration of hydroxyapatite particles oriented in poly(lactic acid) matrix. Addition of the epoxy functional compatibilizers at suitable percentages could also have benefits to cellular attachment, proliferation, differentiation and mineralization. So that, this poly(lactic acid)/hydroxyapatite composite could be a promising material to be used as internal bone fixation devices such as screws, pins and plates.

  5. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend.

    PubMed

    Kenawy, El-Refaie; Bowlin, Gary L; Mansfield, Kevin; Layman, John; Simpson, David G; Sanders, Elliot H; Wnek, Gary E

    2002-05-17

    Electrospun fiber mats are explored as drug delivery vehicles using tetracycline hydrochloride as a model drug. The mats were made either from poly(lactic acid) (PLA), poly(ethylene-co-vinyl acetate) (PEVA), or from a 50:50 blend of the two. The fibers were electrospun from chloroform solutions containing a small amount of methanol to solubilize the drug. The release of the tetracycline hydrochloride from these new drug delivery systems was followed by UV-VIS spectroscopy. Release profiles from the electrospun mats were compared to a commercially available drug delivery system, Actisite (Alza Corporation, Palo Alto, CA), as well as to cast films of the various formulations.

  6. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate.

    PubMed

    Chauhan, Kalpana; Patiyal, Priyanka; Chauhan, Ghanshyam S; Sharma, Praveen

    2014-06-01

    Silica, in natural waters (due to weathering of rocks) decreases system performance in water processing industry due to scaling. In view of that, the present work involves the synthesis of novel green star shaped additives of algae core (a bio-inspired material as diatom maintains silicic acid equilibrium in sea water) as silica polymerization inhibitors. Star shaped materials with bio-inspired core and poly(acrylamide) [poly(AAm)] and poly(acrylic acid) [poly(AAc)] arms were synthesized by economical green approach. The proficiency was evaluated in 'mini lab' scale for the synthesized APAAm (Algae-g-poly(AAm)) and APAAc (Algae-g-poly(AAc)) dendrimers (star shaped) in colloidal silica mitigation/inhibition at 35 °C and 55 °C. Synthesized dendrimers were equally proficient in silica inhibition at 12 h and maintains ≥450 ppm soluble silica. However, APAAm dendrimers of generation 0 confirmed better results (≈300 ppm) in contrast to APAAc dendrimers in silica inhibition at 55 °C. Additionally, dendrimers also worked as a nucleator for heterogeneous polymerization to inhibit silica homo-polymerization. APAAm dendrimer test set showed no silica deposit for more than 10 days of inhibition. EDX characterization results support nucleator mechanism with Si content of 6.97%-10.98% by weight in silica deposits (SiO2-APAAm dendrimer composites). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warangkhana, Phromma; Rathanawan, Magaraphan, E-mail: rathanawan.k@chula.ac.th; Jana Sadhan, C., E-mail: janas@uakron.edu

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter ledmore » to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.« less

  8. Poly(aspartic acid) with adjustable pH-dependent solubility.

    PubMed

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pK a . Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pK a values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract

  9. Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies.

    PubMed

    Mittal, H; Mishra, Shivani B; Mishra, A K; Kaith, B S; Jindal, R; Kalia, S

    2013-10-15

    Biodegradation studies of Gum ghatti (Gg) and acrylamide-co-acrylic acid based flocculants [Gg-cl-poly(AAm-co-AA)] have been reported using the soil composting method. Gg-cl-poly(AAm-co-AA) was found to degrade 89.76% within 60 days. The progress of biodegradation at each stage was monitored through FT-IR and SEM. Polymer was synthesized under pressure using potassium persulphate-ascorbic acid as a redox initiator and N,N'-methylene-bis-acrylamide as a crosslinker. Synthesized polymer was found to show pH, temperature and ionic strength of the cations dependent swelling behavior. Gg-cl-poly(AAm-co-AA) was utilized for the selective absorption of saline from different petroleum fraction-saline emulsions. The flocculation efficiency of the polymer was studied as a function of polymer dose, temperature and pH of the solution. Gg-cl-poly(AAm-co-AA) showed maximum flocculation efficiency with 20 mol L(-1) polymer dose in acidic medium at 50 °C. Copyright © 2013. Published by Elsevier Ltd.

  10. Safety and complications of absorbable threads made of poly-L-lactic acid and poly lactide/glycolide: Experience with 148 consecutive patients.

    PubMed

    Sarigul Guduk, Sukran; Karaca, Nezih

    2018-04-01

    Thread lifting is a minimally invasive procedure for lifting and repositioning tissues. Few articles with absorbable sutures exist in the literature. Furthermore there is no study focusing on complications of absorbable sutures. To describe complications of thread lifting using a totally absorbable suture composed of poly-L-lactic acid affixed with poly lactide/glycolide cones. Data regarding complications were analyzed retrospectively for 148 patients underwent thread lifting between June 2014 and February 2017. A total of 321 pairs of sutures used in the 148 patients studied. Overall 40 (27%) patients had complications regarded as minimal or moderate without permanent sequela. The most common complication was skin dimpling and irregularity (n = 17, 11.4%) followed by ecchymosis (n = 12, 8.1%), suture extrusion (n = 4, 2.7%), and pain (n = 4, 2.7%) Except one patient, dimpling, and irregularity resolved in all patients after 3-7 days spontaneously. Suture migration was observed in 2 (1.35%) patients. Hematoma and infection were seen in 2 patients one for each. The procedure using sutures made of absorbable poly-L-lactic acid and poly lactide/glycolide is a relatively safe procedure without major complications. © 2018 Wiley Periodicals, Inc.

  11. Prenatal immune challenge in rats: effects of polyinosinic-polycytidylic acid on spatial learning, prepulse inhibition, conditioned fear, and responses to MK-801 and amphetamine.

    PubMed

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2015-01-01

    Prenatal maternal immune activation increases risk for schizophrenia and/or autism. Previous data suggest that maternal weight change in response to the immune activator polyinosinic-polycytidylic (Poly IC) in rats influences the severity of effect in the offspring as does the exposure period. We treated gravid Sprague-Dawley rats from E14 to 18 with 8mg/kg/day Poly IC or saline. The Poly IC group was divided into those that gained the least weight or lost (Poly IC (L)) and those that gained the most (Poly IC (H)) weight. There were no effects of Poly IC on anxiety (elevated zero-maze, open-field, object burying), or Morris water maze cued learning or working memory or Cincinnati water maze egocentric learning. The Poly IC (H) group males had decreased acoustic startle whereas Poly IC (L) females had reduced startle and increased PPI. Poly IC offspring showed exaggerated hyperactivity in response to amphetamine (primarily in the Poly IC (H) group) and attenuated hyperactivity in response to MK-801 challenge (primarily in the Poly IC (L) group). Poly IC (L) males showed reduced cued conditioned freezing; both sexes showed less time in the dark in a light-dark test, and the Poly IC groups showed impaired Morris water maze hidden platform acquisition and probe performance. The data demonstrate that offspring from the most affected dams were more affected than those from less reactive dams indicating that degree of maternal immune activation predicts severity of effects on offspring behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Charge-conversional poly(amino acid)s derivatives as a drug delivery carrier in response to the tumor environment.

    PubMed

    Yoon, Se Rim; Yang, Hee-Man; Park, Chan Woo; Lim, Sujin; Chung, Bong Hyun; Kim, Jong-Duk

    2012-08-01

    A charge-converting and pH-dependent nanocarrier was achieved by conjugating 2,3-dimethylmaleic anhydride (DMMA) to the amino group of an octadecyl grafted poly (2-hydroxyethyl aspartamide) (PHEA-g-C(18)-NH(2)) backbone, thereby forming a spherical micelle. PHEA, a poly(amino acid)s derivative, was derived from poly(succinimide), which is biocompatible and biodegradable. DMMA, a detachable component at the tumor site, was added, preventing aggregation with negative blood serum and enhancing the nanocarrier's cellular uptake. The polymeric micelle was comprehensively characterized and doxorubicin was encapsulated successively. The cellular uptake and anticancer therapeutic effect were evaluated by flow cytometry, confocal laser scanning microscopy, and a MTT assay. The properties of the nanocarrier can further be exploited to develop an early detection module for cancer. The present work is also expected to advance the study of designing smart carriers for drug and gene delivery. Copyright © 2012 Wiley Periodicals, Inc.

  13. The actuation of a biomimetic poly(vinyl alcohol)poly(acrylic acid) gel.

    PubMed

    Marra, S P; Ramesh, K T; Douglas, A S

    2002-02-15

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and "artificial muscles". In previous work, a thermodynamically consistent finite-elastic constitutive model has been developed to describe the mechanical and actuation behaviours of active polymer gels. The mechanical properties were characterized by a free-energy function, and the model uses an evolving internal variable to describe the actuation state. In this work, an evolution law for the internal variable is determined from free actuation experiments on a poly(vinyl alcohol)poly(acrylic acid) (PVAPAA) gel. The complete finite-elastic/evolution law constitutive model is then used to predict the response of the PVA-PAA gel to isotonic and isometric loading and actuation. The model is shown to give relatively good agreement with experimental results.

  14. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid).

    PubMed

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Jiang, Tao; Krogman, Nicholas R; Singh, Anurima; Allcock, Harry R; Laurencin, Cato T

    2008-01-01

    Previously we demonstrated the ability of ethyl glycinato substituted polyphosphazenes to neutralize the acidic degradation products and control the degradation rate of poly(lactic acid-glycolic acid) (PLAGA) by blending. In this study, blends of high strength poly[(50% ethyl alanato) (50% p-phenyl phenoxy) phosphazene] (PNEA(50)PhPh(50)) and 85:15 PLAGA were prepared using a mutual solvent approach. Three different solvents, methylene chloride (MC), chloroform (CF) and tetrahydrofuran (THF) were studied to investigate solvent effects on blend miscibility. Three different blends were then fabricated at various weight ratios namely 25:75 (BLEND25), 50:50 (BLEND50), and 75:25 (BLEND75) using THF as the mutual solvent. The miscibility of the blends was evaluated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Among these, BLEND25 was miscible while BLEND50 and BLEND75 were partially miscible. Furthermore, BLEND25 formed apatite layers on its surface as evidenced in a biomimetic study performed. These novel blends showed cell adhesion and proliferation comparable to PLAGA. However, the PNEA(50)PhPh(50) component in the blends was able to increase the phenotypic expression and mineralized matrix synthesis of the primary rat osteoblasts (PRO) in vitro. Blends of high strength PNEA(50)PhPh(50) and 85:15 PLAGA are promising biomaterials for a variety of musculoskeletal applications.

  15. Enhanced conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film by acid treatment for indium tin oxide-free organic solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Chiao; Huang, Chih-Kuo; Hung, Yu-Chieh; Chang, Mei-Ying

    2016-08-01

    An acid treatment is used in the enhancement of the conductivity of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin film, which is often used as the anode in organic solar cells. There are three types of acid treatment for PEDOT:PSS thin film: hydrochloric, sulfuric, and phosphoric acid treatments. In this study, we examine and compare these three ways with each other for differences in conductivity. Hydrochloric acid results in the highest conductivity enhancement, from 0.3 to 1109 S/cm. We also discuss the optical transmittance, conductivity, surface roughness, surface morphology, and stability, as well as the factors that can influence device efficiency. The devices are fabricated using an acid-treated PEDOT:PSS thin film as the anode. The highest power conversion efficiency was 1.32%, which is a large improvement over that of the unmodified organic solar cell (0.21%). It is comparable to that obtained when using indium tin oxide (ITO) as an electrode, ca. 1.46%.

  16. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration.

    PubMed

    Lin, Yu-Hsin; Lin, Jui-Hsiang; Hong, Ya-Shiuan

    2017-01-01

    The hydrophobic polyphenol curcumin has anti-inflammatory, antimicrobial, and wound-healing properties that warrant its pharmacological consideration. We report a curcumin nanoparticle with a tripolymeric composite that can be used as a delivery device for wound healing. The present composite nanoparticles were prepared with three biocompatible polymers of chitosan, poly-γ-glutamic acid, and pluronic using a simple ionic gelation technology. Pluronic was used to enhance the solubility of curcumin in chitosan/poly-γ-glutamic acid nanoparticles, leading to the incorporation of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles into chitosan membranes, and reduced inflammation and bacterial infection during wound regeneration. Nanoparticles were of 193.1 ± 8.9 nm and had a zeta potential of 20.6 ± 2.4 mV. Moreover, in vitro analyses indicated controlled curcumin release in a simulated skin tissue model. Subsequent in vivo studies show that chitosan wound dressing containing chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles promoted neocollagen regeneration and tissue reconstruction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 81-90, 2017. © 2015 Wiley Periodicals, Inc.

  17. Piezoelectric antibacterial fabric comprised of poly(l-lactic acid) yarn

    NASA Astrophysics Data System (ADS)

    Ando, Masamichi; Takeshima, Satoshi; Ishiura, Yutaka; Ando, Kanako; Onishi, Osamu

    2017-10-01

    A lactic acid monomer has an asymmetric carbon in the molecule, so there are optical isomer l- and d-type. The most widely used poly(lactic acid) (PLA) for commercial applications is poly(l-lactic acid) (PLLA). PLLA is the polymerization product of l-lactide. Certain treatments of PLLA can yield a film that exhibits shear piezoelectricity. Thus, piezoelectric PLLA fiber can be generated by micro slitting piezoelectric PLLA films or by a melt spinning method. We prepared left-handed helical multi fiber yarn (S-yarn) and right-handed helical yarn (Z-yarn) using piezoelectric PLLA fiber. PLLA exhibited shear mode piezoelectricity, causing the electric polarity of the yarn surface to be reversed on the S-yarn and Z-yarn when tension was applied. An SZ-yarn was produced by combining the S-yarn and Z-yarn, and fabric was prepared using the SZ-yarn. This study demonstrated that the fabric has a strong antibacterial effect, which is thought to be due to the strong electric field between the yarns. The field is generated by a piezoelectric effect when the fabric was extended and contracted.

  18. Sophorolipid-derived unsaturated and epoxy fatty acid estolides as plasticizers for poly(3-hydroxybutyrate)

    USDA-ARS?s Scientific Manuscript database

    Unsaturated and epoxy fatty acid estolides were synthesized from the omega and omega-1 hydroxy fatty acids derived from sophorolipids (SLs) prepared by fermentation from glucose:soybean oil and glucose:oleic acid, respectively. These estolides were utilized as additives in solution-cast poly(3-hydro...

  19. Blends of low molecular weight of poly lactic acid (PLA) with gondorukem (gum rosin)

    NASA Astrophysics Data System (ADS)

    Kaavessina, Mujtahid; Distantina, Sperisa; Chafidz, Achmad; Utama, Aditya; Anggraeni, Venisa Mega Puteri

    2018-02-01

    The utilization of plastic was increasing as well as the increasing its demand in wide range application. Consequently, the number of plastic litter will increase and make more serious environmental problems. This research concerns to minimize waste problems by designing biodegradable plastic. In this research, biodegradable plastic was made of poly lactic acid (PLA) and gondorukem (Gum rosin, Resina colophonium) as the plasticizer. The effect of gondorukem towards PLA properties such as rheology and degradability was investigated. The research divided into two steps: (i) the polycondensation of lactic acid (LA) and (ii) modification of obtained poly lactic acid. In the first step, polycondensation was done in N2 atmosphere (138°C) for 30 hours and added 0.1 %w of SnCl2 as catalyst. Bulk modification was conducted by blending of gondurukem in varied weight (0.5, 1, and 2 g in 10 g of PLA). Furthermore, the modified PLA was analyzed its molecular structure, biodegradability and rheological property. The presence of gondorukem enhanced the biodegradability of poly lactic acid. Gondorukem could act as the plasticizer. It is confirmed that the complex viscosity of PLA melt decreased upon the addition of gondorukem

  20. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system

    PubMed Central

    Kosinski, Aaron M.; Brugnano, Jamie L.; Seal, Brandon L.; Knight, Frances C.; Panitch, Alyssa

    2012-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is a popular material used to prepare nanoparticles for drug delivery. However, PLGA nanoparticles lack desirable attributes including active targeting abilities, resistance to aggregation during lyophilization, and the ability to respond to dynamic environmental stimuli. To overcome these issues, we fabricated a nanoparticle consisting of a PLGA core encapsulated within a shell of poly(N-isopropylacrylamide). Dynamic light scattering and transmission electron microscope imaging were used to characterize the nanoparticles, while an MTT assay and ELISA suggested biocompatibility in THP1 cells. Finally, a collagen type II binding assay showed successful modification of these nanoparticles with an active targeting moiety. PMID:23507885

  1. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology.

    PubMed

    Bao, Jianna; Han, Lili; Shan, Guorong; Bao, Yongzhong; Pan, Pengju

    2015-10-01

    Although stereocomplex (sc) crystallization is highly effective for improving the thermal resistance of poly(lactic acid) (PLA), it is much less predominant than homocrystallization in high-molecular-weight (HMW) poly(l-lactic acid)/ poly(d-lactic acid) (PLLA/PDLA) racemic blends. In this contribution, the sc crystallization of HMW PLLA/PDLA racemic blends was facilitated by using comblike PLAs with cellulose acetate as the backbone. Competing crystallization kinetics, polymorphic crystalline structure, and structural transition of comblike PLLA/PDLA blends with a wide range of MWs were investigated and compared with the corresponding linear/comblike and linear blends. The HMW comblike blend is preferentially crystallized in sc polymorphs and exhibits a faster crystallization rate than does the corresponding linear blend. The sc crystallites are predominantly formed in nonisothermal cold crystallization and isothermal crystallization at temperatures above 120 °C for the comblike blends. Except for the facilitated sc formation in primary crystallization, synchrotron radiation WAXD analysis indicates that the presence of a comblike component also facilitates the transition or recrystallization from homocrystallite (hc) to sc crystallite upon heating. Preferential sc formation of comblike blends is probably attributable to the favorable interdigitation between enantiomeric branches and the increased mobility of polymer segments. After crystallization under the same temperature, the comblike blends, which mainly contain sc crystallites, show smaller long periods and thinner crystalline lamellae than do the corresponding PLLA with homocrystalline structures.

  2. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid)

    PubMed Central

    Hu, Yunzi; Daoud, Walid A.; Cheuk, Kevin Ka Leung; Lin, Carol Sze Ki

    2016-01-01

    Polycondensation and ring-opening polymerization are two important polymer synthesis methods. Poly(lactic acid), the most typical biodegradable polymer, has been researched extensively from 1900s. It is of significant importance to have an up-to-date review on the recent improvement in techniques for biodegradable polymers. This review takes poly(lactic acid) as the example to present newly developed polymer synthesis techniques on polycondensation and ring-opening polymerization reported in the recent decade (2005–2015) on the basis of industrial technique modifications and advanced laboratory research. Different polymerization methods, including various solvents, heating programs, reaction apparatus and catalyst systems, are summarized and compared with the current industrial production situation. Newly developed modification techniques for polymer properties improvement are also discussed based on the case of poly(lactic acid). PMID:28773260

  3. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parks, Steven L. (Inventor)

    2014-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  4. Low-Melt Poly(amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)

    2015-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  5. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    USDA-ARS?s Scientific Manuscript database

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  6. Diffusion of uncharged probe reveals structural changes in polyacids initiated by their neutralization: poly(acrylic acids).

    PubMed

    Hyk, Wojciech; Masiak, Michal; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2005-03-17

    The diffusion studies of the uncharged probe (1,1'-ferrocenedimethanol) have been successfully applied for the evaluation of the changes in the three-dimensional structure of poly(acrylic acids) of various molecular weights (ranging from 2000 to 4,000,000 g/mol) during their neutralization with a strong base. The qualitative picture of the macromolecule arrangement during the titration of the polyacids has been obtained from the conductometric measurements. The characteristic changes in the poly(acrylic acid) conductivity are practically the same for all polyacids examined and are in a very good agreement with the predictions of our theoretical model of the polyelectrolyte conductance. The transformation of the polyelectrolyte solution into the gel-like or gel phase has been investigated more quantitatively by tracing the changes in the diffusion coefficient of the uncharged probe redox system. The probe diffusivities, D, were determined using steady-state voltammetry at microelectrodes for a wide range of neutralization degree, alpha, of the polyacids tested. The dependencies of D versus alpha are of similar shape for all poly(acrylic acids). The first parts of the dependencies reflect a rapid increase in D (up to neutralization degree of either 45% for the lowest molecular-weight poly(acrylic acid) or 75-80% for other polyacids). They are followed by the parts of a slight drop in the diffusion coefficient. The changes in the probe diffusivity become stronger as the molecular weight of poly(acrylic acid) increases. The maximum probe diffusion coefficients are greater than the initial values in the pure polyacid solutions by 14, 24, 19, 30, and 28% for poly(acrylic acid) of molecular weights of 2000, 450,000, 1,250,000, 3,000,000, and 4,000,000 g/mol, respectively. The variation in the probe diffusion coefficient qualitatively follows the line of the changes in the macroscopic viscosity of the polyelectrolyte system. This is in contrast to the predictions of the

  7. Preparation and Characterization of Films Extruded of Polyethylene/Chitosan Modified with Poly(lactic acid)

    PubMed Central

    Quiroz-Castillo, Jesús Manuel; Rodríguez-Félix, Dora Evelia; Grijalva-Monteverde, Heriberto; Lizárraga-Laborín, Lauren Lucero; Castillo-Ortega, María Mónica; del Castillo-Castro, Teresa; Rodríguez-Félix, Francisco; Herrera-Franco, Pedro Jesús

    2014-01-01

    The use of mixtures of synthetic and natural polymers is a potential option to reduce the pollution by plastic waste. In this work, the method for the chemical modification of chitosan with poly(lactic acid) was developed; then, the preparation of films of blends of polyethylene and chitosan-poly(lactic acid) produced by an extrusion method using polyethylene-graft maleic anhydride as a compatibilizer. It was possible to obtain films with a maximum content of 20 wt% and 30 wt%, chitosan, with and without compatibilizer, respectively. Scanning electron microscope (SEM) analysis showed a homogeneous surface on all films. The addition of the compatibilizer had a significant effect on the mechanical properties of the films, such as an increase in Young’s modulus and a decrease in the elongation at break; additionally, the compatibilizer promotes thermal degradation in a single step and gives the film a slight increase in thermal resistance. These results are attributed to an improved interaction in the interface of polyethylene and chitosan-poly(lactic acid), promoted by the compatibilizer. PMID:28787928

  8. A multivariant study of the absorption properties of poly(glutaric-acid-glycerol) films

    USDA-ARS?s Scientific Manuscript database

    The solvent absorption into the matrix of poly(glutaric acid-glycerol) films made with or without either iminodiacetic acid, sugarcane bagasse, pectin, corn fiber gum or microcrystalline cellulose have been evaluated. The films were incubated in various solvent systems for 24h. The amounts of solve...

  9. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Snyder, Sarah J. (Inventor); Williams, Martha K. (Inventor)

    2016-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use as adhesives, and methods of using the materials for attaching two substrates. The methods typically form an adhesive bond that is hermetically sealed to both substrates. Additionally, the method typically forms a cross-linked bonding material that is flexible.

  10. Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Saraydin, D.; Karadağ, E.; Çaldiran, Y.; Güven, O.

    2001-02-01

    Nicotine-selective poly(acrylamide/maleic acid) (AAm/MA) hydrogels prepared by γ-irradiation were used in experiments on swelling, diffusion, and interactions of the pharmaceuticals nicotine, nicotinic acid, nicotinamide, and nikethamide. For AAm/MA hydrogel containing 60 mg maleic acid and irradiated at 5.2 kGy, the studies indicated that swelling increased in the following order; nicotine>nicotinamide>nikethamide>nicotinic acid>water. Diffusions of water and the pharmaceuticals within the hydrogels were found to be non-Fickian in character. AAm/MA hydrogel sorbed only nicotine and did not sorb nicotinamide, nikethamide and nicotinic acid in the binding experiments. S-type adsorption in Giles's classification system was observed. Some binding and thermodynamic parameters for AAm/MA hydrogel-nicotine system were calculated using the Scatchard method. The values of adsorption heat and free energy of this system were found to be negative whereas adsorption entropy was found to be positive.

  11. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.

    PubMed

    Fernando, Lawrence P; Lewis, Jamal S; Evans, Brian C; Duvall, Craig L; Keselowsky, Benjamin G

    2018-04-01

    Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018. © 2017 Wiley Periodicals, Inc.

  13. Nanocomposites from lignin-containing cellulose nanocrystals and poly(lactic acid)

    Treesearch

    Liqing Wei; Umesh Agarwal; Nicole Stark; Ronald Sabo

    2017-01-01

    Utilizing lignin-containing cellulose nanocrystals (HLCNCs) as reinforcing agents to poly(lactic acid) (PLA) for nanocomposites was studied for the first time. The PLA/HLCNCs nanocomposites were prepared by extrusion and injecting molding. The freeze-dried HLCNCs showed micron scale agglomerates. As indicated by the water contact angle measurements, the HLCNCs were...

  14. Poly(amidoamine) dendrimer-enabled simultaneous stabilization and functionalization of electrospun poly(γ-glutamic acid) nanofibers.

    PubMed

    Wang, Shige; Zhu, Jingyi; Shen, Mingwu; Zhu, Meifang; Shi, Xiangyang

    2014-02-12

    We report a facile and general approach to using generation 2 (G2) poly(amidoamine) (PAMAM) dendrimers for simultaneous stabilization and functionalization of electrospun poly(γ-glutamic acid) nanofibers (γ-PGA NFs). In this study, uniform γ-PGA NFs with a smooth morphology were generated using electrospinning technology. In order to endow the NFs with good water stability, amine-terminated G2.NH2 PAMAM dendrimers were utilized to crosslink the γ-PGA NFs via 1-ethyl-3-(3-dimethylami-nopropyl) carbodiimide coupling chemistry. Under the optimized crosslinking conditions, G2.NH2 dendrimers partially modified with fluorescein isothiocyanate (FI) or folic acid (FA) were used to crosslink γ-PGA NFs. Our results reveal that G2.NH2-FI is able to simultaneously render the NFs with good water stability and fluorescence property, while G2.NH2-FA is able to simultaneously endow the NFs with water stability and the ability to capture FA receptor-overexpressing cancer cells in vitro via ligand-receptor interaction. With the tunable dendrimer surface chemistry, multifunctional water-stable γ-PGA-based NFs may be generated via a dendrimer crosslinking approach, thereby providing diverse applications in the areas of biosensing, tissue engineering, drug delivery, and environmental sciences.

  15. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  16. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery.

    PubMed

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Poly(lactic- co -glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, "PolyDots"), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene- b -ethylene oxide) (PS- b -PEO) micelles. PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS- b -PEO micelles (ie, ~7%). Increasing the PLGA:PS- b -PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications.

  17. Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization

    NASA Astrophysics Data System (ADS)

    Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc

    2013-02-01

    Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded.

  18. In vitro characterization of pH-sensitive azithromycin-loaded methoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) micelles.

    PubMed

    Teng, Fangfang; Deng, Peizong; Song, Zhimei; Zhou, Feilong; Feng, Runliang; Liu, Na

    2017-06-15

    In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Synthesis and characterization of β-napthalene sulphonic acid doped poly(o-anisidine)

    NASA Astrophysics Data System (ADS)

    Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2014-04-01

    Poly(o-anisidine) doped with β-napthalene sulphonic acid (β-NSA) was synthesized using ammonium persulphate as an oxidizing agent. The polymer was characterized by using FTIR, XRD and conductivity measurements. The FTIR spectra reveal the presence of functional groups that account for the formation of polymer. The structure was characterized by XRD. The conductivity of the poly(o-anisidine) salt was found to be 2.25 × 10-6 S/m.

  20. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects.

    PubMed

    Pan, Pengju; Han, Lili; Bao, Jianna; Xie, Qing; Shan, Guorong; Bao, Yongzhong

    2015-05-28

    Competitive crystallization kinetics, polymorphic crystalline structure, and transition of poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) racemic blends with a wide range of molecular weights (MWs) were symmetrically investigated. Stereocomplex (sc) crystallites are exclusively formed in the low-MW racemic blends. However, stereocomplexation is remarkably depressed, and homocrystallization becomes prevailing with increasing MWs of PLLA and PDLA. Suppressed stereocomplexation in high-MW (HMW) racemic blends is proposed to be due to the low chain diffusion ability and restricted intermolecular crystal nucleation/growth. Equilibrium melting point of sc crystallites first increases and then decreases as MW increases. Crystallinity and relative fraction of sc crystallites in racemic blends enhance with crystallization temperature (Tc), and the sc crystallites are merely formed at Tc > 170 °C because of their higher thermodynamic stability. In situ wide-angle X-ray diffraction (WAXD) analysis reveals that the stereocomplexation and homocrystallization are successive rather than completely simultaneous, and the stereocomplexation is preceding homocrystallization in isothermal crystallization of HMW racemic blends. Both initial crystalline structure of homocrystallites (hc) and MW influence the heating-induced hc-to-sc transition of HMW racemic blend drastically; the hc-to-sc transition becomes easier with decreasing Tc and MW. After crystallization at the same temperature, sc crystallites show smaller long period than their hc counterparts.

  1. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles.

    PubMed

    Barouti, Ghislaine; Khalil, Ali; Orione, Clement; Jarnouen, Kathleen; Cammas-Marion, Sandrine; Loyer, Pascal; Guillaume, Sophie M

    2016-02-18

    Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin

    PubMed Central

    Larson, Nate; Greish, Khaled; Bauer, Hillevi; Maeda, Hiroshi; Ghandehari, Hamidreza

    2011-01-01

    Polymeric micelles carrying the heat shock protein 90 inhibitor tanespimycin (17-N-Allylamino-17-demethoxygeldanamycin) were synthesized using poly(styrene-co-maleic acid) (SMA) copolymers and evaluated in vitro and in vivo. SMA-tanespimycin micelles were prepared with a loading efficiency of 93%. The micelles incorporated 25.6% tanespimycin by weight, exhibited a mean diameter of 74 ± 7 nm by dynamic light scattering and a zeta potential of -35 ± 3 mV. Tanespimycin was released from the micelles in a controlled manner in vitro, with 62% released in 24 hours from a pH 7.4 buffer containing bovine serum albumin. The micellar drug delivery systems for tanespimycin showed potent activity against DU145 human prostate cancer cells, with an IC50 of 230 nM. They further exhibited potent anti-cancer activity in vivo in nu/nu mice bearing subcutaneous DU145 human prostate cancer tumor xenografts, with significantly higher anticancer efficacy as measured by tumor regression when compared to free tanespimycin at an equivalent single dose of 10 mg/kg. These data suggest further investigation of SMA-tanespimycin as a promising agent in the treatment of prostate cancer. PMID:21856392

  3. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    PubMed

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  4. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    PubMed

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optimization of disintegration behavior of biodegradable poly (hydroxy butanoic acid) copolymer mulch films in soil environment

    NASA Astrophysics Data System (ADS)

    Mahajan, Viabhav

    Biodegradation of polymeric films used for mulch film applications in agriculture not only eliminates problems of sorting out and disposal of plastics films, but also ensures increased yields in crop growth and cost reduction. One such polymer which is completely biodegradable in the soil is poly 3-hydroxy butanoic acid copolymer, which is a promising alternative to non-biodegradable incumbent polyethylene mulch films. The purpose of mulch film made of poly 3-hydroxy butanoic acid copolymers is to sustain itself during the crop growth and disintegrate and eventually biodegrade back to nature after the crop cycle is over. The disintegration phase of the biodegradation process was evaluated for poly 3-hydroxy butanoic acid copolymer incorporated with no additive, antimicrobial additives, varying amount of crystallinities, another biodegradable polymer, and in different soils, with or without varying soil moisture content. The tools used for quantification were weight loss and visual observation. The test method was standardized using repeatability tests. The onset of disintegration was optimized with addition of right anti-microbial additives, higher crystallinity of film, blending with other biodegradable polymers, compared to virgin poly 3-hydroxy butanoic acid copolymer film. The onset of disintegration time was reduced when soil moisture content was reduced. After the onset of disintegration, the polymer film was physically and mechanically deteriorated, withering away in soil, which is possible to tailor with the crop growth cycle.

  6. Post-polymerization modification of poly(L-glutamic acid) with D-(+)-glucosamine.

    PubMed

    Perdih, Peter; Cebašek, Sašo; Možir, Alenka; Zagar, Ema

    2014-11-27

    Carboxyl functional groups of poly(L-glutamic acid) (PGlu) were modified with a D-(+)-glucosamine (GlcN) by amidation using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling reagent. The coupling reaction was performed in aqueous medium without protection of hydroxyl functional groups of D-(+)-glucosamine. Poly(L-glutamic acid) and GlcN functionalized polyglutamates (P(Glu-GlcN)) were thoroughly characterized by 1D and 2D NMR spectroscopy and SEC-MALS to gain detailed information on their structure, composition and molar mass characteristics. The results reveal successful functionalization with GlcN through the amide bond and also to a minor extent through ester bond formation in position 1 of GlcN. In addition, a ratio between the α- and β-form of glucosamine substituent coupled to polyglutamate repeating units as well as the content of residual dimethoxy triazinyl active ester moiety in the samples were evaluated.

  7. Interdependent and independent roles of type I interferons and IL-6 in innate immune, neuroinflammatory and sickness behaviour responses to systemic poly I:C

    PubMed Central

    Murray, Carol; Griffin, Éadaoin W.; O’Loughlin, Elaine; Lyons, Aoife; Sherwin, Eoin; Ahmed, Suaad; Stevenson, Nigel J; Harkin, Andrew; Cunningham, Colm

    2015-01-01

    Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1−/−) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1β and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1−/− mice. IFN-β injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-β response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1−/− mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1−/− mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function. PMID:25900439

  8. Interdependent and independent roles of type I interferons and IL-6 in innate immune, neuroinflammatory and sickness behaviour responses to systemic poly I:C.

    PubMed

    Murray, Carol; Griffin, Éadaoin W; O'Loughlin, Elaine; Lyons, Aoife; Sherwin, Eoin; Ahmed, Suaad; Stevenson, Nigel J; Harkin, Andrew; Cunningham, Colm

    2015-08-01

    Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1(-/-)) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1β and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1(-/-) mice. IFN-β injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-β response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1(-/-) mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1(-/-) mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility.

    PubMed

    Xiang, Yiming; Li, Jun; Liu, Xiangmei; Cui, Zhenduo; Yang, Xianjin; Yeung, K W K; Pan, Haobo; Wu, Shuilin

    2017-10-01

    Poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating were successfully prepared on the surface of Ti metallic implants using a hydrothermal method and subsequent spin-coating of mixtures of poly(lactic-co-glycolic acid) and silver nanoparticles. The poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating exhibited excellent antibacterial efficacy of over 96% against both Staphylococcus aureus and Escherichia coli when the initial content of Ag nanoparticles was over 3wt%. In addition, the release of both silver and zinc could last for over a hundred days due to the enwrapping of poly(lactic-co-glycolic acid). Proliferation of mouse calvarial cells exhibited minimal cytotoxicity on the poly(lactic-co-glycolic acid)/Ag/ZnO coating with an initial content of Ag nanoparticles of 1wt% and 3wt%, while it inhibited cell proliferation once this value was increased to 6wt%. The results revealed that this poly(lactic-co-glycolic acid)/Ag/ZnO composite could provide a long-lasting antibacterial approach and good cytocompatibility, thus exhibiting considerable potential for biomedical application in orthopedic and dental implants with excellent self-antibacterial activity and good biocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  11. Biodegradable Poly (Lactic-co-Glycolic Acid)-Polyethylene Glycol Nanocapsules: An Efficient Carrier for Improved Solubility, Bioavailability, and Anticancer Property of Lutein.

    PubMed

    Arunkumar, Ranganathan; Prashanth, Keelara Veerappa Harish; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya; Dharmesh, Shylaja Mallaiah; Baskaran, Vallikannan

    2015-06-01

    Lutein bioavailability is limited because of its poor aqueous solubility. In this study, lutein-poly (lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanocapsules were prepared to improve the solubility, bioavailability, and anticancer property of lutein. The scanning electron microscopy and dynamic light scattering examination revealed that the nanocapsules are smooth and spherical with size ranging from 80 to 500 nm (mean = 200 nm). In vitro lutein release profile from nanocapsules showed controlled sustainable release (66%) up to 72 h. Aqueous solubility of lutein nanocapsules was much higher by 735-fold than the lutein. Fourier transform infrared spectroscopy analyses showed no chemical interaction among PLGA, PEG, and lutein, indicating possible weak intermolecular forces like hydrogen bonds. X-ray diffraction revealed lutein is distributed in a disordered amorphous state in nanocapsules. Postprandial plasma kinetics (area under the curve) of an oral dose of lutein from nanocapsules was higher by 5.4-fold compared with that of micellar lutein (control). The antiproliferative effect of lutein from nanocapsules (IC50 value, 10.9 μM) was higher (43.6%) than the lutein (IC50 value, 25 μM). Results suggest that PLGA-PEG nanocapsule is an efficient carrier for enhancing hydrophilicity, bioavailability, and anticancer property of lipophilic molecules such as lutein. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Performance of high lignin content cellulose nanocrystals in poly(lactic acid)

    Treesearch

    Liqing Wei; Umesh P. Agarwal; Laurent Matuana; Ronald C. Sabo; Nicole M. Stark

    2018-01-01

    High lignin-containing cellulose nanocrystals (HLCNCs) were successfully isolated from hydrothermally treated aspen fibers and freeze-dried and compounded with poly (lactic acid) (PLA) by extrusion and injection molding. As a comparison, PLA composites containing commercial lignin-coated CNCs (BLCNCs) were also produced. HLCNCs showed higher crystallinity, larger...

  13. Poly(beta-L-malic acid) from agricultural substrates by Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    We report here for the first time the production of poly(beta-L-malic acid) (PMA) from agricultural substrates by the yeastlike fungus Aureobasidium pullulans. PMA is a natural biopolyester that has primarily been studied for biomedical uses as a drug carrier. However, PMA also has potential as a ...

  14. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery

    PubMed Central

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Purpose Poly(lactic-co-glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Methods Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, “PolyDots”), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles. Results PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS-b-PEO micelles (ie, ~7%). Increasing the PLGA:PS-b-PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Conclusion Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications. PMID:29391794

  15. Cytotoxic effects of polybasic acids, poly(alkenoic acid)s, and the monomers with various functional groups on human pulp fibroblasts.

    PubMed

    Kurata, Shigeaki; Morishita, Kumiko; Kawase, Toshio; Umemoto, Kozo

    2011-01-01

    This study evaluated the cytotoxicity of various polybasic acids, poly(alkenoic acid)s, and the monomers with various acidic functional groups such as carboxyl, phosphoryl, and sulfo group. The cell growth of fibroblasts cultivated in medium containing polybasic acids and polymers up to the concentration to 5 mmol/L was not significantly different compared with that of control without their acids. On the other hand, the cell growth fibroblasts cultivated in medium containing 1 mmol/L of the monomers with acryloyloxy and phosphoryl or carboxyl group decreased remarkably compared with that of the control and the cells were probably lifeless. Those exposed to the monomers with a ether bond and a carboxyl group or a amide bond and a sulfo group was not significantly different compared with that of control.

  16. Solution blow spun Poly(lactic acid)/Hydroxypropyl methylcellulose nanofibers with antimicrobial properties

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) nanofibers containing hydroxypropyl methylcellulose (HPMC) and tetracycline hydrochloride (THC) were solution blow spun from two different solvents, chloroform/acetone (CA, 80:20 v/v) and 2,2,2-triflouroethanol (TFE). The diameter distribution, chemical, thermal, thermal stab...

  17. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  18. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    PubMed

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  19. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  20. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    NASA Astrophysics Data System (ADS)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  1. Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly(hydroxyalkanoates) from xylose and levulinic acid

    USDA-ARS?s Scientific Manuscript database

    Burkholderia sacchari DSM 17165 was used as a biocatalyst for the production of poly-3-hydroxybutyrate-co-3-hydroxyvalerate block copolymers (Poly-3HB-block-3HV) from xylose and levulinic acid. Among the carbon source mixtures, levulinic acid was preferred and was consumed early in the fermentations...

  2. Conformational Switching in PolyGln Amyloid Fibrils Resulting from a Single Amino Acid Insertion

    PubMed Central

    Huang, Rick K.; Baxa, Ulrich; Aldrian, Gudrun; Ahmed, Abdullah B.; Wall, Joseph S.; Mizuno, Naoko; Antzutkin, Oleg; Steven, Alasdair C.; Kajava, Andrey V.

    2014-01-01

    The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10–20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design. PMID:24853742

  3. High piezoelectric performance of poly(lactic acid) film manufactured by solid-state extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsunobu; Onogi, Takayuki; Onishi, Katsuki; Inagaki, Takuma; Tajitsu, Yoshiro

    2014-09-01

    Recently, the application of uniaxially stretched poly(l-lactic acid) (PLLA) films to speakers, actuators, and pressure sensors has been attempted, taking advantage of their piezoelectric performance. However, the shear piezoelectric constant d14 of uniaxially stretched PLLA film is conventionally 6-10 pC N-1. To realize a high sensitivity of pressure sensors, compact speakers, and actuators, and a low driving voltage, further improvement of the piezoelectric performance is desired. In this study, we carried out solid-state extrusion (SSE) to stretch and orient poly(d-lactic acid) (PDLA) and verified its effects on piezoelectric performance. By SSE, we were able to improve the mechanical strength and elastic modulus of PDLA samples. Furthermore, the d14 of the samples was significantly increased to approximately 20 pC N-1.

  4. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen

    PubMed Central

    Thim, Hanna L.; Villoing, Stéphane; McLoughlin, Marian; Christie, Karen Elina; Grove, Søren; Frost, Petter; Jørgensen, Jorunn B.

    2014-01-01

    Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing receptor (PRR

  5. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    PubMed Central

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  6. PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice.

    PubMed

    Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander

    2017-12-26

    There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine-polyethyleneglycol (PEI-PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use.

  7. PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice

    PubMed Central

    Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander

    2017-01-01

    There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine–polyethyleneglycol (PEI–PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use. PMID:29229829

  8. Glucose-Responsive Hybrid Nanoassemblies in Aqueous Solutions: Ordered Phenylboronic Acid within Intermixed Poly(4-hydroxystyrene)-block-poly(ethylene oxide) Block Copolymer.

    PubMed

    Matuszewska, Alicja; Uchman, Mariusz; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Pispas, Stergios; Kováčik, Lubomír; Štěpánek, Miroslav

    2015-12-14

    Coassembly behavior of the double hydrophilic block copolymer poly(4-hydroxystyrene)-block-poly(ethylene oxide) (PHOS-PEO) with three amphiphilic phenylboronic acids (PBA) differing in hydrophobicity, 4-dodecyloxyphenylboronic acid (C12), 4-octyloxyphenylboronic acid (C8), and 4-isobutoxyphenylboronic acid (i-Bu) was studied in alkaline aqueous solutions and in mixtures of NaOHaq/THF by spin-echo (1)H NMR spectroscopy, dynamic and electrophoretic light scattering, and SAXS. The study reveals that only the coassembly of C12 with PHOS-PEO provides spherical nanoparticles with intermixed PHOS and PEO blocks, containing densely packed C12 micelles. NMR measurements have shown that spatial proximity of PHOS-PEO and C12 leads to the formation of ester bonds between -OH of PHOS block and hydroxyl groups of -B(OH)2. Due to the presence of PBA moieties, the release of compounds with 1,2- or 1,3-dihydroxy groups loaded in the coassembled PHOS-PEO/PBA nanoparticles by covalent binding to PBA can be triggered by addition of a surplus of glucose that bind to PBA competitively. The latter feature has been confirmed by fluorescence measurements using Alizarin Red as a model compound. Nanoparticles were proved to exhibit swelling in response to glucose as detected by light scattering.

  9. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    PubMed

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  10. Blown film extrusion of poly(lactic acid) without melt strength enhancers

    Treesearch

    Sonal S. Karkhanis; Nicole M. Stark; Ronald C. Sabo; Laurent M. Matuana

    2017-01-01

    Processing strategies were developed to manufacture poly(lactic acid) (PLA) blown films without melt strength enhancers (MSEs). The effects of processing temperature on PLA’s melt properties (shear and elongational viscosities), PLA grades, and other processing conditions [ratio of take-up roller to extruder’s rotational screw speeds or processing speed ratio (PSR) and...

  11. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    PubMed

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    PubMed

    Cao, Wenqing; Ma, ZhiFan; Rasenick, Mark M; Yeh, ShuYan; Yu, JiangZhou

    2012-01-01

    Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  13. Healable Antifouling Films Composed of Partially Hydrolyzed Poly(2-ethyl-2-oxazoline) and Poly(acrylic acid).

    PubMed

    Li, Yixuan; Pan, Tiezheng; Ma, Benhua; Liu, Junqiu; Sun, Junqi

    2017-04-26

    Antifouling polymeric films can prevent undesirable adhesion of bacteria but are prone to accidental scratches, leading to a loss of their antifouling functions. To solve this problem, we report the fabrication of healable antifouling polymeric films by layer-by-layer assembly of partially hydrolyzed poly(2-ethyl-2-oxazoline) (PEtOx-EI-7%) and poly(acrylic acid) (PAA) based on hydrogen-bonding interaction as the driving force. The thermally cross-linked (PAA/PEtOx-EI-7%)*100 films show strong resistance to adhesion of both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria due to the high surface and bulk concentration of the antifouling polymer PEtOx-EI-7%. Meanwhile, the dynamic nature of the hydrogen-bonding interactions and the high mobility of the polymers in the presence of water enable repeated healing of cuts of several tens of micrometers wide in cross-linked (PAA/PEtOx-EI-7%)*100 films to fully restore their antifouling function.

  14. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    PubMed

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  15. Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications.

    PubMed

    Zheng, Xiaoxin; Wang, Yujue; Lan, Zhiyuan; Lyu, Yongnan; Feng, Gaoke; Zhang, Yipei; Tagusari, Shizu; Kislauskis, Edward; Robich, Michael P; McCarthy, Stephen; Sellke, Frank W; Laham, Roger; Jiang, Xuejun; Gu, Wei Wang; Wu, Tim

    2014-06-01

    Biodegradable polymers used as vascular stent coatings and stent platforms encounter a major challenge: biocompatibility in vivo, which plays an important role in in-stent restenosis (ISR). Co-formulating amorphous calcium phosphate (ACP) into poly(lactic-co-glycolic acid) (PLGA) or poly-L-lactic acid (PLLA) was investigated to address the issue. For stent coating applications, metal stents were coated with polyethylene-co-vinyl acetate/poly-n-butyl methacrylate (PEVA/PBMA), PLGA or PLGA/ACP composites, and implanted into rat aortas for one and three months. Comparing with both PEVA/PBMA and PLGA groups after one month, the results showed that stents coated with PLGA/ACP had significantly reduced restenosis (PLGA/ACP vs. PEVA/PBMA vs. PLGA: 21.24 +/- 2.59% vs. 27.54 +/- 1.19% vs. 32.12 +/- 3.93%, P < 0.05), reduced inflammation (1.25 +/- 0.35 vs. 1.77 +/- 0.38 vs. 2.30 +/- 0.21, P < 0.05) and increased speed of re-endothelialization (1.78 +/- 0.46 vs. 1.17 +/- 0.18 vs. 1.20 +/- 0.18, P < 0.05). After three months, the PLGA/ACP group still displayed lower inflammation score (1.33 +/- 0.33 vs. 2.27 +/- 0.55, P < 0.05) and higher endothelial scores (2.33 +/- 0.33 vs. 1.20 +/- 0.18, P < 0.05) as compared with the PEVA/PBMA group. Moreover, for stent platform applications, PLLA/ACP stent tube significantly reduced the inflammatory cells infiltration in the vessel walls of rabbit iliac arteries relative to their PLLA cohort (NF-kappaB-positive cells: 23.31 +/- 2.33/mm2 vs. 9.34 +/- 1.35/mm2, P < 0.05). No systemic biochemical or pathological evidence of toxicity was found in either PLGA/ACP or PLLA/ACP. The co-formulation of ACP into PLGA and PLLA resulted in improved biocompatibility without systemic toxicity.

  16. In vitro evaluation of new functional properties of poly-γ-glutamic acid produced by Bacillus subtilis D7.

    PubMed

    Lee, Na-Ri; Go, Tae-Hun; Lee, Sang-Mee; Jeong, Seong-Yun; Park, Geun-Tae; Hong, Chang-Oh; Son, Hong-Joo

    2014-04-01

    We investigated the functionality of poly-γ-glutamic acid (γ-PGA), which is produced by Bacillus subtilis D7, for its potential applications in medicine and cosmetics. The γ-PGA had angiotensin-converting enzyme (ACE) inhibition activity. ACE inhibition activity was dependent on the γ-PGA concentration; the highest ACE inhibition activity was observed at 1.25 mg/l of γ-PGA. IC50 (0.108 mg/ml) of the γ-PGA was lower than that of standard ACE inhibitory drug, N-[(S)-mercapto-2-methylpropionyl]-L-proline (0.247 mg/ml). The γ-PGA also had water-holding capacity and hygroscopicity. Furthermore, the γ-PGA inhibited growth of some pathogenic bacteria, including Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Klebsiella pneumonia and Esherichia coli. The γ-PGA exhibited a good metal adsorption capacity; Cr (VI) adsorption capacity of γ-PGA increased with decreasing pH, and the maximal adsorption was observed at pH 2. Our results suggest that γ-PGA may be expected to be widely applied in cosmetics, biomedical and environmental industries with the feature of being less harmful to humans and the environment.

  17. Identification of a novel malonyl-CoA IC(50) for CPT-I: implications for predicting in vivo fatty acid oxidation rates.

    PubMed

    Smith, Brennan K; Perry, Christopher G R; Koves, Timothy R; Wright, David C; Smith, Jeffrey C; Neufer, P Darrell; Muoio, Deborah M; Holloway, Graham P

    2012-11-15

    Published values regarding the sensitivity (IC(50)) of CPT-I (carnitine palmitoyltransferase I) to M-CoA (malonyl-CoA) inhibition in isolated mitochondria are inconsistent with predicted in vivo rates of fatty acid oxidation. Therefore we have re-examined M-CoA inhibition kinetics under various P-CoA (palmitoyl-CoA) concentrations in both isolated mitochondria and PMFs (permeabilized muscle fibres). PMFs have an 18-fold higher IC(50) (0.61 compared with 0.034 μM) in the presence of 25 μM P-CoA and a 13-fold higher IC(50) (6.3 compared with 0.49 μM) in the presence of 150 μM P-CoA compared with isolated mitochondria. M-CoA inhibition kinetics determined in PMFs predicts that CPT-I activity is inhibited by 33% in resting muscle compared with >95% in isolated mitochondria. Additionally, the ability of M-CoA to inhibit CPT-I appears to be dependent on P-CoA concentration, as the relative inhibitory capacity of M-CoA is decreased with increasing P-CoA concentrations. Altogether, the use of PMFs appears to provide an M-CoA IC(50) that better reflects the predicted in vivo rates of fatty acid oxidation. These findings also demonstrate that the ratio of [P-CoA]/[M-CoA] is critical for regulating CPT-I activity and may partially rectify the in vivo disconnect between M-CoA content and CPT-I flux within the context of exercise and Type 2 diabetes.

  18. Effect of pH and temperature upon self-assembling process between poly(aspartic acid) and Pluronic F127.

    PubMed

    Nita, Loredana E; Chiriac, Aurica P; Bercea, Maria

    2014-07-01

    The present investigation was made in order to evaluate the capability of self-assembling of the two water soluble polymers, respectively, poly(aspartic acid) and Pluronic F127 into well interpenetrated mixture, and to evidence the connection effects intervened during polymer complex formation to exhibit good stability once formed, as well to understand and correlate the binding strength and the interval between better association domains. The effect of pH and temperature on the interpolymeric complex formation between poly(aspartic acid) and Pluronic F127 was studied by combining rheology with light scattering technique. The solution mixtures between poly(aspartic acid) and Pluronic F127 are Newtonian fluids for all ratios among them. Depending on the polymeric mixture composition and experimental temperature, positive or negative deviations of the experimental values from the additive dependence appear. An interesting behavior was registered around 1/1 wt. ratio between the two polymers, when the hydrodynamic diameter of the interpenetrated polymeric particles decreased suddenly. This allows us to conclude the formation of core-shell micelle structure with poly(aspartic acid) core and Pluronic F127 as shell, performed through strong interactions between polymers. This behavior was sustained by the increase of absolute value of zeta potential owing to the decrease of functional groups number at the surface of micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Modification of absorbent poly(glycerol-glutaric acid) films by the addition of monoglycerides

    USDA-ARS?s Scientific Manuscript database

    Monoglycerides (MGs) have been incorporated into the matrix of poly-(glycerol-co-glutaric acid) films to investigate their effect on the thermal, mechanical, and solvent absorption properties of the resultant films. MGs were concentrated using a combination of solvent extraction and molecular disti...

  20. Poly-L/D-lactic acid anchors are associated with reoperation and failure of SLAP repairs.

    PubMed

    Park, Min Jung; Hsu, Jason E; Harper, Carl; Sennett, Brian J; Huffman, G Russell

    2011-10-01

    This study investigates factors associated with failure and reoperation after glenoid labrum repair. We studied a nonconcurrent cohort of consecutive patients undergoing arthroscopic superior labrum repair at a single institution by 2 fellowship-trained surgeons over a 10-year period. There were 348 patients included in this study with a mean age of 33.4 years (95% confidence interval [CI], 32.1 to 35.9) and a mean clinical follow-up of 12.3 months (95% CI, 10.9 to 13.8). The overall reoperation rate was 6.3%, with a revision labrum repair rate of 4.3%. Subsequent surgery and failure after arthroscopic labrum repair were significantly correlated with Workers' Compensation claims (odds ratio [OR], 4.6; P < .001; 95% CI, 1.8 to 11.7), the use of tobacco (OR, 12.0; P = .03; 95% CI, 1.2 to 114.9), and the use of absorbable poly-L/D-lactic acid (PLDLA) anchors (100% correlation, P < .001). The OR for having repeat surgery was 12.7 (95% CI, 4.9 to 32.9; P < .001) with poly-96L/4D-lactic acid (Mini-Revo; Linvatec, Largo, FL) and also increased with the use of poly-70L/30D-lactic acid (Bio-Fastak and Bio-Suturetak; Arthrex, Naples, FL) anchor material (P = .04) after removal of the patients exposed to poly-96L/4D-lactic acid anchors. The rates of repeat surgery with PLDLA anchors from Linvatec and PLDLA anchors from Arthrex were 24% and 4%, respectively. None of the patients treated with nonabsorbable suture anchors (polyether ether ketone or metallic) returned to the operating room (P < .001). After we controlled for associated factors in a multivariate analysis, the use of absorbable anchors, in particular poly-96L/4D-lactic acid anchors (OR, 14.7; P < .001), and having a work-related injury (OR, 8.1; P < .001) remained independent factors associated with both repeat surgery and revision superior labrum repair. Bioabsorbable PLDLA anchor material led to significantly more SLAP repair failures and reoperations compared with nonabsorbable suture anchors. Our recommendation

  1. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate).

    PubMed

    Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V; Domínguez-Aguilar, Marco A; Lijanova, Irina V; Arce-Estrada, Elsa

    2014-08-07

    Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC 12 ), poly(1-vinyl-3-octylimidazolium) (PImC₈) and poly(1-vinyl-3-butylimidazolium) (PImC₄) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H₂SO₄) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC 12 > PImC₈ > PImC₄) to reach 61% for PImC 12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  2. Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly(hydroxyalkanoates) from xylose and levulinic acid.

    PubMed

    Ashby, Richard D; Solaiman, Daniel K Y; Nuñez, Alberto; Strahan, Gary D; Johnston, David B

    2018-04-01

    Burkholderia sacchari was used to produce poly-3-hydroxybutyrate-co-3-hydroxyvalerate block copolymers from xylose and levulinic acid. Levulinic acid was the preferred substrate resulting in 3-hydroxyvalerate (3HV) contents as high as 95 mol% at 24 h. The 3HB:3HV ratios were controlled by the initial levulinic acid media concentration and fermentation length. Higher levulinic acid concentrations and longer durations, resulted in polymers with two glass transition temperatures, each approximating those associated with poly-3HB and poly-3HV. 13 C NMR confirmed the presence of high concentrations of 3HB-3HB and 3HV-3HV homopolymeric dyads, while mass spectrometry of the partial hydrolysis products did not conform to Bernoullian statistics for randomness, confirming block sequences. MS/MS analysis of specific oligomers showed the mass-loss of 86 amu (a 3HB unit) and 100 amu (a 3HV unit) attesting to some randomness within the polymers. This study verifies the potential for producing Poly-3HB-block-3HV copolymers from inexpensive biorenewable feedstocks without sequential addition of carbon sources. Published by Elsevier Ltd.

  3. Development of new force sensor using super-multilayer alternating laminated film comprising piezoelectric poly(l-lactic acid) and poly(d-lactic acid) films in the shape of a rectangle with round corners

    NASA Astrophysics Data System (ADS)

    Tajitsu, Yoshiro; Adachi, Yu; Nakatsuji, Takahiro; Tamura, Masataka; Sakamoto, Kousei; Tone, Takaaki; Imoto, Kenji; Kato, Atsuko; Yoshida, Testuo

    2017-10-01

    A new super-multilayer alternating laminated film in the shape of a rectangle with round corners has been developed. The super-multilayer film, which comprised piezoelectric poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) films, was wound with the number of turns on the order of from 100 to 1000 to form piezoelectric rolls. These piezoelectric rolls could generate an induced voltage of more than 95% of the initial voltage for over 10 s when a constant load was applied. The desired duration and magnitude of the piezoelectric response voltage were realized by adjusting the number of turns of the piezoelectric rolls. Similarly to many other conventional piezoelectrics, the piezoelectric rolls enable instantaneous load-dependent voltage generation and attenuation. The piezoelectric rolls are also lighter than conventional piezoelectric ceramics and can be used as a novel pressure sensor.

  4. Melting of α'- and α-crystals of poly(lactic acid)

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Maria Laura; Androsch, René

    2016-05-01

    The influence of chain structure on thermal stability of α'-crystals of poly(lactic acid) (PLA) with high L-lactic acid content (96-100 %) is detailed in this contribution. α'-crystals of PLA grow at temperatures below 120 °C, and spontaneously transform into stable α-modification during heating. Using conventional differential scanning calorimetry (DSC) and fast scanning chip calorimetry (FSC), a wide range of scanning rates, between about 10-1 and 102 K s-1 could be tested. It was found that reorganization of disordered α'-crystals into stable α-crystals can be suppressed by fast heating. The critical heating rate needed to completely melt α'-crystals and to avoid formation of α-crystals on continuation of heating varies with the chain composition, and decreases upon increase of the D-lactic acid content in the PLA chain.

  5. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery

    NASA Astrophysics Data System (ADS)

    Ding, Jianxun; Xiao, Chunsheng; He, Chaoliang; Li, Mingqiang; Li, Di; Zhuang, Xiuli; Chen, Xuesi

    2011-12-01

    A novel pH-responsive poly(amino acid) grafted with oligocation was prepared through the combination of ring-opening polymerization (ROP) and subsequent atom transfer radical polymerization (ATRP). Firstly, poly(γ-2-chloroethyl-L-glutamate) (PCELG) with a pendent 2-chloroethyl group was synthesized through ROP of γ-2-chloroethyl-L-glutamate N-carboxyanhydride (CELG NCA) using n-hexylamine as the initiator. Then, PCELG was used to initiate the ARTP of 2-aminoethyl methacrylate hydrochloride (AMA), yielding poly(L-glutamate)-graft-oligo(2-aminoethyl methacrylate hydrochloride) (PLG-g-OAMA). The pKa of PLG-g-OAMA was 7.3 established by the acid-base titration method. The amphiphilic poly(amino acid) could directly self-assemble into a vesicle in PBS. The vesicle was characterized by TEM and DLS. Hydrophilic DOX·HCl was loaded into the hollow core of the vesicle. The in vitro release behavior of DOX·HCl from the vesicle in PBS could be adjusted by the solution pH. In vitro cell experiments revealed that the vesicle could reduce the toxicity of the DOX·HCl. In addition, the preliminary gel retardation assay displayed that PLG-g-OAMA could efficiently bind DNA at a PLG-g-OAMA/DNA weight ratio of 0.3 or above, indicating its potential use as a gene carrier. More in-depth studies of the PLG-g-OAMA vesicle for drug and gene co-delivery in vitro and in vivo are in progress.

  6. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    PubMed

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  7. Economic process to co-produce poly(ε-l-lysine) and poly(l-diaminopropionic acid) by a pH and dissolved oxygen control strategy.

    PubMed

    Xu, Zhaoxian; Feng, Xiaohai; Sun, Zhuzhen; Cao, Changhong; Li, Sha; Xu, Zheng; Xu, Zongqi; Bo, Fangfang; Xu, Hong

    2015-01-01

    This study tended to apply biorefinery of indigenous microbes to the fermentation of target-product generation through a novel control strategy. A novel strategy for co-producing two valuable homopoly(amino acid)s, poly(ε-l-lysine) (ε-PL) and poly(l-diaminopropionic acid) (PDAP), was developed by controlling pH and dissolved oxygen concentrations in Streptomyces albulus PD-1 fermentation. The production of ε-PL and PDAP got 29.4 and 9.6gL(-1), respectively, via fed-batch cultivation in a 5L bioreactor. What is more, the highest production yield (21.8%) of similar production systems was achieved by using this novel strategy. To consider the economic-feasibility, large-scale production in a 1t fermentor was also implemented, which would increase the gross profit of 54,243.5USD from one fed-batch bioprocess. This type of fermentation, which produces multiple commercial products from a unified process is attractive, because it will improve the utilization rate of raw materials, enhance production value and enrich product variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong

    2012-08-01

    A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.

  9. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)

    Treesearch

    Anju Gupta; William Simmons; Gregory T. Schueneman; Eric A. Mintz

    2016-01-01

    We report the effect of lignin-coated cellulose nanocrystals (L-CNCs) on the crystallization behavior of poly(lactic acid) (PLA). PLA/L-CNC nanocomposites were prepared by melt mixing, and the crystallization behavior of PLA was investigated using differential scanning calorimetry. Isothermal crystallization data were analyzed using Avrami and Lauritzen–Hoffman...

  10. Poly(Lactic Acid) Blends with Poly(Trimethylene Carbonate) as Biodegradable Medical Adhesive Material

    PubMed Central

    Zhang, Shuang; Li, Hongli; Yuan, Mingwei; Yuan, Minglong; Chen, Haiyun

    2017-01-01

    A novel medical adhesive was prepared by blending poly(lactic acid) (PLA) with poly(trimethylene carbonate) (PTMC) in ethyl acetate, and the two materials were proven to be biodegradable and biocompatible. The medical adhesive was characterized by 1H nuclear magnetic resonance (1HNMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The water vapor transmission rate (WVTR) of this material was measured to be 7.13 g·cm−2·24 h−1. Its degree of comfortability was confirmed by the extensibility (E) and the permanent set (PS), which were approximately 7.83 N·cm−2 and 18.83%, respectively. In vivo tests regarding rabbit immunoglobulin M (IgM), rabbit immunoglobulin G (IgG), rabbit bone alkaline phosphatase (BALP), rabbit interleukin 6 (IL-6), rabbit interleukin 10 (IL-10), rabbit tumor necrosis factor α(TNFα), glutamic-oxaloacetic transaminase (AST/GOT), glutamic-pyruvic transaminase (ALT/GPT), alkaline phosphatase (AKP), blood urea nitrogen (BUN) and creatinine (Cr) indicated that the PLA-PTMC medical adhesive was not harmful to the liver and kidneys. Finally, pathological sections indicated that PLA-PTMC was more effective than the control group. These data suggest that in addition to having a positive effect on hemostasis and no sensibility to wounds, PLA-PTMC can efficiently prevent infections and has great potential as a medical adhesive. PMID:28956808

  11. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    NASA Astrophysics Data System (ADS)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  12. Patupilone-loaded poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) micelle for oncotherapy.

    PubMed

    Yan, Jing; Zhang, Dawei; Yu, Haiyang; Ma, Lili; Deng, Mingxiao; Tang, Zhaohui; Zhang, Xuefei

    2017-03-01

    Patupilone, an original natural anti-cancer agent, also known as epothilone B or Epo906, has shown promise for the treatment of a variety of cancers, however, the systematic side effects of patupilone significantly impaired its clinical translation. Herein, patupilone-loaded PLG-g-mPEG micelles were prepared. Patupilone was grafted to a poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) (PLG-g-mPEG) by Steglich esterification reaction to give PLG-g-mPEG/Epo906 that could self-assemble to form patupilone-loaded micelles (Epo906-M). The Epo906-M was able to inhibit the proliferation of A549, MCF-7 cancer cells and BEAs-2B cells in vitro. For in vivo treatment of orthotopic xenograft tumor models (MCF-7), the Epo906-M exhibited higher tumor inhibition efficiency with lower side effects as compared with free Epo906. Seventeen percent of the body weight loss appeared in the group treated with free Epo906 of 0.25 mg kg -1 , while the group treated with Epo906-M of 10 mg kg -1 showed less than ten percent of body weight loss and displayed stronger tumor inhibiting effect. Therefore, the polypeptide-patupilone conjugate has improved potential for oncotherapy.

  13. Recycling of plastic wastes with poly (ethylene-co-methacrylic acid) copolymer as compatibilizer and their conversion into high-end product.

    PubMed

    Rajasekaran, Divya; Maji, Pradip K

    2018-04-01

    This paper deals with the utilization of plastic wastes to a useful product. The major plastic pollutants that are considered to be in maximum use i.e. PET bottle and PE bags have been taken for consideration for recycling. As these two plastic wastes are not compatible, poly (ethylene-co-methacrylic acid) copolymer has been used as compatibilizer to process these two plastic wastes. Effect of dose of poly (ethylene-co-methacrylic acid) copolymer as compatibilizer has been studied here. It has been shown that only 3 wt% of poly (ethylene-co-methacrylic acid) copolymer is sufficient to make 3:1 mass ratio of PET bottle and polyethylene bags compatible. Compatibility has been examined through mechanical testing, thermal and morphological analysis. After analysing the property of recyclates, better mechanical and thermal property has been observed. Almost 500% of tensile property has been improved by addition of 3 wt% of poly (ethylene-co-methacrylic acid) copolymer in 3:1 mass ratio blend of PET bottle and PE bags than that of pristine blend. Morphological analysis by FESEM and AFM has also confirmed the compatibility of the blend. Experimental data showed better performance than available recycling process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Electrospinning of Polyaniline/Poly(Lactic Acid) Ultrathin Fibers: Process and Statistical Modeling using a Non-Gaussian Approach

    USDA-ARS?s Scientific Manuscript database

    Fibers of poly(lactic acid) (PLA) blended with p-toluenesulfonic acid-doped polyaniline, PAni.TSA, were obtained by lectrospinning, following a factorial design which was used mainly to study the effect of four process parameters (PLA solution concentration, PAni solution concentration, applied volt...

  15. Influence of nitrogen source and pH value on undesired poly(γ-glutamic acid) formation of a protease producing Bacillus licheniformis strain.

    PubMed

    Meissner, Lena; Kauffmann, Kira; Wengeler, Timo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen

    2015-09-01

    Bacillus spp. are used for the production of industrial enzymes but are also known to be capable of producing biopolymers such as poly(γ-glutamic acid). Biopolymers increase the viscosity of the fermentation broth, thereby impairing mixing, gas/liquid mass and heat transfer in any bioreactor system. Undesired biopolymer formation has a significant impact on the fermentation and downstream processing performance. This study shows how undesirable poly(γ-glutamic acid) formation of an industrial protease producing Bacillus licheniformis strain was prevented by switching the nitrogen source from ammonium to nitrate. The viscosity was reduced from 32 to 2.5 mPa s. A constant or changing pH value did not influence the poly(γ-glutamic acid) production. Protease production was not affected: protease activities of 38 and 46 U mL(-1) were obtained for ammonium and nitrate, respectively. With the presented results, protease production with industrial Bacillus strains is now possible without the negative impact on fermentation and downstream processing by undesired poly(γ-glutamic acid) formation.

  16. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate)

    PubMed Central

    Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V.; Domínguez-Aguilar, Marco A.; Lijanova, Irina V.; Arce-Estrada, Elsa

    2014-01-01

    Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC12), poly(1-vinyl-3-octylimidazolium) (PImC8) and poly(1-vinyl-3-butylimidazolium) (PImC4) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4) to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions. PMID:28788156

  17. Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers

    USDA-ARS?s Scientific Manuscript database

    Glycerine and levulinic acid were used alone and in combination for the fermentative synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) biopolymers. Shake-flask cultures of Pseudomonas oleovorans NRRL B-14682 containing different glycerine:levulinic acid ratios (1%, w/v total carbon ...

  18. Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization.

    PubMed

    Ying, L; Yu, W H; Kang, E T; Neoh, K G

    2004-07-06

    Poly (vinylidene fluoride) (PVDF) with "living" poly (acrylic acid) (PAAc) side chains (PVDF-g-PAAc) was prepared by reversible addition-fragmentation chain transfer (RAFT)-mediated graft copolymerization of acrylic acid (AAc) with the ozone-pretreated PVDF. The chemical composition and structure of the copolymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copolymer could be readily cast into pH-sensitive microfiltration (MF) membranes with enriched living PAAc graft chains on the surface (including the pore surfaces) by phase inversion in an aqueous medium. The surface composition of the membranes was determined by X-ray photoelectron spectroscopy. The morphology of the membranes was characterized by scanning electron microscopy. The pore size distribution of the membranes was found to be much more uniform than that of the corresponding membranes cast from PVDF-g-PAAc prepared by the "conventional" free-radical graft copolymerization process. Most important of all, the MF membranes with surface-tethered PAAc macro chain transfer agents, or the living membrane surfaces, could be further functionalized via surface-initiated block copolymerization with N-isopropylacrylamide (NIPAAM) to obtain the PVDF-g-PAAc-b-PNIPAAM MF membranes, which exhibited both pH- and temperature-dependent permeability to aqueous media.

  19. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    PubMed

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  20. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres

    PubMed Central

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P. Stephen

    2009-01-01

    Poly(lactic acid) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions, derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples. PMID:17482199

  1. Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)-chitosan for oral drug delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2011-05-01

    The study was aimed at the evaluation of N-vinyl pyrrolidone (NVP) incorporated polymethacrylic acid-chitosan microparticles for oral drug delivery applications. Poly (methacrylic acid)-chitosan (PMC) and poly(methacrylic acid-vinyl pyrrolidone)-chitosan (PMVC) microparticles were prepared by an ionic-gelation method. Mucoadhesion behaviour of these particles was evaluated by ex-vivo adhesion method using freshly excised rat intestinal tissue. Cytotoxicity and absorption enhancing property of PMC and PMVC particles were evaluated on Caco 2 cell monolayers. Protease enzyme inhibition capability and insulin loading/release properties of these hydrogel particles was evaluated under in vitro experimental conditions. Addition of NVP units enhanced the mucoadhesion behavior of PMC particles on isolated rat intestinal tissue. Both PMC and PMVC particles were found non-toxic on Caco 2 cell monolayers and PMC particles was more effective in improving paracellular transport of fluorescent dextran across Caco 2 cell monolayers as compared to PMVC particles. However, protease inhibition efficacy of PMC particles was not significantly affected with NVP addition. NVP incorporation improved the insulin release properties of PMC microparticles at acidic pH. Hydrophilic modification seems to be an interesting approach in improving mucoadhesion capability of PMC microparticles.

  2. Evaluation of cotton byproducts as fillers for poly(lactic acid) and low density polyethylene

    USDA-ARS?s Scientific Manuscript database

    Polymeric composites based on cotton burr and cottonseed bull have been prepared by melt blending and extrusion. For poly(lactic acid) (PLA) and low-density polyethylene (LDPE), addition of the fillers only slightly changed the composite’s thermal properties and significantly decreased the composite...

  3. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications.

    PubMed

    Arrieta, Marina Patricia; Castro-López, María del Mar; Rayón, Emilio; Barral-Losada, Luis Fernando; López-Vilariño, José Manuel; López, Juan; González-Rodríguez, María Victoria

    2014-10-15

    Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.

  4. Characterization of Active Packaging Films Made from Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Incorporated with Oregano Essential Oil.

    PubMed

    Liu, Dong; Li, Hongli; Jiang, Lin; Chuan, Yongming; Yuan, Minglong; Chen, Haiyun

    2016-05-27

    Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05). The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends.

  5. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2017-08-25

    Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Metal ion promoted hydrogels for bovine serum albumin adsorption: Cu(II) and Co(II) chelated poly[(N-vinylimidazole)-maleic acid].

    PubMed

    Pekel, Nursel; Salih, Bekir; Güven, Olgun

    2005-05-10

    Poly[(N-vinylimidazole)-maleic acid] (poly(VIm-MA)), copolymeric hydrogels were prepared by gamma-irradiating ternary mixtures of N-vinylimidazole-maleic acid-water in a (60)Co-gamma source. Cu(II) and Co(II) ions were chelated within the gels at pH=5.0. The maximum adsorption capacity of the gels were 3.71 mmol/g dry gel for Cu(II) and 1.25 mmol/g dry gel for Co(II) at pH=5.0. The swelling ratios of the gels were 1200% for poly(VIm-MA), 60 and 45% for Cu(II) and Co(II)-chelated poly(VIm-MA) gels at pH=5.0 in acetate buffer solution. These affinity gels with different swelling ratios for plain poly(VIm-MA), Cu(II)-, and Co(II)-chelated poly(VIm-MA), in acetate and phosphate buffers were used in the bovine serum albumin (BSA) adsorption/desorption studies in batch reactor. The maximum BSA adsorption capacities of the gels were 0.38 g/g dry gel for plain, 0.88 g/g dry gel for Cu(II)-chelated poly(VIm-MA) and 1.05 g/g dry gel for Co(II)-chelated poly(VIm-MA) gels. Adsorption capacity of BSA by the gels was reduced dramatically by increasing the ionic strength adjusted with NaCl. More than 95% of BSA were desorbed in 10 h in desorption medium containing 0.1M of EDTA for metal ion-chelated gels at pH=4.7.

  7. Surface conjugation of poly (dimethyl siloxane) with itaconic acid-based materials for antibacterial effects

    NASA Astrophysics Data System (ADS)

    Birajdar, Mallinath S.; Cho, Hyunjoo; Seo, Youngmin; Choi, Jonghoon; Park, Hansoo

    2018-04-01

    Poly (dimethyl siloxane) (PDMS) is widely used in various biomedical applications. However, the PDMS surface is known to cause bacterial adhesion and protein absorption issues due to its high hydrophobicity. Therefore, the development of antibacterial and anti-protein products is necessary to prevent these problems. In this study, to improve its antibacterial property and prevent protein adsorption, PDMS surfaces were conjugated with itaconic acid (IA) and poly (itaconic acid) (PIA) via a chemical method. Additionally, IA and PIA were physically blended with PDMS to compare the antibacterial properties of these materials with those of the chemically conjugated PDMS surfaces. The successful synthesis of the PIA polymer structure was confirmed by proton nuclear magnetic resonance (1H NMR) spectroscopy. The successful conjugation of IA and PIA on PDMS was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle measurements, and microbicinchoninic acid (BCA) protein assay analyses. The PDMS surfaces functionalized with IA and PIA by the conjugation method better prevented protein adsorption than the bare PDMS. Therefore, these surface-conjugated PDMS can be used in various biomedical applications.

  8. Biodegradable poly(L-lactic acid)-lavender nanocapsules: synthesis, controlled release, and application in remedy of sleep disorder.

    PubMed

    Daoud, Walid A; Ngan, Mandy; Cheuk, Kevin

    2010-02-01

    In this study, nanocapsules of poly(L-lactic acid) (PLLA) containing lavender oil were synthesized by solvent evaporation emulsion. Poly(L-lactic acid) is a biodegradable aliphatic polyester derived from lactic acid formed by bacterial fermentation of glucose-rich substances. Lavender oil is a plant extract that finds uses in phytotherapy. It is reputed as anti-septic, anti-depressant and sleep promoter. Encapsulation is a technique used to encase tiny oil droplets with a thin and permeable coating that allows for a controlled release of the volatile oil. The size and morphology of the nanocapsules were characterized by scanning electron microscope. The particle size and distribution were measured by photon correlation spectroscopy. The time-controlled release of the lavender oil was studied and the use of the lavender capsules in the remedy of sleep disorder was investigated.

  9. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.

    PubMed

    Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt

    2017-10-01

    Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Separation of the isomers of benzene poly(carboxylic acid)s by quaternary ammonium salt via formation of deep eutectic solvents.

    PubMed

    Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize

    2014-11-26

    Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.

  11. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB

    PubMed Central

    Garcia-Campo, María Jesús; Quiles-Carrillo, Luis; Masia, Jaime; Reig-Pérez, Miguel Jorge; Montanes, Nestor

    2017-01-01

    Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives. PMID:29165359

  12. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB.

    PubMed

    Garcia-Campo, María Jesús; Quiles-Carrillo, Luis; Masia, Jaime; Reig-Pérez, Miguel Jorge; Montanes, Nestor; Balart, Rafael

    2017-11-22

    Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy's impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

  13. Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion

    PubMed Central

    Mallegni, Norma; Phuong, Thanh Vu; Coltelli, Maria-Beatrice

    2018-01-01

    Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK). All of the formulations could be processed by blowing extrusion and the obtained films showed mechanical properties dependent on the LAK content. In particular the tearing strength showed a maximum like trend in the investigated composition range. The films prepared with both kinds of blends showed a tensile strength in the range 12–24 MPa, an elongation at break in the range 150–260% and a significant crystallinity. PMID:29342099

  14. Thermal and mechanical properties of compression-moulded poly(lactic acid)/gluten/clays bio(nano)composites

    USDA-ARS?s Scientific Manuscript database

    Bio(nano)composites comprising agricultural-based polymers blended with biodegradable plant-based fillers and clays were produced to develop novel hydrophobic, yet biodegradable materials that have properties comparable to those of petroleum-based plastics. Poly (lactic acid) (PLA), wheat vital glut...

  15. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    PubMed

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.

    PubMed

    Pellis, Alessandro; Acero, Enrique Herrero; Weber, Hansjoerg; Obersriebnig, Michael; Breinbauer, Rolf; Srebotnik, Ewald; Guebitz, Georg M

    2015-09-01

    Poly(lactic acid) as a biodegradable thermoplastic polyester has received increasing attention. This renewable polyester has found applications in a wide range of products such as food packaging, textiles and biomedical devices. Its major drawbacks are poor toughness, slow degradation rate and lack of reactive side-chain groups. An enzymatic process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) films was developed using Candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of the PLLA film using Humicola insolens cutinase in order to increase the number of hydroxyl and carboxylic groups on the outer polymer chains for grafting was also assessed and showed a change of water contact angle from 74.6 to 33.1° while the roughness and waviness were an order of magnitude higher in comparison to the blank. Surface functionalization was demonstrated using two different techniques, (14) C-radiochemical analysis and X-ray photoelectron spectroscopy (XPS) using (14) C-butyric acid sodium salt and 4,4,4-trifluorobutyric acid as model molecules, respectively. XPS analysis showed that 4,4,4-trifluorobutyric acid was enzymatically coupled based on an increase of the fluor content from 0.19 to 0.40%. The presented (14) C-radiochemical analyses are consistent with the XPS data indicating the potential of enzymatic functionalization in different reaction conditions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In Vitro Vascular Cell Adhesion and Proliferation on Alkaline Degraded Poly-lactic/glycolic Acid Polymers

    DTIC Science & Technology

    2002-04-01

    implanted gr~itf often leads to intimal hyperplasia which has resulted in occlusion of the regenerated vascular tissue [1, 2]. Since an endothelial... fibrovascular tissue ingrowth [I]. Clearly, the inability of poly(lactic acid) containing polymers to promote sufficient endothelialization presents serious

  18. Cooperation of Amphiphilicity and Crystallization for Regulating the Self-Assembly of Poly(ethylene glycol)-block-poly(lactic acid) Copolymers.

    PubMed

    Wang, Zhen; Cao, Yuanyuan; Song, Jiaqi; Xie, Zhigang; Wang, Yapei

    2016-09-20

    Tuning the amphiphilicity of block copolymers has been extensively exploited to manipulate the morphological transition of aggregates. The introduction of crystallizable moieties into the amphiphilic copolymers also offers increasing possibilities for regulating self-assembled structures. In this work, we demonstrate a detailed investigation of the self-assembly behavior of amphiphilic poly(ethylene glycol)-block-poly(l-lactic acid) (PEG-b-PLLA) diblock copolymers with the assistance of a common solvent in aqueous solution. With a given length of the PEG block, the molecular weight of the PLA block has great effect on the morphologies of self-assembled nanoaggregates as a result of varying molecular amphiphilicity and polymer crystallization. Common solvents including N,N-dimethylformamide, dioxane, and tetrahydrofuran involved in the early stage of self-assembly led to the change in chain configuration, which further influences the self-assembly of block copolymers. This study expanded the scope of PLA-based copolymers and proposed a possible mechanism of the sphere-to-lozenge and platelet-to-cylinder morphological transitions.

  19. Mod 1 ICS TI Report: ICS Conversion of a 140% HPGe Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bounds, John Alan

    This report evaluates the Mod 1 ICS, an electrically cooled 140% HPGe detector. It is a custom version of the ORTEC Integrated Cooling System (ICS) modified to make it more practical for us to use in the field. Performance and operating characteristics of the Mod 1 ICS are documented, noting both pros and cons. The Mod 1 ICS is deemed a success. Recommendations for a Mod 2 ICS, a true field prototype, are provided.

  20. Anionic poly(amino acid)s dissolve F-actin and DNA bundles, enhance DNase activity, and reduce the viscosity of cystic fibrosis sputum.

    PubMed

    Tang, Jay X; Wen, Qi; Bennett, Andrew; Kim, Brian; Sheils, Catherine A; Bucki, Robert; Janmey, Paul A

    2005-10-01

    Bundles of F-actin and DNA present in the sputum of cystic fibrosis (CF) patients but absent from normal airway fluid contribute to the altered viscoelastic properties of sputum that inhibit clearance of infected airway fluid and exacerbate the pathology of CF. Previous strategies to remove these filamentous aggregates have focused on DNase to enzymatically depolymerize DNA to constituent monomers and gelsolin to sever F-actin to small fragments. The high densities of negative surface charge on DNA and F-actin suggest that the bundles of these filaments, which alone exhibit a strong electrostatic repulsion, may be stabilized by multivalent cations such as histones, antimicrobial peptides, and other positively charged molecules prevalent in airway fluid. This study reports that bundles of DNA or F-actin formed after addition of histone H1 or lysozyme are efficiently dissolved by soluble multivalent anions such as polymeric aspartate or glutamate. Addition of poly-aspartate or poly-glutamate also disperses DNA and actin-containing bundles in CF sputum and lowers the elastic moduli of these samples to levels comparable to those obtained after treatment with DNase I or gelsolin. Addition of poly-aspartic acid also increased DNase activity when added to samples containing DNA bundles formed with histone H1. When added to CF sputum, poly-aspartic acid significantly reduced the growth of bacteria, suggesting activation of endogenous antibacterial factors. These findings suggest that soluble multivalent anions have potential alone or in combination with other mucolytic agents to selectively dissociate the large bundles of charged biopolymers that form in CF sputum.

  1. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    PubMed

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  2. Homopolymer self-assembly into stable nanoparticles: concerted action of hydrophobic association and hydrogen bonding in thermoresponsive poly(alkylacrylic acid)s.

    PubMed

    Sedlák, Marián

    2012-03-01

    A new approach to polymer self-assembly was presented recently [M. Sedlák, Č. Koňák, J. Dybal, Macromolecules 2009, 2, 7430-7438 and 7439-7446.] (1, 2) where stable polymeric nanoparticles were formed from poly(ethylacrylic acid) homopolymers without any assembly triggering additives, simply by heating polymer solution under conditions of thermosensitivity to certain temperature. In the current Article, we present successful results on poly(propylacrylic acid), which is a more hydrophobic polymer. We also present results on a less hydrophobic polymer from this series, poly(methacrylic acid), from which nanoparticles cannot be formed. Comparison of results on all three polymers gives a solid physicochemical insight and supports the molecular mechanism of the self-assembly previously suggested: The solvent quality gradually worsens upon heating of a thermosensitive polymer solution, and polymer-polymer contacts are preferred over polymer-solvent contacts, which leads to the formation of polymer assemblies. The presence of a significant amount of charge on chains prevents macroscopic phase separation. Upon subsequent cooling to laboratory temperature, the assemblies (nanoparticles) should eventually dissolve; however, this is not the case due to the fact that polymer chains brought to a close proximity at elevated temperatures become hydrogen-bonded. In addition, hydrogen bonds strengthen upon cooling. Mainly carboxylic-carboxylate hydrogen bonds (COOH····COO(-)) are responsible for the irreversibility of the process and the stability of nanoparticles. Conclusions are supported by results from static and dynamic light scattering, FTIR spectroscopy, and cryo-TEM microscopy. Size of nanoparticles can be monitored during the growth and custom-tailored by tuning critical parameters, especially the degree of ionization, temperature, and time of heating. Nanoparticles are stable over long periods of time. They are stable in a broad range of salt concentrations

  3. Objective Analysis of Poly-L-Lactic Acid Injection Efficacy in Different Settings.

    PubMed

    Byun, Sang-Young; Seo, Koo-Il; Shin, Jung-Won; Kwon, Soon-Hyo; Park, Mi-Sook; Lee, Joshua; Park, Kyoung-Chan; Na, Jung-Im; Huh, Chang-Hun

    2015-12-01

    Poly-L-lactic acid (PLLA) filler is known to have continuous volume effect. The objective of this study is to analyze objective volume effect of PLLA in different settings of injection schedule on the cheek. A split-face, evaluator-blind randomized study in 24 volunteers was conducted. One side was injected 3 times with 4 cc dose and the other side was injected 2 times with 6 cc dose per visit. Facial volume loss scale (FVLS) and Vectra were evaluated. Measured average FVLS showed statistically significant improvement both in 3 and 2 times injection sides and maintained efficacy until 12 months. Vectra showed volume difference (cc) between before and after injection. In 3 times injection side, it was increased 2.12 (after 1 month) to 3.17 (after 12 months). In 2 times injection side, it was increased 2.26 (after 1 month) to 3.19 (after 12 months). Gradual volume improvement over 12 months was statistically significant in both sides. There was no statistically significant difference between 3 and 2 times injection in FVLS and Vectra. There was no severe adverse event. Poly-L-lactic acid has continuous volume effect and there was no significant difference by injection times at the same total injection volume.

  4. Mechanisms of β-Cell Death in Response to Double-Stranded (ds) RNA and Interferon-γ

    PubMed Central

    Scarim, Anna L.; Arnush, Marc; Blair, Libby A.; Concepcion, Josephine; Heitmeier, Monique R.; Scheuner, Donalyn; Kaufman, Randal J.; Ryerse, Jan; Buller, R. Mark; Corbett, John A.

    2001-01-01

    Viral infection is one environmental factor that has been implicated as a precipitating event that may initiate β-cell damage during the development of diabetes. This study examines the mechanisms by which the viral replicative intermediate, double-stranded (ds) RNA impairs β-cell function and induces β-cell death. The synthetic dsRNA molecule polyinosinic-polycytidylic acid (poly IC) stimulates β-cell DNA damage and apoptosis without impairing islet secretory function. In contrast, the combination of poly IC and interferon (IFN)-γ stimulates DNA damage, apoptosis, and necrosis of islet cells, and this damage is associated with the inhibition of glucose-stimulated insulin secretion. Nitric oxide mediates the inhibitory and destructive actions of poly IC + IFN-γ on insulin secretion and islet cell necrosis. Inhibitors of nitric oxide synthase, aminoguanidine, and NG-monomethyl-l-arginine, attenuate poly IC + IFN-γ-induced DNA damage to levels observed in response to poly IC alone, prevent islet cell necrosis, and prevent the inhibitory actions on glucose-stimulated insulin secretion. NG-monomethyl-l-arginine fails to prevent poly IC- and poly IC + IFN-γ-induced islet cell apoptosis. PKR, the dsRNA-dependent protein kinase that mediates the antiviral response in infected cells, is required for poly IC- and poly IC + IFN-γ-induced islet cell apoptosis, but not nitric oxide-mediated islet cell necrosis. Alone, poly IC fails to stimulate DNA damage in islets isolated from PKR-deficient mice; however, nitric oxide-dependent DNA damage induced by the combination of poly IC + IFN-γ is not attenuated by the genetic absence of PKR. These findings indicate that dsRNA stimulates PKR-dependent islet cell apoptosis, an event that is associated with normal islet secretory function. In contrast, poly IC + IFN-γ-induced inhibition of glucose-stimulated insulin secretion and islet cell necrosis are events that are mediated by islet production of nitric oxide. These

  5. Preparation, melting behavior and thermal stability of poly(lactic acid)/poly(propylene carbonate) blends processed by vane extruder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Wei, E-mail: zw55624@163.com; Chen, Rongyuan; Zhang, Haichen

    Poly (lactic acid) (PLA)/Poly (propylene carbonate) (PPC) blends were prepared by vane extruder which is a type of novel polymer processing extruder based on elongation force field. Scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric (TG) were used respectively to analyze the compatibility, the melting behavior and thermal stability properties of PLA/PPC blends affected by the different content of PPC. The results showed that with the increase of the PPC content, the glass transition temperature of PLA was reduced, and the glass transition temperature of PPC was increased, which indicated that PLA and PPC had partial compatibility. Themore » cold crystallization temperature of PLA increased with the increase of the PPC content, which showed that PPC hindered the cold crystallization process of PLA. The addition of PPC had little impact on the melting process of PLA, and the melting temperature of PLA was almost kept the same value. Thermogravimetric analysis showed that the thermal stability of PPC was worse than that of PLA, the addition of PPC reduced the thermal stability of PLA.« less

  6. OH radical induced depolymerization of poly(methacrylic acid)

    NASA Astrophysics Data System (ADS)

    Ulanski, Piotr; Bothe, Eberhard; von Sonntag, Clemens

    1999-05-01

    Hydroxyl radicals (generated pulse radiolytically in dilute N 2O-saturated aqueous solutions) react with poly(methacrylic acid) producing two kinds of radicals. The primary radical is converted into a secondary one by H-abstraction ( k=3.5 × 10 2 s -1) as monitored by changes in the UV spectrum. Subsequently, the secondary radicals undergo chain scission ( k=1.8 s -1 at pH 7-9). This process has been followed both by spectrophotometry as well as by conductometry. In competition with the bimolecular decay of the radicals the ensuing end-chain radicals undergo efficient depolymerization resulting in the release of monomer. Since the lifetime of the radicals is much longer at high pH, where the polymer attains a rod-like conformation, depolymerization is most efficient in basic solution.

  7. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering.

    PubMed

    Narayanan, Ganesh; Vernekar, Varadraj N; Kuyinu, Emmanuel L; Laurencin, Cato T

    2016-12-15

    Regenerative engineering converges tissue engineering, advanced materials science, stem cell science, and developmental biology to regenerate complex tissues such as whole limbs. Regenerative engineering scaffolds provide mechanical support and nanoscale control over architecture, topography, and biochemical cues to influence cellular outcome. In this regard, poly (lactic acid) (PLA)-based biomaterials may be considered as a gold standard for many orthopaedic regenerative engineering applications because of their versatility in fabrication, biodegradability, and compatibility with biomolecules and cells. Here we discuss recent developments in PLA-based biomaterials with respect to processability and current applications in the clinical and research settings for bone, ligament, meniscus, and cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    PubMed

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  9. Biodegradable and thermosensitive monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel as a barrier for prevention of post-operative abdominal adhesion.

    PubMed

    Fu, Shao Zhi; Li, Zhi; Fan, Jun Ming; Meng, Xiao Hang; Shi, Kun; Qu, Ying; Yang, Ling Lin; Wu, Jing Bo; Fan, Juan; Luot, Feng; Qian, Zhi Yong

    2014-03-01

    Post-operative peritoneal adhesions are serious consequences of abdominal or pelvic surgery and cause severe bowel obstruction, chronic pelvic pain and infertility. In this study, a novel nano-hydrogel system based on a monomethoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) di-block copolymer was studied for its ability to prevent abdominal adhesion in rats. The MPEG-PLA hydrogel at a concentration of 40% (w/v) was injected and was able to adhere to defect sites at body temperature. The ability of the hydrogel to inhibit adhesion of post-operative tissues was evaluated by utilizing a rat model of abdominal sidewall-cecum abrasion. It was possible to heal wounded tissue through regeneration of neo-peritoneal tissues ten days after surgery. Our data showed that this hydrogel system is equally as effective as current commercialized anti-adhesive products.

  10. Degradation of Poly(L-Lactic Acid) and Bio-Composites by Alkaline Medium under Various Temperatures

    USDA-ARS?s Scientific Manuscript database

    Ribbons of poly(lactic acid) (PLA) and PLA containing 10 or 25 % Osage orange (OO) biocomposites of various sized heartwood particles were exposed to non-composting soil conditions either outdoors or in a greenhouse. No appreciable degradation was evident even after 208 day treatments. An artifici...

  11. Fabricating an Amperometric Cholesterol Biosensor by a Covalent Linkage between Poly(3-thiopheneacetic acid) and Cholesterol Oxidase.

    PubMed

    Nien, Po-Chin; Chen, Po-Yen; Ho, Kuo-Chuan

    2009-01-01

    In this study, use of the covalent enzyme immobilization method was proposed to attach cholesterol oxidase (ChO) on a conducting polymer, poly(3-thiopheneacetic acid), [poly(3-TPAA)]. Three red-orange poly(3-TPAA) films, named electrodes A, B and C, were electropolymerized on a platinum electrode by applying a constant current of 1.5 mA, for 5, 20 and 100 s, respectively. Further, 1-ethyl-3-(3-dimethylamiopropyl)carbodiimide hydrochloride (EDC · HCl) and N-hydroxysuccinimide (NHS) were used to activate the free carboxylic groups of the conducting polymer. Afterwards, the amino groups of the cholesterol oxidase were linked on the activated groups to form peptide bonds. The best sensitivity obtained for electrode B is 4.49 mA M(-1) cm(-2), with a linear concentration ranging from 0 to 8 mM, which is suitable for the analysis of cholesterol in humans. The response time (t(95)) is between 70 and 90 s and the limit of detection is 0.42 mM, based on the signal to noise ratio equal to 3. The interference of species such as ascorbic acid and uric acid increased to 5.2 and 10.3% of the original current response, respectively, based on the current response of cholesterol (100%). With respect to the long-term stability, the sensing response retains 88% of the original current after 13 days.

  12. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid) Films

    PubMed Central

    Salaberria, Asier M.; H. Diaz, Rene; Andrés, María A.; Fernandes, Susana C.M.; Labidi, Jalel

    2017-01-01

    As, in the market, poly (lactic acid) (PLA) is the most used polymer as an alternative to conventional plastics, and as functionalized chitin nanocrystals (CHNC) can provide structural and bioactive properties, their combination sounds promising in the preparation of functional nanocomposite films for sustainable packaging. Chitin nanocrystals were successfully modified via acylation using anhydride acetic and dodecanoyl chloride acid to improve their compatibility with the matrix, PLA. The nanocomposite films were prepared by extrusion/compression approach using different concentrations of both sets of functionalized CHNC. This investigation brings forward that both sets of modified CHNC act as functional agents, i.e., they slightly improved the hydrophobic character of the PLA nanocomposite films, and, very importantly, they also enhanced their antifungal activity. Nonetheless, the nanocomposite films prepared with the CHNC modified with dodecanoyl chloride acid presented the best properties. PMID:28772902

  14. Efficacy and safety of injection with poly-L-lactic acid compared with hyaluronic acid for correction of nasolabial fold: a randomized, evaluator-blinded, comparative study.

    PubMed

    Hyun, M Y; Lee, Y; No, Y A; Yoo, K H; Kim, M N; Hong, C K; Chang, S E; Won, C H; Kim, B J

    2015-03-01

    Hyaluronic acid (HA) fillers and poly-L-lactic acid (PLA) fillers are frequently used to correct facial wrinkles. To compare the efficacy and safety of a novel injectable poly-L-lactic acid (PLA) filler and a well-studied biphasic HA filler for the treatment of moderate to severe nasolabial folds. In this multicentre, randomized, evaluator-blinded, comparative study, subjects were randomized for injections with PLA or HA into both nasolabial folds. Efficacy was determined by calculating the change in Wrinkle Severity Rating Scale (WSRS) relative to baseline. Local safety was assessed by reported adverse events. At week 24, mean improvement in WSRS from baseline was 2.09 ± 0.68 for the PLA side and 1.54 ± 0.65 for the HA side. Both injections were well tolerated, and the adverse reactions were mild and transient in most cases. PLA provides noninferior efficacy compared with HA 6 months after being used to treat moderate to severe nasolabial folds. © 2014 British Association of Dermatologists.

  15. Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc.

    PubMed

    Antunes, Joana C; Pereira, Catarina Leite; Teixeira, Graciosa Q; Silva, Ricardo V; Caldeira, Joana; Grad, Sibylle; Gonçalves, Raquel M; Barbosa, Mário A

    2017-01-01

    Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.

  16. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  17. Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors.

    PubMed

    Yang, Yan-Yu; Hu, Hao; Wang, Xing; Yang, Fei; Shen, Hong; Xu, Fu-Jian; Wu, De-Cheng

    2015-06-10

    It was recently reported that ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA) possesses great potential applications in gene therapy due to its good biocompatibility and high transfection efficiency. Importing responsivity into PGEA vectors would further improve their performances. Herein, a series of responsive star-shaped vectors, acetaled β-cyclodextrin-PGEAs (A-CD-PGEAs) consisting of a β-CD core and five PGEA arms linked by acid-labile acetal groups, were proposed and characterized as therapeutic pDNA vectors. The A-CD-PGEAs owned abundant hydroxyl groups to shield extra positive charges of A-CD-PGEAs/pDNA complexes, and the star structure could decrease charge density. The incorporation of acetal linkers endowed A-CD-PGEAs with pH responsivity and degradation. In weakly acidic endosome, the broken acetal linkers resulted in decomposition of A-CD-PGEAs and morphological transformation of A-CD-PGEAs/pDNA complexes, lowering cytotoxicity and accelerating release of pDNA. In comparison with control CD-PGEAs without acetal linkers, A-CD-PGEAs exhibited significantly better transfection performances.

  18. Free-Standing Biodegradable Poly(lactic acid) Nanosheet for Sealing Operations in Surgery.

    PubMed

    Okamura, Yosuke; Kabata, Koki; Kinoshita, Manabu; Saitoh, Daizoh; Takeoka, Shinji

    2009-11-20

    A free-standing biodegradable nanosheet composed of poly(L-lactic acid) (PLLA) was shown to have excellent sealing efficacy for a gastric incision as a novel wound dressing material that did not require adhesive agents, and the PLLA nanosheet-induced wound repair showed neither scars nor tissue adhesion. This material may, therefore, be an ideal alternative to conventional tissue repairing procedures using suture/ligation in surgery. Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Poly(ornithine-co-arginine-co-glycine-co-aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumor-Penetrating Agent.

    PubMed

    Yu, Haiyang; Tang, Zhaohui; Zhang, Dawei; Song, Wantong; Duan, Taicheng; Gu, Jingkai; Chen, Xuesi

    2015-06-01

    A novel random copolypeptide of ornithine, arginine, glycine, and aspartic acid [Poly(ornithine-co-arginine-co-glycine-co-aspartic acid), Poly(O,R,G,D)] has been prepared through ring-opening polymerization of N-δ-carbobenzoxy-l-ornithine N-carboxyanhydride [Orn(Cbz)-NCA)], l-glycine N-carboxyanhydride (Gly-NCA) and β-benzyl l-aspartate N-carboxyanhydride [Asp(Bn)-NCA], following by subsequent deprotection and guanidization. The structure of Poly(O,R,G,D) was confirmed by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). Low cytotoxicity of Poly(O,R,G,D) was confirmed from MTT assay. The Poly(O,R,G,D) contain some internal sequences of RXXR (X = O, R, G, or D) that could be proteolytically cleaved to expose the cryptic CendR element and bind to Neuropilin-1. This would lead to vascular and tissue permeabilization. Therefore trypsin-cleaved Poly(O,R,G,D) increase the vascular leakage of Evans blue from dermal microvessels at the injection site in vivo skin permeability assay. The intratumoral injection of the Poly(O,R,G,D) significantly enhanced the concentration of cisplatin-loaded nanoparticles in MCF-7 solid tumors. These results show that Poly(O,R,G,D) could increase the vascular leakage and tissue penetration of nanoparticles in a solid tumor and can be used as a potential polymeric tumor-penetrating agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function.

    PubMed

    Ma, Rui; Ma, Zhen-Gang; Zhen, Chang-Lin; Shen, Xin; Li, Shan-Liang; Li, Li; Zheng, Yu-Feng; Dong, De-Li; Sun, Zhi-Jie

    2017-08-01

    We have found that niclosamide induced relaxation of constricted artery. However, niclosamide is insoluble, the low bioavailability and the resultant low plasma concentration limit its potential exertion in vivo. The aim of the present study is to synthesize a soluble poly (methacrylic acid-niclosamide) polymer (PMAN) and study the effects of PMAN on arterial function in vitro and the blood pressure and heart rate of rats in vivo. We synthesized the poly (methacrylic acid-niclosamide) polymer (PMAN), the chemical structure of which was identified by FTIR and 1 H NMR spectra. The average molecular weight and polydispersity index of PMAN were 5138 and 1.193 respectively. Compared with niclosamide, the water solubility of niclosamide in PMAN was significantly increased. PMAN showed dose-dependent vasorelaxation effect on rat mesenteric arteries with intact or denuded endothelium in phenylephrine (PE) and high K + (KPSS)-induced vasoconstriction models in vitro. The efficacy of vasorelaxant effect and the cytotoxic effect of PMAN on vascular smooth muscle cells (A10) were lower than that of niclosamide. The LD 50 of PMAN in mice (iv) was 80mg/kg. Venous injection of PMAN (equivalent 5mg niclosamide per kg) showed acute reduction of the rat blood pressure and heart rate in vivo. In conclusion, the solubility of niclosamide was increased in the way of poly (methacrylic acid-niclosamide) polymer, which relaxes the constricted arteries in vitro and reduces the rat blood pressure and heart rate in vivo, indicating that modifying niclosamide solubility through polymerization is a feasible approach to improve its pharmacokinetic profiles for potential clinic application. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture.

    PubMed

    Yang, Jian; Shi, Guixin; Bei, Jianzhong; Wang, Shenguo; Cao, Yilin; Shang, Qingxin; Yang, Guanghui; Wang, Wenjing

    2002-12-05

    The fabrication and surface modification of a porous cell scaffold are very important in tissue engineering. Of most concern are high-density cell seeding, nutrient and oxygen supply, and cell affinity. In the present study, poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds with different pore structures were fabricated. An improved method based on Archimedes' Principle for measuring the porosity of scaffolds, using a density bottle, was developed. Anhydrous ammonia plasma treatment was used to modify surface properties to improve the cell affinity of the scaffolds. The results show that hydrophilicity and surface energy were improved. The polar N-containing groups and positive charged groups also were incorporated into the sample surface. A low-temperature treatment was used to maintain the plasma-modified surface properties effectively. It would do help to the further application of plasma treatment technique. Cell culture results showed that pores smaller than 160 microm are suitable for human skin fibroblast cell growth. Cell seeding efficiency was maintained at above 99%, which is better than the efficiency achieved with the common method of prewetting by ethanol. The plasma-treatment method also helped to resolve the problem of cell loss during cell seeding, and the negative effects of the ethanol trace on cell culture were avoided. The results suggest that anhydrous ammonia plasma treatment enhances the cell affinity of porous scaffolds. Mass transport issues also have been considered. Copyright 2002 Wiley Periodicals, Inc.

  2. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    PubMed

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  3. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications.

    PubMed

    Swider, Edyta; Koshkina, Olga; Tel, Jurjen; Cruz, Luis J; de Vries, I Jolanda M; Srinivas, Mangala

    2018-04-11

    Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Surface changes of poly-L-lactic acid due to annealing

    NASA Astrophysics Data System (ADS)

    Juřík, P.; Michaljaničová, I.; Slepička, P.; Kolskáa, Z.; Švorčík, V.

    2017-11-01

    Surface modifications are very important part of both current cutting-edge research and modern manufacturing. Our research is focused on poly-L-lactic acid, which is biocompatible and biodegradable polymer that offers applications in modern medicine. We observed morphological changes of the surface of metalized samples due to annealing and studied effect of modifications on total surface area and pore surface and volume. We observed that annealing of non-metalized samples had most pronounced effect up to the 70°C, after which all observed parameters dropped significantly. Metallization has changed behaviour of the samples significantly and resulted in generally lower surface area and porosity when compared to non-metalized samples.

  5. Novel Synthetic (Poly)Glycerolphosphate-Based Antistaphylococcal Conjugate Vaccine

    PubMed Central

    Chen, Quanyi; Dintaman, Jay; Lees, Andrew; Sen, Goutam; Schwartz, David; Shirtliff, Mark E.; Park, Saeyoung; Lee, Jean C.; Mond, James J.

    2013-01-01

    Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid is a major antigenic target of the humoral immune system during staphylococcal infections, we developed a synthetic method for producing glycerol phosphoramidites to create a covalent 10-mer of (poly)glycerolphosphate for potential use in a conjugate vaccine. We initially demonstrated that intact Staphylococcus aureus elicits murine CD4+ T cell-dependent (poly)glycerolphosphate-specific IgM and IgG responses in vivo. Naive mice immunized with a covalent conjugate of (poly)glycerolphosphate and tetanus toxoid in alum plus CpG-oligodeoxynucleotides produced high secondary titers of serum (poly)glycerolphosphate-specific IgG. Sera from immunized mice enhanced opsonophagocytic killing of live Staphylococcus aureus in vitro. Mice actively immunized with the (poly)glycerolphosphate conjugate vaccine showed rapid clearance of staphylococcal bacteremia in vivo relative to mice similarly immunized with an irrelevant conjugate vaccine. In contrast to purified, natural lipoteichoic acid, the (poly)glycerolphosphate conjugate vaccine itself exhibited no detectable inflammatory activity. These data suggest that a synthetic (poly)glycerolphosphate-based conjugate vaccine will contribute to active protection against extracellular Gram-positive pathogens expressing this highly conserved backbone structure in their membrane-associated lipoteichoic acid. PMID:23649092

  6. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Iozzino, Valentina; Speranza, Vito; Pantani, Roberto

    2015-12-01

    The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.

  7. Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends.

    PubMed

    Park, Jun Wuk; Doi, Yoshiharu; Iwata, Tadahisa

    2004-01-01

    Blends of poly(L-lactic acid) (PLLA) with two kinds of poly[(R)-3-hydroxybutyrate] (PHB) having different molecular weights, commercial-grade bacterial PHB (bacterial-PHB) and ultrahigh molecular weight PHB (UHMW-PHB), were prepared by the solvent-casting method and uniaxially drawn at two drawing temperatures, around PHB's T(g) (2 degrees C) for PHB-rich blends and around PLLA's T(g) (60 degrees C) for PLLA-rich blends. Differential scanning calorimetry analysis showed that this system was immiscible over the entire composition range. Mechanical properties of all of the samples were improved in proportion to the draw ratio. Although PLLA domains in bacterial-PHB-rich blends remained almost unstretched during cold drawing, a good interfacial adhesion between two polymers and the reinforcing role of PLLA components led to enhanced mechanical properties proportionally to the PLLA content at the same draw ratio. On the contrary, in the case of UHMW-PHB-rich blends, the minor component PLLA was found to be also oriented by cold drawing in ice water due to an increase in the interfacial entanglements caused by the very long chain length of the matrix polymer. As a result, their mechanical properties were considerably improved with increasing PLLA content compared with the bacterial-PHB system. Scanning electron microscopy observations on the surface and cross-section revealed that a layered structure with uniformly oriented microporous in the interior was obtained by selectively removal of PLLA component after simple alkaline treatment.

  8. Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films

    PubMed Central

    Fortunati, Elena; Iannoni, Antonio; Terenzi, Andrea; Torre, Luigi

    2017-01-01

    Poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) based films containing two different plasticizers [Acetyl Tributyl Citrate (ATBC) and isosorbide diester (ISE)] at three different contents (15 wt %, 20 wt % and 30 wt %) were produced by extrusion method. Thermal, morphological, mechanical and wettability behavior of produced materials was investigated as a function of plasticizer content. Filmature parameters were also adjusted and optimized for different formulations, in order to obtain similar thickness for different systems. Differential scanning calorimeter (DSC) results and evaluation of solubility parameter confirmed that similar miscibility was obtained for ATBC and ISE in PLA, while the two selected plasticizers resulted as not efficient for plasticization of PBS, to the limit that the PBS–30ATBC resulted as not processable. On the basis of these results, isosorbide-based plasticizer was considered a suitable agent for modification of a selected blend (PLA/PBS 80:20) and two mixing approaches were used to identify the role of ISE in the plasticization process: results from mechanical analysis confirmed that both produced PLA–PBS blends (PLA85–ISE15)–PBS20 and (PLA80–PBS20)–ISE15 could guarantee advantages in terms of deformability, with respect to the PLA80–PBS20 reference film, suggesting that the promising use of these stretchable PLA–PBS based films plasticized with isosorbide can provide novel solutions for food packaging applications. PMID:28773168

  9. Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and Nisaplin in the presence of plasticizers

    USDA-ARS?s Scientific Manuscript database

    Nisin is a naturally occurring antimicrobial polypeptide, and is popularly used in foods and food packaging industries. Nisin is deactivated at temperatures higher than 120 deg C, and therefore can not be directly incorporated into poly(L-lactic acid) (PLA), a biomass-derived biodegradable polymer, ...

  10. 13C NMR spectroscopic analysis of poly(electrolyte) cement liquids.

    PubMed

    Watts, D C

    1979-05-01

    13C NMR spectroscopy has been applied to the analysis of carboxylic poly-acid cement liquids. Monomer incorporation, composition ratio, sequence statistics, and stereochemical configuration have been considered theoretically, and determined experimentally, from the spectra. Conventionally polymerized poly(acrylic acid) has an approximately random configuration, but other varieties may be synthesized. Two commercial glass-ionomer cement liquids both contain tartaric acid as a chelating additive but the composition of their poly-acids are different. Itaconic acid units, distributed randomly, constitute 21% of the repeating units in one of these polyelectrolytes.

  11. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  12. Bioceramic/poly (glycolic)-poly (lactic acid) composite induces mineralized barrier after direct capping of rat tooth pulp tissue.

    PubMed

    Gala-Garcia, Alfonso; Teixeira, Karina Imaculada Rosa; Wykrota, Francisco Henrique Lana; Sinisterra, Rubén Dario; Cortés, Maria Esperanza

    2010-01-01

    The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC) and poly (glycolic)-poly (lactic acid) (PLGA) material or a calcium hydroxide [Ca(OH)2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH)2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH)2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  13. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  14. NMR analysis and tacticity determination of poly(lactic acid) in C5D5N

    USDA-ARS?s Scientific Manuscript database

    In this work tacticity assignments of poly(lactic acid), (PLA), are reported for the NMR peaks from CH carbon and CH3 proton at the tetrad level in deuterated pyridine. The methyl protons are better resolved in pyridine due to solvent effects such as ring current shielding of the aromatic ring and ...

  15. Synthesis and luminescent properties of the novel poly(ethylene-co-acrylic acid) films based on surface modification with lanthanide (Eu3+, Tb3+) complexes

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Chu, Yang; Yu, Zhenjiang; Hao, Haixia; Wu, Qingyao; Xie, Hongde

    2017-10-01

    Two kinds of novel fluorescent films have been successfully synthesized by surface modification on the poly(ethylene-co-acrylic acid) films using the lanthanide (Eu3+, Tb3+) complexes. The process consists of three steps: conversion of carboxylic acid groups on the surface of the poly(ethylene-co-acrylic acid) films to acid chloride groups, synthesis of the lanthanide complexes bearing amino groups, and amidation to form the modified films. To characterize the modified films, Fourier transform infrared, thermogravimetric analysis, static water contact angle measurements and photoluminescence tests have been employed. Fourier transform infrared verifies the successful preparation of the lanthanide complexes and the modified poly(ethylene-co-acrylic acid) films. These films can emit strong characteristic red and green light under UV light excitation. In addition, the films both have short lifetime (1.14 ms and 1.21 ms), high thermal stability (Td = 408 °C and 411 °C) and, compared with unmodified ones, increased hydrophilicity. All these results suggest that the modified films have potential application as luminescent materials under high temperature.

  16. Improved synthesis with high yield and increased molecular weight of poly(alpha,beta-malic acid) by direct polycondensation.

    PubMed

    Kajiyama, Tetsuto; Kobayashi, Hisatoshi; Taguchi, Tetsushi; Kataoka, Kazunori; Tanaka, Junzo

    2004-01-01

    The development of synthetic biodegradable polymers, such as poly(alpha-hydroxy acid), is particularly important for constructing medical devices, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing high molecular weight poly(malic acid) (HMW--PMA) as a biodegradable and bioabsorbable water-soluble polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of l-malic acid, including the reaction times, temperatures, and catalysts. The molecular weight of synthesized alpha,beta-PMA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain alpha,beta-PMA by direct polycondensation using tin(II) chloride as a catalyst was thus determined to be 110 degrees C for 45 h with a molecular weight of 5300. The method for alpha,beta-PMA synthesis established here will facilitate production of alpha,beta-PMA of various molecular weights, which may have a potential utility as biomaterials.

  17. Multiplex Immunoassay Platforms Based on Shape-Coded Poly(ethylene glycol) Hydrogel Microparticles Incorporating Acrylic Acid

    PubMed Central

    Park, Saemi; Lee, Hyun Jong; Koh, Won-Gun

    2012-01-01

    A suspension protein microarray was developed using shape-coded poly(ethylene glycol) (PEG) hydrogel microparticles for potential applications in multiplex and high-throughput immunoassays. A simple photopatterning process produced various shapes of hydrogel micropatterns that were weakly bound to poly(dimethylsiloxane) (PDMS)-coated substrates. These micropatterns were easily detached from substrates during the washing process and were collected as non-spherical microparticles. Acrylic acids were incorporated into hydrogels, which could covalently immobilize proteins onto their surfaces due to the presence of carboxyl groups. The amount of immobilized protein increased with the amount of acrylic acid due to more available carboxyl groups. Saturation was reached at 25% v/v of acrylic acid. Immunoassays with IgG and IgM immobilized onto hydrogel microparticles were successfully performed with a linear concentration range from 0 to 500 ng/mL of anti-IgG and anti-IgM, respectively. Finally, a mixture of two different shapes of hydrogel microparticles immobilizing IgG (circle) and IgM (square) was prepared and it was demonstrated that simultaneous detection of two different target proteins was possible without cross-talk using same fluorescence indicator because each immunoassay was easily identified by the shapes of hydrogel microparticles. PMID:22969408

  18. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20.

    PubMed

    Tork, Sanaa E; Aly, Magda M; Alakilli, Saleha Y; Al-Seeni, Madeha N

    2015-03-01

    γ-poly glutamic acid (γ-PGA) has received considerable attention for pharmaceutical and biomedical applications. γ-PGA from the newly isolate Bacillus licheniformis NRC20 was purified and characterized using diffusion distance agar plate, mass spectrometry and thin layer chromatography. All analysis indicated that γ-PGA is a homopolymer composed of glutamic acid. Its molecular weight was determined to be 1266 kDa. It was composed of L- and D-glutamic acid residues. An amplicon of 3050 represents the γ-PGA-coding genes was obtained, sequenced and submitted in genbank database. Its amino acid sequence showed high similarity with that obtained from B. licheniformis strains. The bacterium NRC 20 was independent of L-glutamic acid but the polymer production enhanced when cultivated in medium containing L-glutamic acid as the sole nitrogen source. Finally we can conclude that γ-PGA production from B. licheniformis NRC20 has many promised applications in medicine, industry and nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    PubMed

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  20. Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA.

    PubMed

    Zhu, Dan; Zhao, Dongxia; Huang, Jiaxuan; Zhu, Yu; Chao, Jie; Su, Shao; Li, Jiang; Wang, Lihua; Shi, Jiye; Zuo, Xiaolei; Weng, Lixing; Li, Qian; Wang, Lianhui

    2018-05-16

    Identification of tumor-related mRNA in living cells hold great promise for early cancer diagnosis and pathological research. Herein, we present poly-adenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) probes for intracellular mRNA detection with regulable sensitivities by programmably adjusting the loading density of DNA on gold nano-interface. Gold nanoparticles (AuNPs) functionalized with polyA-tailed recognition sequences were hybridized to fluorescent "reporter" strands to fabricate fluorescence-quenched FSNA probes. While exposed to target gene, the "reporter" strands were released from FSNA through strand displacement and fluorescence was recovered. With polyA20 tail as the attaching block, the detection limit of FSNA probes was calculated to be 0.31 nM, which is ~55 fold lower than that of thiolated probes without surface density regulation. Quantitative intracellular mRNA detection and imaging could be achieved with polyA-mediated FSNA probes within 2 hours, indicating their application potential in rapid and sensitive intracellular target imaging. Copyright © 2018. Published by Elsevier Inc.

  1. Poly (γ-glutamic acid)/beta-TCP nanocomposites via in situ copolymerization: Preparation and characterization.

    PubMed

    Shu, Xiu-Lin; Shi, Qing-Shan; Feng, Jin; Yang, Yun-Hua; Zhou, Gang; Li, Wen-Ru

    2016-07-01

    A series biodegradable poly (γ-glutamic acid)/beta-tricalcium phosphate (γ-PGA/TCP) nanocomposites were prepared which were composed of poly-γ-glutamic acid polymerized in situ with β-tricalcium phosphate and physiochemically characterized as bone graft substitutes. The particle size via dynamic light scattering, the direct morphological characterization via transmission electron microscopy and field emission scanning electron microscope, which showed that γ-PGA and β-TCP were combined compactly at 80℃, and the γ-PGA/TCP nanocomposites had homogenous and nano-sized grains with narrow particle size distributions. The water uptake and retention abilities, in vitro degradation properties, cytotoxicity in the simulated medium, and protein release of these novel γ-PGA/TCP composites were investigated. Cell proliferation in composites was nearly twice than β-TCP when checked in vitro using MC3T3 cell line. We also envision the potential use of γ-PGA/TCP systems in bone growth factor or orthopedic drug delivery applications in future bone tissue engineering applications. These observations suggest that the γ-PGA/TCP are novel nanocomposites with great potential for application in the field of bone tissue engineering. © The Author(s) 2016.

  2. Directed self-assembly of poly(styrene)-block-poly(acrylic acid) copolymers for sub-20nm pitch patterning

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which

  3. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    PubMed

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  5. Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly-l-lysine for cartilage tissue engineering.

    PubMed

    Kuo, Yung-Chih; Ku, Hao-Fu; Rajesh, Rajendiran

    2017-09-01

    Cartilage has limited ability to self-repair due to the absence of blood vessels and nerves. The application of biomaterial scaffolds using biomimetic extracellular matrix (ECM)-related polymers has become an effective approach to production of engineered cartilage. Chitosan/γ-poly(glutamic acid) (γ-PGA) scaffolds with different mass ratios were prepared using genipin as a cross-linker and a freeze-drying method, and their surfaces were modified with elastin, human serum albumin (HSA) and poly-l-lysine (PLL). The scaffolds were formed through a complex between NH 3 + of chitosan and COO - of γ-PGA, confirmed by Fourier transform infrared spectroscopy, and exhibited an interconnected porous morphology in field emission scanning electron microscopy analysis. The prepared chitosan/γ-PGA scaffolds, at a 3:1 ratio, obtained the required porosity (90%), pore size (≥100μm), mechanical strength (compressive strength>4MPa, Young's modulus>4MPa) and biodegradation (30-60%) for articular cartilage tissue engineering applications. Surface modification of the scaffolds showed positive indications with improved activity toward cell proliferation (deoxyribonucleic acid), cell adhesion and ECM (glycoaminoglycans and type II collagen) secretion of bovine knee chondrocytes compared with unmodified scaffolds. In caspase-3 detection, elastin had a higher inhibitory effect on chondrocyte apoptosis in vitro, followed by HSA, and then PLL. We concluded that utilizing chitosan/γ-PGA scaffolds with surface active biomolecules, including elastin, HSA and PLL, can effectively promote the growth of chondrocytes, secrete ECM and improve the regenerative ability of cartilaginous tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Polymeric micelles based on poly(methacrylic acid) block-containing copolymers with different membrane destabilizing properties for cellular drug delivery.

    PubMed

    Mebarek, Naila; Aubert-Pouëssel, Anne; Gérardin, Corine; Vicente, Rita; Devoisselle, Jean-Marie; Bégu, Sylvie

    2013-10-01

    Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Degradable poly(anhydride ester) implants: effects of localized salicylic acid release on bone.

    PubMed

    Erdmann, L; Macedo, B; Uhrich, K E

    2000-12-01

    Degradable poly(anhydride ester) implants in which the polymer backbone breaks down into salicylic acid (SA) were investigated. In this preliminary work, local release of SA from the poly(anhydride esters), thus classified as 'active polymers', on healthy bone and tissue was evaluated in vivo using a mouse model. Degradable polyanhydrides that break down into inactive by-products were used as control membranes because of their chemical similarity to the active polymers. Small polymer squares were inserted over the exposed palatal bone adjacent to the maxillary first molars. Active polymer membranes were placed on one side of the mouth, control polymers placed on the contra lateral side. Intraoral clinical examination showed that active polymer sites were less swollen and inflamed than control polymer sites. Histopathological examination at day 1 showed essentially no difference between control and active polymers. After 4 days, active polymer sites showed epithelial proliferation to a greater extent than the polyanhydride controls. After 20 days, active polymer sites showed greater thickness of new palatal bone and no resorptive areas, while control polymer sites showed less bone thickness as well as resorption including lacunae involving cementum and dentine. From these preliminary studies, we conclude that active polymers, namely poly(anhydride esters), stimulated new bone formation.

  8. Electrospining of polyaniline/poly(lactic acid) ultrathin fibers: process and statistical modeling using a non-gaussian approach

    USDA-ARS?s Scientific Manuscript database

    Cover: The electrospinning technique was employed to obtain conducting nanofibers based on polyaniline and poly(lactic acid). A statistical model was employed to describe how the process factors (solution concentration, applied voltage, and flow rate) govern the fiber dimensions. Nanofibers down to ...

  9. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  10. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Zuñiga-Zamorano, Ivette; Meléndez-Ortiz, H. Iván; Costoya, Alejandro; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2018-01-01

    Radiation-grafting of pH-responsive methacrylic acid (MAA) onto poly(vinyl chloride) (PVC) was carried out by the pre-irradiation method using gamma rays, which demonstrated to be an efficient and fast procedure for obtaining PVC-g-MAA copolymers. The influence of preparation conditions, such as absorbed dose, monomer concentration, reaction time, and reaction temperature on the grafting yield was studied. The grafting of MAA onto PVC catheters was confirmed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and differential scanning calorimetry (DSC). The pH-responsiveness of the grafted copolymers (critical point 8.5) was measured by swelling under cyclic changes in the pH of the medium. Interestingly, PVC-g-MAA showed enhanced capability to immobilize benzalkonium chloride and, particularly, ciprofloxacin and to sustain the release this antimicrobial agent at both acid and alkaline pH. Tests carried out with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus point out that the developed functionalized catheters may play a role in the prevention/management of urinary tract infections.

  11. Diazeniumdiolate-doped poly(lactic-co-glycolic acid)-based nitric oxide releasing films as antibiofilm coatings.

    PubMed

    Cai, Wenyi; Wu, Jianfeng; Xi, Chuanwu; Meyerhoff, Mark E

    2012-11-01

    Nitric oxide (NO) releasing films with a bilayer configuration are fabricated by doping dibutyhexyldiamine diazeniumdiolate (DBHD/N2O2) in a poly(lactic-co-glycolic acid) (PLGA) layer and further encapsulating this base layer with a silicone rubber top coating. By incorporating pH sensitive dyes within the films, pH changes in the PLGA layer are visualized and correlated with the NO release profiles (flux vs. time). It is demonstrated that PLGA acts as both a promoter and controller of NO release from the coating by providing protons through its intrinsic acid residues (both end groups and monomeric acid impurities) and hydrolysis products (lactic acid and glycolic acid). Control of the pH changes within the PLGA layer can be achieved by adjusting the ratio of DBHD/N2O2 and utilizing PLGAs with different hydrolysis rates. Coatings with a variety of NO release profiles are prepared with lifetimes of up to 15 d at room temperature (23 °C) and 10 d at 37 °C. When incubated in a CDC flow bioreactor for a one week period at RT or 37 °C, all the NO releasing films exhibit considerable antibiofilm properties against gram-positive Staphylococcus aureus and gram-negative Escherichia coli. In particular, compared to the silicone rubber surface alone, an NO releasing film with a base layer of 30 wt% DBHD/N2O2 mixed with poly(lactic acid) exhibits an ∼98.4% reduction in biofilm biomass of S. aureus and ∼99.9% reduction for E. coli at 37 °C. The new diazeniumdiolate-doped PLGA-based NO releasing coatings are expected to be useful antibiofilm coatings for a variety of indwelling biomedical devices (e.g., catheters). Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    PubMed

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  13. Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering

    PubMed Central

    Kumbar, Sangamesh G.; Nukavarapu, Syam Prasad; James, Roshan; Nair, Lakshmi S.; Laurencin, Cato T.

    2008-01-01

    Electrospun fiber matrices composed of scaffolds of varying fiber diameters were investigated for potential application of severe skin loss. Few systematic studies have been performed to examine the effect of varying fiber diameter electrospun fiber matrices for skin regeneration. The present study reports the fabrication of poly[lactic acid-co-glycolic acid] (PLAGA) matrices with fiber diameters of 150–225, 200–300, 250–467, 500–900, 600–1200, 2500–3000 and 3250–6000 nm via electrospinning. All fiber matrices found to have a tensile modulus from 39.23 ± 8.15 to 79.21 ± 13.71 MPa which falls in the range for normal human skin. Further, the porous fiber matrices have porosity between 38–60 % and average pore diameters between 10–14µm. We evaluated the efficacy of these biodegradable fiber matrices as skin substitutes by seeding them with human skin fibroblasts (hSF). Human skin fibroblasts acquired a well spread morphology and showed significant progressive growth on fiber matrices in the 350–1100 nm diameter range. Collagen type III gene expression was significantly up-regulated in hSF seeded on matrices with fiber diameters in the range of 350–1100 nm. Based on the need, the proposed fiber skin substitutes can be successfully fabricated and optimized for skin fibroblast attachment and growth. PMID:18639927

  14. Purification, Crystallization And Preliminary X-Ray Analysis of Aminoglycoside-2 ''-Phosphotransferase-Ic [APH(2 '')-Ic] From Enterococcus Gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, L.J.; /SLAC, SSRL; Badarau, A.

    2009-04-30

    Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2{double_prime}-phosphotransferase-Ic [APH(2{double_prime})-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2{double_prime})-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris-HClmore » pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 {angstrom}, {beta} = 108.8{sup o}. X-ray diffraction data were collected to approximately 2.15 {angstrom} resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  15. Fragmentation of poly(lactic acid) nanosheets and patchwork treatment for burn wounds.

    PubMed

    Okamura, Yosuke; Kabata, Koki; Kinoshita, Manabu; Miyazaki, Hiromi; Saito, Akihiro; Fujie, Toshinori; Ohtsubo, Shinya; Saitoh, Daizoh; Takeoka, Shinji

    2013-01-25

    Freestanding poly(L-lactic acid) (PLLA) nanosheets are mass-produced by a simple combination of a spin-coating-assisted multi-layering process and a peeling technique. The resulting PLLA nanosheets are fragmented by homogenization and then reconstructed into a "patchwork" sheet on various surfaces without any adhesive reagents. The patchwork is shown to offer excellent protection against burn wound infection with Pseudomonas aeruginosa, and may therefore be an alternative to conventional burn therapy for prevention of infection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar

    Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA filmmore » and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.« less

  17. Hierarchically organized architecture of potassium hydrogen phthalate and poly(acrylic acid): toward a general strategy for biomimetic crystal design.

    PubMed

    Oaki, Yuya; Imai, Hiroaki

    2005-12-28

    A hierarchically organized architecture in multiple scales was generated from potassium hydrogen phthalate crystals and poly(acrylic acid) based on our novel biomimetic approach with an exquisite association of polymers on crystallization.

  18. [Use of a novel polymer, the in-situ gelling mucoadhesive thiolated poly(aspartic acid) in ophthalmic drug delivery].

    PubMed

    Horvát, Gabriella; Budai-Szűcs, Mária; Berkó, Szilvia; Szabóné-Révész, Piroska; Gyarmati, Benjámin; Szilágyi, Barnabas Áron; Szilágyi, András; Csányi Erzsébet

    2015-01-01

    The bioavailability of drugs used on mucosal surfaces can be increased by the use of mucoadhesive polymers. A new type of mucoadhesive polymers is the group of thiolated polymers with thiol group containing side chains. These polymers are able to form covalent bonds (disulphide linkages) with the mucin glycoproteins. For the formulation of an ocular drug delivery system (DDS) thiolated poly(aspartic acid) polymer (ThioPASP) was used. Our aim was to determine their biocompatibility, mucoadhesion and drug release property. According to the results it can be established that the thiolated poly(aspartic acid) polymers can be a potential vehicle of an ocular drug delivery system due to their biocompatibility, good mucoadhesive property and drug release profile. Thanks to their properties controlled drug delivery can be achieved and bioavailability of the ophthalmic formulation can be increased, while the usage frequency can be decreased.

  19. Nitrate removal properties of solid-phase denitrification processes using acid-blended poly(L-lactic acid) as the sole substrate

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Matsuoka, H.; Sun, J.; Yoshikawa, S.; Tsuji, H.; Hiraishi, A.

    2013-04-01

    The large amount of waste that is discharged along with the diffusion of poly(L-lactic acid) (PLLA) articles in use is persistent concern. Previously, we studied solid-phase denitrification (SPD) processes using PLLA to establish an effective re-use of PLLA waste. We found that PLLA with a weight-average molecular weight (Mw) of approximately 10,000 was suitable for SPD processes; however, the recycling of PLLA waste consumes a high energy. A new PLLA plastic including 5% poly(ethylene oxalate) (PEOxPLLA) as a blend material has attracted attention because recycling of PEOxPLLA consumes less electricity than that of PLLA. In this study, our main objectives were to evaluate whether PEOxPLLA can be used for SPD processes by changing its Mw and to investigate the bioavailability for denitrification of hydrolysates released from PEOxPLLA. The predicted hydrolysates, including oxalic acid, ethylene glycol, and lactate, are abiotically released, leading to different biological nitrate removal rates. Consequently, the nitrate removal rate of PEOxPLLA ranged from 0.9-4.1 mg-NO3--N·g-MLSS·h-1 by changing the Mw in the range of 8,500-238,000. In culture-dependent approaches, denitrifying bacteria using each substrate as an electron donor are found in activated sludge, suggesting that all hydrolysates functioned in the SPD processes using PEOxPLLA.

  20. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  1. Nanoparticles of alkylglyceryl-dextran-graft-poly(lactic acid) for drug delivery to the brain: Preparation and in vitro investigation.

    PubMed

    Toman, Petr; Lien, Chun-Fu; Ahmad, Zeeshan; Dietrich, Susanne; Smith, James R; An, Qian; Molnár, Éva; Pilkington, Geoffrey J; Górecki, Darek C; Tsibouklis, John; Barbu, Eugen

    2015-09-01

    Poly(lactic acid), which has an inherent tendency to form colloidal systems of low polydispersity, and alkylglyceryl-modified dextran - a material designed to combine the non-immunogenic and stabilising properties of dextran with the demonstrated permeation enhancing ability of alkylglycerols - have been combined for the development of nanoparticulate, blood-brain barrier-permeating, non-viral vectors. To this end, dextran, that had been functionalised via treatment with epoxide precursors of alkylglycerol, was covalently linked to poly(lactic acid) using a carbodiimide cross-linker to form alkylglyceryl-modified dextran-graft-poly(lactic acid). Solvent displacement and electrospray methods allowed the formulation of these materials into nanoparticles having a unimodal size distribution profile of about 100-200nm and good stability at physiologically relevant pH (7.4). The nanoparticles were characterised in terms of hydrodynamic size (by Dynamic Light Scattering and Nanoparticle Tracking Analysis), morphology (by Scanning Electron Microscopy and Atomic Force Microscopy) and zeta potential, and their toxicity was evaluated using MTT and PrestoBlue assays. Cellular uptake was evidenced by confocal microscopy employing nanoparticles that had been loaded with the easy-to-detect Rhodamine B fluorescent marker. Transwell-model experiments employing mouse (bEnd3) and human (hCMEC/D3) brain endothelial cells revealed enhanced permeation (statistically significant for hCMEC/D3) of the fluorescent markers in the presence of the nanoparticles. Results of studies using Electric Cell Substrate Impedance Sensing suggested a transient decrease of the barrier function in an in vitro blood-brain barrier model following incubation with these nanoformulations. An in ovo study using 3-day chicken embryos indicated the absence of whole-organism acute toxicity effects. The collective in vitro data suggest that these alkylglyceryl-modified dextran-graft-poly(lactic acid) nanoparticles

  2. Thermal Properties of Extruded Injection-Molded Poly (lactic acid) and Milkweed Composites: Degradation Kinectics and Enthalpic Relaxation

    USDA-ARS?s Scientific Manuscript database

    In order to determine the degree of compatibility between Poly (lactic Acid) (PLA) and different biomaterials, PLA was compounded with milkweed fiber, a new crop oil seed. After oil extraction, the remaining cake retained approximately 10% residual oil and 47% protein. The pressed seed cake (10% mo...

  3. Investigation of binding characteristics of immobilized toll-like receptor 3 with poly(I:C) for potential biosensor application.

    PubMed

    Topping, Kristin D; Kelly, David G

    2018-05-26

    Toll-like receptor 3 (TLR3), a pathogen recognition receptor of the innate immune response, recognizes and is activated by double-stranded RNA (dsRNA), which is indicative of viral exposure. A sensor design exercise was conducted, using surface plasmon resonance detection, through the examination of several immobilization approaches for TLR3 as a biorecognition element (BRE) onto a modified gold surface. To examine the TLR3-dsRNA interaction a synthetic analogue mimic, poly (I:C), was used. The interaction binding characteristics were determined and compared to literature data to establish the optimal immobilization method for the TLR3 BRE. A preliminary evaluation of the efficacy of the selected TLR3 surface as a broad-spectrum viral biosensor was also performed. Amine-coupling was found to be the most reliable method for manufacturing repeatable and consistent TLR3 BRE sensor surfaces, although this immobilization schema is not tailored to place the receptor in a spatially-specific orientation. The equilibrium dissociation constant (K D ) measured for this immobilized TLR3-poly (I:C) interaction was 117 ± 3.30 pM. This evaluation included a cross-reactivity study using a selection of purified E. coli and synthetic double- and single-stranded nucleic acids. The results of this design exercise and ligand binding study will inform future work towards the development of a broad-spectrum viral sensor device. Copyright © 2018. Published by Elsevier Inc.

  4. Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging products

    Treesearch

    Liqing Wei; Nicole M. Stark; Ronald C. Sabo; Laurent Matuana

    2016-01-01

    There is growing interest in developing bio-based materials for packaging. Bio-derived materials such as cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) can be used to develop sustainable packaging applications. Incorporating CNCs into PLA can increase the crystallinity and barrier properties of PLA. The challenge lies in both increasing the flexibility of...

  5. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles.

    PubMed

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-09-26

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification-solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide-polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.

  6. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles

    PubMed Central

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-01-01

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification–solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide–polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology. PMID:28952560

  7. Orange juice (poly)phenols are highly bioavailable in humans.

    PubMed

    Pereira-Caro, Gema; Borges, Gina; van der Hooft, Justin; Clifford, Michael N; Del Rio, Daniele; Lean, Michael E J; Roberts, Susan A; Kellerhals, Michele B; Crozier, Alan

    2014-11-01

    We assessed the bioavailability of orange juice (poly)phenols by monitoring urinary flavanone metabolites and ring fission catabolites produced by the action of the colonic microbiota. Our objective was to identify and quantify metabolites and catabolites excreted in urine 0-24 h after the acute ingestion of a (poly)phenol-rich orange juice by 12 volunteers. Twelve volunteers [6 men and 6 women; body mass index (in kg/m(2)): 23.9-37.2] consumed a low (poly)phenol diet for 2 d before first drinking 250 mL pulp-enriched orange juice, which contained 584 μmol (poly)phenols of which 537 μmol were flavanones, and after a 2-wk washout, the procedure was repeated, and a placebo drink was consumed. Urine collected for a 24-h period was analyzed qualitatively and quantitatively by using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS). A total of 14 metabolites were identified and quantified in urine by using HPLC-MS after orange juice intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main metabolites. The overall urinary excretion of flavanone metabolites corresponded to 16% of the intake of 584 μmol (poly)phenols. The GC-MS analysis revealed that 8 urinary catabolites were also excreted in significantly higher quantities after orange juice consumption. These catabolites were 3-(3'-methoxy-4'-hydroxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 3'-methoxy-4'-hydroxyphenylacetic acid, hippuric acid, 3'-hydroxyhippuric acid, and 4'-hydroxyhippuric acid. These aromatic acids originated from the colonic microbiota-mediated breakdown of orange juice (poly)phenols and were excreted in amounts equivalent to 88% of (poly)phenol intake. When combined with the 16% excretion of metabolites, this percentage raised the overall urinary excretion to ∼ 100% of

  8. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    USDA-ARS?s Scientific Manuscript database

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  9. Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells.

    PubMed

    Shen, Xiaojuan; Chen, Ling; Pan, Jianmei; Hu, Yue; Li, Songjun; Zhao, Jie

    2016-12-01

    Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H 2 PtCl 6 ) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to ~20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.

  10. Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its Effect on Hybrid Silicon/Organic Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Shen, Xiaojuan; Chen, Ling; Pan, Jianmei; Hu, Yue; Li, Songjun; Zhao, Jie

    2016-11-01

    Hybrid silicon/organic solar cells have been recently extensively investigated due to their simple structure and low-cost fabrication process. However, the efficiency of the solar cells is greatly limited by the barrier height as well as the carrier recombination at the silicon/organic interface. In this work, hydrochloroplatinic acid (H2PtCl6) is employed into the poly(3,4-ethlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solution, and the work function (WF) of the PEDOT:PSS layer has been successfully improved. Based on the Pt-modified PEDOT:PSS layer, the efficiency of the silicon/PEDOT:PSS cell can be increased to 11.46%, corresponding to 20% enhancement to the one without platinum (Pt) modification. Theoretical and experimental results show that, when increasing the WF of the PEDO:PSS layer, the barrier height between the silicon/PEDOT:PSS interface can be effectively enhanced. Meanwhile, the carrier recombination at the interface is significantly reduced. These results can contribute to better understanding of the interfacial mechanism of silicon/PEDOT:PSS interface, and further improving the device performance of silicon/organic solar cells.

  11. Individual differences in maternal response to immune challenge predict offspring behavior: Contribution of environmental factors

    PubMed Central

    Bronson, Stefanie L.; Ahlbrand, Rebecca; Horn, Paul S.; Kern, Joseph R.; Richtand, Neil M.

    2011-01-01

    Maternal infection during pregnancy elevates risk for schizophrenia and related disorders in offspring. Converging evidence suggests the maternal inflammatory response mediates the interaction between maternal infection, altered brain development, and behavioral outcome. The extent to which individual differences in the maternal response to immune challenge influence the development of these abnormalities is unknown. The present study investigated the impact of individual differences in maternal response to the viral mimic polyinosinic:polycytidylic acid (poly I:C) on offspring behavior. We observed significant variability in body weight alterations of pregnant rats induced by administration of poly I:C on gestational day 14. Furthermore, the presence or absence of maternal weight loss predicted MK-801 and amphetamine stimulated locomotor abnormalities in offspring. MK-801 stimulated locomotion was altered in offspring of all poly I:C treated dams; however, the presence or absence of maternal weight loss resulted in decreased and modestly increased locomotion, respectively. Adult offspring of poly I:C treated dams that lost weight exhibited significantly decreased amphetamine stimulated locomotion, while offspring of poly I:C treated dams without weight loss performed similarly to vehicle controls. Social isolation and increased maternal age predicted weight loss in response to poly I:C but not vehicle injection. In combination, these data identify environmental factors associated with the maternal response to immune challenge and functional outcome of offspring exposed to maternal immune activation. PMID:21255612

  12. Unusual large-pitch banding in poly(L-lactic acid): Effects of composition and geometry confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Eamor M.; Lugito, Graecia; Hsieh, Ya-Ting

    2014-02-24

    Lamellar patterns and orientations in blends of two crystalline polymers: poly(ethylene oxide) (PEO) and low-molecular-weight poly(L-lactic acid) (PLLA) were investigated using polarizing light optical microscopy (POM), and atomic and scanning electron microscopy (AFM, SEM). Specific etching off of PEO was used to reveal the complex earlier-grown PLLA lamellae patterns with various PEO content in blends. Banding of extremely long pitch (50 μm) in crystallized PLLA spherulites was induced by two kinetic factors: geometry confinement by top cover and introduction of diluent such as PEO. The mechanisms and correlation among the lamellar assembly, ring bands, and cracks are exemplified. Lamellar patternsmore » and ring-band types in blends were found to vary with respect to not only blend compositions, but also confinement of top-cover.« less

  13. Electrocatalytic Oxidation of Ascorbic Acid Using a Poly(aniline-co-m-ferrocenylaniline) Modified Glassy Carbon Electrode

    PubMed Central

    Chairam, Sanoe; Sriraksa, Worawit; Amatatongchai, Maliwan; Somsook, Ekasith

    2011-01-01

    A poly(aniline-co-m-ferrocenylaniline) was successfully synthesized on a glassy carbon electrode (GCE) by electrochemical copolymerization using a scan potential range from −0.3 to +0.9 V (vs. Ag/AgCl) in 0.5 M H2SO4 containing 30% acetonitrile (ACN), 0.1 M aniline (Ani) and 0.005 M m-ferrocenyaniline (m-FcAni). The field emission scanning electron microscope (FESEM) and electrochemical methods were used to characterize the poly(Ani-co-m-FcAni) modified electrode. The poly(Ani-co-m-FcAni)/GCE exhibited excellent electrocatalytic oxidation of ascorbic acid (AA) in citrate buffer solution (CBS, pH 5.0). The anodic peak potential of AA was shifted from +0.55 V at the bare GCE to +0.25 V at the poly(Ani-co-m-FcAni)/GCE with higher current responses than those seen on the bare GCE. The scan number at the 10th cycle was selected as the maximum scan cycle in electrochemical polymerization. The limit of detection (LOD) was estimated to be 2.0 μM based on the signal-to-noise ratio (S/N = 3). The amperometric responses demonstrated an excellent selectivity for AA determination over glucose (Glu) and dopamine (DA). PMID:22346636

  14. Plasticization of poly(lactic acid) using different molecular weight of Poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Septevani, Athanasia Amanda; Bhakri, Samsul

    2017-11-01

    Poly (lactic acid) (PLA) has been known as an excellent candidate for developing the future bioplastic due to its biodegradability and competitive price. However, inherent brittleness and low thermal stability of PLA have limited its applications. Considerable studies have been developed to improve the flexibility of PLA, in which blending PLA with various plasticizers has been identified as a cost-effective way to lower glass-transition temperature (Tg) and thus improve its elongation property. In this study, PLA was modified by incorporating poly(ethylene glycol) as a plasticizer with different molecular weights (M¯w 400, 1000, and 6000, called respectively as PEG 400, PEG 1000, and PEG 6000) via a solvent-casting blend method. FTIR was used for analyzing the chemical interaction while TGA and DSC measured the thermal behavior of PLA/PEG. The results indicated that the addition of lower M¯w (PEG 400 and PEG 1000) could reduce the Tg due to the enhancement of chain mobility of PLA with PEG and so driving into a more amorphous states resulted reduction of melting temperature (Tm) compared to the neat PLA. Further, at a higher M¯w of PEG 6000, the longer chain of ethylene glycol, in contrast, resulted a gradual increase in the Tg as well as Tm where the value went back to the point of neat PLA compared to the other lower molecular weight of PLA. This was due to the decrease in polymer miscibility with the increasing of M¯w. In terms of thermal stability, the addition of PEG exhibited two step degradation behavior while the neat PLA only possessed single step degradation. The presence of PEG could act as a protective barrier layer that could hinder the permeability of the volatile compound and product during decomposition reaction and thus could eventually delay and slower the degradation process. It was observed that the addition of PEG at higher M¯w (PEG1000 and PEG 6000) exhibited a higher second degradation temperature up to 380 °C.

  15. R&D100: IC ID

    ScienceCinema

    Hamlet, Jason; Pierson, Lyndon; Bauer, Todd

    2018-06-25

    Supply chain security to detect, deter, and prevent the counterfeiting of networked and stand-alone integrated circuits (ICs) is critical to cyber security. Sandia National Laboratory researchers have developed IC ID to leverage Physically Unclonable Functions (PUFs) and strong cryptographic authentication to create a unique fingerprint for each integrated circuit. IC ID assures the authenticity of ICs to prevent tampering or malicious substitution.

  16. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid)

    PubMed Central

    Chen, Yongxia; Yang, Ziying; Liu, Chao; Wang, Cuiwei; Zhao, Shunxin; Yang, Jing; Sun, Hongfan; Zhang, Zhengpu; Kong, Deling; Song, Cunxian

    2013-01-01

    Background Star-shaped polymers provide more terminal groups, and are promising for application in drug-delivery systems. Methods A new series of six-arm star-shaped poly(lactic-co-glycolic acid) (6-s-PLGA) was synthesized by ring-opening polymerization. The structure and properties of the 6-s-PLGA were characterized by carbon-13 nuclear magnetic resonance spectroscopy, infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. Then, paclitaxel-loaded six-arm star-shaped poly(lactic-co-glycolic acid) nanoparticles (6-s-PLGA-PTX-NPs) were prepared under the conditions optimized by the orthogonal testing. High-performance liquid chromatography was used to analyze the nanoparticles’ encapsulation efficiency and drug-loading capacity, dynamic light scattering was used to determine their size and size distribution, and transmission electron microscopy was used to evaluate their morphology. The release performance of the 6-s-PLGA-PTX-NPs in vitro and the cytostatic effect of 6-s-PLGA-PTX-NPs were investigated in comparison with paclitaxel-loaded linear poly(lactic-co-glycolic acid) nanoparticles (L-PLGA-PTX-NPs). Results The results of carbon-13 nuclear magnetic resonance spectroscopy and infrared spectroscopy suggest that the polymerization was successfully initiated by inositol and confirm the structure of 6-s-PLGA. The molecular weights of a series of 6-s-PLGAs had a ratio corresponding to the molar ratio of raw materials to initiator. Differential scanning calorimetry revealed that the 6-s-PLGA had a low glass transition temperature of 40°C–50°C. The 6-s-PLGA-PTX-NPs were monodispersed with an average diameter of 240.4±6.9 nm in water, which was further confirmed by transmission electron microscopy. The encapsulation efficiency of the 6-s-PLGA-PTX-NPs was higher than that of the L-PLGA-PTX-NPs. In terms of the in vitro release of nanoparticles, paclitaxel (PTX) was released more slowly and more steadily from 6-s-PLGA than from

  17. Effect of Commercial SiO2 and SiO2 from rice husk ash loading on biodegradation of Poly (lactic acid) and crosslinked Poly (lactic acid)

    NASA Astrophysics Data System (ADS)

    Prapruddivongs, C.; Apichartsitporn, M.; Wongpreedee, T.

    2017-09-01

    In this work, biodegradation behavior of poly (lactic acid) (PLA) and crosslinked PLA filled with two types of SiO2, precipitated SiO2 (commercial SiO2) and SiO2 from rice husk ash, were studied. Rice husks were first treated with 2 molar hydrochloric acid (HCl) to produce high purity SiO2, before burnt in a furnace at 800°C for 6 hours. All components were melted bending by an internal mixer then hot pressed using compression molder to form tested specimens. FTIR spectra of SiO2 and PLA samples were investigated. The results showed the lack of silanol group (Si-OH) of rice husk ash after steric acid surface modification, while the addition of particles can affect the crosslinking of the PLA. For biodegradation test by evaluating total amount of carbon dioxide (CO2) evolved during 60 days incubation at a controlled temperature of 58±2°C, the results showed that the biodegradation of crosslinked PLA occurred slower than the neat PLA. However, SiO2 incorporation enhanced the degree of biodegradation In particular, introducing commercial SiO2 in PLA and crosslinked PLA tended to clearly increase the degree of biodegradation as a consequence of the more accelerated hydrolysis degradation.

  18. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.

  19. Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media

    NASA Astrophysics Data System (ADS)

    Jeyaprabha, C.; Sathiyanarayanan, S.; Phani, K. L. N.; Venkatachari, G.

    2005-11-01

    The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H 2SO 4 markedly.

  20. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties

    USDA-ARS?s Scientific Manuscript database

    Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...

  1. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    NASA Astrophysics Data System (ADS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-03-01

    A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  2. Copolymerization modification of poly (butylene itaconate)

    NASA Astrophysics Data System (ADS)

    Gao, Chuanhui; Wang, Jing; Han, Shijian; Hu, Zunfu; Liu, Yuetao

    2017-08-01

    A series of copolyesters-poly (butylene itaconate) (PBI) was synthesized by melt polycondensation from itaconic acid (IA) and 1,4-butanediol (BDO). On this basis, dimethyl terephthalate (DMT), adipic acid (AP) and sebacic acid (SA), respectively, was selected as the third comonomer component to modify PBI to poly (butylene itaconate-co-butylene terephthalate) (PBIT), poly (butylene itaconate-co-butylene adipate) (PBIA) and (butylene itaconate-co-butylene sebacate) (PBIS), of which structure and physical properties were characterized by FT-IR, 1H-NMR, GPC, DSC and TG. The results showed that PBI was amorphous material, and the molecular weight and the initial thermal decomposition temperature of PBI were 1108, 244°C, respectively. Compared to PBI, the molecular weight and the thermal stability of copolyesters (PBIA, PBIT and PBIS) could be increased by this treatment. Particularly, the molecular weight of PBIS was increased to 12,321, 12 times more than PBI, the initial thermal decomposition temperature was improved to 336°C, and PBIS had good crystallization performance.

  3. In vitro testing of thiolated poly(aspartic acid) from ophthalmic formulation aspects.

    PubMed

    Budai-Szű Cs, Mária; Horvát, Gabriella; Gyarmati, Benjámin; Szilágyi, Barnabás Áron; Szilágyi, András; Csihi, Tímea; Berkó, Szilvia; Szabó-Révész, Piroska; Mori, Michela; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Csányi, Erzsébet

    2016-08-01

    Ocular drug delivery formulations must meet anatomical, biopharmaceutical, patient-driven and regulatory requirements. Mucoadhesive polymers can serve as a better alternative to currently available ophthalmic formulations by providing improved bioavailability. If all requirements are addressed, a polymeric formulation resembling the tear film of the eye might be the best solution. The optimum formulation must not have high osmotic activity, should provide appropriate surface tension, pH and refractive index, must be non-toxic and should be transparent and mucoadhesive. We would like to highlight the importance of in vitro polymer testing from a pharmaceutical aspect. We, therefore, carried out physical-chemical investigations to verify the suitability of certain systems for ophthalmic formulations. In this work, in situ gelling, mucoadhesive thiolated poly(aspartic acid)s were tested from ophthalmic formulation aspects. The results of preformulation measurements indicate that these polymers can be used as potential carriers in ophthalmic drug delivery.

  4. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent.

    PubMed

    Maatar, Wafa; Boufi, Sami

    2015-08-01

    A poly(methacrylic acid-co-maleic acid) grafted nanofibrillated cellulose (NFC-MAA-MA) aerogel was prepared via radical polymerization in an aqueous solution using Fenton's reagent. The ensuing aerogel, in the form of a rigid porous material, was characterized by FTIR and NMR and used as an adsorbent for the removal of heavy metals from aqueous solutions. It showed an efficient adsorption, exceeding 95% toward Pb(2+), Cd(2+), Zn(2+) and Ni(2+) when their concentration was lower than 10 ppm and ranged from 90% to 60% for a metal concentration higher than 10 ppm. Over 98% of the adsorbed metal ion was recovered using EDTA as a desorbing solution, and the subsequent washing allowed the aerogel to be reused repeatedly without noticeable loss of adsorption capacity. It was concluded that the (NFC-MAA-MA) aerogel may be used as a high capacity and reusable sorbent material in heavy-metal removing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    PubMed

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  6. Pyrogenicity of interferon and its inducer in rabbits.

    PubMed

    Won, S J; Lin, M T

    1988-03-01

    The effects of intracerebral administration of interferon (IFN) or its inducer polyriboinosinic acid-polyribocytidylic acid (poly I:C) on thermoregulatory responses were assessed in conscious rabbits. Administration of IFN (10(2)-10(6) IU) or poly I:C (0.012-12 micrograms) into the preoptic anterior hypothalamus or the third cerebral ventricle caused a dose-dependent fever in rabbits at three ambient temperatures (Ta) tested. In the cold (Ta = 8 degrees C), the fever was due to increased metabolism, whereas in the heat (Ta = 32 degrees C) the fever was due to a reduction in respiratory evaporative heat loss and ear skin blood flow. At the moderate environmental temperature (Ta = 22 degrees C), the fever was due to increased metabolism and cutaneous vasoconstriction. Compared with the febrile responses induced by cerebroventricular route injection of IFN or poly I:C, the hypothalamic route of injection required a much lower dose of IFN or poly I:C to produce a similar fever. Furthermore, the fever induced by intrahypothalamic injection of IFN or poly I:C was reduced by pretreatment of animals with a systemic dose of indomethacin (an inhibitor of all prostaglandins formation) or cycloheximide (an inhibitor of protein synthesis). The data indicate that IFN or its inducer may act through the endogenous release of a prostaglandin or a protein factor of an unknown chemical nature in the preoptic anterior hypothalamic region to induce fever in rabbits. The fever induced by IFN or its inducer is brought about by a decrease in heat loss and/or an increase in heat production in rabbits.

  7. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls.

    PubMed

    Kongklom, Nuttawut; Shi, Zhongping; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-07-01

    Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L -1 with a productivity of 0.926 ± 0.006 g L -1  h -1 . The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.

  8. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Isolation and identification of poly beta hydroxybutyric acid accumulating bacteria of Staphylococcal sp. and characterization of biodegradable polyester.

    PubMed

    Roy, Bappaditya; Banerjee, Rajat; Chatterjee, Sumana

    2009-04-01

    Staphylococcus sp. strain BP/SU1, capable of degrading the biopolymer and utilize it as a source of carbon and energy, was isolated from activated sludge using METABOLIX (MBX D411G). It was found that this strain was capable of accumulating poly(3-hydroxybutyric acid) P(3-HB), as granule poly (3-hydroxybutyric acid), p(3-HB), inclusion bodies when grown under suitable nutrient conditions. These strains could sustain cell growth up to a dry mass of 9.24 g/l with a doubling time of 8 to 10 hr and could accumulate P(3-HB) as granular inclusion bodies to a cell dry weight of more than 12%. P(3-HB) accumulated by this organism was isolated and characterized through NMR, FT-IR spectroscopy, UV Spectroscopy, Mass spectroscopy and Differential Scanning Calorimetry. P(3-HB) granules so isolated showed physical and chemical properties that should be possessed by a superior quality thermoplastic biopolymer.

  10. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    PubMed

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).

    PubMed

    Qureshi, Abid; Tandon, Himani; Kumar, Manoj

    2015-11-01

    Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp. © 2015 Wiley Periodicals, Inc.

  12. Dual Enzyme-Responsive Capsules of Hyaluronic Acid-block-Poly(Lactic Acid) for Sensing Bacterial Enzymes.

    PubMed

    Tücking, Katrin-Stephanie; Grützner, Verena; Unger, Ronald E; Schönherr, Holger

    2015-07-01

    The synthesis of novel amphiphilic hyaluronic acid (HYA) and poly(lactic acid) (PLA) block copolymers is reported as the key element of a strategy to detect the presence of pathogenic bacterial enzymes. In addition to the formation of defined HYA-block-PLA assemblies, the encapsulation of fluorescent reporter dyes and the selective enzymatic degradation of the capsules by hyaluronidase and proteinase K are studied. The synthesis of the dual enzyme-responsive HYA-b-PLA is carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition. The resulting copolymers are assembled in water to form vesicular structures, which are characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering (DLS), and fluorescence lifetime imaging microscopy (FLIM). DLS measurements show that both enzymes cause a rapid decrease in the hydrodynamic diameter of the nanocapsules. Fluorescence spectroscopy data confirm the liberation of encapsulated dye, which indicates the disintegration of the capsules and validates the concept of enzymatically triggered payload release. Finally, cytotoxicity assays confirm that the HYA-b-PLA nanocapsules are biocompatible with primary human dermal microvascular endothelial cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  14. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  15. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  16. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  17. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  18. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  19. 40 CFR 721.1730 - Poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1730 Section 721.1730 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-butyl-ω-hydroxy, ester with boric...

  20. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  1. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    PubMed

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  2. Morphological Evaluation of Soft Tissue Augmentation Using Porous Poly-DL-Lactic Acid With Straight Holes.

    PubMed

    Ken, Yukawa; Noriko, Tachikawa; Furuichi, Akiko; Shohei, Kasugai

    2016-12-01

    This study investigated the biological reaction to porous poly-DL-lactic acid (PDLLA) scaffolds with holes for soft tissue augmentation. The control group was porous PDLLA with a diameter of 5.0 mm and a height of 2.0 mm. For the 2 test groups, 7 holes were drilled from the upper to the lower base of the scaffolds; the holes had diameters of 0.5 and 1.0 mm. A scaffold was placed in the periosteum of the cranium. The height and molecular weight (Mw) of the scaffolds were measured at 4 and 8 weeks. Hematoxylin and eosin staining was used to measure the connective tissue and blood vessel areas. All groups had similar scaffold heights, but the Mw decreased significantly over time. There were significant differences in the connective tissue and blood vessel areas among the control, 0.5-mm, and 1.0-mm groups at the same time point. The soft tissue was increased by drilling holes in the scaffolds. Porous poly-DL-lactic acid (PDLLA) contributed favorable prognosis for soft tissue. A wider hole was associated with increased connective tissue and blood vessel areas. The scaffold height and Mw were not impacted by size of the holes.

  3. Controlled synthesis of phosphorylcholine derivatives of poly(serine) and poly(homoserine).

    PubMed

    Yakovlev, Ilya; Deming, Timothy J

    2015-04-01

    We report methods for the synthesis of polypeptides that are fully functionalized with desirable phosphorylcholine, PC, groups. Because of the inherent challenges in the direct incorporation of the PC group into α-amino acid N-carboxyanhydride (NCA) monomers, we developed a synthetic approach that combined functional NCA polymerization with efficient postpolymerization modification. While poly(L-phosphorylcholine serine) was found to be unstable upon synthesis, we successfully prepared poly(L-phosphorylcholine homoserine) with controlled chain lengths and found these to be water-soluble with disordered chain conformations.

  4. Antibacterial poly(D,L-lactic acid) coating of medical implants using a biodegradable drug delivery technology.

    PubMed

    Gollwitzer, Hans; Ibrahim, Karim; Meyer, Henriette; Mittelmeier, Wolfram; Busch, Raymonde; Stemberger, Axel

    2003-03-01

    Biomaterial-associated bacterial infections present common and challenging complications with medical implants. The purpose of this study was to determine the antibacterial properties of a low molecular weight biodegradable poly(D,L-lactic acid) coating with integrated antibiotics gentamicin and teicoplanin. Coating of Kirschner-wires was carried out by a solvent casting technique under aseptic conditions with and without incorporated antibiotics. Release kinetics of gentamicin and teicoplanin were studied in phosphate-buffered saline. Initial bacterial adhesion of Staphylococcus epidermidis on coated and bare implants was determined by radiolabelling and counts of detached viable organisms. The incorporated antibiotics showed a continuous release over a period of at least 96 h with an initial peak of release in the first 6 h. Attachment of non-viable microorganisms, detected by radiolabelled bacteria, was increased significantly by the polymer coatings (P < 0.05). In contrast, the number of viable bacteria was reduced by the pure polymer (P < 0.01) and further by the polymer-antibiotic combinations (P < 0.05). Poly(D,L-lactic acid) coating of implants could offer new perspectives in preventing biomaterial-associated infections. Combinations with other drugs to formulate custom-tailored implant surfaces are feasible.

  5. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant.

    PubMed

    Astete, Carlos E; Dolliver, Debra; Whaley, Meocha; Khachatryan, Lavrent; Sabliov, Cristina M

    2011-12-27

    The goal of the study was to synthesize a surfactant made of α-tocopherol (vitamin E) and ascorbic acid (vitamin C) of antioxidant properties dubbed as EC, and to use this surfactant to make poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Self-assembled EC nanostructures and PLGA-EC nanoparticles were made by nanoprecipitation, and their physical properties (size, size distribution, morphology) were studied at different salt concentrations, surfactant concentrations, and polymer/surfactant ratios. EC surfactant was shown to form self-assembled nanostructures in water with a size of 22 to 138 nm in the presence of sodium chloride, or 12 to 31 nm when synthesis was carried out in sodium bicarbonate. Polymeric PLGA-EC nanoparticles presented a size of 90 to 126 nm for 40% to 120% mass ratio PLGA to surfactant. For the same mass ratios, the PLGA-Span80 formed particles measured 155 to 216 nm. Span80 formed bilayers, whereas EC formed monolayers at the interfaces. PLGA-EC nanoparticles and EC showed antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay measurements using UV and EPR techniques, antioxidant activity which is not characteristic to commercially available Span80. The thiobarbituric acid reactive substances (TBARS) assay for lipid peroxidation showed that PLGA nanoparticles with EC performed better as antioxidants than the EC nanoassembly or the free vitamin C. Nanoparticles were readily internalized by HepG2 cells and were localized in the cytoplasm. The newly synthesized EC surfactant was therefore found successful in forming uniform, small size polymeric nanoparticles of intrinsic antioxidant properties.

  6. Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: whys and wherefores.

    PubMed

    Yan, Rui; Zhang, Yaoyao; Wang, Xiaohui; Xu, Jianxiong; Wang, Da; Zhang, Wangqing

    2012-02-15

    Synthesis of porous poly(styrene-co-acrylic acid) (PS-co-PAA) microspheres through one-step soap-free emulsion polymerization is reported. Various porous PS-co-PAA microspheres with the particle size ranging from 150 to 240 nm and with the pore size ranging from 4 to 25 nm are fabricated. The porous structure of the microspheres is confirmed by the transmission electron microscopy measurement and Brunauer-Emmett-Teller (BET) analysis. The reason for synthesis of the porous PS-co-PAA microspheres is discussed, and the phase separation between the encapsulated hydrophilic poly(acrylic acid) segment and the hydrophobic polystyrene domain within the PS-co-PAA microspheres is ascribed to the pore formation. The present synthesis of the porous PS-co-PAA microspheres is anticipated to be a new and convenient way to fabricate porous polymeric particles. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Quantitative single molecule measurements on the interaction forces of poly(L-glutamic acid) with calcite crystals.

    PubMed

    Sonnenberg, Lars; Luo, Yufei; Schlaad, Helmut; Seitz, Markus; Cölfen, Helmut; Gaub, Hermann E

    2007-12-12

    The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).

  8. PEG-poly(amino acid) block copolymer micelles for tunable drug release.

    PubMed

    Ponta, Andrei; Bae, Younsoo

    2010-11-01

    To achieve tunable pH-dependent drug release in tumor tissues. Poly(ethylene glycol)-poly(aspartic acid) [PEG-p(Asp)] containing 12 kDa PEG and pAsp (5, 15, and 35 repeating units) were prepared. Hydrazide linkers with spacers [glycine (Gly) and 4-aminobenzoate (Abz)] were introduced to PEG-p(Asp), followed by drug conjugation [doxorubicin (DOX)]. The block copolymer-drug conjugates were either reconstituted or dialyzed in aqueous solutions to prepare micelles. Drug release patterns were observed under sink conditions at pH 5.0 and 7.4, 37°C, for 48 h. A collection of six block copolymers with different chain lengths and spacers was synthesized. Drug binding yields were 13-43.6%. The polymer-drug conjugates formed <50 nm polymer micelles irrespective of polymer compositions. Gly-introduced polymer micelles showed marginal change in particle size (40 ± 10 nm), while the size of Abz-micelles increased gradually from 10 to 40 nm as the polymer chain lengths increased. Drug release patterns of both Gly and Abz micelles were pH-dependent and tunable. The spacers appear to play a crucial role in controlling drug release and stability of polymer micelles in combination with block copolymer chain lengths. A drug delivery platform for tunable drug release was successfully developed with polymer micelles possessing spacer-modified hydrazone drug-binding linkers.

  9. In-situ spectroscopic investigations of the redox behavior of poly(indole-5-carboxylic-acid) modified electrodes in acidic aqueous solutions.

    PubMed

    Talbi, H; Billaud, D; Louarn, G; Pron, A

    2001-03-01

    The oxidation of electrochemically grown poly(indole-5-carboxylic-acid) (P5CO2H) and its spectroscopic properties have been studied by in-situ spectroelectrochemical techniques. The purpose of this paper is to characterize the different modifications on the P5CO2H backbone, induced by the electrochemical oxidation in aqueous acidic solution. We have identified, on the basis of Raman spectra, the vibrational modes associated with neutral and oxidized segments of polymer. It was shown that at least three chemically and optically different species (perhaps other products too) are produced in different potential regimes upon oxidation of this polymer. The results obtained also indicate that the molecular properties of this conducting polymer are better revealed by in-situ resonant spectra than by ex-situ infrared and Raman studies.

  10. Determination of uric acid level by polyaniline and poly (allylamine): Based biosensor

    PubMed Central

    Wathoni, Nasrul; Hasanah, Aliya Nur; Gozali, Dolih; Wahyuni, Yeni; Fauziah, Lia Layusa

    2014-01-01

    The uric acid biosensor has been much developed by immobilizing uricase enzyme into the membrane of conductive polymer and the membrane of polyelectrolyte such as polyaniline (PANI) and poly (allylamine) (PAA) respectively. The purpose of this research was to create a new amperometric uric acid biosensor by immobilization of uricase in combination between PANI and PAA membranes. The working electrode was Pt plate (0.5 mm). The auxiliary and the reference electrode were Pt wire 0.4 mm and Ag/AgCl respectively. Uricase, uric acid, PAA, pyrrole and glutaraldehyde were supplied from Sigma. All other chemical was obtained from Merck. The biosensor was created by immobilizing of uricase by a glutaraldehyde crosslinking procedure on PANI composite film on the surface of a platinum electrode while the polyelectrolyte layer of PAA were prepared via layer-by-layer assembly on the electrode, functioning as H2O2-selective film. Standard of deviation, coefficient of variation (CV) and coefficient of correlation (r) analysis were used in this study. The biosensor had a good linearity with a correlation coefficient of 0.993 and it could be used up to 27 times with the CV value of 3.97%. The presence of other compounds such as glucose and ascorbic acid gave 1.3 ± 1.13% and 3.27 ± 2.29% respectively on the interference effect toward the current response of uric acid biosensor. The polymer combination of PANI and PAA can be used as a selective matrix of uric acid biosensor. PMID:24696812

  11. Conversion of Langmuir-Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene

    NASA Astrophysics Data System (ADS)

    Jo, Hye Jin; Lyu, Ji Hong; Ruoff, Rodney S.; Lim, Hyunseob; In Yoon, Seong; Jeong, Hu Young; Shin, Tae Joo; Bielawski, Christopher W.; Shin, Hyeon Suk

    2017-03-01

    Various solid carbon sources, particularly poly(methyl methacrylate), have been used as precursors to graphene. The corresponding growth process generally involves the decomposition of the solids to hydrocarbon gases followed by their adsorption on metallic substrates (e.g., Cu). We report a different approach that uses a thermally-resistant polyimide (PI) as a carbon precursor. Langmuir-Blodgett films of poly(amic acid) (PAA) were transferred to copper foils and then converted to graphene via a PI intermediate. The Cu foil substrate was also discovered to facilitate the orientation of aromatic moieties upon carbonization process of the PI. As approximately 50% of the initial quantity of the PAA was found to remain at 1000 °C, thermally-stable polymers may reduce the quantity of starting material required to prepare high quality films of graphene. Graphene grown using this method featured a relatively large domain size and an absence of adventitious adlayers.

  12. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  13. Calcium Stearate as an Effective Alternative to Poly(vinyl alcohol) in Poly-Lactic-co-Glycolic Acid Nanoparticles Synthesis.

    PubMed

    Cella, Claudia; Gerges, Irini; Milani, Paolo; Lenardi, Cristina; Argentiere, Simona

    2017-02-13

    Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are among the most studied systems for drug and gene targeting. So far, the synthesis of stable and uniform PLGA NPs has involved the use of a large excess of polyvinyl surfactants such as poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP), whose removal requires multistep purification procedures of high ecological and economic impact. Hence the development of environment-friendly and cost-effective synthetic procedures for the synthesis of PLGA NPs would effectively boost their use in clinics. This work aims to address this issue by investigating more efficacious alternatives to the so far employed polyvinyl surfactants. More specifically, we developed an innovative synthetic process to achieve stable and uniformly distributed PLGA NPs that involves the use of calcium stearate (CSt), gaining benefits of its high biocompatibility and efficacy at low concentrations and avoiding consequently expensive purification steps. With the help of minimum quantities of polysorbate 60 and sorbitane monostearate, CSt-stabilized PLGA NPs with different sizes and structures were synthesized. The influence of CSt on the encapsulation efficiency of bioactive molecules has been also investigated. The effective encapsulation of both hydrophobic (curcumin) and hydrophilic (fibrinogen labeled with Alexa647) biomolecules into NPs was demonstrated by confocal microscopy, and their release quantified by spectrofluorimetric analyses. Finally, degradation and cytotoxicity studies showed that CSt stabilized NPs were stable under physiological conditions and with good biocompatibility, thus looking promising for further investigation as controlled release devices.

  14. Preparation and structural characterization of poly-mannose synthesized by phosphoric acid catalyzation under microwave irradiation.

    PubMed

    Wang, Haisong; Cheng, Xiangrong; Shi, Yonghui; Le, Guowei

    2015-05-05

    Poly-mannose with molecular weight of 2.457 kDa was synthesized using d-mannose as substrate and phosphoric acid as catalyst under the condition of microwave irradiation for the first time. The optimum reaction conditions were microwave output power of 900 W, temperature 115°C, proton concentration 2.5 mol/L, and microwave irradiation time 5 min. The actual maximum yield was 91.46%. After purified by Sepherdex G-25 column chromatography, the structural features of poly-mannose were investigated by high-performance anion-exchange chromatography (HPAEC), high-performance gel-permeation chromatography (HPGPC), infrared (IR) spectroscopy, methylation analysis and NMR spectroscopy analysis ((1)H, (13)C, COSY, TOCSY, HMQC, and HMBC). HPAEC analysis showed that the composition of synthetic polysaccharides was d-mannose, its purity was demonstrated by HPGPC as a single symmetrical sharp peak, and additionally IR spectra demonstrated the polymerization of d-mannose. Methylation analysis and NMR spectroscopy revealed that the backbone of poly-mannose consisting of (1→3)-linked β-d-Manp, (1→3)-linked α-d-Manp, and (1→6)-linked α-d-Manp residues, and the main chain were branched at the O-2, O-3, O-4, O-6 position. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Direct observation of spherulitic growth stages of CaCO 3 in a poly(acrylic acid)-chitosan system: In situ SPM study

    NASA Astrophysics Data System (ADS)

    Ulčinas, A.; Butler, M. F.; Heppenstall-Butler, M.; Singleton, S.; Miles, M. J.

    2007-09-01

    Crystallization of a CaCO 3 thin film from supersaturated solution on chitosan in the presence of poly-acrylic acid was investigated by in situ AFM and SNOM. It was directly observed that crystallization proceeds through characteristic stages consistent with the theory of spherulitic growth: development of individual branches, build-up of larger scale "lobe" features, followed by overgrowth and ripening. We propose that crystallization of CaCO 3 on chitosan in the presence of poly(acrylic acid) (PAA) proceeds in a gelatinous matrix formed by PAA stabilized amorphous CaCO 3; the spherulitic character of crystallization is initiated by the high viscosity of gel and presence of PAA impurities. Characteristic sizes of spherulite features deviate significantly from the prediction based on diffusivity of PAA in water due to low diffusivity of PAA in gel.

  16. 40 CFR 721.2140 - Carbo-poly-cycli-col azo-alkyl-aminoalkyl-carbo-mono-cyclic ester, halogen acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbo-poly-cycli-col azo-alkyl-aminoalkyl-carbo-mono-cyclic ester, halogen acid salt. 721.2140 Section 721.2140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specifi...

  17. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/ polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    USDA-ARS?s Scientific Manuscript database

    In this study poly(lactic acid)(PLA) and polyvinylpyrrolidone (PVP) micro and nanofibers mats loaded with copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/ PVP blends contain...

  18. Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad; Omari, Ali

    2017-12-15

    Rapid analyses of some water soluble vitamins (Vitamin B2, B9, and C) in commercial multi vitamins could be routinely performed in analytical laboratories. This study reports on the electropolymerization of a low toxic and biocompatible polymer "poly aspartic acid-graphene quantum dots" as a novel strategy for surface modification of glassy carbon electrode and preparation a new interface for measurement of selected vitamins in commercial multi vitamins. Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of graphene quantum dots nanostructures on a poly aspartic acid using cyclic voltammetry techniques in the regime of -1.5 to 2 V. The field emission scanning electron microscopy indicated immobilization of graphene quantum dots onto poly aspartic acid film. The modified electrode possessed as an effective electroactivity for detection of water soluble vitamins by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of poly aspartic acid as semiconducting polymer, graphene quantum dots as high density of edge plane sites and chemical modification. Under the optimized analysis conditions, the prepared sensor for detection of VB2, VB9, and VC showed a low limit of quantification 0.22, 0.1, 0.1 μM, respectively. Copyright © 2017. Published by Elsevier Inc.

  19. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  20. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2006-10-01

    A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.

  1. Heat Capacity of B. Mori Silk Fibroin Based on the Vibrational-Motion of Poly(amino acid)s.

    NASA Astrophysics Data System (ADS)

    Pyda, Marek; Hu, Xiao; Cebe, Peggy

    2009-03-01

    Bombyx mori silk fibroin heat capacities with and without water have been determined based on the vibrational motions of poly(amino acid)s and water, using the Advanced Thermal Analysis System (ATHAS) Data Bank. The heat capacities, Cp, of dry silk and silk-water were linked to their vibrational spectra based on the group and skeletal vibration contributions. For dry silk, the experimental and calculated Cp agree to better than ±3% between 200 K and 435 K. The heat capacity of the solid silk-water system, below the glass transition, was estimated from a sum of linear combinations of the molar fractions of the vibrational heat capacities of dry silk and glassy water. Calculations are compared to experimental data obtained from calorimetric methods, using hermetic and non-hermetic pans. The approach presented allows one to predict the low temperature vibrational heat capacity for dry silk and for the silk-water system down to zero kelvin, and, together with an extension to higher temperatures, above the glass transition. This can be used as a reference baseline for quantitative thermal analysis of this biomaterial..

  2. Radiolysis of poly(acrylic acid) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ulanski, Piotr; Bothe, Eberhard; Hildenbrand, Knut; Rosiak, Janusz M.; von Sonntag, Clemens

    1995-02-01

    Poly(acrylic acid), PAA, reacts with OH-radicals yielding -CHCH(CO 2H)- (β-radicals) and -CH 2C(CO 2H)- (α-radicals) in a ratio of approximately 2:1. This estimate is based on pulse radiolysis data where the absorption spectrum of the PAA-radicals was compared with the spectra of α-radicals from model systems. The β-radicals convert slowly into α-radicals ( k = 0.7 s -1 at pH 10). This process has also been observed by ESR. At PAA-concentrations of 10 -2 mol dm -3 chain scission dominates over other competing reactions except at low pH. The rate of chain scission was followed by pulse conductometry and in the pH range 7-9 k = 4 × 10 -2s -1 was observed. Oxygen reacts with PAA-radicals with k = 3.1 × 10 8 dm 3 mol -1 s -1 at pH 3.5 and k = 1.0 × 10 8 dm 3 mol -1 s -1 at pH 10. The corresponding peroxyl radicals undergo slow intramolecular H-transfer yielding a UV-absorbing product whose properties are that of 1,3-diketones.

  3. The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres

    PubMed Central

    Liu, Jianming; Lv, Xin

    2014-01-01

    The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency. PMID:25268618

  4. Multifunctional Poly(2,5-benzimidazole)/Carbon Nanotube Composite Films

    DTIC Science & Technology

    2010-01-01

    Multifunctional Poly(2,5- benzimidazole )/Carbon Nanotube Composite Films JI-YE KANG,1 SOO-MI EO,1 IN-YUP JEON,1 YEONG SUK CHOI,2 LOON-SENG TAN,3 JONG...molecular-weight poly(2,5- benzimidazole ) (ABPBI). ABPBI/carbon nanotube (CNT) compo- sites were prepared via in situ polymerization of the AB-monomer in the...polymerization; multiwalled carbon nanotube (MWCNT); nano- composites; poly(2,5- benzimidazole ); (ABPBI); polycondensa- tion; poly(phosphoric acid); single-walled

  5. Effect of compounding approaches on fiber dispersion and performance of poly(lactic acid)/cellulose nanocrystal composite blown films

    Treesearch

    Sonal S. Karkhanis; Laurent M. Matuana; Nicole M. Stark; Ronald C. Sabo

    2017-01-01

    This study was aimed to identify the best approach for incorporating cellulose nanocrystals (CNCs) into a poly(lactic acid) (PLA) matrix by examining two different CNC addition approaches. The first approach consisted of melt blending PLA and CNCs in a three-piece internal mixer whereas the second method involved the direct dry mixing of PLA and CNCs. The prepared...

  6. Photo-cross-linked poly(thioether-co-carbonate) networks derived from the natural product quinic acid.

    PubMed

    Link, Lauren A; Lonnecker, Alexander T; Hearon, Keith; Maher, Cameron A; Raymond, Jeffery E; Wooley, Karen L

    2014-10-22

    Polycarbonate networks derived from the natural product quinic acid that can potentially return to their natural building blocks upon hydrolytic degradation are described herein. Solvent-free thiol-ene chemistry was utilized in the copolymerization of tris(alloc)quinic acid and a variety of multifunctional thiol monomers to obtain poly(thioether-co-carbonate) networks with a wide range of achievable thermomechanical properties including glass transition temperatures from -18 to +65 °C and rubbery moduli from 3.8 to 20 MPa. The network containing 1,2-ethanedithiol expressed an average toughness at 25 and 63 °C of 1.08 and 2.35 MJ/m(3), respectively, and an order-of-magnitude increase in the average toughness at 37 °C of 15.56 MJ/m(3).

  7. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    PubMed

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Combined Determination of Poly-β-Hydroxyalkanoic and Cellular Fatty Acids in Starved Marine Bacteria and Sewage Sludge by Gas Chromatography with Flame Ionization or Mass Spectrometry Detection

    PubMed Central

    Odham, Göran; Tunlid, Anders; Westerdahl, Gunilla; Mårdén, Per

    1986-01-01

    Extraction of lipids from bacterial cells or sewage sludge samples followed by simple and rapid extraction procedures and room temperature esterification with pentafluorobenzylbromide allowed combined determinations of poly-β-hydroxyalkanoate constituents and fatty acids. Capillary gas chromatography and flame ionization or mass spectrometric detection was used. Flame ionization permitted determination with a coefficient of variation ranging from 10 to 27% at the picomolar level, whereas quantitative chemical ionization mass spectrometry afforded sensitivities for poly-β-hydroxyalkanoate constituuents in the attomolar range. The latter technique suggests the possibility of measuring such components in bacterial assemblies with as few as 102 cells. With the described technique using flame ionization detection, it was possible to study the rapid formation of poly-β-hydroxyalkanoate during feeding of a starved marine bacterium isolate with a complex medium or glucose and correlate the findings to changes in cell volumes. Mass spectrometric detection of short β-hydroxy acids in activated sewage sludge revealed the presence of 3-hydroxybutyric, 3-hydroxyhexanoic, and 3-hydroxyoctanoic acids in the relative proportions of 56, 5 and 39%, respectively. No odd-chain β-hydroxy acids were found. PMID:16347181

  10. Microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) blend mulches in soil burial respirometric tests.

    PubMed

    Jeszeová, Lenka; Puškárová, Andrea; Bučková, Mária; Kraková, Lucia; Grivalský, Tomáš; Danko, Martin; Mosnáčková, Katarína; Chmela, Štefan; Pangallo, Domenico

    2018-06-22

    The microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) (PLA/PHB) blend foils were investigated in 1 year long laboratory soil burial experiments. Different PLA/PHB foils were tested: (a) PLA/PHB original transparent foil, (b) PLA/PHB carbon black filled foil and (c) PLA/PHB black foil previously exposed for 90 days to sun light. The microbiome diversity of these three types of foil was compared with that identified from soil/perlite sample at the beginning of experiment and that developed on a cellulose mat. Culture-dependent and culture-independent (DGGE-cloning) approaches together with PLA, PHB and PLA/PHB degradation plate assays were employed. The cultivation strategy combined with degradation tests permitted the isolation and evaluation of several PLA/PHB blend degrading microorganisms such as members of the genera Bacillus, Paenibacillus, Streptomyces, Rhodococcus, Saccharothrix, Arthrobacter, Aureobasidium, Mortierella, Absidia, Actinomucor, Bjerkandera, Fusarium, Trichoderma and Penicillium. The DGGE-cloning investigation increased the information about the microbial communities occurring during bioplastic degradation detecting several bacterial and fungal taxa and some of them (members of the orders Anaerolineales, Selenomonadales, Thelephorales and of the genera Pseudogymnoascus and Pseudeurotium) were revealed here for the first time. This survey showed the microbiome colonizing PLA/PHB blend foils and permitted the isolation of several microorganisms able to degrade the tested polymeric blends.

  11. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.

    PubMed

    Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).

    PubMed

    Li, Linjing; Liu, Xiangyu; Niu, Yuqing; Ye, Jianfu; Huang, Shuiwen; Liu, Chao; Xu, Kaitian

    2017-07-01

    Alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on biodegradable poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were prepared. Results showed that alternating block polyurethane gives higher crystal degree, higher mechanical properties, more patterned and rougher surface than the random counterpart, due to the regular and controlled structure. Water absorptions of the polyurethanes were in the range of 620 to 780%. Cytocompatibility of the amphiphilic block polyurethanes (PU) (water static angle 41.4°-61.8°) was assessed by CCK-8 assay using human embryonic kidney (HEK293) cells. Wound healing evaluation of the PU foam scaffolds was carried out by full-thickness SD rat model experiment, with medical gauze as control. It was found that the skin of rat in PU groups was fully covered with new epithelium without any significant adverse reactions and PU dressings give much rapid and better healing than medical gauze. Histological examination revealed that PU dressings suppress the infiltration of inflammatory cells and accelerate fibroblast proliferation. It was also demonstrated that PULA-alt-PEG exhibits obvious better healing effect than PULA-ran-PEG does. This study has demonstrated that without further modification, plain alternating block polyurethane scaffold would help wound recovery efficiently. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1200-1209, 2017. © 2016 Wiley Periodicals, Inc.

  13. The PM2.5 capture of poly (lactic acid)/nano MOFs eletrospinning membrane with hydrophilic surface

    NASA Astrophysics Data System (ADS)

    Wang, Yating; Dai, Xiu; Li, Xu; Wang, Xinlong

    2018-03-01

    In this article, metal organic frameworks (MOFs) material is introduced in the poly (lactic acid) (PLA) by electrospinning to fabricate the nanocomposite membrane. The acrylic acid (AA) is grafted onto the membrane under UV light. The prepared membrane is studied by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetry (TG), contact angle test and tensile strength test. The SEM image and XRD indicate that nano MOFs particles adhere to the membrane. Contact angle test shows that grafting AA on the composite fiber membrane improves its hydrophilicity effectively. TG analyses show that the particulate matter (PM) capture capacity of PLA membrane with 2 wt% ZIF-8 content is 22%, which rises to 37% after grafting.

  14. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    USDA-ARS?s Scientific Manuscript database

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  15. A Novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging.

    PubMed

    Xu, Dazhuang; Liu, Meiying; Huang, Qiang; Chen, Junyu; Huang, Hongye; Deng, Fengjie; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-04-15

    Recently, fullerene (C 60 ) and its derivatives have been widely explored for many applications owing to their enriched physical and chemical properties. Specifically, the synthesis and biomedical applications of fluorescent C 60 have been extensively investigated previously. However, the preparation of polymer-functionalized fluorescent C 60 has not been reported thus far. In this study, water-dispersible fluorescent C 60 polymer composites were successfully synthesized through the combination of the thiol-ene click reaction and subsequent ring-opening polymerization. First, 2-aminoethanethiol was introduced on the surface of C 60 by the thiol-ene click reaction. The surface of amino group-functionalized C 60 (C 60 -NH 2 ) was further modified with poly(amino acid)s via ring-open polymerization of GluEG N-carboxyanhydrides (NCAs). The morphology, functional groups, optical properties and biocompatibility were examined by a number of characterization equipment and assays in detail. We demonstrated that the resultant fluorescent C 60 poly(amino acid) (C 60 -GluEG) composites have a small size (about 5 nm), high water dispersibility, intense fluorescence and high photostability. Cell viability results implied that the C 60 -GluEG composites possess low cytotoxicity. Moreover, these C 60 -GluEG composites can easily penetrate into live cells, indicating their great potential for biological imaging applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Late Administration of a Palladium Lipoic Acid Complex (POLY-MVA) Modifies Cardiac Mitochondria but Not Functional or Structural Manifestations of Radiation-Induced Heart Disease in a Rat Model

    PubMed Central

    Sridharan, Vijayalakshmi; Seawright, John W.; Antonawich, Francis J.; Garnett, Merrill; Cao, Maohua; Singh, Preeti; Boerma, Marjan

    2017-01-01

    Exposure of the heart to ionizing radiation can cause adverse myocardial remodeling. In small animal models, local heart irradiation causes persistent alterations in cardiac mitochondrial function and swelling. POLY-MVA is a dietary supplement that contains a palladium lipoic acid complex that targets mitochondrial complex I and has been demonstrated to have greater redox potential than lipoic acid alone. POLY-MVA improves mitochondrial function and anti-oxidant enzyme activity in the aged rat heart. In this study, we tested whether POLY-MVA can mitigate cardiac effects of ionizing radiation. Adult male rats were exposed to local heart X rays with a daily dose of 9 Gy for 5 consecutive days. Eighteen weeks after irradiation, POLY-MVA was administered orally at 1 ml/kg bodyweight per day during weekdays, for 6 weeks. Alterations in cardiac function as measured with echocardiography coincided with enhanced mitochondrial swelling, a reduction in mitochondrial expression of complex II, manifestations of adverse remodeling such as a reduction in myocardial microvessel density and an increase in collagen deposition and mast cell numbers. POLY-MVA enhanced left ventricular expression of superoxide dismutase 2, but only in sham-irradiated animals. In irradiated animals, POLY-MVA caused a reduction in markers of inflammatory infiltration, CD2 and CD68. Moreover, POLY-MVA mitigated the effects of radiation on mitochondria. Nonetheless, POLY-MVA did not mitigate adverse cardiac remodeling, suggesting that this tissue remodeling may not be alleviated by altering cardiac mitochondria alone. However, we cannot exclude the possibility that an earlier onset of POLY-MVA administration may have more profound effects on radiation-induced cardiac remodeling. PMID:28231026

  17. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes.

    PubMed

    Qu, Zhenyuan; Xu, Hong; Gu, Hongchen

    2015-07-15

    Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.

  18. Formability Analysis of Bamboo Fabric Reinforced Poly (Lactic) Acid Composites

    PubMed Central

    M. R., Nurul Fazita; Jayaraman, Krishnan; Bhattacharyya, Debes

    2016-01-01

    Poly (lactic) acid (PLA) composites have made their way into various applications that may require thermoforming to produce 3D shapes. Wrinkles are common in many forming processes and identification of the forming parameters to prevent them in the useful part of the mechanical component is a key consideration. Better prediction of such defects helps to significantly reduce the time required for a tooling design process. The purpose of the experiment discussed here is to investigate the effects of different test parameters on the occurrence of deformations during sheet forming of double curvature shapes with bamboo fabric reinforced-PLA composites. The results demonstrated that the domes formed using hot tooling conditions were better in quality than those formed using cold tooling conditions. Wrinkles were more profound in the warp direction of the composite domes compared to the weft direction. Grid Strain Analysis (GSA) identifies the regions of severe deformation and provides useful information regarding the optimisation of processing parameters. PMID:28773662

  19. Nanoscale mechanical measurement determination of the glass transition temperature of poly(lactic acid)/everolimus coated stents in air and dissolution media.

    PubMed

    Wu, Ming; Kleiner, Lothar; Tang, Fuh-Wei; Hossainy, Syed; Davies, Martyn C; Roberts, Clive J

    2009-03-02

    Localized atomic force microscopy (AFM) force analysis on poly(lactic acid) (PLA) and poly(lactic acid)/everolimus coated stents has been performed under ambient conditions. Similar Young's modulus were derived from both PLA and PLA/everolimus stent surface, namely 2.25+/-0.46 and 2.04+/-0.39GPa, respectively, indicating that the drug, everolimus does not significantly effect the mechanical properties of PLA up to a 1:1 (w/w) drug loading. Temperature controlled force measurements on PLA only coated stents in air and in a 1% Triton surfactant solution allowed the glass transition temperature (T(g)) of the polymer to be determined. A significant drop of the Young's modulus in solution was observed at 36 degrees C, suggests that in vivo the T(g) of the polymer is below body temperature. The possible consequences on drug release and the mechanisms by which this may occur are considered.

  20. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.

    2008-02-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and threemore » mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.« less

  2. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.

    PubMed

    Hooper, K A; Macon, N D; Kohn, J

    1998-09-05

    Previous studies demonstrated that poly(DTE carbonate) and poly (DTE adipate), two tyrosine-derived polymers, have suitable properties for use in biomedical applications. This study reports the evaluation of the in vivo tissue response to these polymers in comparison to poly(L-lactic acid) (PLLA). Typically, the biocompatibility of a material is determined through histological evaluations as a function of implantation time in a suitable animal model. However, due to changes that can occur in the tissue response at different stages of the degradation process, a fixed set of time points is not ideal for comparative evaluations of materials having different rates of degradation. Therefore the tissue response elicited by poly(DTE carbonate), poly(DTE adipate), and PLLA was evaluated as a function of molecular weight. This allowed the tissue response to be compared at corresponding stages of degradation. Poly(DTE adipate) consistently elicited the mildest tissue response, as judged by the width and lack of cellularity of the fibrous capsule formed around the implant. The tissue response to poly(DTE carbonate) was mild throughout the 570 day study. However, the response to PLLA fluctuated as a function of the degree of degradation, exhibiting an increase in the intensity of inflammation as the implant began to lose mass. At the completion of the study, tissue ingrowth into the degrading and disintegrating poly(DTE adipate) implant was evident while no comparative ingrowth of tissue was seen for PLLA. The similarity of the in vivo and in vitro degradation rates of each polymer confirmed the absence of enzymatic involvement in the degradation process. A comparison of molecular weight retention, water uptake, and mass loss in vivo with two commonly used in vitro systems [phosphate-buffered saline (PBS) and simulated body fluid (SBF)] demonstrated that for the two tyrosine-derived polymers the in vivo results were equally well simulated in vitro with PBS and SBF. However

  3. Multifunctional Cinnamic Acid Derivatives.

    PubMed

    Peperidou, Aikaterini; Pontiki, Eleni; Hadjipavlou-Litina, Dimitra; Voulgari, Efstathia; Avgoustakis, Konstantinos

    2017-07-25

    Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino) ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX) inhibition (IC 50 = 6 μΜ) and antiproteolytic activity (IC 50 = 0.425 μΜ). The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC 50 = 0.315 μΜ) and good LOX inhibitory activity (IC 50 = 66 μΜ). Compounds 3a and 3b , derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro . Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  4. An IC-MS/MS Method for the Determination of 1-Hydroxyethylidene-1,1-diphosphonic Acid on Uncooked Foods Treated with Peracetic Acid-Based Sanitizers.

    PubMed

    Suzuki, Ippei; Kubota, Hiroki; Ohtsuki, Takashi; Tatebe, Chiye; Tada, Atsuko; Yano, Takeo; Akiyama, Hiroshi; Sato, Kyoko

    2016-01-01

    A rapid, sensitive, and specific analytical method for the determination of 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) on uncooked foods after treatment with a peracetic acid-based sanitizer (PAS) was developed. The method involves simple sample preparation steps and analysis using ion chromatography (IC) coupled with tandem mass spectrometry (MS/MS). The quantification limits of HEDP on uncooked foods are 0.007 mg/kg for vegetables and fruits and 0.2 mg/kg for meats. The recovery and relative standard deviation (RSD) of HEDP analyses of uncooked foods ranged from 73.9 to 103.8% and 1.9 to 12.6%, respectively. The method's accuracy and precision were evaluated by inter-day recovery tests. The recovery for all samples ranged from 93.6 to 101.2%, and the within-laboratory repeatability and reproducibility were evaluated based on RSD values, which were less than 6.9 and 11.5%, respectively. Analyses of PAS-treated fruits and vegetables using the developed method indicated levels of HEDP ranging from 0.008 to 0.351 mg/kg. Therefore, the results of the present study suggest that the proposed method is an accurate, precise, and reliable way to determine residual HEDP levels on PAS-treated uncooked foods.

  5. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery.

    PubMed

    You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun

    2018-05-25

    Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the

  6. Novel self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery.

    PubMed

    Shahin, Mostafa; Lavasanifar, Afsaneh

    2010-04-15

    Poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) copolymers bearing paclitaxel (PTX) side groups on PCL (PEO-b-P(CL-PTX) were synthesized and assembled to particles of 123 nm average diameter. At 20% (w/w) PTX to polymer conjugation, PEO-b-P(CL-PTX) demonstrated only 5.0 and 6.7% PTX release after 72 h incubation at pH 7.4 and 5.0, respectively, but revealed signs of chain cleavage at pH 5.0. The cytotoxicity of PEO-b-P(CL-PTX) against MDA-MB-435 cancer cells increased as incubation time was raised from 72 to 96 h (IC(50) of 680 and 475 ng/mL, respectively), but it was still significantly lower than the cytotoxicity of free PTX (IC(50) of 3.5 ng/mL at 72 h). In further studies, micelles of PEO-b-PCL and those bearing benzyl or PTX on PCL were used for physical encapsulation of PTX, where maximum level of loading was achieved by PEO-b-P(CL-PTX) (2.22%, w/w). The release of PTX from this carrier was rapid; however. The in vitro cytotoxicity of physically loaded PTX was independent of carrier and similar to that of free PTX. This was attributed to the low concentration of polymers which fell below their critical micellar concentration in the cytotoxicity study. The results point to the potential of chemically tailored PEO-b-PCL for optimum PTX solubilization and delivery. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Preparation of Cotton-Wool-Like Poly(lactic acid)-Based Composites Consisting of Core-Shell-Type Fibers

    PubMed Central

    Wang, Jian; Zhou, Pin; Obata, Akiko; Jones, Julian R.; Kasuga, Toshihiro

    2015-01-01

    In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid) (SiVPCs). Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst release of ions. In the present work, to improve the mechanical flexibility and ion release, the composite fiber was coated with a soft, thin layer consisting of poly(d,l-lactic-co-glycolic acid) (PLGA). A coaxial electrospinning technique was used to prepare a cotton-wool-like material comprising “core-shell”-type fibers with a diameter of ~12 µm. The fibers, which consisted of SiVPC coated with a ~2-µm-thick PLGA layer, were mechanically flexible; even under a uniaxial compressive load of 1.5 kPa, the cotton-wool-like material did not exhibit fracture of the fibers and, after removing the load, showed a ~60% recovery. In Tris buffer solution, the initial burst release of calcium and silicate ions from the “core-shell”-type fibers was effectively controlled, and the ions were slowly released after one day. Thus, the mechanical flexibility and ion-release behavior of the composites were drastically improved by the thin PLGA coating. PMID:28793691

  8. Intradermal immunisation using the TLR3-ligand Poly (I:C) as adjuvant induces mucosal antibody responses and protects against genital HSV-2 infection

    PubMed Central

    Bardel, Emilie; Doucet-Ladeveze, Remi; Mathieu, Cyrille; Harandi, Ali M; Dubois, Bertrand; Kaiserlian, Dominique

    2016-01-01

    Development of vaccines able to induce mucosal immunity in the genital and gastrointestinal tracts is a major challenge to counter sexually transmitted pathogens such as HIV-1 and HSV-2. Herein, we showed that intradermal (ID) immunisation with sub-unit vaccine antigens (i.e., HIV-1 gp140 and HSV-2 gD) delivered with Poly(I:C) or CpG1668 as adjuvant induces long-lasting virus-specific immunoglobulin (Ig)-G and IgA antibodies in the vagina and feces. Poly(I:C)-supplemented sub-unit viral vaccines caused minimal skin reactogenicity at variance to those containing CpG1668, promoted a delayed-type hypersensitivity (DTH) to the vaccine and protected mice from genital and neurological symptoms after a lethal vaginal HSV-2 challenge. Interestingly, Poly(I:C12U) (Ampligen), a Poly(I:C) structural analogue that binds to TLR3 but not MDA-5, promoted robust mucosal and systemic IgG antibodies, a weak skin DTH to the vaccine but not IgA responses and failed to confer protection against HSV-2 infection. Moreover, Poly(I:C) was far superior to Poly(I:C12U) at inducing prompt and robust upregulation of IFNß transcripts in lymph nodes draining the injection site. These data illustrate that ID vaccination with glycoproteins and Poly(I:C) as adjuvant promotes long-lasting mucosal immunity and protection from genital HSV-2 infection, with an acceptable skin reactogenicity profile. The ID route thus appears to be an unexpected inductive site for mucosal immunity and anti-viral protection suitable for sub-unit vaccines. This works further highlights that TLR3/MDA5 agonists such as Poly(I:C) may be valuable adjuvants for ID vaccination against sexually transmitted diseases. PMID:29263853

  9. Ligand-functionalized degradable polyplexes formed by cationic poly(aspartic acid)-grafted chitosan-cyclodextrin conjugates

    NASA Astrophysics Data System (ADS)

    Song, Hai-Qing; Li, Rui-Quan; Duan, Shun; Yu, Bingran; Zhao, Hong; Chen, Da-Fu; Xu, Fu-Jian

    2015-03-01

    Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications.Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE

  10. Controlled release of linalool using nanofibrous membranes of poly(lactic acid) obtained by electrospinning and solution blow spinning: A comparative study

    USDA-ARS?s Scientific Manuscript database

    The controlled-release of natural plant oils such as linalool is of interest in therapeutics, cosmetics, and antimicrobial and larvicidal products. The present study reports the release characteristics of linalool encapsulated at three concentrations (10, 15 and 20 wt.%) in poly(lactic acid) nanofib...

  11. Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology.

    PubMed

    Perez, Aurora; Hernández, Rebeca; Velasco, Diego; Voicu, Dan; Mijangos, Carmen

    2015-03-01

    Microfluidic techniques are expected to provide narrower particle size distribution than conventional methods for the preparation of poly (lactic-co-glycolic acid) (PLGA) microparticles. Besides, it is hypothesized that the particle size distribution of poly (lactic-co-glycolic acid) microparticles influences the settling behavior and rheological properties of its aqueous dispersions. For the preparation of PLGA particles, two different methods, microfluidic and conventional oil-in-water emulsification methods were employed. The particle size and particle size distribution of PLGA particles prepared by microfluidics were studied as a function of the flow rate of the organic phase while particles prepared by conventional methods were studied as a function of stirring rate. In order to study the stability and structural organization of colloidal dispersions, settling experiments and oscillatory rheological measurements were carried out on aqueous dispersions of PLGA particles with different particle size distributions. Microfluidics technique allowed the control of size and size distribution of the droplets formed in the process of emulsification. This resulted in a narrower particle size distribution for samples prepared by MF with respect to samples prepared by conventional methods. Polydisperse samples showed a larger tendency to aggregate, thus confirming the advantages of microfluidics over conventional methods, especially if biomedical applications are envisaged. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Synthesis and characterization of arginine-glycine-aspartic peptides conjugated poly(lactic acid-co-L-lysine) diblock copolymer.

    PubMed

    Yu, Hui; Guo, Xiaojuan; Qi, Xueliang; Liu, Peifeng; Shen, Xinyuan; Duan, Yourong

    2008-03-01

    A biodegradable Copolymer of poly(lactic acid-co-lysine)(PLA-PLL) was synthesized by a modified method and novel Arginine-Glycine-Aspartic (RGD) peptides were chemical conjugated to the primary epsilon-amine groups of lysine components in four steps: I to prepare the monomer of 3-(Nepsilon-benzoxycarbonyl-L-lysine)-6-L-methyl-2,5-morpholinedione; II to prepare diblock copolymer poly(lactic acid-co-(Z)-L-lysine) (PLA-PLL(Z)) by ring-opening polymerization of monomer and L,L-lactide with stannous octoate as initiator; III to prepare diblock copolymer PLA-PLL by deprotected the copolymer PLA-PLL(Z) in HBr/HoAc solution; IV the reaction between RGD and the primary epsilon-amine groups of the PLA-PLL. The structure of PLA-PLL-RGD and its precursors were conformed by FTIR-Raman and 1H NMR. Low weight average molecular weight (9,200 g/mol) of the PLA-PLL was obtained and its PDI is 1.33 determined by GPC. The PLA-PLL contained 2.1 mol% lysine groups as determined by 1H NMR using the lysine protecting group's phenyl protons. Therefore, the novel RGD-grafted diblock copolymer is expected to find application in drug carriers for tumor therapy or non-viral DNA carriers for gene therapy.

  13. Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(D,L-lactic acid- ran-glycolic acid) (PLGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung

    2015-08-26

    Constant rate compression isotherms of the air–water interfacial Langmuir films of poly(D,L-lactic acid- ran-glycolic acid) (PLGA)show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air–water interface, using combined experimental techniques including themore » Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods.« less

  14. 3D hierarchical Ag nanostructures formed on poly(acrylic acid) brushes grafted graphene oxide as promising SERS substrates

    NASA Astrophysics Data System (ADS)

    Xing, Guoke; Wang, Ke; Li, Ping; Wang, Wenqin; Chen, Tao

    2018-03-01

    In this study, in situ generation of Ag nanostructures with various morphology on poly(acrylic acid) (PAA) brushes grafted onto graphene oxide (GO), for use as substrates for surface-enhanced Raman scattering (SERS), is demonstrated. The overall synthetic strategy involves the loading of Ag precursor ions ((Ag+ and [Ag(NH3)2]+) onto PAA brush-grafted GO, followed by their in situ reduction to Ag nanostructures of various morphology using a reducing agent (NaBH4 or ascorbic acid). Novel 3D hierarchical flowerlike Ag nanostructures were obtained by using AgNO3 as precursor and ascorbic acid as reducing agent. Using 4-aminothiophenol as probe molecules, the as-prepared hierarchical Ag nanostructures exhibited excellent SERS performance, providing enhancement factors of ˜107.

  15. Nucleated Poly(L-lactic acid) with N, N‧-oxalyl bis(benzoic acid) dihydrazide

    NASA Astrophysics Data System (ADS)

    Tian, Liang-Liang; Cai, Yan-Hua

    2018-04-01

    One of the major challenges in the field of Poly(L-lactic acid) (PLLA) is the enhancement of crystallization. In the present work, the evaluation of the influence of N, N‧-oxalyl bis(benzoic acid) dihydrazide (TBOD), as a novel organic nucleating agent, on the non-isothermal crystallization, melting behavior, and thermal stability of PLLA was performed using differential scanning calorimeter and thermogravimetric analysis. Non-isothermal crystallization measurement revealed that TBOD had an excellent accelerating effect for the crystallization of PLLA in cooling, and upon the addition of 3 wt% TBOD, PLLA exhibited the highest onset crystallization temperature and the crystallization peak temperature, as well as the largest non-isothermal crystallization enthalpy. In particular, when the TBOD concentration was 1 wt% ∼ 3 wt%, the onset crystallization temperatures were higher than the theoretical ceiling temperature of crystallization, thoroughly demonstrating the powerful crystallization promoting ability of TBOD. Additionally, the non-isothermal crystallization behavior of PLLA/TBOD depended on the TBOD concentration, cooling rate as well as the final melting temperature. The melting behavior of PLLA/TBOD after non-isothermal crystallization further confirmed the effect of TBOD on the crystallization process and crystal structure of PLLA, and the appearance of the double melting peaks during melting stages was attribute to the melting-recrystallization. For melting behavior after isothermal crystallization, the crystallization temperature and crystallization time significantly affected the melting behavior of PLLA/TBOD. The addition of TBOD could not change the thermal decomposition profile of the PLLA, but the thermal stability did not regularly decrease with increasing of TBOD concentration, indicating that there might exist intermolecular interaction between PLLA and TBOD.

  16. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    PubMed

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Unprecedented access to strong and ductile poly(lactic acid) by introducing In Situ Nanofibrillar Poly(butylene succinate) for green packaging.

    PubMed

    Xie, Lan; Xu, Huan; Niu, Ben; Ji, Xu; Chen, Jun; Li, Zhong-Ming; Hsiao, Benjamin S; Zhong, Gan-Ji

    2014-11-10

    The notion of toughening poly(lactic acid) (PLA) by adding flexible biopolymers has generated enormous interest but has yielded few desirable advances, mainly blocked by the sacrifice of strength and stiffness due to uncontrollable phase morphology and poor interfacial interactions. Here the phase control methodology, that is, intense extrusion compounding followed by "slit die extrusion-hot stretching-quenching" technique, was proposed to construct well-aligned, stiff poly(butylene succinate) (PBS) nanofibrils in the PLA matrix for the first time. We show that generating nanosized discrete droplets of PBS phase during extrusion compounding is key to enable the development of in situ nanofibrillar PBS assisted by the shearing/stretching field. The size of PBS nanofibrils strongly dependent on the PBS content, showing an increased average diameter from 83 to 116 and 236 nm for the composites containing 10, 20, and 40 wt % nanofibrils, respectively. More importantly, hybrid shish-kebab superstructure anchoring ordered PLA kebabs were induced by the PBS nanofibrils serving as the central shish, conferring the creation of tenacious interfacial crystalline ligaments. The exceptional combination of strength, modulus, and ductility for the composites loaded 40 wt % PBS nanofibrils were demonstrated, outperforming pure PLA with the increments of 31, 51, and 72% in strength, modulus, and elongation at break (56.4 MPa, 1702 MPa, and 92.4%), respectively. The high strength, modulus, and ductility are unprecedented for PLA and are in great potential need for packaging applications.

  18. Biodegradable Poly(polyol sebacate) Polymers

    PubMed Central

    Bruggeman, Joost P.; de Bruin, Berend-Jan; Bettinger, Christopher J.; Langer, Robert

    2010-01-01

    We have developed a family of synthetic biodegradable polymers that are composed of structural units endogenous to the human metabolism, designated poly(polyol sebacates) (PPS) polymers. Material properties of PPS polymers can be tuned by altering the polyol monomer and reacting stiochiometric ratio of sebacic acid. These thermoset networks exhibited tensile Young’s moduli ranging from 0.37 ± 0.08 to 378 ± 33 MPa with maximum elongations at break from 10.90 ± 1.37 to 205.16 ± 55.76%, and glass-transition temperatures ranged from ~7 to 46 °C. In vitro degradation under physiological conditions was slower than in vivo degradation rates observed for some PPS polymers. PPS polymers demonstrated similar in vitro and in vivo biocompatibility compared to poly(L-lactic-co-glycolic acid) (PLGA). PMID:18824260

  19. Comparison of resorbable poly-L-lactic acid-polyglycolic acid and internal Palmaz stents for the surgical correction of severe tracheomalacia.

    PubMed

    Sewall, Gregory K; Warner, Thomas; Connor, Nadine P; Hartig, Gregory K

    2003-06-01

    Tracheomalacia (TM) is associated with expiratory airway collapse and potentially fatal respiratory distress. Internal and external tracheal stents and, recently, resorbable biopolymers have been used to treat this condition. In this study, the efficacy and biocompatibility of internal Palmaz stents and external poly-L-lactic acid-polyglycolic acid (PLPG) stents were compared in a model of severe TM induced in piglets. The tracheas were repaired with one of two stenting methods, and the animals survived for up to 16 weeks. Weight gain, adverse respiratory signs and symptoms, tracheal or lung histopathologic changes, and internal and external tracheal diameters were measured. The animals in the PLPG group uniformly were free of respiratory distress and tracheal stenosis or inflammation, whereas all animals in the Palmaz group developed respiratory distress as a result of pneumonia or tracheal stenosis caused by intraluminal granulation tissue. In conclusion, superior efficacy of external, resorbable PLPG stents was found relative to internal Palmaz stents for the surgical repair of severe TM.

  20. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria.

    PubMed

    Saarani, Nur Najiha; Jamuna-Thevi, Kalitheerta; Shahab, Neelam; Hermawan, Hendra; Saidin, Syafiqah

    2017-05-31

    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.

  1. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate.

    PubMed

    Hu, Xun; Wu, Liping; Wang, Yi; Song, Yao; Mourant, Daniel; Gunawan, Richard; Gholizadeh, Mortaza; Li, Chun-Zhu

    2013-04-01

    Hydrolysis/pyrolysis of lignocellulosic biomass always produces a mixture of sugars with distinct structures as intermediates or products. This study tried to elucidate the effects of molecular structure of sugars on their acid-catalyzed conversions in ethanol/water. Location of carbonyl group in sugars (fructose versus glucose) and steric configuration of hydroxyl groups (glucose versus galactose) significantly affected yields of levulinic acid/ester (fructose>glucose>galactose). The dehydration of fructose to 5-(hydroxymethyl)furfural produces much less soluble polymer than that from glucose and galactose, which results in high yields of levulinic acid/ester from fructose. Anhydrate sugar such as levoglucosan tends to undergo the undesirable decomposition to form less levulinic acid/ester. Catalytic behaviors of the poly-sugars (sucrose, maltose, raffinose, β-cyclodextrins) were determined much by their basic units. However, their big molecular sizes create the steric hindrance that significantly affects their followed conversion over solid acid catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Film Sensor Device Fabricated by a Piezoelectric Poly(L-lactic acid) Film

    NASA Astrophysics Data System (ADS)

    Ando, Masamichi; Kawamura, Hideki; Kageyama, Keisuke; Tajitsu, Yoshiro

    2012-09-01

    Synthetic piezoelectric polymer films produced from petroleum feedstock have long been used as thin-film sensors and actuators. However, the fossil fuel requirements for synthetic polymer production and carbon dioxide emission from its combustion have raised concern about the environmental impact of its continued use. Eco-friendly biomass polymers, such as poly(L-lactic acid) (PLLA), are made from plant-based (vegetable starch) plastics and, thus, have a much smaller carbon footprint. Additionally, PLLA does not exhibit pyroelectricity or unnecessary poling. This suggests the usefulness of PLLA films for the human-machine interface (HMI). As an example of a new HMI, we have produced a TV remote control using a PLLA film. The intuitive operation provided by this PLLA device suggests that it is useful for the elderly or handicapped.

  4. Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.

    PubMed

    Pang, Jianmei; Luan, Yuxia; Li, Feifei; Cai, Xiaoqing; Du, Jimin; Li, Zhonghao

    2011-01-01

    Ibuprofen- (IBU) loaded biocompatible poly(lactic-co-glycolic acid) (PLGA) films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.

  5. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.

  6. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer.

    PubMed

    Mehrotra, Shikhar; Britten, Carolyn D; Chin, Steve; Garrett-Mayer, Elizabeth; Cloud, Colleen A; Li, Mingli; Scurti, Gina; Salem, Mohamed L; Nelson, Michelle H; Thomas, Melanie B; Paulos, Chrystal M; Salazar, Andres M; Nishimura, Michael I; Rubinstein, Mark P; Li, Zihai; Cole, David J

    2017-04-07

    Dendritic cells (DCs) enhance the quality of anti-tumor immune response in patients with cancer. Thus, we posit that DC-based immunotherapy, in conjunction with toll-like receptor (TLR)-3 agonist poly-ICLC, is a promising approach for harnessing immunity against metastatic or locally advanced unresectable pancreatic cancer (PC). We generated autologous DCs from the peripheral blood of HLA-A2 + patients with PC. DCs were pulsed with three distinct A2-restricted peptides: 1) human telomerase reverse transcriptase (hTERT, TERT572Y), 2) carcinoembryonic antigen (CEA; Cap1-6D), and 3) survivin (SRV.A2). Patients received four intradermal injections of 1 × 10 7 peptide-pulsed DC vaccines every 2 weeks (Day 0, 14, 28, and 42). Concurrently, patients received intramuscular administration of Poly-ICLC at 30 μg/Kg on vaccination days (i.e., day 0, 14, 28, and 42), as well as on days 3, 17, 21, 31, 37, and 45. Our key objective was to assess safety and feasibility. The effect of DC vaccination on immune response was measured at each DC injection time point by enumerating the phenotype and function of patient T cells. Twelve patients underwent apheresis: nine patients with metastatic disease, and three patients with locally advanced unresectable disease. Vaccines were successfully manufactured from all individuals. We found that this treatment was well-tolerated, with the most common symptoms being fatigue and/or self-limiting flu-like symptoms. Among the eight patients who underwent imaging on day 56, four patients experienced stable disease while four patients had disease progression. The median overall survival was 7.7 months. One patient survived for 28 months post leukapheresis. MHC class I -tetramer analysis before and after vaccination revealed effective generation of antigen-specific T cells in three patients with stable disease. Vaccination with peptide-pulsed DCs in combination with poly-ICLC is safe and induces a measurable tumor specific T cell population in

  7. Renewable unsaturated polyesters from muconic acid

    DOE PAGES

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...

    2016-09-27

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a

  8. Renewable unsaturated polyesters from muconic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a

  9. Impact property enhancement of poly (lactic acid) with different flexible copolymers

    NASA Astrophysics Data System (ADS)

    Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.

    2015-07-01

    The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.

  10. A review of poly(lactic acid)-based materials for antimicrobial packaging.

    PubMed

    Tawakkal, Intan S M A; Cran, Marlene J; Miltz, Joseph; Bigger, Stephen W

    2014-08-01

    Poly(lactic acid) (PLA) can be synthesized from renewable bio-derived monomers and, as such, it is an alternative to conventional petroleum-based polymers. Since PLA is a relatively new polymer, much effort has been directed toward its development in order to make it an acceptable and effective option to the more traditional petroleum-based polymers. Commercially, PLA has received considerable attention in food packaging applications with a focus on films and coatings that are suitable for short shelf life and ready-to-eat food products. The potential for PLA to be used in active packaging has also been recognized by a number of researchers. This review focuses on the use of PLA in antimicrobial systems for food packaging applications and explores the engineering characteristics and antimicrobial activity of PLA films incorporated and/or coated with antimicrobial agents. © 2014 Institute of Food Technologists®

  11. Add-on LABA in a separate inhaler as asthma step-up therapy versus increased dose of ICS or ICS/LABA combination inhaler.

    PubMed

    Price, David B; Colice, Gene; Israel, Elliot; Roche, Nicolas; Postma, Dirkje S; Guilbert, Theresa W; van Aalderen, Willem M C; Grigg, Jonathan; Hillyer, Elizabeth V; Thomas, Victoria; Martin, Richard J

    2016-04-01

    Asthma management guidelines recommend adding a long-acting β 2 -agonist (LABA) or increasing the dose of inhaled corticosteroid (ICS) as step-up therapy for patients with uncontrolled asthma on ICS monotherapy. However, it is uncertain which option works best, which ICS particle size is most effective, and whether LABA should be administered by separate or combination inhalers. This historical, matched cohort study compared asthma-related outcomes for patients (aged 12-80 years) prescribed step-up therapy as a ≥50% extrafine ICS dose increase or add-on LABA, via either a separate inhaler or a fine-particle ICS/LABA fixed-dose combination (FDC) inhaler. Risk-domain asthma control was the primary end-point in comparisons of cohorts matched for asthma severity and control during the baseline year. After 1:2 cohort matching, the increased extrafine ICS versus separate ICS+LABA cohorts included 3232 and 6464 patients, respectively, and the fine-particle ICS/LABA FDC versus separate ICS+LABA cohorts included 7529 and 15 058 patients, respectively (overall mean age 42 years; 61-62% females). Over one outcome year, adjusted OR (95% CI) for achieving asthma control were 1.25 (1.13-1.38) for increased ICS versus separate ICS+LABA and 1.06 (1.05-1.09) for ICS/LABA FDC versus separate ICS+LABA. For patients with asthma, increased dose of extrafine-particle ICS, or add-on LABA via ICS/LABA combination inhaler, is associated with significantly better outcomes than ICS+LABA via separate inhalers.

  12. Effect of Antiviral Agents in Equine Abortion Virus-Infected Hamsters1

    PubMed Central

    Lieberman, Melvin; Pascale, Andrea; Schafer, Thomas W.; Came, Paul E.

    1972-01-01

    Equine abortion virus, a member of the herpesvirus group, produces a lethal infection in hamsters. With this system, the protective effect of certain inhibitors of deoxyribonucleic acid viruses, inducers of interferon and exogenous interferon, was evaluated. Of the various agents studied, 9-β-d-arabinofuranosyladenine markedly suppressed mortality, and 5-iodo-2′-deoxyuridine, distamycin A, and N-ethylisatin β-thiosemicarbazone were inactive. Of the inducers tested, statolon, ultraviolet-irradiated Newcastle disease virus, and polyriboinosinic:polyribocytidylic acid (poly I:C) were protective, and endotoxin, polyacrylic acid, and polymethacrylic acid did not protect. Administration of exogenous interferon did not afford protection. Statolon and ultraviolet-irradiated Newcastle disease virus induced circulating interferon in hamsters, whereas poly I:C, endotoxin, and polyacrylic acid did not produce interferon. Because of the severity of the disease produced in hamsters by equine abortion virus, lack of protective activity by an agent in this system should not preclude possible efficacy against other members of the herpesvirus group. PMID:4376907

  13. Glycyrrhetinic Acid-Poly(ethylene glycol)-glycyrrhetinic Acid Tri-Block Conjugates Based Self-Assembled Micelles for Hepatic Targeted Delivery of Poorly Water Soluble Drug

    PubMed Central

    Xu, Ting; Liu, Chi; Chen, Can; Song, Xiangrong; Zheng, Yu

    2013-01-01

    The triblock 18β-glycyrrhetinic acid-poly(ethylene glycol)-18β-glycyrrhetinic acid conjugates (GA-PEG-GA) based self-assembled micelles were synthesized and characterized by FTIR, NMR, transmission electron microscopy, and particle size analysis. The GA-PEG-GA conjugates having the critical micelle concentration of 6 × 10−5 M were used to form nanosized micelles, with mean diameters of 159.21 ± 2.2 nm, and then paclitaxel (PTX) was incorporated into GA-PEG-GA micelles by self-assembly method. The physicochemical properties of the PTX loaded GA-PEG-GA micelles were evaluated including in vitro cellular uptake, cytotoxicity, drug release profile, and in vivo tissue distribution. The results demonstrate that the GA-PEG-GA micelles had low cytotoxicity and good ability of selectively delivering drug to hepatic cells in vitro and in vivo by the targeting moiety glycyrrhetinic acid. In conclusion, the GA-PEG-GA conjugates have potential medical applications for targeted delivery of poor soluble drug delivery. PMID:24376388

  14. Mechanical properties of bulk graphene oxide/poly(acrylic acid)/poly(ethylenimine) ternary polyelectrolyte complex.

    PubMed

    Duan, Yipin; Wang, Chao; Zhao, Mengmeng; Vogt, Bryan D; Zacharia, Nicole S

    2018-05-30

    Ternary complexes formed in a single pot process through the mixing of cationic (branched polyethylenimine, BPEI) and anionic (graphene oxide, GO, and poly(acrylic acid), PAA) aqueous solutions exhibit superior mechanical performance in comparison to their binary analogs. The composition of the ternary complex can be simply tuned through the composition of the anionic solution, which influences the water content and mechanical properties of the complex. Increasing the PAA content in the complex decreases the overall water content due to improved charge compensation with the BPEI, but this change also significantly improves the toughness of the complex. Ternary complexes containing ≤32 wt% PAA were too brittle to generate samples for tensile measurements, while extension in excess of 250% could be reached with 57 wt% PAA. From this work, the influence of GO and PAA on the mechanical properties of GO/PAA/BPEI complexes were elucidated with GO sheets acting to restrain the viscous flow and improve the mechanical strength at low loading (<12.6 wt%) and PAA more efficiently complexes with BPEI than GO to generate a less swollen and stronger network. This combination overcomes the brittle nature of GO-BPEI complexes and viscous creep of PAA-BPEI complexes. Ternary nanocomposite complexes appear to provide an effective route to toughen and strengthen bulk polyelectrolyte complexes.

  15. Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering

    PubMed Central

    Zhou, Jun-feng; Wang, Yi-guo; Cheng, Liang; Wu, Zhao; Sun, Xiao-dan; Peng, Jiang

    2016-01-01

    Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topography. There was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. PMID:27904497

  16. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    PubMed

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.

  17. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose.

    PubMed

    Ahmed, Ibrahim Nasser; Chang, Ray; Tsai, Wei-Bor

    2017-04-01

    Cellulase was adsorbed onto poly(acrylic acid), PAA, nanogel, that was fabricated via inverse-phase microemulsion polymerization. The PAA nanogel was around 150nm in diameter and enriched with carboxyl groups. The surface charge of PAA nanogel depended on the pHs of the environment and affected the adsorption of cellulase. The temperature stability of the immobilized cellulase was greatly enhanced in comparison to the free enzyme, especially at high temperature. At 80°C, the immobilized cellulase remained ∼75% of hydrolytic activity, in comparison to ∼55% for the free cellulase. Furthermore, the immobilized cellulase was more active than the free enzyme in acidic buffers. The immobilized cellulase could be recovered via centrifugation and can be used repeatedly, although the recovery ratio needs further improvement. In conclusion, PAA nanogel has the potential in the application of enzyme immobilization for biochemical processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    PubMed Central

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  19. Processable dodecylbenzene sulfonic acid (DBSA) doped poly(N-vinyl carbazole)-poly(pyrrole) for optoelectronic applications

    PubMed Central

    Hammed, W. A.; Rahman, M. S.; Mahmud, H. N. M. E.; Yahya, R.; Sulaiman, K.

    2017-01-01

    Abstract A soluble poly (n-vinyl carbazole)–polypyrrole (PNVC–Ppy) copolymer was prepared through oxidative chemical polymerization wherein dodecyl benzene sulfonic acid (DBSA) was used as a dopant to facilitate polymer-organic solvent interaction and ammonium persulfate (APS) was used as an oxidant. Compared with undoped PNVC–Ppy, the DBSA-doped PNVC–Ppy copolymer showed higher solubility in some selected organic solvents. The composition and structural characteristics of the DBSA-doped PNVC–Ppy were determined by Fourier transform infrared, ultraviolet–visible, and X-ray diffraction spectroscopic methods. Field emission scanning electron microscopic method was employed to observe the morphology of the DBSA-doped PNVC–Ppy copolymer. The electrical conductivity of the DBSA-doped PNVC–Ppy copolymer was measured at room temperature. The conductivity increased with increasing concentration of APS oxidant, and the highest conductivity was recorded at 0.004 mol/dm3 APS at a polymerization temperature of −5 °C. The increased conductivity can be explained by the extended half-life of pyrrole free radical at a lower temperature and a gradual increase in chain length over a prolonged time due to the slow addition of APS. Furthermore, the obtained soluble copolymer exhibits unique optical and thermal properties different from those of PNVC and Ppy. PMID:29491808

  20. Injectable dopamine-modified poly(α,β-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system.

    PubMed

    Gong, Chu; Lu, Caicai; Li, Bingqiang; Shan, Meng; Wu, Guolin

    2017-04-01

    Hydrogel systems based on cross-linked polymeric materials with adhesive properties in wet environments have been considered as promising candidates for tissue adhesives. The 3,4-dihydroxyphenylalanine (DOPA) is believed to be responsible for the water-resistant adhesive characteristics of mussel adhesive proteins. Under the inspiration of DOPA containing adhesive proteins, a dopamine-modified poly(α,β-aspartic acid) derivative (PDAEA) was successfully synthesized by successive ring-opening reactions of polysuccinimide (PSI) with dopamine and ethanolamine, and an injectable bioadhesive hydrogel was prepared via simply mixing PDAEA and FeCl 3 solutions. The formation mechanism of the hydrogel was investigated by ultraviolet-visible (UV-vis) spectroscopic, Fourier transformation infrared (FT-IR) spectroscopic, visual colorimetric measurements and EDTA immersion methods. The study demonstrated that the PDAEA-Fe 3+ hydrogel is a dual cross-linking system composed of covalent and coordination crosslinks. The PDAEA-Fe 3+ hydrogel is suitable to serve as a bioadhesive agent according to the rheological behaviors and the observed significant shear adhesive strength. The slow and sustained release of the model drug curcumin from the hydrogel in vitro demonstrated the hydrogel could also be potentially used for drug delivery. Moreover, the cytotoxicity tests in vitro suggested the prepared polymer and hydrogel possessed excellent cytocompatibility. All the results indicated that the dopamine modified poly(α,β-aspartic acid) derivative based hydrogel was a promising candidate for bioadhesive drug delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1000-1008, 2017. © 2017 Wiley Periodicals, Inc.

  1. Poly(adenylic acid) complementary DNA real-time polymerase chain reaction in pancreatic ductal juice in patients undergoing pancreaticoduodenectomy.

    PubMed

    Oliveira-Cunha, Melissa; Byers, Richard J; Siriwardena, Ajith K

    2010-03-01

    There is a need to develop methods of early diagnosis for pancreatic cancer. Pancreatic juice is easily collected by endoscopic retrograde cholangiopancreatography and may facilitate diagnosis using molecular markers. The aim of this work was to explore the feasibility of measurement of gene expression in RNA isolated from ductal juice. Intraoperative sampling of pancreatic juice was undertaken in 27 patients undergoing pancreaticoduodenectomy for suspected tumor. Total RNA was extracted and used as template for poly(adenylic acid) (poly[A]) polymerase chain reaction (PCR) to generate a globally amplified complementary DNA pool representative of all expressed messenger RNAs. Real-time PCR was performed for trefoil factor 2 (TFF2), carboxypeptidase B1 (CPB1), and kallikrein-related peptidase 3 (KLK3) in a subset of samples; all samples were normalized for 3 reference genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], PSMB6, and beta-2-microglobulin [B2M]). The median volume of the pancreatic juice obtained was 1245 microL (range, 50-5000 microL). The RNA integrity number ranged from 1.9 to 10. Reverse transcriptase PCR was positive for pancreas-specific genes (TFF2 and CPB1) and negative for prostatic-specific antigen in all samples. These results demonstrate that RNA analysis of pancreatic juice is feasible using a combination of poly(A) PCR and real-time PCR. In addition, the poly(A) complementary DNA generated can be probed for multiple genes and is indefinitely renewable, thereby representing a molecular block of importance for future research.

  2. Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent.

    PubMed

    Ko, Jae Eok; Ko, Young-Gwang; Kim, Won Il; Kwon, Oh Kyoung; Kwon, Oh Hyeong

    2017-10-01

    Postoperative tissue adhesion causes serious complications and suffering in 90% of patients after peritoneum surgery, while commercial anti-adhesion agents cannot completely prevent postoperative peritoneal adhesions. This study demonstrates electrospining of a blended solution of chitosan, poly(d,l-lactic-co-glycolic acid) (PLGA), and poly(ethylene oxide) (PEO) to fabricate a chitosan-based nanofibrous mat as a postoperative anti-adhesion agent. Rheological studies combined with scanning electron microscopy reveal that the spinnability of the chitosan-PLGA solution could be controlled by adjusting the blend ratio and concentration with average fiber diameter from 634 to 913 nm. Biodegradation of the nanofiber specimens showed accelerated hydrolysis by chitosan. Proliferation of fibroblasts and antimicrobial activity of nanofibers containing chitosan was analyzed. Abdominal defects with cecum adhesion in rats demonstrated that the blend nanofiber mats were effective in preventing tissue adhesion as a barrier (4 weeks after abdominal surgery) by coverage of exfoliated peritoneum and insufficient wound sites at the beginning of the wound healing process. Chitosan-PLGA-PEO blend nanofiber mats will provide a promising key as a postoperative anti-adhesion agent. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1906-1915, 2017. © 2016 Wiley Periodicals, Inc.

  3. Lower critical solution temperature behavior of alpha-substituted poly(acrylic acids)s, cyclopolymerization of N-vinylformamido-methylacrylates, and use of the World-Wide Web in polymer science education

    NASA Astrophysics Data System (ADS)

    Michalovic, Mark Stephen

    A series of alpha-substituted poly(acrylic acid)s was synthesized and characterized. Their aqueous solution properties were investigated with respect to lower critical solution temperature (LCST) behavior. Poly(alpha-methoxymethylacrylic acid) was found to have a lower critical solution temperature (LCST) of 46°C, poly(alpha-methoxyethoxymethylacrylic acid) showed an LCST of 26.5°C and poly(alpha-methoxyethoxyethoxymethylacrylic acid) showed an LCST of 66°C. The cloud points of the solutions of these polymers were found to be sensitive to pH, and to concentrations of additives such as urea, salts, and surfactants. Because of low molecular weight due to chain transfer, high molecular weight analogs of the ether-linked polymers were synthesized in which ester linkages joined the oligo-oxyethylene segment to the acrylate moiety. Poly(alpha-methoxyethoxyacetoxymethylacrylic acid) was the only one of this series to give an LCST with a value of 52.5°C. Copolymers of t-butyl alpha-methoxymethylacrylate (tBMMA) with alpha-(1H,1H- perfluorooctyloxymethyl)acrylic acid (PFOMA) were synthesized, deprotected and their lower critical solution temperatures (LCSTs) evaluated. At PFOMA feed ratios of 0.25 mol % or less, no observable change in the LCST was observed, while at PFOMA feed ratios of above 0.25 mol % to 1.125 mol %, a large linear decrease in the LCST was observed with increasing fluorocarbon content. t-Butyl alpha-(N-vinylformamidomethyl)acrylate (tBVFA) and ethyl alpha-(N-vinylformamidomethyl)acrylate (EVFA) were synthesized from t-butyl alpha-bromomethylacrylate and ethyl alpha-chloromethylacrylate, respectively. tBVFA was found to cyclopolymerize at 120°C in DMF, DMSO, and 1,2-dichlorobenzene at solvent:monomer ratios of 10:1 vol:wt. Molecular weights for poly(tBVFA) ranged from 10,000 to 13,000 as estimated by size-exclusion chromatography. At lower solvent monomer ratio (1:1), and at lower temperature (71°C), crosslinking occurred. EVFA was found to

  4. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  5. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    PubMed

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-01-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation

    PubMed Central

    Hsueh, Yi-Huang; Huang, Kai-Yao; Kunene, Sikhumbuzo Charles; Lee, Tzong-Yi

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production. PMID:29215550

  7. Preparation of poly(β-L-malic acid)-based charge-conversional nanoconjugates for tumor-specific uptake and cellular delivery.

    PubMed

    Zhou, Qing; Yang, Tiehong; Qiao, Youbei; Guo, Songyan; Zhu, Lin; Wu, Hong

    2015-01-01

    In this study, a multifunctional poly(β-L-malic acid)-based nanoconjugate with a pH-dependent charge conversional characteristic was developed for tumor-specific drug delivery. The short branched polyethylenimine-modified poly(β-L-malic acid) (PEPM) was first synthesized. Then, the fragment HAb18 F(ab')2 and 2,3-dimethylmaleic anhydride were covalently attached to the PEPM to form the nanoconjugate, HDPEPM. In this nanoconjugate, the 2,3-dimethylmaleic anhydride, the shielding group, could shield the positive charge of the conjugate at pH 7.4, while it was selectively hydrolyzed in the tumor extracellular space (pH 6.8) to expose the previously-shielded positive charge. To study the anticancer activity, the anticancer drug, doxorubicin, was covalently attached to the nanoconjugate. The doxorubicin-loaded HDPEPM nanoconjugate was able to efficiently undergo a quick charge conversion from -11.62 mV to 9.04 mV in response to the tumor extracellular pH. The electrostatic interaction between the positively charged HDPEPM nanoconjugates and the negatively charged cell membrane significantly enhanced their cellular uptake, resulting in the enhanced anticancer activity. Also, the tumor targetability of the nanoconjugates could be further improved via the fragment HAb18 F(ab')2 ligand-receptor-mediated tumor cell-specific endocytosis.

  8. Chemoenzymatic Synthesis and Chemical Recycling of Poly(ester-urethane)s

    PubMed Central

    Hayashi, Hiroto; Yanagishita, Yoshio; Matsumura, Shuichi

    2011-01-01

    Novel poly(ester-urethane)s were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and α,ω-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethane)s. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethane)s synthesized in this study showed higher Tm, Young’s modulus and tensile strength values. PMID:22016604

  9. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models

    PubMed Central

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-01-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  10. Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing.

    PubMed

    Di, Wenjun; Czarny, Ryan S; Fletcher, Nathan A; Krebs, Melissa D; Clark, Heather A

    2016-10-01

    This study aims to develop biodegradable and biocompatible polymer-based nanofibers that continuously monitor pH within microenvironments of cultured cells in real-time. In the future, these fibers will provide a scaffold for tissue growth while simultaneously monitoring the extracellular environment. Sensors to monitor pH were created by directly electrospinning the sensor components within a polymeric matrix. Specifically, the entire fiber structure is composed of the optical equivalent of an electrode, a pH-sensitive fluorophore, an ionic additive, a plasticizer, and a polymer to impart mechanical stability. The resulting poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) based sensors were characterized by morphology, dynamic range, reversibility and stability. Since PCL-based nanofibers delivered the most desirable analytical response, this matrix was used for cellular studies. Electrospun nanofiber scaffolds (NFSs) were created directly out of optode material. The resulting NFS sensors respond to pH changes with a dynamic range centered at 7.8 ± 0.1 and 9.6 ± 0.2, for PCL and PLGA respectively. NFSs exhibited multiple cycles of reversibility with a lifetime of at least 15 days with preservation of response characteristics. By comparing the two NFSs, we found PCL-NFSs are more suitable for pH sensing due to their dynamic range and superior reversibility. The proposed sensing platform successfully exhibits a response to pH and compatibility with cultured cells. NSFs will be a useful tool for creating 3D cellular scaffolds that can monitor the cellular environment with applications in fields such as drug discovery and tissue engineering.

  11. Blending of Low-Density Polyethylene and Poly-Lactic Acid with Maleic Anhydride as A Compatibilizer for Better Environmentally Food-Packaging Material

    NASA Astrophysics Data System (ADS)

    Setiawan, A. H.; Aulia, F.

    2017-05-01

    The common conventional food packaging materialsare using a thin layer plastic or film, which is made of a synthetic polymer, such as Low-Density Poly Ethylene (LDPE). However, the use of these polymers hasan adverse impact on the environment, because the synthetic polymersare difficult to degrade naturally. Poly-Lactic Acid (PLA) is a biodegradable polymer that can be substituted to synthetic polymers. Since LDPE and PLA have a difference in polarity, therefore the first step of research is to graft them with maleic anhydride (MAH) for increasing the properties of its miscibility. The interaction between them is confirmed by FTIR; whereas the environment issueis characterized by the water adsorption and biodegradability. The FTIR spectra indicated that there had been an interaction between LDPE and MAH and LDPE/LDPE-g-MAH/PLA blend. Increasing PLA content in the blend affected to the increasing in their water absorption and biodegradable. Poly-blend with 20% PLA content was the optimum composition for environmentally food packaging.

  12. Biodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation

    PubMed Central

    Shibata, Akimichi; Yada, Shuhei; Terakawa, Mitsuhiro

    2016-01-01

    Biodegradation is a key property for biodegradable polymer-based tissue scaffolds because it can provide suitable space for cell growth as well as tailored sustainability depending on their role. Ultrashort pulsed lasers have been widely used for the precise processing of optically transparent materials, including biodegradable polymers. Here, we demonstrated the change in the biodegradation of a poly(lactic-co-glycolic acid) (PLGA) following irradiation with femtosecond laser pulses at different wavelengths. Microscopic observation as well as water absorption and mass change measurement revealed that the biodegradation of the PLGA varied significantly depending on the laser wavelength. There was a significant acceleration of the degradation rate upon 400 nm-laser irradiation, whereas 800 nm-laser irradiation did not induce a comparable degree of change. The X-ray photoelectron spectroscopy analysis indicated that laser pulses at the shorter wavelength dissociated the chemical bonds effectively, resulting in a higher degradation rate at an early stage of degradation. PMID:27301578

  13. Thermodynamics of Nucleic Acid ‘Shape Readout’ by an Aminosugar†

    PubMed Central

    Xi, Hongjuan; Davis, Erik; Ranjan, Nihar; Xue, Liang; Hyde-Volpe, David; Arya, Dev P.

    2012-01-01

    Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized to play an equally important role in DNA recognition. Competition Dialysis, UV, Flourescent Intercalator displacement (FID), Computational Docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, these results suggest: (1) Neomycin binds three RNA structures (16S A site rRNA, poly(rA)•poly(rA), and poly(rA)•poly(rU)) with high affinities, Ka~107M−1. (2) The binding of neomycin to A-form GC-rich oligomer d(A2G15C15T2)2 has comparable affinity to RNA structures. (3) The binding of neomycin to DNA•RNA hybrids shows a three-fold variance attributable to their structural differences (poly(dA) •poly(rU), Ka=9.4×106M−1 and poly(rA)•poly(dT), Ka=3.1×106M−1). (4) The interaction of neomycin with DNA triplex poly(dA)•2poly(dT) yields a binding affinity of Ka=2.4×105M−1. (5) Poly(dA-dT)2 showed the lowest association constant for all nucleic acids studied (Ka=<105). (6) Neomycin binds to G-quadruplexes with Ka~104-105M−1. (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin’s affinity for various nucleic acid structures can be ranked as follows, RNAs and GC-rich d(A2G15C15T2)2 structures > poly(dA)•poly(rU) > poly(rA)•poly(dT) > T•A-T triplex , G-quadruplexes, B-form AT-rich or GC-rich DNA sequences. The results illustrate the first example of a small molecule based ‘shape readout’ of different nucleic acid conformations. PMID:21863895

  14. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.

    PubMed

    Zhong, Justin X; Clegg, John R; Ander, Eric W; Peppas, Nicholas A

    2018-06-01

    Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018. © 2018 Wiley Periodicals, Inc.

  15. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    PubMed

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  16. Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration

    PubMed Central

    2012-01-01

    Background Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We previously found that systemic endotoxin, a TLR4 agonist or TNFα, increased blood TNFα that entered the brain activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3) agonist poly I:C. Methods Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly I:C (250 μg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine histochemistry. Results Poly I:C increased blood and brain TNFα that peaked at three hours. Blood levels returned within one day, whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly I:C-induced brain TNFα (345%), IL-1β (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines coincided with increased microglial activation, NOX gp91phox, superoxide and markers of neurodegeneration (activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:C was associated with ethanol-increased expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and

  17. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    PubMed

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  18. Thermo-sensitive and swelling properties of cellouronic acid sodium/poly (acrylamide-co-diallyldimethylammonium chloride) semi-IPN.

    PubMed

    Zhang, Heng; Gao, Xin; Chen, Keli; Li, Hui; Peng, Lincai

    2018-02-01

    In current study, cellouronic acid sodium (CAS), obtained from bagasse pith, has been introduced into poly(acrylamide-co-diallyldimethylammonium chloride) (poly(AM-co-DAC)) network to form novel thermo-sensitive semi-IPNs. The structure and morphology of the hydrogels were proved by Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effects of CAS content, initiator charge, cross-linker dosage and swelling-medium property on the thermo-responsive water absorptivity were investigated in detail. The results elucidated that the prepared gels exhibited a thermo-sensibility with an upper critical solution temperature (UCST) and a high water-absorbency. And the values of UCST and equilibrium swelling ratio largely depended on the inner structure of the semi-IPNs and the external solvent property. It was also revealed that the swelling process conformed to the Schott's pseudo second order model and diffusion type was non-Fickian diffusion. The value of activation energy for this polyelectrolyte was found to be 8.74kJ/mol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine.

    PubMed

    Zhang, Xin; Wei, Youli; Ding, Yaping

    2014-07-04

    A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10(-8) to 1.2 × 10(-4) M with a detection limit (S/N=3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media. Copyright © 2014. Published by Elsevier B.V.

  20. Poly(vinyl benzoate) nanoparticles for molecular delivery: Studies on their preparation and in vitro properties.

    PubMed

    Labruère, Raphaël; Sicard, Renaud; Cormier, Ryan; Turos, Edward; West, Leigh

    2010-12-01

    The preparation and properties of poly(vinyl benzoate) nanoparticle suspensions as molecular carriers are described for the first time. These nanoparticles can be formed by nanoprecipitation of commercial poly(vinyl benzoate) in water using Pluronic F68 as surfactant, to create spherical nanostructures measuring 200-250nm in diameter. These nanoparticles are stable in phosphate buffer and blood serum, and only slowly degrade in the presence of esterases. Pluronic F68 stabilizes the nanoparticle and also protects it from enzymatic degradation. Up to 1.6% by weight of a lipid-soluble molecule such as coumarin-6 can be introduced into the nanoparticle during nanoprecipitation, compared to a water-soluble compound (5(6)-carboxyfluorescein) which gave almost no loading. Kinetics experiments in phosphate buffer indicate that 78% of the coumarin-6 was encapsulated within the polymer matrix of the nanoparticle, and the residual 22% of coumarin-6 was surface-bound and quickly released. The nanoparticles are non-toxic in vitro towards human epithelial cells (IC(50)>1000μg/mL) and primary bovine aortic endothelial cells (IC(50)>500μg/mL), and non-bactericidal against a selection of representative test microbes (MIC >250μg/mL). These properties suggest that the poly(vinyl benzoate) nanoparticles may be suitable carriers for molecular delivery of lipophilic small molecules such as pharmaceutical and imaging agents. Copyright © 2010. Published by Elsevier B.V.

  1. No need to be HAMLET or BAMLET to interact with histones: binding of monomeric alpha-lactalbumin to histones and basic poly-amino acids.

    PubMed

    Permyakov, Serge E; Pershikova, Irina V; Khokhlova, Tatyana I; Uversky, Vladimir N; Permyakov, Eugene A

    2004-05-18

    The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.

  2. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.

    PubMed

    Eyni, Hossein; Ghorbani, Sadegh; Shirazi, Reza; Salari Asl, Leila; P Beiranvand, Shahram; Soleimani, Masoud

    2017-09-01

    Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid

  3. New Poly(amino acid methacrylate) Brush Supports the Formation of Well-Defined Lipid Membranes

    PubMed Central

    2015-01-01

    A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼−10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm2 s–1, which are comparable to those observed for lipid bilayers on glass substrates. PMID:25746444

  4. Micro/nanofabrication of poly({sub L}-lactic acid) using focused ion beam direct etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Tomoko Gowa; Nagasawa, Naotsugu; Taguchi, Mitsumasa

    2013-10-14

    Micro/nanofabrication of biocompatible and biodegradable poly({sub L}-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachmentmore » properties.« less

  5. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.

    PubMed

    Rouholamin, Davood; van Grunsven, William; Reilly, Gwendolen C; Smith, Patrick J

    2016-08-01

    A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes. © IMechE 2016.

  6. Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel

    NASA Astrophysics Data System (ADS)

    Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal

    2018-03-01

    A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.

  7. In vitro and in vivo protein release and anti-ischemia/reperfusion injury properties of bone morphogenetic protein-2-loaded glycyrrhetinic acid-poly(ethylene glycol)-b-poly(l-lysine) nanoparticles

    PubMed Central

    Shan, Fang; Liu, YuJuan; Jiang, Haiying; Tong, Fei

    2017-01-01

    Here, we describe a bone morphogenetic protein-2 (BMP-2) nanocarrier based on glycyrrhetinic acid (GA)-poly(ethylene glycol) (PEG)-b-poly(l-lysine) (PLL). A protein nanocarrier was synthesized, characterized and evaluated as a BMP-2 delivery system. The designed nanocarrier was synthesized based on the ring-opening polymerization of amino acid N-carboxyanhydride. The final product was measured with 1H nuclear magnetic resonance. GA-PEG-b-PLL nanocarrier could combine with BMP-2 through electrostatic interaction to form polyion complex (PIC) micelles. BMP-2 could be rapidly and efficiently encapsulated through the GA-PEG-b-PLL nanocarrier under physiological conditions, exhibiting efficient encapsulation and sustained release. In addition, the GA-PEG-b-PLL-mediated BMP-2 delivery system could target the liver against hepatic diseases as it has GA-binding receptors. The anti-hepatic ischemia/reperfusion injury (anti-HI/RI) effect of BMP-2/GA-PEG-b-PLL PIC micelles was investigated in rats using free BMP-2 and BMP-2/PEG-b-PLL PIC micelles as controls, and the results showed that BMP-2/GA-PEG-b-PLL PIC micelles indicated significantly enhanced anti-HI/RI property compared to BMP-2 and BMP-2/PEG-b-PLL. All results suggested that GA-PEG-b-PLL could be used as a potential BMP-2 nanocarrier. PMID:29089759

  8. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells.

    PubMed

    Xiong, Xiao-Bing; Mahmud, Abdullah; Uludağ, Hasan; Lavasanifar, Afsaneh

    2007-03-01

    An arginine-glycine-aspartic acid (RGD) containing model peptide was conjugated to the surface of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as a ligand that can recognize adhesion molecules overexpressed on the surface of metastatic cancer cells, that is, integrins, and that can enhance the micellar delivery of encapsulated hydrophobic drug into a tumor cell. Toward this goal, PEO-b-PCL copolymers bearing acetal groups on the PEO end were synthesized, characterized, and assembled to polymeric micelles. The acetal group on the surface of the PEO-b-PCL micelles was converted to reactive aldehyde under acidic condition at room temperature. An RGD-containing linear peptide, GRGDS, was conjugated on the surface of the aldehyde-decorated PEO-b-PCL micelles by incubation at room temperature. A hydrophobic fluorescent probe, that is, DiI, was physically loaded in prepared polymeric micelles to imitate hydrophobic drugs loaded in micellar carrier. The cellular uptake of DiI loaded GRGDS-modified micelles by melanoma B16-F10 cells was investigated at 4 and 37 degrees C by fluorescent spectroscopy and confocal microscopy techniques and was compared to the uptake of DiI loaded valine-PEO-b-PCL micelles (as the irrelevant ligand decorated micelles) and free DiI. GRGDS conjugation to polymeric micelles significantly facilitated the cellular uptake of encapsulated hydrophobic DiI most probably by intergrin-mediated cell attachment and endocytosis. The results indicate that acetal-terminated PEO-b-PCL micelles are amenable for introducing targeting moieties on the surface of polymeric micelles and that RGD-peptide conjugated PEO-b-PCL micelles are promising ligand-targeted carriers for enhanced drug delivery to metastatic tumor cells.

  9. Controlled Transdermal Iontophoresis by Polypyrrole/Poly(Acrylic Acid) Hydrogel

    NASA Astrophysics Data System (ADS)

    Chansai, Phithupha; Sirivat, Anuvat

    2008-03-01

    Transdermal drug delivery system delivers a drug into a body at desired site and rate. The conductive polymer-hydrogel blend between polypyrrole (PPy) doped with anionic drug and poly(acrylic acid) (PAA) were developed as a matrix/carrier of drug for the transdermal drug delivery in which the characteristic releases depend on the electrical field applied. The PAA films and their blend films were prepared by solution casting using ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent. A mechanical blending of PPy particles and PAA matrix was then carried out. Drug diffusions in the blended PPy/PAA hydrogel and the non-blended one were investigated and determined by using a modified Franz-diffusion cell with an acetate buffer, pH 5.5, at 37 0C, for a period of 48 hours to determine the effects of crosslinking ratio and electric field strength. Amounts of the released drug were measured by UV-Visible spectrophotometry. The diffusion coefficient of drug was determined through the Higuchi equation via different conditions, with and without an electric field. Moreover, thermal properties and electrical conductivity of the polypyrrole and drug-loaded polypyrrole were investigated by means of the thermogravimetric analysis and by using a two-point probe meter, respectively.

  10. SPROC: A multiple-processor DSP IC

    NASA Technical Reports Server (NTRS)

    Davis, R.

    1991-01-01

    A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.

  11. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.

    PubMed

    Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan

    2017-02-24

    This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC<373mmol/L) to closer, extended and flexible grafting states with less coupling points at higher coupling densities (IC>373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. SEM probe of IC radiation sensitivity

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Stanley, A. G.

    1979-01-01

    Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.

  13. Glycofunctionalization of Poly(lactic- co-glycolic acid) Polymers: Building Blocks for the Generation of Defined Sugar-Coated Nanoparticles.

    PubMed

    Palmioli, Alessandro; La Ferla, Barbara

    2018-06-15

    A set of poly(lactic- co-glycolic acid) polymers functionalized with different monosaccharides as well as glycodendrimers and surface-decorated nanoparticles (NPs) were synthesized and characterized. The functionalization of the polymer was carried out through amide bond formation with amino-modified sugar monomers and through a biocompatible chemoselective method exploiting the reducing end of a free sugar. The assemblage of the NPs adopting a nanoprecipitation method was straightforward and allowed the preparation of sugars/sugar dendrimer coated NPs.

  14. Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption.

    PubMed

    Ge, Huacai; Hua, Tingting

    2016-11-20

    Chitosan-poly(maleic acid) nanomaterial (PMACS) with the size of 400-900nm was synthesized by grafting poly(maleic acid) onto chitosan and then crosslinking with glutaraldehyde. The synthesis conditions were optimized. The structure and morphology of PMACS were characterized by FT-IR, XRD, SEM and TGA. PMACS was used to adsorb some heavy metal ions such as Hg(II), Pb(II), Cu(II), Cd(II), Co(II), and Zn(II). The results indicated that PMACS had selectivity for Hg(II) sorption. The effects of various variables for sorption of Hg(II) were further explored. The maximum capacity for Hg(II) sorption was found to be 1044mgg(-1) at pH 6.0, which could compare with the maximal value of the recently reported other sorbents. The sorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The rising of temperature benefited the uptake and the sorption was a spontaneous chemical process. The sorbent could be reused with EDTA. Hence, the nanomaterial would be used as a selective and high uptake sorbent in the removal of Hg(II) from effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen–Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold

    PubMed Central

    Su, Juin-Yih; Chen, Shi-Hui; Chen, Yu-Pin; Chen, Wei-Chuan

    2017-01-01

    Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen–chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen–chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials. PMID:28054960

  16. Evaluation of poly(lactic-co-glycolic acid) and poly(dl-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection.

    PubMed

    Aniagyei, Stella E; Sims, Lee B; Malik, Danial A; Tyo, Kevin M; Curry, Keegan C; Kim, Woihwan; Hodge, Daniel A; Duan, Jinghua; Steinbach-Rankins, Jill M

    2017-03-01

    More diverse multipurpose prevention technologies are urgently needed to provide localized, topical pre-exposure prophylaxis against sexually transmitted infections (STIs). In this work, we established the foundation for a multipurpose platform, in the form of polymeric electrospun fibers (EFs), to physicochemically treat herpes simplex virus 2 (HSV-2) infection. To initiate this study, we fabricated different formulations of poly(lactic-co-glycolic acid) (PLGA) and poly(dl-lactide-co-ε-caprolactone) (PLCL) EFs that encapsulate Acyclovir (ACV), to treat HSV-2 infection in vitro. Our goals were to assess the release and efficacy differences provided by these two different biodegradable polymers, and to determine how differing concentrations of ACV affected fiber efficacy against HSV-2 infection and the safety of each platform in vitro. Each formulation of PLGA and PLCL EFs exhibited high encapsulation efficiency of ACV, sustained-delivery of ACV through one month, and in vitro biocompatibility at the highest doses of EFs tested. Additionally, all EF formulations provided complete and efficacious protection against HSV-2 infection in vitro, regardless of the timeframe of collected fiber eluates tested. This work demonstrates the potential for PLGA and PLCL EFs as delivery platforms against HSV-2, and indicates that these delivery vehicles may be expanded upon to provide protection against other sexually transmitted infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Radiation-induced synthesis of poly(acrylic acid) nanogels

    NASA Astrophysics Data System (ADS)

    Matusiak, Malgorzata; Kadlubowski, Slawomir; Ulanski, Piotr

    2018-01-01

    Nanogel is a two-component system of a diameter in the range of tens of nanometers, consisting of an intramolecularly crosslinked polymer chain and solvent, typically water, filling the space between segments of the macromolecule. Microgels are bigger than nanogels and their size range is between 100 nm to 100 μm. One of the methods used for synthesizing nanogels is linking the segments of a single macromolecule with the use of ionizing radiation, by intramolecular recombination of radiation-generated polymer radicals. The main advantage of this technique is absence of monomers, catalysts, surfactants or crosslinking agents. This method is an interesting alternative way of synthesizing polymeric carriers for biomedical applications. The aim of the study was radiation synthesis and characterization of poly(acrylic acid) - PAA - nanogels and microgels. The physico-chemical properties were described by determination of weight-average molecular weight and dimensions (radius of gyration, hydrodynamic radius) of the nanogels and microgels. Influence of polymer concentration and dose on these parameters was analyzed. Adjusting the PAA concentration and absorbed dose, one can control the molecular weight and dimensions of nanogels. The solutions of PAA were irradiated with two sources of ionizing radiation: γ-source and electron accelerator. The former method yields mainly microgels due to prevailing intermolecular crosslinking, while the latter promotes intramolecular recombination of PAA-derived radicals and in consequence formation of nanogels. In the future radiation-synthesized PAA nanogels, after functionalization, will be tested as carriers for delivering radionuclides to the tumor cells.

  18. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    PubMed Central

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  19. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    PubMed

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. Copyright © 2012 Wiley Periodicals, Inc.

  20. Present, future of automotive hybrid IC applications discussed

    NASA Astrophysics Data System (ADS)

    Matsuda, Nobuyoshi; Fukuoka, Atuhisa

    1987-09-01

    Hybrid ICs are presently utilized in various fields such as commercial televisions, VTRs, and audio devices, industrial usage of communication equipment, computers, terminals, and automobiles. Its applications and environments are various and diverse. The functions required for hybrid ICs vary from simple high density mounting for a system to the realization of high mechanisms with the application of function timing. The functions are properly used depending upon the system with its hybrid ICs and its circuit composition. Considering structure and reliability requirements for automotive hybrid ICs, an application example for hybrid ICs which use the package (COMPACT), will be discussed.

  1. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters)

    PubMed Central

    Johnson, Michelle L.; Uhrich, Kathryn E.

    2008-01-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (Tg) and the antimicrobials' melting points (Tm) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease. PMID:19180627

  2. Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s

    PubMed Central

    Romberg, Birgit; Oussoren, Christien; Snel, Cor J.; Hennink, Wim E.

    2007-01-01

    Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications. PMID:17674159

  3. The Magnetics Information Consortium (MagIC)

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Constable, C.; Tauxe, L.; Koppers, A.; Banerjee, S.; Jackson, M.; Solheid, P.

    2003-12-01

    The Magnetics Information Consortium (MagIC) is a multi-user facility to establish and maintain a state-of-the-art relational database and digital archive for rock and paleomagnetic data. The goal of MagIC is to make such data generally available and to provide an information technology infrastructure for these and other research-oriented databases run by the international community. As its name implies, MagIC will not be restricted to paleomagnetic or rock magnetic data only, although MagIC will focus on these kinds of information during its setup phase. MagIC will be hosted under EarthRef.org at http://earthref.org/MAGIC/ where two "integrated" web portals will be developed, one for paleomagnetism (currently functional as a prototype that can be explored via the http://earthref.org/databases/PMAG/ link) and one for rock magnetism. The MagIC database will store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Ultimately, this database will allow researchers to study "on the internet" and to download important data sets that display paleo-secular variations in the intensity of the Earth's magnetic field over geological time, or that display magnetic data in typical Zijderveld, hysteresis/FORC and various magnetization/remanence diagrams. The MagIC database is completely integrated in the EarthRef.org relational database structure and thus benefits significantly from already-existing common database components, such as the EarthRef Reference Database (ERR) and Address Book (ERAB). The ERR allows researchers to find complete sets of literature resources as used in GERM (Geochemical Earth Reference Model), REM (Reference Earth Model) and MagIC. The ERAB contains addresses for all contributors to the EarthRef.org databases, and also for those who participated in data collection, archiving and

  4. Composite biodegradable biopolymer coatings of silk fibroin - Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical applications

    NASA Astrophysics Data System (ADS)

    Miroiu, Floralice Marimona; Stefan, Nicolaie; Visan, Anita Ioana; Nita, Cristina; Luculescu, Catalin Romeo; Rasoga, Oana; Socol, Marcela; Zgura, Irina; Cristescu, Rodica; Craciun, Doina; Socol, Gabriel

    2015-11-01

    Composite silk fibroin-poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) (SF-PHBV) biodegradable coatings were grown by Matrix Assisted Pulsed Laser Evaporation on titanium substrates. Their physico-chemical properties and particularly the degradation behavior in simulated body fluid at 37 °C were studied as first step of applicability in local controlled release for tissue regeneration applications. SF and PHBV, natural biopolymers with excellent biocompatibility, but different biodegradability and tensile strength properties, were combined in a composite to improve their properties as coatings for biomedical uses. FTIR analyses showed the stoichiometric transfer from targets to coatings by the presence in the spectra of the main absorption maxima characteristic of both polymers. XRD investigations confirmed the FTIR results showing differences in crystallization behavior with respect to the SF and PHBV content. Contact angle values obtained through wettability measurements indicated the MAPLE deposited coatings were highly hydrophilic; surfaces turning hydrophobic with the increase of the PHBV component. Degradation assays proved that higher PHBV contents resulted in enhanced resistance and a slower degradation rate of composite coatings in SBF. Distinct drug-release schemes could be obtained by adjusting the SF:PHBV ratio to controllably tuning the coatings degradation rate, from rapid-release formulas, where SF predominates, to prolonged sustained ones, for larger PHBV content.

  5. New generation QuIC assays for prion seeding activity.

    PubMed

    Orrù, Christina D; Wilham, Jason M; Vascellari, Sarah; Hughson, Andrew G; Caughey, Byron

    2012-01-01

    The ability of abnormal TSE-associated forms of PrP to seed the formation of amyloid fibrils from recombinant PrP(Sen) has served as the basis for several relatively rapid and highly sensitive tests for prion diseases. These tests include rPrP-PMCA (rPMCA), standard quaking-induced conversion (S-QuIC), amyloid seeding assay (ASA), real-time QuIC (RT-QuIC) and enhanced QuIC (eQuIC). Here, we summarize recent improvements in the RT-QuIC-based assays that enhance the practicality, sensitivity and quantitative attributes of assays QuIC and promote the detection of prion seeding activity in dilute, inhibitor-laden fluids such as blood plasma.

  6. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  7. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    NASA Astrophysics Data System (ADS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  8. Dynamical Competition of IC-Industry Clustering from Taiwan to China

    NASA Astrophysics Data System (ADS)

    Tsai, Bi-Huei; Tsai, Kuo-Hui

    2009-08-01

    Most studies employ qualitative approach to explore the industrial clusters; however, few research has objectively quantified the evolutions of industry clustering. The purpose of this paper is to quantitatively analyze clustering among IC design, IC manufacturing as well as IC packaging and testing industries by using the foreign direct investment (FDI) data. The Lotka-Volterra system equations are first adopted here to capture the competition or cooperation among such three industries, thus explaining their clustering inclinations. The results indicate that the evolution of FDI into China for IC design industry significantly inspire the subsequent FDI of IC manufacturing as well as IC packaging and testing industries. Since IC design industry lie in the upstream stage of IC production, the middle-stream IC manufacturing and downstream IC packing and testing enterprises tend to cluster together with IC design firms, in order to sustain a steady business. Finally, Taiwan IC industry's FDI amount into China is predicted to cumulatively increase, which supports the industrial clustering tendency for Taiwan IC industry. Particularly, the FDI prediction of Lotka-Volterra model performs superior to that of the conventional Bass model after the forecast accuracy of these two models are compared. The prediction ability is dramatically improved as the industrial mutualism among each IC production stage is taken into account.

  9. Different types of degradable vectors from low-molecular-weight polycation-functionalized poly(aspartic acid) for efficient gene delivery.

    PubMed

    Dou, X B; Hu, Y; Zhao, N N; Xu, F J

    2014-03-01

    Poly(aspartic acid) (PAsp) has been employed as the potential backbone for the preparation of efficient gene carriers, due to its low cytotoxicity, good biodegradability and excellent biocompatibility. In this work, the degradable linear or star-shaped PBLA was first prepared via ring-opining polymerization of β-benzyl-L-aspartate N-carboxy anhydride (BLA-NCA) initiated by ethylenediamine (ED) or ED-functionalized cyclodextrin cores. Then, PBLA was functionalized via aminolysis reaction with low-molecular-weight poly(2-(dimethylamino)ethyl methacrylate) with one terminal primary amine group (PDMAEMA-NH2), followed by addition of excess ED or ethanolamine (EA) to complete the aminolysis process. The obtained different types of cationic PAsp-based vectors including linear or star PAsp-PDM-NH2 and PAsp-PDM-OH exhibited good condensation capability and degradability, benefiting gene delivery process. In comparison with gold standard polyethylenimine (PEI, ∼ 25 kDa), the cationic PAsp-based vectors, particularly star-shaped ones, exhibited much better transfection performances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks.

    PubMed

    Zare, Yasser; Rhim, Sungsoo; Garmabi, Hamid; Rhee, Kyong Yop

    2018-04-01

    The networks of nanoparticles in nanocomposites cause solid-like behavior demonstrating a constant storage modulus at low frequencies. This study examines the storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes (CNT) nanocomposites. The experimental data of the storage modulus in the plateau regions are obtained by a frequency sweep test. In addition, a simple model is developed to predict the constant storage modulus assuming the properties of the interphase regions and the CNT networks. The model calculations are compared with the experimental results, and the parametric analyses are applied to validate the predictability of the developed model. The calculations properly agree with the experimental data at all polymer and CNT concentrations. Moreover, all parameters acceptably modulate the constant storage modulus. The percentage of the networked CNT, the modulus of networks, and the thickness and modulus of the interphase regions directly govern the storage modulus of nanocomposites. The outputs reveal the important roles of the interphase properties in the storage modulus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Development of porous lamellar poly(L-lactic acid) scaffolds by conventional injection molding process.

    PubMed

    Ghosh, Satyabrata; Viana, Júlio C; Reis, Rui L; Mano, João F

    2008-07-01

    A novel fabrication technique is proposed for the preparation of unidirectionally oriented, porous scaffolds by selective polymer leaching from lamellar structures created by conventional injection molding. The proof of the concept is implemented using a 50/50 wt.% poly(L-lactic acid)/poly(ethylene oxide) (PLLA/PEO) blend. With this composition, the PLLA and PEO blend is biphasic, containing a homogeneous PLLA/PEO phase and a PEO-rich phase. The two phases were structured using injection molding into well-defined alternating layers of homogeneous PLLA/PEO phase and PEO-rich phase. Leaching of water-soluble PEO from the PEO-rich phase produces macropores, and leaching of phase-separated PEO from the initially homogeneous PLLA/PEO phase produces micropores in the lamellae. Thus, scaffolds with a macroporous lamellar architecture with microporous walls can be produced. The lamellae are continuous along the flow direction, and a continuous lamellar thickness of less than 1 microm could be achieved. Porosities of 57-74% and pore sizes of around 50-100 microm can be obtained using this process. The tensile elastic moduli of the porous constructs were between 580 and 800 MPa. We propose that this organic-solvent-free method of preparing lamellar scaffolds with good mechanical properties, and the reproducibility associated with the injection molding technique, holds promise for a wide range of guided tissue engineering applications.

  12. Interfacial surfactant competition and its impact on poly(ethylene oxide)/Au and poly(ethylene oxide)/Ag nanocomposite properties

    PubMed Central

    Seyhan, Merve; Kucharczyk, William; Yarar, U Ecem; Rickard, Katherine; Rende, Deniz; Baysal, Nihat; Bucak, Seyda; Ozisik, Rahmi

    2017-01-01

    The structure and properties of nanocomposites of poly(ethylene oxide), with Ag and Au nanoparticles, surface modified with a 1:1 (by volume) oleylamine/oleic acid mixture, were investigated via transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared spectroscopy, dynamic mechanical analysis, and static mechanical testing. Results indicated that there was more oleylamine on Ag nanoparticles but more oleic acid on Au nanoparticles. This difference in surfactant populations on each nanoparticle led to different interfacial interactions with poly(ethylene oxide) and drastically influenced the glass transition temperature of these two nanocomposite systems. Almost all other properties were found to correlate strongly with dispersion and distribution state of Au and Ag nanoparticles, such that the property in question changed direction at the onset of agglomeration. PMID:28461744

  13. SYNTHESIS AND DEGRADATION OF POLY-β-HYDROXYBUTYRIC ACID IN CONNECTION WITH SPORULATION OF BACILLUS MEGATERIUM

    PubMed Central

    Slepecky, Ralph A.; Law, John H.

    1961-01-01

    Slepecky, Ralph A. (Northwestern University, Evanston, Ill.), and John H. Law. Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J. Bacteriol. 82:37–42. 1961.—The production of poly-β-hydroxybutyrate has been followed in Bacillus megaterium, a sporulating strain, and B. megaterium strain KM, a nonsporulating strain, by an improved assay procedure and by the use of C14-acetate. The production of polymer in the KM strain follows the growth curve very slowly and reaches a peak at the time the cells are entering the stationary phase of growth. Slow utilization of polymer follows. When the sporulating strain is grown under conditions favorable for polymer production, no spores are formed; polymer production and utilization follow kinetics similar to those observed with asporogenous strains. When the sporulating strain is grown under conditions unfavorable for polymer production but favorable for sporulation, less polymer is produced and peak production occurs during the log phase of growth. Rapid utilization of the polymer precedes sporulation. If the medium is made favorable for polymer production by the addition of glucose and acetate and vigorous aeration conditions are used, sporulation can be obtained after good polymer production and subsequent utilization. PMID:16561914

  14. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.

    PubMed

    Li, Xuanyu; Jiang, Xingyu

    2017-12-24

    Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production. Copyright © 2017. Published by Elsevier B.V.

  15. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  16. Multi-armed poly(L-glutamic acid)-graft-oligoethylenimine copolymers as efficient nonviral gene delivery vectors.

    PubMed

    Chen, Lei; Tian, Huayu; Chen, Jie; Chen, Xuesi; Huang, Yubin; Jing, Xiabin

    2010-01-01

    The application of polyethylenimine (PEI) in gene delivery has been severely limited by significant cytotoxicity that results from a nondegradable methylene backbone and high cationic charge density. It is therefore necessary to develop novel biodegradable PEI derivates for low-toxic, highly efficient gene delivery. A series of novel cationic copolymers with various charge density were designed and synthesized by grafting different kinds of oligoethylenimine (OEI) onto a determinate multi-armed poly(L-glutamic acid) backbone. The molecular structures of multi-armed poly(L-glutamic acid)-graft-OEI (MP-g-OEI) copolymers were characterized using nuclear magnetic resonance, viscosimetry and gel permeation chromatography. Moreover, the MP-g-OEI/DNA complexes were measured by a gel retardation assay, dynamic light scattering and atomic force microscopy to determine DNA binding ability, particle size, zeta potential, complex formation and shape, respectively. MP-g-OEI copolymers were also evaluated in Chinese hamster ovary and human embryonic kidney-293 cells for their cytotoxicity and transfection efficiency. The particle sizes of MP-g-OEI/DNA complexes were in a range of 109.6-182.6 nm and the zeta potentials were in a range of 29.2-44.5 mV above the N/P ratio of 5. All the MP-g-OEI copolymers exhibited lower cytotoxicity and higher gene transfection efficiency than PEI25k in the absence and presence of serum with different cell lines. Importantly, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that the cytotoxicity of MP-g-OEI copolymers varied with their molecular weight and charge density, and two of MP-g-OEI copolymers (OEI600-MP and OEI1800-MP) could achieve optimal transfection efficiency at a similar low N/P ratio as that for PEI25k. MP-g-OEI copolymers demonstrated considerable potential as nonviral vectors for gene therapy. Copyright 2009 John Wiley & Sons, Ltd.

  17. Development of Poly Lactic/Glycolic Acid (PLGA) Microspheres for Controlled Release of Rho-Associated Kinase Inhibitor.

    PubMed

    Koda, Sho; Okumura, Naoki; Kitano, Junji; Koizumi, Noriko; Tabata, Yasuhiko

    2017-01-01

    The purpose of this study was to investigate the feasibility of poly lactic/glycolic acid (PLGA) as a drug delivery carrier of Rho kinase (ROCK) inhibitor for the treatment of corneal endothelial disease. ROCK inhibitor Y-27632 and PLGA were dissolved in water with or without gelatin (W1), and a double emulsion [(W1/O)/W2] was formed with dichloromethane (O) and polyvinyl alcohol (W2). Drug release curve was obtained by evaluating the released Y-27632 by using high performance liquid chromatography. PLGA was injected into the anterior chamber or subconjunctiva in rabbit eyes, and ocular complication was evaluated by slitlamp microscope and histological analysis. Y-27632 incorporated PLGA microspheres with different molecular weights, and different composition ratios of lactic acid and glycolic acid were fabricated. A high molecular weight and low content of glycolic acid produced a slower and longer release. The Y-27632 released from PLGA microspheres significantly promoted the cell proliferation of cultured corneal endothelial cells. The injection of PLGA did not induce any evident eye complication. ROCK inhibitor-incorporated PLGA microspheres were fabricated, and the microspheres achieved the sustained release of ROCK inhibitor over 7-10 days in vitro. Our data should encourage researchers to use PLGA microspheres for treating corneal endothelial diseases.

  18. High performance MPEG-audio decoder IC

    NASA Technical Reports Server (NTRS)

    Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.

    1993-01-01

    The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.

  19. Induction of antiviral genes, Mx and vig-1, by dsRNA and Chum salmon reovirus in rainbow trout monocyte/macrophage and fibroblast cell lines.

    PubMed

    DeWitte-Orr, Stephanie J; Leong, Jo-Ann C; Bols, Niels C

    2007-09-01

    The expression of potential antiviral genes, Mx1, Mx2, Mx3 and vig-1, was studied in two rainbow trout cell lines: monocyte/macrophage RTS11 and fibroblast-like RTG-2. Transcripts were monitored by RT-PCR; Mx protein by Western blotting. In unstimulated cultures Mx1 and vig-1 transcripts were seen occasionally in RTS11 but rarely in RTG-2. A low level of Mx protein was seen in unstimulated RTS11 but not in RTG-2. In both cell lines, Mx and vig-1 transcripts were induced by a dsRNA, poly inosinic: poly cytidylic acid (poly IC), and by Chum salmon reovirus (CSV). Medium conditioned by cells previously exposed to poly IC or CSV and assumed to contain interferon (IFN) induced the antiviral genes in RTS11. However, RTG-2 responded only to medium conditioned by RTG-2 exposed previously to CSV. In both cell lines, poly IC and CSV induced Mx transcripts in the presence of cycloheximide, suggesting a direct induction mechanism, independent of IFN, was also possible. For CSV, ribavirin blocked induction in RTS11 but not in RTG-2, suggesting viral RNA synthesis was required for induction only in RTS11. In both RTS11 and RTG-2 cultures, Mx protein showed enhanced accumulation by 24h after exposure to poly IC and CSV, but subsequently Mx protein levels declined back to control levels in RTS11 but not in RTG-2. These results suggest that Mx can be regulated differently in macrophages and fibroblasts.

  20. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids.

    PubMed

    Impallomeni, Giuseppe; Ballistreri, Alberto; Carnemolla, Giovanni Marco; Guglielmino, Salvatore P P; Nicolò, Marco Sebastiano; Cambria, Maria Grazia

    2011-01-01

    Pseudomonas aeruginosa produced medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) when grown on substrates containing very long chain fatty acids (VLCFA, C>20). Looking for low cost carbon sources, we tested Brassica carinata oil (erucic acid content 35-48%) as an intact triglyceride containing VLCFA. Oleic (C18:1), erucic (C22:1), and nervonic (C24:1) acids were also employed for mcl-PHA production as model substrates. The polymers obtained were analyzed by GC of methanolyzed samples, GPC, 1H and 13C NMR, ESI MS of partially pyrolyzed samples, and DSC. The repeating units of such polymers were saturated and unsaturated, with a higher content of the latter in the case of the PHA obtained from B. carinata oil. Statistical analysis of the ion intensity in the ESI mass spectra showed that the PHAs from pure fatty acids are random copolymers, while the PHA from B. carinata oil is either a pure polymer or a mixture of polymers. Weight-average molecular weight varied from ca. 56,000 g/mol for the PHA from B. carinata oil and oleic acid, to about 120,000 g/mol for those from erucic and nervonic acids. The PHAs from erucic and nervonic acids were partially crystalline, with rubbery characteristics and a melting point (Tm) of 50°C, while the PHAs from oleic acid and from B. carinata oil afforded totally amorphous materials, with glass transition temperatures (Tg) of -52°C and -47°C, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  2. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Poly(p-Phenylene Sulfonic Acids). PEMs with frozen-in free volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litt, Morton

    2016-01-21

    Early work with rigid rod aromatic polyelectrolytes implied that steric hindrance in packing of the rigid rods left unoccupied volumes that could absorb and hold water molecules strongly. We called this “frozen in free volume). It is illustrated and contrasted with the packing of flexible backbone polyelectrolytes (Reference 5 of this report). This was quantified for poly(biphenylene disulfonic acid) (PBDSA) and poly(phenylene disulfonic acid) (PPDSA). We found that PPDSA held three water molecules per acid group down to 11% relative humidity (RH) and had very high conductivity even at these low RHs. (Reference 1 of report.) The frozen-in free volumemore » was calculated to be equivalent to a λ of 3.5. The work reported below concentrated on studying these polymers and their copolymers with biphenylene disulfonic acid. As expected, the polyelectrolytes are water soluble. Several approaches towards making water stable films were studied. Grafting alkyl benzene substituents on sulfonic acid groups had worked for PBPDSA (1) so it was tried with PPDSA and a 20%/80% copolymer of BPDSA and PDSA (B20P80). T-butyl, n-octyl and n-dodecyl benzene were grafted. Good films could be made. Water absorption and conductivity were studied as a function of RH and temperature (Reference 2). When less than 20% of the sulfonic acid groups were grafted, conductivity was much higher than that of Nafion NR212 at all RHs. At low graft levels, conductivity was ten times higher. Mechanical properties and swelling were acceptable below 90% RH. However, all the films were unstable in water and slowly disintegrated. The proposed explanation was that the molecules formed nano-aggregates in solution held together by hydrophobic bonding. Their cast films disintegrated when placed in water since hydrophobic bonding between the nano-aggregates was poor. We then shifted to crosslinking as a method to produce water stable films (References 3 and 4). Biphenyl could easily be reacted with the

  4. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform.

    PubMed

    Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A

    2012-11-20

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.

  5. Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin.

    PubMed

    Pradhan, Roshan; Ramasamy, Thiruganesh; Choi, Ju Yeon; Kim, Jeong Hwan; Poudel, Bijay Kumar; Tak, Jin Wook; Nukolova, Natalia; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-06-05

    Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganea, Gabriela M.; Fakayode, Sayo O.; Losso, Jack N.; van Nostrum, Cornelus F.; Sabliov, Cristina M.; Warner, Isiah M.

    2010-07-01

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml - 1 TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 ± 0.002 mg ml - 1) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 ± 5.6% after 96 h.

  7. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    PubMed

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine. Copyright © 2015. Published by Elsevier B.V.

  8. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M w smooths the hydrogen-bonded filmmore » surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M w PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M w but being somewhat more widely distributed in the films templated with higher M w PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  9. Flexible tension sensor based on poly(l-lactic acid) film with coaxial structure

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsunobu; Onishi, Katsuki; Tanimoto, Kazuhiro; Nishikawa, Shigeo

    2017-10-01

    We have developed a tension sensor with a coaxial structure using a narrow slit ribbon made of a uniaxially stretched poly(l-lactic acid) (PLLA) film for application to a wearable device. The tension sensor is produced as follows. We used tinsel wire as the center conductor of the sensor. The tinsel wire consists of a yarn of synthetic fibers arranged at the center, with a spirally wound rolled copper foil ribbon on the side surface. Next, slit ribbons obtained from a uniaxially oriented film of PLLA are wound helically on the side surface of the center conductor in the direction of a left-handed screw, at an angle of 45° to the central axis. The rolled copper foil is used as an outer conductor and covers the yarn without a gap. The prototype of the fabricated tension sensor has good flexibility, since the sensor is in the form of a filament and consists of a highly flexible material. For the 1 mm tension sensor, it was found that for a tension of 1 N, a charge of 14 pC was output. It was also found that the sensor maintained its room-temperature sensitivity up to 60 °C. Compared with an existing coaxial line sensor using poly(vinylidene fluoride) (PVDF), the sensor using PLLA does not exhibit pyroelectricity, meaning that no undesirable voltage is generated when in contact with body heat, which is a significant advantage as wearable sensors. The result has demonstrated the potential application of the PLLA film to wearable devices for detecting heartbeat and respiration.

  10. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; ...

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M w smooths the hydrogen-bonded filmmore » surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M w PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M w but being somewhat more widely distributed in the films templated with higher M w PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  11. Process for preparing solvent resistant, thermoplastic aromatic poly(imidesulfone)

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A. (Inventor)

    1984-01-01

    A process for preparing a thermoplastic poly(midesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistant which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.

  12. Information Commons for Rice (IC4R)

    PubMed Central

    2016-01-01

    Rice is the most important staple food for a large part of the world's human population and also a key model organism for plant research. Here, we present Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase featuring adoption of an extensible and sustainable architecture that integrates multiple omics data through community-contributed modules. Each module is developed and maintained by different committed groups, deals with data collection, processing and visualization, and delivers data on-demand via web services. In the current version, IC4R incorporates a variety of rice data through multiple committed modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures and gene annotations contributed by the rice research community. Unlike extant related databases, IC4R is designed for scalability and sustainability and thus also features collaborative integration of rice data and low costs for database update and maintenance. Future directions of IC4R include incorporation of other omics data and association of multiple omics data with agronomically important traits, dedicating to build IC4R into a valuable knowledgebase for both basic and translational researches in rice. PMID:26519466

  13. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent.

    PubMed

    Siafaka, Panoraia I; Barmbalexis, Panagiotis; Bikiaris, Dimitrios N

    2016-06-10

    In the present work, a series of novel formulations consisting of poly(lactic acid)/poly(butylene adipate) (PLA/PBAd) electrospun blends was examined as controlled release matrices for Leflunomide's active metabolite, Teriflunomide (TFL). The mixtures were prepared using different ratios of PLA and PBAd in order to produce nanofibrous matrices with different characteristics. Miscibility studies of the blended polymeric fibers were performed through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolytic degradation in the prepared fibers was evaluated at 37°C using a phosphate buffered saline solution. Different concentrations of (TFL) (5, 10, 15wt.%) were incorporated into nanofibers for examining the drug release behavior in simulated body fluids (SBF), at 37°C. The drug-loaded nanofibrous formulations were further characterized by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, DSC and XRD. Gel permeation chromatography (GPC) analysis was used to evaluate the mechanism of TFL release. Artificial neural networks (ANN) and multi-linear-regression (MLR) models were used to evaluate the effect of % content of PBAd (X1) and TFL (X2) on an initial burst effect and a dissolution behavior. It was found that PLA/PBAd nanofibers have different diameters depending on the ratio of used polyesters and added drug. TFL was incorporated in an amorphous form inside the polymeric nanofibers. In vitro release studies reveal that a drug release behavior is correlated with the size of the nanofibers, drug loading and matrix degradation after a specific time. ANN dissolution modeling showed increased correlation efficacy compared to MLR. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. On Patarin's Attack against the lIC Scheme

    NASA Astrophysics Data System (ADS)

    Ogura, Naoki; Uchiyama, Shigenori

    In 2007, Ding et al. proposed an attractive scheme, which is called the l-Invertible Cycles (lIC) scheme. lIC is one of the most efficient multivariate public-key cryptosystems (MPKC); these schemes would be suitable for using under limited computational resources. In 2008, an efficient attack against lIC using Gröbner basis algorithms was proposed by Fouque et al. However, they only estimated the complexity of their attack based on their experimental results. On the other hand, Patarin had proposed an efficient attack against some multivariate public-key cryptosystems. We call this attack Patarin's attack. The complexity of Patarin's attack can be estimated by finding relations corresponding to each scheme. In this paper, we propose an another practical attack against the lIC encryption/signature scheme. We estimate the complexity of our attack (not experimentally) by adapting Patarin's attack. The attack can be also applied to the lIC- scheme. Moreover, we show some experimental results of a practical attack against the lIC/lIC- schemes. This is the first implementation of both our proposed attack and an attack based on Gröbner basis algorithm for the even case, that is, a parameter l is even.

  15. A novel conducting poly(p-aminobenzene sulphonic acid)-based electrochemical sensor for sensitive determination of Sudan I and its application for detection in food stuffs.

    PubMed

    Li, Bang Lin; Luo, Jun Hua; Luo, Hong Qun; Li, Nian Bing

    2015-04-15

    In the present work, a new method for the determination of Sudan I has been developed based on a conducting poly(p-aminobenzene sulphonic acid) (poly(p-ABSA)) film modified electrode. The new electrochemical sensor showed strong accumulation ability and excellent electrocatalytic activity for Sudan I. Electrochemical oxidation signal of Sudan I at the poly(p-ABSA) modified glassy carbon electrode (poly(p-ABSA)/GCE) was significantly increased when compared to that at the bare GCE. The experimental conditions such as amount of alcohol, pH of buffer solution, accumulation time, and instrumental parameters for square wave anodic stripping voltammetry were optimised for the determination of Sudan I. Under optimum conditions, the linear regression equation of Sudan I was ip=1.868+0.1213c (ip: μA, c: μgL(-1), R=0.9981) from 1 to 500 μg L(-1) with a detection limit of 0.3 μg L(-1). Finally, this sensor was successfully employed to detect Sudan I in some hot chili and ketchup samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and Nisaplin in the presence of Plasticizers.

    PubMed

    Liu, Linshu; Jin, Tony Z; Coffin, David R; Hicks, Kevin B

    2009-09-23

    Nisin is a naturally occurring antimicrobial polypeptide and is popularly used in the food and food-packaging industries. Nisin is deactivated at temperatures higher than 120 degrees C and, therefore, cannot be directly incorporated into poly(L-lactic acid) (PLA), a biomass-derived biodegradable polymer, by coextrusion because PLA melts at temperatures around 160 degrees C or above. However, PLA can remain in a melt state at temperatures below the T(m) in the presence of lactic acid or other plasticizers. In the present study, PLA was coextruded with lactic acid, or lactide, or glycerol triacetate at 160 degrees C. After the PLA was melted, the temperature of the barrels was reduced to 120 degrees C, and then Nisaplin, the commercial formulation of nisin, was added and the extrusion was continued. The resultant extrudates possess the capability to suppress the growth of the pathogenic bacterial Listeria monocytogenes , demonstrating a significant antimicrobial activity. The present study provides a simple method to produce PLA-based antimicrobial membranes. The method can also be used for the coextrusion of other heat-sensitive substances and thermoplastics with high melting temperature.

  17. Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates.

    PubMed

    Li, Shouhai; Xia, Jianling; Xu, Yuzhi; Yang, Xuejuan; Mao, Wei; Huang, Kun

    2016-05-20

    Composites of acorn starch (AS) and poly(1actic acid) (PLA) modified with dimer fatty acid (DFA) or dimer fatty acid polyamide (DFAPA) were produced by a hot-melt extrusion method. The effects of DFA and DFAPA contents on the mechanical, hydrophobic, thermal properties and melt fluidity of the composites were studied under an invariable AS-to-PLA mass ratio of 40/60. SEM and DMA research results show that the compatibility of AS/PLA composites are determined by the dosage of DFA or DFAPA. The hydrophobicity and melt fluidity of composites are improved with the addition of DFA and DFAPA. The glass transition temperatures of the composites are all reduced remarkably by additives DFA and DFAPA. However, DFA and DFAPA exert different effects on the mechanical properties of AS/PLA composites. In the DFAPA-modified system, the tensile and flexural strength first increase and then decrease with the increase of DFAPA dosage; the mechanical strength is maximized when the dosage of DFAPA is 2 wt% of total weight. In the DFA-modified system, the tensile and flexural strength decrease with the increase of DFA dosage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Multifunctional co-poly(amic acid): A new binder for Si-based micro-composite anode of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Lin, Che-Tseng; Huang, Tzu-Yang; Huang, Jau-Jiun; Wu, Nae-Lih; Leung, Man-kit

    2016-10-01

    Multifunctional co-poly(amic acid) (PAmA) containing pyrene and carboxylic acid side-chains is developed as a binder for the recycled kerf-loss Si-Ni-SiC composite anode. The capacity retention performance of the lithium-ion battery can be apparently enhanced. In a long-cycle test of 300 lithiation/delithiation cycles, 79% of capacity retention is achieved. In considering that the recycled kerf-loss Si sample contains 38 wt% inactive micro-sized SiC abrasive particles, the achieved capacity of 648 mAh g-1 is reasonably high in comparison to other reported values. Small anode thickness expansion of 43% is found in a 100 cycle test, reflecting that the use of the PAmA binder can create strong interconnection among the silicon particles, conductive carbons and copper electrode.

  19. Family-wide analysis of poly(ADP-ribose) polymerase activity

    PubMed Central

    Uchima, Lilen; Rood, Jenny; Zaja, Roko; Hay, Ronald T.; Ahel, Ivan; Chang, Paul

    2014-01-01

    The poly(ADP-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD+ as substrate. Based on the composition of three NAD+ coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino acid targets. In addition, we identify cysteine as a novel amino acid target for ADP-ribosylation on PARPs. PMID:25043379

  20. Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites.

    PubMed

    Agustin-Salazar, Sarai; Cerruti, Pierfrancesco; Medina-Juárez, Luis Ángel; Scarinzi, Gennaro; Malinconico, Mario; Soto-Valdez, Herlinda; Gamez-Meza, Nohemi

    2018-04-24

    Lignocellulose from agro-food biowaste represents a valuable source of cost-effective structural fillers for wholly renewable polymer composites. In this work, pecan (Carya illinoinensis) nutshell (NS) fiber and its structural components, holocellulose (HC) and acid insoluble lignin (AIL), were isolated, characterized and used as reinforcing fillers to manufacture poly(lactic acid) (PLA) based biocomposites. Thermal, morphological and mechanical properties of the prepared materials were analyzed. NS and HC acted as heterogeneous nucleating agents, potentially able to control PLA physical aging. Moreover, they significantly enhanced the viscoelastic response of PLA, mainly restricting the melt molecular mobility due to hydrodynamic effects and the formation of a three-dimensional particulate network. Flexural tests demonstrated that HC induced a 25% increase in modulus compared to the plain polymer. AIL, conversely, conferred higher ductility to the PLA matrix producing an increase in stress and strain at break of 55% and 65%, respectively. Finally, all the biocomposites showed lower resilience with respect to plain PLA due to the lack of chemical adhesion between filler and matrix. These results emphasize the potential of NS as a source of reinforcing filler in polymer-based biocomposites. Copyright © 2018. Published by Elsevier B.V.

  1. Poly-symplectic Groupoids and Poly-Poisson Structures

    NASA Astrophysics Data System (ADS)

    Martinez, Nicolas

    2015-05-01

    We introduce poly-symplectic groupoids, which are natural extensions of symplectic groupoids to the context of poly-symplectic geometry, and define poly-Poisson structures as their infinitesimal counterparts. We present equivalent descriptions of poly-Poisson structures, including one related with AV-Dirac structures. We also discuss symmetries and reduction in the setting of poly-symplectic groupoids and poly-Poisson structures, and use our viewpoint to revisit results and develop new aspects of the theory initiated in Iglesias et al. (Lett Math Phys 103:1103-1133, 2013).

  2. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers

    NASA Astrophysics Data System (ADS)

    Soni, Namrata; Jain, Keerti; Gupta, Umesh; Jain, N. K.

    2015-11-01

    The aim of the present investigation was to deliver Gemcitabine Hydrochloride (GmcH), an anticancer bioactive, specifically to lung tumor cells using mannosylated 4.0G poly(propyleneimine) dendrimers (M-PPI). 4.0G poly(propyleneimine) (PPI) dendrimers was synthesized using ethylenediamine as core and conjugated with mannose by ring opening reactions, followed by Schiff's reaction in the presence of sodium acetate buffer (pH 4.0). Synthesized PPI dendrimers and mannose-conjugated dendrimers were characterized using IR, NMR spectroscopy, and scanning electron microscopy. GmcH was loaded into PPI and M-PPI dendrimers using equilibrium dialysis method to develop the formulations, GmcH-PPI and GmcH-M-PPI, respectively. The developed formulations were evaluated for drug loading, in vitro release kinetics, in vitro stability, hemolytic toxicity, cytotoxicity, pharmacokinetic, and biodistribution studies. The dendrimeric formulation of GmcH showed pH-sensitive release with faster release at acidic pH, i.e., pH 4.0 in comparison with physiological pH 7.4. M-PPI conjugate showed significant reduction in hemolytic toxicity as compared to plain 4.0G PPI dendrimers towards human erythrocytes. In the cytotoxicity studies with A-549 lung adenocarcinoma cell line, the GmcH-M-PPI formulation showed the lowest IC50 value. Further, the pharmacokinetic and tissue distribution studies of free drug GmcH, GmcH-PPI, and GmcH-M-PPI in albino rats of Sprague-Dawley strain suggested the mean residence time of GmcH-M-PPI conjugate to be significantly higher (24.85 h) than free GmcH and GmcH-PPI. Deposition of drug (396.1 ± 4.7 after 2 h) in lung was found to be significantly higher with GmcH-M-PPI formulation in comparison with Gmch and GmcH-PPI.

  3. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends.

    PubMed

    Akrami, Marzieh; Ghasemi, Ismaeil; Azizi, Hamed; Karrabi, Mohammad; Seyedabadi, Mohammad

    2016-06-25

    In this study, a new compatibilizer was synthesized to improve the compatibility of the poly(lactic acid)/thermoplastic starch blends. The compatibilizer was based on maleic anhydride grafted polyethylene glycol grafted starch (mPEG-g-St), and was characterized using Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis (DMTA) and back titration techniques. The results indicated successful accomplishment of the designed reactions and formation of a starch cored structure with many connections to m-PEG chains. To assess the performance of synthesized compatibilizer, several PLA/TPS blends were prepared using an internal mixer. Consequently, their morphology, dynamic-mechanical behavior, crystallization and mechanical properties were studied. The compatibilizer enhanced interfacial adhesion, possibly due to interaction between free end carboxylic acid groups of compatibilizer and active groups of TPS and PLA phases. In addition, biodegradability of the samples was evaluated by various methods consisting of weight loss, FTIR-ATR analysis and morphology. The results revealed no considerable effect of compatibilizer on biodegradability of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels.

    PubMed

    Mittal, H; Jindal, R; Kaith, B S; Maity, A; Ray, S S

    2015-01-22

    This study reports the microwave-assisted synthesis of gum-ghatti (Gg)-grafted poly(acrylamide-co-methacrylic acid) (AAm-co-MAA) hydrogels for the development of biodegradable flocculants and adsorbents. The synthesized hydrogels were characterized using TGA, FTIR and SEM. TGA studies revealed that the synthesized hydrogels were thermally more stable than pristine Gg and exhibited maximum swelling capacity of 1959% at 60°C in neutral pH. The optimal Gg-cl-P(AAm-co-MAA) hydrogel was successfully employed for the removal of saline water from various petroleum fraction-saline emulsions. The maximum flocculation efficiency was achieved in an acidic clay suspension with a 15 mg polymer dose at 40°C. Moreover, the synthesized hydrogel adsorbed 94% and 75% of Pb(2+) and Cu(2+), respectively, from aqueous solutions. Finally, the Gg-cl-P(AAm-co-MAA) hydrogel could be degraded completely within 50 days. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel was demonstrated to have potential for use as flocculants and heavy metal absorbents for industrial waste water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

    PubMed

    Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung

    2015-04-01

    This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Edge-Functionalization of Pyrene as a Miniature Graphene via Friedel–Crafts Acylation Reaction in Poly(Phosphoric Acid)

    PubMed Central

    2010-01-01

    The feasibility of edge-functionalization of graphite was tested via the model reaction between pyrene and 4-(2,4,6-trimethylphenyloxy)benzamide (TMPBA) in poly(phosphoric acid) (PPA)/phosphorous pentoxide (P2O5) medium. The functionalization was confirmed by various characterization techniques. On the basis of the model study, the reaction condition could be extended to the edge-functionalization of graphite with TMPBA. Preliminary results showed that the resultant TMPBA-grafted graphite (graphite-g-TMPBA) was found to be readily dispersible in N-methyl-2-pyrrolidone (NMP) and can be used as a precursor for edge-functionalized graphene (EFG). PMID:21076664

  7. Preparation and characterization of monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin

    PubMed Central

    Qiu, Jin-Feng; Gao, Xiang; Wang, Bi-Lan; Wei, Xia-Wei; Gou, Ma-Ling; Men, Ke; Liu, Xing-Yu; Guo, Gang; Qian, Zhi-Yong; Huang, Mei-Juan

    2013-01-01

    Luteolin (Lu) is one of the flavonoids with anticancer activity, but its poor water solubility limits its use clinically. In this work, we used monomethoxy poly(ethylene glycol)-poly(e-caprolactone) (MPEG-PCL) micelles to encapsulate Lu by a self-assembly method, creating a water-soluble Lu/MPEG-PCL micelle. These micelles had a mean particle size of 38.6 ± 0.6 nm (polydispersity index = 0.16 ± 0.02), encapsulation efficiency of 98.32% ± 1.12%, and drug loading of 3.93% ± 0.25%. Lu/MPEG-PCL micelles could slowly release Lu in vitro. Encapsulation of Lu in MPEG-PCL micelles improved the half-life (t½; 152.25 ± 49.92 versus [vs] 7.16 ± 1.23 minutes, P = 0.007), area under the curve (0-t) (2914.05 ± 445.17 vs 502.65 ± 140.12 mg/L/minute, P = 0.001), area under the curve (0–∞) (2989.03 ± 433.22 vs 503.81 ± 141.41 mg/L/minute, P = 0.001), and peak concentration (92.70 ± 11.61 vs 38.98 ± 7.73 mg/L, P = 0.003) of Lu when the drug was intravenously administered at a dose of 30 mg/kg in rats. Also, Lu/MPEG-PCL micelles maintained the cytotoxicity of Lu on 4T1 breast cancer cells (IC50 = 6.4 ± 2.30 μg/mL) and C-26 colon carcinoma cells (IC50 = 12.62 ± 2.17 μg/mL) in vitro. These data suggested that encapsulation of Lu into MPEG-PCL micelles created an aqueous formulation of Lu with potential anticancer effect. PMID:23990719

  8. Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery

    PubMed Central

    Fujita, Manabu; Ljubimov, Alexander V; Torchilin, Vladimir P; Black, Keith L; Holler, Eggehard

    2009-01-01

    Nanoconjugates are emerging as promising drug-delivery vehicles because of their multimodular structure enabling them to actively target discrete cells, pass through biological barriers and simultaneously carry multiple drugs of various chemical nature. Nanoconjugates have matured from simple devices to multifunctional, biodegradable, nontoxic and nonimmunogenic constructs, capable of delivering synergistically functioning drugs in vivo. This review mainly concerns the Polycefin family of natural-derived polymeric drug-delivery devices as an example. This type of vehicle is built by hierarchic conjugation of functional groups onto the backbone of poly(malic acid), an aliphatic polyester obtained from the microorganism Physarum polycephalum. Particular Polycefin variants target human brain and breast tumors implanted into animals specifically and actively and could be detected easily by noninvasive imaging analysis. Delivery of antisense oligonucleotides to a tumor-specific angiogenic marker using Polycefin resulted in significant inhibition of tumor angiogenesis and increase of animal survival. PMID:18373429

  9. Direct determination of creatinine based on poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode.

    PubMed

    Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide

    2016-05-01

    In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Bile Acid-Based Drug Delivery Systems for Enhanced Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and Release.

    PubMed

    Cunningham, Alexander J; Robinson, Mattieu; Banquy, Xavier; Leblond, Jeanne; Zhu, X X

    2018-03-05

    Doxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were grafted from the cholic acid (CA) core yielding a star-shaped block copolymer with 4 arms (CA-(PAGE- b-PEG) 4 ) and then loaded with Dox via a nanoprecipitation technique. A high Dox loading of 14 wt % was achieved via electrostatic as opposed to hydrophobic interactions with or without oleic acid as a cosurfactant. The electrostatic interactions confer a pH responsiveness to the system. 50% of the loaded Dox was released at pH 5 in comparison to 12% at pH 7.4. The nanoparticles with Dox loaded via hydrophobic interactions did not show such a pH responsiveness. The systems with Dox loaded via electrostatic interactions showed the lowest IC 50 and highest cellular internalization, indicating the pre-eminence of this interaction in Dox loading. The blank formulations are biocompatible and did not show cytotoxicity up to 0.17 mg/mL. The new functionalized star block copolymers based on cholic acid show great potential as drug delivery carriers.

  11. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery.

    PubMed

    Folchman-Wagner, Zoë; Zaro, Jennica; Shen, Wei-Chiang

    2017-06-30

    Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5-7.0. Poly(l-glutamic acid) (E n ), poly(l-lysine) (K n ), and a copolymer composed of histidine-glutamic acid repeats ((HE) n ) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E 51 /K 55 and E 135 /K 127 , however, no complexes were observed when E 22 or K 21 were used, even in combination with the longer chains. (HE) 20 /K 55 PECs could encapsulate daunomycin, were stable from pH 7.4-6.5, and dissociated completely between pH 6.5-6.0. Conversely, the E 51-dauno /K 55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the p K a 's of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE) 20-dauno /K 55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.

  12. Inhibition of Herpes Simplex Virus Strains Isolated from Herpetic Keratitis by Polyinosinic Acid-Polycytidylic Acid

    PubMed Central

    Smetana, Ofira; Eylan, Emanuel; Weinberg, Miriam

    1977-01-01

    Fifty strains of herpes simplex virus, isolated from patients with herpetic keratitis, were examined in vitro for susceptibility to polyinosinic acid-polycytidylic acid [poly(I:C)] in the presence of a constant concentration of diethylaminoethyl-dextran. The minimal inhibitory concentration of poly(I:C) for 44 of these strains ranged from 0.0001 to 0.1 μg/ml; for the remaining six strains, the minimal inhibitory concentration stood at 1 to 2 μg/ml. Fifteen isolates from primary infections were more susceptible to poly(I:C) than 35 isolates from recurrent infections. Isolates acquired at different points of a given clinical episode showed similar susceptibilities to poly(I:C). In two patients, isolates from consecutive recurrences of infection exhibited reduced susceptibilities. The implications of the above observations for the therapeutic use of poly(I:C) are discussed. PMID:195515

  13. Chemically grafted polymeric filters for chemical sensors: Hyperbranched poly(acrylic acid) films incorporating {Beta}-cyclodextrin receptors and amine-functionalized filter layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermody, D.L.; Peez, R.F.; Bergbreiter, D.E.

    1999-02-02

    The authors report a new molecular-filter approach for enhancing the selectivity of chemical sensors. Specifically, they describe electrochemical sensors prepared from Au electrodes coated with {beta}-cyclodextrin-functionalized, hyperbranched poly(acrylic acid)(PAA) films capped with a chemically grafted, ultrathin polyamine layer. The hyperbranched PAA film is a highly functionalized framework for covalently binding the {beta}-cyclodextrin molecular receptors. The thin, grafted polyamine overlayer acts as a pH-sensitive molecular filter that selectively passes suitably charged analytes. Poly(amidoamine) dendrimers or poly-D-lysine is used as 10--15-nm-thick filter layers. The results show that at low pH, when the polyamines are fully protonated, positively charged redox probe molecules, suchmore » as benzyl viologen (BV), do not permeate the filter layer. However, at high pH, when the filter layer is uncharged, BV penetrates the filter layer and is reduced at the electrode. The opposite pH dependence is observed for negatively charged redox molecules such as anthraquinone-2-sulfonate (AQS). Both BV and AQS specifically interact with the {beta}-cyclodextrin receptors underlying the polyamine filter layers.« less

  14. Imbricaric Acid and Perlatolic Acid: Multi-Targeting Anti-Inflammatory Depsides from Cetrelia monachorum

    PubMed Central

    Oettl, Sarah K.; Gerstmeier, Jana; Khan, Shafaat Y.; Wiechmann, Katja; Bauer, Julia; Atanasov, Atanas G.; Malainer, Clemens; Awad, Ezzat M.; Uhrin, Pavel; Heiss, Elke H.; Waltenberger, Birgit; Remias, Daniel; Breuss, Johannes M.; Boustie, Joel; Dirsch, Verena M.; Stuppner, Hermann; Werz, Oliver; Rollinger, Judith M.

    2013-01-01

    In vitro screening of 17 Alpine lichen species for their inhibitory activity against 5-lipoxygenase, microsomal prostaglandin E2 synthase-1 and nuclear factor kappa B revealed Cetrelia monachorum (Zahlbr.) W.L. Culb. & C.F. Culb. As conceivable source for novel anti-inflammatory compounds. Phytochemical investigation of the ethanolic crude extract resulted in the isolation and identification of 11 constituents, belonging to depsides and derivatives of orsellinic acid, olivetolic acid and olivetol. The two depsides imbricaric acid (4) and perlatolic acid (5) approved dual inhibitory activities on microsomal prostaglandin E2 synthase-1 (IC50 = 1.9 and 0.4 µM, resp.) and on 5-lipoxygenase tested in a cell-based assay (IC50 = 5.3 and 1.8 µM, resp.) and on purified enzyme (IC50 = 3.5 and 0.4 µM, resp.). Additionally, these two main constituents quantified in the extract with 15.22% (4) and 9.10% (5) showed significant inhibition of tumor necrosis factor alpha-induced nuclear factor kappa B activation in luciferase reporter cells with IC50 values of 2.0 and 7.0 µM, respectively. In a murine in vivo model of inflammation, 5 impaired the inflammatory, thioglycollate-induced recruitment of leukocytes to the peritoneum. The potent inhibitory effects on the three identified targets attest 4 and 5 a pronounced multi-target anti-inflammatory profile which warrants further investigation on their pharmacokinetics and in vivo efficacy. PMID:24130812

  15. Separation of transition metals on a poly-iminodiacetic acid grafted polymeric resin column with post-column reaction detection utilising a paired emitter-detector diode system.

    PubMed

    Barron, Leon; O'Toole, Martina; Diamond, Dermot; Nesterenko, Pavel N; Paull, Brett

    2008-12-05

    The selectivity, retention and separation of transition metals on a short (2 mm x 50 mm) column packed with a poly-iminodiacetic acid functionalised polymer 10 microm resin (Dionex ProPac IMAC-10) are presented. This stationary phase, typically used for the separation of proteins, is composed of long chain poly-iminodiacetic acid groups grafted to a hydrophilic layer surrounding a 10 microm polymeric bead. Through the use of a combination of a multi-step pH and picolinic acid gradient, the separation of magnesium, iron, cobalt, cadmium, zinc, lead and copper was possible, followed by post-column reaction with 4-(2-pyridylazo) resorcinol (PAR) and absorbance detection at 510 nm using a novel and inexpensive optical detector, comprised of two light emitting diodes with one acting as a light source and the other as a detector. Column efficiency for selective transition metals was in excess of N=10,000, with the baseline separation of seven metal cations in <3 min possible under optimised conditions. Detection limits of between 5 and 81 microg/L were possible based upon a 50 microL injection volume.

  16. Characterisation of the Poly-(Vinylpyrrolidone)-Poly-(Vinylacetate-Co-Crotonic Acid) (PVP:PVAc-CA) Interpolymer Complex Matrix Microparticles Encapsulating a Bifidobacterium lactis Bb12 Probiotic Strain.

    PubMed

    Mamvura, C I; Moolman, F S; Kalombo, L; Hall, A N; Thantsha, M S

    2011-06-01

    The method of producing poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex matrix microparticles in supercritical carbon dioxide (scCO2), encapsulating bacteria, has recently been developed. This study was aimed at probing the external and internal structure of these microparticles, which can be used in food. The encapsulation efficiency and distribution of encapsulated Bifidobacterium lactis Bb12 within these microparticles were also investigated. Scanning electron microscopy (SEM) revealed irregular, mostly small, smooth microparticles with no visible bacterial cells on the surface. However, some of the microparticles appeared to have porous surfaces. The results of a Microtrac S3500 particle size analyzer showed that the PVP:PVAc-CA interpolymer complex matrix microparticles encapsulating B. lactis Bb12 had an average particle size of 166.1 μm (<350 μm designated standard size for microparticles). The D 10, D 50 and D 90 values for these microparticles were 48.16, 166.06 and 382.55 μm, respectively. Both SEM and confocal laser scanning microscopy showed a high density of bacterial cells within the microparticles. An average encapsulation efficiency of 96% was achieved. Consequently, the microparticles have the potential to be evenly distributed in foods, deliver adequate amounts of probiotics and produce minimal adverse effects on the texture and mouth feel of the foods into which they are incorporated.

  17. Photochemically-induced acid generation from 18-molybdodiphosphate and 18-tungstodiphosphate within poly(2-hydroxyethyl methacrylate) films.

    PubMed

    Douvas, Antonios M; Kapella, Anna; Dimotikali, Dimitra; Argitis, Panagiotis

    2009-06-01

    The capability of ammonium 18-molybdodiphosphate, (NH(4))(6)P(2)Mo(18)O(62) (Mo(18)(6-)), and ammonium 18-tungstodiphosphate, (NH(4))(6)P(2)W(18)O(62) (W(18)(6-)), to photochemically generate acid within films of a polymer with hydroxylic functional groups (namely, within poly(2-hydroxyethyl methacrylate) (PHEMA) films) is demonstrated. Upon UV irradiation, both 2:18 polyoxometalates (POMs) investigated are reduced with concomitant oxidation of PHEMA and generation of acid, which subsequently catalyzes the cross-linking of PHEMA. The photoacid generation is mainly evidenced by monitoring the protonation of an appropriate acid indicator (4-dimethylamino-4'-nitrostilbene) with UV spectroscopy and by photolithographic imaging experiments. By comparing the efficiency of both POMs to induce acid-catalyzed cross-linking of PHEMA under similar conditions, the W(18)(6-) ion is found to be more efficient in photoacid generation than the Mo(18)(6-) ion. Imaging of the POM-containing PHEMA films through UV photolithographic processing is demonstrated. In that process, both POMs can be entirely leached during the development step by using pure water as a developer, resulting in patterned PHEMA films. This characteristic renders the investigated POMs attractive materials for applications, especially in the area of biomaterials, where removal of the photoacid generator from the film at the end of the process is desirable.

  18. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    PubMed

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  19. Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid)

    PubMed Central

    Yu, Tao; Wang, Ying-Ying; Yang, Ming; Schneider, Craig; Zhong, Weixi; Pulicare, Sarah; Choi, Woo-Jin; Mert, Olcay; Fu, Jie; Lai, Samuel K.; Hanes, Justin

    2013-01-01

    Mucus secretions coating entry points to the human body that are not covered by skin efficiently trap and clear conventional drug carriers, limiting controlled drug delivery at mucosal surfaces. To overcome this challenge, we recently engineered nanoparticles that readily penetrate a variety of human mucus secretions, which we termed mucus-penetrating particles (MPP). Here, we report a new biodegradable MPP formulation based on diblock copolymers of poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA-PEG). PLGA-PEG nanoparticles prepared by a solvent diffusion method rapidly diffused through fresh, undiluted human cervicovaginal mucus (CVM) with an average speed only eightfold lower than their theoretical speed in water. In contrast, PLGA nanoparticles were slowed more than 12,000-fold in the same CVM secretions. Based on the measured diffusivities, as much as 75% of the PLGA-PEG nanoparticles are expected to penetrate a 10-μm-thick mucus layer within 30 min, whereas virtually no PLGA nanoparticles are expected to do so over the same duration. These results encourage further development of PLGA-PEG nanoparticles as mucus-penetrating drug carriers for improved drug and gene delivery to mucosal surfaces. PMID:24205449

  20. Synthesis and characterization of Ag+-decorated poly(glycidyl methacrylate) microparticle design for the adsorption of nucleic acids.

    PubMed

    Erol, Kadir; Uzunoglu, Aytekin; Köse, Kazım; Sarıca, Büşra; Avcı, Emre; Köse, Dursun A

    2018-04-01

    In this study, we report on the adsorption of RNA and DNA molecules by exploiting the high binding affinity of these nucleic acids to Ag + ions anchored on magnetic poly(glycidyl methacrylate) (PGMA) microparticles. PGMA microparticles were synthesized and modified with nicotinamide which enabled to anchor Ag + ions on the surface. The successful preparation of PGMA was confirmed by the presence of characteristic FTIR peaks. The ESR results showed that the incorporation of FeNi salt to the polymeric structure provided a magnetic property to the microparticles. The amount of nicotinamide and Ag + ions used to modify the surface of the particles were found to be 1.79 wt% and 52.6 mg Ag/g microparticle, respectively. The high affinity of nucleic acids to Ag + ions were exploited for the adsorption studies. At the optimum working conditions, the adsorption capacity of microparticles was found to be 40.1 and 11.48 mg nucleic acid/g microparticle for RNA and DNA, respectively. Our study indicated that the use of novel Ag + -decorated magnetic PGMA particles can be successfully employed as adsorbents for fast, easy, and cost-friendly adsorption of nucleic acids with high purity as well as high in quantity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Foam injection molding of poly(lactic acid) with physical blowing agents

    NASA Astrophysics Data System (ADS)

    Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.

    2014-05-01

    Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.

  2. Direct observation of shear piezoelectricity in poly-l-lactic acid nanowires

    NASA Astrophysics Data System (ADS)

    Smith, Michael; Calahorra, Yonatan; Jing, Qingshen; Kar-Narayan, Sohini

    2017-07-01

    Piezoelectric polymers are capable of interconverting mechanical and electrical energy, and are therefore candidate materials for biomedical applications such as sensors, actuators, and energy harvesters. In particular, nanowires of these materials are attractive as they can be unclamped, flexible and sensitive to small vibrations. Poly-l-lactic acid (PLLA) nanowires have been investigated for their use in biological applications, but their piezoelectric properties have never been fully characterised, even though macroscopic films and fibres have been shown to exhibit shear piezoelectricity. This piezoelectric mode is particularly interesting for in vivo applications where shear forces are especially relevant, and is similar to what has been observed in natural materials such as bone and DNA. Here, using piezo-response force microscopy (PFM), we report the first direct observation of shear piezoelectricity in highly crystalline and oriented PLLA nanowires grown by a novel template-wetting method. Our results are validated using finite-element simulations and numerical analysis, which importantly and more generally allow for accurate interpretation of PFM signals in soft nanostructured materials. Our work opens up the possibility for the development of biocompatible and sustainable piezoelectric nanogenerators and sensors based on polymer nanowires.

  3. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited

    PubMed Central

    Xu, Peisheng; Gullotti, Emily; Tong, Ling; Highley, Christopher B.; Errabelli, Divya R.; Hasan, Tayyaba; Cheng, Ji-Xin; Kohane, Daniel S.; Yeo, Yoon

    2008-01-01

    We reexamined the cellular drug delivery mechanism by poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) to determine their utility and limitations as an intracellular drug delivery system. First, we prepared PLGA NPs which physically encapsulated Nile red (a hydrophobic fluorescent dye), in accordance with the usual procedure for labeling PLGA NPs, incubated them with mesothelial cells, and observed an increase in the intracellular fluorescence. We then prepared NPs from PLGA chemically conjugated to a fluorescent dye and observed their uptake by the mesothelial cells using confocal microscopy. We also used Coherent Anti-Stokes Raman Scattering (CARS) microscopy to image cellular uptake of unlabeled PLGA NPs. Results of this study coherently suggest that PLGA NPs (i) are not readily taken up by cells, but (ii) deliver the payload to cells by extracellular drug release and/or direct drug transfer to contacting cells, which are contrasted with the prevalent view. From this alternative standpoint, we analyzed cytotoxicities of doxorubicin and paclitaxel delivered by PLGA NPs and compared with those of free drugs. Finally, we revisit previous findings in the literature and discuss potential strategies to achieve efficient drug delivery to the target tissues using PLGA NPs. PMID:19035785

  4. TDR method for determine IC's parameters

    NASA Astrophysics Data System (ADS)

    Timoshenkov, V.; Rodionov, D.; Khlybov, A.

    2016-12-01

    Frequency domain simulation is a widely used approach for determine integrated circuits parameters. This approach can be found in most of software tools used in IC industry. Time domain simulation approach shows intensive usage last years due to some advantages. In particular it applicable for analysis of nonlinear and nonstationary systems where frequency domain is inapplicable. Resolution of time domain systems allow see heterogeneities on distance 1mm, determine it parameters and properties. Authors used approach based on detecting reflected signals from heterogeneities - time domain reflectometry (TDR). Field effect transistor technology scaling up to 30-60nm gate length and 10nm gate dielectric, heterojunction bi-polar transistors with 10-30nm base width allows fabricate digital IC's with 20GHz clock frequency and RF-IC's with tens GHz bandwidth. Such devices and operation speed suppose transit signal by use microwave lines. There are local heterogeneities can be found inside of the signal path due to connections between different parts of signal lines (stripe line-RF-connector pin, stripe line - IC package pin). These heterogeneities distort signals that cause bandwidth decrease for RF-devices. Time domain research methods of transmission and reflected signals give the opportunities to determine heterogeneities, it properties, parameters and built up equivalent circuits. Experimental results are provided and show possibility for inductance and capacitance measurement up to 25GHz. Measurements contains result of signal path research on IC and printed circuit board (PCB) used for 12GHz RF chips. Also dielectric constant versus frequency was measured up to 35GHz.

  5. Production of poly-beta-hydroxybutyric acid by microorganisms accumulated from river water using a two-stage perfusion culture system.

    PubMed

    Morimoto, T; Tashiro, F; Nagashima, H; Nishizawa, K; Nagata, F; Yokogawa, Y; Suzuki, T

    2000-01-01

    The perfusion culture system using a shaken ceramic membrane flask (SCMF) was employed to accumulate microorganisms separated from river water and to produce poly-beta-hydroxybutyric acid (PHB). Using a two-step culture method with a single SCMF, river microorganisms were cultured by separately feeding four representative carbon sources, n-propanol, lactic acid, methanol, and formic acid. After 140 h culture, the cell concentration and PHB content respectively reached 43 g/l and 35% when a propanol medium was fed. Using a two-stage perfusion culture with twin SCMFs, the seed cell mass was increased in the first SCMF and then supplied to the second flask for PHB production. As a consequence, the cellular PHB content rose to 51% in the second SCMF, while the cell concentration gradually increased to 25 g/l after 175 h perfusion culture. These results demonstrated the utility of the two-stage perfusion culture system for developing a cheap means of producing PHB coincident with wastewater treatment.

  6. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong

    2016-08-17

    Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.

  7. Effects of lactoferrin on the production of interferon-λ by the human intestinal epithelial cell line HT-29.

    PubMed

    Shin, Kouichirou; Oda, Hirotsugu; Wakabayashi, Hiroyuki; Yamauchi, Koji; Abe, Fumiaki

    2017-02-01

    We examined the in-vitro effects of bovine lactoferrin (LF) on the production of interferon-λ (IFN-λ), an antiviral cytokine important for the defense of enterocytes, using the human intestinal epithelial cell line HT-29. HT-29 cell cultures were treated with LF for 1 h, and the cultures were stimulated with polyinosinic-polycytidylic acid (poly I:C). LF increased the concentration of IFN-λ in the culture supernatant after stimulation in a dose-dependent manner. A similar increase in the concentration of IFN-λ was observed in the supernatant of cells washed between treatment with LF and stimulation with poly I:C. At 6 and 24 h after stimulation with poly I:C (early and late phases, respectively) treated cultures contained significantly higher concentrations of IFN-λ1 in the culture supernatant, and significantly higher IFN-λ1 and IFN-λ2 mRNA levels, than controls. These results suggest that LF activates the innate cellular immunity of the enterocytes to double-stranded RNA and increases the production of IFN-λ.

  8. From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films.

    PubMed

    Xie, Lan; Xu, Huan; Chen, Jing-Bin; Zhang, Zi-Jing; Hsiao, Benjamin S; Zhong, Gan-Ji; Chen, Jun; Li, Zhong-Ming

    2015-04-22

    The traditional approach toward barrier property enhancement of poly(lactic acid) (PLA) is the incorporation of sheet-like fillers such as nanoclay and graphene, unfortunately leading to the sacrificed biocompatibility and degradability. Here we unveil the first application of a confined flaking technique to establish the degradable nanolaminar poly(butylene succinate) (PBS) in PLA films based on PLA/PBS in situ nanofibrillar composites. The combination of high pressure (10 MPa) and appropriate temperature (160 °C) during the flaking process desirably enabled sufficient deformation of PBS nanofibrils and retention of ordered PLA channels. Particularly, interlinked and individual nanosheets were created in composite films containing 10 and 20 wt % PBS, respectively, both of which presented desirable alignment and large width/thickness ratio (nanoscale thickness with a width of 428±13.1 and 76.9±8.2 μm, respectively). With the creation of compact polymer "nano-barrier walls", a dramatic decrease of 86% and 67% in the oxygen permeability coefficient was observed for the film incorporated with well-organized 20 wt % PBS nanosheets compared to pure PLA and pure PBS (1.4 and 0.6×10(-14) cm3·cm·cm(-2)·s(-1)·Pa(-1)), respectively. Unexpectedly, prominent increases of 21% and 28% were achieved in the tensile strength and modulus of composite films loaded 20 wt % PBS nanosheets compared to pure PLA films, although PBS intrinsically presents poor strength and stiffness. The unusual combination of barrier and mechanical performances established in the fully degradable system represent specific properties required in packaging beverages, food and medicine.

  9. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  10. pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl(meth)acrylate-co-methacrylic acid): influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil.

    PubMed

    Satturwar, Prashant; Eddine, Mohamad Nasser; Ravenelle, François; Leroux, Jean-Christophe

    2007-03-01

    The objective of the present study was to investigate the influence of chemical structure and molecular weight of pH-sensitive block copolymers on their self-assembling properties, the loading and the release of candesartan cilexetil (CDN). Block copolymers of poly(ethylene glycol) and t-butyl methacrylate, iso-butyl acrylate, n-butyl acrylate or propyl methacrylate were synthesized by atom transfer radical polymerization. pH-sensitivity was obtained by hydrolysis of t-butyl groups. The poorly water-soluble drug CDN was incorporated in the micelles and the in vitro drug release was evaluated as a function of pH. The critical aggregation concentration of hydrolyzed copolymers (pK(a)=6.2-6.6) was higher compared to the unhydrolyzed ones. Dynamic light scattering studies and atomic force microscopy images revealed uniform size micelles with aggregation numbers ranging from 60 to 160. The entrapment efficiency of CDN was generally found to be above 90%, with drug loading levels reaching approximately 20% (w/w). Differential scanning calorimetry studies showed the amorphous nature of entrapped CDN. The release of CDN from pH-sensitive micelles was triggered upon an increase in pH from 1.2 to 7.2. These findings suggest that the PEG-b-poly(alkyl(meth)acrylate-co-methacrylic acid)s can self-assemble to form micelles which exhibit high loading capacities for CDN and release the drug in a pH-dependent fashion.

  11. The defective nature of ice Ic and its implications for atmospheric science

    NASA Astrophysics Data System (ADS)

    Kuhs, W. F.; Hansen, T. C.

    2009-04-01

    The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4,5]. Our recent microstructural work on ice Ic [6,7] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [8] and other group's work [9] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Moreover, the stacking faults lead to kinks in the outer shapes of the minute ice Ic crystals as seen by cryo scanning electron microscopy (cryo-SEM); these defective sites are likely to play some role in heterogeneous reactions in the atmosphere. The cryo-SEM work suggests that stacking-faulty ice Ic has many more active centres for such reactions than the usually considered thermodynamically stable form, ice Ih. [1] T Kobayashi & T Kuroda (1987) Snow Crystals. In: Morphology of Crystals (ed. I Sunagawa), Terra Scientific Publishing, Tokyo, pp.649-743. [2] DM Murphy (2003) Dehydration in cold clouds is enhanced by a transition from from cubic to hexagonal ice. Geophys.Res.Lett.,30, 2230, doi:10.1029/2003GL018566. [3] RS Gao & 19 other authors (2004

  12. Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites

    NASA Astrophysics Data System (ADS)

    Lioudakis, Emmanouil; Othonos, Andreas; Alexandrou, Ioannis; Hayashi, Yasuhiko

    2007-10-01

    In this work, we present the evolution of optical constants as a function of [6,6]-phenylC61-butyric acid methyl ester (PCBM) concentration for conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites. The PCBM concentration of the utilized samples varies from 1to50wt%. The dielectric functions for all these composites reveal electronic structural changes as a result of the addition of PCBM. We have deconvoluted the contribution of the substrate using a two-layer Fabry-Pérot structural model. The extracted optical properties contain crucial absorption peaks of singlet exciton states and vibronic sidebands for poly(3-hexylthiophene) (P3HT) conjugated polymer as well as two PCBM-related states at higher energies. With the addition of PCBM, we have observed a limit of 20wt% PCBM beyond which two discrete energy levels (3.64 and 4.67eV) appear in the spectrum. For the highest concentration composite, the results suggest that the interchain interactions provide a small excitonic contribution in the absorption spectrum at energies where the conjugated polymer absorbs (1.85-2.7eV) and a strong rise of PCBM states (3.64 and 4.67eV) which are responsible for the subsequent exciton dissociation. In addition, the energy gap between the higher occupied molecular orbitals and the lower unoccupied molecular orbitals of the highest concentration composite (50wt%) is 1.85eV. The tuning of the optical properties of P3HT with the addition of PCBM shows that ellipsometry can be used to monitor layer concentration toward optimization of plastic solar cells.

  13. From neutral to zwitterionic poly(α-amino acid) nonfouling surfaces: Effects of helical conformation and anchoring orientation.

    PubMed

    Zhang, Chong; Yuan, Jingsong; Lu, Jianhua; Hou, Yingqin; Xiong, Wei; Lu, Hua

    2018-02-03

    The development of high-performance nonfouling polymer surfaces for implantable medical devices and therapeutic nanomaterials is of great importance. Elaborating the relationship of polymer structural characteristics and the resulted surface properties can offer useful guidance toward ideal biointerfaces. In this work, we investigate the effects of the helical conformation and anchoring orientation of poly(α-amino acid)s (PαAAs) to produce advanced nonfouling surfaces. By using the neutral poly(γ-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)esteryl glutamates) (P(EG 3 Glu)s) as a model system, the adsorption kinetics are monitored by ex-situ variable angle spectroscopic ellipsometry and in-situ quartz crystal microbalance with dissipation. It is found that the polymers adopting a rigid rod-like α-helical conformation can self-assemble more rapidly to produce denser adlayers, and generate significantly improved nonfouling surfaces compared to those flexible polymer analogues including the widely used antifouling polymer PEG. Moreover, the surface properties can be further enhanced by using the antiparallel orientated helical P(EG 3 Glu)s. Most importantly, the insights gained from the P(EG 3 Glu) model system are successfully applied to the generation of ultra-low-fouling surfaces using zwitterionic PαAAs brushes, underscoring the generality of the approach. Particularly, the surface based on the antiparallel aligned zwitterionic helical PαAAs exhibits ∼98-99% reduction of human serum adsorption relative to the bare gold, and gives almost no adhesion of mouse platelet. Taken together, this work depicts an extremely simple yet highly effective approach to manipulate surface properties for numerous applications in biomaterial interfaces, diagnostics, and biosensors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Performance of Poly(lactic acid) Surface Modified Films for Food Packaging Application

    PubMed Central

    Dalla Rosa, Marco; Iordanskii, Alexey L.

    2017-01-01

    Five Poly(lactic acid) (PLA) film samples were analyzed to study the gas barrier behavior, thermal stability and mechanical performance for food packaging application. O2, CO2, N2, N2O, and C2H4 pure gases; Air; and Modified Atmosphere (MA, 79% N2O/21% O2) were used to analyze the influence of the chemical structure, storage temperature and crystalline phase on the gas barrier behavior. The kinetic of the permeation process was investigated at different temperatures, ranging from 5 °C to 40 °C. Annealing thermal treatment on the samples led to the crystalline percentage, influencing especially the gas solubility process. Thermal properties such as Tg and χc, and mechanical properties such as tensile strength and modulus were remarkably improved with surface PLA modification. A more pronounced reinforcing effect was noted in the case of metallization, as well as improved gas barrier performance. Tensile testing and tensile cycling tests confirmed the rigidity of the films, with about a 20% loss of elasticity after 25 cycles loading. PMID:28773210

  15. Preparation of hydroxyapatite/poly(lactic acid) hybrid microparticles for local drug delivery

    NASA Astrophysics Data System (ADS)

    Loca, D.; Locs, J.; Berzina-Cimdina, L.

    2013-12-01

    Calcium phosphate (CaP) bioceramic is well known as bioactive and biocompatible material in bone tissue regeneration applications. Apatitic CaP, especially nano sized hydroxyapatite (NHAp), is more similar to the natural apatite presented in the bone tissue than CaP bioceramics. In the current research NHAp was modified using biodegradable polymer - poly(lactic acid) (PLA) to develop composites providing bone regeneration and local drug delivery. NHAp/PLA microcapsules were prepared using solid-in-water-in-oil-in-water (s/w1/o/w2) encapsulation technology. The impact of primary and secondary emulsion stability on the emulsion droplet and microparticle properties was evaluated. The stability of final emulsion can be increased by varying the process parameters. Stable s/w1/o/w2 emulsion using 3ml of NHAp suspension, not less than 100ml of 4% PVA water solution and 10ml of 10% PLA solution in dichloromethane can be obtained. S/w1/o/w2 microencapuslation method can be effectively used for the preparation of multi-domain microcapsules achieving high NHAp encapsulation efficacy (93%).

  16. Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles.

    PubMed

    Saborano, Raquel; Wongpinyochit, Thidarat; Totten, John D; Johnston, Blair F; Seib, F Philipp; Duarte, Iola F

    2017-07-01

    Monitoring macrophage metabolism in response to nanoparticle exposure provides new insights into biological outcomes, such as inflammation or toxicity, and supports the design of tailored nanomedicines. This paper describes the metabolic signature of macrophages exposed to nanoparticles ranging in diameter from 100 to 125 nm and made from silk, poly(lactic-co-glycolic acid) or silica. Nanoparticles of this size and type are currently at various stages of preclinical and clinical development for drug delivery applications. 1 H NMR analysis of cell extracts and culture media is used to quantify the changes in the intracellular and extracellular metabolomes of macrophages in response to nanoparticle exposure. Increased glycolytic activity, an altered tricarboxylic acid cycle, and reduced ATP generation are consistent with a proinflammatory phenotype. Furthermore, amino acids possibly arising from autophagy, the creatine kinase/phosphocreatine system, and a few osmolytes and antioxidants emerge as important players in the metabolic reprogramming of macrophages exposed to nanoparticles. This metabolic signature is a common response to all nanoparticles tested; however, the direction and magnitude of some variations are clearly nanoparticle specific, indicating material-induced biological specificity. Overall, metabolic reprogramming of macrophages can be achieved with nanoparticle treatments, modulated through the choice of the material, and monitored using 1 H NMR metabolomics. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    PubMed

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  18. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    NASA Astrophysics Data System (ADS)

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-01-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  19. High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants

    PubMed Central

    Hu, Ting-Chou; Korczyńska, Justyna; Smith, David K.; Brzozowski, Andrzej Marek

    2008-01-01

    Protein crystallization has been revolutionized by the intro­duction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-­glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here. PMID:18703844

  20. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films.

    PubMed

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.