Science.gov

Sample records for acid porphyrin chloride

  1. Porphyrins

    NASA Astrophysics Data System (ADS)

    Gotelli, George R.; Wall, Jeffrey H.; Kabra, Pokar M.; Marton, Laurence J.

    Historically the term porphyria has been used since it was coined in 1871 to describe a purple colored material extracted from pathological feces (1). The first case of porphyria was reported in 1874, (2, 3), but until the 1930 Nobel Prize winning work of Hans Fischer on the synthesis of protoporphyrin, there was little more than academic interest in porphyrin analysis. During the forty years between 1930 and 1970, the biosynthetic pathways leading to the formation of heme, and the details of porphyrin metabolism, were elucidated. During this time quantitative methods for porphyrins in biological fluids used complex and laborious solvent extraction techniques, requiring large sample volumes and hours to complete. We now know that these methods only partially separated the complex mixture of porphyrins found in biological fluids. These solvent extraction procedures fractionated the porphyrins into two broad groups, uroporphyrins (octacarboxylic) and coproporphyrins (tetracarboxylic). However, intermediate carboxylated porphyrin containing 2, 3, 5, 6, and 7 carboxyl groups are now known to exist in normal and pathlogical excreta, which were not differentiated, but which were included in the two broad uroporphyrin and copropophyrin groups.

  2. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System.

    PubMed

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-12-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor-acceptor and coordinative pyridine-zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane⋅chloride complex reveals that the chloride anion is encapsulated within the catenane's interlocked binding cavity through six convergent CH⋅⋅⋅⋅Cl and NH⋅⋅⋅Cl hydrogen-bonding interactions and solution-phase (1) H NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  3. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System

    PubMed Central

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-01-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor–acceptor and coordinative pyridine–zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane⋅chloride complex reveals that the chloride anion is encapsulated within the catenane’s interlocked binding cavity through six convergent CH⋅⋅⋅⋅Cl and NH⋅⋅⋅Cl hydrogen-bonding interactions and solution-phase 1H NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  4. Porphyrins

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.

    1996-01-01

    The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.

  5. Porphyrins

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.

    1996-11-05

    The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.

  6. Selectivity Enhancement for Chloride Ion by In(III)-Porphyrin-Based Polymeric Membrane Electrode Operated in Pulsed Chronopotentiometric Mode

    PubMed Central

    Gemene, Kebede L.; Meyerhoff, Mark E.

    2013-01-01

    A robust selectivity enhancement of an In(III)-porphyrin ionophore-based chloride-selective electrode under pulsed chronopotentiometric measurement mode that enables the detection of chloride ions in the presence of a normally interfering concentration of salicylate ions is described. This enhancement is achieved by the rapid depletion of the surface concentration of the more dilute lipophilic anion during an initial anodic current pulse period due to extraction of this preferred anion into the membrane phase. Measurement of chloride with a detection limit of 8 mM and near Nernstian response slope in the presence of 1 mM salicylate is possible using the pulstrode method. PMID:23355767

  7. Exogenous delta-animolevulinic acid induces the porphyrin biosynthesis in human skin organ cultures with different porphyrin patterns in normal and malignant human tissue

    NASA Astrophysics Data System (ADS)

    Fritsch, Clemens; Batz, Janine; Bolsen, Klaus; Schulte, Klaus; Ruzicka, Thomas; Goerz, Guenter

    1995-03-01

    The carboxylation state of porphyrin metabolites causes their hydrophilic or lipophilic properties and subsequently their distribution in tissues, cells, and subcellular compartments. The profile of porphyrin metabolites either in normal skin or in malignant skin tumors after administration of (delta) -aminolevulinic acid has been studied in detail, yet. Explant cultures of normal skin and neoplastic tissues, e.g., keratoakanthoma and basal cell carcinoma, were incubated with 1 mM ALA for 36 h. Total porphyrin concentration and percentage of porphyrin metabolites were determined quantitatively in tissues and corresponding supernatants. Seventy - ninety percent of total porphyrins could be detected in the supernatants of all samples. The highly carboxylated porphyrins were the prevailing metabolites in the supernatants as well as in the tissues. The basal cell carcinoma produced significantly more protoporphyrin and the keratoakanthoma significantly more coproporphyrin as compared to normal skin. The results show that explant cultures offer an easy approach to examine the enzymatic capacity in porphyrin biosynthesis of various tissues. Benign and malignant human tissues produce different porphyrin metabolites, which may be useful for selective and more effective photodynamic diagnosis or therapy.

  8. Effect of beryllium chloride on porphyrin metabolism in pregnant mice administered by subcutaneous injection

    SciTech Connect

    Sakaguchi, Sanae; Sakaguchi, Takehiro; Nakamura, Iwao

    1997-04-11

    The effect of beryllium (Be) compounds on porphyrins was investigated in pregnant mice. The blood protoporphyrin (Proto) and zinc protoporphyrin (Zn Proto) concentrations were increased in pregnancy. Regardless of pregnancy or nonpregnancy, the Proto concentration was decreased after Be injection. Delta-aminolevulinic acid dehydratase (ALA-D) and porphobilinogen deaminase (PBG-D) activities in blood were significantly elevated in the pregnant untreated (Con-pregnant) group, compared to the nonpregnant mice untreated (Con-nonpregnant) and nonpregnant mice treated with Be (Be-nonpregnant) groups. The blood ALA-D activity of the pregnant mice treated with Be (Be-pregnant group) tended to decrease, compared to Con-pregnant group. The blood PBG-D activity in the Be-pregnant group was significantly lower compared with that of the Con-pregnant group. The ALA-D and PBG-D activities in the spleen were also significantly elevated in the Con-pregnant group, compared to nonpregnant groups. However, it was noted that these values in the Be-pregnant group were almost the same as that of the Con-nonpregnant group and were significantly lower than that in the Con-pregnant group. The elevation of AL-D and PBG-D activities in the blood and spleen, which play a role in the hematopoietic function of mice, was observed in the Con-pregnant mice compared to the nonpregnant mice. However, the phenomenon was not observed in the Be-pregnant mice, it suggesting that Be suppressed the pregnancy-induced increase in hematopoietic function. 26 refs., 3 figs., 2 tabs.

  9. Effect of beryllium chloride on porphyrin metabolism in pregnant mice administered by subcutaneous injection.

    PubMed

    Sakaguchi, S; Sakaguchi, T; Nakamura, I; Aminaka, M; Tanaka, T; Kudo, Y

    1997-04-11

    The effect of beryllium (Be) compounds on porphyrins was investigated in pregnant mice. The blood protoporphyrin (Proto) and zinc protoporphyrin (Zn Proto) concentrations were increased in pregnancy. Regardless of pregnancy or nonpregnancy, the Proto concentration was decreased after Be injection. Delta-aminolevulinic acid dehydratase (ALA-D) and porphobilinogen deaminase (PBG-D) activities in blood were significantly elevated in the pregnant untreated (Con-pregnant) group, compared to the nonpregnant mice untreated (Con-nonpregnant) and nonpregnant mice treated with Be (Be-nonpregnant) groups. The blood ALA-D activity of the pregnant mice treated with Be (Be-pregnant group) tended to decrease, compared to Con-pregnant group. The blood PBG-D activity in the Be-pregnant group was significantly lower compared with that of the Con-pregnant group. The ALA-D and PBG-D activities in the spleen were also significantly elevated in the Con-pregnant group, compared to nonpregnant groups. However, it was noted that these values in the Be-pregnant group were almost the same as that of the Con-nonpregnant group and were significantly lower than that in the Con-pregnant group. The elevation of ALA-D and PBG-D activities in the blood and spleen, which play a role in the hematopoietic function of mice, was observed in the Con-pregnant mice compared to the nonpregnant mice. However, the phenomenon was not observed in the Be-pregnant mice, it suggesting that Be suppressed the pregnancy-induced increase in hematopoietic function.

  10. Determination of threshold dose with delta-aminolevulinic acid-induced porphyrins for effective photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fritsch, Clemens; Abels, Christoph; Bolsen, Klaus; Ruzicka, Thomas; Goetz, Alwin E.; Goerz, Guenter

    1995-03-01

    In this study the metabolism in tumors and various tissues of intravenously administered (delta) -aminolevulinic acid was investigated. Amelanotic melanoma (A-Mel-3) were implanted in the dorsal skin of Syrian golden hamsters. Distribution and metabolism of i.v. injected (delta) -aminolevulinic acid in blood was studied by determination of (delta) - aminolevulinic acid and protoporphyrin concentration in red blood cells. In addition extraction of various tissues, e.g. tumor, liver, kidney, and normal skin was performed, to verify fluorescence kinetic studies by determination of total porphyrin concentration by photometry and of distribution of the porphyrin metabolites by HPLC. In untreated animals the total porphyrin concentration in all tissues examined were comparably low. In red blood cells the maximal concentration of (delta) -aminolevulinic acid as well as protoporphyrin was detected 45 min after i.v. injection of (delta) -aminolevulinic acid. Porphyrins accumulated in melanoma reaching a maximum tumor:skin tissue ratio of 6.9:1 at 45 min after i.v. injection of (delta) -aminolevulinic acid. A second high tumor:skin tissue ratio of 5.7:1 could be measured at 24 h after injection, but at this point in time the protoporphyrin content in normal skin was higher than 45 min after injection. The kidney may not be strongly affected by i.v. administration of (delta) -aminolevulinic acid, whereas the liver reveals an accumulation of porphyrins, e.g. protoporphyrin. Concluding from these results in this experimental tumor model, i.v. administration of (delta) -aminolevulinic acid seems to be a promising modality to perform photodynamic therapy more effectively and more selectively by irradiation 45 - 180 min after injection of (delta) -aminolevulinic acid.

  11. J-aggregate formation of a water-soluble porphyrin in acidic aqueous media

    NASA Astrophysics Data System (ADS)

    Ohno, Osamu; Kaizu, Youkoh; Kobayashi, Hiroshi

    1993-09-01

    J aggregate of a water-soluble porphyrin, 5,10,15,20-tetra(4-sulfophenyl)porphyrin (H2TPPS44-), formed in acidified aqueous solutions, exhibits sharp and intense absorption bands at 491 and 707 nm. These characteristic transitions, J bands, are of linear oscillators polarized in the long axis of rodlike aggregate. The molecules in the aggregate stack so as to lift the degeneracy of the porphyrin planar oscillator excited states. Measurements of flow-induced linear dichroism, circular dichroism, magnetic circular dichroism, as well as polarized fluorescence excitation spectra provide evidence not only of linear oscillator character of the intense J band at 491 nm, but also of presence of another diffuse absorption band around at 420 nm polarized in the short axis of the aggregate, which is the counterpart of the 491 nm band of porphyrin Soret origin. Extrinsic circular dichroism is induced upon addition of L-tartaric acid or by mechanical swirling flow in the period of aggregate growth. Resonance Raman spectrum of the aggregate is rather similar to that of the monomeric diacid except the polarization. The observed shifts of Raman peaks to lower frequency are ascribed to a deformation of porphyrin moiety and/or hydrophobic interaction between component molecules in the aggregate. The sharp and intense J bands polarized in the long axis of aggregate cannot be well described without taking into account the participation of interporphyrin charge resonance excited states, whereas the broadbands polarized in the short axis are exclusively ascribed to exciton resonance excited states. The porphyrin J band is characterized as sustaining an exchange narrowing by fast migration of excitation over the whole system of chromophores in a linear array of the porphyrin planar oscillators in slipped face-to-face stacking.

  12. Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid-porphyrin conjugates.

    PubMed

    Meng, Shuai; Xu, Zengping; Hong, Ge; Zhao, Lihui; Zhao, Zhanjuan; Guo, Jianghong; Ji, Haiying; Liu, Tianjun

    2015-03-01

    Photodynamic antimicrobial chemotherapy (PACT), as a novel and effective modality for the treatment of infection with the advantage of circumventing multidrug resistance, receives great attention in recent years. The photosensitizer is the crucial element in PACT, and cationic porphyrins have been demonstrated to usually be more efficient than neutral and negatively charged analogues towards bacteria in PACT. In this work, three native basic amino acids, l-lysine, l-histidine and l-arginine, were conjugated with amino porphyrins as cationic auxiliary groups, and 13 target compounds were synthesized. This paper reports their syntheses, structural characterizations, oil-water partition coefficients, singlet oxygen generation yields, photo-stability, as well as their photo inactivation efficacies against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa in vitro. The preliminary structure-activity relationship was discussed. Compound 4i, with porphyrin bearing four lysine moieties, displays the highest photo inactivation efficacy against the tested bacterial strains at 3.91 μM with a low light dose (6 J/cm(2)), and it is stable in serum and lower cytotoxicity to A929 cells. These basic amino acid-porphyrin conjugates are potential photosensitizers for PACT.

  13. Pre-steady state reactivity of 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron(III) chloride with hydrogen peroxide.

    PubMed

    Cunningham, Ian D; Basaleh, Amal; Gazzaz, Hanaa A

    2012-08-14

    A stopped-flow study has shown that tetrakis(pentafluoro-phenyl)porphyrin iron(III) chloride reacts rapidly (<3 ms) with hydrogen peroxide to form a Fe(III)-H(2)O(2) complex where log K = 2.39. This subsequently undergoes rapid intramolecular conversion (k = 4.4 s(-1)) to an iron(IV) intermediate, which in turn reacts with hydrogen peroxide (k' = 54.3 M(-1) s(-1)) to reform the original Fe(III)-H(2)O(2) complex.

  14. Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract.

    PubMed

    Loh, C S; Vernon, D; MacRobert, A J; Bedwell, J; Bown, S G; Brown, S B

    1993-09-01

    The accumulation of endogenous porphyrins in rats following systemic administration of 5-aminolaevulinic acid (ALA) has been examined to assess the photosensitization characteristics of this technique for photodynamic therapy (PDT) and chemical extraction assays with fluorescence and absorbance detection of the porphyrin content have been carried out. We compared the results obtained using quantitative microfluorimetry on normal gastric and colonic tissues in rats at 0.5, 1, 2, 4 and 6 h and chemically induced duodenal tumours 2 and 4.5 h after intravenous administration of ALA at a dose of 200 mg kg-1. With chemical extraction followed by high performance liquid chromatography analysis, protoporphyrin IX (PpIX) was found to be the predominant porphyrin present, reaching peak levels of several microgrammes per gramme at 2-4 h in each type of tissue; a small amount of coproporphyrin was detected at 0.5 and 2 h in normal gastric mucosa and duodenal tumour respectively. Both the extraction assay and quantitative microfluorimetry showed that the porphyrin fluorescence builds up rapidly in the mucosal layers of the colon and stomach, reaching a maximum at 2 h, whereas lower fluorescence levels were found with a slower rate of accumulation in the corresponding muscularis layers. A significant PpIX content was found in the duodenal tumour, with a maximum of 7.1 micrograms g-1 4.5 h after ALA administration. We conclude that systemic administration of ALA can induce effective tissue sensitization with protoporphyrin IX and appears to be a promising technique for PDT.

  15. Acid copper sulfate plating bath: Control of chloride and copper

    SciTech Connect

    Borhani, K.J.

    1992-08-01

    Plated-through holes in high-reliability printed wiring boards require a ductile copper plate of uniform consistency. The level of control of the chemical constituents in the electroplating solutions dictates the physical properties of the copper plate. To improve the control of the chemical bath constituents, in-situ methods for electrochemically determining copper and chloride in acid copper sulfate baths were developed. A solid-state ion-selective electrode was used for the chloride ion and proved to be more reproducible than conventional silver chloride turbidimetric methods. The use of a copper solid-state ion-selective electrode in-situ was also successful in this application.

  16. Influence of solvent composition on the kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl].

    PubMed

    Stephenson, Ned A; Bell, Alexis T

    2006-03-20

    The epoxidation of cyclooctene catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl] was investigated in alcohol/acetonitrile solutions in order to determine the effects of the alcohol composition on the reaction kinetics. It was observed that alcohol composition affects both the observed rate of hydrogen peroxide consumption (the limiting reagent) and the selectivity of hydrogen peroxide utilization to form cyclooctene epoxide. The catalytically active species are formed only in alcohol-containing solvents as a consequence of (F(20)TPP)FeCl dissociation into [(F20TPP)Fe(ROH)]+ cations and Cl- anions. The observed reaction kinetics are analyzed in terms of a proposed mechanism for the epoxidation of the olefin and the decomposition of H2O2. The first step in this scheme is the reversible coordination of H2O2 to [(F20TPP)Fe(ROH)]+. The O-O bond of the coordinated H2O2 then undergoes either homolytic or heterolytic cleavage. The rate of homolytic cleavage is found to be independent of alcohol composition, whereas the rate of heterolytic cleavage increases with alcohol acidity. Heterolytic cleavage is envisioned to form iron(IV) pi-radical cations, whereas homolytic cleavage forms iron(IV) hydroxo cations. The iron(IV) radical cations are active for olefin epoxidation, whereas the iron(IV) cations catalyze the decomposition of H2O2. Reaction of iron(IV) pi-radical cations with H2O2 to form iron(IV) hydroxo cations is also included in the mechanism, a process that is favored by alcohols with a high charge density on the O atoms. The proposed mechanism describes successfully the effects of H2O2, cyclooctene, and porphyrin concentrations, as well as the effects of alcohol concentration.

  17. Aluminum Chloride Hexahydrate in a Salicylic Acid Gel

    PubMed Central

    Valins, Whitney

    2009-01-01

    Hyperhidrosis is a common dermatological condition that has a tremendous impact on the quality of life of affected patients. Aluminum chloride hexahydrate is considered first-line therapy for patients with mild-to-moderate hyperhidrosis. This treatment has been proven to be effective in the treatment of hyperhidrosis; however, its use has been limited by significant irritation. In many patients, the irritant dermatitis is so severe that, despite clinical efficacy, this therapy must be discontinued. There are many topical aluminum chloride therapies available. Observations from a busy hyperhidrosis practice revealed decreased irritation and increased efficacy with a novel therapy that combines 15% aluminum chloride hexahydrate with 2% salicylic acid in a gel base. This combination of 15% aluminum chloride hexahydrate with 2% salicylic acid offers patients who have failed aluminum chloride hexahydrate in the past excellent efficacy with minimal irritation. We report seven cases of patients with a history of severe irritation from aluminum chloride who maintained excellent results with this new topical without any significant irritation. PMID:20729946

  18. REMOVAL OF CHLORIDE FROM ACIDIC SOLUTIONS USING NO2

    SciTech Connect

    Visser, A; Robert Pierce, R; James Laurinat, J

    2006-08-22

    Chloride (Cl{sup -}) salt processing in strong acids is used to recycle plutonium (Pu) from pyrochemical residues. The Savannah River National Laboratory (SRNL) is studying the potential application of nitrogen dioxide (NO{sub 2}) gas to effectively convert dissolved pyrochemical salt solutions to chloride-free solutions and improve recovery operations. An NO{sub 2} sparge has been shown to effectively remove Cl{sup -} from solutions containing 6-8 M acid (H{sup +}) and up to 5 M Cl{sup -}. Chloride removal occurs as a result of the competition of at least two reactions, one which is acid-dependent. Below 4 M H+, NO2 reacts with Cl- to produce nitrosyl chloride (ClNO). Between 6 M and 8 M H{sup +}, the reaction of hydrochloric acid (HCl) with nitric acid (HNO{sub 3}), facilitated by the presence of NO{sub 2}, strongly affects the rate of Cl{sup -} removal. The effect of heating the acidic Cl{sup -} salt solution without pre-heating the NO{sub 2} gas has minimal effect on Cl{sup -} removal rates when the contact times between NO{sub 2} and the salt solution are on the order of seconds.

  19. Lead electrowinning in an acid chloride medium

    NASA Astrophysics Data System (ADS)

    Expósito, E.; Iniesta, J.; González-García, J.; Montiel, V.; Aldaz, A.

    The results of an investigation of the electrowinning of lead employing a chloride medium are reported. The electro-deposition lead reaction was studied by voltammetric methods and scanning electron microscope (SEM) microphotographs of the electro-deposited lead were taken. The effects of current density, temperature, catholyte flow and H + concentration were investigated at laboratory scale to optimise operating conditions in order to found adequate values for industrial purposes of the parameters energetic cost and production. For a working current density of 100 mA/cm 2 the current efficiency, energy consumption and production were 90%, 1.32 kW h/kg Pb and 83.4 kg Pb/m 2 per day, respectively.

  20. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst

    PubMed Central

    Oveisi, Ali R.; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880 m2/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  1. Porphyrin analysis and coal rank. A porphyrin index of coalification

    SciTech Connect

    Bonnett, R.; Hughes, P.S. )

    1989-03-01

    The stable aromatic nature of the porphyrin nucleus might be expected to make biomarkers containing it excellent bases for the study of the maturation of sedimentary deposits. Thus the porphyrin macroring can be thought of as an inert carrier of information contained in eight or nine peripheral substituents the increased cracking of which would reveal increased maturation. For non-migrating fossil fuels such as lignite and coal, a relationship between the distribution of porphyrin molecular mass and coal rank would result. This idea is examined for a series of well characterized bituminous coals from the British Carboniferous. Extraction of porphyrins and metalloporphyrins is carried out with methanolic sulfuric acid, and the gallium porphyrin concentrates are analyzed both by HPLC and by mass spectrometry. A Porphyrin Index of Coalification (PIC Number) is derived and related to other maturity indices. Within the range of examples chosen it appears to provide a useful scientifically-based indicator of coal maturity.

  2. Effects of methanol on the thermodynamics of iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride dissociation and the creation of catalytically active species for the epoxidation of cyclooctene.

    PubMed

    Stephenson, Ned A; Bell, Alexis T

    2006-07-10

    In a previous study, the authors showed that iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride [(F20TPP)FeCl] is catalytically inactive for cyclooctene epoxidation by hydrogen peroxide in acetonitrile but is catalytically active if the solvent contains methanol. It was suggested that the precursor to the active species is (F20TPP)Fe(OCH3) in methanol-containing solvents. The present study was aimed at evaluating this hypothesis. (F20TPP)Fe(OCH3) was synthesized and characterized by 1H NMR but was found to be inactive in both acetonitrile and methanol. Further investigation of the interactions of (F20TPP)FeCl with methanol in acetonitrile/methanol mixtures was then carried out using NMR. Two species, characterized by 1H NMR resonances at 82 and 65 ppm, were observed. The first resonance is attributed to the beta-pyrrole protons on molecularly dissolved (F20TPP)FeCl, whereas the second is attributed to beta-pyrrole protons of [(F20TPP)Fe]+ cations that are stabilized by coordination with a molecule of methanol, viz., [(F20TPP)Fe(CH3OH)]+. The relative concentration of [(F20TPP)Fe(CH3OH)]+ increases as the fraction of methanol in the solvent increases, suggesting that methanol facilitates the dissociation of (F20TPP)FeCl into cations and anions. A thermodynamic model of the dissociation is proposed and found to describe successfully the experimental observation over a range of solvent compositions, porphyrin concentrations, and temperatures. UV-visible spectroscopy was also used to validate the developed model. In addition, the observed rate constant for cyclooctene epoxidation was found to be proportional to the concentration of [(F20TPP)Fe(CH3OH)]+ calculated using the thermodynamic model, suggesting that this intermediate is a precursor to the species that catalyzes olefin epoxidation. The catalytic activity of [(F20TPP)Fe(CH3OH)]+ was further confirmed through experiments in which (F20TPP)Fe(OCH3) dissolved in methanol was reacted with HCl(aq). This

  3. Adsorption of porphyrin and carminic acid on TiO2 nanoparticles: A photo-active nano-hybrid material for hybrid bulk heterojunction solar cells.

    PubMed

    Munir, Shamsa; Shah, Syed Mujtaba; Hussain, Hazrat; Siddiq, Muhammad

    2015-12-01

    A photo-active nano-hybrid material consisting of titania nanoparticles, carminic acid, and sulphonic acid functionalized porphyrin is reported here. In an attempt to extend the absorption spectrum of titania to visible region by co-adsorbing carminic acid and sulphonic acid functionalized porphyrin on its surface. Interesting changes in the UV-visible and fluorescence spectra were noticed. The adsorption of carminic acid resulted in the formation of charge transfer complex with titania nanoparticles. This was confirmed by the electronic absorption and fluorescence emission spectroscopies. Chemisorption of porphyrin on the carminic acid functionalized titania further boosted the charge transfer effect. This was noticed by the increase in intensity and width of the charge transfer absorption and emission bands. Energy level diagram showed that the interaction among the constituents of the nano-hybrid assembly permitted the flow of electron in a cascade manner from carminic acid to TiO2.This also allowed direct flow of electrons either from carminic acid or porphyrin toward titania. The material was used as an active blend in hybrid bulk heterojunction solar cells. Co-functionalized TiO2-based devices were found 3.5 times more efficient than the reference device but morphology of the device proved a major setback. PMID:26555643

  4. Adsorption of porphyrin and carminic acid on TiO2 nanoparticles: A photo-active nano-hybrid material for hybrid bulk heterojunction solar cells.

    PubMed

    Munir, Shamsa; Shah, Syed Mujtaba; Hussain, Hazrat; Siddiq, Muhammad

    2015-12-01

    A photo-active nano-hybrid material consisting of titania nanoparticles, carminic acid, and sulphonic acid functionalized porphyrin is reported here. In an attempt to extend the absorption spectrum of titania to visible region by co-adsorbing carminic acid and sulphonic acid functionalized porphyrin on its surface. Interesting changes in the UV-visible and fluorescence spectra were noticed. The adsorption of carminic acid resulted in the formation of charge transfer complex with titania nanoparticles. This was confirmed by the electronic absorption and fluorescence emission spectroscopies. Chemisorption of porphyrin on the carminic acid functionalized titania further boosted the charge transfer effect. This was noticed by the increase in intensity and width of the charge transfer absorption and emission bands. Energy level diagram showed that the interaction among the constituents of the nano-hybrid assembly permitted the flow of electron in a cascade manner from carminic acid to TiO2.This also allowed direct flow of electrons either from carminic acid or porphyrin toward titania. The material was used as an active blend in hybrid bulk heterojunction solar cells. Co-functionalized TiO2-based devices were found 3.5 times more efficient than the reference device but morphology of the device proved a major setback.

  5. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  6. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  7. Urinary thiodiglycolic acid levels for vinyl chloride monomer-exposed polyvinyl chloride workers.

    PubMed

    Cheng, T J; Huang, Y F; Ma, Y C

    2001-11-01

    Thiodiglycolic acid (TdGA) is the major metabolite of vinyl chloride monomer (VCM) detected in human urine. Although urinary TdGA has been reported to be associated with ambient VCM exposure, the relationship between urinary TdGA and a low level of air VCM is not clear. Questionnaires were administered to 16 polyvinyl chloride manufacturing workers to obtain a detailed history of occupation and lifestyle. For each worker, personal air monitoring for VCM was performed and a time-weighted average for VCM exposure was calculated. The urinary TdGA levels at the end of a work shift, and at the commencement of the next shift, were also assessed for each worker. Urine analysis revealed that TdGA levels at the beginning of the next shift were higher than those at the end of that shift. Workers experiencing a VCM exposure greater than 5 ppm in air revealed a urinary TdGA level significantly greater than those experiencing a VCM exposure of less than 5 ppm (P < 0.05). The best fit of regression for urinary TdGA on air VCM was Y = 1.06 + 0.57X for urine collected at the commencement of the following work shift, where X is the air VCM concentration and Y is the urinary TdGA concentration (r2 = 0.65, P < 0.01). We conclude that the urinary TdGA level is best detected at the commencement of the next shift and that it can be used as an exposure marker for polyvinyl chloride workers when the air VCM level to which they are exposed is greater than 5 ppm.

  8. Photodynamic therapy with 5-aminoolevulinic acid-induced porphyrins and DMSO/EDTA for basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Warloe, Trond; Peng, Qian; Heyerdahl, Helen; Moan, Johan; Steen, Harald B.; Giercksky, Karl-Erik

    1995-03-01

    Seven hundred sixty three basal cell carcinomas (BCCs) in 122 patients were treated by photodynamic therapy by 5-aminolevulinic acid (ALA) in cream topically applied, either alone, in combination with dimethyl sulphoxide (DMSO) and ethylenediaminetetraacetic acid disodium salt (EDTA), or with DMSO as a pretreatment. After 3 hours cream exposure 40 - 200 Joules/cm2 of 630 nm laser light was given. Fluorescence imaging of biopsies showed highly improved ALA penetration depth and doubled ALA-induced porphyrin production using DMSO/EDTA. Treatment response was recorded after 3 months. After a single treatment 90% of 393 superficial lesions responded completely, independent of using DMSO/EDTA. In 363 nodulo-ulcerative lesions the complete response rate increased from 67% to above 90% with DMSO/EDTA for lesions less than 2 mm thickness and from 34% to about 50% for lesions thicker than 2 mm. Recurrence rate observed during a follow-up period longer than 12 months was 2 - 5%. PDT of superficial thin BCCs with ALA-induced porphyrins and DMSO/EDTA equals surgery and radiotherapy with respect to cure rate and recurrence. Cosmetic results of ALA-based PDT seemed to be better than those after other therapies. In patients with the nevoid BCC syndrome the complete response rate after PDT was far lower.

  9. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    SciTech Connect

    Arizaga, Gregorio Guadalupe Carbajal

    2012-01-15

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 Degree-Sign C while the exothermic event in ZHN was 366 Degree-Sign C and in the LDH at 276 Degree-Sign C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}2H{sub 2}O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 Degree-Sign C, while the highest exothermic event in ZHN was at 366 Degree-Sign C, and in the LDH it was at 276 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. Black-Right-Pointing-Pointer ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. Black-Right-Pointing-Pointer NH{sub 3} molecules can be intercalated into ZHC. Black-Right-Pointing-Pointer The amino group of amino acids limits the intercalation by ion-exchange.

  10. The Antimicrobial Activity of Porphyrin Attached Polymers

    NASA Astrophysics Data System (ADS)

    Thompson, Lesley

    2008-03-01

    We are interested in testing the antimicrobial activity of a porphyrin that is attached to a polymer. The porphyrin (5-(4-carboxyphenyl)-10,15,20-tris-(4-pryridyl)) was synthesized from methyl 4-formyl benzoate, 4-pyridinecarboxaldehyde, and pyrrole and attached to a copolymer of polystyrene/poly(vinyl benzyl chloride), which was synthesized by free radical polymerization. The antimicrobial activity of the polymer-attached porphyrin was then determined for gram-negative E. Coli grown to 0.80 OD. In this procedure, glass slides were coated with polymer-attached porphyrin via dip-coating, and the E. Coli bacteria were plated in Luria Broth media. The plates were subsequently exposed to light overnight before they were incubated as porphyrins act as photo-sensitizers when irradiated with light. The polymer-attached porphyrin did exhibit antimicrobial activity and parameters that affect its efficiency will be discussed.

  11. J-aggregation of a water-soluble tetracationic porphyrin in mixed LB films with a calix[8]arene carboxylic acid derivative.

    PubMed

    Miguel, Gustavo de; Pérez-Morales, Marta; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2007-03-27

    The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix.

  12. Antimicrobial Effect of Calcium Chloride Alone and Combined with Lactic Acid Injected into Chicken Breast Meat.

    PubMed

    Alahakoon, Amali U; Jayasena, Dinesh D; Jung, Samooel; Kim, Hyun Joo; Kim, Sun Hyo; Jo, Cheorun

    2014-01-01

    Chicken breast meat was injected with calcium chloride alone and in combination with lactic acid (0.01% and 0.002%, respectively). The inhibitory effects of the treatments on microbial growth were determined in the injected chicken breast meat stored at 4°C under aerobic packaging condition for 0, 3, and 7 d. Calcium chloride combined with 0.002% and 0.01% lactic acid reduced microbial counts by 0.14 and 1.08 Log CFU/g, respectively, however, calcium chloride alone was unable to inhibit microbial growth. Calcium chloride combined with 0.01% lactic acid was the most effective antimicrobial treatment and resulted in the highest initial redness value. Calcium chloride alone and combined with lactic acid suppressed changes in pH and the Hunter color values during storage. However, injection of calcium chloride and lactic acid had adverse effects on lipid oxidation and sensory characteristics. The higher TBARS values were observed in samples treated with calcium chloride and lactic acid when compared to control over the storage period. Addition of calcium chloride and lactic acid resulted in lower sensory scores for parameters tested, except odor and color, compared to control samples. Therefore, the formulation should be improved in order to overcome such defects prior to industrial application.

  13. Antimicrobial Effect of Calcium Chloride Alone and Combined with Lactic Acid Injected into Chicken Breast Meat

    PubMed Central

    Alahakoon, Amali U.; Jayasena, Dinesh D.; Jung, Samooel; Kim, Sun Hyo

    2014-01-01

    Chicken breast meat was injected with calcium chloride alone and in combination with lactic acid (0.01% and 0.002%, respectively). The inhibitory effects of the treatments on microbial growth were determined in the injected chicken breast meat stored at 4°C under aerobic packaging condition for 0, 3, and 7 d. Calcium chloride combined with 0.002% and 0.01% lactic acid reduced microbial counts by 0.14 and 1.08 Log CFU/g, respectively, however, calcium chloride alone was unable to inhibit microbial growth. Calcium chloride combined with 0.01% lactic acid was the most effective antimicrobial treatment and resulted in the highest initial redness value. Calcium chloride alone and combined with lactic acid suppressed changes in pH and the Hunter color values during storage. However, injection of calcium chloride and lactic acid had adverse effects on lipid oxidation and sensory characteristics. The higher TBARS values were observed in samples treated with calcium chloride and lactic acid when compared to control over the storage period. Addition of calcium chloride and lactic acid resulted in lower sensory scores for parameters tested, except odor and color, compared to control samples. Therefore, the formulation should be improved in order to overcome such defects prior to industrial application. PMID:26760942

  14. Artificial photosynthesis of. beta. -ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin

    SciTech Connect

    Hirai, Yasuhiro; Aida, Takuzo; Inoue, Shohei )

    1989-04-12

    Photochemical fixation of carbon dioxide is of much interest in connection with biological photosynthesis by green plants as well as from the viewpoint of carbon resource utilization. One of the important steps in the assimilation of carbon dioxide is the carboxylation of a carbonyl compound into ketocarboxylic acid, where the reaction proceeds via an enolate species as reactive intermediate. For example, in four carbon (C{sub 4}) pathway and Crassulacean acid metabolism (CAM) processes, pyruvate is converted with the aid of ATP into phosphoenolpyruvate, which is subsequently carboxylated to give oxaloacetate by the action of pyruvate carboxylase. In relation to this interesting biological process, some artificial systems have been exploited for the synthesis of {beta}-ketocarboxylic acid derivatives from carbon dioxide and ketones using nucleophiles such as metal carbonates, thiazolates, phenolates, alkoxides, and strong organic as well as inorganic basis, which promote the enolization of ketones in the intermediate step. We wish to report here a novel, visible light-induced fixation of carbon dioxide with the enolate complex of aluminum porphyrin, giving {beta}-ketocarboxylic acid under mild conditions.

  15. Three novel metal-organic frameworks based on flexible porphyrin tetracarboxylic acids as highly effective catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Zengqi; Su, Xiaoqin; Yu, Fan; Li, Jun

    2016-06-01

    Targeted synthesis of metalloporphyrinic frameworks (MPFs) with Cu(II) (1), Ni(II) (2, 3) 5, 10, 15, 20-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (Cu(TCMOPP) and Ni(TCMOPP)) as building blocks afforded three new extended coordination polymers inter-linked by Zn(II) (1) and K(I) (2, 3). 1 shows 2D frameworks while 2, 3 are 3D frameworks. The open channel are 7-17 Å wide and accessible to guest/solvent molecules. Besides, the thermogravimetric analyses (TGA) indicate that the framework structures of the three compounds are stable until 300 °C. In addition, the catalytic activities of 1-3 to the alkylbenzenes oxidation are examined, and the results indicate that 1 exhibit high catalytic activity to oxidation of ethylbenzene and 1,2,3,4-tetrahydronaphthalene with conversion of 64.1% and 80.3% respectively.

  16. TESTING OF 304L STAINLESS STEEL IN NITRIC ACID ENVIRONMENTS WITH FLUORIDES AND CHLORIDES

    SciTech Connect

    Mickalonis, J.

    2010-10-04

    Impure radioactive material processed in nitric acid solutions resulted in the presence of chlorides in a dissolver fabricated from 304L stainless steel. An experimental program was conducted to study the effects of chloride in nitric acid/fluoride solutions on the corrosion of 304L stainless steel. The test variables included temperature (80, 95, and 110 C) and the concentrations of nitric acid (6, 12, and 14 M), fluoride (0.01, 0.1, and 0.2 M) and chloride (100, 350, 1000, and 2000 ppm). The impact of welding was also investigated. Results showed that the chloride concentration alone was not a dominant variable affecting the corrosion, but rather the interaction of chloride with fluoride significantly affected corrosion.

  17. Nonplanarity and the protonation behavior of porphyrins

    SciTech Connect

    SOMMA,MARIA S.; MEDFORTH,CRAIG J.; TH,KEVIN M.; SHELNUTT,JOHN A.

    2000-03-21

    {sup 1}H NMR studies of the protonation of highly nonplanar porphyrins with strong acids reveal the presence of the previously elusive monocation, and show that its stability can be related to the amount of saddle distortion induced by protonation; the amount of saddle distortion for a porphyrin dication is also found to correlate well with the rate of intermolecular proton transfer.

  18. Photochemical effect of humic acid components separated using molecular imprinting method applying porphyrin-like substances as templates in aqueous solution.

    PubMed

    Yu, Chunyan; Zhang, Yaobin; Quan, Xie; Chen, Shuo; Han, Jianbo; Ou, Xiaoxia; Zhao, Jincai

    2010-08-01

    To elucidate the relationship between photochemical functions with the structure of humic acids (HA), we developed a molecular imprinting method to separate the substances with given structure and investigated their photochemical behavior in aqueous solution. The substances with porphyrin-like core structure, such as chlorophyll or heme, were employed as template substances for preparing molecular imprinting polymers (MIP). The polymers were used to separate the substances with porphyrin-like structure from HA. Photochemical experiments were conducted to evaluate effects of the separated HA fractions on the photodegradation of coexisting organic pollutant. The results showed that all fractions bound by MIP accelerated photochemical degradation of coexisting 2,4-dichlorophenoxyacetic acid (2,4-D) under simulated sunlight (lambda>290 nm) irradiation, indicating that HA with porphyrin-like structure possesses better photoactivity than ones without the structure. The photochemical degradation of 2,4-D was enhanced when Fe(III), the ubiquitous element in natural aquatic systems, was added owing to the formation of Fe(III) complex with the HA. Electron paramagnetic resonance (EPR) spectra indicated that OH* and 1O2 radicals were generated in the solutions of HA fractions bound by MIP under simulated sunlight irradiation, implying that 2,4-D degradation could be related to oxidation reactions caused by reactive oxygen species (ROS).

  19. Porphyrin content of the cysticercus of Taenia solium.

    PubMed

    Larralde, C; Zedillo, G M; Lagunoff, D; Ludowyke, R; Montoya, R M; Goodsaid, F; Dreyfus, G; Sciutto, E; Govezensky, T; Diaz, M L

    1986-08-01

    The strong red fluorescence of the cysticercus of Taenia solium depends on the presence of several porphyrins in the vesicular fluid of the parasite: probably protoporphyrin IX, coproporphyin I or III, and 2 decarboxylated porphyrins intermediate between uroporphyrin and coproporphyrin. Cyst porphyrins associated to form conglomerates of high molecular weight that dissociated in acid solutions and were not antigenic themselves nor associated with antigenic molecules. An appreciable fraction of the porphyrins was capable of undergoing oxidation and reduction, indicating that some of the porphyrins were complexed with metal ions. The metabolic basis for the accumulation of porphyrins is unknown. Preliminary results suggest that conditions deleterious to the cysticercus cause release of porphyrins so that the appearance of porphyrins in the cerebrospinal fluid of neurocysticercotic patients may prove useful in monitoring therapeutic attacks on the parasite.

  20. Production and mitigation of acid chlorides in geothermal steam

    SciTech Connect

    Simonson, J.M.; Palmer, D.A.

    1995-06-01

    Measurements of the equilibrium distribution of relatively nonvolatile solutes between aqueous liquid and vapor phases have been made at temperatures to 350{degrees}C for HCl(aq) and chloride salts. These data are directly applicable to problems of corrosive-steam production in geothermal steam systems. Compositions of high-temperature brines which could produce steam having given concentrations of chlorides may be estimated at various boiling temperatures. Effects of mitigation methods (e.g., desuperheating) can be calculated based on liquid-vapor equilibrium constants and solute mass balances under vapor-saturation conditions.

  1. J-aggregation of a water-soluble tetracationic porphyrin in mixed LB films with a calix[8]arene carboxylic acid derivative.

    PubMed

    Miguel, Gustavo de; Pérez-Morales, Marta; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2007-03-27

    The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix. PMID:17315895

  2. Acid copper sulfate plating bath: Control of chloride and copper. Final report

    SciTech Connect

    Borhani, K.J.

    1992-08-01

    Plated-through holes in high-reliability printed wiring boards require a ductile copper plate of uniform consistency. The level of control of the chemical constituents in the electroplating solutions dictates the physical properties of the copper plate. To improve the control of the chemical bath constituents, in-situ methods for electrochemically determining copper and chloride in acid copper sulfate baths were developed. A solid-state ion-selective electrode was used for the chloride ion and proved to be more reproducible than conventional silver chloride turbidimetric methods. The use of a copper solid-state ion-selective electrode in-situ was also successful in this application.

  3. Hydrochloric acid aerosol formation by the interaction of hydrogen chloride with humid air

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.

    1973-01-01

    The conditions in which hydrochloric acid aerosol is predicted by the interaction of hydrogen chloride gas with the water vapor in humid air are analyzed. The liquid gas phase equilibrium for the HCL-H2O system is expressed in terms of relative humidity and hydrogen chloride concentration as parts per million, units commonly used in pollution studies. Presented are the concentration (wt %) of HC1 in the aerosol and the concentration of aerosol (ppm) predicted.

  4. Mn (III) Tetrakis (4-Benzoic Acid) Porphyrin Protects Against Neuronal and Glial Oxidative Stress and Death after Spinal Cord Injury

    PubMed Central

    Valluru, Lokanatha; Diao, Yao; Hachmeister, Jorge E.; Liu, Danxia

    2014-01-01

    This study explores the ability of a catalytic antioxidant, Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), to protect against neuronal and glial oxidative stress and death after spinal cord injury (SCI). Nine different doses of MnTBAP were administered into the intrathecal space of the rat spinal cord immediately following moderate SCI to establish dose - response curves for prevention of lipid peroxidation and neuron death. An optimal dose was determined by comparing the effectiveness of MnTBAP protection among doses. The optimal dose was then administered and the cords were removed 24 h post-administration and processed for staining. The cells in the cord sections at different distances from the epicenter were counted to obtain the spatial profiles of MnTBAP protection. Comparison of the counts between MnTBAP- and vehicle-treated groups in the sections double immuno-fluorescence-stained with oxidative and cellular markers demonstrated that MnTBAP significantly reduced numbers of nitrotyrosine- and DNP-positive (stained with an antibody against 2,4-dinitrophenyl hydrazine (DNPH)-labeled protein carbonyls) neurons, astrocytes, and oligodendrocytes. Comparison of the counts between the two treatments in the sections immuno-stained with cellular markers revealed that MnTBAP significantly increased numbers of neurons, motoneurons, astrocytes, and oligodendrocytes. MnTBAP more effectively reduced neuronal than glial cell death. Post-injury treatment with the optimal dose of MnTBAP at 6, 12, 24, 48, and 72 h post-SCI demonstrated that the effective time window for reducing protein nitration and neuron death was at least 12 h. Our results demonstrated that MnTBAP combats oxidative stress, thereby attenuating all types of cell death after SCI. PMID:22483303

  5. Mechanism of chemical activation of sodium chloride in the presence of amino acids.

    PubMed

    Rahn, Anja K K; Yaylayan, Varoujan A

    2015-01-01

    Sodium chloride has been shown to promote chlorination of glycerol during thermal processing. However, the detailed mechanism of this reaction is not well understood. Preliminary experiments have indicated that the reaction mixture should contain an amino acid and it should be dissolved thoroughly in water in order to induce chlorination. These observations are consistent with the process of dissociation of sodium chloride and its re-association with amino acid and eventual formation of the chlorinating agent in the form of the hydrochloride salt. Release of HCl from this salt can be manifested in chlorination and hydrolytic reactions occurring during thermal processing. The generation of HCl at room temperature from a mixture of sodium chloride and glycine was confirmed through spectrophotometric monitoring of the pH. Hydrolytic and chlorination reactions were demonstrated through monitoring of formation of HMF and chlorinated products under pyrolytic conditions using glucose or sucrose and amino acid mixtures.

  6. Covalent attachment of Mn-porphyrin onto doxorubicin-loaded poly(lactic acid) nanoparticles for potential magnetic resonance imaging and pH-sensitive drug delivery.

    PubMed

    Jing, Lijia; Liang, Xiaolong; Li, Xiaoda; Yang, Yongbo; Dai, Zhifei

    2013-12-01

    In this paper, theranostic nanoparticles (MnP-DOX NPs) were fabricated by conjugating Mn-porphyrin onto the surface of doxorubicin (DOX)-loaded poly(lactic acid) (PLA) nanoparticles (DOX NPs) for potential T1 magnetic resonance imaging and pH-sensitive drug delivery. An in vitro drug release study showed that the release rate of DOX from MnP-DOX NPs was slow at neutral pH but accelerated significantly in acidic conditions. It was found that MnP-DOX NPs could be easily internalized by HeLa cells and effectively suppressed the growth of HeLa cells and HT-29 cells due to the accelerated drug release in acidic lysosomal compartments. Magnetic resonance imaging (MRI) scanning analysis demonstrated that MnP-DOX NPs had much higher longitudinal relaxivity in water (r1 value of 27.8 mM(-1) s(-1) of Mn(3+)) than Mn-porphyrin (Mn(III)TPPS3NH2; r1 value of 6.70 mM(-1) s(-1) of Mn(3+)), behaving as an excellent contrast agent for T1-weighted MRI both in vitro and in vivo. In summary, such a smart and promising nanoplatform integrates multiple capabilities for effective cancer diagnosis and therapy.

  7. Water soluble, core-modified porphyrins. 3. Synthesis, photophysical properties, and in vitro studies of photosensitization, uptake, and localization with carboxylic acid-substituted derivatives.

    PubMed

    You, Youngjae; Gibson, Scott L; Hilf, Russell; Davies, Sherry R; Oseroff, Allan R; Roy, Indrajit; Ohulchanskyy, Tymish Y; Bergey, Earl J; Detty, Michael R

    2003-08-14

    Water soluble, core-modified porphyrins 1-5 bearing 1-4 carboxylic acid groups were prepared and evaluated in vitro as photosensitizers for photodynamic therapy. The 21,23-core-modified porphyrins 1-5 gave band I absorption maxima with lambda(max) of 695-701 nm. The number of carboxylic acid groups in the dithiaporphyrins 1-4 had little effect on either absorption maxima (lambda(max) of 696-701 nm for band I) or quantum yields of singlet oxygen generation [phi((1)O(2)) of 0.74-0.80]. Substituting two Se atoms for S gave a shorter band I absorption maximum (lambda(max) of 695 nm) and a smaller value for the quantum yield for generation of singlet oxygen [phi((1)O(2)) of 0.30]. The phototoxicity of 1-5 was evaluated against R3230AC cells. The phototoxicities of dithiaporphyrin 2, sulfonated thiaporphyrin 30, HPPH, and Photofrin were also evaluated against Colo-26 cells in culture using 4 J cm(-2) of 570-800 nm light. Compound 2 was significantly more phototoxic than sulfonated dithiaporphyrin 30, HPPH, or Photofrin. Cellular uptake was much greater for compounds 1, 2, and 5 relative to compounds 3 and 4. Confocal scanning laser microscopy and double labeling experiments with rhodamine 123 suggested that the mitochondria were an important target for dithiaporphyrins 1 and 2. Inhibition of mitochondrial cytochrome c oxidase activity in whole R3230AC cells was observed in the dark with compounds 1 and 30 and both in the dark and in the light with core-modified porphyrin 2.

  8. Acidic species and chloride depletion in coarse aerosol particles in the US east coast.

    PubMed

    Zhao, Yunliang; Gao, Yuan

    2008-12-15

    To investigate the interactions of water-soluble acidic species associated with coarse mode aerosol particles (1.8-10 microm) and chlorine depletion, ten sets of size-segregated aerosol samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI) in Newark, New Jersey on the U.S. east coast. The samples were grouped into two categories according to the air-mass back trajectories and mass ratios of sodium to magnesium and calcium: Group I was primarily impacted by marine air mass and Group II was dominated by the continental air mass. In Group I, the concentrations of coarse mode nitrate and chloride depletion showed a strong correlation (R2=0.88). Without considering other cations, nitrate was found to account for all of the chloride depletion in coarse particles for most samples. The association of coarse mode nitrate with sea-salt particles is favored when the mass ratio of sodium to calcium is approximately equal to or greater than unity. Excess sulfate accounts for a maximum of 33% of chloride depletion in the coarse particles. Regarding chloride depletion in the different particle sizes, excess nitrate and sulfate account for 89% of the chloride depletion in the particle size range of 1.8-3.2 microm in the sample from July 13-14; all of the determined dicarboxylic acids and mono-carboxylic acids cannot compensate for the rest of the chloride depletion. In Group II, high percentages of chloride depletion were not observed. With nitrate being dominant in chlorine depletion observed at this location, N-containing species from pollution emissions may have profound impact on atmospheric composition through altering chlorine chemistry in this region. PMID:18973925

  9. Selective oxidation catalysts obtained by immobilization of iron(III) porphyrins on thiosalicylic acid-modified Mg-Al layered double hydroxides.

    PubMed

    de Freitas Castro, Kelly Aparecida Dias; Wypych, Fernando; Antonangelo, Ariana; Mantovani, Karen Mary; Bail, Alesandro; Ucoski, Geani Maria; Ciuffi, Kátia Jorge; Cintra, Thais Elita; Nakagaki, Shirley

    2016-09-15

    Nitrate-intercalated Mg-Al layered double hydroxides (LDHs) were synthesized and exfoliated in formamide. Reaction of the single layer suspension with thiosalicylic acid under different conditions afforded two types of solids: LDHA1, in which the outer surface was modified with the anion thiosalicylate, and LDHA2, which contained the anion thiosalicylate intercalated between the LDH layers. LDHA1 and LDHA2 were used as supports to immobilize neutral (FeP1 and FeP2) and anionic (FeP3) iron(III) porphyrins. For comparison purposes, the iron(III) porphyrins (FePs) were also immobilized on LDH intercalated with nitrate anions obtained by the co-precipitation method. Chemical modification of LDH facilitated immobilization of the FePs through interaction of the functionalizing groups in LDH with the peripheral substituents on the porphyrin ring. The resulting FePx-LDHAy solids were characterized by X-ray diffraction (powder) and UV-Vis and EPR spectroscopies and were investigated as catalysts in the oxidation of cyclooctene and cyclohexane. The immobilized neutral FePs and their homogeneous counterparts gave similar product yields in the oxidation of cyclooctene, suggesting that immobilization of the FePs on the thiosalicylate-modified LDHs only supported the catalyst species without interfering in the catalytic outcome. On the other hand, in the oxidation of cyclohexane, the thiosalicylate anions on the outer surface of LDHA1 or intercalated between the LDHA2 layers influenced the catalytic activity of FePx-LDHAy, leading to different efficiency and selectivity results. FeP1-LDHA2 performed the best (29.6% alcohol yield) due to changes in the polarity of the surface of the support and the presence of FeP1. Interestingly, FeP1 also performed better in solution as compared to the other FePs. Finally, it was possible to recycle FeP1-LDHA2 at least three times.

  10. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  11. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  12. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    PubMed

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage.

  13. Pharmacokinetics, tissue distribution and excretion of manganese (III) meso-tetra [3-(2-(2-methoxy)-ethoxy) ethoxy] phenyl porphyrin chloride, a novel superoxide dismutase mimic, in Wistar rats.

    PubMed

    Li, Bao-Qiu; Fang, Shi-Hong; Dong, Xin; Li, Na; Gao, Ji-You; Yang, Gui-Qin; Gong, Xian-Chang; Wang, Shu-Juan; Wang, Feng-Shan

    2013-12-01

    Manganese (III) 5, 10, 15, 20-tetrakis [3-(2-(2-methoxy)-ethoxy) ethoxy] phenyl porphyrin chloride, designated HSJ-0017, is a novel superoxide dismutase mimic. It exhibits strong free-radical scavenging activities in vitro and in vivo. The aim of the present study was to investigate the pharmacokinetics, tissue distribution and excretion of HSJ-0017 in Wistar rats following a single intravenous administration. Wistar rats were given different doses of HSJ-0017 by single intravenous injection. Biological samples of rats were collected and were assayed by the HPLC method. The pharmacokinetics, tissue distribution and excretion of HSJ-0017 were investigated. The pharmacokinetic data of HSJ-0017 in rats following intravenous injection was best-fit by a two-compartment model. T max of HSJ-0017 in plasma following intravenous injection was 0.083 h. AUC and plasma drug concentration were found to increase in a dose-related fashion. The highest concentrations of HSJ-0017 were detected in the liver (82.25 ± 13.99 μg/g) of rats, followed by the kidney, small intestine, lung, plasma, heart, spleen, and stomach within 2 h postdose. No HSJ-0017 was detected in the uterus, parorchis or brain of rats during the 24-h period of examination. The total cumulative excretion of HSJ-0017 in rat bile and urine were found to be 78.85 and 67.58 %, respectively. Our study has led to the view that the HSJ-0017 can be rapidly distributed to tissues after intravenous administration, but cannot diffuse through the blood-brain barrier. The faecal and biliary excretion of unchanged HSJ-0017 are the major routes of HSJ-0017 elimination.

  14. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  15. Current techniques in acid-chloride corrosion control and monitoring at The Geysers

    SciTech Connect

    Hirtz, Paul; Buck, Cliff; Kunzman, Russell

    1991-01-01

    Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steam purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.

  16. Choline Chloride Catalyzed Amidation of Fatty Acid Ester to Monoethanolamide: A Green Approach.

    PubMed

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Choline chloride catalyzed efficient method for amidation of fatty acid methyl ester to monoethanolamide respectively. This is a solvent free, ecofriendly, 100% chemo selective and economically viable path for alkanolamide synthesis. The Kinetics of amidation of methyl ester were studied and found to be first order with respect to the concentration of ethanolamine. The activation energy (Ea) for the amidation of lauric acid methyl ester catalyzed by choline chloride was found to be 50.20 KJ mol(-1). The 98% conversion of lauric acid monoethanolamide was obtained at 110°C in 1 h with 6% weight of catalyst and 1:1.5 molar ratio of methyl ester to ethanolamine under nitrogen atmosphere. PMID:26666271

  17. A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal-Organic Framework.

    PubMed

    Johnson, Jacob A; Petersen, Brenna M; Kormos, Attila; Echeverría, Elena; Chen, Yu-Sheng; Zhang, Jian

    2016-08-17

    We describe a new strategy to generate non-coordinating anions using zwitterionic metal-organic frameworks (MOFs). By assembly of anionic inorganic secondary building blocks (SBUs) ([In(CO2)4](-)) with cationic metalloporphyrin-based organic linkers, we prepared zwitterionic MOFs in which the complete internal charge separation effectively prevents the potential binding of the counteranion to the cationic metal center. We demonstrate the enhanced Lewis acidity of Mn(III)- and Fe(III)-porphyrins in the zwitterionic MOFs in three representative electrocyclization reactions: [2 + 1] cycloisomerization of enynes, [3 + 2] cycloaddition of aziridines and alkenes, and [4 + 2] hetero-Diels-Alder cycloaddition of aldehydes with dienes. This work paves a new way to design functional MOFs for tunable chemical catalysis. PMID:27435751

  18. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  19. Corrosion Behavior of Alloy 22 in Oxalic Acid and Sodium Chloride Solutions

    SciTech Connect

    Day, S D; Whalen, M T; King, K J; Hust, G A; Wong, L L; Estill, J C; Rebak, R B

    2003-06-24

    Nickel based Alloy 22 (NO6022) is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in oxalic acid solution and to compare its behavior to sodium chloride (NaCl) solutions. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion rate of Alloy 22 in oxalic acid solutions increased rapidly as the temperature and the acid concentration increased. Extrapolation studies show that even at a concentration of 10{sup -4}M oxalic acid, the corrosion rate of Alloy 22 would be higher in oxalic acid than in 1 M NaCl solution. Alloy 22 was not susceptible to localized corrosion in oxalic acid solutions. Cyclic polarization tests in 1 M NaCl showed that Alloy 22 was susceptible to crevice corrosion at 90 C but was not susceptible at 60 C.

  20. Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions.

    PubMed

    Delmelle, Pierre; Delfosse, Thomas; Delvaux, Bruno

    2003-01-01

    The continuous emissions of SO(2), HCl and HF by Masaya volcano, Nicaragua, represent a substantial source of atmospheric S-, Cl- and F-containing acid inputs for local ecosystems. We report on the effects of such acid depositions on the sulfate, chloride and fluoride contents in soils (0-40 cm) from two distinct transects located downwind from the volcano. The first transect corresponds to relatively undifferentiated Vitric Andosols, and the second transect to more weathered Eutric Andosols. These soils are exposed to various rates of volcanogenic acid addition, with the Vitric sites being generally more affected. Prolonged acid inputs have led to a general pH decrease and reduced exchangeable base cation concentrations in the Andosols. The concentrations of 0.5 M NH(4)F- and 0.016 M KH(2)PO(4)-extractable sulfate (NH(4)F-S and KH(2)PO(4)-S, respectively) indicate that volcanic S addition has increased the inorganic sulfate content of the Vitric and Eutric soils at all depths. In this process, the rate of sulfate accumulation is also dependent on soil allophane contents. For all soils, NH(4)F extracted systematically more (up to 40 times) sulfate than KH(2)PO(4). This difference suggests sulfate incorporation into an aluminum hydroxy sulfate phase, whose contribution to total inorganic sulfate in the Vitric and Eutric Andosols is estimated from approximately 34 to 95% and approximately 65 to 98%, respectively. The distribution of KH(2)PO(4)-extractable chloride in the Vitric and Eutric Andosols exposed to volcanic Cl inputs reveals that added chloride readily migrates through the soil profiles. In contrast, reaction of fluoride with Al and Fe oxyhydroxides and allophanes is an important sink mechanism in the Masaya Andosols exposed to airborne volcanic F. Fluoride dominates the anion distribution in all soil horizons, although F is the least concentrated element in the volcanic emissions and depositions. The soil anion distribution reflects preferential retention

  1. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  2. Histological effects of aqueous acids and gaseous hydrogen chloride on bean leaves

    SciTech Connect

    Swiecki, T.J.; Endress, A.G.; Taylor, O.C.

    1982-01-01

    Primary leaves of Phaseoulus vulgaris L. (pinto bean), 9 or 12 days from sowing, were exposed to aqueous acids, chloride salts, or hydrogen chloride gas. Leaves were examined for the presence and severity of resultant visible injury and samples for light and scanning electron microscopy. Exposure to 0.06 N HCl, HNO/sub 3/, H/sub 2/SO/sub 4/ or 14.5-19.0 mg m/sup -3/ gaseous HCl for 20 min evoked similar foliar injury including glazing and necrosis of the laminas. This injury appeared to result initially from plasmolysis and collapse of the epidermis and subsequently of the underlying mesophyll. Cellular injury was accompanied by various cytoplasmic alterations. Microscopic symptoms observed in leaves exposed to gaseous HCl or aqueous acids included vesicles and particulates within the larger vacuoles. Similar symptoms were present in leaves exposed to polyethylene glycol 6000. Differential effects included formation of necrotic pits and preferential injury to paravascular tissues in leaves treated with aqueous acids and crystalline chloroplast inclusions in gaseous HCl-treated and water-stressed leaves. The visible and microscopic appearances of leaves exposed to aqueous acids or gaseous HCl were compared and related to injury stemming from acid precipitation and a possible mechanism of action for gaseous HCl phytotoxicity.

  3. The central role of chloride in the metabolic acid-base changes in canine parvoviral enteritis.

    PubMed

    Burchell, Richard K; Schoeman, Johan P; Leisewitz, Andrew L

    2014-04-01

    The acid-base disturbances in canine parvoviral (CPV) enteritis are not well described. In addition, the mechanisms causing these perturbations have not been fully elucidated. The purpose of the present study was to assess acid-base changes in puppies suffering from CPV enteritis, using a modified strong ion model (SIM). The hypothesis of the study was that severe acid-base disturbances would be present and that the SIM would provide insights into pathological mechanisms, which have not been fully appreciated by the Henderson-Hasselbalch model. The study analysed retrospective data, obtained from 42 puppies with confirmed CPV enteritis and 10 healthy control dogs. The CPV-enteritis group had been allocated a clinical score, to allow classification of the data according to clinical severity. The effects of changes in free water, chloride, l-lactate, albumin and phosphate were calculated, using a modification of the base excess algorithm. When the data were summated for each patient, and correlated to each individual component, the most important contributor to the metabolic acid-base changes, according to the SIM, was chloride (P<0.001). Severely-affected animals tended to demonstrate hypochloraemic alkalosis, whereas mildly-affected puppies had a hyperchloraemic acidosis (P=0.007). In conclusion, the acid-base disturbances in CPV enteritis are multifactorial and complex, with the SIM providing information in terms of the origin of these changes.

  4. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    SciTech Connect

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  5. Urinary arsenic and porphyrin profile in C57BL/6J mice chronically exposed to monomethylarsonous acid (MMA{sup III}) for two years

    SciTech Connect

    Krishnamohan, Manonmanii; Qi, Lixia; Lam, Paul K.S.; Moore, Michael R.; Ng, Jack C.

    2007-10-01

    Arsenicals are proven carcinogens in humans and it imposes significant health impacts on both humans and animals. Recently monomethylarsonous acid (MMA{sup III}), the toxic metabolite of arsenic has been identified in human urine and believed to be more acutely toxic than arsenite and arsenate. Arsenic also affects the activity of a number of haem biosynthesis enzymes. As a part of 2-year arsenic carcinogenicity study, young female C57BL/6J mice were given drinking water containing 0, 100, 250 and 500 {mu}g/L arsenic as MMA{sup III}ad libitum. 24 h urine samples were collected at 0, 1, 2, 4, 8 weeks and every 8 weeks for up to 104 weeks. Urinary arsenic speciation and porphyrins were measured using HPLC-ICP-MS and HPLC with fluorescence detection respectively. DMA{sup V} was a major urinary metabolite detected. Significant dose-response relationship was observed between control and treatment groups after 1, 4, 24, 32, 48, 56, 88, 96 and 104 weeks. The level of uroporphyrin in 250 and 500 {mu}g As/L group is significantly different from the control group after 4, 8, 16, 32, 56, 72, 80, 96 and 104 weeks. Coproporphyrin I level in 500 {mu}As/L group is significantly different from control group after 8, 24, 32, 40, 56, 72, 80, 88 and 104 weeks. After 4 weeks the level of coproporphyrin III concentration significantly increased in all the treatment groups compared to the control except week 16 and 48. Our results show urinary DMA{sup V} and porphyrin profile can be used as an early warning biomarker for chronic MMA{sup III} exposure before the onset of cancer.

  6. Spectroscopic analysis of porphyrin compounds irradiated with visible light in chloroform with addition of β-myrcene

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena; Gladysz-Plaska, Agnieszka

    2016-12-01

    The behaviour of two porphyrins, 5,10,15,20-tetraphenyl-21H,23H-porphine (H2TPP) and 5,10,15,20-tetra(4-pyridyl)-21H, 23H-porphine (H2TPyP), as well as their Zn(II) complexes (ZnTPP and ZnTPyP), have been studied analysing their absorption and steady-state fluorescence spectra in chloroform with addition of β-myrcene. After irradiation with visible light the free-base porphyrins have been converted to the form of dication on account of hydrochloric acid generated as a result of chloroform decomposition induced by β-myrcene. Whereas in case of their Zn(II) complexes the mechanism of action is more complicated, leading presumably to the formation of the aggregated metalloporphyrin species with chloride ions playing the bridging role. The pseudo-first-order rate constants of the absorption quenching process were calculated for all the systems examined, with respect to the porphyrin concentration. The most effective irradiation was observed in case of H2TPP porphyrin.

  7. Hyponatremic Chloride-depletion Metabolic Alkalosis Successfully Treated with High Cation-gap Amino Acid.

    PubMed

    Ryuge, Akihiro; Matsui, Katsuomi; Shibagaki, Yugo

    2016-01-01

    Chloride (Cl)-depletion alkalosis (CDA) develops due to the loss of Cl-rich body fluid, i.e., vomiting or diuretics use, and is typically treated with a chloride-rich solution such as normal saline (NS). Although NS is one of the most utilized Cl-rich solutions, high cation-gap amino acid (HCG-AA) predominantly comprises Cl and less sodium, making HCG-AA more efficient in correcting CDA. We herein report a case of CDA with chronic hyponatremia after frequent vomiting, which was successfully treated with HCG-AA without overcorrecting hyponatremia or causing hypervolemia. HCG-AA may be more beneficial than NS for treating hyponatremic or hypervolemic metabolic alkalosis. PMID:27374680

  8. Porphyrin electrode films prepared by electrooxidation of metalloprotoporphyrins

    SciTech Connect

    Macor, K.A.; Spiro, T.G.

    1983-08-24

    Electrooxidation in organic solvents of the dimethyl esters of several metalloprotoporphyrins (PP) (Ni/sup II/PP, Zn/sup II/PP, Co/sup II/PP, (Fe/sup III/PP)Cl, (Fe/sup III/PP)/sub 2/O, and (Cr/sup III/PP)/sub 2/O) leads to the deposition of thick (approx. 1000 monolayer equivalents), electroactive porphyrin films, which have been characterized by cyclic voltammetry and absorption spectroscopy on transparent SnO/sub 2/ electrodes. The films are stable toward organic solvents and aqueous acids and bases, but are removed by treatment with hot concentrated acids. The resonance Raman spectrum of the NiPP film indicates that one of the two vinyl groups is saturated on most of the porphyrin units. Deposition continues for some minutes after the current is interrupted. This evidence is consistent with a mechanism involving electroinitiated cationic vinyl polymerization. No film is formed if the metal, rather than the ring, is oxidized. Thus the first oxidation step of Co/sup II/PP, to (Co/sup III/PP)/sup +/, does not support film formation (although the potential is as high as for ring oxidation in ZnPP), but the second step, to (Co/sup III/PP)/sup 2 +/, does. Lack of film formation for (Mn/sup III/PP)Cl and (Cr/sup IV/PP)O suggests metal, rather than ring oxidation, to Mn/sup IV/ and Cr/sup V/. However, (CrPP)/sub 2/O oxidation does produce a film, suggesting ring oxidation, analogous to (FePP)/sub 2/O, which also produces a film. However, while (CrPP)/sub 2/O is incorporated intact into the film, the (FePP)/sub 2/O film contains monomer units. Incorporation of other metal ions can be accomplished by soaking a ZnPP-coated electrode in H/sub 2/SO/sub 4/ followed by contact wtih a solution of the metal dihalide in refluxing DMF. The porphyrin sites are accessible to small ions, as shown by chloride coordination of ZnPP film upon soaking in chloride solution. 49 references, 13 figures, 1 table.

  9. Ruthenium(II)-catalyzed oxidative C-H alkenylations of sulfonic acids, sulfonyl chlorides and sulfonamides.

    PubMed

    Ma, Wenbo; Mei, Ruhuai; Tenti, Giammarco; Ackermann, Lutz

    2014-11-10

    Twofold C-H functionalization of aromatic sulfonic acids was achieved with an in situ generated ruthenium(II) catalyst. The optimized cross-dehydrogenative alkenylation protocol proved applicable to differently substituted arenes and a variety of alkenes, including vinyl arenes, sulfones, nitriles and ketones. The robustness of the ruthenium(II) catalyst was demonstrated by the chemoselective oxidative olefination of sulfonamides as well as sulfonyl chlorides. Mechanistic studies provided support for a reversible, acetate-assisted C-H ruthenation, along with a subsequent olefin insertion.

  10. A Method for Monitoring Organic Chlorides, Hydrochloric Acid and Chlorine in Air

    NASA Technical Reports Server (NTRS)

    Dennison, J. E.; Menichelli, R. P.

    1971-01-01

    While not commonly presented in nonurban atmospheres, organic chlorides, hydrochloric acid and chlorine are significant in industrial air pollution and industrial hygiene. Based on a microcoulometer, a much more sensitive method than has heretofore been available has been developed for monitoring these air impurities. The method has a response time (90%) of about twenty seconds, requires no calibration, is accurate to +/- 2.5%, and specific except for bromide and iodide interferences. The instrument is portable and has been operated unattended for 18 hours without difficulty.

  11. Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1980-01-01

    Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

  12. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  13. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end. PMID:26077317

  14. Soluble porphyrin polymers

    SciTech Connect

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  15. Functionalized expanded porphyrins

    DOEpatents

    Sessler, Jonathan L; Pantos, Patricia J

    2013-11-12

    Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.

  16. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice.

    PubMed

    Wang, Lihong; Wang, Wen; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    Rare earth elements (REEs) pollution and acid rain are environmental issues, and their deleterious effects on plants attract worldwide attention. These two issues exist simultaneously in many regions, especially in some rice-growing areas. However, little is known about the combined effects of REEs and acid rain on plants. Here, the combined effects of lanthanum chloride (LaCl3), one type of REE salt, and acid rain on photosynthesis in rice were investigated. We showed that the combined treatment of 81.6 μM LaCl3 and acid rain at pH 4.5 increased net photosynthetic rate (Pn), stomatic conductance (Gs), intercellular CO2 concentration (Ci), Hill reaction activity (HRA), apparent quantum yield (AQY) and carboxylation efficiency (CE) in rice. The combined treatment of 81.6 μM LaCl3 and acid rain at pH 3.5 began to behave toxic effects on photosynthesis (decreasing Pn, Gs, HRA, AQY and CE, and increasing Ci), and the maximally toxic effects were observed in the combined treatment of 2449.0 μM LaCl3 and acid rain at pH 2.5. Moreover, the combined effects of LaCl3 and acid rain on photosynthesis in rice depended on the growth stage of rice, with the maximal effects occurring at the booting stage. Furthermore, the combined treatment of high-concentration LaCl3 and low-pH acid rain had more serious effects on photosynthesis in rice than LaCl3 or acid rain treatment alone. Finally, the combined effect of LaCl3 and acid rain on Pn in rice resulted from the changes in stomatic (Gs, Ci) and non-stomatic (HRA, AQY and CE) factors.

  17. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice.

    PubMed

    Wang, Lihong; Wang, Wen; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    Rare earth elements (REEs) pollution and acid rain are environmental issues, and their deleterious effects on plants attract worldwide attention. These two issues exist simultaneously in many regions, especially in some rice-growing areas. However, little is known about the combined effects of REEs and acid rain on plants. Here, the combined effects of lanthanum chloride (LaCl3), one type of REE salt, and acid rain on photosynthesis in rice were investigated. We showed that the combined treatment of 81.6 μM LaCl3 and acid rain at pH 4.5 increased net photosynthetic rate (Pn), stomatic conductance (Gs), intercellular CO2 concentration (Ci), Hill reaction activity (HRA), apparent quantum yield (AQY) and carboxylation efficiency (CE) in rice. The combined treatment of 81.6 μM LaCl3 and acid rain at pH 3.5 began to behave toxic effects on photosynthesis (decreasing Pn, Gs, HRA, AQY and CE, and increasing Ci), and the maximally toxic effects were observed in the combined treatment of 2449.0 μM LaCl3 and acid rain at pH 2.5. Moreover, the combined effects of LaCl3 and acid rain on photosynthesis in rice depended on the growth stage of rice, with the maximal effects occurring at the booting stage. Furthermore, the combined treatment of high-concentration LaCl3 and low-pH acid rain had more serious effects on photosynthesis in rice than LaCl3 or acid rain treatment alone. Finally, the combined effect of LaCl3 and acid rain on Pn in rice resulted from the changes in stomatic (Gs, Ci) and non-stomatic (HRA, AQY and CE) factors. PMID:25048927

  18. Photochemistry of porphyrins: a model for the origin of photosynthesis

    NASA Technical Reports Server (NTRS)

    Mercer-Smith, J. A.; Mauzerall, D. C.

    1984-01-01

    A series of porphyrins and catalysts has been prepared as a model for the origin of photosynthesis on the primordial earth. These compounds have been used to test the hypotheses that (1) the biosynthetic pathway to chlorophyll recapitulates the evolutionary history of photosynthesis, and (2) the proto-photosythetic function of biogenetic porphyrins (biosynthetic chlorophyll precursors) was the oxidation of organic molecules by photoexcited porphyrins with the attendant emission of molecular hydrogen. This paper describes experiments in which photoexcited biogenetic porphyrins oxidize ethylenediamine tetraacetic acid (EDTA). The concomitant reduction of protons to hydrogen gas occurs in the presence of a colloidal platinum catalyst. The addition of methyl viologen, a one-electron shuttle, increases the amount of molecular hydrogen generated during long irradiations and the quantum yield of hydrogen production. When the porphyrin and catalyst are held in association by molecular complexes, the increased efficiency of electron transfer produces higher yields of hydrogen gas.

  19. Effects of polyhalogenated aromatic compounds on porphyrin metabolism.

    PubMed Central

    Hill, R H

    1985-01-01

    Heme production is a vital metabolic process that occurs in the bone marrow and liver. Porphyrins are unused by-products of this biosynthetic process and normally occur in urine and other body fluids in low concentrations. Various disorders can disrupt the heme biosynthetic process, causing greater quantities of porphyrins in urine. The porphyrias are a group of diseases characterized by excessive porphyrins and other precursors in urine. Porphyrias may be either hereditary or acquired through exposure to certain drugs or chemicals. Porphyria cutanea tarda (PCT) is the disease associated with exposure to polyhalogenated aromatic compounds. The urinary porphyrin pattern is of great value in diagnosing PCT and defining the etiology of the disease. As this liver disease from chemical damage develops, the urinary pattern progressively changes. With the development of a rapid and sensitive high-performance liquid chromatography analysis, urinary porphyrin patterns can be easily monitored. All free porphyrin acids can be quantitatively analyzed in less than 15 min. In our studies of groups exposed to porphyrinogenic chemicals, we have not observed clear differences in the urinary porphyrin patterns of cases when compared with carefully selected controls. In animal studies, however, PCT was clearly associated with polybrominated biphenyl exposure. Future evaluation of the utility of urinary porphyrin patterns as a diagnostic tool will require a cohort that has received a recent, well-documented exposure and a comparable control population. Assay of erythrocyte uroporphyrinogen decarboxylase activity will also be needed to define the form of the PCT. PMID:4029097

  20. [The hepatotropic action of sodium chloride and hydrocarbonate mineral water containing humic acids (an experimental study)].

    PubMed

    Verigo, N S; Ulashchik, V S

    2015-01-01

    The present article summarizes the results of experimental studies on the hepatotropic action of native and modified low-mineralized sodium chloride and bicarbonate waters differing in the content of humic acids. It was found that the most beneficial changes after a course of 21 day therapy with the use of such mineral waters for the treatment of experimental hepatitis were observed after the application of the water with a humic acid content of roughly 20 g/dm3. Such treatment resulted in the significant improvement of the liver antitoxic function, intensification of basal metabolism, reduction of the inflammatory processes, normalization of the hepatic enzyme activity, and stimulation of proteinsynthetic function in parallel with positive dynamics of the morphological and histochemical characteristics of the liver.

  1. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative.

    PubMed

    Ogawara, Ken-ichi; Shiraishi, Taro; Araki, Tomoya; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2016-01-20

    To develop potent and safer formulation of photosensitizer for cancer photodynamic therapy (PDT), we tried to formulate hydrophobic porphyrin derivative, photoprotoporphyrin IX dimethyl ester (PppIX-DME), into polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer (PN-Por). The mean particle size of PN-Por prepared was around 80nm and the zeta potential was determined to be weakly negative. In vitro phototoxicity study for PN-Por clearly indicated the significant phototoxicity of PN-Por for three types of tumor cells tested (Colon-26 carcinoma (C26), B16BL6 melanoma and Lewis lung cancer cells) in the PppIX-DME concentration-dependent fashion. Furthermore, it was suggested that the release of PppIX-DME from PN-Por would gradually occur to provide the sustained release of PppIX-DME. In vivo pharmacokinetics of PN-Por after intravenous administration was evaluated in C26 tumor-bearing mice, and PN-Por exhibited low affinity to the liver and spleen and was therefore retained in the blood circulation for a long time, leading to the efficient tumor disposition of PN-Por. Furthermore, significant and highly effective anti-tumor effect was confirmed in C26 tumor-bearing mice with the local light irradiation onto C26 tumor tissues after PN-Por injection. These findings indicate the potency of PN-Por for the development of more efficient PDT-based cancer treatments.

  2. Kinetic method for determination of ascorbic acid on flow injection system by using its catalytic effect on the complexation reaction of an ultra sensitive colorimetric reagent of porphyrin with Cu(II)

    NASA Astrophysics Data System (ADS)

    Liu, Jianhua; Itoh, Jun-Ichi

    2007-06-01

    A kinetic method performed on a flow injection system is described for the determination of ascorbic acid by using its catalytic effect on the complexation reaction of Cu(II) with 5,10,15,20-tetrakis(4- N-trimethyl-aminophenyl)porphyrin. The characteristic spectrum of porphyrin (Soret band), which shows intense absorption around 400 nm ( ɛ > 2.0 × 10 5 cm -1 M -1), was used first time for determining ascorbic acid. By incorporating the complexation reaction into a flow injection system, ascorbic acid could be determined either over a broad dynamic range of 0.1-1000 μg/ml or at a trace level below 5 ng/ml. Good repeatability was also achieved by testing a working standard of 0.1 μg/ml with 10 injections at a throughput of 35 h -1, obtaining a relative standard deviation of 0.11%. Substances like amino acids, vitamins, sugars, organic acids and metal ions, showed no or little interference even present at high concentrations. The method was validated in the determination of ascorbic acid contents of some commercially available soft drinks by comparison with the official 2,6-dichloroindophenol method with reasonable agreement.

  3. The two-step mechanochemical synthesis of porphyrins.

    PubMed

    Shy, Hannah; Mackin, Paula; Orvieto, Andrea S; Gharbharan, Deepa; Peterson, Geneva R; Bampos, Nick; Hamilton, Tamara D

    2014-01-01

    Porphyrin synthesis under solvent-free conditions represents the "greening" of a traditional synthesis that normally requires large amounts of organic solvent, and has hindered the industrial-scale synthesis of this useful class of molecules. We have found that the four-fold acid-catalysed condensation of aldehyde and pyrrole to yield a tetra-substituted porphyrin is possible through mechanochemical techniques, without a solvent present. This represents one of the still-rare examples of carbon-carbon bond formation by mechanochemistry. Specifically, upon grinding equimolar amounts of pyrrole and benzaldehyde in the presence of an acid catalyst, cyclization takes place to give reduced porphyrin precursors (reversible), which upon oxidation form tetraphenylporphyrin (TPP). The approach has been found to be suitable for the synthesis of a variety of meso-tetrasubstituted porphyrins. Oxidation can occur either by using an oxidizing agent in solution, to give yields comparable to those published for traditional methods of porphyrin synthesis, or through mechanochemical means resulting in a two-step mechanochemical synthesis to give slightly lower yields that are still being optimized. We are also working on "green" methods of porphyrin isolation, including entrainment sublimation, which would hopefully further reduce the need for large amounts of organic solvent. These results hold promise for the development of mechanochemical synthetic protocols for porphyrins and related classes of compounds.

  4. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  5. A convenient iodination method for alcohols using cesium iodide/methanesulfonic acid and its comparison using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

    PubMed

    Khan, Khalid Mohammed; Zia-Ullah; Perveen, Shahnaz; Hayat, Safdar; Ali, Muhammad; Voelter, Wolfgang

    2008-01-01

    In situ generation of hydrogen iodide from cesium iodide/methanesulfonic acid was found to be an attractive reagent combination for the conversion of alkyl, allyl, and benzyl alcohols to their corresponding iodides under mild conditions. The method is compared with that using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

  6. Spectrophotometric determination of vanadium in metallurgical products with carminic acid and cetyltrimethylammonium chloride

    SciTech Connect

    Babenko, N.L.; Blokh, M. Sh.; Guseva, T.D.

    1985-11-01

    According to the authors, there is an increasing demand for sensitive, selective, and rapid methods of determining low levels of vanadium in metallurgical products, and solvent-extraction methods do not meet the requirements. The authors used an anthraquinone dye carminic acid (CA) as a chromophoric organic reagent: 1, 3, 4, 6-tetrahydroxy-2-R-5carboxy-8-methylanthra-9, 10-quinone. The CSA was cetyltrimethylammonium chloride CTA. The three-component system was examined in order to devise a reasonably sensitive and rapid method of determining vanadium in metallurgical products. A study is made of the complexing in the system formed by vanadium (IV) with CA and the CSA. The optimum conditions for the formation of the complex have been established together with the spectrophotometric characteristics. A spectrophotometric method has been devised for determining from 0.05 to 5% of vanadium in metallurgical products with a relative standard deviation of not more than 0.04.

  7. Electrically conducting porphyrin and porphyrin-fullerene electropolymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony; Gervaldo, Miguel Andres; Bridgewater, James Ward; Brennan, Bradley James; Moore, Thomas Andrew; Moore, Ana Lorenzelli

    2014-03-11

    Compounds with aryl ring(s) at porphyrin meso position(s) bearing an amino group in position 4 relative to the porphyrin macrocycle, and at least one unsubstituted 5 (hydrogen-bearing) meso position with the 10-, 15-, and/or 20-relationship to the aryl ring bearing the amino group, and metal complexes thereof, feature broad spectral absorption throughout the visible region. These compounds are electropolymerized to form electrically conducting porphyrin and porphyrin-fullerene polymers that are useful in photovoltaic applications. The structure of one such electrically conducting porphyrin polymer is shown below. ##STR00001##

  8. Manganese [III] Tetrakis [5,10,15,20]-Benzoic Acid Porphyrin Reduces Adiposity and Improves Insulin Action in Mice with Pre-Existing Obesity

    PubMed Central

    Brestoff, Jonathan R.; Brodsky, Tim; Sosinsky, Alexandra Z.; McLoughlin, Ryan; Stansky, Elena; Fussell, Leila; Sheppard, Aaron; DiSanto-Rose, Maria; Kershaw, Erin E.; Reynolds, Thomas H.

    2015-01-01

    The superoxide dismutase mimetic manganese [III] tetrakis [5,10,15,20]-benzoic acid porphyrin (MnTBAP) is a potent antioxidant compound that has been shown to limit weight gain during short-term high fat feeding without preventing insulin resistance. However, whether MnTBAP has therapeutic potential to treat pre-existing obesity and insulin resistance remains unknown. To investigate this, mice were treated with MnTBAP or vehicle during the last five weeks of a 24-week high fat diet (HFD) regimen. MnTBAP treatment significantly decreased body weight and reduced white adipose tissue (WAT) mass in mice fed a HFD and a low fat diet (LFD). The reduction in adiposity was associated with decreased caloric intake without significantly altering energy expenditure, indicating that MnTBAP decreases adiposity in part by modulating energy balance. MnTBAP treatment also improved insulin action in HFD-fed mice, a physiologic response that was associated with increased protein kinase B (PKB) phosphorylation and expression in muscle and WAT. Since MnTBAP is a metalloporphyrin molecule, we hypothesized that its ability to promote weight loss and improve insulin sensitivity was regulated by heme oxygenase-1 (HO-1), in a similar fashion as cobalt protoporphyrins. Despite MnTBAP treatment increasing HO-1 expression, administration of the potent HO-1 inhibitor tin mesoporphyrin (SnMP) did not block the ability of MnTBAP to alter caloric intake, adiposity, or insulin action, suggesting that MnTBAP influences these metabolic processes independent of HO-1. These data demonstrate that MnTBAP can ameliorate pre-existing obesity and improve insulin action by reducing caloric intake and increasing PKB phosphorylation and expression. PMID:26397111

  9. Noncovalent binding between fullerenes and protonated porphyrins in the gas phase.

    PubMed

    Jung, Sunghan; Seo, Jongcheol; Shin, Seung Koo

    2010-11-01

    Noncovalent interactions between protonated porphyrin and fullerenes (C₆₀ and C₇₀) were studied with five different meso-substituted porphyrins in the gas phase. The protonated porphyrin-fullerene complexes were generated by electrospray ionization of the porphyrin-fullerene mixture in 3:1 dichloromethane/methanol containing formic acid. All singly protonated porphyrins formed the 1:1 complexes, whereas porphyrins doubly protonated on the porphine center yielded no complexes. The complex ion was mass-selected and then characterized by collision-induced dissociation with Xe. Collisional activation exclusively led to a loss of neutral fullerene, indicating noncovalent binding of fullerene to protonated porphyrin. In addition, the dissociation yield was measured as a function of collision energy, and the energy inducing 50% dissociation was determined as a measure of binding energy. Experimental results show that C₇₀ binds to the protonated porphyrins more strongly than C₆₀, and electron-donating substituents at the meso positions increase the fullerene binding energy, whereas electron-withdrawing substituents decrease it. To gain insight into π-π interactions between protonated porphyrin and fullerene, we calculated the proton affinity and HOMO and LUMO energies of porphyrin using Hartree-Fock and configuration interaction singles theory and obtained the binding energy of the protonated porphyrin-fullerene complex using density functional theory. Theory suggests that the protonated porphyrin-fullerene complex is stabilized by π-π interactions where the protonated porphyrin accepts π-electrons from fullerene, and porphyrins carrying bulky substituents prefer the end-on binding of C₇₀ due to the steric hindrance, whereas those carrying less-bulky substituents favor the side-on binding of C₇₀.

  10. Phase and extraction equilibria in water-polyethyleneglycol ethers of monoethanolamides of synthetic fatty acid-ammonium chloride systems

    NASA Astrophysics Data System (ADS)

    Lesnov, A. E.; Golovkina, A. V.; Kudryashova, O. S.; Denisova, S. A.

    2016-08-01

    Phase equilibria in layering systems of water, polyethyleneglycol ethers of monoethanolamides of synthetic fatty acids (SFAs) (synthamide-5), and ammonium chloride are studied. The possibility of using such systems for the liquid extraction of metal ions is evaluated. The effect the nature of salting-out agents has on the processes of segregation of the systems has been considered.

  11. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.

    PubMed

    Dennis-Smither, Benjamin J; Hanford, Kate L; Kwamena, Nana-Owusua A; Miles, Rachael E H; Reid, Jonathan P

    2012-06-21

    Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.

  12. Triphenylsilane-fused Porphyrins.

    PubMed

    Kato, Kenichi; Kim, Jun Oh; Yorimitsu, Hideki; Kim, Dongho; Osuka, Atsuhiro

    2016-06-01

    A reaction sequence of 2-(diphenylsilyl)phenylation by Negishi coupling and intramolecular sila-Friedel-Crafts reaction has been explored for the synthesis of mono-triphenylsilane-fused porphyrins 5 M and 6 M (M= Ni, Zn) and bis-triphenylsilane-fused porphyrins 7 M and 8 Ni. A triply linked triphenylsilane-fused Ni(II) porphyrin, 13 Ni, was synthesized in a stepwise manner involving the above reaction sequence and a final Pd-catalyzed C-H activating arylative cyclization. The silicon atom in 13 Ni takes a distorted planarized structure with an almost perpendicular Si-phenyl group, causing an electronic effect due to effective σ*-π* interaction. PMID:27124659

  13. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    PubMed Central

    Bentley, T. William

    2015-01-01

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride). PMID:26006228

  14. Novel short chain fatty acids restore chloride secretion in cystic fibrosis

    SciTech Connect

    Nguyen, Toan D. . E-mail: T1Nguyen@u.washington.edu; Kim, Ug-Sung; Perrine, Susan P.

    2006-03-31

    Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator ({delta}F508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective {delta}F508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and {alpha}-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the {delta}F508-CFTR defect. Pre-incubation ({>=}6 h) of CF IB3-1 airway cells with {>=}1 mM ST7 or ST20 restored the ability of 100 {mu}M forskolin to stimulate an {sup 125}I{sup -} efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl{sup -} channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the {delta}F508 mutation.

  15. Iron porphyrin polymer films: Materials for the modification of electrode surfaces and the detection of nitric oxide

    SciTech Connect

    McGuire, M.; Drew, S.M.

    1996-10-01

    We are currently investigating a new method for the detection and quantification of nitric oxide (NO) based on a carbon electrode chemically modified with an iron porphyrin polymer film. Commercially available vinyl-substituted iron porphyrin monomers can be polymerized directly onto electrode surfaces through a published electrochemical polymerization process. We are also developing a synthesis for a new vinyl-substituted monomer, iron 5,10,15-triphenyl-20-vinyl porphyrin chloride, in hopes of improving polymer film stability. The electrochemistry of NO is also being investigated at electrodes chemically modified with an iron porphyrin polymer film. We are studying the catalytic oxidation of iron porphyrin bound NO to nitrate by molecular oxygen. The reaction with molecular oxygen is preceded by a one electron reduction of the iron porphyrin-NO complex. If currents proportional to nitric oxide concentration can be measured, a new NO electrochemical sensor will be designed.

  16. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride.

    PubMed

    Costa, Cristiane N; Teixeira, Viviane G; Delpech, Marcia C; Souza, Josefa Virginia S; Costa, Marcos A S

    2015-11-20

    A viscometric study was carried out at 25°C to assess the physical-chemical behavior in solution and the mean viscometric molar mass (M¯v) of chitosan solutions with different deacetylation degrees, in two solvent mixtures: medium 1-acetic acid 0.3mol/L and sodium acetate 0.2mol/L; and medium 2-acetic acid 0.1mol/L and sodium chloride 0.2mol/L. Different equations were employed, by graphical extrapolation, to calculate the intrinsic viscosities [η] and the viscometric constants, to reveal the solvent's quality: Huggins (H), Kraemer (K) and Schulz-Blaschke (SB). For single-point determination, the equations used were SB, Solomon-Ciuta (SC) and Deb-Chanterjee (DC), resulting in a faster form of analysis. The values of ̄M¯v were calculated by applying the equation of Mark-Houwink-Sakurada. The SB and SC equations were most suitable for single-point determination of [η] and ̄M¯v and the Schulz-Blachke constant (kSB), equal to 0.28, already utilized for various systems, can also be employed to analyze chitosan solutions under the conditions studied.

  17. Spectrophotometric techniques to determine tranexamic acid: Kinetic studies using ninhydrin and direct measuring using ferric chloride

    NASA Astrophysics Data System (ADS)

    Arayne, M. Saeed; Sultana, Najma; Siddiqui, Farhan Ahmed; Mirza, Agha Zeeshan; Zuberi, M. Hashim

    2008-11-01

    Two simple and sensitive spectrophotometric methods in ultraviolet and visible region are described for the determination of tranexamic acid in pure form and pharmaceutical preparations. The first method is based on the reaction of the drug with ninhydrin at boiling temperature and by measuring the increase in absorbance at 575 nm as a function of time. The initial rate, rate constant and fixed time (120 min) procedures were used for constructing the calibration graphs to determine the concentration of the drug, which showed a linear response over the concentration range 16-37 μg mL -1 with correlation coefficient " r" 0.9997, 0.996, 0.9999, LOQ 6.968, 7.138, 2.462 μgmL -1 and LOD 2.090, 2.141 and 0.739 μgmL -1, respectively. In second method tranexamic acid was reacted with ferric chloride solution, yellowish orange colored chromogen showed λ max at 375 nm showing linearity in the concentration range of 50-800 μg mL -1 with correlation coefficient " r" 0.9997, LOQ 6.227 μgmL -1 and LOD 1.868 μgmL -1. The variables affecting the development of the color were optimized and the developed methods were validated statistically and through recovery studies. These results were also verified by IR and NMR spectroscopy. The proposed methods have been successfully applied to the determination of tranexamic acid in commercial pharmaceutical formulation.

  18. Hydrokolloid occlusive dressings for photodynamic therapy (PDT) of cutaneous lesions with endogenous porphyrins induced by 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Gahlen, Johannes; Stern, Josef; Herfarth, Christian

    1995-03-01

    Protoporphyrin (Pp IX) is the final intermediate product before haem and can be stimulated to a phototoxic reaction with light. The presence of 5-aminolevulinic acid can increase the intracellular biosynthesis of Pp IX in certain types of tumor cells. The photosensitizing concentrations of Pp IX make laser light induced fluorescence diagnostics (LIFD) and photodynamic therapy possible. A topical application of a 5-aminolevulinic acid solution requires a waterproof occlusive dressing for several hours. We developed a simple technique for a practical preparation for PDT using a hydrocolloid dressing. The normal surrounding skin can be spared. We present our first therapeutic experience with a case of cutaneous breast cancer in a 65-year-old female patient. Six hours after topical application of 10% isotonic 5- aminolevulinic acid under the hydrocolloid dressing PDT was performed (Ar-Dye Laser, 630 nm wavelength). Twenty four hours after PDT a superficial tumor necrosis could be observed with a maximum depth of tumor necrosis of 2 - 3 mm. The surrounding normal skin was without any inflammation.

  19. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater.

    PubMed

    Li, Ya; Shi, Shaoyuan; Cao, Hongbin; Wu, Xinmin; Zhao, Zhijuan; Wang, Liying

    2016-02-01

    Simulated ammonium chloride wastewater was treated by a lab-scale bipolar membrane electrodialysis for the generation of HCl and NH3·H2O and desalination. The influence of initial concentration of NH4Cl, current density, salt solution volume, initial concentration of acid and base and membrane stack structure on the yields of HCl and NH3·H2O was investigated. The current efficiency and energy consumption were also examined under different conditions. The results showed that, at the current density of 48 mA/cm(2), the highest concentration of HCl and NH3·H2O with initial concentration of 110 g/L NH4Cl was 57.67 g/L and 45.85 g/L, respectively. Higher initial concentration of NH4Cl was favor to reduce unit energy consumption and increase current efficiency of the BMED system. The membrane stack voltage of BMED increased quickly under constant current when the concentration of NH4Cl contained in the solution of salt compartment was depleted below the "inflection point concentration" about 8000 mg/L. It means that the concentration of NH4Cl below 8000 mg/L was no longer suitable for BMED because of higher energy consumption. The HCl and NH3·H2O concentration increased more quickly following the increase of current density. When increasing the volume of NH4Cl, the concentration of HCl and NH3·H2O also increased. The high initial concentration of acid and base could improve the final concentration of them, while the growth rate was decreased. Compared with the BMED system with three compartments, the growth rate of HCl concentration with the two compartments was higher and its unit energy consumption was lower. It meant that the performance of the BMED system could be improved by optimizing operation conditions. The application feasibility of the generation of HCl and NH3·H2O and desalination of ammonium chloride wastewater by BMED was proved. PMID:26674548

  20. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater.

    PubMed

    Li, Ya; Shi, Shaoyuan; Cao, Hongbin; Wu, Xinmin; Zhao, Zhijuan; Wang, Liying

    2016-02-01

    Simulated ammonium chloride wastewater was treated by a lab-scale bipolar membrane electrodialysis for the generation of HCl and NH3·H2O and desalination. The influence of initial concentration of NH4Cl, current density, salt solution volume, initial concentration of acid and base and membrane stack structure on the yields of HCl and NH3·H2O was investigated. The current efficiency and energy consumption were also examined under different conditions. The results showed that, at the current density of 48 mA/cm(2), the highest concentration of HCl and NH3·H2O with initial concentration of 110 g/L NH4Cl was 57.67 g/L and 45.85 g/L, respectively. Higher initial concentration of NH4Cl was favor to reduce unit energy consumption and increase current efficiency of the BMED system. The membrane stack voltage of BMED increased quickly under constant current when the concentration of NH4Cl contained in the solution of salt compartment was depleted below the "inflection point concentration" about 8000 mg/L. It means that the concentration of NH4Cl below 8000 mg/L was no longer suitable for BMED because of higher energy consumption. The HCl and NH3·H2O concentration increased more quickly following the increase of current density. When increasing the volume of NH4Cl, the concentration of HCl and NH3·H2O also increased. The high initial concentration of acid and base could improve the final concentration of them, while the growth rate was decreased. Compared with the BMED system with three compartments, the growth rate of HCl concentration with the two compartments was higher and its unit energy consumption was lower. It meant that the performance of the BMED system could be improved by optimizing operation conditions. The application feasibility of the generation of HCl and NH3·H2O and desalination of ammonium chloride wastewater by BMED was proved.

  1. Porphyrin Interactions with Wild Type and Mutant Mouse Ferrochelatase

    SciTech Connect

    Ferreira, Gloria C.; Franco, Ricardo; Lu, Yi; Ma, Jian-Guo; Shelnutt, John A.

    1999-05-19

    Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes Fe2+ chelation into protoporphyrin IX. Resonance Raman and W-visible absorbance spectroscopes of wild type and engineered variants of murine ferrochelatase were used to examine the proposed structural mechanism for iron insertion into protoporphyrin by ferrochelatase. The recombinant variants (i.e., H207N and E287Q) are enzymes in which the conserved amino acids histidine-207 and glutamate-287 of murine ferrochelatase were substituted with asparagine and glutamine, respectively. Both of these residues are at the active site of the enzyme as deduced from the Bacillus subtilis ferrochelatase three-dimensional structure. Addition of free base or metalated porphyrins to wild type ferrochelatase and H207N variant yields a quasi 1:1 complex, possibly a monomeric protein-bound species. In contrast, the addition of porphyrin (either free base or metalated) to E287Q is sub-stoichiometric, as this variant retains bound porphyrin in the active site during isolation and purification. The specificity of porphyrin binding is confirmed by the narrowing of the structure-sensitive resonance Raman lines and the vinyl vibrational mode. Resonance Raman spectra of free base and metalated porphyrins bound to the wild type ferrochelatase indicate a nonplanar distortion of the porphyrin macrocycle, although the magnitude of the distortion cannot be determined without first defining the specific type of deformation. Significantly, the extent of the nonplanar distortion varies in the case of H207N- and E287Q-bound porphyrins. In fact, resonance Raman spectral decomposition indicates a homogeneous ruffled distortion for the nickel protoporphyrin bound to the wild type ferrochelatase, whereas both a planar and ruffled conformations are present for the H207N-bound porphyrin. Perhaps more revealing is the unusual resonance , 3 Raman spectrum of the endogenous E287Q-bound porphyrin, which has

  2. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  3. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  4. Effect of Fluid Flow on Zinc Electrodeposits from Acid Chloride Electrolytes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Abdelmassir, A. A.

    1982-01-01

    Zinc was deposited potentiostatically from acid chloride baths. Once bath chemistry and electrochemistry were controlled, the study was focused on convective mass transfer at horizontal electrodes and its effect on cell performance. A laser schlieren imaging technique allowed in situ observations of flow patterns and their correlation with current transients. Convection was turbulent and mass transfer as a function of Rayleigh number was well correlated by: Sh = 0.14 R to the 1/3 power. Similarly, convection initiation time was correlated by DT/d squared = 38 Ra to the -2/3 power. Time scale of fluctuations was about half the initiation time. Taking the boundary layer thickness as a characteristic length, a critical Rayleigh number for the onset of convection was deduced: Ra sub CR = 5000. Placing the anode on the top of the cathode completely changed the flow pattern but kept the I-t curves identical whereas the use of a cathode grid doubled the limiting current. A well defined plateau in the current voltage curves suggested that hydrogen evolution has been successfully inhibited. Finally, long time deposition showed that convection at horizontal electrodes increased the induction time for dentrite growth by at least a factor of 2 with respect to a vertical wire.

  5. Ultrasensitive Detection of Ferulic Acid Using Poly(diallyldimethylammonium chloride) Functionalized Graphene-Based Electrochemical Sensor

    PubMed Central

    Liu, Lin-jie; Gao, Xia; Zhang, Pei; Feng, Shi-lan; Hu, Fang-di; Li, Ying-dong; Wang, Chun-ming

    2014-01-01

    The electrochemical redox of ferulic acid (FA) was investigated systematically by cyclic voltammetry (CV) with a poly(diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode (PDDA-G/GCE) as a working electrode. A simple and sensitive differential pulse voltammetry (DPV) technique was proposed for the direct quantitative determination of FA in Angelica sinensis and spiked human urine samples for the first time. The dependence of the intensities of currents and potentials on nature of the supporting electrolyte, pH, scan rate, and concentration was investigated. Under optimal conditions, the proposed sensor exhibited excellent electrochemical sensitivity to FA, and the oxidation peak current was proportional to FA concentration in the range of 8.95 × 10−8 M ~5.29 × 10−5 M, with a relatively low detection limit of 4.42 × 10−8 M. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. Besides, it was applied to detect FA in Angelica sinensis and biological samples with satisfactory results, making it a potential alternative tool for the quantitative detection of FA in pharmaceutical analysis. PMID:24900937

  6. Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Dong, C.

    2009-01-01

    The mode and mechanism of the interaction of morphine chloride, an important alkaloid compound to calf thymus deoxyribonucleic acid (ct DNA) was investigated from absorption and fluorescence titration techniques. Hypochromic effect was founded in the absorption spectra of morphine when concentration of DNA increased. The decreased fluorescence study revealed non-cooperative binding of the morphine to DNA with an affinity of 3.94 × 10 3 M -1, and the stoichiometry of binding was characterized to be about one morphine molecule per nucleotide. Stern-Volmer plots at different temperatures proved that the quenching mechanism was static. Ferrocyanide quenching study showed that the magnitude of KSV of the bound morphine was lower than that of the free one. In addition, it was found that ionic strength could affect the binding of morphine and DNA. Fluorescence polarization and denatured DNA studies also applied strong evidences that morphine molecule was partially intercalated between every alternate base pairs of ct DNA. As observed from above experiments, intercalation was well supported as the binding mode of morphine and ct DNA.

  7. Protic acid resin enhanced 1-butyl-3-methylimidazolium chloride pretreatment of Arundo donax Linn.

    PubMed

    You, Tingting; Zhang, Liming; Zhou, Sukun; Xu, Feng

    2014-09-01

    To improve the cellulose digestibility of energy crop Arudo donax Linn. with cost-efficient, a novel pretreatment of protic acid resin Amberlyst 35DRY catalyzed inexpensive ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) was developed in this work. The pretreatment was performed at 160°C with [C4mim]Cl for 1.5h, followed by Amberlyst 35DRY catalyzed at 90°C for 1h. The IL-Amberlyst pretreatment was demonstrated to be effective, evidenced by the reduction in cellulose crystallinity (31.4%) and increased porosity caused by extensive swelling the undissolved biomass and partial depolymerization of the longer cellulose chain of the dissolved biomass by Amberlyst. Consequently, a higher glucose yield (92.8%) was obtained than for the single [C4mim]Cl pretreatment (42.8%) at an enzyme loading of 20 FPU/g substrate. Overall, the enhanced pretreatment was competitive by using inexpensive and recyclable IL-Amberlyst 35DRY pretreated system with shorter processing time and reduced enzyme usage. PMID:25001325

  8. Boronated porphyrins in NCT: Results with a new potent tumor localizer

    SciTech Connect

    Kahl, S.B.; Koo, M.S.; Laster, B.H.; Fairchild, R.G.

    1988-01-01

    Several chemical methods are available for the solubilization of boronated porphyrins. We have previously reported the tumor localization of nido carboranyl porphyrins in which the icosahedral carborane cages have been opened to give B/sub 9/C/sub 2/ anions. One of these species has shown tumor boron levels of nearly 50 ..mu..g B/g when delivered by week-long subcutaneous infusions. We report here recent in vivo experiments with a new, highly water-soluble porphyrin based on the hematoporphyrin-type of compound in which aqueous solubility is achieved using the two propionic acid side chains of the ''natural'' porphyrin frame. 7 refs.

  9. Detection of Carbon Monoxide Using Polymer-Composite Films with a Porphyrin-Functionalized Polypyrrole

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Yen, Shiao-Ping S.; Lara, Liana M.; Shevade, Abhijit V.; Kisor, Adam

    2012-01-01

    Post-fire air constituents that are of interest to NASA include CO and some acid gases (HCl and HCN). CO is an important analyte to be able to sense in human habitats since it is a marker for both prefire detection and post-fire cleanup. The need exists for a sensor that can be incorporated into an existing sensing array architecture. The CO sensor needs to be a low-power chemiresistor that operates at room temperature; the sensor fabrication techniques must be compatible with ceramic substrates. Early work on the JPL ElectronicNose indicated that some of the existing polymer-carbon black sensors might be suitable. In addition, the CO sensor based on polypyrrole functionalized with iron porphyrin was demonstrated to be a promising sensor that could meet the requirements. First, pyrrole was polymerized in a ferric chloride/iron porphyrin solution in methanol. The iron porphyrin is 5, 10, 15, 20-tetraphenyl-21H, 23Hporphine iron (III) chloride. This creates a polypyrrole that is functionalized with the porphyrin. After synthesis, the polymer is dried in an oven. Sensors were made from the functionalized polypyrrole by binding it with a small amount of polyethylene oxide (600 MW). This composite made films that were too resistive to be measured in the device. Subsequently, carbon black was added to the composite to bring the sensing film resistivity within a measurable range. A suspension was created in methanol using the functionalized polypyrrole (90% by weight), polyethylene oxide (600,000 MW, 5% by weight), and carbon black (5% by weight). The sensing films were then deposited, like the polymer-carbon black sensors. After deposition, the substrates were dried in a vacuum oven for four hours at 60 C. These sensors showed good response to CO at concentrations over 100 ppm. While the sensor is based on a functionalized pyrrole, the actual composite is more robust and flexible. A polymer binder was added to help keep the sensor material from delaminating from the

  10. Analysis of phthalic acid diesters, monoester, and other plasticizers in polyvinyl chloride household products in Japan.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Matsuoka, Atsuko

    2011-01-01

    The aim of this study was to determine the concentrations of six phthalic acid diesters (PAEs) [di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), diisononyl phthalate (DINP), di-n-octyl phthalate (DNOP), and diisodecyl phthalate (DIDP)], two non-phthalic plasticizers [di(2-ethylhexyl) adipate (DEHA), 2,2,4-trimethyl-1,3-pentanediol diisobutylate (TMPDIB)], and mono 2-ethylhexyl phthalate(MEHP) in polyvinyl chloride (PVC) household products that children often places in their mouths and/or contact with their skin (41 products, 47 samples) in Japan. The detection frequencies of the studied compounds were as follows: DEHP (79 %), DINP-2 (13 %), DINP-1 (11 %), DBP (8.5 %), DEHA (8.5 %), DIDP (4.3 %), and DNOP (2.1 %). Concentrations of these compounds ranged from 0.021 % to 48 %. BBP and TMPDIB were not detected in the all samples. Most samples contained DEHP and DINP at high concentrations over 0.1 %. High concentrations of PAEs were detected in PVC household products that appear appealing to children and can possibly be licked and chewed by them. Di(2-ethylhexyl) terephtalete, diisononyl 1,2-cyclohexanedicarboxylic acid, acetyl tributyl citrate, and di(2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate used as substitute plasticizers were also detected in several samples. MEHP was present in 70 % of the samples, with concentrations ranging from trace amounts to 140 μg/g. The ratios of MEHP against DEHP were 6.2 × 10(-4) to 1.6 × 10(-1) %. MEHP in the household products investigated in this study was most probably an impurity in DEHP. The high concentrations of PAEs detected in products that children often place in their mouth reveal the importance of replacing plasticizers in common household products, and not just children's toys, with safer alternatives.

  11. In vivo fluorescence kinetics and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: increased damage after multiple irradiations.

    PubMed

    van der Veen, N; van Leengoed, H L; Star, W M

    1994-11-01

    The kinetics of fluorescence in tumour (TT) and subcutaneous tissue (ST) and the vascular effects of photodynamic therapy (PDT) were studied using protoporphyrin IX (PpIX), endogenously generated after i.v. administration of 100 and 200 mg kg-1 5-aminolaevulinic acid (ALA). The experimental model was a rat skinfold observation chamber containing a thin layer of ST in which a small syngeneic mammary tumour grows in a sheet-like fashion. Maximum TT and ST fluorescence following 200 mg kg-1 ALA was twice the value after 100 mg kg-1 ALA, but the initial increase with time was the same for the two doses in both TT and ST. The fluorescence increase in ST was slower and the maximum fluorescence was less and appeared later than in TT. Photodynamic therapy was applied using green argon laser light (514.5 nm, 100 J cm-2). Three groups received a single light treatment at different intervals after administration of 100 or 200 mg kg-1 ALA. In these groups no correlation was found between the fluorescence intensities and the vascular damage following PDT. A fourth group was treated twice and before the second light treatment some fluorescence had reappeared after photobleaching due to the first treatment. Only with the double light treatment was lasting TT necrosis achieved, and for the first time with any photosensitiser in this model this was accomplished without complete ST necrosis.

  12. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    SciTech Connect

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH{sub 2}){sup {minus}1/2} dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs.

  13. Communication: Substrate induced dehydrogenation: Transformation of octa-ethyl-porphyrin into tetra-benzo-porphyrin

    NASA Astrophysics Data System (ADS)

    van Vörden, D.; Lange, M.; Schmuck, M.; Schaffert, J.; Cottin, M. C.; Bobisch, C. A.; Möller, R.

    2013-06-01

    Individual molecules of octa-ethyl-porhphyrin-iron(III)-chloride adsorbed on a Cu(111) surface are studied by scanning tunneling microscopy. Upon moderate heating the molecules are found to transform into Fe-tetra-benzo-porphyrin at a surprisingly low temperature of 380 K. If the annealing is interrupted, the different steps of the transformation can be imaged. By evaluating the ratio of transformed molecules as function of annealing temperature, an approximate activation energy of 1.2 eV ± 0.1 eV could be determined.

  14. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride

    NASA Astrophysics Data System (ADS)

    Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.

    2016-08-01

    There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.

  15. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese.

  16. Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride.

    PubMed

    Arroyo-López, F N; Bautista-Gallego, J; Romero-Gil, V; Rodríguez-Gómez, F; Garrido-Fernández, A

    2012-04-16

    The present work uses a logistic/probabilistic model to obtain the growth/no growth interfaces of Saccharomyces cerevisiae, Wickerhamomyces anomalus and Candida boidinii (three yeast species commonly isolated from table olives) as a function of the diverse combinations of natamycin (0-30 mg/L), citric acid (0.00-0.45%) and sodium chloride (3-6%). Mathematical models obtained individually for each yeast species showed that progressive concentrations of citric acid decreased the effect of natamycin, which was only observed below 0.15% citric acid. Sodium chloride concentrations around 5% slightly increased S. cerevisiae and C. boidinii resistance to natamycin, although concentrations above 6% of NaCl always favoured inhibition by this antimycotic. An overall growth/no growth interface, built considering data from the three yeast species, revealed that inhibition in the absence of citric acid and at 4.5% NaCl can be reached using natamycin concentrations between 12 and 30 mg/L for growth probabilities between 0.10 and 0.01, respectively. Results obtained in this survey show that is not advisable to use jointly natamycin and citric acid in table olive packaging because of the observed antagonistic effects between both preservatives, but table olives processed without citric acid could allow the application of the antifungal.

  17. Release of cetyl pyridinium chloride from fatty acid chelate temporary dental cement

    PubMed Central

    Hurt, Andrew; Coleman, Nichola J.; Tüzüner, Tamer; Bagis, Bora; Korkmaz, Fatih Mehmet; Nicholson, John W.

    2016-01-01

    Abstract Objective To determine whether the antimicrobial nature of a fatty acid chelate temporary dental cement can be enhanced by the addition of 5% cetyl pyridinium chloride (CPC). Materials and methods The temporary cement, Cavex Temporary was employed, and additions of CPC were made to either the base or the catalyst paste prior to mixing the cement. Release of CPC from set cement specimens was followed using reverse-phase HPLC for a period of up to 2 weeks following specimen preparation. Potential interactions between Cavex and CPC were examined by Fourier transform infrared spectroscopy (FTIR) and antimicrobial effects were determined using zone of inhibition measurements after 24 h with disc-shaped specimens in cultured Streptococcus mutans. Results FTIR showed no interaction between CPC and the components of the cement. CPC release was found to follow a diffusion mechanism for the first 6 h or so, and to equilibrate after approximately 2 weeks, with no significant differences between release profiles when the additive was incorporated into the base or the catalyst paste. Diffusion was rapid, and had a diffusion coefficient of approximately 1 × 10−9 m2 s−1 in both cases. Total release was in the range 10–12% of the CPC loading. Zones of inhibition around discs containing CPC were significantly larger than those around the control discs of CPC-free cement. Conclusions The antimicrobial character of this temporary cement can be enhanced by the addition of CPC. Such enhancement is of potential clinical value, though further in vivo work is needed to confirm this. PMID:27335898

  18. N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol.

    PubMed

    Roberts, James M; Osthoff, Hans D; Brown, Steven S; Ravishankara, A R

    2008-08-22

    Molecular chlorine (Cl2) is an important yet poorly understood trace constituent of the lower atmosphere. Although a number of mechanisms have been proposed for the conversion of particle-bound chloride (Cl-) to gas-phase Cl2, the detailed processes involved remain uncertain. Here, we show that reaction of dinitrogen pentoxide (N2O5) with aerosol-phase chloride yields Cl2 at low pH (<2) and should constitute an important halogen activation pathway in the atmosphere.

  19. Comments on the paper: 'Optical reflectance, optical refractive index and optical conductivity measurements of nonlinear optics for L-aspartic acid nickel chloride single crystal'

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bikshandarkoil R.; Naik, Suvidha G.; Dhavskar, Kiran T.

    2016-02-01

    We argue that the 'L-aspartic acid nickel chloride' crystal reported by the authors of the title paper (Optics Communications, 291 (2013) 304-308) is actually the well-known diaqua(L-aspartato)nickel(II) hydrate crystal.

  20. Molecular Simulations of Porphyrins and Heme Proteins

    SciTech Connect

    SHELNUTT,JOHN A.

    2000-01-18

    An overview of the use of classical mechanical molecular simulations of porphyrins, hydroporphyrins, and heme proteins is given. The topics cover molecular mechanics calculations of structures and conformer energies of porphyrins, energies of barriers for interconversion between stable conformers, molecular dynamics of porphyrins and heme proteins, and normal-coordinate structural analysis of experimental and calculated porphyrin structures. Molecular mechanics and dynamics are currently a fertile area of research on porphyrins. In the future, other computational methods such as Monte Carlo simulations, which have yet to be applied to porphyrins, will come into use and open new avenues of research into molecular simulations of porphyrins.

  1. Porphyrin and heme metabolism and the porphyrias.

    PubMed

    Bonkovsky, Herbert L; Guo, Jun-Tao; Hou, Weihong; Li, Ting; Narang, Tarun; Thapar, Manish

    2013-01-01

    Porphyrins and metalloporphyrins are the key pigments of life on earth as we know it, because they include chlorophyll (a magnesium-containing metalloporphyrin) and heme (iron protoporphyrin). In eukaryotes, porphyrins and heme are synthesized by a multistep pathway that involves eight enzymes. The first and rate-controlling step is the formation of delta-aminolevulinic acid (ALA) from glycine plus succinyl CoA, catalyzed by ALA synthase. Intermediate steps occur in the cytoplasm, with formation of the monopyrrole porphobilinogen and the tetrapyrroles hydroxymethylbilane and a series of porphyrinogens, which are serially decarboxylated. Heme is utilized chiefly for the formation of hemoglobin in erythrocytes, myoglobin in muscle cells, cytochromes P-450 and mitochondrial cytochromes, and other hemoproteins in hepatocytes. The rate-controlling step of heme breakdown is catalyzed by heme oxygenase (HMOX), of which there are two isoforms, called HMOX1 and HMOX2. HMOX breaks down heme to form biliverdin, carbon monoxide, and iron. The porphyrias are a group of disorders, mainly inherited, in which there are defects in normal porphyrin and heme synthesis. The cardinal clinical features are cutaneous (due to the skin-damaging effects of excess deposited porphyrins) or neurovisceral attacks of pain, sometimes with weakness, delirium, seizures, and the like (probably due mainly to neurotoxic effects of ALA). The treatment of choice for the acute hepatic porphyrias is intravenous heme therapy, which repletes a critical regulatory heme pool in hepatocytes and leads to downregulation of hepatic ALA synthase, which is a biochemical hallmark of all forms of acute porphyria in relapse.

  2. Potentiometric detection and removal of copper using porphyrins

    PubMed Central

    2013-01-01

    Background Copper is an essential trace element with a great importance in industry, environment and biological systems. The great advantage of ion-selective sensors in comparison with other proposed techniques is that they are measuring the free metal ion activity which is responsible for their toxicity. Porphyrins are known to be among the best ionophores in formulation of ion-selective sensors. Results A symmetrically substituted meso-porphyrin, namely: 5,10,15,20-tetrakis(4-allyloxyphenyl)porphyrin (TAPP) was used in the construction of a new copper selective-sensor and was also tested for the removal of copper from waste waters. The potentiometric response characteristics (slope and selectivity) of copper-selective electrodes based on TAPP in o-nitrophenyloctylether (o-NPOE), dioctyl phtalate (DOP) and dioctyl sebacate (DOS) plasticized with poly(vinyl chloride) membranes are compared. Conclusions The best results were obtained for the membrane plasticized with DOP. The sensor has linear response in the range 1x10-7 – 1x10-1 M with 28.4 ± 0.4 mV/decade near-Nernstian slope towards copper ions and presents good selectivity. Due to its chelating nature, the same porphyrin was also tested for the retention of copper from synthetic copper samples, showing a maximum adsorption capacity of 280 mg/g. PMID:23829792

  3. Corrosion Mitigation of Copper in Acidic Chloride Pickling Solutions by 2-Amino-5-ethyl-1,3,4-thiadiazole

    NASA Astrophysics Data System (ADS)

    Sherif, El-Sayed M.

    2010-08-01

    Corrosion of copper in acidic chloride pickling solutions of 0.5 M HCl and its mitigation by 2-amino-5-ethyl-1,3,4-thiadiazole (AETDA) have been investigated using potentiodynamic polarization, chronoamperometry, electrochemical impedance spectroscopy (EIS), and weight-loss measurements. The study was also complemented by scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and UV-Visible absorption spectroscopy investigations. The presence of AETDA and the increase of its concentration in the chloride solutions greatly decreased the corrosion rate and increased the surface and polarization resistances of copper as indicated by the electrochemical measurements. Weight-loss data also indicated that AETDA decreases the dissolution of copper coupons in the studied chloride solution. SEM/EDX investigations showed that AETDA molecules are strongly adsorbed onto copper surface. The UV-Visible absorption spectra confirmed that AETDA molecules suppress the corrosion of copper via their interactions with the copper surface via their adsorption then formation of AETDA-Cu complex.

  4. Towards alternatives to anodic water oxidation: basket-handle thiolate Fe(III) porphyrins for electrocatalytic hydrocarbon oxidation.

    PubMed

    Li, Peiyi; Alenezi, Khalaf; Ibrahim, Saad K; Wright, Joseph A; Hughes, David L; Pickett, Christopher J

    2012-12-01

    Selective electrocatalytic oxidation of hydrocarbons to alcohols, epoxides or other (higher value) oxygenates should in principal present a useful complementary anodic half-cell reaction to cathodic generation of fuels from water or CO(2) viz. an alternative to oxygen evolution. A series of new basket-handle thiolate Fe(III) porphyrins have been synthesised and shown to mediate anodic oxidation of hydrocarbons, specifically adamantane hydroxylation and cyclooctene epoxidation. We compare yields obtained by electrochemical and chemical oxidation of the thiolate porphyrins and benchmark their behaviour against that of Fe(III) tetraphenyl porphyrin chloride and its tetrapentafluorophenyl analogue. PMID:22945754

  5. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice.

    PubMed

    Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-05-01

    Acid rain and rare earth element (REE) pollution exist simultaneously in many agricultural regions. However, how REE pollution and acid rain affect plant growth in combination remains largely unknown. In this study, the combined effects of simulated acid rain and lanthanum chloride (LaCl3) on chloroplast morphology, chloroplast ultrastructure, functional element contents, chlorophyll content, and the net photosynthetic rate (P n) in rice (Oryza sativa) were investigated by simulating acid rain and rare earth pollution. Under the combined treatment of simulated acid rain at pH 4.5 and 0.08 mM LaCl3, the chloroplast membrane was smooth, proteins on this membrane were uniform, chloroplast structure was integrated, and the thylakoids were orderly arranged, and simulated acid rain and LaCl3 exhibited a mild antagonistic effect; the Mg, Ca, Mn contents, the chlorophyll content, and the P n increased under this combined treatment, with a synergistic effect of simulated acid rain and LaCl3. Under other combined treatments of simulated acid rain and LaCl3, the chloroplast membrane surface was uneven, a clear "hole" was observed on the surface of chloroplasts, and the thylakoids were dissolved and loose; and the P n and contents of functional elements (P, Mg, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo) and chlorophyll decreased. Under these combined treatments, simulated acid rain and LaCl3 exhibited a synergistic effect. Based on the above results, a model of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis was established in order to reveal the combined effects on plant photosynthesis, especially on the photosynthetic organelle-chloroplast. Our results would provide some references for further understanding the mechanism of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis. PMID:26815371

  6. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice.

    PubMed

    Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-05-01

    Acid rain and rare earth element (REE) pollution exist simultaneously in many agricultural regions. However, how REE pollution and acid rain affect plant growth in combination remains largely unknown. In this study, the combined effects of simulated acid rain and lanthanum chloride (LaCl3) on chloroplast morphology, chloroplast ultrastructure, functional element contents, chlorophyll content, and the net photosynthetic rate (P n) in rice (Oryza sativa) were investigated by simulating acid rain and rare earth pollution. Under the combined treatment of simulated acid rain at pH 4.5 and 0.08 mM LaCl3, the chloroplast membrane was smooth, proteins on this membrane were uniform, chloroplast structure was integrated, and the thylakoids were orderly arranged, and simulated acid rain and LaCl3 exhibited a mild antagonistic effect; the Mg, Ca, Mn contents, the chlorophyll content, and the P n increased under this combined treatment, with a synergistic effect of simulated acid rain and LaCl3. Under other combined treatments of simulated acid rain and LaCl3, the chloroplast membrane surface was uneven, a clear "hole" was observed on the surface of chloroplasts, and the thylakoids were dissolved and loose; and the P n and contents of functional elements (P, Mg, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo) and chlorophyll decreased. Under these combined treatments, simulated acid rain and LaCl3 exhibited a synergistic effect. Based on the above results, a model of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis was established in order to reveal the combined effects on plant photosynthesis, especially on the photosynthetic organelle-chloroplast. Our results would provide some references for further understanding the mechanism of the combined effects of simulated acid rain and LaCl3 on plant photosynthesis.

  7. Kinetic study of delta-Ala induced porphyrins in mice using photoacoustic and fluorescence spectroscopies.

    PubMed

    Stolik, Suren; Tomás, Sergio A; Ramón-Gallegos, Eva; Sánchez, Feliciano

    2002-11-01

    The production of delta-aminolevulinic acid (ALA)-induced porphyrins in mice skin and blood was studied by photoacoustic and fluorescence spectroscopies. Mice were intraperitoneally administered with 30 mg/kg of ALA. The abdominal skin was subsequently excised at specific times within an 8-h interval and its absorption spectrum obtained by photoacoustics. The highest porphyrins concentration in skin, determined from the optical absorption of the Soret band at 410 nm, was found to occur nearly 2 h after ALA administration, but a first peak was also observed at approximately 15 min. Our hypothesis that the first peak represents the porphyrins content in blood vessels within the skin, whereas the second peak corresponds to porphyrins production in skin tissue, was confirmed by analysing the evolution of protoporphyrin IX content in plasma extracted intracardiacally. By finally applying phase resolved photoacoustic spectroscopy, we were able to evaluate the mean depth at which porphyrins are generated.

  8. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    SciTech Connect

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between approx. 20 and 400/sup 0/C. The hydrolysis of Mg/sup 2 +/ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25/sup 0/C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate.

  9. Plasmon-assisted photocurrent generation from silver nanoparticle monolayers combined with porphyrins via their different chain-length alkylcarboxylates.

    PubMed

    Kakuta, Takayoshi; Kon, Hiroki; Kajikawa, Azusa; Kanaizuka, Katsuhiko; Yagyu, Shigeta; Miyake, Ryosuke; Ishizakil, Manabu; Uruma, Keirei; Togashi, Takanari; Sakamoto, Masatomi; Kurihara, Masato

    2014-06-01

    Three-typed porphyrin derivatives with a different chain-length alkylcarboxylic acid as their peripheral anchor group have been prepared. Anodic photocurrents were observed in a simple system where the porphyrin derivatives were directly anchored on an indium tin oxide (ITO) electrode. Cathodic photocurrents and their plasmon-assisted enhancement appeared from an Ag nanoparticle (Ag NP) composite monolayer combined with the porphyrin derivatives on the ITO electrode. In the photocurrent generation mechanism, Ag NPs played both the roles as photon- and energy-transfer to the porphyrin derivatives. The plasmon-assisted enhancement was affected by the chain-lengths of the peripheral anchor groups. PMID:24738356

  10. Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yan; Song, Ren-guo; Sun, Bin; Lu, Hai; Wang, Chao

    2016-07-01

    Potentiodynamic polarization tests and slow strain rate test (SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking (SCC) behavior of 7003 aluminum alloy (AA7003) in acid and alkaline chloride solutions under various applied potentials ( E a). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution (AD) at open-circuit potential (OCP) and is highly susceptible to hydrogen embrittlement (HE) at high negative E a in the solutions with pH levels of 4 and 11. The susceptibility increases with negative shift in the potential when E a is less than -1000 mV vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when E a is equal to -1000 mV vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.

  11. Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors

    NASA Astrophysics Data System (ADS)

    Dong, Xiao-Ling; Lu, An-Hui; He, Bin; Li, Wen-Cui

    2016-09-01

    The selection of carbon precursor is an important factor when designing carbon materials. In this study, a complex derived from L-glutamic acid and zinc chloride was used to prepare highly microporous carbons via facile pyrolysis. L-glutamic acid, a new carbon precursor with nitrogen functionality, coordinated with zinc chloride resulted in a homogeneous distribution of Zn2+ on the molecular level. During pyrolysis, the evaporation of the in situ formed zinc species creates an abundance of micropores together with the inert gases. The obtained carbons exhibit high specific surface area (SBET: 1203 m2 g-1) and a rich nitrogen content (4.52 wt%). In excess of 89% of the pore volume consists of micropores with pore size ranging from 0.5 to 1.2 nm. These carbons have been shown to be suitable for use as supercapacitor electrodes, and have been tested in 6 M KOH where a capacitance of 217 F g-1 was achieved at a current density of 0.5 A g-1. A long cycling life of 30 000 cycles was achieved at a current density of 1 A g-1, with only a 9% loss in capacity. The leakage current through a two-electrode device was measured as 2.3 μA per mg of electrode and the self-discharge characteristics were minimal.

  12. Amino acids as chiral auxiliaries in cyanuric chloride-based chiral derivatizing agents for enantioseparation by liquid chromatography.

    PubMed

    Batra, Sonika; Bhushan, Ravi

    2014-11-01

    This review summarizes and critically evaluates the recent research on application of amino acids and amino acid amides as chiral auxiliaries in cyanuric chloride (CC) based chiral derivatizing agents (CDRs), used in the indirect approach for enantiomeric resolution. Methods of synthesis of such CDRs, methods for synthesis of diastereomers of a variety of racemic compounds and parameters of liquid chromatographic separation, along with their prospects and their limitations in indirect enantioresolution, are discussed. Application of the said CDR(s) and the technical approach to be used that are discussed should be beneficial for control of enantiomeric purity in pharmaceutical industry, verification of enantiomeric ratio of commercial formulations and the development of methods for indirect resolution of a variety of chiral compounds. Derivatization methods are particularly required when a chromophore is to be introduced in low UV absorbing molecules, for their detection.

  13. Preparation of robust polyamide microcapsules by interfacial polycondensation of p-phenylenediamine and sebacoyl chloride and plasticization with oleic acid.

    PubMed

    Rosa, Natacha; Martins, Gabriela V; Bastos, Margarida M S M; Gois, Joana R; Coelho, Jorge F J; Marques, Juliana; Tavares, Carlos J; Magalhães, Fernão D

    2015-01-01

    Microcapsules produced by interfacial polycondensation of p-phenylenediamine (PPD) and sebacoyl chloride (SC) were studied. The products were characterized in terms of morphology, mean diameter and effectiveness of dodecane encapsulation. The use of Tween 20 as dispersion stabilizer, in comparison with polyvinyl alcohol (PVA), reduced considerably the mean diameter of the microcapsules and originated smoother wall surfaces. When compared to ethylenediamine (EDA), microcapsules produced with PPD monomer were more rigid and brittle, prone to fracture during processing and ineffective retention of the core liquid. The use of diethylenetriamine (DETA) cross-linker in combination with PPD did not decrease capsule fragility. On the other hand, addition of a small fraction of oleic acid to the organic phase remarkably improved wall toughness and lead to successful encapsulation of the core-oil. Oleic acid is believed to act as a plasticizer. Its incorporation in the polymeric wall was demonstrated by FTIR and (1)H-NMR.

  14. Porphyrins at interfaces

    NASA Astrophysics Data System (ADS)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  15. The electrodeposition of cobalt, iron, antimony and their aluminum alloys from acidic aluminum chloride 1-methyl-3-ethylimidazolium chloride room-temperature molten salt

    NASA Astrophysics Data System (ADS)

    Mitchell, John Anthony

    The electrodeposition of cobalt, iron, antimony, and their aluminum alloys was investigated in the room-temperature molten salt, aluminum chloride-1-methyl-3-ethylimidazolium chloride (AlClsb3-MeEtimCl). Solutions of Co(II), Fe(II), and Sb(III) were prepared by controlled-potential coulometric anodization of the respective metal in Lewis acidic melt. The plating and stripping of these metals was investigated using cyclic voltammetry, rotating disk and rotating ring-disk electrode voltammetry, controlled potential coulometry, and potential step chronoamperometry. Bulk deposits of the pure and aluminum-alloyed metals were analyzed using scanning electron microscopy, energy dispersive x-ray spectroscopy, atomic absorption spectroscopy, and x-ray diffraction methods. The underpotential co-deposition of aluminum was observed during the electrodeposition of cobalt and iron; however, this phenomenon did not occur during the electrodeposition of antimony. The results of this investigation suggest that both a positive work function difference between the transition metal and aluminum and the mutual solubility of these components determine whether or not the co-deposition of aluminum takes place. Two electroanalytical techniques were developed for the analysis of co-deposited aluminum alloys: the first was based on anodic linear sweep voltammetry at a rotating-ring-disk electrode. The second was derived from the transition metal ion concentration changes observed during bulk deposition experiments. In the first technique, an alloy deposit was stripped from the disk electrode while the ring potential was held at a value where only one of the ions oxidized from the alloy could be reduced. In the second technique, the concentration of transition metal ions was monitored in an undivided cell with an anode made from the depositing metal. The co-deposition of aluminum was signalled by an increase in the transition metal ion concentration. The alloy composition data resulting from

  16. An outbreak of illness after occupational exposure to ozone and acid chlorides.

    PubMed Central

    Ng, T P; Tsin, T W; O'Kelly, F J

    1985-01-01

    New labelling processes installed without adequate ventilation control in an electric motor factory exposed production line workers to toxic gases. Symptoms of eye and respiratory tract irritation together with complaints of headache, fever, chills, dizziness, malaise, general weakness, nausea, and vomiting were widespread. Chest signs, radiographic abnormalities, reduction in ventilatory function, and blood gas abnormalities were found in some cases. Epidemiological analysis of the spatial and temporal distribution of cases supported an exposure effect relationship. Investigations suggested ozone and possibly phosgene and associated trichloroacetyl chlorides as the toxic agents that were generated by an ultraviolet print curing arrangement and perchloroethylene used as a cleaning solvent. PMID:4041387

  17. Porphyrin adsorbed on the (101[combining macron]0) surface of the wurtzite structure of ZnO--conformation induced effects on the electron transfer characteristics.

    PubMed

    Niskanen, Mika; Kuisma, Mikael; Cramariuc, Oana; Golovanov, Viacheslav; Hukka, Terttu I; Tkachenko, Nikolai; Rantala, Tapio T

    2013-10-28

    Electron transfer at the adsorbate-surface interface is crucial in many applications but the steps taking place prior to and during the electron transfer are not always thoroughly understood. In this work a model system of 4-(porphyrin-5-yl)benzoic acid adsorbed as a corresponding benzoate on the ZnO wurtzite (101[combining macron]0) surface is studied using density functional theory (DFT) and time-dependent DFT. Emphasis is on the initial photoexcitation of porphyrin and on the strength of coupling between the porphyrin LUMO or LUMO + 1 and the ZnO conduction band that plays a role in the electron transfer. Firstly, ZnO wurtzite bulk is optimized to minimum energy geometry and the properties of the isolated ZnO (101[combining macron]0) surface model and the porphyrin model are discussed to gain insight into the combined system. Secondly, various orientations of the model porphyrin on the ZnO surface are studied: the porphyrin model standing perpendicularly to the surface and gradually brought close to the surface by tilting the linker in a few steps. The porphyrin model approaches the surface either sideways with hydrogen atoms of the porphyrin ring coming down first or twisted in a ca. 45° angle, giving rise to π-interactions of the porphyrin ring with ZnO. Because porphyrins are closely packed and near the surface, emerging van der Waals (vdW) interactions are examined using Grimme's D2 method. While the orientation affects the initial excitation of porphyrin only slightly, the coupling between the LUMO and LUMO + 1 of porphyrin and the conduction band of ZnO increases considerably if porphyrin is close to the surface, especially if the π-electrons are interacting with the surface. Based on the results of coupling studies, not only the distance between porphyrin and the ZnO surface but also the orientation of porphyrin can greatly affect the electron transfer. PMID:24022239

  18. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells.

    PubMed

    Hendrick, Siobhán M; Mroz, Magdalena S; Greene, Catherine M; Keely, Stephen J; Harvey, Brian J

    2014-09-01

    Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 μM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid.

  19. Syntheses, spectroscopic and AFM characterization of some manganese porphyrins and their hybrid silica nanomaterials.

    PubMed

    Fagadar-Cosma, Eugenia; Mirica, Marius Constantin; Balcu, Ionel; Bucovicean, Carmen; Cretu, Carmen; Armeanu, Ileana; Fagadar-Cosma, Gheorghe

    2009-01-01

    The present work is concerned with the manganese complexes of 5,10,15,20-tetraphenylporphyrin and of 5,10,15,20-tetra(3-hydroxyphenyl)porphyrin, which were prepared by metallation of the corresponding porphyrin ligands, and the study of their spectroscopic and photophysical behavior under strongly acidic and alkaline conditions. The second objective was to obtain and study some new hybrid materials, with special optoelectronic and surface properties, by impregnation of silica gels obtained by one step acid and by two steps acid-base catalysis with these Mn-porphyrins. The resulting nanomaterials exhibited interesting bathochromic and hyperchromic effects of their second band in the emission spectra in comparison with the Mn-porphyrins and also they have distinct orientation of the aggregates on surfaces, as shown by AFM images, making them useful for applications in medicine, formulation of sensors and for environmental-friendly catalysts for photodegradation of organic compounds.

  20. [Changes in porphyrin metabolism of mice given beryllium and/or zinc].

    PubMed

    Sakaguchi, T; Sakaguchi, S; Tanaka, T; Aminaka, M; Kudo, Y

    1997-05-01

    Beryllium chloride and/or zinc chloride were intraperitoneally injected into mice. The amount of beryllium (Be) injected corresponded to 1/10th of the LD50 dose intravenously administered. The amount of zinc (Zn) injected was the same as Be. The changes in porphyrin metabolism of the mice were studied. Delta-aminolevulinic acid dehydratase (ALA-D) activities in the blood were found to increase significantly in Zn and BeZn groups when compared to the control level. The blood porphobilinogen deaminase (PBG-D) activity in the Zn group was slightly less than that in the controls. The ALA-D and PBG-D activities in liver were higher in the Be and BeZn groups than in the controls. The splenic ALA-D activities were significantly higher in the Zn and BeZn groups than in the control and Be groups. The splenic PBG-D activities were markedly higher in the Be and/or Zn groups than in the controls. An increase in ALA-D activities in the blood and spleen was observed in the BeZn group, together with an increase in ALA-D activities caused by Zn administration. Furthermore, the increase in PBG-D activities in liver and spleen was observed in the Be and/or Zn groups. The results suggested that chemical similarity between Be and Zn brought about these phenomena.

  1. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  2. Credneramides A and B: neuromodulatory phenethylamine and isopentylamine derivatives of a vinyl chloride-containing fatty acid from cf. Trichodesmium sp. nov.

    PubMed

    Malloy, Karla L; Suyama, Takashi L; Engene, Niclas; Debonsi, Hosana; Cao, Zhengyu; Matainaho, Teatulohi; Spadafora, Carmenza; Murray, Thomas F; Gerwick, William H

    2012-01-27

    Credneramides A (1) and B (2), two vinyl chloride-containing metabolites, were isolated from a Papua New Guinea collection of cf. Trichodesmium sp. nov. and expand a recently described class of vinyl chloride-containing natural products. The precursor fatty acid, credneric acid (3), was isolated from both the aqueous and organic fractions of the parent fraction as well as from another geographically and phylogenetically distinct cyanobacterial collection (Panama). Credneramides A and B inhibited spontaneous calcium oscillations in murine cerebrocortical neurons at low micromolar concentrations (1, IC(50) 4.0 μM; 2, IC(50) 3.8 μM).

  3. Influence of sodium chloride concentration on the controlled lactic acid fermentation of "Almagro" eggplants.

    PubMed

    Ballesteros, C; Palop, L; Sánchez, I

    1999-12-01

    The effect of a commercial Lactobacillus starter and sodium chloride concentration on the fermentation of "Almagro" eggplants (Solanum melongena L. var. esculentum depressum) was studied. The results of fermentation using added starter and varying salt concentrations (4, 6, and 10% w/v) in brine were compared with the results of spontaneous fermentation taking place in brine with a salt concentration of 4%. Fresh fruits, medium in size (34-44 g), were used in all cases; all fruits were blanched under identical conditions. Temperature in the fermenters was 32+/-2 degrees C. The results obtained indicate that addition of a suitable starter shortened the fermentation process, provided the salt concentration in the brine did not exceed 6%. In the conditions tested, the eggplants obtained after fermentation were found to be of good quality though somewhat bitter which may explained by the starter employed.

  4. Fluorinated Dodecaphenylporphyrins: Synthetic and Electrochemical Studies Including the First Evidence of Intramolecular Electron Transfer Between an Fe(II) Porphyrin -Anion Radical and an Fe(I) Porphyrin

    SciTech Connect

    D'Souza, F.; Forsyth, T.P.; Fukuzumi, S.; Kadish, K.M.; Krattinger, B.; Lin, M.; Medforth, C.J.; Nakanishi, I.; Nurco, D.J.; Shelnutt, J.A.; Smith, K.M.; Van Caemelbecke, E.

    1998-10-19

    Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compound FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.

  5. Transport of sodium across the isolated bovine rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate.

    PubMed

    Sehested, J; Diernaes, L; Moller, P D; Skadhauge, E

    1996-01-01

    Unidirectional transport rates of sodium (22Na+) and chloride (36Cl-) across bovine rumen epithelium were measured in vitro by the Ussing chamber technique. The active and short-chain fatty acid (SCFA)-stimulated sodium transport was shown to fit Michaelis-Menten kinetics, and was rate limited mainly by one transport system, characterized by a Km of 43 mmol l-1 Na+ and a Jmax (maximal transport rate) of 6.2 mumol cm-2 h-1 Na+. It was confirmed that the basolateral Na+,K(+)-ATPase was essential for active sodium transport, and that an apical amiloride-sensitive sodium transport system (Na(+)-H+ exchange) was involved in a minimum of 60-70% of the active sodium transport in the presence of SCFAs (butyrate). The main part of both the mucosal-serosal (MS) and serosal-mucosal (SM) sodium flux was sensitive to an applied electrical potential difference (PD). It is noteworthy that an applied PD, equal to the in vivo PD (+30 mV, lumen as reference), abolished net transport of sodium. The stimulating effect of a mixture of acetate, propionate and butyrate on active sodium transport was confirmed, and it was further shown that the stimulating effect of each of the three SCFAs was nearly equal. Analogues of naturally occurring SCFAs (isobutyrate and 2-ethyl-butyrate) did not stimulate active sodium transport, but inhibited the stimulating effect of butyrate. The stimulating effect of butyrate was clearly concentration dependent and showed a maximum at approximately 20 mmol l-1 butyrate. Above this limit active sodium transport was decreased with increasing butyrate concentration. This suggests that there was a limit to the amount of butyrate that could be handled by the epithelium. The active sodium transport was clearly correlated with the chloride concentration, and was significantly reduced, but not abolished, by replacement of chloride with gluconate. Active transport of chloride was stimulated by butyrate and reduced by the Na(+)-H+ exchange inhibitor amiloride (3 mmol l

  6. Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions using tri-iso-octylamine.

    PubMed

    Lee, Jin-Young; Rajesh Kumar, J; Kim, Joon-Soo; Park, Hyung-Kyu; Yoon, Ho-Sung

    2009-08-30

    Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions was carried out using tri-iso-octylamine (Alamine 308) as an extractant diluted in kerosene. The percentage extraction of platinum(IV) and rhodium(III) increased with increase in acid concentration up to 8 mol L(-1). However, at 10 mol L(-1) HCl concentration, the extraction behavior was reversed, indicating the solvation type mechanism during extraction. The quantitative extraction of approximately 98% platinum(IV) and 36% rhodium(III) was achieved with 0.01 mol L(-1) Alamine 308. The highest separation factor (S.F.=184.7) of platinum(IV) and rhodium(III) was achieved with 0.01 mol L(-1) Alamine 308 at 1.0 mol L(-1) of hydrochloric acid concentration. Alkaline metal salts like sodium chloride, sodium nitrate, sodium thiocyanate, lithium chloride, lithium nitrate, potassium chloride and potassium thiocyanate used for the salting-out effect. LiCl proved as best salt for the extraction of platinum(IV). Temperature effect demonstrates that the extraction process is exothermic. Hydrochloric acid and thiourea mixture proved to be better stripping reagents when compared with other mineral acids and bases. PMID:19285802

  7. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  8. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    PubMed

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.

  9. Tissue distribution and kinetics of endogenous porphyrins synthesized after topical application of ALA in different vehicles

    PubMed Central

    Casas, A; Fukuda, H; Batlle, A M del C

    1999-01-01

    The use of 5-aminolaevulinic acid (ALA) is gaining increasing attention for photosensitization in photodynamic therapy of superficially localized tumours. The aim of this work was to determine the kinetics of porphyrin generation in tissues after topical application of ALA delivered in different vehicles on the skin overlying the tumour and normal skin of mice. Maximal accumulation was found in tumour 3 h after ALA application in both cream and lotion preparations. Normal and overlying tumour skin tissues showed different kinetic patterns, reflecting histological changes when the latter is invaded by tumour cells. Liver, kidney, spleen and blood porphyrins also raised from basal levels, showing that ALA and/or ALA-induced porphyrins reach all tissues after topical application. During the first 24 h of ALA topical application, precursors and porphyrins are excreted by both urine and faeces. ALA lotion applied on the skin overlying the tumour induced higher accumulation of tumoural porphyrins than cream, and lotion applied on normal skin appeared to be the most efficient upon inducing total body porphyrins. This work has demonstrated the great influence of the formulation of ALA vehicle on penetration through the skin. Knowledge of the kinetics of porphyrin generation after different conditions of ALA application is needed for the optimization of diagnosis and phototherapy in human tumours. © 1999 Cancer Research Campaign PMID:10487606

  10. Tissue distribution and kinetics of endogenous porphyrins synthesized after topical application of ALA in different vehicles.

    PubMed

    Casas, A; Fukuda, H; Batlle, A M

    1999-09-01

    The use of 5-aminolaevulinic acid (ALA) is gaining increasing attention for photosensitization in photodynamic therapy of superficially localized tumours. The aim of this work was to determine the kinetics of porphyrin generation in tissues after topical application of ALA delivered in different vehicles on the skin overlying the tumour and normal skin of mice. Maximal accumulation was found in tumour 3 h after ALA application in both cream and lotion preparations. Normal and overlying tumour skin tissues showed different kinetic patterns, reflecting histological changes when the latter is invaded by tumour cells. Liver, kidney, spleen and blood porphyrins also raised from basal levels, showing that ALA and/or ALA-induced porphyrins reach all tissues after topical application. During the first 24 h of ALA topical application, precursors and porphyrins are excreted by both urine and faeces. ALA lotion applied on the skin overlying the tumour induced higher accumulation of tumoural porphyrins than cream, and lotion applied on normal skin appeared to be the most efficient upon inducing total body porphyrins. This work has demonstrated the great influence of the formulation of ALA vehicle on penetration through the skin. Knowledge of the kinetics of porphyrin generation after different conditions of ALA application is needed for the optimization of diagnosis and phototherapy in human tumours.

  11. The effect on photohaemolysis of variation in the structure of the porphyrin photosensitizer.

    PubMed Central

    de Paolis, A; Chandra, S; Charalambides, A A; Bonnett, R; Magnus, I A

    1985-01-01

    A comparison of the photosensitizing ability of a variety of porphyrins for photohaemolysis gives the following order of activity: protoporphyrin greater than deuteroporphyrin, mesoporphyrin, haematoporphyrin dimethyl ester much greater than haematoporphyrin diacetate, haematoporphyrin greater than haematoporphyrin monoacetate, coproporphyrin III, haematoporphyrin derivative, coproporphyrin III tetramethyl ester greater than uroporphyrin I, meso-tetra-(N-methyl-4-pyridinium)porphyrin tetratoluene-p-sulphonate, meso-tetra-(p-carboxyphenyl)porphyrin, protoporphyrin dimethyl ester, meso-tetra-(p-hydroxy-sulphonylphenyl)porphyrin tetrasodium salt, uroporphyrin III, deuteroporphyrin-3,8-disulphonic acid and protohaemin. The results for the metal-free porphyrins are rationalized in terms of solubility and partition properties, and a model is proposed for the incorporation of amphipathic porphyrins into the membrane lipid bilayer. Experiments with erythrocytes from patients with erythropoeitic protoporphyria and with normal erythrocytes to which porphyrin was added in a deuterium oxide medium do not lead to an increase in the rate of photohaemolysis. A possible explanation for this somewhat surprising observation is outlined. PMID:2985045

  12. Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S

    2016-05-01

    This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product. PMID:27060992

  13. Sorption of uranium(VI) ions from hydrochloric acid and ammonium chloride solutions by anion exchangers

    SciTech Connect

    Pakholkov, V.S.; Denisova, L.A.; Rychkov, V.N.; Kurnosenko, N.A.

    1988-01-01

    The sorption of macroscopic quantities of uranium from solutions of UO/sub 2/Cl/sub 2/ containing HCl and NH/sub 4/Cl in concentrations from 0.0 to 6.0 M by the AV-17 x 8, AV-16G, EDE-10P, AN-31, AN-2F, AN22, and AN-251 anion exchangers has been investigated under static conditions. The sorption isotherms are described by an equation similar to Freundlich's equation: K/sub d/ = K tilde x C/sub eq/sup 1/z/ or log K/sub d/ = log K tilde + 1/z x log C/sub eq/. Equations describing the dependence of the sorbability (or K/sub d/) on the equilibrium concentration of uranium in the solution have been obtained with the aid of the least-squares method. Conclusions regarding the chemistry of the exchange of uranium ions on anion exchangers in chloride solutions have been drawn on the basis of the UV spectra of the original solutions and the IR spectra of the ion exchangers obtained in this work, as well as the established general laws governing sorption.

  14. Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S

    2016-05-01

    This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product.

  15. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth

    NASA Astrophysics Data System (ADS)

    Ocampo, Rubén; Bauder, Claude; Callot, Henry J.; Albrecht, Pierre

    1992-02-01

    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3) and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical "Treibs scheme," including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  16. Value of plasma chloride concentration and acid-base status in the differential diagnosis of hyperpara-thyroidism from other causes of hypercalcaemia

    PubMed Central

    Wills, M. R.

    1971-01-01

    A study is reported of the estimation of plasma chloride concentration and acid-base status in the differentiation of primary hyperparathyroidism from all other causes of hypercalcaemia. In the two groups of patients studied, all of whom had hypercalcaemia, there was complete separation between the two groups on the basis of plasma chloride concentration and acid-base status. In 16 patients with primary hyperparathyroidism the increase in plasma chloride concentration and associated metabolic acidosis could have been accounted for by the known renal tubular effects of parathyroid hormone. In 13 patients with hypercalcaemia due to various other causes the decrease in plasma chloride concentration and associated metabolic alkalosis could be accounted for either by the known effects of an excess of calcium-ion on the renal tubules, or perhaps by suppression of endogenous parathyroid hormone secretion. In patients with hypercalcaemia and hypophosphataemia of `pseudohyperparathyroidism' associated with non-endocrine tumours it is postulated that the low plasma chloride concentrations and metabolic alkalosis found in these patients were due either to a differing biological activity of the parathyroid-hormone-like polypeptide secreted by the tumour cells, or possibly to simultaneous secretion by these cells of an ACTH-like polypeptide. PMID:5573436

  17. Reactivity of NaCl with Secondary Organic Acids: An Important Mechanism of the Chloride Depletion in Sea Salt Particles Mixed with Organic Materials

    NASA Astrophysics Data System (ADS)

    Wang, B.; Laskin, A.; Kelly, S.; Gilles, M. K.; Shilling, J. E.; Zelenyuk, A.; Wilson, J. M.; Tivanski, A.

    2012-12-01

    Sea salt particles, one of the major sources of atmospheric aerosols, undergo complex multi-phase reactions and have profound consequences on their physical and chemical properties, thus on climate. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of sea salt chlorides with inorganic acids, such as nitric and sulfuric acids. Some studies have also showed that the chloride deficit cannot be fully compensated for this mechanism. We present an important pathway contributing to this chloride depletion: reactions of weak organic acids with sea salt particles. NaCl particles internally mixed with secondary organic materials generated from the reactions of limonene and alpha-pinene with ozone served as surrogates for sea salt particles mixed with organic materials. Chemical imaging analysis of these particles was conducted using complementary techniques including computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX), scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and micro-fourier transform infrared spectroscopy (micro-FTIR). Substantial chloride depletion and formation of organic salts were observed along with distinctive changes in particle morphology after hydration/dehydration processes. The results indicate that secondary organic acids can effectively react with NaCl particles resulting in displacement of chloride and release of gaseous HCl. This is consistent with a recent field study showing chloride depletion in sea salt particles mixed with organic materials which cannot be fully compensated by inorganic acid displacement. Although the formation of the organic salts is not thermodynamically favored in bulk aqueous solution, these reactions are driven by the high volatility and evaporation of gaseous HCl in particles, especially during hydration/dehydration processes. The

  18. Electrophysiological characterization of ivermectin triple actions on Musca chloride channels gated by l-glutamic acid and γ-aminobutyric acid.

    PubMed

    Fuse, Toshinori; Kita, Tomo; Nakata, Yunosuke; Ozoe, Fumiyo; Ozoe, Yoshihisa

    2016-10-01

    Ivermectin (IVM) is a macrocyclic lactone that exerts antifilarial, antiparasitic, and insecticidal effects on nematodes and insects by acting on l-glutamic acid-gated chloride channels (GluCls). IVM also acts as an allosteric modulator of various other ion channels. Although the IVM binding site in the Caenorhabditis elegans GluCl was identified by X-ray crystallographic analysis, the mechanism of action of IVM in insects is not well defined. We therefore examined the action of IVM on the housefly (Musca domestica) GluCl and γ-aminobutyric acid (GABA)-gated ion channel (GABACl). For both channels, IVM induced currents by itself, potentiated currents induced by low concentrations of agonists, and inhibited currents induced by high concentrations of agonists. Despite exerting common actions on both types of channels, GluCls were more susceptible to IVM actions than GABACls, indicating that GluCls are the primary target of IVM. Substitution of an amino acid residue in the third transmembrane segment (G312M in GluCls, and G333A and G333M in GABACls) resulted in significantly reduced levels or loss of activation, potentiation, and antagonism of the channels, indicating that these three actions result from the interaction of IVM with amino acid residues in the transmembrane intersubunit crevice.

  19. Electrophysiological characterization of ivermectin triple actions on Musca chloride channels gated by l-glutamic acid and γ-aminobutyric acid.

    PubMed

    Fuse, Toshinori; Kita, Tomo; Nakata, Yunosuke; Ozoe, Fumiyo; Ozoe, Yoshihisa

    2016-10-01

    Ivermectin (IVM) is a macrocyclic lactone that exerts antifilarial, antiparasitic, and insecticidal effects on nematodes and insects by acting on l-glutamic acid-gated chloride channels (GluCls). IVM also acts as an allosteric modulator of various other ion channels. Although the IVM binding site in the Caenorhabditis elegans GluCl was identified by X-ray crystallographic analysis, the mechanism of action of IVM in insects is not well defined. We therefore examined the action of IVM on the housefly (Musca domestica) GluCl and γ-aminobutyric acid (GABA)-gated ion channel (GABACl). For both channels, IVM induced currents by itself, potentiated currents induced by low concentrations of agonists, and inhibited currents induced by high concentrations of agonists. Despite exerting common actions on both types of channels, GluCls were more susceptible to IVM actions than GABACls, indicating that GluCls are the primary target of IVM. Substitution of an amino acid residue in the third transmembrane segment (G312M in GluCls, and G333A and G333M in GABACls) resulted in significantly reduced levels or loss of activation, potentiation, and antagonism of the channels, indicating that these three actions result from the interaction of IVM with amino acid residues in the transmembrane intersubunit crevice. PMID:27543424

  20. Modulation of Group I Ribozyme Activity by Cationic Porphyrins

    PubMed Central

    Matsumura, Shigeyoshi; Ito, Tatsunobu; Tanaka, Takahiro; Furuta, Hiroyuki; Ikawa, Yoshiya

    2015-01-01

    The effects of cationic porphyrins on the catalytic activities of four group I ribozymes were investigated. A cationic porphyrin possessing four pyridinium moieties (pPyP) inhibited two group IC3 ribozymes (Syn Rz and Azo Rz) and a group IC1 ribozyme (Tet Rz). In the case of a group IA2 ribozyme (Td Rz), however, pPyP served not only as an inhibitor but also as an activator, and the effects of pPyP were dependent on its concentration. To analyze the structural and electronic factors determining the effects of pPyP on group I ribozymes, three cationic porphyrins (pPyNCP, pPyF4P, and TMPyP) were also examined. As interactions between small organic molecules and nucleic acids are attractive and important issues in biochemistry and biotechnology, this study contributes to the development of porphyrin-based molecules that can modulate functions of structured RNA molecules. PMID:25811638

  1. DNA single strand breaks in peripheral lymphocytes associated with urinary thiodiglycolic acid levels in polyvinyl chloride workers.

    PubMed

    Lei, Yu-Chen; Yang, Huei-Ting; Ma, Yee-Chung; Huang, Ming-Feng; Chang, Wushou P; Cheng, Tsun-Jen

    2004-07-11

    The association between vinyl chloride monomer (VCM) exposure and DNA damage has been established. However, the relationship between individual exposure and DNA single strand breaks was limited. Since environmental monitoring may not reflect the actual exposure, a useful marker of exposure is needed to assess the individual exposure. In our previous study, we have found a high correlation between air VCM level and urinary thiodiglycolic acid (TdGA) at the commencement of the next shift. Here, we further used comet assay to evaluate the relationship between urinary TdGA levels and DNA single strand breaks in polyvinyl chloride monomer (PVC) workers. Urinary TdGA levels (n=26) at the commencement of the following shift were analyzed. Ten of the 26 workers also had personal air sampling for air VCM exposure. Questionnaires were administered to obtain epidemiological information including detailed history of occupation and lifestyles. Workers experiencing air VCM level greater than 5 ppm had higher tail moment and tail intensity (%) than those experiencing VCM exposure between 1 and 5, or <1 ppm, respectively (P < 0.05). The results also revealed that level of DNA single strand breaks, including tail moment and tail intensity, were increased with urinary TdGA level. The dose-response relationship of urinary TdGA level and DNA single strand breaks was particularly significant among the workers with 4 mg/g Cr of urinary TdGA level, which is equivalent to 5 ppm air VCM level. We concluded that air VCM exposure greater than 5 ppm could induce DNA damage. Further sensitive assay should be developed for the diction of DNA damage when air VCM exposure below 5 ppm.

  2. An Alternative Reaction Course in O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glycosyl Donors and Lewis Acidic Metal Salts as Catalyst: Acid-Base Catalysis with Gold Chloride-Glycosyl Acceptor Adducts.

    PubMed

    Peng, Peng; Schmidt, Richard R

    2015-10-01

    Gold(III) chloride as catalyst for O-glycosyl trichloroacetimidate activation revealed low affinity to the glycosyl donor but high affinity to the hydroxy group of the acceptor alcohol moiety, thus leading to catalyst-acceptor adduct formation. Charge separation in this adduct, increasing the proton acidity and the oxygen nucleophilicity, permits donor activation and concomitant acceptor transfer in a hydrogen-bond mediated S(N)2-type transition state. Hence, the sequential binding between acceptor and catalyst and then with the glycosyl donor enables self-organization of an ordered transition-state. This way, with various acceptors, even at temperatures below -60 °C, fast and high yielding glycosidations in high anomeric selectivities were recorded, showing the power of this gold(III) chloride acid-base catalysis. Alternative reaction courses via hydrogen chloride or HAuCl4 activation or intermediate generation of glycosyl chloride as the real donor could be excluded. With partially O-protected acceptors, prone to bidentate ligation to gold(III) chloride, particularly high reactivities and anomeric selectivities were observed. Gold(I) chloride follows the same catalyst-acceptor adduct driven acid-base catalysis reaction course.

  3. Emission spectroscopy of the predissociative excited state dynamics of acrolein, acrylic acid, and acryloyl chloride at 199 nm

    SciTech Connect

    Arendt, M.F.; Browning, P.W.; Butler, L.J.

    1995-10-08

    The emission spectroscopy of acrolein (C{sub 3}H{sub 4}O), acrylic acid (C{sub 2}H{sub 3}COOH), and acryloyl chloride (C{sub 2}H{sub 3}COCl) excited at 199 nm elucidates the dominant electronic character of the excited state reached by the optical transition at this wavelength. Progressions in the C=C and C=O stretching overtones and various combination bands suggest the antibonding orbital has mixed {pi}*(C=C)/{pi}*(C=O) character. We interpret the results in conjunction with {ital ab} {ital initio} calculations at the configuration interaction singles level to identify the influence of resonance in the excited state of these conjugated molecules. The results on acrylic acid are of particular interest as excitation in this absorption band produces the HOCO intermediate of the OH+CO{r_arrow}H+CO{sub 2} reaction that is important in combustion. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Copper-Catalyzed Thioetherification Reactions of Alkyl Halides, Triphenyltin Chloride, and Arylboronic Acids with Nitroarenes in the Presence of Sulfur Sources.

    PubMed

    Rostami, Abed; Rostami, Amin; Ghaderi, Arash

    2015-09-01

    In this article, we report three odorless methods for the thioarylation and thioalkylation of different nitroarenes using alkyl halides (Br, Cl), triphenyltin chloride, and arylboronic acids as the coupling partners. Triphenyltin chloride is capable of delivering all of its phenyl groups to the product. Depending on the reaction, sodium thiosulfate pentahydrate (Na2S2O3·5H2O), S8/KF, and S8/NaOH systems are found to be effective sources of sulfur in the presence of copper salts. The use of green solvents, inexpensive catalysts, and user-friendly starting materials has made these methods interesting from a green chemistry standpoint. PMID:26272238

  5. Dissociation quotient of benzoic acid in aqueous sodium chloride media to 250{degrees}C

    SciTech Connect

    Kettler, R.M.; Palmer, D.A.; Wesolowski, D.J.

    1995-04-01

    The dissociation quotient of benzoic acid was determined potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of benzoic acid/benzoate solutions was measured relative to a standard aqueous HCl solution at seven temperatures from 5 to 250{degrees}C and at seven ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and selected literature data were fitted in the isocoulombic (all anionic) form by a six-term equation. This treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25{degrees}C and 1 bar: logK{sub a} = -4.206{+-}0.006, {Delta}H{sub a}{sup 0} = 0.3{+-}0.3 kJ-mol{sup {minus}1}, {Delta}S{sub a}{sup 0} = -79.6{+-}1.0 J-mol{sup {minus}1}-K{sup {minus}1}, and {Delta}C{sub p;a}{sup 0} = -207{+-}5 J-mol{sup {minus}1}-K{sup {minus}1}. A five-term equation derived to describe the dependence of the dissociation constant on solvent density is accurate to 250{degrees}C and 200 MPa.

  6. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGES

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  7. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  8. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains

    PubMed Central

    Kim, Nam Hee

    2015-01-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  9. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2015-12-04

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA.

  10. Self-Organized Porphyrinic Materials

    PubMed Central

    Drain, Charles Michael; Varotto, Alessandro; Radivojevic, Ivana

    2009-01-01

    The self-assembly and self-organization of porphyrins and related macrocycles enables the bottom-up fabrication of photonic materials for fundamental studies of the photophysics of these materials and for diverse applications. This rapidly developing field encompasses a broad range of disciplines including molecular design and synthesis, materials formation and characterization, and the design and evaluation of devices. Since the self-assembly of porphyrins by electrostatic interactions in the late 1980s to the present, there has been an ever increasing degree of sophistication in the design of porphyrins that self-assemble into discrete arrays or self-organize into polymeric systems. These strategies exploit ionic interactions, hydrogen bonding, coordination chemistry, and dispersion forces to form supramolecular systems with varying degrees of hierarchical order. This review concentrates on the methods to form supramolecular porphyrinic systems by intermolecular interactions other than coordination chemistry, the characterization and properties of these photonic materials, and the prospects for using these in devices. The review is heuristically organized by the predominant intermolecular interactions used and emphasizes how the organization affects properties and potential performance in devices. PMID:19253946

  11. Supramolecular Allosteric Cofacial Porphyrin Complexes

    SciTech Connect

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren

    2008-04-12

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh{sup I} or Cu{sup I} sites) and two cofacially aligned porphyrins (Zn{sup II} sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh{sup I} or Cu{sup I} transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  12. Enzymatic hydrolysis of cellulose pretreated with zinc chloride and hydrochloric acid

    SciTech Connect

    Chen, L.F.; Gong, C.S.

    1982-01-01

    Microcrystalline cellulose, Avicel, was dissolved in a concentrated solution of ZnCl/sub 2/ and 0.5% hydrochloric acid followed by heating at 145/sup 0/C for 6 min. after cooling, cellulose in its amorphous form was precipitated by the addition of acetone. The resulting cellulose was hydrolyzed by cellulase derived from Trichoderma viride. At concentrations of 20% cellulose and 1% cellulase, cellulose was hydrolyzed completely for form a solution of 19% glucose and 1% cellobiose within 72 h of incubation. 1 figure, 5 tables.

  13. Heterogeneous interactions of chlorine nitrate, hydrogen chloride, and nitric acid with sulfuric acid surfaces at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.

    1988-01-01

    The heterogeneous interactions of ClONO2, HCl, and HNO3 with sulfuric acid surfaces were studied using a Knudsen cell flow reactor. The surfaces studied, chosen to simulate global stratospheric particulate, were composed of 65-75 percent H2SO4 solutions at temperatures in the range -63 to -43 C. Heterogeneous loss, but not reaction, of HNO3 and HCl occurred on these surfaces; the measured sticking coefficients are reported. Chlorine nitrate reacted on the cold sulfuric acid surfaces, producing gas-phase HOCl and condensed HNO3. CLONO2 also reacted with HCl dissolved in the 65-percent H2SO4 solution at -63 C, forming gaseous Cl2. In all cases studied, the sticking and/or reaction coefficients were much larger for the 65-percent H2SO4 solution at -63 C than for the 75-percent solution at -43 C.

  14. Formation and reactivity of a porphyrin iridium hydride in water: acid dissociation constants and equilibrium thermodynamics relevant to Ir-H, Ir-OH, and Ir-CH2- bond dissociation energetics.

    PubMed

    Bhagan, Salome; Wayland, Bradford B

    2011-11-01

    Aqueous solutions of group nine metal(III) (M = Co, Rh, Ir) complexes of tetra(3,5-disulfonatomesityl)porphyrin [(TMPS)M(III)] form an equilibrium distribution of aquo and hydroxo complexes ([(TMPS)M(III)(D(2)O)(2-n)(OD)(n)]((7+n)-)). Evaluation of acid dissociation constants for coordinated water show that the extent of proton dissociation from water increases regularly on moving down the group from cobalt to iridium, which is consistent with the expected order of increasing metal-ligand bond strengths. Aqueous (D(2)O) solutions of [(TMPS)Ir(III)(D(2)O)(2)](7-) react with dihydrogen to form an iridium hydride complex ([(TMPS)Ir-D(D(2)O)](8-)) with an acid dissociation constant of 1.8(0.5) × 10(-12) (298 K), which is much smaller than the Rh-D derivative (4.3 (0.4) × 10(-8)), reflecting a stronger Ir-D bond. The iridium hydride complex adds with ethene and acetaldehyde to form organometallic derivatives [(TMPS)Ir-CH(2)CH(2)D(D(2)O)](8-) and [(TMPS)Ir-CH(OD)CH(3)(D(2)O)](8-). Only a six-coordinate carbonyl complex [(TMPS)Ir-D(CO)](8-) is observed for reaction of the Ir-D with CO (P(CO) = 0.2-2.0 atm), which contrasts with the (TMPS)Rh-D analog which reacts with CO to produce an equilibrium with a rhodium formyl complex ([(TMPS)Rh-CDO(D(2)O)](8-)). Reactivity studies and equilibrium thermodynamic measurements were used to discuss the relative M-X bond energetics (M = Rh, Ir; X = H, OH, and CH(2)-) and the thermodynamically favorable oxidative addition of water with the (TMPS)Ir(II) derivatives.

  15. Disinfective process of strongly acidic electrolyzed product of sodium chloride solution against Mycobacteria.

    PubMed

    Yamamoto, Tomoyo Matsushita; Nakano, Takashi; Yamaguchi, Masaki; Shimizu, Mitsuhide; Wu, Hong; Aoki, Hiroaki; Ota, Rie; Kobayashi, Toyohide; Sano, Kouichi

    2012-12-01

    Electrolyzed acid water (EAW) has been studied for its disinfective potential against pathogenic microbes; however, the bactericidal process against Mycobacteria has not been clearly presented. In this study, to clarify the disinfective process against Mycobacteria, EAW-treated bacteria were examined against laboratory strains of Mycobacterium bovis (M. bovis), Mycobacterium smegmatis (M. smegmatis), and Mycobacterium terrae (M. terrae) by recovery culture and observation of morphology, enzymatic assay, and the detection of DNA. All experiments were performed with the use of EAW containing 30 ppm free chlorine that kills Mycobacteria, including three pathogenic clinical isolates of Mycobacterium tuberculosis (M. tuberculosis) and six isolates of other Mycobacteria, within 5 min. In morphology, the bacterial surface became rough, and a longitudinal concavity-like structure appeared. The intrabacterial enzyme of EAW-contacted bacteria was inactivated, but chromosomal DNA was not totally denatured. These results suggest that the bactericidal effect of EAW against Mycobacteria occurs by degradation of the cell wall, followed by denaturation of cytoplasmic proteins, but degeneration of the nucleic acid is not always necessary.

  16. Disinfective process of strongly acidic electrolyzed product of sodium chloride solution against Mycobacteria.

    PubMed

    Yamamoto, Tomoyo Matsushita; Nakano, Takashi; Yamaguchi, Masaki; Shimizu, Mitsuhide; Wu, Hong; Aoki, Hiroaki; Ota, Rie; Kobayashi, Toyohide; Sano, Kouichi

    2012-12-01

    Electrolyzed acid water (EAW) has been studied for its disinfective potential against pathogenic microbes; however, the bactericidal process against Mycobacteria has not been clearly presented. In this study, to clarify the disinfective process against Mycobacteria, EAW-treated bacteria were examined against laboratory strains of Mycobacterium bovis (M. bovis), Mycobacterium smegmatis (M. smegmatis), and Mycobacterium terrae (M. terrae) by recovery culture and observation of morphology, enzymatic assay, and the detection of DNA. All experiments were performed with the use of EAW containing 30 ppm free chlorine that kills Mycobacteria, including three pathogenic clinical isolates of Mycobacterium tuberculosis (M. tuberculosis) and six isolates of other Mycobacteria, within 5 min. In morphology, the bacterial surface became rough, and a longitudinal concavity-like structure appeared. The intrabacterial enzyme of EAW-contacted bacteria was inactivated, but chromosomal DNA was not totally denatured. These results suggest that the bactericidal effect of EAW against Mycobacteria occurs by degradation of the cell wall, followed by denaturation of cytoplasmic proteins, but degeneration of the nucleic acid is not always necessary. PMID:23224598

  17. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds.

    PubMed

    Yuan, Ruixia; Ramjaun, Sadiqua N; Wang, Zhaohui; Liu, Jianshe

    2011-11-30

    Sodium chloride is a common salt used during textile wet processes. Here a dual effect of chloride (i.e. inhibitory and accelerating effect) on azo dye (Acid Orange 7, AO7) degradation in an emerging cobalt/peroxymonosulfate (Co/PMS) advanced oxidation process (AOP) was reported. Compared to OH-based AOPs, high concentrations of chloride (>5mM) can significantly enhance dye decoloration independent of the presence of the Co(2+) catalyst, but did greatly inhibit dye mineralization to an extent which was closely dependent upon the chloride content. Both UV-vis absorbance spectra and AOX determination indicated the formation of some refractory byproducts. Some chlorinated aromatic compounds, including 3-chloroisocoumain, 2-chloro-7-hydroxynaphthalene, 1,3,5-trichloro-2-nitrobenzene and tetrachlorohydroquione, were identified by GC-MS measurement in both Co/PMS/Cl(-) and PMS/Cl(-) reaction systems. Based on those experimental results, two possible branched (SO(4)(-)radical-based and non-radical) reaction pathways are proposed. This is one of the very few studies dealing with chlorinated organic intermediates formed via chlorine radical/active chlorine species (HOCl/Cl(2)) attack on dye compounds. Therefore, this finding may have significant technical implications for utilizing Co/PMS regent to detoxify chloride-rich azo dyes wastewater.

  18. Effects of supplemental potassium and sodium chloride salts on ruminal turnover rates, acid-base and mineral status of lactating dairy cows during heat stress.

    PubMed

    Schneider, P L; Beede, D K; Wilcox, C J

    1988-01-01

    Effects of added dietary sodium and potassium chloride salts on ruminal turnover rates, acid-base balance and mineral status of lactating dairy cows experiencing a nycterohemeral cycle of heat stress were examined. Black globe-humidity index in the chambers averaged 94 during the daytime and 68 during the nighttime. Four ruminally cannulated multiparous Holstein cows in mid-lactation were confined in climatic chambers for a single-reversal experiment consisting of two 17-d periods. To the basal diet (50% corn silage: 50% concentrate, which contained .97% potassium, .19% sodium and .20% chloride), 1.25% sodium chloride plus 1.85% potassium chloride were added, making the high mineral treatment (1.93% potassium, 68% sodium and 1.85% chloride). Liquid dilution rates from the rumen were measured by chromium-ethylenediaminetetraacetate disappearance. Turnover rates of solids were determined by appearance of ytterbium in feces. Ruminal contents, arterial blood and urine were collected hourly for 26 h. Grab samples of feces were sampled over 6 d. Dry matter intakes and milk yields were not affected by the diets (averaging 17.8 and 21.1 kg/d, respectively). Cows fed the high mineral diet drank 17% more water (P less than .01). Tests for homogeneity of regression were utilized to compare chromium disappearance and ytterbium appearance data, which were best described by second-order polynomial functions. Increased ruminal chromium disappearance (P less than .01) and decreased total volatile fatty acid concentrations (P less than .01) suggested faster liquid dilution rates with high mineral diet, but turnover rates of solids were not affected. Urinary potassium secretion compensated for the high potassium content of the high mineral diet without an alkalogenic effect on acid-base status. Lower urine pH and higher urine ammonium concentrations during cool hours suggested that the high chloride content of the high mineral diet had an acidogenic effect. The results are

  19. In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions.

    PubMed

    Hirokawa, Jun; Kato, Takehiro; Mafuné, Fumitaka

    2009-10-15

    Recently, chemical ionization mass spectrometry (CIMS) has been widely applied to the in situ measurements of atmospheric trace species. In this article, we propose a new chemical ionization scheme using a chloride ion transfer reaction from SO(2)Cl(-) as the reagent ion and discuss the applicability of this technique to the detection of nitrous acid (HONO) in the atmosphere. From laboratory investigations, the detection sensitivity was found to depend on the flow rate of SO(2) introduced into the ion source region and the pressure inside the chemical ionization region, which suggests that the chemical ionization reaction is reversible. The detection sensitivity was well described in terms of the forward and backward rates. The present limit of detection is estimated to be 60 parts per trillion by volume (pptv) for an integration time of 1 min. Improvement of the CIMS instrument would enable the measurements of the daytime level of HONO, which might be less than 50 pptv. In addition, the possibility of the interference is discussed from thermodynamic considerations based on ab initio calculations, and the effects of the sampling artifacts are experimentally quantified.

  20. Electrolytic regeneration of acid cupric chloride printed circuit board etchant. Final report, August 1, 1995--October 31, 1996

    SciTech Connect

    Oxley, J.E.; Smialek, R.J.

    1997-04-18

    The overall objective of this ERIP program was to make substantial progress in further developing a process for electrolytic regeneration of acid cupric chloride etchant - a process which was initially demonstrated in in-house studies and EPA Phase I and Phase II SBIRs. Specific objectives of the work were: (1) to define optimum system operating conditions by conducting a systematic study of process parameters, (2) to develop or find a superior electrolyic cell separator material, (3) to determine an optimum activation procedure for the flow-through carbon/graphite felt electrodes which are so critical to process performance, (4) to demonstrate - on the pre-prototype scale - electrolytic compensation for oxygen ingress - which causes etchant solution growth, and (5) to begin engineering design work on a prototype-scale regeneration unit. Parametric studies looked at the effect that key plating parameters have on copper deposit quality. Parameters tested included (a) velocity past the plating cathodes, (b) copper concentration in the catholyte solution from which the copper is being plated, (c) plating current density, and (d) catholyte cupric ion concentration. The most significant effects were obtained for velocity changes. The work showed that catholyte velocities above 0.5 ft/sec were needed to get adequate plating at 77.5 mA/cm{sup 2} and higher currents, and that even higher flow was better.

  1. Genoprotective effect of hyaluronic acid against benzalkonium chloride-induced DNA damage in human corneal epithelial cells

    PubMed Central

    Wu, Han; Zhang, Huina; Wang, Changjun; Wu, Yihua; Xie, Jiajun; Jin, Xiuming; Yang, Jun

    2011-01-01

    Purpose The aim of this study was to investigate hyaluronic acid (HA) protection on cultured human corneal epithelial cells (HCEs) against benzalkonium chloride (BAC)-induced DNA damage and intracellular reactive oxygen species (ROS) increase. Methods Cells were incubated with different concentrations of BAC with or without the presence of 0.2% HA for 30 min. DNA damage to HCEs was examined by alkaline comet assay and by immunofluorescence microscopic detection of the phosphorylated form of histone variant H2AX (γH2AX) foci. ROS production was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Cell apoptosis was determined with annexin V staining by flow cytometry. Results HA significantly reduced BAC-induced DNA damage as indicated by the tail length (TL) and tail moment (TM) of alkaline comet assay and by γH2AX foci formation, respectively. Moreover, HA significantly decreased BAC-induced ROS increase and cell apoptosis. However, exposure to HA alone did not produce any significant change in DNA damage, ROS generation, or cell apoptosis. Conclusions BAC could induce DNA damage and cell apoptosis in HCEs, probably through increasing oxidative stress. Furthermore, HA was an effective protective agent that had antioxidant properties and could decrease DNA damage and cell apoptosis induced by BAC. PMID:22219631

  2. Water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a nucleic acids vector for cell transfection.

    PubMed

    Faizuloev, Evgeny; Marova, Anna; Nikonova, Alexandra; Volkova, Irina; Gorshkova, Marina; Izumrudov, Vladimir

    2012-08-01

    To endow the cationic polysaccharides with solubility in the whole pH-range without loss of functionality of the amino groups, different chitosan samples were treated with glycidyltrimethylammonium chloride. Each modified unit of the exhaustively alkylated quaternized chitosan (QCht) contained both quaternary and secondary amino groups. The intercalated dye displacement assay and ζ-potential measurements implied stability of QCht polyplexes at physiological conditions and protonation of the secondary amino groups in slightly acidic media which is favorable for transfection according to proton sponge mechanism. The cytotoxicity and transfection efficacy increased with the chain lengthening. Nevertheless, the longest chains of QCht, 250 kDa were less toxic than PEI for COS-1 cells and revealed comparable and even significantly higher transfection activity of siRNA and plasmid DNA, respectively. Thus, highly polymerized QCht (250 kDa) provided the highest level of the plasmid DNA transfection being 5 and 80 times more active than QCht (100 kDa) and QCht (50 kDa), respectively, and 4-fold more effective than PEI, 25 kDa. The established influence of QCht molecular weight on toxicity and transfection efficacy allows elaborating polysaccharide vectors that possess rational balance of these characteristics. PMID:24750918

  3. Hydrazino-methoxy-1,3,5-triazine Derivatives' Excellent Corrosion Organic Inhibitors of Steel in Acidic Chloride Solution.

    PubMed

    El-Faham, Ayman; Osman, Sameh M; Al-Lohedan, Hamad A; El-Mahdy, Gamal A

    2016-06-01

    The corrosion inhibition performance of 2-hydrazino-4,6-dimethoxy-1,3,5-tirazine (DMeHT), 2,4-dihydrazino-6-methoxy-1,3,5-triaizine (DHMeT), and 2,4,6-tridydrazino-1,3,5-triaizne (TH₃) on steel corrosion in acidic media was examined using electrochemical techniques. The results showed 2,4-Ddihydrazino-6-methoxy-1,3,5-triaizine (DHMeT) gave the best corrosion protection performance among the other hydrazino derivatives even at a low concentration of 25 ppm (95%). The number of hydrazino groups play an important role in the corrosion inhibition, where the two hydrazine groups increased the electrostatic interactions between the protonated tested compounds, the negatively charged steel surface resulted from the adsorption of the chloride anions, and the presence of the methoxy group made the compound more reliable for formation of film protection on the surface of steel through the lone pair of oxygen atoms. Electrochemical Impedance Spectroscopy (EIS) measurements suggested that the corrosion process of steel in presence of the hydrazino-s-triazine derivatives (TH₃, DMeHT and DHMeT) were being controlled by the charge transfer reaction. Polarization curves indicated that the examined TH₃, DMeHT and DHMeT behaved as mixed type inhibitors.

  4. A new dioxime corrosion inhibitor for the protection and conservation of copper: synthesis, characterization and evaluation in acidic chloride solution

    NASA Astrophysics Data System (ADS)

    Abu-Baker, Ahmad N.; Al-Qudah, Mahmoud A.

    2016-08-01

    This study aimed to investigate a new dioxime compound as a corrosion inhibitor for copper. The compound (4,6-dihydroxy benzene-1,3-dicarbaldehyde dioxime) was synthesized and characterized by nuclear magnetic resonance spectroscopy. Electrochemical impedance spectroscopy and potentiodynamic polarization measurements were used to compare the dioxime compound with benzotriazole for their effectiveness as corrosion inhibitors for copper in 0.1 M HCl solution. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to investigate the bonding mechanisms and morphological changes of the two inhibitors on the copper surface. The electrochemical techniques showed that the new dioxime compound was more effective than benzotriazole in inhibiting copper corrosion in the acidic chloride medium. The FTIR and SEM results indicated that the dioxime compound was able to coordinate with copper ions and formed a protective film on the copper surface. It was concluded that the new dioxime compound proved effectiveness to be used as a corrosion inhibitor for the protection and conservation of copper.

  5. Individual differences in sour and salt sensitivity: detection and quality recognition thresholds for citric acid and sodium chloride.

    PubMed

    Wise, Paul M; Breslin, Paul A S

    2013-05-01

    Taste sensitivity is assessed with various techniques, including absolute detection and quality recognition. For any stimulus, one might expect individual differences in sensitivity to be reflected in all measures, but they are often surprisingly independent. Here, we focus on sensitivity to sour and salty taste, in part because processing of these qualities is poorly understood relative to other tastes. In Study 1, we measured retest reliability for detection (modified, forced-choice staircase method) and recognition (modified Harris-Kalmus procedure) for both citric acid (CA) and sodium chloride (NaCl). Despite good retest reliability, individual differences in detection and recognition were weakly correlated, suggesting that detection and recognition of sour and salty stimuli may reflect different physiological processes. In Study 2, a subset of subjects returned to contribute full detection (psychometric) functions for CA and NaCl. Thresholds estimated from full detection functions correlated with both staircase and recognition thresholds, suggesting that both tasks may reflect absolute sensitivity to some extent. However, the ranges of individual differences were systematically compressed for staircase thresholds relative to those from full detection functions. Thus, individual differences in sensitivity appear to interact with different test methodologies in lawful ways. More work will be required to understand how different taste phenotypes relate to one another.

  6. In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions.

    PubMed

    Hirokawa, Jun; Kato, Takehiro; Mafuné, Fumitaka

    2009-10-15

    Recently, chemical ionization mass spectrometry (CIMS) has been widely applied to the in situ measurements of atmospheric trace species. In this article, we propose a new chemical ionization scheme using a chloride ion transfer reaction from SO(2)Cl(-) as the reagent ion and discuss the applicability of this technique to the detection of nitrous acid (HONO) in the atmosphere. From laboratory investigations, the detection sensitivity was found to depend on the flow rate of SO(2) introduced into the ion source region and the pressure inside the chemical ionization region, which suggests that the chemical ionization reaction is reversible. The detection sensitivity was well described in terms of the forward and backward rates. The present limit of detection is estimated to be 60 parts per trillion by volume (pptv) for an integration time of 1 min. Improvement of the CIMS instrument would enable the measurements of the daytime level of HONO, which might be less than 50 pptv. In addition, the possibility of the interference is discussed from thermodynamic considerations based on ab initio calculations, and the effects of the sampling artifacts are experimentally quantified. PMID:19746928

  7. Accumulation of Amino Acids in Rhizobium sp. Strain WR1001 in Response to Sodium Chloride Salinity

    PubMed Central

    Hua, Sui-Sheng T.; Tsai, Victor Y.; Lichens, Georgia M.; Noma, Amy T.

    1982-01-01

    Rhizobium sp. strain WR1001, isolated from the Sonoran Desert by Eskew and Ting, was found to be able to grow in defined medium containing NaCl up to 500 mM, a concentration approaching that of sea water. Therefore, it is a valuable strain for studying the biochemical basis of salt tolerance. Intracellular free glutamate was found to increase rapidly in response to osmotic stress by NaCl. It accounted for 88% of the amino acid pool when the bacterium was grown in 500 mM NaCl. The role of glutamate dehydrogenase in glutamate biosynthesis was examined in several Rhizobium strains. Both NADH- and NADPH-dependent glutamate dehydrogenase activities in various Rhizobium strains were observed. The range of activity differed considerably depending on the particular strain. KCl (500 mM) did not stimulate glutamate dehydrogenase activity, as reported in a number of bacterial strains by Measures. The low activity of glutamate dehydrogenase in Rhizobium sp. strain WR1001 apparently cannot fulfill a biosynthetic function of glutamate formation in response to medium NaCl concentrations. PMID:16346049

  8. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature. PMID:26355463

  9. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  10. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  11. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2013-09-10

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  12. Porphyrin Microparticles for Biological and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Huynh, Elizabeth

    Lipids are one of the critical building blocks of life, forming the plasma membrane of cells. In addition, porphyrins also play an equally important role in life, for example, through carrying oxygen in blood. The importance of both these components is evident through the biological and biomedical applications of supramolecular structures generated from lipids and porphyrins. This thesis investigates new porphyrin microparticles based on porphyrin-lipid architecture and their potential applications in biology and medicine. In Chapter 1, a background on lipid and porphyrin-based supramolecular structures is presented and design considerations for generating multifunctional agents. Chapter 2 describes the generation of a monolayer porphyrin microparticle as a dual-modal ultrasound and photoacoustic contrast agent and subsequently, a trimodal ultrasound, photoacoustic and fluorescence contrast agent. Chapter 3 examines the optical and morphological response of these multimodality ultrasound-based contrast agents to low frequency, high duty cycle ultrasound that causes the porphyrin microparticles to convertinto nanoparticles. Chapter 4 examines the generation of bilayer micrometer-sized porphyrin vesicles and their properties. Chapter 5 presents a brief summary and potential future directions. Although these microscale structures are similar in structure, the applications of these structures greatly differ with potential applications in biology and also imaging and therapy of disease. This thesis aims to explore and demonstrate the potential of new simplified, supramolecular structures based on one main building block, porphyrin-lipid.

  13. Effects of chronic exposure to soft, acidic water on gill development and chloride cell numbers in embryo-larval brook trout, Salvelinus fontinalis

    USGS Publications Warehouse

    Conklin, D.J.; Mowbray, R.C.; Gingerich, W.H.

    1992-01-01

    Recruitment failure is considered to be a major factor contributing to the decline of fish populations in soft, acidic waters; direct mortality of embryo-larval fishes has been postulated as a major cause of the decline. Little is understood of the physiological consequences to embryo-larval fishes of prolonged exposure to soft, acidic waters; however, dysfunction of respiratory and ionoregulatory processes is suspected. In order to evaluate the effects of acid exposure on the respiratory and ionoregulatory systems of developing brook trout, Salvelinus fontinalis, differences in gill morphology and numbers of chloride cells were compared between groups cf developing embryo-larval fish continuously exposed to moderately hard well water (130.0 mg.l-1 as CaCO3, pH 7.94) or to reconstituted soft, acidic water (4.4 mg.l-1 as CaCO3, pH 5.25) designed to mimic acidic waters of northern Wisconsin acidified lakes. Exposures were maintained for up to 48 days (82 days after fertilization) during critical periods of growth and differentiation of branchial structures. The second right gill arch of each fish was examined for changes in the development of filaments and lamellae and for differences in numbers of chloride cells. Gills of fish that developed in soft, acidic water contained greater numbers of normal and degenerating chloride cells, exhibited hyperplasia of primary epithelium and multiple fusions of adjacent filaments and lamellar epithelium than the gills of control fish. Filament and lamellar lengths and numbers of lamellae per filament were significantly less (P< 0.05) in fish that developed in soft, acidic water than in fish exposed to well water.

  14. Rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA

    SciTech Connect

    Lewis, A.J.; Palmer, M.R.; Kemp, A.J.; Sturchio, N.C.

    1997-02-01

    Rare earth element (REE) concentrations have been determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in acid-sulphate and acid-sulphate-chloride waters and the associated sinters and volcanic rocks from the Yellowstone National Park (YNP), Wyoming, USA, geothermal system. REE concentrations in the volcanic rocks range from 222 to 347 ppm: their chondrite-normalised REE patterns are typical of upper continental crust, with LREE > HREE and negative Eu anomalies. Total REE concentrations in the fluids range from 3 to 1133 nmol kg{sup -1} ({ge}162 ppm), and {Sigma}REE concentrations in sinter are {ge}181 ppm. REE abundances and patterns in drill core material from YNP indicate some REE mobility. Relative to the host rocks the REE patterns of the fluids are variably depleted in HREEs and LREEs, and usually have a pronounced positive Eu anomaly. This decoupling of Eu from the REE suite suggests that (1) Eu has been preferentially removed either from the host rock glass or from the host rock minerals, or (2) the waters are from a high temperature or reducing environment where Eu{sup 2+} is more soluble than the trivalent REEs. Since the latter is inconsistent with production of acid-sulphate springs in a low temperature, oxidising near-surface environment, we suggest that the positive Eu anomalies in the fluids result from preferential dissolution of a Eu-rich phase in the host rock. Spatial and temporal variations in major element chemistry and pH of the springs sampled from Norris Geyser Basin and Crater Hills accompany variations in REE concentrations and patterns of individual geothermal springs. These are possibly related to changes in subsurface plumbing, which results in variations in mixing and dilution of the geothermal fluids and may have lead to changes in the extent and nature of REE complexing. 37 refs., 7 figs., 4 tabs.

  15. Quantitative measurement of porphyrins in biological tissues and evaluation of tissue porphyrins during toxicant exposures.

    PubMed

    Woods, J S; Miller, H D

    1993-10-01

    Porphyrins are formed in most eukaryotic tissues as intermediates in the biosynthesis of heme. Assessment of changes in tissue porphyrin levels occurring in response to the actions of various drugs or toxicants is potentially useful in the evaluation of chemical exposures and effects. The present paper describes a rapid and sensitive method for the extraction and quantitation of porphyrins in biological tissues which overcomes difficulties encountered in previously described methods, particularly the loss of porphyrins during extraction and interference of porphyrin quantitation by coeluting fluorescent tissue constituents. In this procedure 8- through 2-carboxyl porphyrins are quantitatively extracted from tissue homogenates using HCl and methanol and are subsequently separated from potentially interfering contaminants by sequential methanol/phosphate elution on a C-18 preparatory column. Porphyrins are then separated and measured by reversed-phase high-performance liquid chromatography and spectrofluorometric techniques. Recovery of tissue porphyrins using this method is close to 100% with an intraassay variability of less than 10%. We have employed this procedure to measure liver and kidney porphyrin concentrations in male Fischer rats and to define the distinctive changes in tissue porphyrin patterns associated with treatment with the hepatic and renal porphyrinogenic chemicals, allylisopropylacetamide, and methyl mercury hydroxide, respectively. This method is applicable to the measurement of tissue porphyrin changes resulting from drug or toxicant exposures in clinical, experimental or environmental assessments.

  16. Microwave and infrared spectra, adjusted r0 structural parameters, conformational stabilities, vibrational assignments, and theoretical calculations of cyclobutylcarboxylic acid chloride.

    PubMed

    Klaassen, Joshua J; Darkhalil, Ikhlas D; Deodhar, Bhushan S; Gounev, Todor K; Gurusinghe, Ranil M; Tubergen, Michael J; Groner, Peter; Durig, James R

    2013-08-01

    The FT-microwave spectrum of cyclobutylcarboxylic acid chloride, c-C4H7C(O)Cl, has been recorded and 153 transitions for the (35)Cl and (37)Cl isotopologues have been assigned for the gauche-equatorial (g-Eq) conformation. The ground state rotational constants were determined for (35)Cl [(37)Cl]: A = 4349.8429(25) [4322.0555(56)] MHz, B = 1414.8032(25) [1384.5058(25)] MHz, and C = 1148.2411(25) [1126.3546(25)] MHz. From these rotational constants and ab initio predicted parameters, adjusted r0 parameters are reported with distances (Å) rCα-C = 1.491(4), rC═O = 1.193(3), rCα-Cβ = 1.553(4), rCα-Cβ' = 1.540(4), rCγ-Cβ = 1.547(4), rCγ-Cβ' = 1.546(4), rC-Cl = 1.801(3) and angles (deg) τCγCβCβ'Cα = 30.9(5). Variable temperature (-70 to -100 °C) infrared spectra (4000 to 400 cm(-1)) were recorded in liquid xenon and the g-Eq conformer was determined the most stable form, with enthalpy differences of 91 ± 9 cm(-1) (1.09 ± 0.11 kJ/mol) for the gauche-axial (g-Ax) form and 173 ± 17 cm(-1) (2.07 ± 0.20 kJ/mol) for the trans-equatorial (t-Eq) conformer. The relative amounts at ambient temperature are 54% g-Eq, 35 ± 1% g-Ax, and 12 ± 1% t-Eq forms. Vibrational assignments have been provided for the three conformers and theoretical calculations were carried out. The results are discussed and compared to corresponding properties of related molecules.

  17. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity. PMID:26096890

  18. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity.

  19. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, Jr., Paul E.; Langdale, Wayne A.

    1997-01-01

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  20. Preparation of porphyrins and their metal complexes

    DOEpatents

    Ellis, P.E. Jr.; Langdale, W.A.

    1997-08-19

    A hydroxyl-containing pyrrolic compound having a hydroxyl group or a hydroxyl-containing group in the 2-position, optionally substituted in the beta positions, is condensed in an acidified two immiscible phase solvent system to produce excellent yields of the corresponding porphyrin or metal porphyrin.

  1. Porphyrins as Second Order Nonlinear Optical Materials

    NASA Astrophysics Data System (ADS)

    Chou, Homer

    Because of the unusually high thermal and chemical stability of porphyrins as well as their very large pi-conjugated systems, three classes of high beta-value push-pull porphyrins were synthesized and subsequently successfully engineered into Langmuir-Blodgett (LB) films for a systematic evaluation of porphyrins as chi^{(2)} materials. Class I explored the effects of the number of donor-acceptor groups on the porphyrin periphery (i.e., H_2(an_3P), H_2 (cis-a_2n_2P), H_2(a_3nP), H _2(a_4P) where a = 4-(N-octadecylamido)phenyl or 4-(N-octadecyl-amino)phenyl; n = 4-nitrophenyl; P = 5,10,15,20 substituted tetraarylporphyrinate (2-).). Class II examined the effect of varying the strength of cis-substituted donor-acceptor pairs on the porphyrin periphery (i.e., H_2(cis-a_2n _2P), H_2(cis-c _2p_2P), and H_2 (cis-h_2py_2P) where c = 4-(2-cholesteryloxy)-ethoxyphenyl; h = 4-hydroxyphenyl or 4-methoxyphenyl; and py = 4-pyridyl or 4-(N-octadecyl) pyridiniumyl). Class III looked at the respone of a heterosubstituted bis- push-pull cerium sandwich porphyrin complex, (Ce ^{IV}(TPyP)(TMeP)) ^{4+}I_4 (where Py = 4-(N-octadecyl)pyridiniumyl and Me = 4-methoxyphenyl). Characterization of the porphyrin LB films reveals rather surprising behavior. The isotherm data show that the mean molecular area of the porphyrins increase smoothly from 80-200A as the number of aliphatic chains increase around the porphyrin periphery from one to four. In addition, based on UV-visible linear dichroism, all of the porphyrin films possess C _{infty v} symmetry and adopt a tilt angle, theta, of about 33^circ with respect to the fused quartz substrate. The proposed fixed orientation model suggests that the interporphyrin pi -pi interactions dominate the porphyrin orientation while the number of aliphatic chains around the porphyrin periphery determines the porphyrin's packing density in the LB film. After these monolayers were transferred to fused quartz substrates, the chi^{(2)} response of these

  2. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. PMID:27558337

  3. Syntheses and Functionalizations of Porphyrin Macrocycles

    PubMed Central

    Vicente, Maria da G.H.; Smith, Kevin M.

    2014-01-01

    Porphyrin macrocycles have been the subject of intense study in the last century because they are widely distributed in nature, usually as metal complexes of either iron or magnesium. As such, they serve as the prosthetic groups in a wide variety of primary metabolites, such as hemoglobins, myoglobins, cytochromes, catalases, peroxidases, chlorophylls, and bacteriochlorophylls; these compounds have multiple applications in materials science, biology and medicine. This article describes current methodology for preparation of simple, symmetrical model porphyrins, as well as more complex protocols for preparation of unsymmetrically substituted porphyrin macrocycles similar to those found in nature. The basic chemical reactivity of porphyrins and metalloporphyrin is also described, including electrophilic and nucleophilic reactions, oxidations, reductions, and metal-mediated cross-coupling reactions. Using the synthetic approaches and reactivity profiles presented, eventually almost any substituted porphyrin system can be prepared for applications in a variety of areas, including in catalysis, electron transport, model biological systems and therapeutics. PMID:25484638

  4. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies.

    PubMed

    Singh, Ambrish; Lin, Yuanhua; Quraishi, Mumtaz A; Olasunkanmi, Lukman O; Fayemi, Omolola E; Sasikumar, Yesudass; Ramaganthan, Baskar; Bahadur, Indra; Obot, Ime B; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-08-18

    The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  5. Analysis of amino acids by HPLC/electrospray negative ion tandem mass spectrometry using 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) derivatization.

    PubMed

    Ziegler, Jörg; Abel, Steffen

    2014-12-01

    A new method for the determination of amino acids is presented. It combines established methods for the derivatization of primary and secondary amino groups with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) with the subsequent amino acid specific detection of the derivatives by LC-ESI-MS/MS using multiple reaction monitoring (MRM). The derivatization proceeds within 5 min, and the resulting amino acid derivatives can be rapidly purified from matrix by solid-phase extraction (SPE) on HR-X resin and separated by reversed-phase HPLC. The Fmoc derivatives yield several amino acid specific fragment ions which opened the possibility to select amino acid specific MRM transitions. The method was applied to all 20 proteinogenic amino acids, and the quantification was performed using L-norvaline as standard. A limit of detection as low as 1 fmol/µl with a linear range of up to 125 pmol/µl could be obtained. Intraday and interday precisions were lower than 10 % relative standard deviations for most of the amino acids. Quantification using L-norvaline as internal standard gave very similar results compared to the quantification using deuterated amino acid as internal standards. Using this protocol, it was possible to record the amino acid profiles of only a single root from Arabidopsis thaliana seedlings and to compare it with the amino acid profiles of 20 dissected root meristems (200 μm).

  6. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  7. Chloride Test

    MedlinePlus

    ... Addison disease, or increased salt intake. If both chloride and sodium levels are high in a person on a ... anything else I should know? Drugs that affect sodium blood levels will also cause changes in chloride. In addition, swallowing large amounts of baking soda ...

  8. Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet.

    PubMed

    Frassetto, Lynda A; Morris, R Curtis; Sebastian, Anthony

    2007-08-01

    We previously demonstrated that typical American net acid-producing diets predict a low-grade metabolic acidosis of severity proportional to the diet net acid load as indexed by the steady-state renal net acid excretion rate (NAE). We now investigate whether a sodium (Na) chloride (Cl) containing diet likewise associates with a low-grade metabolic acidosis of severity proportional to the sodium chloride content of the diet as indexed by the steady-state Na and Cl excretion rates. In the steady-state preintervention periods of our previously reported studies comprising 77 healthy subjects, we averaged in each subject three to six values of blood hydrogen ion concentration ([H]b), plasma bicarbonate concentration ([HCO(3)(-)]p), the partial pressure of carbon dioxide (Pco(2)), the urinary excretion rates of Na, Cl, NAE, and renal function as measured by creatinine clearance (CrCl), and performed multivariate analyses. Dietary Cl strongly correlated positively with dietary Na (P < 0.001) and was an independent negative predictor of [HCO(3)(-)]p after adjustment for diet net acid load, Pco(2) and CrCl, and positive and negative predictors, respectively, of [H]b and [HCO(3)(-)]p after adjustment for diet acid load and Pco(2). These data provide the first evidence that, in healthy humans, the diet loads of NaCl and net acid independently predict systemic acid-base status, with increasing degrees of low-grade hyperchloremic metabolic acidosis as the loads increase. Assuming a causal relationship, over their respective ranges of variation, NaCl has approximately 50-100% of the acidosis-producing effect of the diet net acid load.

  9. Solid-Supported Porphyrins Useful for the Synthesis of Conjugates with Oligomeric Biomolecules.

    PubMed

    Jadhav, Satish; Yim, Cheng-Bin; Rajander, Johan; Grönroos, Tove J; Solin, Olof; Virta, Pasi

    2016-04-20

    meso-Tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (Photochlor, HPPH) were amide-coupled to 1R,2S,3R,4R-2,3-dihydroxy-4-(hydromethyl)-1-aminocyclopentane and immobilized via an ester linkage to long chain alkyl amine-derivatized controlled pore glass (LCAA-CPG). The applicability of these supports (5 and 6) for the synthesis of porphyrin conjugates with oligomeric biomolecules was demonstrated using an automated phosphoramidite coupling chemistry. Cleavage from the support with concentrated ammonia gave the products, viz., porphyrin conjugates of oligonucleotides (7-9) and dendritic glycoclusters (10-13) and a cyclooctyne derivative (14) in 23-58% yield. In addition, the synthesized cyclooctyne derivative of meso-tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin (14) was conjugated with an azidopropyl-modified hyaluronic acid (19). The hyaluronic acid-porphyrin conjugate (15) was radiolabeled with (64)Cu and its (15[(64)Cu]) receptor binding affinity to CD44-expressing tumor cells was evaluated. PMID:26898631

  10. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2, CAS Reg. No. 7773-01-5) is a pink... manganous oxide, pyrolusite ore (MnO2), or reduced manganese ore in hydrochloric acid. The...

  11. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    PubMed

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  12. Porphyrin-Based Photocatalytic Lithography

    SciTech Connect

    Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J

    2007-10-15

    Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

  13. Porphyrin-based Photocatalytic Nanolithography

    PubMed Central

    Bearinger, Jane P.; Stone, Gary; Dugan, Lawrence C.; El Dasher, Bassem; Stockton, Cheryl; Conway, James W.; Kuenzler, Tobias; Hubbell, Jeffrey A.

    2009-01-01

    Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering, and biology. We formed nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography. The nanoarrays, with controlled features as small as 200 nm, exhibited regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomics screening of immobilized biomolecules, (b) protein-protein interactions, and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrated protein immobilization utilizing nanoarrays fabricated via photocatalytic nanolithography on silicon substrates where the immobilized proteins are surrounded by a non-fouling polymer background. PMID:19406753

  14. Porphyrin-based Photocatalytic Nanolithography

    SciTech Connect

    Bearinger, J P; Stone, G; Dugan, L C; Dasher, B E; Stockton, C; Conway, J W; Kuenzler, T; Hubbell, J A

    2009-06-08

    Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering and biology. We form nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography (PCNL). The nanoarrays, with controlled features as small as 200 nm, exhibit regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomic screening of immobilized biomolecules, (b) protein-protein interactions and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrate protein immobilization utilizing nanoarrays fabricated via PCNL on silicon substrates, where the immobilized proteins are surrounded by a non-fouling polymer background.

  15. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings.

    PubMed

    Scott, Brittney R; Yang, Xiang; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Brad; Belk, Keith E

    2015-11-01

    Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings. PMID:26555519

  16. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings.

    PubMed

    Scott, Brittney R; Yang, Xiang; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Brad; Belk, Keith E

    2015-11-01

    Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings.

  17. The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Lewis, Anita J.; Palmer, Martin R.; Sturchio, Neil C.; Kemp, Anthony J.

    1997-02-01

    Rare earth element (REE) concentrations have been determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) in acid-sulphate and acid-sulphate-chloride waters and the associated sinters and volcanic rocks from the Yellowstone National Park (YNP), Wyoming, USA, geothermal system. REE concentrations in the volcanic rocks range from 222 to 347 ppm; their chondite-normalised REE patterns are typical of upper continental crust, with LREE > HREE and negative Eu anomalies. Total REE concentrations in the fluids range from 3 to 1133 nmol kg -1 (≥ 162 ppm), and ΣREE concentrations in sinter are ≥ 181 ppm. REE abundances and patterns in drill core material from YNP indicate some REE mobility. Normalisation of REE concentrations in altered Lava Creek Tuff (LCT) from Y-12 drill core to REE concentrations in fresh LCT indicate that the REE overall have been depleted with the exception of Eu, which has been decoupled from the REE series and concentrated in the altered rocks. Relative to the host rocks the REE patterns of the fluids are variably depleted in HREEs and LREEs, and usually have a pronounced positive Eu anomaly. This decoupling of Eu from the REE suite suggests that (1) Eu has been preferentially removed either from the host rock glass or from the host rock minerals, or (2) the waters are from a high temperature or reducing environment where Eu 2+ is more soluble than the trivalent REEs. Since the latter is inconsistent with production of acid-sulphate springs in a low temperature, oxidising near-surface environment, we suggest that the positive Eu anomalies in the fluids result from preferential dissolution of a Eu-rich phase in the host rock. Spatial and temporal variations in major element chemistry and pH of the springs sampled from Norris Geyser Basin and Crater Hills accompany variations in REE concentrations and patterns of individual geothermal springs. These are possibly related to changes in subsurface plumbing, which results in variations in

  18. An XAFS Study of Tantalum Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ aluminum Chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Tantalum chloride was studied with extended X-ray absorption fine structure spectroscopy (XAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride ionic liquids (ILs). Anhydrous Ta2Cl10 is more soluble in the basic solution than in the acidic solution and the X-ray absorption data shows that the coordination shell of chlorides around the tantalum is larger in the basic solution. In the acidic solution, tantalum has five chlorides in its coordination shell while in the basic solution; the tantalum is coordinated by seven chlorides. This indicates that the Lewis acidity of the tantalum chloride causes the Ta to coordinate differently in the acidic and the basic solutions.

  19. Smaragdyrins: emeralds of expanded porphyrin family.

    PubMed

    Pareek, Yogita; Ravikanth, M; Chandrashekar, T K

    2012-10-16

    Porphyrins are tetrapyrrolic 18 π electron conjugated macrocycles with wide applications that range from materials to medicine. Expanded porphyrins, synthetic analogues of porphyrins that contain more than 18 π electrons in the conjugated pathway, have an increased number of pyrroles or other heterocyles or multiple meso-carbon bridges. The expanded porphyrins have attracted tremendous attention because of unique features such as anion binding or transport that are not present in porphyrins. Expanded porphyrins exhibit wide applications that include their use in the coordination of large metal ions, as contrasting agents in magnetic resonance imaging (MRI), as sensitizers for photodynamic therapy (PDT) and as materials for nonlinear optical (NLO) studies. Pentaphyrin 1, sapphyrin 2, and smaragdyrin 3 are expanded porphyrins that include five pyrroles or heterocyclic rings. They differ from each other in the number of bridging carbons and direct bonds that connect the five heterocyclic rings. Sapphyrins were the first stable expanded porphyrins reported in the literature and remain one of the most extensively studied macrocycles. The strategies used to synthesize sapphyrins are well established, and these macrocycles are versatile anion binding agents. They possess rich porphyrin-like coordination chemistry and have been used in diverse applications. This Account reviews developments in smaragdyrin chemistry. Although smaragdyrins were discovered at the same time as sapphyrins, the chemistry of smaragdyrins remained underdeveloped because of synthetic difficulties and their comparative instability. Earlier efforts resulted in the isolation of stable β-substituted smaragdyrins and meso-aryl isosmaragdyrins. Recently, researchers have synthesized stable meso-aryl smaragdyrins by [3 + 2] oxidative coupling reactions. These results have stimulated renewed research interest in the exploration of these compounds for anion and cation binding, energy transfer

  20. Smaragdyrins: emeralds of expanded porphyrin family.

    PubMed

    Pareek, Yogita; Ravikanth, M; Chandrashekar, T K

    2012-10-16

    Porphyrins are tetrapyrrolic 18 π electron conjugated macrocycles with wide applications that range from materials to medicine. Expanded porphyrins, synthetic analogues of porphyrins that contain more than 18 π electrons in the conjugated pathway, have an increased number of pyrroles or other heterocyles or multiple meso-carbon bridges. The expanded porphyrins have attracted tremendous attention because of unique features such as anion binding or transport that are not present in porphyrins. Expanded porphyrins exhibit wide applications that include their use in the coordination of large metal ions, as contrasting agents in magnetic resonance imaging (MRI), as sensitizers for photodynamic therapy (PDT) and as materials for nonlinear optical (NLO) studies. Pentaphyrin 1, sapphyrin 2, and smaragdyrin 3 are expanded porphyrins that include five pyrroles or heterocyclic rings. They differ from each other in the number of bridging carbons and direct bonds that connect the five heterocyclic rings. Sapphyrins were the first stable expanded porphyrins reported in the literature and remain one of the most extensively studied macrocycles. The strategies used to synthesize sapphyrins are well established, and these macrocycles are versatile anion binding agents. They possess rich porphyrin-like coordination chemistry and have been used in diverse applications. This Account reviews developments in smaragdyrin chemistry. Although smaragdyrins were discovered at the same time as sapphyrins, the chemistry of smaragdyrins remained underdeveloped because of synthetic difficulties and their comparative instability. Earlier efforts resulted in the isolation of stable β-substituted smaragdyrins and meso-aryl isosmaragdyrins. Recently, researchers have synthesized stable meso-aryl smaragdyrins by [3 + 2] oxidative coupling reactions. These results have stimulated renewed research interest in the exploration of these compounds for anion and cation binding, energy transfer

  1. Manganese porphyrin sensor for the determination of bromate.

    PubMed

    Sheen, Shanty; Jos, Theresa; Rajith, Leena; Kumar, Krishnapillai Girish

    2016-03-01

    The electro reductive behavior and determination of bromate on [5, 10, 15, 20-tetrakis (4-methoxyphenylporphyrinato] Manganese (III) chloride (TMOPPMn(III)Cl) modified Gold electrode(GE) was investigated by Square wave voltammetry (SWV). Bromate showed an irreversible reduction peak at -164 mV in 0.1 M pH 7 Na2SO4 solution. The cathodic peak of bromate showed a reduction in potential of 88 mV on modifying GE with a porphyrin film. The peak current varied linearly with concentration with a detection limit of 3.56 × 10(-9) M. The influence of pH, scan rate, supporting electrolyte and interferents on the reduction peak current of bromate were studied. The developed sensor was proposed for the determination of bromate in bread samples and compared with the standard method. PMID:27570281

  2. Nickel porphyrins for memory optical applications

    DOEpatents

    Shelnutt, John A.; Jia, Songling; Medforth, Craig; Holten, Dewey; Nelson, Nora Y.; Smith, Kevin M.

    2000-01-01

    The present invention relates to a nickel-porphyrin derivative in a matrix, the nickel-porphyrin derivative comprising at least two conformational isomers, a lower-energy-state conformer and a higher-energy-state conformer, such that when the higher-energy-state conformer is generated from the lower-energy-state conformer following absorption of a photon of suitable energy, the time to return to the lower-energy-state conformer is greater than 40 nanoseconds at approximately room temperature. The nickel-porphyrin derivative is useful in optical memory applications.

  3. Porphyrinic Molecular Devices: Towards Nanoscaled Processes

    PubMed Central

    Latter, Melissa J.; Langford, Steven J.

    2010-01-01

    The structural, coordinative, photochemical and electrochemical properties of the porphyrin macrocycle that make them the functional element of choice in ubiquitous biological systems, e.g., chlorophyll, cytochrome P450 and hemoglobin, also contribute to making porphyrins and metalloporphyrins desirable in a “bottom-up” approach to the construction of nanosized devices. This paper highlights some recent advances in the construction of supramolecular assemblies based on the porphyrin macrocycle that display optically readable functions as a result of photonic or chemical stimuli. PMID:20480048

  4. Effect of sodium chloride and citric acid on growth and toxin production by A. caviae and A. sobria at moderate and low temperatures.

    PubMed

    Abu-Ghazaleh, B M

    2000-10-01

    The effect of sodium chloride and citric acid on hemolysin and caseinase production by Aeromonas caviae and Aeromonas sobria at 32 degrees C and 5 degrees C was investigated. At 32 degrees C, although both strains were tolerant to 3% NaCl in TSB, the production of caseinase was decreased in the presence of 1-3% NaCl, and the production of hemolysin was abolished by 2-3% NaCl. Citric acid (0.03%) was less effective than NaCl in reducing hemolysin and caseinase production by both strains at 32 degrees C. A combination of low temperature (5 degrees C) and citric acid treatment reduced hemolysin and caseinase production by both strains. A combination of low temperature (5 degrees C) and NaCl (3%) treatment was the most effective procedure in reducing growth and hemolysin and caseinase production by the tested strains.

  5. Fluorinated porphyrin tweezer: a powerful reporter of absolute configuration for erythro and threo diols, amino alcohols, and diamines.

    PubMed

    Li, Xiaoyong; Tanasova, Marina; Vasileiou, Chrysoula; Borhan, Babak

    2008-02-13

    A general and sensitive nonempirical protocol to determine the absolute configurations of erythro and threo diols, amino alcohols, and diamines is reported. Binding of diols to the porphyrin tweezer system is greatly enhanced by increasing the Lewis acidity of the metalloporphyrin. Supramolecular complexes formed between the porphyrin tweezer host and chiral substrates exhibited exciton-coupled bisignate CD spectra with predictable signs based on the substituents on the chiral center. The working model suggests that the observed helicity of the porphyrin tweezer is dictated via steric differentiation experienced by the porphyrin ring bound to each chiral center. A variety of erythro and threo substrates were investigated to verify this chiroptical method. Their absolute configurations were unequivocally determined, and thus a general mnemonic is provided for the assignment of chirality.

  6. Mathematical modeling of cadmium(II) solvent extraction from neutral and acidic chloride media using Cyanex 923 extractant as a metal carrier.

    PubMed

    Leopold, A A; Coll, M T; Fortuny, A; Rathore, N S; Sastre, A M

    2010-10-15

    This paper describes experimental work and the mathematical modeling of solvent extraction of cadmium(II) from neutral and acidic aqueous chloride media with a Cyanex 923 extractant in Exxol D-100. Solvent extraction experiments were carried out to analyze the influence of variations in the composition of the aqueous and organic phases on the efficiency of cadmium(II) extraction. In neutral and acidic chloride conditions, the extraction of cadmium(II) by the organophosphorous extractant Cyanex 923 (L) is based on the solvation mechanism of neutral H(n)CdCl((2+n)) species and the formation of H(n)CdCl((2+n))L(q) complexes in the organic phase, where n=0, 1, 2 and q=1, 2. The mathematical model of cadmium(II) extraction was derived from the mass balances and chemical equilibria involved in the separation system. The model was computed with the Matlab software. The equilibrium parameters for metal extraction, i.e. the stability constants of the aqueous Cd-Cl complexes, the formation constants of the acidic Cd-Cl species and the metal equilibrium extraction constants, were proposed. The optimized constants were appropriate, as there was good agreement when the model was fitted to the experimental data for each of the experiments.

  7. A simple, efficient and environmentally benign synthetic protocol for the synthesis of spirooxindoles using choline chloride-oxalic acid eutectic mixture as catalyst/solvent system.

    PubMed

    Khandelwal, Sarita; Rajawat, Anshu; Tailor, Yogesh Kumar; Kumar, Mahendra

    2014-01-01

    An efficient and environmentally benign domino protocol has been presented for the synthesis of structurally diverse spirooxindoles spiroannulated with pyranopyridopyrimidines, indenopyridopyrimidines, and chromenopyridopyrimidines involving three-component reaction of aminouracils, isatins and cyclic carbonyl compounds in deep eutectic solvent (choline chloride-oxalic acid: 1:1) which acts as efficient catalyst and environmentally benign reaction medium. The present protocol offers several advantages such as operational simplicity with easy workup, shorter reaction times excellent yields with superior atom economy and environmentally benign reaction conditions with the use of cost-effective, recyclable, non-toxic and bio-degradable DES as catalyst/solvent.

  8. A simple, efficient and environmentally benign synthetic protocol for the synthesis of spirooxindoles using choline chloride-oxalic acid eutectic mixture as catalyst/solvent system.

    PubMed

    Khandelwal, Sarita; Rajawat, Anshu; Tailor, Yogesh Kumar; Kumar, Mahendra

    2014-01-01

    An efficient and environmentally benign domino protocol has been presented for the synthesis of structurally diverse spirooxindoles spiroannulated with pyranopyridopyrimidines, indenopyridopyrimidines, and chromenopyridopyrimidines involving three-component reaction of aminouracils, isatins and cyclic carbonyl compounds in deep eutectic solvent (choline chloride-oxalic acid: 1:1) which acts as efficient catalyst and environmentally benign reaction medium. The present protocol offers several advantages such as operational simplicity with easy workup, shorter reaction times excellent yields with superior atom economy and environmentally benign reaction conditions with the use of cost-effective, recyclable, non-toxic and bio-degradable DES as catalyst/solvent. PMID:25329839

  9. Convergent access to polycyclic cyclopentanoids from α,β-unsaturated acid chlorides and alkynes through a reductive coupling, nazarov cyclization sequence.

    PubMed

    Chaplin, Jason H; Jackson, Kristal; White, Jonathan M; Flynn, Bernard L

    2014-04-18

    Reductive coupling of α,β-unsaturated acid chlorides A with alkynoyls B provides convergent access to Nazarov cyclization precursors, α-carboxy divinyl ketones C. Cyclization of C gives an intermediate oxyallyl cation intermediate D, which can be trapped with tethered arenes (Ar). The resultant products can be further cyclized through nucleophilic displacement of suitable leaving groups X by tethered OH groups to give lactones (in a subsequent step). Where X is a suitable chiral auxiliary (e.g., oxazolidinone) this strategy affords access to homochiral cyclopentanoids. PMID:24697736

  10. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging.

    PubMed

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna

    2016-04-15

    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and (64)Cu isotope can serve as a positron emitter (t1/2=12.7h). The other advantage of (64)Cu is its decay characteristics that facilitates the use of (64)Cu-porphyrin complex as a therapeutic agent. Thus, (64)Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH9 with the addition of 10-fold molar excess, with respect to Cu(2+) ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.

  11. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging

    NASA Astrophysics Data System (ADS)

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna

    2016-04-01

    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and 64Cu isotope can serve as a positron emitter (t1/2 = 12.7 h). The other advantage of 64Cu is its decay characteristics that facilitates the use of 64Cu-porphyrin complex as a therapeutic agent. Thus, 64Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH 9 with the addition of 10-fold molar excess, with respect to Cu2 + ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.

  12. Vinyl chloride and polyvinyl chloride.

    PubMed

    Lewis, R

    1999-01-01

    Polyvinyl chloride (PVC) is an important plastic resin for construction, pipe and tubing, siding, and other uses. Exposures to vinyl chloride monomer during the early years of production resulted in an important sentinel health event: the recognition of an excess of a rare liver cancer, hepatic angiosarcoma, at facilities throughout the world. Several other syndromes, including acro-osteolysis, also have been associated with PVC, but less clearly with vinyl chloride. Extensive research ranging from large-scale epidemiologic studies to biomarker research into molecular mechanisms continues to provide valuable insight into the pathogenesis of occupational cancer.

  13. Constructing bis(porphyrinato) rare earth double-decker complexes involving N-confused porphyrin.

    PubMed

    Zhang, Yuehong; Cao, Wei; Wang, Kang; Jiang, Jianzhuang

    2014-06-28

    Reaction of metal-free N-confused 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (H2NTClPP) with metal-free 5,10,15,20-tetrakis[(4-tert-butyl)phenyl]porphyrin (H2TBPP) in the presence of M(III)(acac)3·nH2O (acac = acetylacetonate) in refluxing 1,2,4-trichlorobenzene (TCB) led to the isolation of heteroleptic bis(porphyrinato) rare earth compounds M(III)(HNTClPP)(TBPP) (M = La, Pr) (1, 2) in 6.7-10% yield. These represent the first examples of sandwich-type porphyrin rare earth double-decker complexes that involve N-confused porphyrin ligand. Different from their homoleptic bis(porphyrinato) rare earth double-decker counterparts HM(III)(TBPP)2 (M = La, Pr) (3, 4), the acidic proton in the heteroleptic analogues was revealed to localize at the inverted pyrrole nitrogen atom of the N-confused porphyrin ligand on the basis of NMR spectroscopic studies. Nevertheless, their heteroleptic bis(porphyrinato) sandwich molecular nature was confirmed on the basis of single crystal X-ray diffraction analysis over the praseodymium double-decker complex. PMID:24809442

  14. Nonlinear optical behavior of porphyrin functionalized nanodiamonds: an efficient material for optical power limiting.

    PubMed

    Muller, Olivier; Pichot, Vincent; Merlat, Lionel; Schmidlin, Loic; Spitzer, Denis

    2016-05-10

    The nonlinear optical mechanisms and the optical limiting behavior of porphyrin functionalized detonation nanodiamonds are investigated and compared to the conventional detonation nanodiamonds (DNDs). The optical limiting behavior is characterized by means of nonlinear transmittance, Z-scan, and scattered intensity measurements when submitted to a nanosecond pulsed Nd:YAG laser operating at the second harmonic wavelength. We found that the largest nonlinear attenuation was observed on the 4,4',4'',4'''-(porphyrin-5, 10, 15, 20-tetrayl) tetrakis benzoic acid (PCOOH) suspension. Using Z-scan experiments, it is shown that nonlinear refraction predominates in the unfunctionalized DND suspension, while nonlinear absorption is the most relevant mechanism in the porphyrin functionalized DNDs. Furthermore, a stronger backscattered intensity signal is highlighted for the unfunctionalized DNDs through nonlinear scattering measurements. PMID:27168296

  15. Interactions among lead, cadmium, and arsenic in relation to porphyrin excretion patterns.

    PubMed Central

    Fowler, B A; Mahaffey, K R

    1978-01-01

    This paper reviews the effects of lead (Pb), cadmium (Cd), and arsenic (As) on the mitrochondrion with emphasis on alteration of mitochondrial heme biosynthetic pathway. The information was used to examine results of a Pb x Cd x As interaction study which employed urinary porphyrin excretion patterns as one assessment criterion. Data from the study showed that dietary Pb produced increased urinary excretion of aminolevulinic acid (ALA) and coproporphyrin. Dietary exposure to organic or inorganic As caused increased excretion of uroporphyrin and to a lesser extent coproporphyrin, while dietary Cd caused no significant changes in urinary levels of any of the porphyrins measured. The combination of Pb plus As produced an additive effect on coproporphyrin excretion but not that of either ALA or uroporphyrin. These data are discussed in relation to utilization of urinary porphyrins for assessing toxicity and elemental interactions. PMID:720307

  16. Mechanistic study of iron(III) [tetrakis(pentafluorophenyl)porphyrin triflate (F(20)TPP)Fe(OTf) catalyzed cyclooctene epoxidation by hydrogen peroxide.

    PubMed

    Stephenson, Ned A; Bell, Alexis T

    2007-03-19

    We have recently proposed a mechanism for the epoxidation of cyclooctene by H2O2 catalyzed by iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride, (F20TPP)FeCl, in solvent containing methanol [Stephenson, N. A.; Bell, A.T. Inorg. Chem. 2006, 45, 2758-2766]. In that study, we found that catalysis did not occur unless (F20TPP)FeCl first dissociated, a process facilitated by the solvation of the Cl- anion by methanol and the coordination of methanol to the (F20TPP)Fe+ cation. Methanol as well as other alcohols was also found to facilitate the heterolytic cleavage of the O-O bond of H2O2 coordinated to the (F20TPP)Fe+ cation via a generalized acid mechanism. In the present study, we have shown that catalytic activity of the (F20TPP)Fe+ cation can be achieved in aprotic solvent by displacing the tightly bound chloride anion with a weakly bound triflate anion. By working in an aprotic solvent, acetonitrile, it was possible to determine the rate of heterolytic O-O bond cleavage in coordinated H2O2 unaffected by the interaction of the peroxide with methanol. A mechanism is proposed for this system and is shown to be valid over a range of reaction conditions. The mechanisms for cyclooctene epoxidation and H2O2 decomposition for the aprotic and protic solvent systems are similar with the only difference being the mechanism of proton-transfer prior to heterolytic cleavage of the oxygen-oxygen bond of coordinated hydrogen peroxide. Comparison of the rate parameters indicates that the utilization of hydrogen peroxide for cyclooctene epoxidation is higher in a protic solvent than in an aprotic solvent and results in a smaller extent of porphyrin degradation due to free radical attack. It was also shown that water can coordinate to the iron porphyrin cation in aprotic systems resulting in catalyst deactivation; this effect was not observed when methanol was present, since methanol was found to displace all of the coordinated water.

  17. Extraction of copper(II) from acid chloride solutions by N-dodecyl- and N,N-dihexylpyridinecarboxamides

    SciTech Connect

    Borowiak-Resterna, A.

    1999-01-01

    N-dodecyl- and N,N-dihexylpyridinecarboxamides with amide group at 2, 3 or 4 position were synthesized. Model individual amides were used to recover copper(II) from chloride solutions at constant water activity and constant total concentration of dissolved species in aqueous solution. It was found, that pyridine-2-carboxamide forms with copper complexes (CuCl{sub 2}){sub x}(Ext){sub 2}. Remaining amides form with copper complexes CuCl{sub 2}(Ext){sub 2}. Monoalkylamides are not suitable for extraction because they and their complexes are slightly soluble in the hydrocarbon diluents. N,N-dialkylpyridinecarboxamides and their copper complexes are sufficiently soluble in the hydrocarbon phase to carry out extraction. However, they are strong extractants and extract efficiently copper already from dilute chloride solutions ([Cl{sup {minus}}] = 0.1 M). They extract also significant amounts of copper from concentrated (3--4 M) nitrate solutions.

  18. Catalytic destruction of perchlorate in ferric chloride and hydrochloric acid solution with control of temperature, pressure and chemical reagents

    DOEpatents

    Gu, Baohua; Cole, David R.; Brown, Gilbert M.

    2004-10-05

    A method is described to decompose perchlorate in a FeCl.sub.3 /HCl aqueous solution such as would be used to regenerate an anion exchange resin used to remove perchlorate. The solution is mixed with a reducing agent, preferably an organic alcohol and/or ferrous chloride, and can be heated to accelerate the decomposition of perchlorate. Lower temperatures may be employed if a catalyst is added.

  19. Porphyrin-loaded nanoparticles for cancer theranostics

    NASA Astrophysics Data System (ADS)

    Zhou, Yiming; Liang, Xiaolong; Dai, Zhifei

    2016-06-01

    Porphyrins have been used as pioneering theranostic agents not only for the photodynamic therapy, sonodynamic therapy and radiotherapy of cancer, but also for diagnostic fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. A variety of porphyrins have been developed but very few of them have actually been employed in clinical trials due to their poor selectivity to tumorous tissue and high accumulation rates in the skin. In addition, most porphyrin molecules are hydrophobic and form aggregates in aqueous media. Nevertheless, the use of nanoparticles as porphyrin carriers shows great promise to overcome these shortcomings. Encapsulating or attaching porphyrins to nanoparticles makes them more suitable for tissue delivery because we can create materials with a conveniently specific tissue lifetime, specific targeting, immune tolerance, and hydrophilicity as well as other characteristics through rational design. In addition, various functional components (e.g. for targeting, imaging or therapeutic functions) can be easily introduced into a single nanoparticle platform for cancer theranostics. This review presents the current state of knowledge on porphyrin-loaded nanoparticles for the interwined imaging and therapy of cancer. The future trends and limitations of prophyrin-loaded nanoparticles are also outlined.

  20. An XAFS Study of Niobium chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Niobium chloride was studied with extended X-ray absorption fine structure spectroscopy (EXAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Although anhydrous Nb2Cl10 is more soluble in the basic melt than in the acidic melt, the EXAFS data shows that the coordination shell around the niobium does not change in the different ionic liquids. Both the acidic and basic melts show a coordination of five chlorides in the first shell. This indicates that in this series of ionic liquids, the Nb2Cl10 breaks up into two NbCl5 entities in both the acidic and the basic melts.

  1. Photobactericidal plastic films based on cellulose esterified by chloroacetate and a cationic porphyrin.

    PubMed

    Krouit, Mohammed; Granet, Robert; Krausz, Pierre

    2008-12-01

    The synthesis and characterisation of pyridinium porphyrinic chloroacetyl cellulose ester chlorides, where photosensitizing agents are covalently bounded to the polymeric chain, is presented in this paper. First, cellulose was homogenously converted into chloroacetate cellulose ester in DMAc/LiCl solvent by using chloroacetyl chloride. The complete substitution of cellulose was achieved using 7equiv of chloroacetyl chloride for a 2h reaction at room temperature. The absence of base did not prove detrimental to reaction. The grafting of monopyridyltritolylporphyrin onto chloroacetate cellulose ester was then realised by alkylation of the photosensitizer in DMF. These new plastic films were found to be thermostable up to 55 degrees C; higher temperatures led to progressive deacetylation. First results of their photobactericidal activity against Staphylococcus aureus and Escherichia coli strains are very encouraging. Such materials could find applications in medical environments as an alternative to overcome the rampant bacterial multiresistance to classical antibiotics.

  2. Alloy B-10, a new nickel-based alloy for strong chloride-containing, highly acidic and oxygen-deficient environments

    SciTech Connect

    Kohler, M.; Kirchheiner, R.; Stenner, F.

    1998-12-31

    Alloy B-10 is a Ni-Mo-Cr alloy, recently developed for highly acidic but oxygen-deficient environments in the chemical process and environmental protection industries. The new nickel-based alloy with nominally (wt. %) 62 Ni, 24 MO, 8 Cr and 6 Fe, exhibits excellent corrosion resistance in intermediate concentrations of sulfuric acid, as well as in hydrochloric acid, even with additions of small amounts of oxidizing agents. In a simulated Flue Gas Desulfurization (FGD) environment of sulfuric acid of pH 1 with additions of 7% chloride and 0.01% fluoride, and also containing 15% gypsum the new alloy demonstrated high crevice corrosion resistance at 100 C, whereas a common Ni-Cr-Mo alloy of the C-type suffers crevice corrosion under the same conditions. This new alloy can easily be welded without filler or using matching filler. Good practical experience has been gained with Alloy B-10 in a district heating power station as a tube sheet and bottom wall liner for a glass tube heat exchanger working at 130 C with condensing 70% sulfuric acid.

  3. Oxygen Availability for Porphyrin Biosynthesis Enzymes Determines the Production of Protoporphyrin IX (PpIX) during Hypoxia.

    PubMed

    Otsuka, Shimpei; Matsumoto, Kentaro; Nakajima, Motowo; Tanaka, Tohru; Ogura, Shun-Ichiro

    2015-01-01

    5-Aminolevulinic acid (ALA), a precursor of porphyrin, is specifically converted to the fluorescent substance protoporphyrin IX (PpIX) in tumors to be used as a prodrug for photodynamic therapy and diagnosis. Hypoxia, a common feature of solid tumors, decreases the efficacy of ALA-based photodynamic therapy and diagnosis. This decrease results from the excretion of porphyrin precursor coproporphyrinogen III (CPgenIII), an intermediate in the biosynthesis of PpIX. However, the mechanism of CPgenIII excretion during hypoxia remains unclear. In this study, we revealed the importance of mitochondrial respiration for the production of PpIX during hypoxia. Porphyrin concentrations were estimated in human gastric cancer cell lines by HPLC. Expression levels of porphyrin biosynthesis genes were measured by qRT-PCR and immunoblotting. Blockage of porphyrin biosynthesis was an oxygen-dependent phenomenon resulting from decreased PpIX production in mitochondria under hypoxic conditions. PpIX production was increased by the inhibition of mitochondrial respiration complexes, which indicates that the enzymes of porphyrin biosynthesis compete with respiration complexes for molecular oxygen. Our results indicate that targeting the respiration complexes is a rationale for enhancing the effect of ALA-mediated treatment and diagnosis. PMID:26717566

  4. Oxygen Availability for Porphyrin Biosynthesis Enzymes Determines the Production of Protoporphyrin IX (PpIX) during Hypoxia

    PubMed Central

    Otsuka, Shimpei; Matsumoto, Kentaro; Nakajima, Motowo; Tanaka, Tohru; Ogura, Shun-ichiro

    2015-01-01

    5-Aminolevulinic acid (ALA), a precursor of porphyrin, is specifically converted to the fluorescent substance protoporphyrin IX (PpIX) in tumors to be used as a prodrug for photodynamic therapy and diagnosis. Hypoxia, a common feature of solid tumors, decreases the efficacy of ALA-based photodynamic therapy and diagnosis. This decrease results from the excretion of porphyrin precursor coproporphyrinogen III (CPgenIII), an intermediate in the biosynthesis of PpIX. However, the mechanism of CPgenIII excretion during hypoxia remains unclear. In this study, we revealed the importance of mitochondrial respiration for the production of PpIX during hypoxia. Porphyrin concentrations were estimated in human gastric cancer cell lines by HPLC. Expression levels of porphyrin biosynthesis genes were measured by qRT-PCR and immunoblotting. Blockage of porphyrin biosynthesis was an oxygen-dependent phenomenon resulting from decreased PpIX production in mitochondria under hypoxic conditions. PpIX production was increased by the inhibition of mitochondrial respiration complexes, which indicates that the enzymes of porphyrin biosynthesis compete with respiration complexes for molecular oxygen. Our results indicate that targeting the respiration complexes is a rationale for enhancing the effect of ALA-mediated treatment and diagnosis. PMID:26717566

  5. Mepiquat chloride

    Integrated Risk Information System (IRIS)

    Mepiquat chloride ; CASRN 24307 - 26 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  6. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  7. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  8. Benzyl chloride

    Integrated Risk Information System (IRIS)

    Benzyl chloride ; CASRN 100 - 44 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  9. Vinyl chloride

    Integrated Risk Information System (IRIS)

    Vinyl chloride ; CASRN 75 - 01 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  10. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  11. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  12. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  13. A light-harvesting array of synthetic porphyrins

    NASA Astrophysics Data System (ADS)

    Davila, Jorge; Harriman, Anthony; Milgrom, Lionel R.

    1987-05-01

    An array of five porphyrin molecules has been synthesized and used as a simple model of the light-harvesting complex found in natural photosynthesis. Efficient Förster energy transfer occurs from antenna zinc porphyrins to a central free-base porphyrin molecule. This central porphyrin retains long-lived singlet and triplet excited states that can be quenched by diffusional processes, Both electron and energy transfer quenching reactions can be observed.

  14. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity.

    PubMed

    Gassel, Michael; Wolf, Christian; Noack, Sandra; Williams, Heike; Ilg, Thomas

    2014-02-01

    Isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its parasiticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.) microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The generation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with the development of a membrane potential fluorescence dye assay allowed the comparison of ion channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a novel ectoparasiticide. PMID:24365472

  15. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity.

    PubMed

    Gassel, Michael; Wolf, Christian; Noack, Sandra; Williams, Heike; Ilg, Thomas

    2014-02-01

    Isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its parasiticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.) microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The generation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with the development of a membrane potential fluorescence dye assay allowed the comparison of ion channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a novel ectoparasiticide.

  16. β-Cyclodextrin as a Metal-anionic Porphyrin Complexation Accelerator in Aqueous Media.

    PubMed

    Ohtomo, Takao; Yokoyama, Aya; Konno, Mitsuyuki; Ohno, Osamu; Igarashi, Shukuro; Takagai, Yoshitaka

    2016-01-01

    The rate of the complexation reaction between anionic porphyrins and 11 metal ions was found to be accelerated by the presence of β-cyclodextrin (β-CD) in aqueous media at room temperature without the need for additional heating or sonication. The porphyrin complexation reaction with metal ions under aqueous conditions can be difficult due to the strong hydration energy between the metal ions and water. In this study, the specific role of β-CD as an accelerator was determined and found to enhance the typically slow reaction of the porphyrin with metal ions. A significant acceleration effect was exhibited when the model anionic porphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphine-tetrasulfonic acid, and Pb(II) ions were combined in the presence of β-CD. Other than for Hg ion, the addition of β-CD decreased the metalation reaction time from 30 to 2 min. The order in the degree of acceleration was Pb > Zn, Cd > Cu > Fe, Pd > Sn > Ag, Co, Mn. Using Pb(II) as the model ion, it was determined that the complexation rate constant was enhanced by a factor of 2.4, while the dissociation rate constant was diminished by a factor of 135 in the presence of added β-CD relative to that in its absence. Overall, the complex was much more stable (formation equilibrium constant 324-fold greater in the β-CD medium. The formation of a ternary complex (cf. bicapped complex; (β-CD)2-porphyrin-metal ion) was demonstrated through the use of nuclear magnetic-resonance spectroscopy and mass spectrometry. This acceleration effect is expected to be applicable systems in which porphyrin ligands are employed for determining of metal ions in chemical analysis and separation science. PMID:27302582

  17. Role of porphyrin sequestration in the biogenesis of iron-laden astrocytic inclusions in primary culture.

    PubMed

    Schipper, H M; Small, L; Wang, X; Brawer, J R

    2002-01-01

    Astrocytes in subcortical regions of the mammalian brain progressively accumulate iron-rich, autofluorecent cytoplasmic inclusions as a function of aging. Cysteamine (CSH) accelerates the appearance of this senescent glial phenotype in situ and in primary rat astroglial cultures. Porphyrins have been implicated as the source of orange-red autofluorescence in these glial inclusions. Yet, CSH has been shown to suppress porphyrin-heme biosynthesis in cultured astroglia. To determine whether porphyrin biosynthesis or sequestration participates in the biogenesis of these glial inclusions, the porphyrin precursor, (3)H-delta-aminolevulinic acid ((3)H-ALA) was administered to CSH-exposed and control rat astroglial cultures followed by light and electron microscopic autoradiography. Control cultures exhibited faint orange-red autofluorescence, intense (3)H-ALA labeling, numerous normal mitochondria and few cytoplasmic inclusions. In these cells, (3)H-ALA labeling largely occurred over normal mitochondria. The CSH-treated astroglia exhibited diminished (3)H-ALA labeling and contained numerous orange-red autofluorescent inclusions. The latter manifested internal compartments delimited by double membranes characteristic of damaged mitochondria. The complement of normal mitochondria in the CSH-exposed cells was markedly reduced. In the CSH-treated cells, (3)H-ALA labeling predominated over the large multi-compartmental inclusions. CSH attenuates de novo porphyrin-heme biosynthesis in astroglia but may induce punctate orange-red autofluorescence in the cytoplasm of these cells by promoting large numbers of damaged, porphyrin-containing mitochondria to form tight aggregates within the nascent gliosomes.

  18. β-Cyclodextrin as a Metal-anionic Porphyrin Complexation Accelerator in Aqueous Media.

    PubMed

    Ohtomo, Takao; Yokoyama, Aya; Konno, Mitsuyuki; Ohno, Osamu; Igarashi, Shukuro; Takagai, Yoshitaka

    2016-01-01

    The rate of the complexation reaction between anionic porphyrins and 11 metal ions was found to be accelerated by the presence of β-cyclodextrin (β-CD) in aqueous media at room temperature without the need for additional heating or sonication. The porphyrin complexation reaction with metal ions under aqueous conditions can be difficult due to the strong hydration energy between the metal ions and water. In this study, the specific role of β-CD as an accelerator was determined and found to enhance the typically slow reaction of the porphyrin with metal ions. A significant acceleration effect was exhibited when the model anionic porphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphine-tetrasulfonic acid, and Pb(II) ions were combined in the presence of β-CD. Other than for Hg ion, the addition of β-CD decreased the metalation reaction time from 30 to 2 min. The order in the degree of acceleration was Pb > Zn, Cd > Cu > Fe, Pd > Sn > Ag, Co, Mn. Using Pb(II) as the model ion, it was determined that the complexation rate constant was enhanced by a factor of 2.4, while the dissociation rate constant was diminished by a factor of 135 in the presence of added β-CD relative to that in its absence. Overall, the complex was much more stable (formation equilibrium constant 324-fold greater in the β-CD medium. The formation of a ternary complex (cf. bicapped complex; (β-CD)2-porphyrin-metal ion) was demonstrated through the use of nuclear magnetic-resonance spectroscopy and mass spectrometry. This acceleration effect is expected to be applicable systems in which porphyrin ligands are employed for determining of metal ions in chemical analysis and separation science.

  19. Enhancing solar photocatalytic detoxification by adsorption of porphyrins onto TiO sub 2

    SciTech Connect

    Majumder, S.A.; Ondrias, M.R. . Dept. of Chemistry); Prairie, M.R.; Shelnutt, J.A. )

    1991-01-01

    Titanium dioxide (TiO{sub 2}) is a known photocatalyst for solar detoxification of water containing organic contaminants including PCB's and dioxins. Unfortunately, the UV light used by the photocatalyst only comprises about 4% of the strong spectrum. Metalloporphyrins strongly absorb in the visible and near infrared region. Using visible light, we have investigated Ni(II) uroporphyrin (NiUroP), Sn(IV)Cl{sub 2} uroporphyrin (SnUroP) and Sn(IV)Cl{sub 2} tetrakis(p-carboxyphenyl) porphyrin (SnTCPP) as possible enhancers of destruction of a model organic compound, salicylic acid (SA), by means of photosensitization of colloidal TiO{sub 2} particles. All three porphyrins are found to adsorb reversibly onto the colloidal TiO{sub 2} upon variation of pH. Adsorption of porphyrins results in the increased colloidal stability of fine TiO{sub 2} particles in the pH range 5--8. While NiUroP on TiO{sub 2} does not show any enhancement of photodestruction, the adsorption of SnUroP increases the destruction rate compared to that of the bare TiO{sub 2} surface. The effect of ambient oxygen on the observed photolability of the Sn porphyrins and enhancement of photodestruction of SA was also investigated. SnTCPP does not photodecompose upon illumination either in the presence or absence of TiO{sub 2}, but neither does it bind to the photocatalyst at pH 6. At pH 4.5 it adsorbs onto TiO{sub 2} but it also photodecompose at this pH. We are attempting to stabilize the adsorbed porphyrins by adding suitable peripheral substituents onto the porphyrin macrocycle. 27 refs., 6 figs.

  20. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  1. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  2. Bilirubin, copper-porphyrins, and the bronze-baby syndrome.

    PubMed

    McDonagh, Antony F

    2011-01-01

    Controlled in vitro spectroscopic measurements reveal that bilirubin does not photosensitize the degradation of copper-porphyrins, as has been proposed for the mechanism of the bronze-baby syndrome, an uncommon side-effect of phototherapy. Calculations also show that copper-porphyrins are unlikely to cause the "bronzing." In conclusion, the copper-porphyrin hypothesis is photochemically implausible.

  3. Self-assembly of peptide-porphyrin complexes leads to pH-dependent excitonic coupling.

    PubMed

    Kuciauskas, Darius; Caputo, Gregory A

    2009-10-29

    Using absorbance, fluorescence, resonance light scattering, and circular dichroism spectroscopy, we studied the self-assembly of the anionic meso-tetra(4-sulfonatophenyl)porphine (TPPS(4)(2-/4-)) and a cationic 22-residue polypeptide. We found that three TPPS(4)(2-/4-) molecules bind to the peptide, which contains nine lysine residues in the primary sequence. In acidic solutions, when the peptide is in the random-coil conformation, TPPS(4)(2-) bound to the peptide forms excitonically coupled J-aggregates. In pH 7.6 solutions, when the peptide secondary structure is partially alpha-helical, the porphyrin-to-peptide binding constants are approximately the same as in acidic solutions (approximately 3 x 10(6) M(-1)), but excitonic interactions between the porphyrins are insignificant. The binding of TPPS(4)(2-/4-) to lysine-containing peptides is cooperative and can be described by the Hill model. Our results show that porphyrin binding can be used to change the secondary structure of peptide-based biomaterials. In addition, binding to peptides could be used to optimize porphyrin intermolecular electronic interactions (exciton coupling), which is relevant for the design of light-harvesting antennas for artificial photosynthesis.

  4. Response surface optimization of acid red 119 dye from simulated wastewater using Al based waterworks sludge and polyaluminium chloride as coagulant.

    PubMed

    Moghaddam, S Sadri; Moghaddam, M R Alavi; Arami, M

    2011-04-01

    In this research, the performance of Polyaluminium Chloride (PAC) and Polyaluminium Chloride sludge (PACS) as coagulants for acid red 119 (AR119) dye removal from aqueous solutions were compared. The sample of PACS was collected from "Baba Sheikh Ali" water treatment plant (Isfahan, Iran) where PAC is used as a coagulant in the coagulation/flocculation process. A response surface methodology was applied to evaluate the simple and combined effects of the operating variables including initial pH, coagulant dosage and initial dye concentration and to optimize the operating conditions of the treatment process. Results reveal that the optimal conditions for dye removal were initial pH 3.42, coagulant dosage of 4.55 g dried PACS/L and initial dye concentration of 140 mg/L for PACS, while the optimal initial pH, coagulant dosage and initial dye concentration for PAC were 3.8, 57 mg/L and 140 mg/L, respectively. Under these optimal values of process parameters, the dye removal efficiency of 94.1% and 95.25% was observed for PACS and PAC, respectively. Although lower amount of PAC in comparison with PACS was needed for specific dye removal, the reuse of PACS as a low-cost material can offer some advantages such as high efficiency for AR119 dye removal and economic savings on overall water and wastewater treatment plant operation costs. PMID:21216522

  5. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid.

    PubMed

    Wang, Li; Mu, Chun; Du, Mingwei; Chen, Yin; Tian, Xiaoli; Zhang, Mingcai; Li, Zhaohu

    2014-08-01

    The growth regulator mepiquat chloride (MC) is globally used in cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield loss. However, little information is available as to whether the modification of plant architecture by MC is related to alterations in gibberellic acid (GA) metabolism and signaling. Here, the role of GA metabolism and signaling was investigated in cotton seedlings treated with MC. The MC significantly decreased endogenous GA3 and GA4 levels in the elongating internode, which inhibited cell elongation by downregulating GhEXP and GhXTH2, and then reducing plant height. Biosynthetic and metabolic genes of GA were markedly suppressed within 2-10d of MC treatment, which also downregulated the expression of DELLA-like genes. A remarkable feedback regulation was observed at the early stage of MC treatment when GA biosynthetic and metabolic genes expression was evidently upregulated. Mepiquat chloride action was controlled by temporal translocation and spatial accumulation which regulated GA biosynthesis and signal expression for maintaining GA homeostasis. The results suggested that MC application could reduce endogenous GA levels in cotton through controlled GA biosynthetic and metabolic genes expression, which might inhibit cell elongation, thereby shortening the internode and reducing plant height. PMID:25017155

  6. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid.

    PubMed

    Wang, Li; Mu, Chun; Du, Mingwei; Chen, Yin; Tian, Xiaoli; Zhang, Mingcai; Li, Zhaohu

    2014-08-01

    The growth regulator mepiquat chloride (MC) is globally used in cotton (Gossypium hirsutum L.) canopy manipulation to avoid excess growth and yield loss. However, little information is available as to whether the modification of plant architecture by MC is related to alterations in gibberellic acid (GA) metabolism and signaling. Here, the role of GA metabolism and signaling was investigated in cotton seedlings treated with MC. The MC significantly decreased endogenous GA3 and GA4 levels in the elongating internode, which inhibited cell elongation by downregulating GhEXP and GhXTH2, and then reducing plant height. Biosynthetic and metabolic genes of GA were markedly suppressed within 2-10d of MC treatment, which also downregulated the expression of DELLA-like genes. A remarkable feedback regulation was observed at the early stage of MC treatment when GA biosynthetic and metabolic genes expression was evidently upregulated. Mepiquat chloride action was controlled by temporal translocation and spatial accumulation which regulated GA biosynthesis and signal expression for maintaining GA homeostasis. The results suggested that MC application could reduce endogenous GA levels in cotton through controlled GA biosynthetic and metabolic genes expression, which might inhibit cell elongation, thereby shortening the internode and reducing plant height.

  7. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids.

  8. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.

    PubMed

    Li, Jianmei; Jiang, Zhicheng; Hu, Libin; Hu, Changwei

    2014-09-01

    Increased energy consumption and environmental concerns have driven efforts to produce chemicals from renewable biomass with high selectivity. Here, the selective conversion of cellulose in corncob residue, a process waste from the production of xylose, to levulinic acid was carried out using AlCl3 as catalyst and NaCl as promoter by a hydrothermal method at relatively low temperature. A levulinic acid yield of 46.8 mol% was obtained, and the total selectivity to levulinic acid with formic acid was beyond 90%. NaCl selectively promoted the dissolution of cellulose from corncob residue, and significantly improved the yield and selectivity to levulinic acid by inhibiting lactic acid formation in the subsequent dehydration process. Owing to the salt effect of NaCl, the obtained levulinic acid could be efficiently extracted to tetrahydrofuran from aqueous solution. The aqueous solution with AlCl3 and NaCl could be recycled 4 times. Because of the limited conversion of lignin, this process allows for the production of levulinic acid with high selectivity directly from corncob residue in a simple separation process.

  9. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.

    PubMed

    Li, Jianmei; Jiang, Zhicheng; Hu, Libin; Hu, Changwei

    2014-09-01

    Increased energy consumption and environmental concerns have driven efforts to produce chemicals from renewable biomass with high selectivity. Here, the selective conversion of cellulose in corncob residue, a process waste from the production of xylose, to levulinic acid was carried out using AlCl3 as catalyst and NaCl as promoter by a hydrothermal method at relatively low temperature. A levulinic acid yield of 46.8 mol% was obtained, and the total selectivity to levulinic acid with formic acid was beyond 90%. NaCl selectively promoted the dissolution of cellulose from corncob residue, and significantly improved the yield and selectivity to levulinic acid by inhibiting lactic acid formation in the subsequent dehydration process. Owing to the salt effect of NaCl, the obtained levulinic acid could be efficiently extracted to tetrahydrofuran from aqueous solution. The aqueous solution with AlCl3 and NaCl could be recycled 4 times. Because of the limited conversion of lignin, this process allows for the production of levulinic acid with high selectivity directly from corncob residue in a simple separation process. PMID:25045141

  10. 5,5'-Dithio-bis(2-nitrobenzoic acid) modification of cysteine improves the crystal quality of human chloride intracellular channel protein 2

    SciTech Connect

    Mi Wei; Li Lanfen; Su Xiaodong

    2008-04-18

    Structural studies of human chloride intracellular channel protein 2 (CLIC2) had been hampered by the problem of generating suitable crystals primarily due to the protein containing exposed cysteines. Several chemical reagents were used to react with the cysteines on CLIC2 in order to modify the redox state of the protein. We have obtained high quality crystals that diffracted to better than 2.5 A at a home X-ray source by treating the protein with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). After solving the crystal structure of CLIC2, we found that the DTNB had reacted with the Cys{sup 114}, and made CLIC2 in a homogenous oxidized state. This study demonstrated that the DTNB modification drastically improved the crystallization of CLIC2, and it implied that this method may be useful for other proteins containing exposed cysteines in general.

  11. XAFS Studies of Ni Ta and Nb Chlorides in the Ionic Liquid 1-Ethyl-3-Methyl Imidazolium Chloride / Aluminum Chloride

    SciTech Connect

    W OGrady; D Roeper; K Pandya; G Cheek

    2011-12-31

    The structures of anhydrous nickel, niobium, and tantalum chlorides have been investigated in situ in acidic and basic ionic liquids (ILs) of 1-methyl-3-ethylimidazolium chloride (EMIC)/AlCl{sub 3} with X-ray absorption spectroscopy (XAS). The coordination of NiCl{sub 2} changes from tetrahedral in basic solution to octahedral in acidic solution. The NiCl{sub 2} is a strong Lewis acid in that it can induce the AlCl{sub 3} to share its chlorides in the highly acidic IL, forming a structure with six near Cl{sup -} ions and eight further distant Al ions which share the chloride ions surrounding the Ni{sup 2+}. When Nb{sub 2}Cl{sub 10}, a dimer, is added to the acidic or basic solution, the dimer breaks apart and forms two species. In the acid solution, two trigonal bipyramids are formed with five equal chloride distances, while in the basic solution, a square pyramid with four chlorides forming a square base and one shorter axial chloride bond. Ta{sub 2}Cl{sub 10} is also a dimer and divides into half in the acidic solution and forms two trigonal bipyramids. In the basic solution, the dimer breaks apart but the species formed is sufficiently acidic that it attracts two additional chloride ions and forms a seven coordinated tantalum species.

  12. Inverted meso-aryl porphyrins with heteroatoms; characterization of thia, selena, and oxa N-confused porphyrins.

    PubMed

    Pushpan, S K; Srinivasan, A; Anand, V R; Chandrashekar, T K; Subramanian, A; Roy, R; Sugiura, K; Sakata, Y

    2001-01-12

    Synthesis and characterization of inverted porphyrins containing S, Se, and O are reported. A simple 3 + 1 MacDonald-type condensation using modified tripyrrane containing the N-confused ring and diols afforded various N-confused porphyrins 6a-f in 19-30% yield. The single-crystal X-ray structure of 6b shows a ruffled conformation with tilt angles of 21.11 degrees and 31.23 degrees for the N-confused ring and the adjacent pyrrole ring III, respectively, revealing its severe nonplanarity. Significant changes in C alpha-C beta, C beta-C beta, and C alpha-X bond lengths are observed in 6b relative to free thiophene and pyrrole, suggesting the altered delocalization pathway in the modified N-confused porphyrins. The two molecules in the unit cell show a cyclophane-type noncovalent dimer with a face to face orientation of two N-confused pyrrole rings as a result of the presence of weak N-H...N and C-H...N intermolecular hydrogen bonds involving pyrrole-NH, the N atom of the N-confused ring, and the C atom of the pyrrole ring. A detailed 1H and 13C NMR study by 1D and 2D methods allowed assignments of all the peaks in the free base and protonated forms. NMR studies reveal the presence of three different tautomeric forms in solution for 6c in CDCl3 at low temperature. UV-visible studies reveal absorption band shifts upon heteroatom substitution, and the magnitudes of these shifts are dependent on the nature of the heteroatom. In all cases both monoprotonated and diprotonated species have been identified, and on addition of acid, the first proton goes to the outer N2 atom of the N-confused ring.

  13. Blood porphyrin luminescence and tumor growth correlation

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia Coronato; Silva, Flávia Rodrigues de Oliveira; Bellini, Maria Helena; Mansano, Ronaldo Domingues; Schor, Nestor; Vieira, Nilson Dias, Jr.

    2007-02-01

    Fluorescence technique appears very important for the diagnosis of cancer. Fluorescence detection has advantages over other light-based investigation methods: high sensitivity, high speed, and safety. Renal cell carcinoma (RCC) accounts for approximately 3% of new cancer incidence and mortality in the United States. Unfortunately many RCC masses remain asymptomatic and nonpalpable until they are advanced. Diagnosis and localization of early carcinoma play an important role in the prevention and curative treatment of RCC. Certain drugs or chemicals such as porphyrin derivatives accumulate substantially more in tumors than normal tissues. The autofluorescence of blood porphyrin of healthy and tumor induced male SCID mice was analyzed using fluorescence and excitation spectroscopy. A significant contrast between normal and tumor blood could be established. Blood porphyrin fluorophore showed enhanced fluorescence band (around 630 nm) in function of the tumor growth. This indicates that either the autofluorescence intensity of the blood fluorescence may provide a good parameter for the "first approximation" characterization of the tumor stage.

  14. Photodynamic therapy of melanoma using new, synthetic porphyrins and phthalocyanines as photosensitisers – a comparative study

    PubMed Central

    BALDEA, IOANA; ION, RODICA-MARIANA; OLTEANU, DIANA ELENA; NENU, IULIANA; TUDOR, DIANA; FILIP, ADRIANA GABRIELA

    2015-01-01

    Melanoma, a cancer that arises from melanocytes, is one of the most unresponsive cancers to known therapies and has a tendency to produce early metastases. Several studies showed encouraging results of the efficacy of photodynamic therapy (PDT) in melanoma, in different experimental settings in vitro and in vivo, as well as several clinical reports. Aims Our study focuses on testing the antimelanoma efficacy of several new, synthetic photosensitisers (PS), from two different chemical classes, respectively four porphyrins and six phthalocyanines. Methods These PS were tested in terms of cell toxicity and phototoxicity against a radial growth phase melanoma cell line (WM35), in vitro. Cells were exposed to different concentrations of the PS for 24h, washed, then irradiatied with red light (630 nm) 75 mJ/cm2 for the porphyrins and 1 J/cm2 for the phthalocyanines. Viability was measured using the MTS method. Results Two of the synthetic porphyrins, TTP and THNP, were active photosensitizers against WM35 melanoma in vitro. Phthalocyanines were effective in producing a dose dependent PDT-induced decrease in viability in a dose-dependent manner. The most efficient was Indium (III) Phthalocyanine chloride, a metal substituted phthalocyanine. Conclusions The most efficient photosensitizers for PDT in melanoma cells were the phthalocyanines in terms of tumor cell photokilling and decreased dark toxicity. PMID:26528068

  15. Emission spectroscopic properties of water soluble porphyrins in hydrogen peroxide chemiluminescence system with d- and f-electron metals

    NASA Astrophysics Data System (ADS)

    Staninski, Krzysztof; Kaczmarek, Małgorzata; Lis, Stefan; Elbanowski, Marian

    2003-02-01

    Two water-soluble porphyrins: 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)-tetrakis (benzoic acid) (TCPPH 2) and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)-tetrakis (benzenesulfonic acid) (TSPPH 2) have been subjected to spectroscopic study in the presence of d-electron metals: Zn(II) and Cu(II) and f-electron metals: La(III), Eu(III), Gd (III) and Yb(III). Results of the spectrophotometric study have provided evidence proving the complexation of Cu(II) and Zn(II) cations by porphine in water solutions and the complexation of lanthanide ions exclusively by peripheral carboxyl and sulfonic groups. For the first time, chemiluminescence of the systems containing porphyrins has been measured without the use of strongly luminescent reagents such as TCPO or luminol. The emission spectra of the systems porphyrin/metal ion/H 2O 2 have been recorded and the quantum yield of their luminescence has been measured. The absorption spectra of the systems recorded before and after the reaction in the presence of hydrogen peroxide are identical, which means that the porphyrin ring does not undergo destruction. A significant similarity between the fluorescence and chemiluminescence spectra indicates a possibility of excitation of porphyrins and their complexes in the reaction with hydrogen peroxide.

  16. Peptide-linked porphyrin sensitiser and colloidal Pt or Ir catalyst in the H2 formation reaction.

    PubMed

    Arai, Toru; Matsumoto, Seigo; Obata, Nao; Kato, Tamaki; Nishino, Norikazu

    2012-02-01

    Porphyrins linking amphiphilic peptides were applied as photosensitisers, assuming that they would interact with the H(+) reduction catalyst, polymer-protected colloidal Pt or Ir. The close orientation of the porphyrin and metal catalyst may facilitate efficient electron transfer. The porphyrin linking a peptide containing glutamic acids (Glu), Ac-Cys(porph)-Glu-Val-Glu-Val-NH(2) (2), was an effective sensitiser for the H(2) generation reaction in the presence of N-benzyldihydronicotinamide and colloidal Pt or Ir in aqueous media under visible light illumination. At pH 5 and 7, 2 was a more efficient photosensitiser than tetrakis(p-carboxyphenyl)porphyrin (TCPP). The efficiency of H(+) reduction catalysts was in the order Ir-pGlu (polyglutamic acid) > Ir-PVP (polyvinylpyrrolidone) > Pt-PVP. Dynamic light scattering and scanning electron microscopy measurements showed that large particles formed when colloidal metal solutions were produced by microwave irradiation. Fluorescence quenching experiments suggested that electron transfer occurred from the photoexcited porphyrin to the colloidal Ir.

  17. Optically Active Porphyrin and Phthalocyanine Systems.

    PubMed

    Lu, Hua; Kobayashi, Nagao

    2016-05-25

    This review highlights and summarizes various optically active porphyrin and phthalocyanine molecules prepared using a wide range of structural modification methods to improve the design of novel structures and their applications. The induced chirality of some illustrative achiral bis-porphyrins with a chiral guest molecule is introduced because these systems are ideal for the identification and separation of chiral biologically active substrates. In addition, the relationship between CD signal and the absolute configuration of the molecule is analyzed through an analysis of the results of molecular modeling calculations. Possible future research directions are also discussed. PMID:27186902

  18. Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure-activity relationship as a watchdog mechanism in experimental therapeutics and biology.

    PubMed

    Rebouças, Júlio S; Spasojević, Ivan; Batinić-Haberle, Ines

    2008-02-01

    Superoxide is involved in a plethora of pathological and physiological processes via oxidative stress and/or signal transduction pathways. Superoxide dismutase (SOD) mimics have, thus, been actively sought for clinical and mechanistic purposes. Manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is one of the most intensely explored "SOD mimics" in biology and medicine. However, we show here that this claimed SOD activity of MnTBAP in aqueous media is not corroborated by comprehensive structure-activity relationship studies for a wide set of Mn porphyrins and that MnTBAP from usual commercial sources contains different amounts of noninnocent trace impurities (Mn clusters), which inhibited xanthine oxidase and had SOD activity in their own right. In addition, the preparation and thorough characterization of a high-purity MnTBAP is presented for the first time and confirmed that pure MnTBAP has no SOD activity in aqueous medium. These findings call for an assessment of the relevance and suitability of using MnTBAP (or its impurities) as a mechanistic probe and antioxidant therapeutic; conclusions on the physiological and pathological role of superoxide derived from studies using MnTBAP of uncertain purity should be examined judiciously. An unequivocal distinction between the biological effects due to MnTBAP and that of its impurities can only be unambiguously made if a pure sample is/was used. This work also illustrates the contribution of fundamental structure-activity relationship studies not only for drug design and optimization, but also as a "watchdog" mechanism for checking/spotting eventual incongruence of drug activity in chemical and biological settings. PMID:18046586

  19. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems

    PubMed Central

    2013-01-01

    Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of as-prepared and annealed samples were measured. Annealing leads to disintegration of the initially continuous gold layer and formation of gold nanoclusters. An amplification of Soret band magnitude was observed on the Au/meso-tetraphenyl porphyrin (TPP) system in comparison with mere TPP. Additional enhancement of luminescence was observed after the sample annealing. In the case of sandwich Au/porphyrin/Au structure, suppression of one of the two porphyrins’ luminescence maxima and sufficient enhancement of the second one were observed. PMID:24373347

  20. Toxicity of polychlorinated biphenyl with special reference to porphyrin metabolism

    SciTech Connect

    Sano, S.; Kawanishi, S.; Seki, Y.

    1985-02-01

    Oral administration of a commercial PCB mixture to chickens caused a hepatic-type porphyria characterized by hepatic accumulation and urinary excretion of uroporphyrin. To clarify the mechanism of the porphyrinogenic activity of these PCBs, the authors studied the structural requirement of synthetic PCB for porphyrinogenic activities by using the cultured chick embryo liver cells and examined the relationship between induction of delta-aminolevulinic acid (ALA) synthetase and inhibition of uroporphyrinogen decarboxylase. They established that the porphyrinogenic effect of PCBs exhibits a sharply defined structure-activity relationship in that only 3,4,3',4'-tetrachlorobiphenyl and 3,4,5,3',4',5'-hexachlorobiphenyl produced a marked accumulation of uroporphyrin. They also demonstrated that in ALA-supplemented cultures, these same compounds lead to accumulation of a large amount of uroporphyrin III, whereas with other PCBs, which were weak inducers of porphyrin synthesis, the accumulated porphyrin was mostly protoporphyrin. Kinetic studies of the sequential decarboxylation of uroporphyrinogen with purified uroporphyrinogen decarboxylase were performed. The 3,4,3',4'-tetrachlorobiphenyl and 3,4,5,3',4',5'-hexachlorobiphenyl strongly inhibit uroporphyrinogen decarboxylase directly at two steps. The results confirmed that porphyrinogenic PCBs primarily inhibit uroporphyrinogen decarboxylase, leading to a depletion of heme as a result of which synthesis of ALA synthetase increased.

  1. Synthesis of water-soluble silicon-porphyrin: protolytic behaviour of axially coordinated hydroxy groups.

    PubMed

    Remello, Sebastian Nybin; Kuttassery, Fazalurahman; Hirano, Takehiro; Nabetani, Yu; Yamamoto, Daisuke; Onuki, Satomi; Tachibana, Hiroshi; Inoue, Haruo

    2015-12-14

    A new water-soluble silicon(IV)-tetra(4-carboxyphenyl)porphyrin (SiTCPP) with silicon(iv), the second most abundant element on Earth, in the center of porphyrin was synthesized. Fundamental properties including protolytic behaviour of axially coordinating hydroxy groups, and electrochemical behaviour were characterized. The properties were compared with those of silicon(IV)-tetra(2,4,6-trimethylphenyl)porphyrin (SiTMP) and silicon(IV)-tetra(4-trifluoromethylphenyl)porphyrin (SiTFMPP) and discussed in respect to the electron donating/withdrawing effect of the substituents. Two axially coordinating hydroxy groups of SiTCPP exhibit a four-step protolytic behaviour under the acidic conditions along with a single step protolysis of peripheral carboxyl groups. Though SiTCPP and SiTFMPP did not show any reactivity in the photochemical oxygenation of a substrate with K2PtCl6 as a sacrificial electron acceptor, the first oxidation wave in the electrochemical process of SiTCPP and SiTFMPP showed catalytic behaviour in aqueous acetonitrile solution at any pH condition, in contrast to SiTMP which has only a reversible oxidation wave under neutral and weakly acidic conditions. The criteria for the electrochemical oxidative activation of water and the photooxygenation of the substrate were obtained. The higher oxidation wave of Si-porphyrins than ∼0.86 volt vs. SHE is required for the electrochemical oxidation of water, while suitable protecting groups such as a methyl substituent is a requisite for the photochemical oxygenation with K2PtCl6 as a sacrificial electron acceptor.

  2. An efficient synthesis of porphyrins with different meso substituents that avoids scrambling in aqueous media.

    PubMed

    Nowak-Król, Agnieszka; Plamont, Rémi; Canard, Gabriel; Edzang, Judicaelle Andeme; Gryko, Daniel T; Balaban, Teodor Silviu

    2015-01-19

    We have developed new conditions that afford regioisomerically pure trans-A2B2-, A3B-, and trans-AB2C-porphyrins bearing aryl and arylethynyl substituents. The porphyrins were prepared by the acid-catalyzed condensation of dipyrromethanes with aldehydes followed by oxidation with p-chloranil or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Optimal conditions for the condensation were identified after examining various reaction parameters such as solvent composition, acid concentration, and reaction time. The conditions identified (for aromatic aldehydes: EtOH/H2O 4:1, [DPM] = 4 mM, [aldehyde] = 4 mM, [HCl] = 38 mM, 16 h; for arylethynyl aldehydes: THF/H2O 2:1, [DPM] = 13 mM, [aldehyde] = 13 mM, [HCl] = 150 mM, 3 h) resulted in the formation of porphyrins in yields of 9-38% without detectable scrambling. This synthesis is compatible with diverse functionalities such as ester or nitrile. In total, 20 new trans-A2B2-, A3B-, and trans-AB2C-porphyrins were prepared. The scope and limitations of the two sets of reaction conditions have been explored. The methodological advantage of this approach is its straightforward access to building blocks and the formation of the porphyrin core in higher yields than by any other methodology and by using environmentally benign and nonhazardous chemicals. PMID:25417808

  3. Does a Second Halogen Atom Affect the Nature of Intermolecular Interactions in Protic Acid-Haloethylene Complexes? in (Z)-1-CHLORO-2-FLUOROETHYLENE-HYDROGEN Chloride it Most Certainly DOES!

    NASA Astrophysics Data System (ADS)

    Tandon, Hannah K.; Leung, Helen O.; Marshall, Mark D.

    2016-06-01

    As part of a systematic study of the effect of chlorine substitution on the structures of protic acid-haloethylene complexes, the structure of the (Z)-1-chloro-2-fluoroethylene-hydrogen chloride complex has been investigated using ab initio quantum chemistry calculations and microwave spectroscopy. Although theory predicts a non-planar equilibrium structure for this species, it is only 6 cm-1 lower in energy than the planar geometry connecting the two equivalent minima on either side of the haloethylene plane, and the observed spectrum is consistent with a planar, average structure, likely the result of zero-point averaging. The geometry is unlike that of any previously characterized protic acid-haloethylene complex with a bifurcated primary interaction in which the hydrogen of the acid interacts with both the fluorine and the chlorine atoms on the haloethylene and there is no evidence for a secondary interaction involving the electron rich region of the acid. This structure can be contrasted to those of vinyl fluoride-hydrogen chloride (fluorine bound, planar ``top-binding,'' across the double bond), vinyl chloride-hydrogen chloride (chlorine bound, non-planar) and (Z)-1-chloro-2-fluoroethylene-acetylene (chlorine bound, planar ``side-binding,'' at one end of the double bond).

  4. Characterization of the Unusual Product from the Reaction between Cobalt(II) Chloride, Ethane-1,2-diamine, and Hydrochloric Acid: An Undergraduate Project Involving an Unknown Metal Complex.

    ERIC Educational Resources Information Center

    Curtis, Neil F.; And Others

    1986-01-01

    Discusses the need for student research-type chemistry projects based upon "unknown" metal complexes. Describes an experiment involving the product from the reaction between cobalt(II) chloride, ethane-1,2-diamine (en) and concentrated hydrochloric acid. Outlines the preparation of the cobalt complex, along with procedure, results and discussion.…

  5. Spherical porphyrin sensor array based on encoded colloidal crystal beads for VOC vapor detection.

    PubMed

    Xu, Hua; Cao, Kai-Di; Ding, Hai-Bo; Zhong, Qi-Feng; Gu, Hong-Cheng; Xie, Zhuo-Ying; Zhao, Yuan-Jin; Gu, Zhong-Ze

    2012-12-01

    A spherical porphyrin sensor array using colloidal crystal beads (CCBs) as the encoding microcarriers has been developed for VOC vapor detection. Six different porphyrins were coated onto the CCBs with distinctive encoded reflection peaks via physical adsorption and the sensor array was fabricated by placing the prepared porphyrin-modified CCBs together. The change in fluorescence color of the porphyrin-modified CCBs array serves as the detection signal for discriminating between different VOC vapors and the reflection peak of the CCBs serves as the encoding signal to distinguish between different sensors. It was demonstrated that the VOC vapors detection using the prepared sensor array showed excellent discrimination: not only could the compounds from the different chemical classes be easily differentiated (e.g., alcohol vs acids vs ketones) but similar compounds from the same chemical family (e.g., methanol vs ethanol) and the same compound with different concentration ((e.g., Sat. ethanol vs 60 ppm ethanol vs 10 ppm ethanol) could also be distinguished. The detection reproducibility and the humidity effect were also investigated. The present spherical sensor array, with its simple preparation, rapid response, high sensitivity, reproducibility, and humidity insensitivity, and especially with stable and high-throughput encoding, is promising for real applications in artificial olfactory systems. PMID:23163575

  6. Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photo-dynamic therapy

    PubMed Central

    Rostami, Mahboubeh; Rafiee, Leila; Hassanzadeh, Farshid; Dadrass, Ali Reza; Khodarahmi, Ghadam Ali

    2015-01-01

    Porphyrins are a ubiquitous large class of naturally occurring macrocyclic compounds with many significant biological representatives comprising heme and chlorophyll. Some novel adaptable methods for the synthesis of free-based porphyrins as promising sensitizers for the use in photo-dynamic therapy by the virtue of their known tumor affinity, low dark cytotoxicity, and easy synthesis in good to high yields have already been discussed. In the present study, two new porphyrins including TAPFA, as a novel folic acid targeted porphyrin sensitizer, and TAP-Schiff base, as a novel sensitizer with better light absorption, were prepared for the first time and their structures were confirmed by 1H NMR, 13C NMR, FT-IR and UV-Vis spectroscopy as well as CHNS analysis. The compounds were metalized with Zn(II) and Fe(II) metal ions to study how the metal ions can improve the light absorption wavelength and their water solubility. The structures of metalized compounds were also confirmed by FT-IR and UV-Vis spectroscopy. PMID:26779270

  7. ALA-based fluorescent diagnosis of malignant oral lesions in the presence of bacterial porphyrin formation

    NASA Astrophysics Data System (ADS)

    Schleier, P.; Berndt, A.; Zinner, K.; Zenk, W.; Dietel, W.; Pfister, W.

    2006-02-01

    The aminolevulinic acid (5-ALA) -based fluorescence diagnosis has been found to be promising for an early detection and demarcation of superficial oral squamous cell carcinomas (OSCC). This method has previously demonstrated high sensitivity, however this clinical trial showed a specificity of approximately 62 %. This specificity was mainly restricted by tumor detection in the oral cavity in the presence of bacteria. After topical ALA application in the mouth of patients with previously diagnosed OSSC, red fluorescent areas were observed which did not correlate to confirm histological findings. Swabs and plaque samples were taken from 44 patients and cultivated microbiologically. Fluorescence was investigated (OMA-system) from 32 different bacteria strains found naturally in the oral cavity. After ALA incubation, 30 of 32 strains were found to synthesize fluorescent porphyrins, mainly Protoporphyrin IX. Also multiple fluorescent spectra were obtained having peak wavelengths of 636 nm and around 618 nm - 620 nm indicating synthesis of different porphyrins, such as the lipophylic Protoporphyrin IX (PpIX) and hydrophylic porphyrins (water soluble porphyrins, wsp). Of the 32 fluorescent bacterial strains, 18 produced wsp, often in combination with PpIX, and 5 produced solely wsp. These results clarify that ALA-based fluorescence diagnosis without consideration or suppression of bacteria fluorescence may lead to false-positive findings. It is necessary to suppress bacteria fluorescence with suitable antiseptics before starting the procedure. In this study, when specific antiseptic pre-treatment was performed bacterial associated fluorescence was significantly reduced.

  8. Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated "jaws porphyrin" hosts.

    PubMed

    Sun, Dayong; Tham, Fook S; Reed, Christopher A; Chaker, Leila; Boyd, Peter D W

    2002-06-12

    Porphyrins and fullerenes are spontaneously attracted to each other. This new supramolecular recognition element is explored in discrete, soluble, coordinatively linked porphyrin and metalloporphyrin dimers. Jawlike clefts in these bis-porphyrins are effective hosts for fullerene guests. X-ray structures of the Cu complex with C60 and free-base complexes with C70 and a pyrrolidine-derivatized C60 have been obtained. The electron-rich 6:6 ring-juncture bonds of C60 show unusually close approach to the porphyrin or metalloporphyrin plane. Binding constants in toluene solution increase in the order Fe(II) < Pd(II) < Zn(II) < Mn(II) < Co(II) < Cu(II) < 2H and span the range 490-5200 M-1. Unexpectedly, the free-base porphyrin binds C60 more strongly than the metalated porphyrins. This is ascribed to electrostatic forces, enhancing the largely van der Waals forces of the pi-pi interaction. The ordering with metals is ascribed to a subtle interplay of solvation and weak interaction forces. Conflicting opinions on the relative importance of van der Waals forces, charge transfer, electrostatic attraction, and coordinate bonding are addressed. The supramolecular design principles arising from these studies have potential applications in the preparation of photophysical devices, molecular magnets, molecular conductors, and porous metal-organic frameworks. PMID:12047181

  9. Concurrent use of Sr-89 chloride with zoledronic acid is safe and effective for breast cancer patients with painful bone metastases

    PubMed Central

    YAMADA, KIMITO; YOSHIMURA, MANA; KAISE, HIROSHI; OGATA, AKIHIKO; UEDA, NAOKO; TOKUUYE, KOICHI; KOHNO, NORIO

    2012-01-01

    Our aim in this study was to examine the safety and efficacy of the concurrent use of the radiopharmaceutical strontium-89 (Sr-89) chloride with zoledronic acid in standard anticancer therapy for breast cancer patients with painful multifocal bone metastases. The study comprised 16 breast cancer patients with painful multifocal bone metastases detected by bone scintigraphy, computed tomography or magnetic resonance imaging. All patients were treated with Sr-89 and zoledronic acid concurrently between March 2007 and February 2011 as part of a standard therapeutic regimen comprising chemotherapy, endocrine therapy, molecular targeting therapy and targeted radiotherapy. Sr-89 was administered intravenously at 2 MBq/kg to a maximum of 141 MBq per person. Safety was evaluated according to myelotoxicity as measured by the Common Terminology Criteria for Adverse Events (v3.0). To assess treatment efficacy, we monitored changes in analgesic drug dosages. Furthermore, bremsstrahlung imaging after the administration of Sr-89 was utilized to examine the relationship between the accumulation of Sr-89 in metastatic sites and treatment efficacy. Based on the results, a total of 14 out of 16 patients (88%) reported bone pain relief, indicating a high efficacy of Sr-89 combined with zoledronic acid. In responsive cases, a strong uptake of Sr-89 was observed on bremsstrahlung imaging at the same sites indicated by 99mTc bone scintigraphy. Moreover, severe myelosuppression (> grade 3) was not observed, and adverse events were tolerable. In conclusion, the use of Sr-89 with zoledronic acid in breast cancer patients with painful bone metastases was safe and effective when administered concurrently with other standard therapies. In the future, the treatment with Sr-89 at the early stage should be considered, and a large-scale clinical study should be conducted. PMID:22969873

  10. Potentiation by sevoflurane of the gamma-aminobutyric acid-induced chloride current in acutely dissociated CA1 pyramidal neurones from rat hippocampus.

    PubMed Central

    Wu, J.; Harata, N.; Akaike, N.

    1996-01-01

    1. The effects of a new kind of volatile anaesthetic, sevoflurane (Sev), on gamma-aminobutyric acid (GABA)-gated chloride current (Icl) in single neurones dissociated from the rat hippocampal CA1 area were examined using the nystatin perforated patch recording configuration under the voltage-clamp condition. All drugs were applied with a rapid perfusion system, termed the "Y-tube' method. 2. When the concentrations were higher than 3 x 10(-4) M, Sev, itself, induced an inward current (ISev) at a holding potential (VH) of -40 mV. The concentration-response curve of ISev was bell-shaped, with a suppressed peak and plateau currents at high concentrations (above 2 x 10(-3) M). The reversal potential of ISev (ESev) was close to the theoretical Cl- equilibrium potential, indicating that ISev was carried mainly by Cl-. 3. ISev was reversibly blocked by bicuculline (Bic), an antagonist of the GABAA receptor, in a concentration-dependent manner with a half-inhibitory concentration (IC50) of 7.2 x 10(-7) M. But ISev was insensitive to strychnine (Str), an antagonist of the glycine receptor. 4. At low concentrations (between 3 x 10(-4) and 10(-3) M), Sev markedly enhanced the 10(-6) M GABA induced current (IGABA) but reduced the IGABA with accelerating desensitization accompanied by a "hump' current after washout at high concentrations (higher than 2 x 10(-3) M). 5. Sev, 10(-3) M potentiated the current induced by low concentrations of GABA (between 10(-7) and 3 x 10(-6) M) but reduced the current induced by high concentrations (higher than 10(-5) M) of GABA with a clear acceleration of IGABA desensitization. 6. Sev, like pentobarbitone (PB), pregnanolone (PGN) or diazepam (DZP), potentiated the 10(-6) M GABA-induced response without shifting the reversal potential of IGABA. 7. ISev was augmented by PB, PGN, or DZP at concentrations that maximally potentiated IGABA, suggesting that Sev enhanced IGABA at a binding site distinct from that for PB, PGN, or DZP. 8. It is concluded

  11. Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: a genetic analysis.

    PubMed

    Bachmanov, A A; Reed, D R; Tordoff, M G; Price, R A; Beauchamp, G K

    1996-11-01

    Mice of the 129/J (129) and C57BL/6ByJ (B6) strains and their reciprocal F1 and F2 hybrids were offered solutions of ethanol, sucrose, citric acid, quinine hydrochloride, and NaCl in two-bottle choice tests. Consistent with earlier work, the B6 mice drank more ethanol, sucrose, citric acid, and quinine hydrochloride solution and less NaCl solution than did 129 mice. Analyses of each generation's means and distributions showed that intakes of ethanol, quinine, sucrose, and NaCl were influenced by a few genes. The mode of inheritance was additive in the case of ethanol and quinine, for sucrose the genotype of the 129 strain was recessive, and for NaCl it was dominant. Citric acid intake appeared to be influenced by many genes with small effects, with the 129 genotype dominant. Correlations of sucrose consumption with ethanol and citric acid consumption were found among mice of the F2 generation, and the genetically determined component of these correlations was stronger than the component related to environmental factors. The genetically determined correlation between sucrose and ethanol intakes is consistent with the hypothesis that the higher ethanol intake by B6 mice depends, in part, on higher hedonic attractiveness of its sweet taste component.

  12. A p-quinodimethane-bridged porphyrin dimer.

    PubMed

    Zeng, Wangdong; Ishida, Masatoshi; Lee, Sangsu; Sung, Young Mo; Zeng, Zebing; Ni, Yong; Chi, Chunyan; Kim, Dongho; Wu, Jishan

    2013-12-01

    A p-quinodimethane (p-QDM)-bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross-conjugated keto-linked porphyrin dimers 8a and 8b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel-Crafts alkylation of the diol-linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one-photon absorption (OPA, λ(max)=955 nm, ε=45400 M(-1) cm(-1)) and a large two-photon absorption (TPA) cross-section (σ((2))(max)=2080 GM at 1800 nm) in the near-infrared (NIR) region due to its extended π-conjugation and quinoidal character. It also exhibits a short singlet excited-state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground-state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto-linked dimer 8b. This research has revealed that incorporation of a p-QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.

  13. Metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J

    2013-10-29

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  14. Porphyrins for boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Gabel, Detlef

    1990-01-01

    Novel compounds for treatment of brain tumors in Boron Neutron Capture Therapy are disclosed. A method for preparing the compounds as well as pharmaceutical compositions containing said compounds are also disclosed. The compounds are water soluble, non-toxic and non-labile boronated porphyrins which show significant uptake and retention in tumors.

  15. Mass spectrometric studies on porphyrins and geoporphyrins

    SciTech Connect

    Quirke, J.; Martin, E.; Yost, R.A.

    1995-12-31

    Porphyrins are among the more important compound classes, playing significant roles in such diverse areas as medicine, material sciences, catalysis and the petroleum industry. The most valuable property of the porphyrin macrocycle is its ability to chelate with any metallic element. In organic geochemistry, geologically-occurring porphyrins, geoporphyrins, are of both academic and commercial consequence. Geoporphyrins occur as complicated mixtures of nickel(II) and vanadyl(II) [VO(II)] complexes in a wide range of sedimentary environments. They are believed to be formed by transformation of the functional groups of biologically-occurring cyclic tetrapyrroles, especially chlorophyll a into alkyl or hydrogen substituents coupled with the oxidation of the chlorin (dihydroporphyin) to the porphyrinic system. This proposal, the Treibs` hypothesis, is the cornerstone of molecular organic geochemistry. The precise composition of geoporphyrin mixtures varies from crude oil to crude oil. For this reason, analysis of geoporphyrin mixtures is a valuable tool for the correlation of crude oils with other oils and/or source rocks. Less happily, the geoporphyrins, especially the vanadyl complexes, poison catalysts in cracking of crude oil and industrial processes. Mass spectrometry is perhaps the most valuable too for analysis of geoporphyrin mixtures. Such analyses present the mass spectrometrist with several challenging problems. Geoporphyrin mixtures are composed of overlapping pseudohomologous series least nine skeletal types. Carbon number ranges of C{sub 28}-C{sub 50} are not uncommon. The upper limit of the carbon number range is still unclear.

  16. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  17. A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron(III) tetrakispentafluorophenyl porphyrin.

    PubMed

    Stephenson, Ned A; Bell, Alexis T

    2005-06-22

    A study has been conducted of the mechanism and kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) tetrakispentafluorophenyl [F(20)TPPFe(III)] porphyrin. The formation of cyclooctene oxide, the only product, was determined by gas chromatography, and the consumption of hydrogen peroxide was determined by (1)H NMR. UV-visible spectroscopy was used to identify the state of the porphyrin as a function of solvent composition and reaction conditions and to follow the kinetics of porphyrin degradation. F(20)TPPFe(III) was found to be inactive in the chloride-ligated form, but became active when the chloride ligand was replaced by a methoxide ligand. The methoxide-ligated form of F(20)TPPFe(III) reacts with hydrogen peroxide to form an iron(III) hydroperoxide species, which then undergoes both heterolytic and homolytic cleavage to form iron(IV) pi-radical cations and iron(IV) oxo species, respectively. The iron(IV) pi-radical cations are responsible for the epoxidation of cyclooctene, whereas the iron(IV) oxo species are responsible for hydrogen peroxide decomposition. The kinetics of cyclooctene epoxidation and hydrogen peroxide decomposition developed from the proposed mechanism describe the experimentally observed kinetics accurately. The rate parameters derived from a fit of the model to the experimental data are consistent with previous estimates of the magnitude of these parameters.

  18. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition.

    PubMed

    Rosfjord, Catherine H; Webster, Katherine E; Kahl, Jeffrey S; Norton, Stephen A; Fernandez, Ivan J; Herlihy, Alan T

    2007-11-15

    Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act.

  19. Physiochemical studies of sodium chloride on mungbean (Vigna radiata L. Wilczek) and its possible recovery with spermine and gibberellic acid.

    PubMed

    Ghosh, Srijita; Mitra, Sanglap; Paul, Atreyee

    2015-01-01

    The physiological and biochemical responses to increasing NaCl concentrations, along with low concentrations of gibberellic acid or spermine, either alone or in their combination, were studied in mungbean seedlings. In the test seedlings, the root-shoot elongation, biomass production, and the chlorophyll content were significantly decreased with increasing NaCl concentrations. Salt toxicity severely affected activities of different antioxidant enzymes and oxidative stress markers. Activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) increased significantly over water control. Similarly, oxidative stress markers such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents also increased as a result of progressive increase in salt stress. Combined application of NaCl along with low concentrations of either gibberellic acid (5 µM) or spermine (50 µM) in the test seedlings showed significant alterations, that is, drastic increase in seedling elongation, increased biomass production, increased chlorophyll content, and significant lowering in all the antioxidant enzyme activities as well as oxidative stress marker contents in comparison to salt treated test seedlings, leading to better growth and metabolism. Our study shows that low concentrations of either gibberellic acid or spermine will be able to overcome the toxic effects of NaCl stress in mungbean seedlings.

  20. Theoretical design and screening of alkyne bridged triphenyl zinc porphyrins as sensitizer candidates for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xianxi; Chen, Qianqian; Sun, Huafei; Pan, Tingting; Hu, Guiqi; Ma, Ruimin; Dou, Jianmin; Li, Dacheng; Pan, Xu

    2014-01-01

    Alkyne bridged porphyrins have been proved very promising sensitizers for dye-sensitized solar cells (DSSCs) with the highest photo-to-electric conversion efficiencies of 11.9% solely and 12.3% co-sensitized with other sensitizers achieved. Developing better porphyrin sensitizers with wider electronic absorption spectra to further improve the efficiencies of corresponding solar cells is still of great significance for the application of DSSCs. A series of triphenyl zinc porphyrins (ZnTriPP) differing in the nature of a pendant acceptor group and the conjugated bridge between the porphyrin nucleus and the acceptor unit were modeled and their electronic and spectral properties calculated using density functional theory. As compared with each other and the experimental results of the compounds used in DSSCs previously, the molecules with a relatively longer conjugative linker and a strong electron-withdrawing group such as cyanide adjacent to the carboxyl acid group seem to provide wider electronic absorption spectra and higher photo-to-electric conversion efficiencies. The dye candidates ZnTriPPE, ZnTriPPM, ZnTriPPQ, ZnTriPPR and ZnTriPPS designed in the current work were found promising to provide comparable photo-to-electric conversion efficiencies to the record 11.9% of the alkyne bridged porphyrin sensitizer YD2-o-C8 reported previously.

  1. Manganese(III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations.

    PubMed

    Vlascici, Dana; Pruneanu, Stela; Olenic, Liliana; Pogacean, Florina; Ostafe, Vasile; Chiriac, Vlad; Pica, Elena Maria; Bolundut, Liviu Calin; Nica, Luminita; Fagadar-Cosma, Eugenia

    2010-01-01

    Two manganese(III) porphyrins: manganese(III) tetraphenylporphyrin chloride and manganese(III)-tetrakis(3-hydroxyphenyl)porphyrin chloride were tested as ionophores for the construction of new diclofenac-selective electrodes. The electroactive material was incorporated either in PVC or a sol-gel matrix. The effect of different plasticizers and additives (anionic and cationic) on the potentiometric response was studied. The best results were obtained for the PVC membrane plasticized with dioctylphtalate and having sodium tetraphenylborate as a lipophilic anionic additive incorporated. The sensor response was linear in the concentration range 3 × 10(-6) - 1 × 10(-2) M with a slope of -59.7 mV/dec diclofenac, a detection limit of 1.5 × 10(-6) M and very good selectivity coefficients. It was used for the determination of diclofenac in pharmaceutical preparations, by direct potentiometry. The results were compared with those obtained by the HPLC reference method and a good agreement was found between the two methods.

  2. Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer.

    PubMed

    Ferreira, D P; Conceição, D S; Calhelha, R C; Sousa, T; Socoteanu, Radu; Ferreira, I C F R; Vieira Ferreira, L F

    2016-10-20

    Porphyrins and some of its derivatives are well known and widely used as photosensitizers (PSs) for Photodynamic Therapy of Cancer (PDT). The present study regards the characterization and evaluation of a synthesized asymmetric porphyrin dye in solution to be used as PS for PDT. This molecule was also incorporated into biopolymeric films composed by chitosan, polyethylene glycol (PEG) and gelatin in order to overtake some of the disadvantages inherent to the PS, but more important, to evaluate the potential of a system composed by the porphyrin/biopolymer to be applied as localized therapeutic agents. FTIR spectroscopy showed a strong interaction between the polymers involved in the preparation of the films under study: film 1: chitosan, film 2: chitosan/PEG and film 3: chitosan/gelatin. Photochemical studies were performed for the dye in solution and into the three different biopolymeric films. Ground state absorption showed the characteristic bands of these kinds of dyes in solution and also incorporated into the films. The films composed by porphyrin/chitosan and porphyrin into chitosan/gelatin, revealed the presence of non-emissive aggregates exhibiting a strong quenching effect in the fluorescence intensity, quantum yields and lifetimes. In this way, the system composed by the porphyrin incorporated into the chitosan/PEG film presents the best fluorescence quantum yield and lifetime. The transient absorption spectra were obtained for all the systems indicating the formation of an excited triplet state of the porphyrins following excitation, which takes special importance in the generation of phototoxic species namely singlet oxygen. Singlet oxygen quantum yields were also determined and the results obtained were very promising for the dye in solution but also for the dye into the different substrates. The release of the dye from the three different films onto a buffer solution was evaluated and we conclude that after a few days the dye was completely released

  3. A novel digestion method based on a choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples.

    PubMed

    Habibi, Emadaldin; Ghanemi, Kamal; Fallah-Mehrjardi, Mehdi; Dadolahi-Sohrab, Ali

    2013-01-31

    A novel and efficient digestion method based on choline chloride-oxalic acid (ChCl-Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl-Ox (1:2, molar ratio) at 100°C for 45 min. Then, 5.0 mL HNO(3) (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P=0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the use of safe and inexpensive components demonstrate the high potential of ChCl-Ox (1:2) for routine trace metal analysis in biological samples.

  4. A novel digestion method based on a choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples.

    PubMed

    Habibi, Emadaldin; Ghanemi, Kamal; Fallah-Mehrjardi, Mehdi; Dadolahi-Sohrab, Ali

    2013-01-31

    A novel and efficient digestion method based on choline chloride-oxalic acid (ChCl-Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl-Ox (1:2, molar ratio) at 100°C for 45 min. Then, 5.0 mL HNO(3) (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P=0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the use of safe and inexpensive components demonstrate the high potential of ChCl-Ox (1:2) for routine trace metal analysis in biological samples. PMID:23327946

  5. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    SciTech Connect

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  6. Effect of potato on acid-base and mineral homeostasis in rats fed a high-sodium chloride diet.

    PubMed

    Narcy, Agnès; Robert, Laetitia; Mazur, Andrzej; Demigné, Christian; Rémésy, Christian

    2006-05-01

    Excessive dietary NaCl in association with a paucity of plant foods, major sources of K alkaline salts, is a common feature in Western eating habits which may lead to acid-base disorders and to Ca and Mg wasting. In this context, to evaluate the effects of potato, rich in potassium citrate, on acid-base homeostasis and mineral retention, Wistar rats were fed wheat starch (WS) or cooked potato (CP) diets with a low (0.5 %) or a high (2 %) NaCl content during 3 weeks. The replacement of WS by CP in the diets resulted in a significant urinary alkalinisation (pH from 5.5 to 7.3) parallel to a rise in citrate and K excretion. Urinary Ca and Mg elimination represented respectively 17 and 62 % of the daily absorbed mineral in rats fed the high-salt WS diet compared with 5 and 28 % in rats fed the high-salt CP diet. The total SCFA concentration in the caecum was 3-fold higher in rats fed the CP diets compared with rats fed the WS diets, and it led to a significant rise in Ca and Mg intestinal absorption (Ca from 39 to 56 %; Mg from 37 to 60 %). The present model of low-grade metabolic acidosis indicates that CP may be effective in alkalinising urine, enhancing citrate excretion and ameliorating Ca and Mg balance.

  7. p-Hydroxyphenylacetaldehyde is the major product of L-tyrosine oxidation by activated human phagocytes. A chloride-dependent mechanism for the conversion of free amino acids into reactive aldehydes by myeloperoxidase.

    PubMed

    Hazen, S L; Hsu, F F; Heinecke, J W

    1996-01-26

    Reactive aldehydes generated during lipid peroxidation have been implicated in the pathogenesis of atherosclerosis as well as other inflammatory diseases. A potential catalyst for such reactions is myeloperoxidase, a hemeprotein secreted by activated phagocytes. We now report that activated neutrophils utilize the myeloperoxidase-H2O2-chloride system to convert L-tyrosine to p-hydroxyphenylacetaldehyde. Production of p-hydroxyphenylacetaldehyde was nearly quantitative at physiological concentrations of L-tyrosine and chloride. Aldehyde generation required myeloperoxidase, H2O2, L-tyrosine, and chloride ion; it was inhibited by the H2O2 scavenger catalase and by the heme poisons azide and cyanide. Phorbol ester- and calcium ionophore-stimulated human neutrophils likewise generated p-hydroxyphenylacetaldehyde from L-tyrosine by a pathway inhibited by azide, cyanide, and catalase. Aldehyde production accounted for 75% of H2O2 generated by optimally stimulated neutrophils at plasma concentrations of L-tyrosine and chloride. Collectively, these results indicate that activated phagocytes, under physiological conditions, utilize myeloperoxidase to execute the chloride-dependent conversion of L-tyrosine to the lipid-soluble aldehyde, p-hydroxyphenylacetaldehyde, in near quantitative yield. Moreover, like aldehydes derived from lipid peroxidation, amino acid-derived aldehydes may exert potent biological effects in vascular lesions and other sites of inflammation.

  8. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS Reg. No. 7786-30-3) is a... prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid solution...

  9. Photochemical CO2 Reduction Catalyzed by Phenanthroline Extended Tetramesityl Porphyrin Complexes Linked with a Rhenium(I) Tricarbonyl Unit.

    PubMed

    Matlachowski, Corinna; Braun, Beatrice; Tschierlei, Stefanie; Schwalbe, Matthias

    2015-11-01

    A series of heterodinuclear complexes (M-1-Re) based on a phenanthroline (phen) extended tetramesityl porphyrin ligand (H2-1) has been prepared. The phen moiety of this ligand selectively coordinates a Re(I) tricarbonyl chloride unit, whereas the metal in the porphyrin moiety has been varied: namely, Cu, Pd, Zn, Co, or Fe was used. These dinuclear complexes were fully characterized by standard analytical methods. Additionally, a crystal structure of Cu-1-Re·5.5(C7H8)·0.5(C6H6) could be obtained, and extended time-resolved emission lifetime measurements were conducted. Furthermore, their ability to catalyze the photochemical reduction of CO2 to CO was investigated. Light-driven CO2 reduction experiments were performed in dimethylformamide (DMF) using triethylamine (TEA) as the sacrificial electron donor. The TONs (turnover numbers) of CO were determined and revealed a surprising catalytic activity that is obviously independent from the redox activity of the porphyrin metal. We have recently shown that the parent M-1 compounds are active photocatalysts, but the catalytic activity was dependent on the redox activity of the porphyrin metal. In the case of the new heterodinuclear complexes M-1-Re reported in this study, the catalytic active center seems to be the Re(I) moiety and not the porphyrin. Surprisingly, Zn-1-Re proved to be the most active compound in this series showing a TONCO of 13 after 24 h of illumination using a >375 nm cutoff filter while all other compounds showed minimal activity under this condition. PMID:26478946

  10. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  11. Effects of ammonium chloride and sulfate on acid-base status and calcium metabolism of dry Jersey cows.

    PubMed

    Wang, C; Beede, D K

    1992-03-01

    Eight nonlactating, nonpregnant Jersey cows were used in a crossover experiment with two 28-d periods. The control diet consisted of corn silage plus a concentrate mix (68:32, DM basis). The treatment diet was the same, except that NH4Cl and (NH4)2SO4 (98 g of each/d per cow) were added to the concentrate. Cows fed the treatment diet had lower blood pH, higher ionized Ca in blood, and more urinary excretion of Ca, titratable acid, and ammonium than cows fed the control diet. For cows fed the treatment diet, ionized Ca in blood was greater after equal amounts of Na2-EDTA were infused to both treatment groups, and treatment cows recovered faster after infusion of Na2-EDTA was stopped than did control cows. The treatment diet induced mild metabolic acidosis and increased the cows' ability to maintain normal blood Ca concentrations; it potentially could reduce incidence of milk fever.

  12. Influence of heterocyclic anils on corrosion inhibition and hydrogen permeation through mild steel in acid chloride environments

    SciTech Connect

    Quraishi, M.A. Khan, M.A.W.; Ajmal, M.; Muralidharan, S.; Iyer, S.V.

    1997-06-01

    The heterocyclic anils 2-salicylideneaminobenzothiazole (SABT), 2-salicylideneamino-6-methoxybenzothiazole (SAMEOBT) were investigated to evaluate their efficiency as corrosion inhibitors for mild steel (MS) in 1 M hydrochloric acid at concentrations from 100 ppm to 500 ppm and temperatures from 35 C to 60 C. SACLBT performed best, giving an inhibition efficiency as high as 98% even at a very low concentration and higher temperature. Potentiodynamic polarization studies showed inhibition was under cathodic control. These compounds reduced hydrogen permeation through MS in 1 M HCl solution. Adsorption on the MS surface followed Temkin`s adsorption isotherms. Surface analysis of the MS surface exposed with SACLBT proved adsorption of this compound on the surface occurred through interaction of lone pairs of nitrogen, sulfur, and chlorine atoms with the metal surface.

  13. Potent in vitro synergism of fusidic acid (FA) and berberine chloride (BBR) against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Liang, Rong-mei; Yong, Xiao-lan; Duan, Yu-qin; Tan, Yong-hong; Zeng, Ping; Zhou, Zi-ying; Jiang, Yan; Wang, Shi-hua; Jiang, Yun-ping; Huang, Xiao-chun; Dong, Zhao-hui; Hu, Ting-ting; Shi, Hui-qing; Li, Nan

    2014-11-01

    It was found in the present study that combined use of fusidic acid (FA) and berberine chloride (BBR) offered an in vitro synergistic action against 7 of the 30 clinical methicillin-resistant Staphylococcus aureus (MRSA) strains, with a fractional inhibitory concentration (FIC) index ranging from 0.5 to 0.19. This synergistic effect was most pronounced on MRSA 4806, an FA-resistant isolate, with a minimum inhibitory concentration (MIC) value of 1,024 μg/ml. The time-kill curve experiment showed that FA plus BBR yielded a 4.2 log10 c.f.u./ml reduction in the number of MRSA 4806 bacteria after 24-h incubation as compared with BBR alone. Viable count analysis showed that FA plus BBR produced a 3.0 log10 c.f.u./ml decrease in biofilm formation and a 1.5 log10 c.f.u./ml decrease in mature biofilm in viable cell density as compared with BBR alone. In addition, phase contrast micrographs confirmed that biofilm formation was significantly inhibited and mature biofilm was obviously destructed when FA was used in combination with BBR. These results provide evidence that combined use of FA and BBR may prove to be a promising clinical therapeutic strategy against MRSA.

  14. Effect of calcium chloride on abating inhibition due to volatile fatty acids during the start-up period in anaerobic digestion of municipal solid waste.

    PubMed

    Kumar, Sunil; Das, Avijit; Srinivas, G Lohit Kumar; Dhar, Hiya; Ojha, Vivek Kumar; Wong, Jonathan

    2016-01-01

    Biomethanation of municipal solid waste (MSW) is a slow process and the yield of biogas is usually low. The present study was carried out to examine the effect of calcium chloride (CaCl2) on anaerobic digestion of MSW. Three anaerobic digesters with different concentrations of CaCl2, namely sample without additives (Control), sample with 2.5 g/L CaCl2 (R1) and sample with 5 g/L CaCl2 (R2) were studied separately and the significant results are presented. From the experimental results, it was observed that pH decreased with an increase in the dosage of CaCl2. Total solids and volatile solids reduction percentage in digester R2 was considerably lower than Control and R1 digesters. The significant positive correlation with small increments in volatile solids and chemical oxygen demand (COD) reduction were observed with an increase in pH. The cumulative biogas production in all the three digesters (Control, R1 and R2) were observed to be 35.38, 46.46 and 37.56 L, respectively. It was also observed that the volatile fatty acids (VFAs) removal efficiency in digester R1 was the best among all the three digesters. A comparison of the effluent characteristics revealed improvement in the overall performance of the digester R1 amended with 2.5 g/L CaCl2 over the other two digesters. PMID:26609893

  15. Effect of calcium chloride on abating inhibition due to volatile fatty acids during the start-up period in anaerobic digestion of municipal solid waste.

    PubMed

    Kumar, Sunil; Das, Avijit; Srinivas, G Lohit Kumar; Dhar, Hiya; Ojha, Vivek Kumar; Wong, Jonathan

    2016-01-01

    Biomethanation of municipal solid waste (MSW) is a slow process and the yield of biogas is usually low. The present study was carried out to examine the effect of calcium chloride (CaCl2) on anaerobic digestion of MSW. Three anaerobic digesters with different concentrations of CaCl2, namely sample without additives (Control), sample with 2.5 g/L CaCl2 (R1) and sample with 5 g/L CaCl2 (R2) were studied separately and the significant results are presented. From the experimental results, it was observed that pH decreased with an increase in the dosage of CaCl2. Total solids and volatile solids reduction percentage in digester R2 was considerably lower than Control and R1 digesters. The significant positive correlation with small increments in volatile solids and chemical oxygen demand (COD) reduction were observed with an increase in pH. The cumulative biogas production in all the three digesters (Control, R1 and R2) were observed to be 35.38, 46.46 and 37.56 L, respectively. It was also observed that the volatile fatty acids (VFAs) removal efficiency in digester R1 was the best among all the three digesters. A comparison of the effluent characteristics revealed improvement in the overall performance of the digester R1 amended with 2.5 g/L CaCl2 over the other two digesters.

  16. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    NASA Astrophysics Data System (ADS)

    Islas, Luisa; Ruiz, Juan-Carlos; Muñoz-Muñoz, Franklin; Isoshima, Takashi; Burillo, Guillermina

    2016-10-01

    Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from 60Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C1s and O1s content at the catheter's surface, revealed that the catheter's surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC's Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  17. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography-Mass Spectrometry.

    PubMed

    Ehling, Stefan; Reddy, Todime M

    2015-12-01

    A straightforward analytical method based on derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography-mass spectrometry has been developed for the analysis of residues of glyphosate and aminomethylphosphonic acid (AMPA) in a suite of nutritional ingredients derived from soybean, corn, and sugar beet and also in cow's milk and human breast milk. Accuracy and intermediate precision were 91-116% and <10% RSD, respectively, in soy protein isolate. Limits of quantitation were 0.05 and 0.005 μg/g in powdered and liquid samples, respectively. Glyphosate and AMPA were quantified at 0.105 and 0.210 μg/g (soy protein isolate) and 0.850 and 2.71 μg/g (soy protein concentrate, both derived from genetically modified soybean), respectively. Residues were not detected in soy milk, soybean oil, corn oil, maltodextrin, sucrose, cow's milk, whole milk powder, or human breast milk. The method is proposed as a convenient tool for the survey of glyphosate and AMPA in the ingredient supply chain.

  18. A porphyrin-PEG polymer with rapid renal clearance.

    PubMed

    Huang, Haoyuan; Hernandez, Reinier; Geng, Jumin; Sun, Haotian; Song, Wentao; Chen, Feng; Graves, Stephen A; Nickles, Robert J; Cheng, Chong; Cai, Weibo; Lovell, Jonathan F

    2016-01-01

    Tetracarboxylic porphyrins and polyethylene glycol (PEG) diamines were crosslinked in conditions that gave rise to a water-soluble porphyrin polyamide. Using PEG linkers 2 kDa or larger prevented fluorescence self-quenching. This networked porphyrin mesh was retained during dialysis with membranes with a 100 kDa pore size, yet passed through the membrane when centrifugal filtration was applied. Following intravenous administration, the porphyrin mesh, but not the free porphyrin, was rapidly cleared via renal excretion. The process could be monitored by fluorescence analysis of collected urine, with minimal background due to the large Stokes shift of the porphyrin (230 nm separating excitation and emission peaks). In a rhabdomyolysis mouse model of renal failure, porphyrin mesh urinary clearance was significantly impaired. This led to slower accumulation in the bladder, which could be visualized non-invasively via fluorescence imaging. Without further modification, the porphyrin mesh was chelated with (64)Cu for dynamic whole body positron emission tomography imaging of renal clearance. Together, these data show that small porphyrin-PEG polymers can serve as effective multimodal markers of renal function. PMID:26517562

  19. Water-splitting using photocatalytic porphyrin-nanotube composite devices

    DOEpatents

    Shelnutt, John A.; Miller, James E.; Wang, Zhongchun; Medforth, Craig J.

    2008-03-04

    A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.

  20. A porphyrin-PEG polymer with rapid renal clearance.

    PubMed

    Huang, Haoyuan; Hernandez, Reinier; Geng, Jumin; Sun, Haotian; Song, Wentao; Chen, Feng; Graves, Stephen A; Nickles, Robert J; Cheng, Chong; Cai, Weibo; Lovell, Jonathan F

    2016-01-01

    Tetracarboxylic porphyrins and polyethylene glycol (PEG) diamines were crosslinked in conditions that gave rise to a water-soluble porphyrin polyamide. Using PEG linkers 2 kDa or larger prevented fluorescence self-quenching. This networked porphyrin mesh was retained during dialysis with membranes with a 100 kDa pore size, yet passed through the membrane when centrifugal filtration was applied. Following intravenous administration, the porphyrin mesh, but not the free porphyrin, was rapidly cleared via renal excretion. The process could be monitored by fluorescence analysis of collected urine, with minimal background due to the large Stokes shift of the porphyrin (230 nm separating excitation and emission peaks). In a rhabdomyolysis mouse model of renal failure, porphyrin mesh urinary clearance was significantly impaired. This led to slower accumulation in the bladder, which could be visualized non-invasively via fluorescence imaging. Without further modification, the porphyrin mesh was chelated with (64)Cu for dynamic whole body positron emission tomography imaging of renal clearance. Together, these data show that small porphyrin-PEG polymers can serve as effective multimodal markers of renal function.

  1. Does a Second Halogen Atom Affect the Nature of Intermolecular Interactions in Protic Acid-Haloethylene Complexes? in (E)-1-CHLORO-2-FLUOROETHYLENE-HYDROGEN Chloride it Depends on how you Look at it

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.

    2016-06-01

    As part of a systematic study of the effect of chlorine substitution on the structures of protic acid haloethylene complexes, the structure of the (E)-1-chloro-2-fluoroethylene-hydrogen chloride complex has been investigated using ab initio quantum chemistry calculations and microwave spectroscopy. Although theory predicts a non-planar equilibrium structure for this species, it is only 7 cm-1 lower in energy than the planar geometry connecting the two equivalent minima on either side of the haloethylene plane, and the observed spectrum is consistent with a planar, average structure, likely the result of zero-point averaging. The geometry is very similar to the fluorine binding, vinyl fluoride-hydrogen chloride complex, suggesting that the substitution of chlorine for a hydrogen trans to the fluorine atom has very little effect on intermolecular interactions in this case. On the other hand, vinyl chloride-hydrogen chloride adopts a non-planar, chlorine binding configuration so that alternatively one could say that the presence of fluorine has a large effect on protic acid-chlorine interactions.

  2. A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species.

    PubMed

    Claisse, Gaëlle; Feller, Georges; Bonneau, Magalie; Da Lage, Jean-Luc

    2016-08-01

    In animals, most α-amylases are chloride-dependent enzymes. A chloride ion is required for allosteric activation and is coordinated by one asparagine and two arginine side chains. Whereas the asparagine and one arginine are strictly conserved, the main chloride binding arginine is replaced by a glutamine in some rare instances, resulting in the loss of chloride binding and activation. Amyrel is a distant paralogue of α-amylase in Diptera, which was not characterized biochemically to date. Amyrel shows both substitutions depending on the species. In Drosophila melanogaster, an arginine is present in the sequence but in Drosophila virilis, a glutamine occurs at this position. We have investigated basic enzymological parameters and the dependence to chloride of Amyrel of both species, produced in yeast, and in mutants substituting arginine to glutamine or glutamine to arginine. We found that the amylolytic activity of Amyrel is about thirty times weaker than the classical Drosophila α-amylase, and that the substitution of the arginine by a glutamine in D. melanogaster suppressed the chloride-dependence but was detrimental to activity. In contrast, changing the glutamine into an arginine rendered D. virilis Amyrel chloride-dependent, and interestingly, significantly increased its catalytic efficiency. These results show that the chloride ion is not mandatory for Amyrel but stimulates the reaction rate. The possible phylogenetic origin of the arginine/glutamine substitution is also discussed. PMID:27312592

  3. Increased dietary sodium chloride concentrations reduce endogenous amino acid flow and influence the physiological response to the ingestion of phytic acid by broiler chickens.

    PubMed

    Cowieson, A J; Bedford, M R; Ravindran, V; Selle, P H

    2011-10-01

    A total of 240 Ross 308 broilers were used to investigate the effect of sodium (1·5 or 2·5 g/kg), phytate-P (0 or 3·2 g/kg), and phytase (0 or 1000 FTU/kg; 2x2x2 factorial) on endogenous amino acid flow using the enzyme-hydrolysed casein method. The ingestion of phytate increased endogenous amino acid flow (∼30%) compared with the phytate-free control diets. Phytase reduced endogenous amino acid flow only when fed in concert with phytate, resulting in a significant phytate x phytase interaction. Increasing dietary sodium concentration from 1·5 to 2·5 g/kg reduced endogenous amino acid flow by around 10%. This reduction of endogenous flow was particularly evident in diets which contained phytate, resulting in a significant sodium x phytate interaction for several amino acids, including Thr and Ser. Further, high sodium concentrations muted the effect of phytase resulting in a significant sodium x phytase interaction for some amino acids. The concentration of Asp, Thr, Ser and some other amino acids was increased in the endogenous protein in response to the ingestion of phytate. Both sodium and phytase essentially restored the composition of endogenous protein to that of the phytate-free control. Further, as both sodium and phytase had similar effects there were significant interactions between sodium and phytase for most amino acids, such that one was only effective in the absence of the other. These data confirm previous reports that phytate is a nutritional aggressor, causing quantitative and qualitative changes in endogenous protein flow. However, this is the first report which has shown that dietary sodium concentrations play a role in the severity of this antinutritional effect and consequently may blunt the efficacy of exogenous phytase. The mechanism is obscure, though it has been previously demonstrated that sodium can disrupt phytate:protein complexes, thus mitigating one of the mechanisms by which phytate exerts its antinutritional effect.

  4. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study.

    PubMed

    Ohta, Takehiro; Nagaraju, Perumandla; Liu, Jin-Gang; Ogura, Takashi; Naruta, Yoshinori

    2016-09-01

    Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a's of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born-Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe-O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O-O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions. PMID:27501847

  5. Electron injection dynamics in high-potential porphyrin photoanodes.

    PubMed

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties. PMID:25938858

  6. Electron injection dynamics in high-potential porphyrin photoanodes.

    PubMed

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties.

  7. ALA and ALA hexyl ester-induced porphyrin synthesis in chemically induced skin tumours: the role of different vehicles on improving photosensitization.

    PubMed

    Casas, A; Perotti, C; Fukuda, H; Rogers, L; Butler, A R; Batlle, A

    2001-11-30

    Exogenous administration of 5-aminolevulinic acid (ALA) is becoming widely used to enhance the endogenous synthesis of Protoporphyrin IX (PpIX) in photodynamic therapy. We analysed porphyrin formation in chemically induced squamous papillomas, after topical application of ALA and ALA hexyl ester (He-ALA) administered in different formulations, as well as the pattern of distribution in the internal organs, and the synthesis of porphyrins in distant tumoural and normal skins. A lotion formulation containing DMSO and ethanol was the best vehicle for topical ALA delivery to papillomas, whereas cream was the most efficient formulation for He-ALA application. Similar porphyrin concentration can be accumulated in the skin tumours employing either ALA or He-ALA delivered in their optimal formulations. The use of cream as a vehicle of both ALA and He-ALA, induces highest porphyrin tumour/normal skin ratios. The main advantage of using He-ALA is that porphyrins synthesized from the ester are more confined to the site of application, thus inducing low porphyrin levels in normal skin, liver, blood and spleen, as well as in papillomas distant from the point of application, independently on the vehicle employed, so reducing potential side effects of photodynamic therapy.

  8. ALA and ALA hexyl ester-induced porphyrin synthesis in chemically induced skin tumours: the role of different vehicles on improving photosensitization

    PubMed Central

    Casas, A; Perotti, C; Fukuda, H; Rogers, L; Butler, A R; Batlle, A

    2001-01-01

    Exogenous administration of 5-aminolevulinic acid (ALA) is becoming widely used to enhance the endogenous synthesis of Protoporphyrin IX (PpIX) in photodynamic therapy. We analysed porphyrin formation in chemically induced squamous papillomas, after topical application of ALA and ALA hexyl ester (He-ALA) administered in different formulations, as well as the pattern of distribution in the internal organs, and the synthesis of porphyrins in distant tumoural and normal skins. A lotion formulation containing DMSO and ethanol was the best vehicle for topical ALA delivery to papillomas, whereas cream was the most efficient formulation for He-ALA application. Similar porphyrin concentration can be accumulated in the skin tumours employing either ALA or He-ALA delivered in their optimal formulations. The use of cream as a vehicle of both ALA and He-ALA, induces highest porphyrin tumour/normal skin ratios. The main advantage of using He-ALA is that porphyrins synthesized from the ester are more confined to the site of application, thus inducing low porphyrin levels in normal skin, liver, blood and spleen, as well as in papillomas distant from the point of application, independently on the vehicle employed, so reducing potential side effects of photodynamic therapy. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11742504

  9. Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel.

    PubMed

    Cherian, O Lijo; Menini, Anna; Boccaccio, Anna

    2015-04-01

    Ca(2+)-activated Cl(-) currents (CaCCs) play important roles in many physiological processes. Recent studies have shown that TMEM16A/anoctamin1 and TMEM16B/anoctamin2 constitute CaCCs in several cell types. Here we have investigated for the first time the extracellular effects of the Cl(-) channel blocker anthracene-9-carboxylic acid (A9C) and of its non-charged analogue anthracene-9-methanol (A9M) on TMEM16B expressed in HEK 293T cells, using the whole-cell patch-clamp technique. A9C caused a voltage-dependent block of outward currents and inhibited a larger fraction of the current as depolarization increased, whereas the non-charged A9M produced a small, not voltage dependent block of outward currents. A similar voltage-dependent block by A9C was measured both when TMEM16B was activated by 1.5 and 13μM Ca(2+). However, in the presence of 1.5μM Ca(2+) (but not in 13μM Ca(2+)), A9C also induced a strong potentiation of tail currents measured at -100mV after depolarizing voltages, as well as a prolongation of the deactivation kinetics. On the contrary, A9M did not produce potentiation of tail currents, showing that the negative charge is required for potentiation. Our results provide the first evidence that A9C has multiple effects on TMEM16B and that the negative charge of A9C is necessary both for voltage-dependent block and for potentiation. Future studies are required to identify the molecular mechanisms underlying these complex effects of A9C on TMEM16B. Understanding these mechanisms will contribute to the elucidation of the structure and functional properties of TMEM16B channels.

  10. Effect of ammonium sulfate, ammonium chloride and root-zone acidity on inorganic ion content of tobacco

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Tobacco plants (Nicotiana tabacum L. cv NC82) were supplied with (NH4)2SO4 or NH4Cl at root-zone pH of 6.0 and 4.5 in hydroponic culture for 28 days. Dry matter accumulation, total N and C content, and leaf area and number were not affected by the NH4+ source or root-zone pH. Plants supplied with NH4Cl accumulated up to 1.2 mM Cl g DW-1, but accumulated 37% less inorganic H2PO4- and 47% less SO4(2-) than plants supplied with (NH4)2SO4. The large Cl- accumulation resulted in NH4Cl- supplied plants having a 31% higher inorganic anion (NO3-, H2, PO4-, SO4(2-), and Cl-) charge. This higher inorganic anion charge in the NH4Cl-supplied plants was balanced by a similar increase in K+ charge. Plants supplied with NH4Cl accumulated greater concentrations of Cl- in leaves (up to 5.1% of DW) than plants supplied with (NH4)2SO4 (less than -% DW). Despite the high Cl- concentration of leaves in NH4Cl supplied plants, these plants showed no symptoms of Cl- toxicity. This demonstrates that toxicity symptoms are not due solely to an interaction between high Cl- concentration in tissue and NH4+ nutrition. The increase in root-zone acidity to pH 4.5 from 6.0 did not induce toxicity symptoms.

  11. Past and future: porphyria and porphyrins.

    PubMed

    Norman, Robert A

    2005-01-01

    Porphyria is a compelling disease--disrupted enzyme pathways, heightened sensitivities, and a fascinating history tied in with tales of Dracula. This review discusses the history, pathophysiology, classification, and treatment of porphyria. It further discusses the way in which research on the etiologies of the various porphyrias has led to the development of porphyrin-based photodynamic therapy, which shows great promise in targeted therapy for a variety of serious pathologies.

  12. Lighting porphyrins and phthalocyanines for molecular photovoltaics.

    PubMed

    Martínez-Díaz, M Victoria; de la Torre, Gema; Torres, Tomás

    2010-10-14

    The field of organic photovoltaics (OPV) represents one of the most promising technological areas. Porphyrins and phthalocyanines are perfectly suited for their integration in light energy conversion systems. These colored macrocycles exhibit very attractive physical properties, particularly very high extinction coefficients in the visible and near IR regions, where the maximum of the solar photon flux occurs, that is necessary for efficient photon harvesting, besides a rich redox chemistry, as well as photoinduced electron transfer and semiconducting capabilities.

  13. Picosecond dynamics of energy transfer in porphyrin-sapphyrin noncovalent assemblies

    SciTech Connect

    Springs, S.L.; Gosztola, D.; Wasielewski, M.R.; Kral, V.; Andrievsky, A.; Sessler, J.L.

    1999-03-17

    The picosecond dynamics of noncovalent ensembles for energy transfer based on anion chelation are reported. The photoactive noncovalent complexes are assembled via salt-bridge formation between carboxyl-containing porphyrin photodonors and a monoprotonated pentapyrrolic sapphyrin acceptor. These complexes are formed with a K{sub a} of ca. 10{sup 3} M{sup {minus}1} upon mixing the receptor and substrate in their respective free-acid and free-base forms in CD{sub 2}Cl{sub 2} (as judged by {sup 1}H NMR spectroscopic means). Upon irradiation at 417 nm, singlet-singlet energy transfer from the porphyrin to the sapphyrin subunit takes place readily with energy transfer dynamics that are consistent with a Foerster-type mechanism. The title systems thus appear to be prototypic of a new kind of noncovalent energy transfer modeling that is predicated on the use of anion chelation.

  14. Solvent dependent supramolecular self-assembly and surface reversal of a modified porphyrin.

    PubMed

    Zhang, Xuemei; Xu, Haijun; Shen, Yongtao; Wang, Yibing; Shen, Zhen; Zeng, Qingdao; Wang, Chen

    2013-08-14

    In this paper, a novel core-modified porphyrin with meso-aryl substituents and phenanthrene-fused pyrrole rings (N2S2-OR) is synthesized. Scanning tunneling microscopy (STM) has been used to probe its self-assembly behavior on a highly-oriented pyrolytic graphite (HOPG) surface. Our STM results have shown that there is an obvious solvent-dependent self-assembly for the surface-confined target molecules. In n-tetradecane, N2S2-OR assembles into a perfect alternating structure. At the 1-phenyloctane-graphite interface, disordered structures are formed and nonperiodic alternation is observed, whereas the target molecule in 1-heptanoic acid is assumed to form homogeneous close-packed monolayers with no alternating. Interestingly, such solvent-dependent supramolecular assembled behavior also involves the structural transformation of the backbone of the core-modified porphyrin derivative from saddle to reversed-saddle in these three solvents with different polarities. PMID:23764927

  15. A porphyrin complex of Gold(I): (Phosphine)gold(I) azides as cation precursors

    PubMed Central

    Partyka, David V.; Robilotto, Thomas J.; Zeller, Matthias; Hunter, Allen D.; Gray, Thomas G.

    2008-01-01

    A silver- and Brönsted acid-free protocol for generating the (tricyclohexylphosphine)gold(I) cation from the corresponding azide complexes is disclosed. The gold(I) cations so liberated are trapped by complexation with octaethylporphyrin. The first structurally authenticated gold(I) porphyrin complex crystallizes with formula C72H112Au2F12N4P2Sb2, space group C2/c, a = 21.388 (4), b = 19.679 (4), c = 19.231 (3) Å; β = 111.030 (3)°. Solution spectroscopic studies indicate that the di-gold complex fragments on dissolution in organic solvents. Approximate density-functional theory calculations find an electrostatic origin for the binding of two gold(I) centers to the unprotonated nitrogen atoms, despite greater orbital density on the porphyrin meso carbons. PMID:18780788

  16. Fluorescent sensor for imidazole derivatives based on monomer-dimer equilibrium of a zinc porphyrin complex in a polymeric film.

    PubMed

    Zhang, Ying; Yang, Ronghua; Liu, Feng; Li, Ke'an

    2004-12-15

    A new zinc(II) porphyrin conjugate with an appended pyrene subunit has been synthesized and shown to exhibit significant and analytical usefulness for fluorescence sensing toward imidazole derivatives. The molecular recognition was based on the bridging interaction of the imidazole ring of analyte with the zinc(II) center of the porphyrin, while the transduction signal for the recognition process was the pyrene excimer fluorescence. The sensor was constructed and applied for fluorescence assay of histidine in aqueous solution by immobilizing the sensing material in a plasticized PVC membrane. When the membrane was bathed in an alkaline solution void of histidine, zinc(II) porphyrin was present in the monomer form, and pyrene emitted monomer fluorescence at 378 and 397 nm. With the presence of histidine in the sample solution, histidine was extracted into the membrane phase and bridged with the Zn(II) center of the porphyrin, causing the monomer porphyrin to be converted to its dimeric species. Since the formation of porphyrin dimer was accompanied by the enhancement of pyrene excimer emission at 454 nm, the chemical recognition process could be directly translated into a fluorescent signal. With the optode membrane M1 described, histidine in sample solution from 6.76 x 10(-7) to 5.01 x 10(-3) M can be determined. The limit of detection was 1.34 x 10(-7) M. The optical selectivity coefficient obtained for histidine over biologically relevant amino acids and anions met the selectivity requirements for the determination of histidine in biological samples. Serum histidine values obtained by the optode membrane fell in the normal range of the content reported in the literature and were in good agreement with those obtained by HPLC.

  17. "Spider"-shaped porphyrins with conjugated pyridyl anchoring groups as efficient sensitizers for dye-sensitized solar cells.

    PubMed

    Stangel, Christina; Bagaki, Anthi; Angaridis, Panagiotis A; Charalambidis, Georgios; Sharma, Ganesh D; Coutsolelos, Athanasios G

    2014-11-17

    Two novel "spider-shaped" porphyrins, meso-tetraaryl-substituted 1PV-Por and zinc-metalated 1PV-Zn-Por, bearing four oligo(p-phenylenevinylene) (oPPV) pyridyl groups with long dodecyloxy chains on the phenyl groups, have been synthesized. The presence of four pyridyl groups in both porphyrins, which allow them to act as anchoring groups upon coordination to various Lewis acid sites, the conjugated oPPV bridges, which offer the possibility of electronic communication between the porphyrin core and the pyridyl groups, and the dodecyloxy groups, which offer the advantage of high solubility in a variety of organic solvents of different polarities and could prevent porphyrin aggregation, renders porphyrins 1PV-Por and 1PV-Zn-Por very promising sensitizers for dye-sensitized solar cells (DSSCs). Photophysical measurements, together with electrochemistry experiments and density functional theory calculations, suggest that both porphyrins have frontier molecular orbital energy levels that favor electron injection and dye regeneration in DSSCs. Solar cells sensitized by 1PV-Por and 1PV-Zn-Por were fabricated, and it was found that they show power conversion efficiencies (PCEs) of 3.28 and 5.12%, respectively. Photovoltaic measurements (J-V curves) together with incident photon-to-electron conversion efficiency spectra of the two cells reveal that the higher PCE value of the DSSC based on 1PV-Zn-Por is ascribed to higher short-circuit current (Jsc), open-circuit voltage (Voc), and dye loading values. Emission spectra and electrochemistry experiments suggest a greater driving force for injection of the photogenerated electrons into the TiO2 conduction band for 1PV-Zn-Por rather than its free-base analogue. Furthermore, electrochemical impedance spectroscopy measurements prove that the utilization of 1PV-Zn-Por as a sensitizer offers a high charge recombination resistance and, therefore, leads to a longer electron lifetime.

  18. Expression of Genes Involved in Iron and Sulfur Respiration in a Novel Thermophilic Crenarchaeon Isolated from Acid-Sulfate-Chloride Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Kozubal, M.; Macur, R.; Inskeep, W. P.

    2007-12-01

    Acidic geothermal springs within Yellowstone National Park (YNP) provide an excellent opportunity to study microbial populations and their relationship with geochemical processes such as redox cycling and biomineralization of iron. Fourteen acid-sulfate-chloride (ASC) and acid-sulfate (AS) geothermal springs located in (YNP) have been extensively characterized for aqueous chemistry, solid phase mineral deposition and microbial diversity and distribution. The oxidation of Fe(II) with oxygen as an electron acceptor is exergonic under these conditions, consequently, Fe(II) may be an important electron donor driving primary production in ASC and AS habitats, and products of biomineralization (e.g. Fe[III]-oxides of varying crystallinity and structure, as well as jarosite in some cases) are common in the outflow channels of these environments. Recently, we isolated a novel Metallosphaera-like microorganism (Metallosphaera strain MK1) from an ASC spring in Norris Geyser Basin, YNP. Clone libraries (16S rRNA gene) from multiple sites suggest that microorganisms closely related to strain MK1 (between 98-100 percent similarity) dominate many spring locations between 55-80 C. The in situ abiotic oxidation rate of Fe(II) has been shown to be very slow in these systems and Metallosphaera strain MK1 has been directly implicated in biotic Fe(II) oxidation. Metallosphaera strain MK1 has been submitted for full genome sequencing and is yielding gene sequences related to the terminal oxidases SOXABC and SOXM super-complex. In addition, sequences from a recently characterized terminal oxidase FOX complex involved in Fe(II) and pyrite oxidation from Sulfolobus metallicus have been found in Metallosphaera strain MK1. A protein complex analogous to Metallosphaera sedula has been identified in strain MK1 and this complex has also been expressed in cells grown on pyrite and Fe(II). Other sequences identified in Metallosphaera strain MK1 that are involved in respiration are the TQO

  19. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  20. Electrocatalytic Dioxygen Reduction by Carbon Electrodes Noncovalently Modified with Iron Porphyrin Complexes: Enhancements from a Single Proton Relay.

    PubMed

    Sinha, Soumalya; Aaron, Michael S; Blagojevic, Jovan; Warren, Jeffrey J

    2015-12-01

    Oxygen reduction in acidic aqueous solution mediated by a series of asymmetric iron (III)-tetra(aryl)porphyrins adsorbed to basal- and edge- plane graphite electrodes is investigated. The asymmetric iron porphyrin systems bear phenyl groups at three meso positions and either a 2-pyridyl, a 2-benzoic acid, or a 2-hydroxyphenyl group at the remaining meso position. The presence of the three unmodified phenyl groups makes the compounds insoluble in water, enabling catalyst retention during electrochemical experiments. Resonance Raman data demonstrate that catalyst layers are maintained, but can undergo modification after prolonged catalysis in the presence of O2 . The introduction of a single proton relay group at the fourth meso position makes the asymmetric iron porphyrins markedly more robust catalysts; these molecules support higher sustained current densities than the parent iron tetraphenylporphyrin. Iron porphyrins bearing a 2-pyridyl group are the most active catalysts and operate at stable current densities ≥1 mA cm(-2) for over 5 h. Comparative analysis of the catalysts with different proton relays also is reported. PMID:26459272

  1. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes.

    PubMed

    Ishihara, Shinsuke; Labuta, Jan; Van Rossom, Wim; Ishikawa, Daisuke; Minami, Kosuke; Hill, Jonathan P; Ariga, Katsuhiko

    2014-06-01

    Porphyrins and related families of molecules are important organic modules as has been reflected in the award of the Nobel Prizes in Chemistry in 1915, 1930, 1961, 1962, 1965, and 1988 for work on porphyrin-related biological functionalities. The porphyrin core can be synthetically modified by introduction of various functional groups and other elements, allowing creation of numerous types of porphyrin derivatives. This feature makes porphyrins extremely useful molecules especially in combination with their other interesting photonic, electronic and magnetic properties, which in turn is reflected in their diverse signal input-output functionalities based on interactions with other molecules and external stimuli. Therefore, porphyrins and related macrocycles play a preeminent role in sensing applications involving chromophores. In this review, we discuss recent developments in porphyrin-based sensing applications in conjunction with the new advanced concept of nanoarchitectonics, which creates functional nanostructures based on a profound understanding of mutual interactions between the individual nanostructures and their arbitrary arrangements. Following a brief explanation of the basics of porphyrin chemistry and physics, recent examples in the corresponding fields are discussed according to a classification based on physical modes of detection including optical detection (absorption/photoluminescence spectroscopy and energy and electron transfer processes), other spectral modes (circular dichroism, plasmon and nuclear magnetic resonance), electronic and electrochemical modes, and other sensing modes.

  2. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  3. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  4. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  5. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  6. Synergistic effect of steam and lactic acid against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on polyvinyl chloride and stainless steel.

    PubMed

    Ban, Ga-Hee; Park, Sang-Hyun; Kim, Sang-Oh; Ryu, Sangryeol; Kang, Dong-Hyun

    2012-07-01

    This study was designed to investigate the individual and combined effects of steam and lactic acid (LA) on the inactivation of biofilms formed by Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on polyvinyl chloride (PVC) and stainless steel. Six day old biofilms were developed on PVC and stainless steel coupons by using a mixture of three strains each of three foodborne pathogens at 25°C. After biofilm development, PVC and stainless steel coupons were treated with LA alone (immersed in 0.5% or 2% for 5s, 15s, and 30s), steam alone (on both sides for 5, 10, and 20s), and the combination of steam and LA. The numbers of biofilm cells of the three foodborne pathogens were significantly (p<0.05) reduced as the amount of LA and duration of steam exposure increased. There was a synergistic effect of steam and LA on the viability of biofilm cells of the three pathogens. For all biofilm cells of the three foodborne pathogens, reduction levels of individual treatments ranged from 0.11 to 2.12 log CFU/coupon. The combination treatment of steam and LA achieved an additional 0.2 to 2.11 log reduction compared to the sum of individual treatments. After a combined treatment of immersion in 2% LA for 15s or 30s followed by exposure to steam for 20s, biofilm cells of the three pathogens were reduced to below the detection limit (1.48 log). From the results of this study, bacterial populations of biofilms on PVC coupons did not receive the same thermal effect as on stainless steel coupons. Effectiveness of steam and LA may be attributed to the difference between Gram-negative and Gram-positive characteristics of the bacteria studied. The results of this study suggest that the combination of steam and LA has potential as a biofilm control intervention for food processing facilities.

  7. Quantitative and isomeric determination of amphetamine and methamphetamine from urine using a nonprotic elution solvent and R(-)-alpha-methoxy-alpha-trifluoromethylphenylacetic acid chloride derivatization.

    PubMed

    Holler, Justin M; Vorce, Shawn P; Bosy, Thomas Z; Jacobs, Aaron

    2005-10-01

    Forensic Urine Drug Testing Laboratories often requires two confirmatory methods for a methamphetamine positive screen. First, methamphetamine is identified and quantitated using gas chromatography-mass spectrometry. If the total methamphetamine concentration is above the administrative cutoff level, the isomeric composition must be determined. This eliminates a possible contribution by over-the-counter cold medications that contain l-methamphetamine (Vick's inhalers). Products that contain only the l-isomer of methamphetamine must be distinguishable from prescription or illicitly manufactured methamphetamine, which consists mainly of the d-isomer. Optically impure derivatizing reagents will produce an impure mixture from a pure isomeric compound. Therefore, methods utilizing impure reagents can prove problematic when interpreting results. Use of an optically pure chiral derivatizing reagent, such as R(-)-alpha-methoxy-alpha-trifluoromethylphenylacetic acid chloride, allows for the creation and measurement of chromatographically separable isomeric compounds. The novel method described here utilizes a polymer-based solid-phase column adapted to a positive pressure manifold extraction system and a one-step derivatization process that occurs directly in the elution solvent. This methodology eliminates an elution solvent dry-down step that may adversely affect recovery of volatile amphetamine compounds. Although the method was designed for the quantitative analysis of the isomers of amphetamine and methamphetamine, it can be adapted for use with a wide range of phenethylamines including methylenedioxyamphetamine, N-methylenedioxymethamphetamine, and possibly N-methylenedioxyethylamphetamine. The linear range for quantitation was 25-10,000 ng/mL for d,l-methamphetamine and d,l-amphetamine, and correlation coefficients were 0.997 or better. The coefficient of variation for all four analytes did not exceed 2.8%. Concentrations analyzed ranged from 500 to 4000 ng/mL (n=40

  8. Synergistic bactericidal action of phytic acid and sodium chloride against Escherichia coli O157:H7 cells protected by a biofilm.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2016-06-16

    The food industry must prevent the build-up of strong Escherichia coli O157:H7 biofilms in food processing environments. The present study examined the bactericidal action of phytic acid (PA), a natural extract from rice bran and the hulls/peels of legumes, against E. coli O157:H7 biofilms. The synergistic bactericidal effects of PA plus sodium chloride (NaCl) were also examined. E. coli O157:H7 biofilms were allowed for form on stainless steel coupons by culture in both rich (tryptic soy broth, TSB) and minimal (M9) medium at 22°C for 6days. Bacterial cells within biofilms grown in M9 medium were significantly more resistant to PA than those grown in TSB (p<0.05); thus M9 medium was selected for further experiments. The anti-biofilm effect of PA was significantly increased by addition of NaCl (2-4%) (p<0.05); indeed, the combination of 0.4% PA plus 3-4% NaCl completely inactivated E. coli O157:H7 biofilms without recovery (a>6.5logCFU/cm(2) reduction). Neither PA nor NaCl alone were this effective (PA, 1.6-2.7logCFU/cm(2) reduction; NaCl, <0.5logCFU/cm(2) reduction). Confocal laser scanning microscopy images of propidium iodide-treated cells showed that PA (0.4%) plus NaCl (2-4%) had marked membrane permeabilizing effects. These results suggest that a sanitizer that combines these two naturally occurring antimicrobial agents may be useful to food safety managers who encounter thick biofilm formation in food processing environments.

  9. Synergistic bactericidal action of phytic acid and sodium chloride against Escherichia coli O157:H7 cells protected by a biofilm.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2016-06-16

    The food industry must prevent the build-up of strong Escherichia coli O157:H7 biofilms in food processing environments. The present study examined the bactericidal action of phytic acid (PA), a natural extract from rice bran and the hulls/peels of legumes, against E. coli O157:H7 biofilms. The synergistic bactericidal effects of PA plus sodium chloride (NaCl) were also examined. E. coli O157:H7 biofilms were allowed for form on stainless steel coupons by culture in both rich (tryptic soy broth, TSB) and minimal (M9) medium at 22°C for 6days. Bacterial cells within biofilms grown in M9 medium were significantly more resistant to PA than those grown in TSB (p<0.05); thus M9 medium was selected for further experiments. The anti-biofilm effect of PA was significantly increased by addition of NaCl (2-4%) (p<0.05); indeed, the combination of 0.4% PA plus 3-4% NaCl completely inactivated E. coli O157:H7 biofilms without recovery (a>6.5logCFU/cm(2) reduction). Neither PA nor NaCl alone were this effective (PA, 1.6-2.7logCFU/cm(2) reduction; NaCl, <0.5logCFU/cm(2) reduction). Confocal laser scanning microscopy images of propidium iodide-treated cells showed that PA (0.4%) plus NaCl (2-4%) had marked membrane permeabilizing effects. These results suggest that a sanitizer that combines these two naturally occurring antimicrobial agents may be useful to food safety managers who encounter thick biofilm formation in food processing environments. PMID:27043385

  10. Free-Base Carboxyphenyl Porphyrin Films Using a TiO2 Columnar Matrix: Characterization and Application as NO2 Sensors

    PubMed Central

    Roales, Javier; Pedrosa, José M.; Guillén, María G.; Lopes-Costa, Tânia; Castillero, Pedro; Barranco, Angel; González-Elipe, Agustín R.

    2015-01-01

    The anchoring effect on free-base carboxyphenyl porphyrin films using TiO2 microstructured columns as a host matrix and its influence on NO2 sensing have been studied in this work. Three porphyrins have been used: 5-(4-carboxyphenyl)10,15,20-triphenyl-21H,23H-porphyrin (MCTPP); 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphyrin (p-TCPP); and 5,10,15,20-tetrakis(3-carboxyphenyl)-21H,23H-porphyrin (m-TCPP). The analysis of UV-Vis spectra of MCTPP/TiO2, p-TCPP/TiO2 and m-TCPP/TiO2 composite films has revealed that m-TCPP/TiO2 films are the most stable, showing less aggregation than the other porphyrins. IR spectroscopy has shown that m-TCPP is bound to TiO2 through its four carboxylic acid groups, while p-TCPP is anchored by only one or two of these groups. MCTPP can only be bound by one carboxylic acid. Consequently, the binding of p-TCPP and MCTPP to the substrate allows them to form aggregates, whereas the more fixed anchoring of m-TCPP reduces this effect. The exposure of MCTPP/TiO2, p-TCPP/TiO2 and m-TCPP/TiO2 films to NO2 has resulted in important changes in their UV-Vis spectra, revealing good sensing capabilities in all cases. The improved stability of films made with m-TCPP suggests this molecule as the best candidate among our set of porphyrins for the fabrication of NO2 sensors. Moreover, their concentration-dependent responses upon exposure to low concentrations of NO2 confirm the potential of m-TCPP as a NO2 sensor. PMID:25985159

  11. Porphyrin-Embedded Silicate Materials for Detection of Hydrocarbon Solvents

    PubMed Central

    Johnson, Brandy J.; Anderson, Nicole E.; Charles, Paul T.; Malanoski, Anthony P.; Melde, Brian J.; Nasir, Mansoor; Deschamps, Jeffrey R.

    2011-01-01

    The development of porphyrin-embedded mesoporous organosilicate materials for application to the detection of volatile hydrocarbon solvents is described. Design of the receptor and optical indicator construct begins with parallel selection of the porphyrin indicator and design of the mesoporous sorbent. For the porphyrin indicator, high binding affinity and strong changes in spectrophotometric character upon target interaction are desired. The sorbent should provide high target binding capacity and rapid binding kinetics. A number of porphyrin/metalloporphyrin variants and organosilicate sorbents were evaluated to determine the characteristics of their interaction with the targets, benzene, toluene, and hexane. The selected porphyrin candidates were covalently immobilized within a benzene-bridged sorbent. This construct was applied to the detection of targets using both fluorescence- and reflectance-based protocols. The use of red, green, and blue (RGB) color values from the constructs in a highly simplified detection scheme is described. PMID:22346609

  12. Estimation of the uncertainty associated with the results based on the validation of chromatographic analysis procedures: application to the determination of chlorides by high performance liquid chromatography and of fatty acids by high resolution gas chromatography.

    PubMed

    Quintela, M; Báguena, J; Gotor, G; Blanco, M J; Broto, F

    2012-02-01

    This article presents a model to calculate the uncertainty associated with an analytical result based on the validation of the analysis procedure. This calculation model is proposed as an alternative to commonly used bottom-up and top-down methods. This proposal is very advantageous as the validation of the procedures and the estimation of the uncertainty of the measurement are part of the technical requirements needed in order to obtain the ISO 17025:2005 accreditation. This model has been applied to the determination of chloride by liquid chromatography in lixiviates and in the determination of palmitic acid and stearic acid by gas chromatography in magnesium stearate samples. PMID:22227361

  13. 9-Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential.

    PubMed

    Váczi, Krisztina; Hegyi, Bence; Ruzsnavszky, Ferenc; Kistamás, Kornél; Horváth, Balázs; Bányász, Tamás; Nánási, Péter P; Szentandrássy, Norbert; Magyar, János

    2015-01-01

    Understanding the role of ionic currents in shaping the cardiac action potential (AP) has great importance as channel malfunctions can lead to sudden cardiac death by inducing arrhythmias. Therefore, researchers frequently use inhibitors to selectively block a certain ion channel like 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 9-anthracene carboxylic acid (9-AC) for calcium-activated chloride current (ICl(Ca)). This study aims to explore which blocker is preferable to study ICl(Ca). Whole-cell voltage-clamp technique was used to record ICa,L, IKs, IKr and IK1, while action potentials were measured using sharp microelectrodes. DIDS- (0.2 mM) and 9-AC-sensitive (0.5 mM) currents were identical in voltage-clamp conditions, regardless of intracellular Ca(2+) buffering. DIDS-sensitive current amplitude was larger with the increase of stimulation rate and correlated well with the rate-induced increase of calcium transients. Both drugs increased action potential duration (APD) to the same extent, but the elevation of the plateau potential was more pronounced with 9-AC at fast stimulation rates. On the contrary, 9-AC did not influence either the AP amplitude or the maximal rate of depolarization (V max), but DIDS caused marked reduction of V max. Both inhibitors reduced the magnitude of phase-1, but, at slow stimulation rates, this effect of DIDS was larger. All of these actions on APs were reversible upon washout of the drugs. Increasing concentrations of 9-AC between 0.1 and 0.5 mM in a cumulative manner gradually reduced phase-1 and increased APD. 9-AC at 1 mM had no additional actions upon perfusion after 0.5 mM. The half-effective concentration of 9-AC was approximately 160 μM with a Hill coefficient of 2. The amplitudes of ICa,L, IKs, IKr and IK1 were not changed by 0.5 mM 9-AC. These results suggest that DIDS is equally useful to study ICl(Ca) during voltage-clamp but 9-AC is superior in AP measurements for studying the physiological role of

  14. Structural requisites of 2-(p-chlorophenoxy)propionic acid analogues for activity on native rat skeletal muscle chloride conductance and on heterologously expressed CLC-1

    PubMed Central

    Liantonio, Antonella; De Luca, Annamaria; Pierno, Sabata; Didonna, Maria Paola; Loiodice, Fulvio; Fracchiolla, Giuseppe; Tortorella, Paolo; Laghezza, Antonio; Bonerba, Elisabetta; Traverso, Sonia; Elia, Laura; Picollo, Alessandra; Pusch, Michael; Camerino, Diana Conte

    2003-01-01

    The 2-(p-chlorophenoxy)propionic acid (CPP) modulates in a stereoselective manner the macroscopic chloride conductance (gCl), the electrical parameter sustained by the CLC-1 channel, of skeletal muscle. In order to determine the structural requirements for modulating native gCl and to identify high-affinity ligands, the effects of newly synthesised CPP analogues have been evaluated on gCl of rat EDL muscle fibres by means of the two-microelectrode current-clamp technique. Each type of the following independent modification of CPP structure led to a three- to 10-fold decrease or to a complete lack of gCl-blocking activity: replacement of the electron-attractive chlorine atom of the aromatic ring, substitution of the oxygen atom of the phenoxy group, modification at the chiral centre and substitution of the carboxylic function with a phosphonate one. The analogues bearing a second chlorophenoxy group on the asymmetric carbon atom showed a significant gCl-blocking activity. Similar to racemate CPP, the analogue with this group, spaced by an alkyl chain formed by three methylenic groups, blocked gCl by 45% at 100 μM. These latter derivatives were tested on heterelogously expressed CLC-1 performing inside-out patch-clamp recordings to further define how interaction between drug and channel protein could take place. Depending on the exact chemical nature of modification, these derivatives strongly blocked CLC-1 with KD values at −140 mV ranging from about 4 to 180 μM. In conclusion, we identified four molecular determinants pivotal for the interaction with the binding site on muscle CLC-1 channels: (a) the carboxylic group that confers the optimal acidity and the negative charge; (b) the chlorophenoxy moiety that might interact with a hydrophobic pocket; (c) the chiral centre that allows the proper spatial disposition of the molecule; (d) an additional phenoxy group that remarkably stabilises the binding by interacting with a second hydrophobic pocket. PMID:12890704

  15. Novel nanomaterials based on 5,10,15,20-tetrakis(3,4-dimethoxyphenyl)-21H,23H-porphyrin entrapped in silica matrices

    SciTech Connect

    Fagadar-Cosma, Eugenia; Enache, Corina; Vlascici, Dana; Fagadar-Cosma, Gheorghe; Vasile, Mihaela; Bazylak, Grzegorz

    2009-12-15

    The present study is dealing with the obtaining of transparent hybrid silica materials encapsulating 5,10,15,20-tetrakis(3,4-dimethoxyphenyl)-21H,23H-porphyrin designated for advanced optoelectronic devices. The porphyrin was synthesized by three methods: an Adler-type reaction between pyrrole and 3,4-dimethoxybenzaldehyde in propionic acid medium; by Lindsey condensation of pyrrole with 3,4-dimethoxybenzaldehyde in the presence of BF{sub 3}.OEt{sub 2} and by a multicomponent reaction by simultaneously using of pyrrole and two different aldehydes: 3,4-dimethoxybenzaldehyde and 3-hydroxybenzaldehyde. The 3,4-dimethoxyphenyl substituted porphyrin was characterized by HPLC, TLC, UV-vis, FT-IR, {sup 1}H NMR and {sup 13}C NMR analysis. Excitation and emission spectra were also discussed in terms of pH conditions. The hybrid materials, consisting in the porphyrin encapsulated in silica matrices, have been prepared successfully via the two steps acid-base catalyzed hydrolysis and condensation of tetraethylorthosilicate using different approaches of the sol-gel process: in situ, by impregnation and by sonication. The synthetic conditions and the compositions were monitored and characterized by using spectroscopic methods such as FT-IR, fluorescence and UV-vis. Atomic force microscopy (AFM) has been applied to observe the columnar or pyramidal nanostructures which are formed by the immobilization of porphyrin on the silica matrices.

  16. Polyelectrolyte-stabilized metal oxide hydrosols as catalysts for the photooxidation of water by zinc porphyrins

    SciTech Connect

    Nahor, G.S.; Mosseri, S.; Neta, P.; Harriman, A.

    1988-07-28

    Colloids of ruthenium dioxide and iridium oxide have been prepared and characterized. These colloids, which are inherently negatively charged in neutral water, have been stabilized with a surface layer of polyelectrolyte. Electrostatic binding occurs between the stabilized colloids and water-soluble zinc porphyrins of the opposite electronic charge. Such electrostatic forces affect the rate constant for interfacial electron transfer between the colloids and radical cations derived from the zinc porphyrins. The products of these reactions depend upon the relative charges of the reactants. For oppositely charged reactants, the rate of interaction was very high but O/sub 2/ generation was not observed. In some cases where the porphyrin and colloid possess the same charge, the system can be used to oxidize water to O/sub 2/ under photochemical conditions. The yield of O/sub 2/ depends upon the solution pH and the nature of both reactants. With negatively charged reactions in alkaline solution, the authors have reported quantum efficiencies for O/sub 2/ generation in the range of 50-60%. With positively charged reactants, oxygen formation could be observed in acidic solution, although the quantum efficiencies were less than 10%.

  17. Influence of Phenylethynylene of Push-Pull Zinc Porphyrins on the Photovoltaic Performance.

    PubMed

    Chou, Hsien-Hsin; Reddy, Kamani Sudhir K; Wu, Hui-Ping; Guo, Bo-Cheng; Lee, Hsuan-Wei; Diau, Eric Wei-Guang; Hsu, Chao-Ping; Yeh, Chen-Yu

    2016-02-10

    A series of zinc porphyrin dyes YD22-YD28 were synthesized and used for dye-sensitized solar cells. Dyes YD26-YD28 consist of zinc porphyrin (ZnP) as core unit, arylamine (Am) as electron-donating group, and p-ethynylbenzoic acid (EBA) as an electron-withdrawing/-anchoring group. The dyes YD22-YD25 contain additional phenylethynylene group (PE) bridged between Am and ZnP units. The influence of the PE unit on molecular properties as well as photovoltaic performances were investigated via photophysical and electrochemical studies and density functional calculations. With the insertion of PE unit, the dyes YD22-YD25 possess better light-harvesting properties in terms of significantly red-shifted Q-band absorption. The conversion efficiencies for dyes YD22-YD25 are better than those of dyes YD26-YD28 owing to larger J(SC) output. Natural transition orbitals and Mulliken charge analysis were used to analyze the electron injection efficiency for porphyrin dyes upon time-dependent DFT calculations. The results indicated that insertion of additional PE unit is beneficial to higher J(SC) by means of improved light-harvesting property due to broadened and red-shifted absorption. PMID:26752243

  18. Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal–Organic Frameworks

    SciTech Connect

    Johnson, Jacob A.; Luo, Jian; Zhang, Xu; Chen, Yu-Sheng; Morton, Martha D.; Echeverría, Elena; Torres, Fernand E.; Zhang, Jian

    2015-09-04

    Photoredox catalytic activation of organic molecules via single-electron transfer processes has proven to be a mild and efficient synthetic methodology. However, the heavy reliance on expensive ruthenium and iridium complexes limits their applications for scale-up synthesis. To this end, photoactive metal–organic frameworks (MOFs) exhibit unique advantages as novel heterogeneous photocatalytic systems, yet their utilization toward organic transformations has been limited. Here we describe the preparation and synthetic applications of four isostructural porphyrinic MOFs, namely, UNLPF-10a, -10b, -11, and -12, which are composed of free base, InIII-, SnIVCl2-, and SnIV-porphyrin building blocks, respectively. We demonstrate that the metalation with high valent metal cations (InIII and SnIV) significantly modifies the electronic structure of porphyrin macrocycle and provides a highly oxidative photoexcited state that can undergo efficient reductive quenching processes to facilitate organic reactions. In particular, UNLPF-12 exhibits both outstanding photostability and efficient photocatalytic activities toward a range of important organic transformations including aerobic hydroxylation of arylboronic acids, amine coupling, and the Mannich reaction.

  19. Porphyrin-magnetite nanoconjugates for biological imaging

    PubMed Central

    2011-01-01

    Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques. PMID:21477294

  20. Water Dispersible and Biocompatible Porphyrin-Based Nanospheres for Biophotonics Applications: A Novel Surfactant and Polyelectrolyte-Based Fabrication Strategy for Modifying Hydrophobic Porphyrins.

    PubMed

    Sheng, Ning; Zong, Shenfei; Cao, Wei; Jiang, Jianzhuang; Wang, Zhuyuan; Cui, Yiping

    2015-09-01

    The hydrophobility of most porphyrin and porphyrin derivatives has limited their applications in medicine and biology. Herein, we developed a novel and general strategy for the design of porphyrin nanospheres with good biocompatibility and water dispersibility for biological applications using hydrophobic porphyrins. In order to display the generality of the method, we used two hydrophobic porphyrin isomers as starting material which have different structures confirmed by an X-ray technique. The porphyrin nanospheres were fabricated through two main steps. First, the uniform porphyrin nanospheres stabilized by surfactant were prepared by an interfacially driven microemulsion method, and then the layer-by-layer method was used for the synthesis of polyelectrolyte-coated porphyrin nanospheres to reduce the toxicity of the surfactant as well as improve the biocompatibility of the nanospheres. The newly fabricated porphyrin nanospheres were characterized by TEM techniques, the electronic absorption spectra, photoluminescence emission spectra, dynamic light scattering, and cytotoxicity examination. The resulting nanospheres demonstrated good biocompatibility, excellent water dispersibility and low toxicity. In order to show their application in biophotonics, these porphyrin nanospheres were successfully applied in targeted living cancer cell imaging. The results showed an effective method had been explored to prepare water dispersible and highly stable porphyrin nanomaterial for biophotonics applications using hydrophobic porphyrin. The approach we reported shows obvious flexibility because the surfactants and polyelectrolytes can be optionally selected in accordance with the characteristics of the hydrophobic material. This strategy will expand the applications of hydrophobic porphyrins owning excellent properties in medicine and biology.

  1. Water Dispersible and Biocompatible Porphyrin-Based Nanospheres for Biophotonics Applications: A Novel Surfactant and Polyelectrolyte-Based Fabrication Strategy for Modifying Hydrophobic Porphyrins.

    PubMed

    Sheng, Ning; Zong, Shenfei; Cao, Wei; Jiang, Jianzhuang; Wang, Zhuyuan; Cui, Yiping

    2015-09-01

    The hydrophobility of most porphyrin and porphyrin derivatives has limited their applications in medicine and biology. Herein, we developed a novel and general strategy for the design of porphyrin nanospheres with good biocompatibility and water dispersibility for biological applications using hydrophobic porphyrins. In order to display the generality of the method, we used two hydrophobic porphyrin isomers as starting material which have different structures confirmed by an X-ray technique. The porphyrin nanospheres were fabricated through two main steps. First, the uniform porphyrin nanospheres stabilized by surfactant were prepared by an interfacially driven microemulsion method, and then the layer-by-layer method was used for the synthesis of polyelectrolyte-coated porphyrin nanospheres to reduce the toxicity of the surfactant as well as improve the biocompatibility of the nanospheres. The newly fabricated porphyrin nanospheres were characterized by TEM techniques, the electronic absorption spectra, photoluminescence emission spectra, dynamic light scattering, and cytotoxicity examination. The resulting nanospheres demonstrated good biocompatibility, excellent water dispersibility and low toxicity. In order to show their application in biophotonics, these porphyrin nanospheres were successfully applied in targeted living cancer cell imaging. The results showed an effective method had been explored to prepare water dispersible and highly stable porphyrin nanomaterial for biophotonics applications using hydrophobic porphyrin. The approach we reported shows obvious flexibility because the surfactants and polyelectrolytes can be optionally selected in accordance with the characteristics of the hydrophobic material. This strategy will expand the applications of hydrophobic porphyrins owning excellent properties in medicine and biology. PMID:26292182

  2. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy.

    PubMed

    Penon, Oriol; Marín, María J; Amabilino, David B; Russell, David A; Pérez-García, Lluïsa

    2016-01-15

    The preparation of novel porphyrin derivatives and their immobilization onto iron oxide nanoparticles to build up suitable nanotools for potential use in photodynamic therapy (PDT) has been explored. To achieve this purpose, a zinc porphyrin derivative, ZnPR-COOH, has been synthesized, characterized at the molecular level and immobilized onto previously synthesized iron oxide nanoparticles covered with oleylamine. The novel nanosystem (ZnPR-IONP) has been thoroughly characterized by a variety of techniques such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, X-ray photoloectron spectroscopy (XPS) and transmission electron microscopy (TEM). In order to probe the capability of the photosensitizer for PDT, the singlet oxygen production of both ZnPR-IONP and the free ligand ZnPR-COOH have been quantified by measuring the decay in absorption of the anthracene derivative 9,10-anthracenedipropionic acid (ADPA), showing an important increase on singlet oxygen production when the porphyrin is incorporated onto the IONP (ZnPR-IONP). On the other hand, the porphyrin derivative PR-TRIS3OH, incorporating several polar groups (TRIS), was synthesized and immobilized with the intention of obtaining water soluble nanosystems (PR-TRIS-IONP). When the singlet oxygen production ability was evaluated, the values obtained were similar to ZnPR-COOH/ZnPR-IONP, again much higher in the case of the nanoparticles PR-TRIS-IONP, with more than a twofold increase. The efficient singlet oxygen production of PR-TRIS-IONP together with their water solubility, points to the great promise that these new nanotools represent for PDT.

  3. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy.

    PubMed

    Penon, Oriol; Marín, María J; Amabilino, David B; Russell, David A; Pérez-García, Lluïsa

    2016-01-15

    The preparation of novel porphyrin derivatives and their immobilization onto iron oxide nanoparticles to build up suitable nanotools for potential use in photodynamic therapy (PDT) has been explored. To achieve this purpose, a zinc porphyrin derivative, ZnPR-COOH, has been synthesized, characterized at the molecular level and immobilized onto previously synthesized iron oxide nanoparticles covered with oleylamine. The novel nanosystem (ZnPR-IONP) has been thoroughly characterized by a variety of techniques such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, X-ray photoloectron spectroscopy (XPS) and transmission electron microscopy (TEM). In order to probe the capability of the photosensitizer for PDT, the singlet oxygen production of both ZnPR-IONP and the free ligand ZnPR-COOH have been quantified by measuring the decay in absorption of the anthracene derivative 9,10-anthracenedipropionic acid (ADPA), showing an important increase on singlet oxygen production when the porphyrin is incorporated onto the IONP (ZnPR-IONP). On the other hand, the porphyrin derivative PR-TRIS3OH, incorporating several polar groups (TRIS), was synthesized and immobilized with the intention of obtaining water soluble nanosystems (PR-TRIS-IONP). When the singlet oxygen production ability was evaluated, the values obtained were similar to ZnPR-COOH/ZnPR-IONP, again much higher in the case of the nanoparticles PR-TRIS-IONP, with more than a twofold increase. The efficient singlet oxygen production of PR-TRIS-IONP together with their water solubility, points to the great promise that these new nanotools represent for PDT. PMID:26454374

  4. Spectroscopic evidence of xanthine compounds fluorescence quenching effect on water-soluble porphyrins

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2015-02-01

    The formation of π-stacked complexes between water-soluble porphyrins: 4,4‧,4″,4″‧-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis-(benzoic acid) (H2TCPP), 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (H2TPPS4), 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP), 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine tetra-p-tosylate (H2TMePyP), the Cu(II) complexes of H2TTMePP and H2TMePyP, as well as chlorophyll a with xanthine, theophylline (1,3-dimethylxanthine) and theobromine (3,7-dimethylxanthine) has been studied analysing their absorption and steady-state fluorescence spectra in aqueous (or acetone in case of chlorophyll a) solution. During titration by the compounds from xanthine group the bathochromic effect in the porphyrin absorption spectra as well as the hypochromicity of the porphyrin Soret maximum can be noticed. The fluorescence quenching effect observed during interactions in the systems examined suggests the process of static quenching. The association and fluorescence quenching constants are of the order of magnitude of 103 - 102 mol-1. The results obtained show that xanthine and its derivatives can quench the fluorescence of the porphyrins according to the number of methyl groups in the molecule of quencher.

  5. A Novel Supramolecular Assembly Film of Porphyrin Bound DNA: Characterization and Catalytic Behaviors Towards Nitric Oxide

    PubMed Central

    Lei, Jianping; Ju, Huangxian; Ikeda, Osamu

    2005-01-01

    A stable Fe(4-TMPyP)-DNA-PADDA (FePyDP) film was characterized on pyrolytic graphite electrode (PGE) or an indium-tin oxide (ITO) electrode through the supramolecular interaction between water-soluble iron porphyrin (Fe(4-TMPyP)) and DNA template, where PADDA (poly(acrylamide-co-diallyldimethylammonium chloride) is employed as a co-immobilizing polymer. Cyclic voltammetry of FePyDP film showed a pair of reversible FeIII/FeII redox peaks and an irreversible FeIV/FeIII peak at –0.13 V and +0.89 vs. Ag|AgCl in pH 7.4 PBS, respectively. An excellent catalytic reduction of NO was displayed at –0.61 V vs. Ag|AgCl at a FePyDP film modified electrode. Chronoamperometric experiments demonstrated a rapid response to the reduction of NO with a linear range from 0.1 to 90 μM and a detection limit of 30 nM at a signal-to-noise ratio of 3. On the other hand, it is the first time to apply high-valent iron porphyrin as catalyst at modified electrode for NO catalytic oxidation at +0.89 vs. Ag|AgCl. The sensor shows a high selectivity of some endogenous electroactive substances in biological systems. The mechanism of response of the sensors to NO is preliminary studied.

  6. On the function and fate of chloride ions in amyloidogenic self-assembly of insulin in an acidic environment: salt-induced condensation of fibrils.

    PubMed

    Babenko, Viktoria; Surmacz-Chwedoruk, Weronika; Dzwolak, Wojciech

    2015-02-24

    Formation of amyloid fibrils is often facilitated in the presence of specific charge-compensating ions. Dissolved sodium chloride is known to accelerate insulin fibrillation at low pH that has been attributed to the shielding of electrostatic repulsion between positively charged insulin molecules by chloride ions. However, the subsequent fate of Cl(-) anions; that is, possible entrapment within elongating fibrils or escape into the bulk solvent, remains unclear. Here, we show that, while the presence of NaCl at the onset of insulin aggregation induces structural variants of amyloid with distinct fingerprint infrared features, a delayed addition of salt to fibrils that have been already formed in its absence and under quiescent conditions triggers a "condensation effect": amyloid superstructures with strong chiroptical properties are formed. Chloride ions appear to stabilize these superstructures in a manner similar to stabilization of DNA condensates by polyvalent cations. The concentration of residual chloride ions trapped within bovine insulin fibrils grown in 0.1 M NaCl, at pD 1.9, and rinsed extensively with water afterward is less than 1 anion per 16 insulin monomers (as estimated using ion chromatography) implying absence of defined solvent-sequestered nesting sites for chloride counterions. Our results have been discussed in the context of mechanisms of insulin aggregation.

  7. In vitro influence of D/L-lactic acid, sodium chloride and sodium nitrite on the infectivity of feline calicivirus and of ECHO virus as potential surrogates for foodborne viruses.

    PubMed

    Straube, J; Albert, T; Manteufel, J; Heinze, J; Fehlhaber, K; Truyen, U

    2011-11-15

    The importance of foodborne viruses is increasingly recognized. Thus, the effect of commonly used food preservation methods on the infectivity of viruses is questioned. In this context, we investigated the antiviral properties of D,L-lactic acid, sodium chloride and sodium nitrite by in vitro studies. Two model viruses, Feline Calicivirus (FCV) and Enteric Cytophatic Human Orphan (ECHO) virus, were chosen for this study simulating important foodborne viruses (human noroviruses (NoV) and human enteroviruses, resp.). The model viruses were exposed to different solutions of D,L-lactic acid (0.1-0.4% w/w, pH 6.0-3.2), of sodium chloride (2-20%, w/v) and of sodium nitrite (100, 150 and 200 ppm) at 4 and 20 °C for a maximum of 7 days. Different results were obtained for the two viruses. ECHO virus was highly stable against D,L-lactic acid and sodium chloride when tested under all conditions. On the contrary, FCV showed less stability but was not effectively inactivated when exposed to low acid and high salt conditions at refrigeration temperatures (4 °C). FCV titers decreased more markedly at 20 °C than 4 °C in all experiments. Sodium nitrite did not show any effect on the inactivation of both viruses. The results indicate that acidification, salting or curing maybe insufficient for effective inactivation of foodborne viruses such as NoV or human enteroviruses during food processing. Thus, application of higher temperature during fermentation and ripening processes maybe more effective toward the inactivation kinetics of less stable viruses. Nevertheless, more studies are needed to examine the antiviral properties of these preserving agents on virus survival and inactivation kinetics in the complex food matrix.

  8. Conservation of the conformation of the porphyrin macrocycle in hemoproteins.

    PubMed

    Jentzen, W; Ma, J G; Shelnutt, J A

    1998-02-01

    The out-of-plane distortions of porphyrins in hemoproteins are characterized by displacements along the lowest-frequency out-of-plane normal coordinates of the D4h-symmetric macrocycle. X-ray crystal structures are analyzed using a computational procedure developed for determining these orthogonal displacements. The x-ray crystal structures of the heme groups are described within experimental error, using the set composed of only the lowest frequency normal coordinate of each out-of-plane symmetry type. That is, the distortion is accurately simulated by a linear combination of these orthonormal deformations, which include saddling (B2u), ruffling (B1u), doming (A2u), waving (Eg), and propellering (A1u). For example, orthonormal structural decomposition of the hemes in deoxymyoglobins reveals a predominantly dom heme deformation combined with a smaller wav(y) deformation. Generally, the heme conformation is remarkably similar for proteins from different species. For cytochromes c, the conformation is conserved as long as the amino acids between the cysteine linkages to the heme are homologous. Differences occur if this short segment varies in the number or type of residues, suggesting that this small segment causes the nonplanar distortion. Some noncovalently linked hemes like those in the peroxidases also have highly conserved characteristic distortions. Conservation occurs even for some proteins with a large natural variation in the amino acid sequence.

  9. Chloride in diet

    MedlinePlus

    ... found in table salt or sea salt as sodium chloride. It is also found in many vegetables. Foods ... Nutrition Board. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academy Press, Washington, DC: 2005. ...

  10. A New Composition for Co(II)-porphyrin-based Membranes Used in Thiocyanate-selective Electrodes

    PubMed Central

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Bizerea-Spiridon, Otilia

    2006-01-01

    In the present paper, the potentiometric response characteristics of a metalloporphyrin-based electrode in o-nitrophenyloctylether (o-NPOE) plasticized polyvinyl chloride (PVC) membrane are presented for a set of monovalent anions. As membrane ionophore, 5,10,15,20-tetrakis-(4-methoxyphenyl)-porphyrin-Co(II) (CoTMeOPP) was used. To establish the optimum composition of the membrane, different molar percents of cationic derivative (mol.% relative to ionophore) were used. Electrodes formulated with membranes containing 1 wt.% ionophore, 66 wt.% o-NPOE, 33 wt.% PVC (plasticizer: PVC = 2:1) and the lipophilic cationic derivative (35 mol%) are shown to exhibit high selectivity for thiocyanate with a near-Nernstian slope in the working concentration range of 1.0×10−1–1.0×10−5 M, with a good stability in time.

  11. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  12. Biosynthetic porphyrins and the origin of photosynthesis

    NASA Technical Reports Server (NTRS)

    Mauzerall, D.; Ley, A.; Mercer-Smith, J. A.

    1986-01-01

    Since the prebiotic atmosphere was anaerobic, if not reducing, a useful function of primordial photosynthesis would have been to photooxidize reduced substrates such as Fe(+2), S(-2) or reduced organic molecules and to emit hydrogen. Experiments have shown that the early biogenic pigments uroporphyrin and coproporphyrin do photooxidize organic compounds and emit hydrogen in the presence of a platinum catalyst. These experiments were carried out in dilute aqueous solution near neutral pH under anaerobic atmosphere, and quantum yields near 10-2 were obtained. Thus relevant prebiotic conditions were maintained. Rather then to further optimize conditions, attempts were made to replace the platinum catalyst by a more prebiotically suitable catalyst. Trials with an Fe4S4(SR)4 cluster, in analogy to the present hydrogenase and nitrogenase, were not successful. However, experiments using cobalt complexes to catalyze the formation of hydrogen are promising. In analogy with biological photosynthetic systems which group pigments, electron transfer molecules and enzymes in clusters for efficiency, it was found that binding the biogenic porphyrins to the polyvinyl alcohol used to support the platinum catalyst did increase the quantum yield of the reaction. It was also found that ultraviolet light can serve to photo-oxidize porphyrinogens to porphyrins under anaerobic conditions. Thus the formation of the colorless porphyriogens by the extraordinarily simple biosynthetic pathway would not be a problem because of the prevalence of UV light in the prebiotic, anoxic atmosphere.

  13. Oxidative aromatic coupling of meso-arylamino-porphyrins.

    PubMed

    Nowak-Król, Agnieszka; Gryko, Daniel T

    2013-11-15

    Strategic placement of the bis-arylamino group at the meso-position of porphyrins allowed fusion of these two moieties via aromatic dehydrogenation. By placing two di(naphthalene-2-yl)amine or bis(3,5-dimethoxyphenyl)amine groups at positions 5 and 15 of the porphyrin, the oxidative aromatic coupling was directed toward closing one six-membered ring. The extension of the porphyrin chromophore leads to significant change in linear optical properties, such as a bathochromic shift of absorption and broadening of the Q-band. PMID:24168727

  14. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties. PMID:26489595

  15. Resonance Raman and vibrational mode analysis used to predict ligand geometry for docking simulations of a water soluble porphyrin and tubulin.

    PubMed

    McMicken, Brady; Parker, James E; Thomas, Robert J; Brancaleon, Lorenzo

    2016-09-01

    The ability to modify the conformation of a protein by controlled partial unfolding may have practical applications such as inhibiting its function or providing non-native photosensitive properties. A water-soluble porphyrin, meso-tetrakis (p-sulfonatophenyl) porphyrin (TSPP), non-covalently bound to tubulin can be used as a photosensitizer, which upon irradiation can lead to conformational changes of the protein. To fully understand the mechanism responsible for this partial unfolding and determine the amino acid residues and atoms involved, it is essential to find the most likely binding location and the configuration of the ligand and protein. Techniques typically used to analyze atomic position details, such as nuclear magnetic resonance and X-ray crystallography, require large concentrations, which are incompatible with the dilute conditions required in experiments for photoinduced mechanisms. Instead, we develop an atomistic description of the TSPP-tubulin complex using vibrational mode analysis from density functional theory calculations correlated to resonance Raman spectra of the porphyrin paired with docking simulations. Changes in the Raman peaks of the porphyrin molecule correlate with changes in its structural vibrational modes when bound to tubulin. The data allow us to construct the relative geometry of the porphyrin when bound to protein, which are then used with docking simulations to find the most likely configuration of the TSPP-tubulin complex. PMID:26431467

  16. Redox-activity and self-organization of iron-porphyrin monolayers at a copper/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Phan, Thanh Hai; Wandelt, Klaus

    2015-03-01

    The electrochemical behaviour and molecular structure of a layer of water-soluble 5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)-porphyrin-Fe(III) pentatosylate, abbreviated as FeTMPyP, on a chloride modified Cu(100) electrode surface were investigated by means of cyclic voltammetry (CV) and in-situ electrochemical scanning tunneling microscopy. Voltammetric results of HOPG in an electrolyte containing FeTMPyP molecules indicate three distinguishable redox steps involving both the central iron metal and the π-conjugated ring system. However, only the first two reduction steps are observable within the narrow potential window of CVs of Cu(100) measured in the same electrolyte. In the potential range below the first reduction peak, at which the [FeIIITMPyP]5+ molecules are reduced to the corresponding [FeIITMPyP]4+ species, in-situ scanning tunneling microscopy (STM) images revealed, for the first time, a highly ordered adlayer of this reduced porphyrin species on the chloride terminated Cu(100) surface. The ordered adlayer exhibits a (quasi)square unit cell with the lattice vectors |a → 2| = |b → 2| = 1 . 53 ± 0 . 1 nm and an angle of 93° ± 2° between them. A model is proposed based on the STM observation illustrating the arrangement of the [FeIITMPyP]4+ molecules at the electrolyte/copper interface.

  17. Routes to new hafnium(IV) tetraaryl porphyrins and crystal structures of unusual phosphate-, sulfate-, and peroxide-bridged dimers.

    PubMed

    Falber, Alexander; Todaro, Louis; Goldberg, Israel; Favilla, Michael V; Drain, Charles Michael

    2008-01-21

    New routes for the synthesis of mono tetraaryl porphyrinato hafnium(IV) complexes, Hf(IV)Por(L)(2), are reported, where the secondary ligands, L, are determined by the method of purification. These synthetic routes cater to the solubility of the macrocycles and provide access to Hf(IV) complexes of meso tetraaryl porphyrins bearing diverse functional groups such as phenyl, tolyl, pyridyl, pentafluorophenyl, and carboxyphenyl. The latter three derivatives significantly expand the repertoire of hafnium porphyrinates. One route refluxes the porphyrin with HfCl(4) in 1-chloronaphthalene or in a mixed solvent of 1-chloronaphthalene and o-cresol. A second, solventless method is also reported wherein the porphyrin is mixed with Hf(cp)(2)Cl(2) and heated to give the metalated porphyrin in good yields. Simultaneous purification and formation of stable porphyrinato hafnium(IV) diacetate complexes, Hf(Por)OAc(2), is accomplished by elution over silica gel using 3-5% acetic acid in the eluent. Exchange of the acetate ligands for other oxo-bearing ligands can be nearly quantitative, such as p-aminobenzoate (PABA), pentanoate (pent), or octanoate (oct). Notably, we find that two to three of a variety of small multitopic dianions such as peroxo (O(2)(-2)), SO(4)(-2), and HPO(4)(-2) serve to bridge between two Hf(Por) moieties to form stable dimers. The crystal structures of this library of Hf(Por) complexes are reported, and we note that careful analysis of crystallography data reveals (Por)Hf(micro-eta(2)-O(2))(2)Hf(Por) rather than four bridging oxo or hydroxy ions.

  18. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    PubMed Central

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  19. Challenging Density Functional Theory Calculations with Hemes and Porphyrins.

    PubMed

    de Visser, Sam P; Stillman, Martin J

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  20. Porphyrin Electropolymers For Application In Hyphenated Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Lvova, L.; Mastroianni, M.; Martinelli, E.; Di Natale, C.; D'Amico, A.; Filippini, D.; Lundström, I.; Paolesse, R.

    2009-05-01

    A series of pyrrole-substituted porphyrin monomers have been rationally prepared to tune the properties of the resulting polymeric film. Free-base porphyrins and their metallic complexes have been deposited onto Indium-Tin-Oxide (ITO) glass electrodes by electropolymerization technique. Electropolymers were characterized by UV-visible spectroscopy and Atomic Force Microscopy (AFM). Cyclic voltammetry has been utilised to study the electropolymerisation mechanism and to evaluate the polymer surface coverge parameters. The obtained porphyrin electropolymers have been exploited as sensing materials for hyphenated potentiometric and optical measurements with CSPT-potentiometric analytical system. Different food matrices, such as mineral waters, wines and vegetable oils, have been analysed by means of the resulting porphyrin based CSPT-potentiometric system.

  1. Studies on porphyrin photoproducts in solution, cells, and tumor tissue

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert; Rueck, Angelika C.; Koenig, Roland

    1994-07-01

    Light excitation of photosensitizing porphyrins leads to cytotoxic reactions. In addition, photobleaching and photoproduct formation occur indicating photosensitizer destruction. Photoproducts from hematoporphyrin (HP) fluoresce in aqueous solution at 642 nm, whereas photoproducts from protoporphyrin (PP) in hydrophobic environment emit around 670 nm and exhibit pronounced absorption at 665 nm. Photoproduct formation depends on singlet oxygen. The photoproducts exhibit faster fluorescence decay kinetics compared with nonirradiated porphyrins, as shown by time-grated spectroscopy and fluorescence decay measurements. Photoproduct fluorescence was observed during light exposure of cells and of tumor-bearing, nude mice, following administration of Hematoporphyrin Derivative (HpD), tetramethyl-HP, and PP. Photoconversion was also detected with naturally-occurring porphyrins (PP-producing bacteria) and ALA-simulated biosynthesis of PP in tumor tissue and in skin lesions of patients (psoriasis, mycosis fungoides). The efficiency of PDT with porphyrin photoproducts was found to be low in spite of the strong electronic transitions in the red spectral region.

  2. Challenging Density Functional Theory Calculations with Hemes and Porphyrins.

    PubMed

    de Visser, Sam P; Stillman, Martin J

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  3. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    SciTech Connect

    Taguchi, J.; Kuriyama, K. )

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  4. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.

    PubMed

    Aratani, Naoki; Kim, Dongho; Osuka, Atsuhiro

    2009-12-21

    The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of protein-embedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-meso-linked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Forster-type incoherent energy hopping model. In noncoordinating solvents such as CHCl(3), meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated

  5. Optical properties of porphyrin molecules immobilized in nano-porous silicon.

    PubMed

    Parkhutik, V; Chirvony, V; Matveyeva, E

    2007-02-01

    The paper aims at studying optical properties of porous silicon powders and thin films which were impregnated with different porphyrin molecules. It has been shown that introducing porphyrins into porous silicon matrix results in quenching of luminescence from porous silicon, while luminescence of porphyrins survives, though its structure changes. At the same time, porphyrins in porous silicon matrix which was preliminarily oxidized does not alter luminescence from porphyrins. Generation of singlet oxygen by illuminated porphyrin/porous silicon composite is confirmed by additional oxidation of porous silicon and by the observation of characteristic 1270 nm luminescence band. PMID:16893681

  6. ATOMIC AND MOLECULAR PHYSICS: Excitonic Coupling between B and Q Transitions in Porphyrin Aggregates

    NASA Astrophysics Data System (ADS)

    Zhou, Mi; Jiang, Yong-Heng; Lu, Guo-Hui; Gao, Shu-Qin; Li, Zuo-Wei

    2009-08-01

    The properties of meso-tetraphenylporphine (TPP) aggregates formed in acidic aqueous-organic solutions are investigated by UV-vis spectroscopy. According to the absorption spectra, the Q band absorption of the aggregated TPP shows red shift and intensity enhancement, and a model that includes the participation of water molecules in a porphyrin aggregation complex is proposed, then a qualitative explanation based on Gouterman's excition coupling theory is presented. Calculations including eigenenergies, eigenstates and the transition dipole strength of the coupled states are carried out.

  7. Synthesis, Electrochemistry, and Photophysics of Aza-BODIPY Porphyrin Dyes.

    PubMed

    Pascal, Simon; Bucher, Léo; Desbois, Nicolas; Bucher, Christophe; Andraud, Chantal; Gros, Claude P

    2016-03-24

    The synthesis of dyad and triad aza-BODIPY-porphyrin systems in two steps starting from an aryl-substituted aza-BODIPY chromophore is described. The properties of the resulting aza-BODIPY-porphyrin conjugates have been extensively investigated by means of electrochemistry, spectroelectrochemistry, and absorption/emission spectroscopy. Fluorescence measurements have revealed a dramatic loss of luminescence intensity, mainly due to competitive energy transfer and photoinduced electron transfer involving charge separation followed by recombination.

  8. Metallated porphyrin based porous organic polymers as efficient electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-10-01

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system.Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both

  9. Self assembly of coiled-coil peptide-porphyrin complexes.

    PubMed

    Kokona, Bashkim; Kim, Andrew M; Roden, R Claire; Daniels, Joshua P; Pepe-Mooney, Brian J; Kovaric, Brian C; de Paula, Julio C; Johnson, Karl A; Fairman, Robert

    2009-06-01

    We are interested in the controlled assembly of photoelectronic materials using peptides as scaffolds and porphyrins as the conducting material. We describe the integration of a peptide-based polymer strategy with the ability of designed basic peptides to bind anionic porphyrins in order to create regulated photoelectronically active biomaterials. We have described our peptide system in earlier work, which demonstrates the ability of a peptide to form filamentous materials made up of self-assembling coiled-coil structures. We have modified this peptide system to include lysine residues appropriately positioned to specifically bind meso-tetrakis(4-sulfonatophenyl)porphine (TPPS(4)), a porphyrin that contains four negatively charged sulfonate groups at neutral pH. We measure the binding of TPPS(4) to our peptide using UV--visible and fluorescence spectroscopies to follow the porphyrin signature. We determine the concomitant acquisition of helical secondary structure in the peptide upon TPPS(4) binding using circular dichroism spectropolarimetry. This binding fosters polymerization of the peptide, as shown by absorbance extinction effects in the peptide CD spectra. The morphologies of the peptide/porphyrin complexes, as imaged by atomic force microscopy, are consistent with the coiled-coil polymers that we had characterized earlier, except that the heights are slightly higher, consistent with porphyrin binding. Evidence for exciton coupling in the copolymers is shown by red-shifting in the UV--visible data, however, the coupling is weak based on a lack of fluorescence quenching in fluorescence experiments.

  10. Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications.

    PubMed

    González-Delgado, José A; Castro, Pedro M; Machado, Alexandra; Araújo, Francisca; Rodrigues, Francisca; Korsak, Bárbara; Ferreira, Marta; Tomé, João P C; Sarmento, Bruno

    2016-08-20

    5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-porphyrin tetra-iodide (TMPyP), a potent water-soluble photosensitizer (PS) used in antimicrobial applications, was encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TMPyP-PLGA) for topical delivery purposes. Nanoparticles resulted in a mean particle size around 130nm, narrow polydispersity index (PdI), spherical morphology and association efficiency up to 93%. Free TMPyP and TMPyP-PLGA nanoparticles were incorporated into Carbopol(®) hydrogels, resulting in controlled TMPyP release of about 60% and 20% after 4.5h, respectively. Critical properties such as appearance, clarity, viscosity and pH were maintained over time, as hydrogels were stable during 6 months at 4°C, 25°C/60% RH and 40°C/75% RH. For photodynamic applications, the photoproduction of singlet oxygen from these hydrogels was quite efficient being both formulations very photostable after 20min. No TMPyP permeation through pig ear skin was observed after 24h, and histological assays did not show relevant damages in surrounding tissues. All these excellent characteristics make them promising platforms for photodynamic applications through topical clinical use. PMID:27321129

  11. Preparation and characterization of porphyrin nanoparticles.

    PubMed

    Gong, Xianchang; Milic, Tatjana; Xu, Chang; Batteas, James D; Drain, Charles Michael

    2002-12-01

    The synthesis, characterization, and stability of porphyrin nanoparticles of 20-200 nm diameter presented herein is general for meso arylporphyrins. The elegance of the method lies in its simplicity. This work shows that the agent used to prevent agglomeration can be covalently attached to the dye forming the particle or be part of the solvent system. It also demonstrates that these and other types of dyes with a range of photonic properties do not need to be prepared by inclusion in external matrices or by designed self-assembly a priori. The matrix may severely limit the functionality of the particles in the former case, and at present this size of particle is difficult to achieve via the latter.

  12. The distribution and thermal conversion performance of porphyrin and non-porphyrin nickel in Gudao and Shengli residues

    SciTech Connect

    Guohe Que; Chenguang Liu; Baoquan Mu

    1995-12-31

    The residues of Shengli and Gudao crude oils have been separated into some fractions using alumina chromatography and supercritical fluid extraction. The petroporphyrin nickel compounds of the residues and its fractions were concentrated by silica column chromatography eluted with cyclohexane, cyclohexane-dichloromethane and dichloromethane-acetone. The results show that a large part of nickel porphyrins are present in the resin-asphaltene fractions of the residues. The distribution of the porphyrin nickel reveals a bimodal distribution pattern with a maximum at the light resin. The data show that it is difficult to remove petroporphyrin nickel by solvent deasphalting. Data also indicate that the thermal reaction of residue is of benefit to removal of porphyrin and non-porphyrin nickel by solvent deasphalting technique.

  13. Porphyrin dimers as photosensitizers in photodynamic therapy

    SciTech Connect

    Pandey, R.K.; Smith, K.M.; Dougherty, T.J. )

    1990-07-01

    Porphyrin dimers 9 with either linkages and possible isomers bis(1-(6,7-bis(2-(methoxycarbonyl)ethyl)-1,3,5,8-tetramethyl-2- vinylporphin-4-yl)ethyl) ether (10) bis(1-(6,7-bis(2-(methoxycarbonyl)ethyl)-1,3,5,8-tetramethyl-4- vinylporphin-2-yl)ethyl) ether (11), and 1-(6,7-bis(2-(methoxycarbonyl)ethyl)-1,3,5,8-tetramethyl-2-vinylporph in- 4-yl)ethyl 1-(6,7-bis(2-(methoxycarbonyl)ethyl)-1,3,5,8-tetramethyl-4-vinylporph in- 2-yl)ethyl ether (12) were synthesized from the corresponding (1-hydroxyethyl)vinyldeuteroporphyrin IX dimethyl esters (Hvd). The pure Hvd isomers 2-(1-hydroxyethyl)-4-vinyldeuteroporphyrin IX dimethyl ester (7) and 4-(1-hydroxyethyl)-2-vinyldeuteroporphyrin IX dimethyl ester (8) were obtained from 2-acetyl-4-(1-hydroxyethyl) deuteroporphyrin IX dimethyl ester (3) and 4-acetyl-2-(1-hydroxyethyl)deuteroporphyrin IX dimethyl ester (4). Porphyrins 3 and 4 were prepared either by partial reduction of 2,4-diacetyldeuteroporphyrin IX dimethyl ester (2) or by oxidation of hematoporphyrin IX dimethyl ester (1) by using tetra-n-propylammonium perruthenate (Prn4N)(RuO4) with N-methylmorpholine N-oxide as an oxidizing agent. The in vivo photosensitizing ability and therapeutic ratios of dimers 9-12 were compared with that of Photofrin II in the SMT-F tumor growing subcutaneously in DBA/2 Ha mice. These dimers were found to have better tumoricidal activity than Photofrin II with reduced skin phototoxicity.

  14. Metallated porphyrin based porous organic polymers as efficient electrocatalysts.

    PubMed

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-11-21

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(II) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ∼100% constant ORR current over 50,000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm(-2)) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm(-2)). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e(-) pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system. PMID:26486413

  15. Porphyrin derivatives from a recombinant Escherichia coli grown on chemically defined medium.

    PubMed

    Lee, Min Ju; Chun, Se-Jin; Kim, Hye-Jung; Kwon, An Sung; Jun, Soo Youn; Kang, Sang Hyeon; Kim, Pil

    2012-12-01

    We have reported previously that a recombinant Escherichia coli co-expresses aminolevulinic acid (ALA) synthase, an NADP-dependent malic enzyme, and a dicarboxylate transporter-produced heme, an iron-chelated porphyrin, in a succinate-containing complex medium. To develop an industrially plausible process, a chemically defined medium was formulated based on M9 minimal medium. Heme synthesis was enhanced by adding sodium bicarbonate, which strengthened the C4 metabolism required for the precursor metabolite, although a pH change discouraged cell growth. Increasing the medium pH buffering capacity (100mM phosphate buffer) and adding sodium bicarbonate enabled the recombinant E. coli to produce heme at rates 60% greater than those in M9 minimal medium. Adding growth factors (1 mg/l thiamin, 0.01 mg/l biotin, 5 mg/l nicotinic acid, 1 mg/l pantothenic acid, and 1.4 mg/l cobalamin) also induced positive heme production effects at levels twice of heme production in M9-based medium. Porphyrin derivatives and heme were found in the chemically defined medium, and their presence was confirmed by liquid chromatography/mass spectroscopy (LC/MS). The formulated medium allowed for the production of 0.6 microM heme, 29 microM ALA, 0.07 microM coproporphyrin I, 0.21 microM coproporphyrin III, and 0.23 microM uroporphyrin in a 3 L pH-controlled culture. PMID:23221527

  16. Synthesis and Applications of New Water-Soluble Porphyrins and Explorations of Synthetic Routes to Quadrone

    NASA Astrophysics Data System (ADS)

    Jacobsen, John Lewis

    Porphyrins are attractive building blocks for self-assembled functional nanomaterials because they can be modified with a wide range of substituents and they possess diverse photophysical and chemical properties that are potentially useful in applications such as solar energy conversion, molecular electronics, catalysis and sensors. Recently, ionic self-assembly of oppositely-charged porphyrin tectons has been shown to produce well-defined structures such as nanotubes and nanofiber bundles. The synthesis of a novel cationic porphyrin tecton, tin 5,10,15,20-tetrakis(4-piperidyl)porphyrin is described. This porphyrin can be self-assembled with porphyrins such as 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin that only ionize under neutral or basic conditions. The nanostructures and metalized nanocomposites obtained from the self-assembly reactions are characterized using electron microscopy and spectroscopic techniques. In addition the synthesis and characterization of zinc and tin complexes of T(N-EtOH-Py)P are described and the ionic self-assembly reactions of these compounds to produce cooperative binary ionic solids are discussed. Quadrone's complex tetracyclic skeletal structure has allowed it to serve as an excellent showcase molecule for total synthesis. Three distinct routes were developed and tested in hopes of achieving an elusive substituted 10-hydroxy-dec-8-ynoic acid. Route I explored the limits of 1,4-conjugate addition. We were able to reproduce work demonstrating the remarkable selectivity that organomanganese reagents show for 1,4-addition even when the beta-carbon bears germinal-dimethyl substitution. Unfortunately, the propargylic manganese reagent needed for addition could not be synthesized despite using a diverse set of conditions and reagents. The second route demonstrated that an 11-membered acetylenic lactone could be transesterified into the corresponding methyl ester. This methyl ester resisted hydrolysis in the most forcing conditions

  17. Development and characterization of porphyrin chromophores for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Splan, Kathryn Elizabeth

    Increased public awareness of the Earth's depleting oil reserves and the adverse effect of greenhouse gasses are driving the development of alternative energy resources, including solar power. While the supply of energy from the Sun to the Earth is enormous, exploitation of this formidable natural resource remains a scientific challenge. Considerable efforts in fundamental research are still necessary for solar power to become a reality. The interesting optical and electronic properties and synthetic versatility of porphyrin chromophores constitute a valuable tool for further understanding the processes involved in efficient light-harvesting and current generation. This thesis describes the design and characterization of several porphyrin-based systems for solar energy conversion studies. Chapter 2 reports on the synthesis, photophysical characterization, and energy transfer (EnT) applications of a series of porphyrin dimers based on Re(l) pyridyl ligation that, despite incorporation of rhenium into the assembly, remain significantly fluorescent. In the context of solar energy conversion, the dimers allow for the systematic study of factors that modulate interpigment EnT. Chapter 3 presents a scheme for porphyrin-based multilayer sensitization of dye-sensitized solar cells (DSSCs). Porous, chromophoric, thin films based on tetrameric porphyrin squares were fabricated via layer-by-layer zirconium phosphonate chemistry, and their photoelectrochemical responses were evaluated. The studies reveal an additional, cathodic-current generating mechanism, which represents a parasitic process in the context of DSSCs. In Chapters 4 and 5, second generation porphyrin compounds are developed in efforts of optimizing the multilayer response. Porphyrin thin films are presented in which both excited state lifetime and mobility are enhanced. The photoelectrochemical response of the films in the context of DSSCs is evaluated. In chapter 6 a strategy is described in which the narrow

  18. A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons oil spill cleanup

    SciTech Connect

    Wang, Xi-Sen; Liu, Jian; Bonefont, Jean M.; Yuan, Da-Qiang; Thallapally, Praveen K.; Ma, Shengqian

    2013-01-21

    Yamamoto homo-coupling reaction of tetra(4-bromophenyl)porphyrin afforded a porous covalent porphyrin framework, PCPF-1, which features strong hydrophobicity and oleophilicity and demonstrates exceptional adsorptive capacities for saturated hydrocarbons and gasoline.

  19. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  20. Photoinduced processes in self-assembled porphyrin/perylene bisimide metallosupramolecular boxes.

    PubMed

    Indelli, M Teresa; Chiorboli, Claudio; Scandola, Franco; Iengo, Elisabetta; Osswald, Peter; Würthner, Frank

    2010-11-18

    Two new supramolecular boxes, (ZnMC)(2)(rPBI)(2) and (ZnMC)(2)(gPBI)(2), have been obtained by axial coordination of N,N'-dipyridyl-functionalized perylene bisimide (PBI) dyes to the zinc ion centers of two 2+2 porphyrin metallacycles (ZnMC = [trans,cis,cis-RuCl(2)(CO)(2)(Zn·4'-cis-DPyP)](2)). The two molecular boxes involve PBI pillars with different substituents at the bay area: the "red" PBI (rPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide) containing tert-butylphenoxy substituents and the "green" PBI (gPBI = N,N'-di(4-pyridyl)-1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide) bearing pyrrolidinyl substituents. Due to the rigidity of the modules and the simultaneous formation of four pyridine-zinc bonds, these discrete adducts self-assemble quantitatively and are remarkably stable in dichloromethane solution. The photophysical behavior of the new supramolecular boxes has been studied in dichloromethane by emission spectroscopy and ultrafast absorption techniques. A different photophysical behavior is observed for the two systems. In (ZnMC)(2)(rPBI)(2), efficient electron transfer quenching of both perylene bisimide and zinc porphyrin chromophores is observed, leading to a charge separated state, PBI(-)-Zn(+), in which a perylene bisimide unit is reduced and zinc porphyrin is oxidized. In the deactivation of the perylene bisimide localized excited state, an intermediate zwitterionic charge transfer state of type PBI(-)-PBI(+) seems to play a relevant role. In (ZnMC)(2)(gPBI)(2), singlet energy transfer from the Zn porphyrin chromophores to the perylene bisimide units occurs with an efficiency of 0.7. This lower than unity value is due to a competing electron transfer quenching, leading to the charge separated state PBI(-)-Zn(+). The distinct photophysical behavior of these two supramolecular boxes is interpreted in terms of energy changes occurring upon replacement of the "red" r

  1. The Structure of Nickel Chloride in the Ionic Liquid 1-Ethyl-3-methyl Imidazolium Chloride/Aluminum Chloride: X-ray Absorption Spectroscopy

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    The structure of anhydrous nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride and aluminum chloride has been investigated with extended X-ray absorption fine structure (EXAFS) in both Lewis acid and Lewis base solutions. The EXAFS data of NiCl{sub 2} {center_dot} 6H{sub 2}O crystals were also recorded and analyzed to demonstrate the difference file technique. The difference file technique is used to obtain the structural information for the very closely spaced coordination shells of chloride and oxygen in NiCl{sub 2} {center_dot} 6H{sub 2}O and they are found to agree very closely with the X-ray diffraction data. The difference file technique is then used to analyze the nickel chloride in the ionic liquid solutions. Even though anhydrous NiCl{sub 2} is more soluble in the basic solution than in the acidic solution, the EXAFS data show a single coordination of four chlorides in a tetrahedron around the nickel atom in the basic solution. In a weak acid solution, there are six chlorides in a single octahedral coordination shell around the nickel. However, in a strong acid solution, in addition to the octahedral chloride-coordination shell, there is a second coordination shell of eight aluminum atoms in the form of a simple cube.

  2. Crystal structure of 4-carbamoylpyridinium chloride.

    PubMed

    Fellows, Simon M; Prior, Timothy J

    2016-04-01

    The hydro-chloride salt of isonicotinamide, C6H7N2O(+)·Cl(-), has been synthesized from a dilute solution of hydro-chloric acid in aceto-nitrile. The compound displays monoclinic symmetry (space group C2/c) at 150 K, similar to the related hydro-chloride salt of nicotinamide. The asymmetric unit contains one protonated isonicotinamide mol-ecule and a chloride anion. An array of hydrogen-bonding inter-actions, including a peculiar bifurcated pyridinium-chloride inter-action, results in linear chains running almost perpendicularly in the [150] and [1-50] directions within the structure. A description of the hydrogen-bonding network and comparison with similar compounds are presented. PMID:27375858

  3. Crystal structure of 4-carbamoylpyridinium chloride

    PubMed Central

    Fellows, Simon M.; Prior, Timothy J.

    2016-01-01

    The hydro­chloride salt of isonicotinamide, C6H7N2O+·Cl−, has been synthesized from a dilute solution of hydro­chloric acid in aceto­nitrile. The compound displays monoclinic symmetry (space group C2/c) at 150 K, similar to the related hydro­chloride salt of nicotinamide. The asymmetric unit contains one protonated isonicotinamide mol­ecule and a chloride anion. An array of hydrogen-bonding inter­actions, including a peculiar bifurcated pyridinium–chloride inter­action, results in linear chains running almost perpendicularly in the [150] and [1-50] directions within the structure. A description of the hydrogen-bonding network and comparison with similar compounds are presented. PMID:27375858

  4. Porphyrin and bodipy molecular rotors as microviscometers

    NASA Astrophysics Data System (ADS)

    Kimball, Joseph Daniel, III

    Viscosity, a fluid's internal resistance to flow and resist molecular diffusion, is a fundamental property of fluid media. Determining the bulk viscosity of a fluid has been easy to relatively simple to accomplish for many years, yet in the recent decade there has been a focus on techniques to measure a fluid's microviscosity. Microviscosity differs from bulk viscosity such that microviscosity is the friction experienced by a single particle interacting with its micron-sized local environment. Macroscopic methods to evaluate the viscosity are well established, but methods to determine viscosity on the microscale level remains unclear. This work determines the viability of three molecular rotors designed as probes for microviscosity in organic media, ionic liquids, and in the cellular microenvironment. Understanding microviscosity is important because it one of the main properties of any fluid and thus has an effect on any diffusion related processes. A variety of mass and signal transport phenomena as well as intermolecular interactions are often governed by viscosity. Molecular rotors are a subclass of intramolecular charge transfer fluorophores which form a lower energy twisted state. This results in a charge separated species which is highly sensitive to its surrounding microenviroment's viscosity as high viscosity limits its ability to form this twisted state. Once excited, there are deactivation routes which the excited fluorophore can undergo: radiative and non-radiative. Both were studied in this work. In the case of a radiative decay, as seen in porphyrin dimer, the energy is released in the form of a photon and is seen as a shifted band in the emission structure. The conformation of the porphyrin dimer was found to be influenced differently by ionic liquids as compared to molecular solvents, indicating the microheterogenous nature of ionic liquids play a role in the conformation. For non-radiative decays, BODIPY dyads and triads were investigated. The

  5. Fluorescence spectroscopy for endogenous porphyrins in human facial skin

    NASA Astrophysics Data System (ADS)

    Seo, I.; Tseng, S. H.; Cula, G. O.; Bargo, P. R.; Kollias, N.

    2009-02-01

    The activity of certain bacteria in skin is known to correlate to the presence of porphyrins. In particular the presence of coproporphyrin produced by P.acnes inside plugged pores has been correlated to acne vulgaris. Another porphyrin encountered in skin is protoporphyrin IX, which is produced by the body in the pathway for production of heme. In the present work, a fluorescence spectroscopy system was developed to measure the characteristic spectrum and quantify the two types of porphyrins commonly present in human facial skin. The system is comprised of a Xe lamp both for fluorescence excitation and broadband light source for diffuse reflectance measurements. A computer-controlled filter wheel enables acquisition of sequential spectra, first excited by blue light at 405 nm then followed by the broadband light source, at the same location. The diffuse reflectance spectrum was used to correct the fluorescence spectrum due to the presence of skin chromophores, such as blood and melanin. The resulting fluorescence spectra were employed for the quantification of porphyrin concentration in a population of healthy subjects. The results show great variability on the concentration of these porphyrins and further studies are being conducted to correlate them with skin conditions such as inflammation and acne vulgaris.

  6. Sensory characterisation and consumer acceptability of potassium chloride and sunflower oil addition in small-caliber non-acid fermented sausages with a reduced content of sodium chloride and fat.

    PubMed

    Mora-Gallego, Héctor; Guàrdia, Maria Dolors; Serra, Xavier; Gou, Pere; Arnau, Jacint

    2016-02-01

    The effect of the simultaneous reduction of fat proportion (from 20% to 10% and 7%) and added salt (from 2.5% to 1.5%) and the subsequent addition of 0.64% KCl and sunflower oil (1.5% and 3.0%) on the physicochemical, instrumental colour and texture, sensory properties and consumer acceptability of small caliber non-acid fermented sausages (fuet type) was studied. This simultaneous reduction of fat and salt increased weight loss, moisture, water activity (aw), redness, instrumental texture parameters (hardness, chewiness and cohesiveness), sensory attributes (darkness, hardness, elasticity) and the consumer acceptability. The subsequent addition of 0.64% KCl to the leanest batch decreased the aw and barely affected instrumental texture parameters and consumer acceptability. Subsequent sunflower oil addition decreased hardness, chewiness and cohesiveness and increased crumbliness and oil flavour which may decrease the consumer acceptability. The simultaneous reduction of fat and NaCl with the addition of 0.64% KCl was the preferred option by the consumers.

  7. Sensory characterisation and consumer acceptability of potassium chloride and sunflower oil addition in small-caliber non-acid fermented sausages with a reduced content of sodium chloride and fat.

    PubMed

    Mora-Gallego, Héctor; Guàrdia, Maria Dolors; Serra, Xavier; Gou, Pere; Arnau, Jacint

    2016-02-01

    The effect of the simultaneous reduction of fat proportion (from 20% to 10% and 7%) and added salt (from 2.5% to 1.5%) and the subsequent addition of 0.64% KCl and sunflower oil (1.5% and 3.0%) on the physicochemical, instrumental colour and texture, sensory properties and consumer acceptability of small caliber non-acid fermented sausages (fuet type) was studied. This simultaneous reduction of fat and salt increased weight loss, moisture, water activity (aw), redness, instrumental texture parameters (hardness, chewiness and cohesiveness), sensory attributes (darkness, hardness, elasticity) and the consumer acceptability. The subsequent addition of 0.64% KCl to the leanest batch decreased the aw and barely affected instrumental texture parameters and consumer acceptability. Subsequent sunflower oil addition decreased hardness, chewiness and cohesiveness and increased crumbliness and oil flavour which may decrease the consumer acceptability. The simultaneous reduction of fat and NaCl with the addition of 0.64% KCl was the preferred option by the consumers. PMID:26497101

  8. π-conjugated donor-acceptor porphyrin copolymers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Peng, Xiaobin; Huang, Yuying; Li, Lisheng; Cao, Yong

    2015-01-01

    Conjugated donor-acceptor (D-A) molecular structures play a very important role in the significant progress of organic photovotaics. However, the reports on conjugated D-A porphyrin polymers for organic solar cells are very limited. In this work, five conjugated D-A porphyrin copolymers PEZPEBTA(C12), PEZPEBT, PEZPEBTff, PEZPETPD(O), and PEZPETDPPT(O) were synthesized by Sonagashira coupling of a porphyrin donor unit with five typical acceptor units 2-dodecyl-2H-benzotriazole, benzo[1,2,5]thiadiazole, 5,6-difluoro-benzo[1,2,5]thiadiazole, 5-octyl-thieno[3,4-c]pyrrole-4,6-dione, and 3,6-bis-(thiophen-2-yl)-2,5-dioctyl-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione linked by ethynylene linkages, respectively. They possess excellent thermal stability with a decomposition temperature of around 400°C. All absorption spectra of the copolymers were significantly red shifted with enhanced Q bands at the near-infrared region both in solutions and in films due to the simultaneous introduction of ethynylene linkages and acceptor units, which make the polymer main chains coplanar and π-conjugated and enhance the intramolecular charge transfer. PEZPEBT and PEZPEBTff are electrochemically active in both the oxidation and reduction regions, while PEZPEBTA(C12), PEZPETPD(O), and PEZPETDPPT(O) show only oxidation peaks. Power conversion efficiencies of 0.12%, 0.41%, 0.26%, 0.19%, and 0.41% were achieved for the polymer solar cells based on PEZPEBTA(C12), PEZPEBT, PEZPEBTff, PEZPETPD(O), and PEZPETDPPT(O), respectively, under AM 1.5, 100 mW/cm2 with methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) (1:2, w/w) as the active layer in the presence of 3% pyridine.

  9. Effects of Bulky Substituents of Push-Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells.

    PubMed

    Higashino, Tomohiro; Kawamoto, Kyosuke; Sugiura, Kenichi; Fujimori, Yamato; Tsuji, Yukihiro; Kurotobi, Kei; Ito, Seigo; Imahori, Hiroshi

    2016-06-22

    To evaluate the effects of substituent bulkiness around a porphyrin core on the photovoltaic properties of porphyrin-sensitized solar cells, long alkoxy groups were introduced at the meso-phenyl group (ZnPBAT-o-C8) and the anchoring group (ZnPBAT-o-C8Cn, n = 4, 8) of an asymmetrically substituted push-pull porphyrin with double electron-donating diarylamino groups and a single electron-withdrawing carboxyphenylethynyl anchoring group. The spectroscopic and electrochemical properties of ZnPBAT-o-C8 and ZnPBAT-o-C8Cn were found to be superior to those of a push-pull porphyrin reference (YD2-o-C8), demonstrating their excellent light-harvesting and redox properties for dye-sensitized solar cells. A power conversion efficiency (η) of the ZnPBAT-o-C8-sensitized solar cell (η = 9.1%) is higher than that of the YD2-o-C8-sensitized solar cell (η = 8.6%) using iodine-based electrolyte due to the enhanced light-harvesting ability of ZnPBAT-o-C8. In contrast, the solar cells based on ZnPBAT-o-C8Cn, possessing the additional alkoxy chains in the anchoring group, revealed the lower η values of 7.3% (n = 4) and 7.0% (n = 8). Although ZnPBAT-o-C8Cn exhibited higher resistance at the TiO2-dye-electrolyte interface by virtue of the extra alkoxy chains, the reduced amount of the porphyrins on TiO2 by excessive addition of coadsorbent chenodeoxycholic acid (CDCA) for mitigating the aggregation on TiO2 resulted in the low η values. Meanwhile, the ZnPBAT-o-C8-sensitized solar cell showed the lower η value of 8.1% than the YD2-o-C8-sensitized solar cell (η = 9.8%) using cobalt-based electrolyte. The smaller η value of the ZnPBAT-o-C8-sensitized solar cell may be attributed to the insufficient blocking effect of the bulky substituents of ZnPBAT-o-C8 under the cobalt-based electrolyte conditions. Overall, the alkoxy chain length and substitution position around the porphyrin core are important factors to affect the cell performance.

  10. Phosphonium chloride for thermal storage

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Development of systems for storage of thermal energy is discussed. Application of phosphonium chloride for heat storage through reversible dissociation is described. Chemical, physical, and thermodynamic properties of phosphonium chloride are analyzed and dangers in using phosphonium chloride are explained.

  11. Interfacial organization of achiral porphyrins via unidirectional compression: a general method for chiroptical porphyrin assemblies of selected chirality.

    PubMed

    Zhang, Xiao; Wang, Yanping; Chen, Penglei; Rong, Yunlong; Liu, Minghua

    2016-05-18

    Porphyrins are considered to be important scaffolds bridging supramolecular chemistry and chiral chemistry, where chirality selection via physical effects such as directional stirring and spin-coating has aroused particular interest. Nevertheless, these protocols could only work on a limited number of achiral porphyrins. It still remains a formidable challenge to pave a general avenue for the construction of chiral assemblies using achiral porphyrins. By means of a unique Langmuir-Schaefer (LS) technique of a unidirectional compression configuration, we herein have demonstrated that a series of achiral porphyrins could be facilely organized to form chiral interfacial assemblies of controlled supramolecular chirality. It has been disclosed that such a fascinating chirality selection scenario is intimately related to the direction of the compression-generated vortex-like flow, while the compression speed, one of the most significant parameters of the Langmuir technique, contributes less to this issue. With regard to a surface-pressure-dependent chirality selection phenomenon, it is suggested that the directional vortex-like flow generated by lateral compression might play a role in promoting the preferential growth of chiral assemblies showing an enhanced yet controlled CD signal. Our protocol might be, to some extent, a general method for achieving chiral porphyrin assemblies of controlled chirality.

  12. Photodynamics in stable complexes composed of a zinc porphyrin tripod and pyridyl porphyrins assembled by multiple coordination bonds.

    PubMed

    Takai, Atsuro; Gros, Claude P; Barbe, Jean-Michel; Fukuzumi, Shunichi

    2010-10-14

    A tripod zinc porphyrin (TPZn(3)) forms a stable 1:1 complex with gold(III) tetra(4-pyridyl)porphyrin (AuTPyP(+)) and free-base tris(4-pyridyl)porphyrin (2H-Py(3)P) in nonpolar solvents. The strong binding of TPZn(3) with AuTPyP(+) or 2H-Py(3)P results from the encapsulation of AuTPyP(+) or 2H-Py(3)P inside the cavity of TPZn(3) through multiple coordination bonds, as indicated by UV-vis-NIR, ESI-MS, (1)H NMR, electrochemistry and computational studies. The binding constants of monomer zinc porphyrin (MPZn) with AuTPyP(+) and 2H-Py(3)P drastically decrease as compared with TPZn(3). Detailed photophysical studies have been carried out on these composites using laser flash photolysis as well as emission spectroscopy. The efficient quenching of the singlet excited state of TPZn(3) occurs via a photoinduced electron-transfer pathway in the TPZn(3)-AuTPyP(+) complex. In contrast, energy transfer occurs in the TPZn(3)-2H-Py(3)P complex due to the smaller driving force of the photoinduced electron-transfer pathway. Neither electron transfer nor energy transfer occurs from MPZn to AuTPyP(+) under the same experimental conditions due to the small association constant of the monomer zinc porphyrin. PMID:20714588

  13. Role of complement in porphyrin-induced photosensitivity

    SciTech Connect

    Lim, H.W.; Gigli, I.

    1981-01-01

    Addition of porphyrins to sera of guinea pigs in vitro, followed by irradiation with 405 nm light, resulted in dose-dependent inhibitions of hemolytic activity of complement. With guinea pig as an animal model, we also found that systemically administered porphyrins, followed by irradiation with 405 nm light, resulted in dose-dependent inhibition of CH50 in vivo. The erythrocytes from porphyrin-treated guinea pigs showed an increased susceptibility to hemolysis induced by 405 nm irradiation in vitro. Clinical changes in these animals were limited to light-exposed areas and consisted of erythema, crusting, and delayed growth of hair. Histologically, dermal edema, dilation of blood vessels, and infiltration of mononuclear and polymorphonuclear cells were observed. Guinea pigs irradiated with ultraviolet-B developed erythema, but had no alteration of their complement profiles. It is suggested that complement products may play a specific role in the pathogenesis of the cutaneous lesions of some porphyrias.

  14. Doubly Cavitand-Capped Porphyrin Capsule by Hydrogen Bonds.

    PubMed

    Kishimoto, Kazuki; Nakamura, Munechika; Kobayashi, Kenji

    2016-02-18

    The components of a 1:2 mixture of meso-tetrakis(4-dodecyl-3,5-dihydroxyphenyl)porphyrin (1) and a bowl-shaped tetrakis(4-pyridylethynyl)cavitand (2) in CDCl3 or C6 D6 self-assemble quantitatively into the doubly cavitand-capped porphyrin capsule 2⋅1⋅2 through eight ArOH⋅⋅⋅Npy hydrogen bonds. Capsule 2⋅1⋅2 possesses two cavities divided by the porphyrin ring and encapsulates two molecules of 1-acetoxy-3,5-dimethoxybenzene (G) as a guest to form G/G@(2⋅1⋅2). Remarkable solvent effect was observed, in which the apparent association constant of 2⋅1⋅2 with G in C6 D6 was much greater than that in CDCl3. PMID:26728330

  15. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-08-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases.

  16. Modeling the effects of sodium chloride, acetic acid and intracellular pH on the survival of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primar...

  17. Trilobolide-porphyrin conjugates: on synthesis and biological effects evaluation.

    PubMed

    Tomanová, Pavla; Rimpelová, Silvie; Jurášek, Michal; Buděšínský, Miloš; Vejvodová, Lucie; Ruml, Tomáš; Kmoníčková, Eva; Drašar, Pavel B

    2015-05-01

    Trilobolide (Tb), a potent natural counterpart of thapsigargin, is a sesquiterpene lactone of guaianolide type isolated from horse caraway (Laser trilobum, L. Borkh). Tb exerts remarkable pharmacological properties based on irreversible inhibition of sarco/endoplasmic reticulum calcium ATPase (SERCA), thus being of increasing interest for cancer cure. Additionally, another pharmacological activity of Tb, as well as of thapsigargin, was reported in several studies, Tb as being an effective inductor of nitric oxide and cytokine production. These extraordinary biological properties move these molecules in further pre-clinical evaluation. Because of ubiquitous character of SERCA expression, development of specifically targeted bioactive molecules is inevitable. Since it is well known that porphyrins are preferentially taken up by cancer cells, we have designed and synthesized novel Tb-porphyrin conjugates. Copper-catalyzed azide-alkyne cycloaddition was used to link Tb with porphyrin at once. Two model conjugates of Tb and porphyrin were synthesized and properly characterized. Employing naturally occurring fluorescence properties of porphyrins, we investigated the intracellular localization of the conjugates employing fluorescence microscopy in living cells. Intriguingly, the prepared conjugates localized both in mitochondria and lysosomes of HeLa and LNCaP cells. Furthermore, the cytotoxicity of Tb-porphyrin conjugates was assessed in a number of human cancer cell lines and rat peritoneal cells. Likewise in cancer cell lines, viability of rat peritoneal cells was not affected by the tested conjugates. Interestingly, we observed dose-dependent nitric oxide (iNOS) production induced by the tested conjugates. The effect was related to the type of a linker used and the overall size of the molecule. Another potent immunobiological effects are under evaluation. In summary, the results presented here indicate notable immunobiological potential of the prepared Tb conjugates

  18. Synthesis and characterization of "face-to-face" porphyrins.

    PubMed Central

    Collman, J P; Elliott, C M; Halbert, T R; Tovrog, B S

    1977-01-01

    The syntheses of four binary porphyrins, two of which are constrained to a "face-to-face" conformation, and their Co2+ and Cu2+ derivatives are described. Electron spin resonance indicates that the intermetallic separation in the binuclear "face-to-face" porphyrins is about 6.5-6.8 A. Electronic spectra and proton magnetic resonance spectra support the postulated "face-to-face" conformations. A hypothesis that related compounds may serve as multielectron redox catalysts for O2 and N2 is presented. PMID:189304

  19. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOEpatents

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  20. Photoinduced conductivity of a porphyrin-gold composite nanowire

    SciTech Connect

    Kilina, Svletana; Balatsky, Alexander; Kilin, Dmitri S; Prezhdo, Oleg; Tsemekhman, Kiril

    2009-01-01

    Negatively charged phosphine groups on the backbone of DNA are known to attract gold nanoclusters from a colloid, assembling the clusters at fixed intervals. Bridging these intervals with porphyrin-dye linkers forms an infinite conducting chain, a quantum wire whose carrier mobility can be enhanced by photoexcitation. The resulting nanoassembly can be used as a gate: a wire with a controllable conductivity. The electronic structure of the porphyrin-gold wire is studied here by density functional theory, and the conductivity of the system is determined as a function of the photoexcitation energy. Photoexcitations of the dye are found to enhance the wire conductivity by orders of magnitude.

  1. Rotational libration of a double-decker porphyrin visualized.

    PubMed

    Otsuki, Joe; Komatsu, Yuji; Kobayashi, Daiya; Asakawa, Masumi; Miyake, Koji

    2010-05-26

    Scanning tunneling microscopy has revealed the reorientation of one of the macrocyclic rings of the double-decker porphyrin complex [Ce(TPP-Fc)(C(22)OPP)] [TPP-Fc = 5-(4-(4-ferrocenylphenylethynyl)phenyl)-10,15,20-triphenylporphyrin; C(22)OPP = 5,10,15,20-tetrakis(4-docosyloxyphenyl)porphyrin] by 90 degrees between scans when the other ring is fixed on a surface. This libration was evidenced by monitoring the location of the appended ferrocene unit, which functioned as a molecular beacon signaling its position.

  2. Micropatterning of porphyrin nanotubes thin film using focused laser writing.

    PubMed

    Gupta, Jyotsana; Lim, Xiaodai; Sow, Chorng-Haur; Vijayan, C

    2011-05-01

    We report an effective process to create micropatterns on a thin film of porphyrin nanotubes PNTs on Si substrate using focused laser beam. The optical properties of the newly synthesized porphyrin nanotubes are investigated and micropatterning is demonstrated using laser fabrication, an increasingly important tool in various fields of research. We made use of this laser cutting method to create interesting and useful two-dimensional patterned structures. The shapes and sizes of the structures created can be controlled by varying the power of the laser, angle of incident of the focused laser beam, the relative speed with which the laser beam traverse through the film and the magnification of objective lens used.

  3. Catalytic and Biocatalytic Iron Porphyrin Carbene Formation: Effects of Binding Mode, Carbene Substituent, Porphyrin Substituent, and Protein Axial Ligand

    PubMed Central

    2016-01-01

    Iron porphyrin carbenes (IPCs) are important intermediates in various chemical reactions catalyzed by iron porphyrins and engineered heme proteins, as well as in the metabolism of various xenobiotics by cytochrome P450. However, there are no prior theoretical reports to help understand their formation mechanisms and identify key information governing the binding mode, formation feasibility, and stability/reactivity. A systematic quantum chemical study was performed to investigate the effects of carbene substituent, porphyrin substituent, and axial ligand on IPC formation pathways. Results not only are consistent with available experimental data but also provide a number of unprecedented insights into electronic, steric, and H-bonding effects of various structural factors on IPC formation mechanisms. These results shall facilitate research on IPC and related systems for sustainable chemical catalysis and biocatalysis. PMID:26067900

  4. Theory of chemical bonds in metalloenzymes XI: Full geometry optimization and vibration analysis of porphyrin iron-oxo species

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Saito, Toru; Kitagawa, Yasutaka; Yamanaka, Shusuke; Kawakami, Takashi; Okumura, Mitsutaka; Yamaguchi, Kizashi

    Physiochemical properties of compound I and II intermediate states for heme enzymes (catalase, peroxidase, P450) and inorganic models are investigated by hybrid density functional theory. Used theoretical models are composed of an oxoferryl porphyrin and an axial ligand, which are cresol, methylimidazole, methylthiol, and chloride for catalase, peroxidase, P450, and inorganic models, respectively. The oxoferryl bonds are characterized in terms of bond lengths and vibration frequencies. It is found that the oxoferryl bond lengths (the stretching frequency) are shorter (higher) than those of the X-ray crystal structures of enzymes, on the other hand for inorganic models, they are comparable with the experimental values. Spin density distributions showed that radical state at the compound I can be classified into two types: (1) porphyrin radical state and (2) axial ligand radical state. Peroxidase and inorganic model are in the former case and Catalase and P450 are in the later case at the present calculation models. Magnetic interactions between oxoferryl and ligand radical moieties are analyzed by the natural orbital analysis and it is showed that the effective exchange integral (J) values are strongly related to the radical spin density distributions: axial ligand radical tends to increase the antiferromagnetic interaction. Mössbauer shift parameters are also evaluated and it is shown that iron charge states are similar for these models.

  5. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA.

    PubMed

    Ling, Pinghua; Lei, Jianping; Zhang, Lei; Ju, Huangxian

    2015-04-01

    A sensitive electrochemical sensor is designed for DNA detection based on mimetic catalysis of metal-organic framework (MOF) and allosteric switch of hairpin DNA. The functional MOFs are synthesized as signal probes by a one-pot encapsulation of iron(III) meso-5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin chloride (FeTCPP) into a prototypal MOF, HKUST-1(Cu), and sequentially conjugated with streptavidin (SA) as a recognition element. The resulting FeTCPP@MOF composites can mimetically catalyze the oxidation of o-phenylenediamine (o-PD) to 2,2'-diaminoazobenzene, which is a good electrochemical indicator for signal readout. The presence of target DNA introduces the allosteric switch of hairpin DNA to form SA aptamer, and thus, FeTCPP@MOF-SA probe is brought on the electrode surface via the specific recognition between SA and the corresponding aptamer, resulting in the enhancement of electrochemical signal. The "signal-on" electrochemical sensor can detect target DNA down to 0.48 fM with the linear range of 10 fM to 10 nM. Moreover, the MOF-based electrochemical sensor exhibits acceptable selectivity against even a single mismatched DNA and good feasibility in complex serum matrixes. This strategy opens up a new direction of porphyrin-functionalized MOF for signal transduction in electrochemical biosensing.

  6. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  7. Strontium-89 Chloride

    MedlinePlus

    ... ask your doctor or pharmacist for more information.Strontium-89 chloride is in a class of drugs known as radioisotopes. It delivers radiation to cancer sites and ultimately decreases bone pain. The length of treatment depends on the ...

  8. Mercuric chloride poisoning

    MedlinePlus

    ... Mercuric chloride is a very poisonous form of mercury. It is a type of mercury salt. There are different types of mercury poisonings . This article discusses poisoning from swallowing mercuric ...

  9. Hydrogen chloride test set

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1976-01-01

    Detector uses tertiary amine, which makes reaction fairly specific for relatively small highly polarized hydrogen chloride molecule. Reaction is monitored by any microbalance capable of measuring extremely small mass differences in real time.

  10. Synthesis and Quantum Mechanical Studies of a Highly Stable Ferrocene-Incorporated Expanded Porphyrin.

    PubMed

    Chatterjee, Tamal; Theophall, G G; Silva, K Ishara; Lakshmi, K V; Ravikanth, Mangalampalli

    2016-07-18

    We present the first evidence for an unusual stable metallocene-containing expanded porphyrinoid macrocycle that was synthesized by condensing one equivalent of 1,1'-bis[phenyl(2-pyrroyl)methyl]ferrocene with one equivalent of 5,10-di(p-tolyl)-16-oxa-15,17-dihydrotripyrrane under acid-catalyzed conditions. The formation of ferrocene-incorporated expanded porphyrin macrocycle was confirmed by HR-MS and 1D/2D NMR spectroscopy. The macrocycle was nonaromatic and displayed absorption bands in the region of 420-550 nm. The molecular and electronic structure of the ferrocene-incorporated expanded porphyrin was investigated by DFT methods. The DFT calculations indicated a partially twisted structure of the molecule, and the extent of torsional distortion was larger than previously observed for ruthenocenoporphyrinoids and ferrocenothiaporphyrin. The HOMO and LUMO states that were obtained from the DFT calculations indicated partial charge density on all four pyrrole nitrogen atoms and the furanyl oxygen atom in the HOMO state and partial charge density on the α and β carbon atoms in the LUMO state. In addition, the ferrocene moiety displayed the presence of partial charge density on the Fe atom and the cp rings in both the HOMO and LUMO states. Moreover, DFT studies of the diprotonated form of macrocycle indicated that the diprotonated form also retained a synclinal conformation and that its torsional strain was slightly higher than its free base form.

  11. Immobilization of anionic iron(III) porphyrins onto in situ obtained zinc oxide.

    PubMed

    Machado, Guilherme S; Wypych, Fernando; Nakagaki, Shirley

    2012-07-01

    A family of anionic iron(III) porphyrins (FePor) was immobilized onto zinc oxide (ZnO) obtained by the in situ hydrothermal decomposition of zinc hydroxide nitrate, a layered hydroxide salt. The immobilization probably occurred via the interaction between the anionic charges on the porphyrins and the positively charged surface of the ZnO, in slightly acidic to neutral pH. The resulting solids were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRDP), Fourier transform infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR), and ultraviolet-visible spectroscopy (UV-Vis) (solid samples), which confirmed the formation of ZnO and the immobilization of the FePor. The prepared materials were employed as catalysts for the heterogeneous catalytic oxidation of cyclooctene, cyclohexane, and n-heptane, using iodosylbenzene as the oxygen donor. Good catalytic results were achieved for all the substrates, and selectivity for the alcohol was verified during the oxidation of alkanes. The reuse capacity of the solid catalyst was also investigated.

  12. Synthesis and Quantum Mechanical Studies of a Highly Stable Ferrocene-Incorporated Expanded Porphyrin.

    PubMed

    Chatterjee, Tamal; Theophall, G G; Silva, K Ishara; Lakshmi, K V; Ravikanth, Mangalampalli

    2016-07-18

    We present the first evidence for an unusual stable metallocene-containing expanded porphyrinoid macrocycle that was synthesized by condensing one equivalent of 1,1'-bis[phenyl(2-pyrroyl)methyl]ferrocene with one equivalent of 5,10-di(p-tolyl)-16-oxa-15,17-dihydrotripyrrane under acid-catalyzed conditions. The formation of ferrocene-incorporated expanded porphyrin macrocycle was confirmed by HR-MS and 1D/2D NMR spectroscopy. The macrocycle was nonaromatic and displayed absorption bands in the region of 420-550 nm. The molecular and electronic structure of the ferrocene-incorporated expanded porphyrin was investigated by DFT methods. The DFT calculations indicated a partially twisted structure of the molecule, and the extent of torsional distortion was larger than previously observed for ruthenocenoporphyrinoids and ferrocenothiaporphyrin. The HOMO and LUMO states that were obtained from the DFT calculations indicated partial charge density on all four pyrrole nitrogen atoms and the furanyl oxygen atom in the HOMO state and partial charge density on the α and β carbon atoms in the LUMO state. In addition, the ferrocene moiety displayed the presence of partial charge density on the Fe atom and the cp rings in both the HOMO and LUMO states. Moreover, DFT studies of the diprotonated form of macrocycle indicated that the diprotonated form also retained a synclinal conformation and that its torsional strain was slightly higher than its free base form. PMID:27356113

  13. Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer.

    PubMed

    Su, Shishuai; Ding, Yanping; Li, Yiye; Wu, Yan; Nie, Guangjun

    2016-02-01

    Triple-negative breast cancer is a malignant cancer type with a high risk of early recurrence and distant metastasis. Unlike other breast cancers, triple-negative breast cancer is lack of targetable receptors and, therefore, patients largely receive systemic chemotherapy. However, inevitable adverse effects and acquired drug resistance severely constrain the therapeutic outcome. Here we tailor-designed a porphyrin-based micelle that was self-assembled from a hybrid amphiphilic polymer comprising polyethylene glycol, poly (d, l-lactide-co-glycolide) and porphyrin. The bilayer micelles can be simultaneously loaded with two chemotherapeutic drugs with synergistic cytotoxicity and distinct physiochemical properties, forming a uniform and spherical nanostructure. The drug-loaded micelles showed a tendency to accumulate in the tumor and can be internalized by tumor cells for drug release in acidic organelles. Under near-infrared laser irradiation, high density of self-quenched porphyrins in the hydrophobic layer absorbed light efficiently and converted into an excited state, leading to the release of sufficient heat for photothermal therapy. The integration of localized photothermal effect and synergistic chemotherapy conferred great chemosensitivity to cancer cells and achieved tumor regression using about 1/10 of traditional drug dosage. As a result, chemotherapy-associated adverse effects were successfully avoided. Our present study established a novel porphyrin-based nanoplatform with photothermal activity and expanded drug loading capacity, providing new opportunities for challenging conventional chemotherapy and fighting against stubborn triple-negative breast cancer.

  14. Ion chromatographic determination of chloride in mustard sauces.

    PubMed

    López Agüero, E; Bosch Bosch, N; Barrera Vázquez, C; López Ruiz, B

    1999-11-01

    A new, simple, precise, and rapid ion chromatography (IC) method has been developed to determine chloride in mustard sauces using a mixture of phthalic acid, acetone, and water adjusted to pH 5.0 as eluent. Conductometric detection was carried out. The retention time for chloride was 1.5 min. Linearity was obtained up to a concentration level of 100 mg/L NaCl. The method was statistically evaluated for accuracy and precision after being used to assay the chloride from mustard sauces. Within the same samples, the chloride levels obtained by IC were compared with the sodium concentrations quantified by atomic absorption spectrophotometry.

  15. Synergistic effects in solvent-extraction systems based on alkylsalicylic acids. III. Extraction of the trivalent lanthanides and yttrium from chloride media in the presence of dialkyl and diaryl sulphoxides

    SciTech Connect

    Preston, J.S.; Preez, A.C. du

    1996-08-01

    Dialkyl and diaryl sulphoxides were found to cause synergistic shifts in the pH{sub 50} values for the extraction of the trivalent lanthanides and yttrium from sodium chloride media by solutions of alkylsalicylic acids in xylene. The extent of the synergistic shift for a given sulphoxide increases with increasing steric bulk of the alkylsalicylic acid used. With the homologous series of dialkyl sulphoxides R{sub 2}SO, where R = n-butyl, n-hexyl, and n-octyl, there is little variation in the size of the synergistic shift for a given alkylsalicylic acid. For a series of sulphoxides containing similar numbers of carbon atoms, the extent of the shift increases with the introduction of alicyclic rings, but decreases when aromatic rings are introduced, for example, in the order of R: cyclohexyl > n-hexyl > phenyl, although the effect is not very marked. For a given extractant mixture, the pH{sub 50} values decrease from lanthanum to samarium and then increase from samarium to lutetium. The separation between the pH{sub 50} values for lanthanum and lutetium increases with increasing steric bulk of both the alkylsalicylic acid (HA) and the sulphoxide (L), but the separations between adjacent lanthanides are in all cases too small to be of any practical use. Slope-analysis treatment of metal-distribution data, and measurements of the solubility of the neodymium-alkylsalicylic acid complex in xylene solutions of the sulphoxides are consistent with the extraction of a mixed-ligand complex of the type NdA{sub 3}L{sub 2}. 22 refs., 4 figs., 4 tabs.

  16. Identification of Specific Effect of Chloride on the Spectral Properties and Structural Stability of Multiple Extracellular Glutamic Acid Mutants of Bacteriorhodopsin

    PubMed Central

    Lazarova, Tzvetana; Mlynarczyk, Krzysztof; Querol, Enric; Tenchov, Boris; Filipek, Slawomir; Padrós, Esteve

    2016-01-01

    In the present work we combine spectroscopic, DSC and computational approaches to examine the multiple extracellular Glu mutants E204Q/E194Q, E204Q/E194Q/E9Q and E204Q/E194Q/E9Q/E74Q of bacteriorhodopsin by varying solvent ionic strength and composition. Absorption spectroscopy data reveal that the absorption maxima of multiple EC Glu mutants can be tuned by the chloride concentration in the solution. Visible Circular dichroism spectra imply that the specific binding of Cl- can modulate weakened exciton chromophore coupling and reestablish wild type-like bilobe spectral features of the mutants. The DSC data display reappearance of the reversible thermal transition, higher Tm of denaturation and an increase in the enthalpy of unfolding of the mutants in 1 M KCl solutions. Molecular dynamics simulations indicate high affinity binding of Cl- to Arg82 and to Gln204 and Gln194 residues in the mutants. Analysis of the experimental data suggests that simultaneous elimination of the negatively charged side chain of Glu194 and Glu204 is the major cause for mutants’ alterations. Specific Cl- binding efficiently coordinates distorted hydrogen bonding interactions of the EC region and reconstitutes the conformation and structure stability of mutated bR in WT-like fashion. PMID:27657718

  17. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Hyman, M.L.; Savolainen, J.E.

    1960-01-01

    A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.

  18. A method for determining the nitrogen isotopic composition of porphyrins.

    PubMed

    Higgins, Meytal B; Robinson, Rebecca S; Casciotti, Karen L; McIlvin, Matthew R; Pearson, Ann

    2009-01-01

    We describe a new method for analysis of the nitrogen isotopic composition of sedimentary porphyrins. This method involves separation and purification of geoporphyrins from sediment samples using liquid chromatography and HPLC, oxidation of the nitrogen within porphyrin-enriched fractions using a two-step process, and isotopic analysis of the resulting nitrate using the denitrifier method. By analysis of these degradation products of chlorophylls, we are able to measure an isotopic signature that reflects the nitrogen utilized by primary producers. The high sensitivity of the denitrifier method allows measurement of small samples that contain low concentrations of porphyrins. Extraction of only 50 nmol of nitrogen (nmol N) allows the following five analyses to be made (each on approximately 10 nmol N): nitrogen concentration, an assessment of potential contamination by nonporphyrin N, and three replicate isotopic measurements. The measured values of delta15N have an average analytical precision of +/-0.5 per thousand (1sigma) and an average contribution from Rayleigh fractionation of 0.7 per thousand from incomplete oxidation of porphyrin N to nitrate. The overall method will enable high-resolution records of delta15N values to be obtained for geological and ecological applications.

  19. Bis(porphyrin)-anthraquinone triads: synthesis, spectroscopy, and photochemistry.

    PubMed

    Giribabu, L; Reeta, P Silviya; Kanaparthi, Ravi Kumar; Srikanth, Malladi; Soujanya, Y

    2013-04-11

    Molecular triads based on bis(porphyrin)-anthraquinone having azomethine bridge at the pyrrole-β position have been designed and synthesized. Both free-base AQ-(H2)2 and zinc AQ-(Zn)2 triads are characterized by elemental analysis, MALDI-MS, (1)H NMR, UV-visible, and fluorescence spectroscopy (steady-state and time-resolved) as well as electrochemical method. The absorption spectra of both Soret and Q-bands of the triads are red-shifted by 12-20 nm with respect to their monomer units. The study supported by theoretical calculations manifests that there exists a negligible electronic communication in the ground state between the donor porphyrin and acceptor anthraquinone of these triads. However, interestingly, both the triads exhibit significant fluorescence emission quenching (51-92%) of the porphyrin emission compared to their monomeric units. The emission quenching is attributed to the excited-state intramolecular photoinduced electron transfer from porphyrins to anthraquinone. The electron-transfer rates (kET) of these triads are found in the range 1.0 × 10(8) to 7.7 × 10(9) s(-1) and are found to be solvent dependent.

  20. Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion.

    PubMed

    Hasobe, Taku

    2013-06-01

    Photofunctional molecular architectures with well-defined shapes and sizes are of great interest because of various applications such as photovoltaics, photocatalysis, and electronics. Porphyrins are promising building blocks for organized nanoscale superstructures, which perform many of the essential light-harvesting and photoinduced electron/energy transfer reaction. In this Perspective, we present the recent advances in supramolecular architectures of porphyrins for solar energy conversion. First, we state preparation and light energy conversion properties of porphyrin (donor: D) and fullerene (acceptor: A)-based composite spherical nanoassemblies. The interfacial control of D/A molecules based on our supramolecular strategy successfully demonstrates the drastic enhancement of light energy conversion properties as compared to the corresponding nonorganized systems. Then, bar-shaped structures composed of two different D and A molecules with separated inside and outside layers are discussed. This unusual rod formation shows a possibility for a novel zeolite-like photoreaction cavity with efficient visible light absorption. Finally, photophysical and phoelectrochemical properties of supramolecular composites between porphyrins and carbon naotubes/graphenes are briefly described. PMID:26283108

  1. Porphyrin involvement in redshift fluorescence in dentin decay

    NASA Astrophysics Data System (ADS)

    Slimani, A.; Panayotov, I.; Levallois, B.; Cloitre, T.; Gergely, C.; Bec, N.; Larroque, C.; Tassery, H.; Cuisinier, F.

    2014-05-01

    The aim of this study was to evaluate the porphyrin involvement in the red fluorescence observed in dental caries with Soprolife® light-induced fluorescence camera in treatments mode (SOPRO, ACTEON Group, La Ciotat, France) and Vistacam® camera (DÜRR DENTAL AG, Bietigheim-Bissingen, Germany). The International Caries Detection and Assessment System (ICDAS) was used to rand the samples. Human teeth cross-sections, ranked from ICDAS score 0 to 6, were examined by epi-fluorescence microscopy and Confocal Raman microscopy. Comparable studies were done with Protoporphyrin IX, Porphyrin I and Pentosidine solutions. An RGB analysis of Soprolife® images was performed using ImageJ Software (1.46r, National Institutes of Health, USA). Fluorescence spectroscopy and MicroRaman spectroscopy revealed the presence of Protoporphyrin IX, in carious enamel, dentin and dental plaque. However, the presence of porphyrin I and pentosidine cannot be excluded. The results indicated that not only porphyrin were implicated in the red fluorescence, Advanced Glygation Endproducts (AGEs) of the Maillard reaction also contributed to this phenomenon.

  2. Porphyrin Induced Laser Deactivation of Trypsinogen-Trypsin Conversion

    NASA Astrophysics Data System (ADS)

    Perido, Joanna; Brancaleon, Lorenzo

    2015-03-01

    Pancreatitis is caused by the inflammation of the pancreas, where the digestive enzyme trypsin is activated from the precursor enzyme trypsinogen while still in the pancreas. The presence of trypsin in the pancreas causes auto-activation of trypsinogen, resulting in greater inflammation and auto-digestion of the pancreas. In severe cases, this cascade effect can lead to organ failure, diabetes, and pancreatic cancer. Our hypothesis is that if trypsinogen is prevented from auto-activating into trypsin, then this cascade can be stopped. We propose to do this by inducing conformational changes in trypsinogen when bound to a photoactive porphyrin dye. Porphyrins are comprised of four linked heterocyclic groups forming a flat ring, and bind well with proteins such as trypsinogen. In this study we used spectroscopic techniques to probe the binding of meso-tetrakis (4-sulfonatephenyl) porphyrin (TSPP) to trypsinogen in vitro, as a preliminary step to then prompt and characterize conformational changes of trypsinogen through irradiation. If conformational changes are detected the trypsinogen will be tested for trypsin inactivation. This investigation may provide promising initial results to the possible use of porphyrins as an inhibitor of the self-activation of trypsinogen into trypsin, and a potential inhibitor of pancreatitis. MARC*U-STAR.

  3. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A.; Medforth, Craig J.

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  4. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles.

    PubMed

    Rieffel, James; Chen, Feng; Kim, Jeesu; Chen, Guanying; Shao, Wei; Shao, Shuai; Chitgupi, Upendra; Hernandez, Reinier; Graves, Stephen A; Nickles, Robert J; Prasad, Paras N; Kim, Chulhong; Cai, Weibo; Lovell, Jonathan F

    2015-03-11

    Hexamodal imaging using simple nanoparticles is demonstrated. Porphyrin-phospholipids are used to coat upconversion nanoparticles in order to generate a new biocompatible material. The nanoparticles are characterized in vitro and in vivo for imaging via fluorescence, upconversion, positron emission tomography, computed tomography, Cerenkov luminescence, and photoacoustic tomography.

  5. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III).

    PubMed

    Pérez-De La Cruz, V; González-Cortés, C; Galván-Arzate, S; Medina-Campos, O N; Pérez-Severiano, F; Ali, S F; Pedraza-Chaverrí, J; Santamaría, A

    2005-01-01

    Oxidative/nitrosative stress is involved in NMDA receptor-mediated excitotoxic brain damage produced by the glutamate analog quinolinic acid. The purpose of this work was to study a possible role of peroxynitrite, a reactive oxygen/nitrogen species, in the course of excitotoxic events evoked by quinolinic acid in the brain. The effects of Fe(TPPS) (5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III)), an iron porphyrinate and putative peroxynitrite decomposition catalyst, were tested on lipid peroxidation and mitochondrial function in brain synaptic vesicles exposed to quinolinic acid, as well as on peroxynitrite formation, nitric oxide synthase and superoxide dismutase activities, lipid peroxidation, caspase-3-like activation, DNA fragmentation, and GABA levels in striatal tissue from rats lesioned by quinolinic acid. Circling behavior was also evaluated. Increasing concentrations of Fe(TPPS) reduced lipid peroxidation and mitochondrial dysfunction induced by quinolinic acid (100 microM) in synaptic vesicles in a concentration-dependent manner (10-800 microM). In addition, Fe(TPPS) (10 mg/kg, i.p.) administered 2 h before the striatal lesions, prevented the formation of peroxynitrite, the increased nitric oxide synthase activity, the decreased superoxide dismutase activity and the increased lipid peroxidation induced by quinolinic acid (240 nmol/microl) 120 min after the toxin infusion. Enhanced caspase-3-like activity and DNA fragmentation were also reduced by the porphyrinate 24 h after the injection of the excitotoxin. Circling behavior from quinolinic acid-treated rats was abolished by Fe(TPPS) six days after quinolinic acid injection, while the striatal levels of GABA, measured one day later, were partially recovered. The protective effects that Fe(TPPS) exerted on quinolinic acid-induced lipid peroxidation and mitochondrial dysfunction in synaptic vesicles suggest a primary action of the porphyrinate as an antioxidant molecule. In vivo findings

  6. Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor.

    PubMed

    Parayil, Sreenivasan Koliyat; Lee, Jooran; Yoon, Minjoong

    2013-05-01

    Highly fluorescent and thermo-stable peptide nanoribbons (PNRs) were fabricated by solvothermal self-assembly of a single peptide (D,D-diphenyl alanine peptides) with Sn-porphyrin (trans-dihydroxo[5,10,15,20-tetrakis(p-tolyl)porphyrinato] Sn(IV) (SnTTP(OH)2)). The structural characterization of the as-prepared nanoribbons was performed by transmitting electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), FT-IR and Raman spectroscopy, indicating that the lipophilic Sn-porphyrins are impregnated into the porous surface formed in the process of nanoribbon formation through intermolecular hydrogen bonding of the peptide main chains. Consequently the Sn-porphyrin-impregnated peptide nanoribbons (Sn-porphyrin-PNRs) exhibited typical UV-visible absorption spectrum of the monomer porphyrin with a red shifted Q-band, and their fluorescence quantum yield was observed to be enhanced compared to that of free Sn-porphyrin. Interestingly the fluorescence intensity and lifetimes of Sn-porphyrin-PNRs were selectively affected upon interaction with nucleotide base sequences of DNA while those of free Sn-porphyrins were not affected by binding with any of the DNA studied, indicating that DNA-induced changes in the fluorescence properties of Sn-porphyrin-PNRs are due to interaction between DNA and the PNR scaffold. These results imply that Sn-porphyrin-PNR will be useful as a potent fluorescent protein analogue and as a biocompatible DNA sensor.

  7. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats.

    PubMed

    Akinrinde, A S; Oyagbemi, A A; Omobowale, T O; Asenuga, E R; Ajibade, T O

    2016-07-01

    The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (p<0.05) in oxidative stress parameters (hydrogen peroxide, H2O2 and malondialdehyde, MDA) and increased expression of the apoptotic initiator caspase 8 in the heart and kidneys. There was significant reduction (p<0.05) in reduced glutathione (GSH) in cardiac and renal tissues; reduction in superoxide dismutase (SOD) activity in the kidneys and adaptive increases in Glutathione S-transferase (GST) and catalase (CAT). CoCl2 also produced significant reduction (p<0.05) in systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressures. Oral COG and gallic acid treatment significantly reduced (p<0.05) the levels of H2O2 and MDA; with reduced expression of caspase 8 and restoration of GSH levels, GPx, SOD and CAT activities, howbeit, to varying degrees in the heart and kidneys. COG (200mg/kg) was most effective in restoring the blood pressures in the rats to near control levels. CoCl2-induced histopathological lesions including myocardial infarction and inflammation and renal tubular necrosis and inflammation were effectively ameliorated by the treatments administered. This study provides evidence for the protective roles of O. gratissimum and gallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats.

  8. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats.

    PubMed

    Akinrinde, A S; Oyagbemi, A A; Omobowale, T O; Asenuga, E R; Ajibade, T O

    2016-07-01

    The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (p<0.05) in oxidative stress parameters (hydrogen peroxide, H2O2 and malondialdehyde, MDA) and increased expression of the apoptotic initiator caspase 8 in the heart and kidneys. There was significant reduction (p<0.05) in reduced glutathione (GSH) in cardiac and renal tissues; reduction in superoxide dismutase (SOD) activity in the kidneys and adaptive increases in Glutathione S-transferase (GST) and catalase (CAT). CoCl2 also produced significant reduction (p<0.05) in systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressures. Oral COG and gallic acid treatment significantly reduced (p<0.05) the levels of H2O2 and MDA; with reduced expression of caspase 8 and restoration of GSH levels, GPx, SOD and CAT activities, howbeit, to varying degrees in the heart and kidneys. COG (200mg/kg) was most effective in restoring the blood pressures in the rats to near control levels. CoCl2-induced histopathological lesions including myocardial infarction and inflammation and renal tubular necrosis and inflammation were effectively ameliorated by the treatments administered. This study provides evidence for the protective roles of O. gratissimum and gallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats. PMID:27259349

  9. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, H.; Saliba, N. A.

    2006-05-01

    Levels of coarse (PM10-2.5) and fine (PM2.5) particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH4)2SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO3)2 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean countries, relatively

  10. Influence of sodium chloride and pH during acidic marination on water retention and mechanical properties of turkey breast meat.

    PubMed

    Goli, T; Ricci, J; Bohuon, P; Marchesseau, S; Collignan, A

    2014-03-01

    Turkey breast cubes underwent acidic marination in the presence of salt. The transfer of water, salt and acid was measured, and texture was assessed on the cooked meat. While significant mass gains were observed during marination, from 20 minutes of immersion onwards, only long durations produced an overall matter balance greater than that of non-marinated meat. From the first minutes of immersion, these transfers caused hardening, regardless of the presence of salt in the marinade. For longer durations, only in the absence of salt was significant tenderizing seen in comparison to the non-marinated control. This effect appears to be due on the one hand to passing the isoelectric pH of the meat during acidification, and on the other hand to setting up antagonistic mechanisms breaking down or reinforcing connective tissues by acid and salt respectively. The high degree of tenderization observed in a water-acid solution can be explained partly by dilution of the fiber load per section unit due to protein solubilization.

  11. Electronic Structure and Dynamics of Nitrosyl Porphyrins

    PubMed Central

    Scheidt, W. Robert; Barabanschikov, Alexander; Pavlik, Jeffrey W.; Silvernail, Nathan J.; Sage, J. Timothy

    2010-01-01

    Nitric oxide (NO) is a signalling molecule employed to regulate essential physiological processes. Thus, there is great interest in understanding the interaction of NO with heme, which is found at the active site of many proteins that recognize NO, as well those involved in its creation and elimination. We summarize what we have learned from investigations of the structure, vibrational properties, and conformational dynamics of NO complexes with ferrous porphyrins, as well as computational investigations in support of these experimental studies. Multi-temperature crystallographic data reveals variations in the orientational disorder of the nitrosyl ligand. In some cases, equilibria among NO orientations can be analyzed using the vant Hoff relationship and the free energy and the enthalpy of the solid-state transitions evaluated experimentally. DFT calculations predict that intrinsic barriers to torsional rotations are smaller than thermal energies at physiological temperatures, and the coincidence of observed NO orientations with minima in molecular mechanics potentials indicates that nonbonded interactions with other chemical groups control the conformational freedom of the bound NO. In favorable cases, reduced disorder at low temperatures exposes subtle structural features including off-axis tilting of the Fe–NO bond and anisotropy of the equatorial Fe–N bonds. We also present the results of nuclear resonance vibrational spectroscopy (NRVS) measurements on oriented single crystals of [Fe(TPP)(NO)] and [Fe(TPP)(1-MeIm)(NO)]. These describe the anisotropic vibrational motion of Fe in five-and six-coordinate heme-NO complexes, and reveal vibrations of all Fe-ligand bonds as well as low frequency molecular distortions associated with the doming of the heme upon ligand binding. Quantitative comparison with predicted frequencies, amplitudes and directions facilitates identification of vibrational modes, but also suggests that commonly used DFT functionals are not

  12. Comparison of maturity based on steroid and vanadyl porphyrin parameters: A new vanadyl porphyrin maturity parameter for higher maturities

    NASA Astrophysics Data System (ADS)

    Sundararaman, Padmanabhan; Moldowan, J. Michael

    1993-03-01

    Correlations are demonstrated between steroid maturity parameters and the porphyrin maturity parameter (PMP) which is based on the ratio of specific vanadyl porphyrins C 28E /(C 28E + C 32D) measured by HPLC. Measurements from a global selection of > 100 rock extracts and oils show that PMP parallels changes in the C 29-sterane 20S/(20S + 20R) and tri/(tri + mono) aromatic steroid ratios, and that all three parameters appear to attain their maximum values at similar maturity levels. The triaromatic steroid side chain cracking parameter, TA I/(I + II), reaches approximately 20% of its maximum value when PMP has reached 100%. These results suggest that PMP is effective in the early to peak portion of the oil window. A new parameter, PMP-2, based on changes in the relative concentrations of two peaks in the HPLC fingerprint (vanadyl "etio" porphyrins), appears effective in assessing the maturity of source rocks beyond peak oil generation. In combination with PMP this parameter extends the effective range of vanadyl porphyrins parameters to higher maturities as demonstrated by a suite of oils from the Oriente Basin, Ecuador, South America.

  13. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOEpatents

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  14. The Role of Porphyrin-Free-Base in the Electronic Structures and Related Properties of N-Fused Carbazole-Zinc Porphyrin Dye Sensitizers

    PubMed Central

    Li, Xing-Yu; Zhang, Cai-Rong; Wu, You-Zhi; Zhang, Hai-Min; Wang, Wei; Yuan, Li-Hua; Yang, Hua; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-01-01

    Dye sensitizers can significantly affect power conversion efficiency of dye-sensitized solar cells (DSSCs). Porphyrin-based dyes are promising sensitizers due to their performances in DSSCs. Here, based upon a N-fused carbazole-zinc porphyrin-free-base porphyrin triad containing an ethynyl-linkage (coded as DTBC), the novel porphyrin dyes named DTBC-MP and DTBC-TP were designed by varying the porphyrin-free-base units in the π conjugation of DTBC in order to study the effect of porphyrin-free-base in the modification of electronic structures and related properties. The calculated results indicate that, the extension of the conjugate bridge with the porphyrin-free-base unit results in elevation of the highest occupied molecular orbital (HOMO) energies, decrease of the lowest unoccupied molecular orbital (LUMO) energies, reduction of the HOMO-LUMO gap, red-shift of the absorption bands, and enhancement of the absorbance. The free energy changes demonstrate that introducing more porphyrin-free-base units in the conjugate bridge induces a faster rate of electron injection. The transition properties and molecular orbital characters suggest that the different transition properties might lead to a different electron injection mechanism. In terms of electronic structure, absorption spectra, light harvesting capability, and free energy changes, the designed DTBC-TP is a promising candidate dye sensitizer for DSSCs. PMID:26610469

  15. Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds

    SciTech Connect

    Mayr, H.; Striepe, W.

    1983-04-22

    Lewis acid catalyzed addition reactions of alkyl halides with unsaturated hydrocarbons have been studied. 1:1 addition products are formed if the addends dissociate faster than the corresponding products; otherwise, polymerization takes place. For reaction conditions under which these compounds exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

  16. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  17. Magnetic circular dichroism spectroscopy of N-confused porphyrin and its ionized forms.

    PubMed

    Ziegler, Christopher J; Erickson, Nathan R; Dahlby, Michael R; Dalby, Michael R; Nemykin, Victor N

    2013-11-14

    N-Confused porphyrin (NCP) and its externally methylated variant (MeNCP) were investigated using UV-vis and magnetic circular dichrosim (MCD) spectroscopies. In addition to evaluating the spectroscopy of the neutral compounds, the acid/base chemistry of these macrocycles was examined by the same methods. NCP exhibits two tautomeric states depending on the polarity of the solvent, and their protonation/deprotonation chemistries also differ depending on solvent polarity. DFT and TDDFT calculations were employed to evaluate the observed spectroscopic changes. Using both experimental and calculated results, we were able to determine the sites of protonation/deprotonation for both tautomeric forms of NCP. Inspection of the MCD Faraday B terms for all of the macrocycles presented in this report showed that the ΔHOMO > ΔLUMO condition is maintained in all cases, and these observations were in good agreement with the DFT calculations. PMID:24131398

  18. Magnetic circular dichroism spectroscopy of N-confused porphyrin and its ionized forms.

    PubMed

    Ziegler, Christopher J; Erickson, Nathan R; Dahlby, Michael R; Dalby, Michael R; Nemykin, Victor N

    2013-11-14

    N-Confused porphyrin (NCP) and its externally methylated variant (MeNCP) were investigated using UV-vis and magnetic circular dichrosim (MCD) spectroscopies. In addition to evaluating the spectroscopy of the neutral compounds, the acid/base chemistry of these macrocycles was examined by the same methods. NCP exhibits two tautomeric states depending on the polarity of the solvent, and their protonation/deprotonation chemistries also differ depending on solvent polarity. DFT and TDDFT calculations were employed to evaluate the observed spectroscopic changes. Using both experimental and calculated results, we were able to determine the sites of protonation/deprotonation for both tautomeric forms of NCP. Inspection of the MCD Faraday B terms for all of the macrocycles presented in this report showed that the ΔHOMO > ΔLUMO condition is maintained in all cases, and these observations were in good agreement with the DFT calculations.

  19. A simple and sensitive colorimetric assay of zinc in serum using cationic porphyrin.

    PubMed

    Makino, T

    1999-04-01

    A direct colorimetric method is presented for simple and sensitive determination of serum zinc in 0.05-ml samples, using a cationic porphyrin, alpha,beta,gamma,delta-tetrakis(4-N-trimethylaminophenyl) porphine tetratoluenesulfonate salt (ttmapp, epsilon = 41.5 x 10(4) l/mol per cm at 421 nm). 7-Iodo-8-hydroxyquinoline-5-sulfonic acid (Ferron) as an accelerator for the incorporation of zinc into ttmapp was most effective. Interference of iron, copper and conjugated bilirubin in serum can be eliminated in the presence of proteins such as albumin in serum. Within-run and between-run coefficients of variation (CV) were in the ranges of 0.76-3.59 and 2.08-5.20%. A good correlation was observed between this method and atomic absorption spectrometry (AAS).

  20. Electrocatalytic Transformation of Carbon Dioxide into Low Carbon Compounds on Conducting Polymers Derived from Multimetallic Porphyrins.

    PubMed

    Dreyse, Paulina; Honores, Jessica; Quezada, Diego; Isaacs, Mauricio

    2015-11-01

    The electrochemical reduction of carbon dioxide is studied herein by using conducting polymers based on metallotetraruthenated porphyrins (MTRPs). The polymers on glassy carbon electrodes were obtained by electropolymerization processes of the monomeric MTRP. The linear sweep voltammetry technique resulted in polymeric films that showed electrocatalytic activity toward carbon dioxide reduction with an onset potential of -0.70 V. The reduction products obtained were hydrogen, formic acid, formaldehyde, and methanol, with a tendency for a high production of methanol with a maximum value of turnover frequency equal to 15.07 when using a zinc(II) polymeric surface. Studies of the morphology (AFM) and electrochemical impedance spectroscopy results provide an adequate background to explain that the electrochemical reduction is governed by the roughness of the polymer, for which the possible mechanism involves a series of one-electron reduction reactions.

  1. Molecular interactions and solubilization of structurally related meso-porphyrin photosensitizers by amphiphilic block copolymers (Pluronics).

    PubMed

    Sobczyński, Jan; Smistad, Gro; Hegge, Anne Bee; Kristensen, Solveig

    2015-01-01

    The influence of four Pluronics block copolymers (i.e. F68, P123, F127, and L44) on the aggregation and solubilization of five structurally related meso-tetraphenyl porphyrin photosensitizers (PS) as model compounds for use in Photodynamic Therapy of cancer (PDT) was evaluated. Interactions between the PSs and Pluronics were studied at micromolar concentration by means of UV-Vis absorption spectrometry and by kinematic viscosity (υ) and osmolarity measurements at millimolar concentrations. Pluronic micelles were characterized by size and zeta potential (ζ) measurements. The morphology of selected PS-Pluronic assemblies was studied by atomic force microscopy (AFM). While hydrophobic 5,10,15,20-Tetrakis(4-hydroxyphenyl) porphine (THPP) seemed to be solubilized in the Pluronic micellar cores, amphiphilic di(monoethanolammonium) meso-tetraphenyl porphine disulphonate (TPPS2a) was likely bound to the micellar palisade layer. Hydrophilic PSs like 5,10,15,20-Tetrakis (4-trimethylaniliniumphenyl) porphine (TAPP) seemed to form complexes with Pluronic unimers and to be distributed among the micellar coronas. TPPS2a aggregated into a network which could be broken at Pluronic concentration [Formula: see text] cmc, but would reconstitute in the presence of tonicity adjusting agents, e.g. sodium chloride (NaCl) or glucose. PMID:25027806

  2. Isolation, characterization, and ecology of sulfur-respiring crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park.

    PubMed

    Boyd, Eric S; Jackson, Robert A; Encarnacion, Gem; Zahn, James A; Beard, Trevor; Leavitt, William D; Pi, Yundan; Zhang, Chuanlun L; Pearson, Ann; Geesey, Gill G

    2007-10-01

    Elemental sulfur (S(0)) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S(0)-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72 degrees C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81 degrees C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S(0), and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S(0) flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively.

  3. Isolation, Characterization, and Ecology of Sulfur-Respiring Crenarchaea Inhabiting Acid-Sulfate-Chloride-Containing Geothermal Springs in Yellowstone National Park▿ †

    PubMed Central

    Boyd, Eric S.; Jackson, Robert A.; Encarnacion, Gem; Zahn, James A.; Beard, Trevor; Leavitt, William D.; Pi, Yundan; Zhang, Chuanlun L.; Pearson, Ann; Geesey, Gill G.

    2007-01-01

    Elemental sulfur (S0) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S0-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72°C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81°C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S0, and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S0 flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively. PMID:17720836

  4. Sodium and chloride transport across the rumen epithelium of cattle in vitro: effect of short-chain fatty acids and amiloride.

    PubMed

    Diernaes, L; Sehested, J; Møller, P D; Skadhauge, E

    1994-09-01

    Isolated mucosal sheets of cattle rumen were studied in vitro in Ussing chambers using a computer-controlled voltage clamp. Unidirectional fluxes of Na+ and Cl- were measured in standard (short-chain fatty acid (SCFA)-free) or SCFA-containing Ringer solution under zero voltage clamp conditions. Net NaCl absorption was observed under zero voltage clamp conditions, was stimulated by SCFAs and was not reduced by 1 mmol l-1 amiloride, although short-circuit current was significantly reduced by this concentration of the blocker. A constant coupling ratio of Na+ and Cl- absorption was observed.

  5. Microscale determination of the spectral characteristics and carbon-isotopic compositions of porphyrins

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Hayes, J. M.; Boreham, C. J.

    1993-01-01

    Molar extinction coefficients for band III of Ni porphyrins are calculated from results of spectrophotometric and manometric analyses of individual etioporphyrins, DPEP, cyclic, and diDPEP porphyrins known to initially be pure from mass spectrometry, 1H NMR, and analytical HPLC studies. A method for determining carbon-isotopic compositions and purity of micromolar quantities of individual porphyrins using combined spectrophotometric and manometric techniques is presented.

  6. Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells.

    PubMed

    Syu, Yu-Kai; Tingare, Yogesh; Lin, Shou-Yen; Yeh, Chen-Yu; Wu, Jih-Jen

    2016-01-01

    Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT) chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs). To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA⁺) in this work. The short-circuit current density (Jsc) of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA) as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE) values in the wavelength range of 400-450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475-600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC. PMID:27527136

  7. J-aggregation of ionic liquid solutions of meso-tetrakis(4-sulfonatophenyl)porphyrin

    SciTech Connect

    Ali, Maroof; Kumar, Vinod; Baker, Sheila N; Baker, Gary A; Pandey, Siddharth

    2010-01-01

    The title porphyrin was dissolved in the hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and triggered to assemble into J-aggregates by the addition of incremental volumes of water containing various amounts of acid (0.1, 0.2, or 1.0 M HCl). In contrast to recent studies, the current investigation is unique in that it centers on media that contain a predominant ionic liquid component (2.9 5.4 M [bmim][BF4]), as opposed to an aqueous electrolyte containing a small fraction of ionic liquid as dissociated solute. Complex aggregation and underlying photophysical behavior are revealed from absorption spectroscopy, steady-state fluorescence, and resonance light scattering studies. Upon addition of aqueous HCl, the efficient formation of H4TPPS2 J-aggregates from the diprotonated form of meso-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4) occurs in [bmim][BF4]-rich media in a manner highly dependent upon the acidity, TPPS concentration, and solvent composition. The unique features of TPPS aggregation in this ionic liquid were elucidated, including the surprising disassembly of J-aggregates at higher aqueous contents, and our results are described qualitatively in terms of the molecular exciton theory. Finally, the potential of this system for the optical sensing of water at a sensitivity below 0.5 wt% is demonstrated. Overall, our findings accentuate how little is known about functional self-assembly within ionic liquids and suggest a number of avenues for exploring this completely untouched research landscape.

  8. Three-dimensionally arranged windmill and grid porphyrin arrays by AgI-promoted meso-meso block oligomerization

    PubMed

    Nakano; Yamazaki; Nishimura; Yamazaki; Osuka

    2000-09-01

    The syntheses of soluble windmill and grid porphyrin arrays through the AgI-promoted coupling reaction of 1,4-phenylene-bridged linear porphyrin arrays, which are comprised of a central ZnII beta-free porphyrin and flanking peripheral NiII beta-octaalkylporphyrins, are described. The coupling reaction is advantageous in light of its high regioselectivity occurring only at the meso-position of the ZnII beta-free porphyrin as well as its easy extension to large porphyrin arrays. The windmill porphyrin arrays in turn serve as an effective substrate for further coupling reactions, to give three-dimensionally arranged grid porphyrin arrays. Further the grid porphyrin 12-mer (a tetramer of the linear porphyrin trimer) was also coupled to afford grid porphyrins (24-mer, 36-mer, and 48-mer). These porphyrin arrays were isolated in a discrete form by repetitive GPC/HPLC (GPC= gel-permiation chromatography). Competitive experiments with three linear porphyrin trimers bearing different peripheral metalloporphyrins (ZnII, NiII, and Cull), and the trapping experiment of the radical cation at the peripheral porphyrin with AgNO2, suggested that an initial one-electron oxidation of the easily oxidizable peripheral ZnII beta-octaalkylporphyrin with an AgI ion and a subsequent endothermic hole transfer assist the generation of the radical cation at the central ZnII beta-free porphyrin. In all ZnII-metallated windmill porphyrin arrays, the energy level of the S1 state of the meso-meso-linked diporphyrin core is lower than that of the peripheral porphyrins, thereby allowing an energy flow from the peripheral porphyrins to the central diporphyrin core; this has been confirmed by measurements of fluorescence lifetimes and picosecond time-resolved fluorescence spectra. The excitation energy transfer in the arrays encourages their potential use as an light-harvesting antenna.

  9. π-Extended "Earring" Porphyrins with Multiple Cavities and Near-Infrared Absorption.

    PubMed

    Rao, Yutao; Kim, Taeyeon; Park, Kyu Hyung; Peng, Fulei; Liu, Lei; Liu, Yunmei; Wen, Bin; Liu, Shubin; Kirk, Steven Robert; Wu, Licheng; Chen, Bo; Ma, Ming; Zhou, Mingbo; Yin, Bangshao; Zhang, Yuexing; Kim, Dongho; Song, Jianxin

    2016-05-23

    β,β-tripyrrin-bridged earring porphyrins were synthesized through Suzuki-Miyaura cross coupling reactions. These porphyrinoids have multiple cavities and can accommodate two or three metal ions per molecule. The structures of the porphyrins have been elucidated by x-ray diffraction analysis, and feature curved π planes. The electronic spectra of the porphyrins exhibit near-infrared (NIR) absorptions and metal insertion leads to red-shifted and intensified absorption features. Electrochemical analysis and transient absorption measurements indicated that the porphyrins exhibit effective electronic communication between their central and peripheral moieties. PMID:27038255

  10. Synthesis of supramolecular fullerene-porphyrin-Cu(phen)(2)-ferrocene architectures. A heteroleptic approach towards tetrads.

    PubMed

    Schmittel, Michael; Kishore, Ravuri S K; Bats, Jan W

    2007-01-01

    Four supramolecular fullerene-porphyrin-Cu(phen)(2)-ferrocene architectures were accessed by a twofold coordination strategy. At first, the phenanthroline-linked zinc porphyrins , conceived as supramolecular synthons, were combined with a ferrocene module, 3,8-(diferrocenylethynyl)phenanthroline, by a Cu(i)-mediated heteroleptic bisphenanthroline complexation (HETPHEN) protocol to furnish the porphyrin-Cu(phen)(2)-ferrocene aggregates . Subsequently, the fullerene module was incorporated by axial pyridyl coordination to the zinc porphyrin, affording . Their suitability as tetrads was interrogated using electrochemical and photophysical data.

  11. Template-directed synthesis of flexible porphyrin nanocage and nanorings via one-step olefin metathesis.

    PubMed

    Zhu, Bin; Chen, Huanxin; Lin, Wei; Ye, Yang; Wu, Jing; Li, Shijun

    2014-10-29

    We describe the fabrication of a suite of flexible porphyrin cages and nanorings from a simple tetraalkene-derived zinc porphyrin monomer via a highly efficient template-directed strategy. The zinc porphyrin monomers were preorganized together by coordination with N atoms of multidentate ligands. Subsequent one-step olefin metathesis furnished a bisporphyrin cage, a triporphyrin nanoring, and a hexaporphyrin nanoring. In the case of the hexaporphyrin nanoring, 24 terminal olefins from six porphyrin monomers reacted with each other to form 12 new double bonds, delivering the final product. The triporphyrin and hexaporphyrin nanorings were further employed as hosts to encapsulate C60 and C70. PMID:25303609

  12. Template-directed synthesis of flexible porphyrin nanocage and nanorings via one-step olefin metathesis.

    PubMed

    Zhu, Bin; Chen, Huanxin; Lin, Wei; Ye, Yang; Wu, Jing; Li, Shijun

    2014-10-29

    We describe the fabrication of a suite of flexible porphyrin cages and nanorings from a simple tetraalkene-derived zinc porphyrin monomer via a highly efficient template-directed strategy. The zinc porphyrin monomers were preorganized together by coordination with N atoms of multidentate ligands. Subsequent one-step olefin metathesis furnished a bisporphyrin cage, a triporphyrin nanoring, and a hexaporphyrin nanoring. In the case of the hexaporphyrin nanoring, 24 terminal olefins from six porphyrin monomers reacted with each other to form 12 new double bonds, delivering the final product. The triporphyrin and hexaporphyrin nanorings were further employed as hosts to encapsulate C60 and C70.

  13. The bronze baby syndrome: evidence of increased tissue concentration of copper porphyrins.

    PubMed

    Rubaltelli, F F; Da Riol, R; D'Amore, E S; Jori, G

    1996-03-01

    A case regarding a newborn infant with severe Rh haemolytic disease, who presented with the bronze baby syndrome and eventually died, is reported. The postmortem examination showed marked extramedullary haematopoiesis in the liver and spleen, heavy hepatic haemosiderosis and mild intralobular cholestasis. The porphyrin content, which was assayed in different tissues, was very high in the liver, suggesting that the increased erythropoiesis seen in Rh haemolytic disease leads to an increased synthesis of porphyrins as by-products of haem synthesis. Phototherapy causes photodestruction, sensitized by bilirubin, of porphyrins (mainly copper porphyrins), yielding brown photoproducts.

  14. Binding of porphyrins by the tumor-specific lectin, jacalin [Jack fruit (Artocarpus integrifolia) agglutinin].

    PubMed

    Komath, S S; Bhanu, K; Maiya, B G; Swamy, M J

    2000-08-01

    Jacalin (Artocarpus integrifolia agglutinin) specifically recognizes the tumor-associated T-antigenic disaccharide structure, Gal beta13GalNAc. Porphyrins and their derivatives are currently used as photosensitizers in photodynamic therapy to treat malignant tumors. In this study, the interaction of several free base porphyrins and their metal derivatives with jacalin is investigated by absorption and fluorescence spectroscopy. Each lectin subunit was found to bind one porphyrin molecule and the association constants were estimated to be in the range of 2.4 x 10(3) M(-1) to 1.3 x 10(5) M(-1) at room temperature for the interaction of different porphyrins with jacalin. These values are in the same range as those obtained for the interaction of monosaccharides to jacalin. Both free lectin and lectin saturated with the specific saccharide were found to bind different porphyrins with comparable binding strength indicating that porphyrin binding takes place at a site different from the sugar binding site. Further, both anionic and cationic porphyrins were found to interact with the lectin with comparable affinity, clearly indicating that the charge on the porphyrin does not play any role in the binding process and that most likely the interaction is mediated by hydrophobic forces. These results suggest that jacalin and other lectins may potentially be useful for targeted delivery of porphyrins to tumor tissues in photodynamic therapy.

  15. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions.

    PubMed

    Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar

    2008-02-01

    This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.

  16. Structure of Hydronium (H3O+)/Chloride (Cl-) Contact Ion Pairs in Aqueous Hydrochloric Acid Solution: A Zundel-like Local Configuration

    SciTech Connect

    Fulton, John L.; Balasubramanian, Mahalingam

    2010-09-15

    Details of the H3O+ and H2O structure in the first solvation shell about Cl- in aqueous HCl solutions are reported from x-ray absorption fine structure (XAFS) measurements. Results show increasing degrees of contact ion pairing between Cl- and H3O+ as the HCl concentration increases from 6.0 m, 10.0 m and finally 16.1 m HCl (concentrated acid). At the highest acid concentration there are on average, approximately 1.6 H3O+ ions and 4.2 H2O’s in the first shell about Cl-. The structure of the Cl-/H3O+ contact ion pair is distinctly different than that of the H2O structure about Cl-. The Cl-O bond length (2.98Å) for Cl-/H3O+ is approximately 0.16 Å shorter than the Cl-/H2O bond. The bridging proton resides at an intermediate position between Cl and O at 1.60 Å from the Cl- and approximately 1.37 Å from the O of the H3O+. The bridging-proton structure of this contact ion pair, [Cl-H-OH2], is similar to structure of the water Zundel ion, [H2O-H-OH2]+. In both cases there is a shortened Cl-O or O-O bond and the intervening proton bond distances are substantially longer than for the covalent bonds of either HCl or H2O. The results further our understanding of the interaction H3O+ with Cl- that is of interest to fundamental physical chemistry and that has consequences in biochemical, geochemical and atmospheric processes.

  17. Porphyrin fluorescence dominates UV photoemission of folded cytochrome c.

    PubMed

    Löwenich, Dennis; Kleinermanns, Karl

    2007-01-01

    In this article we reinvestigate the bimodal fluorescence of cytochrome c (Cyt c) by using excitation-wavelength-dependent fluorescence spectroscopy. We show that its major contributions at pH 3-7 do not arise from tryptophan (Trp-59) fluorescence as hitherto assumed. Instead, different chromophores of Cyt c contribute at different pH values. At pH 3-7, the porphyrin system contributes about 80% and tryptophan about 20% to the total fluorescence upon excitation of Cyt c at 280 nm. At pH 2, the fluorescence originates nearly completely from the tryptophan residue. Porphyrin fluorescence is still present at pH 2 but its contribution is too small for quantitative deconvolution. Our results show that the UV fluorescence of Cyt c has to be deconvoluted before it can be used to perform time-resolved measurements of the folding of this small protein.

  18. Spatially resolved micro-photoluminescence imaging of porphyrin single crystals

    NASA Astrophysics Data System (ADS)

    Marin, Dawn M.; Castaneda, Jose; Kaushal, Meesha; Kaouk, Ghallia; Jones, Daniel S.; Walter, Michael G.

    2016-08-01

    We describe the collection of both time-resolved and steady-state micro-photoluminescence data from solution-grown single crystals of 5,15-bis(4-carbomethoxyphenyl)porphyrin (BCM2PP). Linking molecular orientation and structure with excited-state dynamics is crucial for engineering efficient organic solar cells, light-emitting diodes, and related molecular electronics. Photoluminescence features of single porphyrin crystals were imaged using a laser scanning confocal microscope equipped with time-correlated single photon counting (TCSPC). We show enhanced exciton lifetimes (τs1 = 2.6 ns) and stronger steady-state emission in crystalline BCM2PP samples relative to semicrystalline thin films (τs1 = 1.8 ns).

  19. Controlled templating of porphyrins by a molecular command layer.

    PubMed

    den Boer, Duncan; Habets, Thomas; Coenen, Michiel J J; van der Maas, Minko; Peters, Theo P J; Crossley, Maxwell J; Khoury, Tony; Rowan, Alan E; Nolte, Roeland J M; Speller, Sylvia; Elemans, Johannes A A W

    2011-03-15

    The copper porphyrin (5,10,15,20-tetraundecylporphyrinato)copper(II) can be templated in a well-defined arrangement using p-(hexadecyloxycarbonyl)phenylacetylene as a command layer on graphite. The bicomponent system was characterized at the submolecular level at a solid/liquid interface by scanning tunneling microscopy (STM). It is proposed that the layer of copper porphyrins is templated on top of the command layer in a hierarchical fashion, via a combination of intermolecular π-π stacking and van der Waals interactions. A very subtle effect, i.e., a superstructure in the alkyl chain region of the phenylacetylene monolayers, was identified as a decisive factor for the templating process.

  20. Preparation and electrochemical performance of manganese porphyrin /titanate intercalated nanocomposite

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Deng, J. P.; Tu, Z. Y.; Ma, J. J.

    2016-07-01

    A new nanocomposite of manganese porphyrin/titanate (MnPP-Ti4O9) was prepared successfully by delamination/reassembling (DR) method, with layered titanate as the host material, manganese porphyrin (MnPP) as the guest material. The microstucture of MnPP-Ti4O9 was characterized by XRD, UV-Vis, SEM and TEM. MnPP molecules were closely tilted against the host nanosheets at an inclined angle of 42.7°, by simple geometric calculation. The electrochemical performance of the nanocomposite was measured using cyclic voltammetry (CV). It was found that MnPP-Ti4O9 modified glassy carbon electrode (MTGCE) showed desired electrochemical performance and good catalytic activity for oxygen reduction.

  1. Enhanced solar energy collection in porphyrin based photoconversion schemes

    NASA Astrophysics Data System (ADS)

    Gust, D.; Moore, T. A.

    1983-02-01

    A series of carotenoporphyrins whose conformations varied from folded (with the carotenoid (PI)-electron system stacked over that of the porphyrin) to extended (with the two chromophores widely separated) were studied. The conformations were determined by high resolution proton NMR studies. Laser flash spectroscopy revealed triplet energy transfer from porphyrin to carotenoid. Three distinct pathways for such transfer were discovered: (1) static through space transfer which does not require significant intramolecular motions; (2) dynamic through space transfer mediated by intramolecular motions; (3) triplet transfer mediated by the chemical bonds joining the chromophores. pulse radiolysis and fluorescence quenching of these ethers and related carotenoporphyrins revealed electron transfer in the systems. It is demonstrated that the natural carotenoid functions of photoprotection from singlet oxygen damage and antenna function can be mimicked by synthetic molecules, and therefore, in principle can be applied to artificial solar energy conversion systems.

  2. [Investigations on the correlation between vinyl chloride (VCM)-uptake and excretion of its metabolites by 15 VCM-exposed workers. II. Measurements of the urinary excretion of the vcm-metabolite thiodiglycolic acid ].

    PubMed

    Heger, M; Müller, G; Norpoth, K

    1982-01-01

    Fifteen workers employed in a PVC producing plant were investigated concerning their individual vinyl chloride (VCM) exposure and the urinary excretion of the VCM metabolite thiodiglycolic acid (TdGA). The urine concentrations found were in the range 0.94-20.4 microgram/ml. These could be compared with exposure data calculated from VCM air analyses performed by personal air sampling and corrected with respect to the exposure times of the workers. The amounts of TdGA excreted within 24 h were correlated with the effective VCM body concentrations calculated from the exposure data as mean values for 12 h periods (Spearman coefficient P=alpha less than 0.005). This correlation resembles a function of the Michaelis-Menten type. It could be shown that during short exposure periods of less than 5 min, the metabolite formation in relation to the exposure data was lower than during longer periods of exposure although, as would be expected, there were some fluctuations of the exposure level. Therefore, the VCM body concentrations could not normally reach steady state values.

  3. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    NASA Astrophysics Data System (ADS)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  4. A single crystalline porphyrinic titanium metal–organic framework

    SciTech Connect

    Yuan, Shuai; Liu, Tian -Fu; Feng, Dawei; Tian, Jian; Wang, Kecheng; Qin, Junsheng; Zhang, Qiang; Chen, Ying -Pin; Bosch, Mathieu; Zou, Lanfang; Teat, Simon J.; Dalgarno, Scott J.; Zhou, Hong -Cai

    2015-04-28

    We successfully assembled the photocatalytic titanium-oxo cluster and photosensitizing porphyrinic linker into a metal–organic framework (MOF), namely PCN-22. A preformed titanium-oxo carboxylate cluster is adopted as the starting material to judiciously control the MOF growth process to afford single crystals. This synthetic method is useful to obtain highly crystalline titanium MOFs, which has been a daunting challenge in this field. Moreover, PCN-22 demonstrated permanent porosity and photocatalytic activities toward alcohol oxidation.

  5. Potential use of radiolabelled porphyrins for tumor scanning

    SciTech Connect

    Thaller, R.A.; Lyster, D.M.; Dolphin, D.

    1983-01-01

    Fe-TMPI, Fe-TCP and protohemins showed high initial uptake using tissue culture techniques with mouse tumor cells (P815). However, the tumor uptake in the in vivo model was poor. Of the radionuclides investigated, iron labelled to TMPI demonstrated the best uptake by tumor in vitro. As has been previously demonstrated, the unnatural meso-arylporphyrin derivatives showed better uptake than did naturally occurring porphyrins and their derivatives.

  6. Quantitative vibrational dynamics of iron in nitrosyl porphyrins.

    PubMed

    Leu, Bogdan M; Zgierski, Marek Z; Wyllie, Graeme R A; Scheidt, W Robert; Sturhahn, Wolfgang; Alp, E Ercan; Durbin, Stephen M; Sage, J Timothy

    2004-04-01

    We use quantitative experimental and theoretical approaches to characterize the vibrational dynamics of the Fe atom in porphyrins designed to model heme protein active sites. Nuclear resonance vibrational spectroscopy (NRVS) yields frequencies, amplitudes, and directions for 57Fe vibrations in a series of ferrous nitrosyl porphyrins, which provide a benchmark for evaluation of quantum chemical vibrational calculations. Detailed normal mode predictions result from DFT calculations on ferrous nitrosyl tetraphenylporphyrin Fe(TPP)(NO), its cation [Fe(TPP)(NO)]+, and ferrous nitrosyl porphine Fe(P)(NO). Differing functionals lead to significant variability in the predicted Fe-NO bond length and frequency for Fe(TPP)(NO). Otherwise, quantitative comparison of calculated and measured Fe dynamics on an absolute scale reveals good overall agreement, suggesting that DFT calculations provide a reliable guide to the character of observed Fe vibrational modes. These include a series of modes involving Fe motion in the plane of the porphyrin, which are rarely identified using infrared and Raman spectroscopies. The NO binding geometry breaks the four-fold symmetry of the Fe environment, and the resulting frequency splittings of the in-plane modes predicted for Fe(TPP)(NO) agree with observations. In contrast to expectations of a simple three-body model, mode energy remains localized on the FeNO fragment for only two modes, an N-O stretch and a mode with mixed Fe-NO stretch and FeNO bend character. Bending of the FeNO unit also contributes to several of the in-plane modes, but no primary FeNO bending mode is identified for Fe(TPP)(NO). Vibrations associated with hindered rotation of the NO and heme doming are predicted at low frequencies, where Fe motion perpendicular to the heme is identified experimentally at 73 and 128 cm-1. Identification of the latter two modes is a crucial first step toward quantifying the reactive energetics of Fe porphyrins and heme proteins.

  7. Cobalt(III) porphyrin catalyzed aza-Diels-Alder reaction.

    PubMed

    Wakabayashi, Ryota; Kurahashi, Takuya; Matsubara, Seijiro

    2012-09-21

    An efficient protocol for the aza-Diels-Alder reaction of electron-deficient 1,3-dienes with unactivated imines in the presence of a cationic cobalt(III) porphyrin complex was developed. The transformation proceeded smoothly to afford the desired piperidine scaffold within 2 h at ambient temperature. Highly chemoselective cycloaddition of imines with dienes in the presence of a variety of carbonyl compounds was also demonstrated.

  8. Capillary ion electrophoresis of inorganic anions and uric acid in human saliva using a polyvinyl alcohol coated capillary column and hexamethonium chloride as additive of background electrolyte.

    PubMed

    Mori, Masanobu; Yamamoto, Tsukasa; Kaseda, Maki; Yamada, Sachiko; Itabashi, Hideyuki

    2012-03-01

    A combination of polyvinyl alcohol chemically coated capillary (PVA capillary) and background electrolyte (BGE) with ion-pair reagent (hexamethonium dichloride, HMC) was used on capillary ion electrophoresis-UV detection (CIE-UV) for analysis of Br⁻, I⁻, NO₂⁻, NO₃⁻, SCN⁻ and uric acid in human saliva. The PVA capillary prepared in our laboratory minimized electro-osmotic flow (EOF) at the BGE in pH 3-10, and did not affect the UV detection at 210 nm by the PVA-layer on capillary wall. Therefore, use of the PVA capillary was suitable for sensitive UV detection for analyte anions, as well as suppression of protein adsorption. In this study, we optimized the BGE of 10 mM phosphate plus 10 mM HMC with applying a voltage of -15 kV. HMC as an additive to BGE could manipulate the electrophoretic mobility of anions, without electrostatic adsorption to the PVA capillary. The CIE-UV could separate and determine analyte anions in human saliva containing proteins by the direct injection without pretreatments such as dilution or deproteinization within 13 min. The relative standard deviations (n=10) were ranged of 0.5-1.6% in migration times, 2.2-6.8% in peak heights and 2.8-8.4% in peak areas. The limits of detection (S/N=3) were ranged of 3.42-6.87 μM. The peak height of anions in this system was gradually decreased through the successive injections of saliva samples, but the problem was successfully solved by periodically conditioning the PVA capillary. The quantifiability of anions in human saliva samples by the CIE-UV was evaluated through the recoveries by standard addition methods and comparison of other representative analytical methods, as well as identification by ion chromatography (IC). From the anion analyses in 12 different saliva samples, the CIE-UV demonstrated that can obtain obvious differences in concentrations of SCN⁻ between of smoker and non-smoker and those of uric acid between male and female with satisfactory results.

  9. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  10. Synthesis and spectroscopic characterization of super-stable rhenium(V)porphyrins

    NASA Astrophysics Data System (ADS)

    Bichan, N. G.; Tyulyaeva, E. Yu.; Khodov, I. A.; Lomova, T. N.

    2014-03-01

    The preparation of rhenium(V) porphyrin complexes {μ-oxo-bis[(oxo)(5,10,15,20-tetraphenyl-21H,23H-porphinato)rhenium(V)] [OReTPP]2O (1), (oxo)(phenoxo)(2,3,7,8,12,13,17,18-octaethyl-5-monophenyl-21H,23H-porphinato)rhenium(V) ORe(PhO)MPOEP (2), (cloro)(oxo)(2,3,7,8,12,13,17,18-octaethyl-5,15-diphenyl-21H,23H-porphinato)rhenium(V) ORe(Cl)5,15DPOEP (4), and (oxo)(phenoxo)(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphinato)rhenium(V) ORe(PhO)OEP (5)} by the interaction of H2ReCl6 with corresponding porphyrin in boiling phenol is described. (Cloro)(oxo)(2,3,7,8,12,13,17,18-octaethyl-5-monophenyl-21H,23H-porphinato)rhenium(V) ORe(Cl)MPOEP (3) and (oxo)(chloro)(2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphinato)rhenium(V) ORe(Cl)OEP (6) have been prepared by the reaction of axial-ligand substitution from (2) and (5), respectively. Compounds (2-4) were newly synthesized. Characterization of the compounds (1-6) reported herein was made mainly by UV-Visible, IR, 1Н NMR, 1H1H 2D COSY, 1H1H 2D DOSY, 1H1H 2D ROESY, 1H1H 2D TOCSY spectroscopic techniques and elemental analysis. The stability of the complexes in solutions when exposed to strong acids at the presence of atmospheric oxygen has been estimated. Compounds (2-4) and (6) show them super-stable since they do not undergo dissociation along MN bonds in concentrated H2SO4 under heating up to 363 K. Compounds (3) and (4) undergo one-electron oxidation to form stable π-cation radicals ORe(HSO)P under these conditions. The products of the reaction between all studied porphyrins and concentrated H2SO4 were isolated in CHCl3 by reprecipitation onto ice and proved to be rhenium(V) complexes ORe(HSO4)P.

  11. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration.

    PubMed

    Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji

    2002-05-01

    Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.

  12. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes.

    PubMed

    Xu, Zhong-Wei; Chen, Xi; Jin, Xiao-Han; Meng, Xiang-Yan; Zhou, Xin; Fan, Feng-Xu; Mao, Shi-Yun; Wang, Yue; Zhang, Wen-Cheng; Shan, Na-Na; Li, Yu-Ming; Xu, Rui-Cheng

    2016-01-01

    Hypoxic status alters the energy metabolism and induces cell injury in cardiomyocytes, and it further triggers the occurrence and development of cardiovascular diseases. Our previous studies have shown that salidroside (SAL) exhibits anti-hypoxic activity. However, the mechanisms remain obscure. In the present study, we successfully screened 92 different expression proteins in CoCl2-induced hypoxic conditions, 106 different expression proteins in the SAL-mediated anti-hypoxic group were compared with the hypoxic group using quantitative proteomics strategy, respectively. We confirmed that SAL showed a positive protective function involving the acetyl-CoA metabolic, tricarboxylic acid (TCA) cycle using bioinformatics analysis. We also demonstrated that SAL plays a critical role in restoring the TCA cycle and in protecting cardiomyocytes from oxidative injury via up-regulation expressions of PDHE1-B, ACO2, SUCLG1, SUCLG2 and down-regulation of MDH2. SAL also inhibited H9c2 cell apoptosis by inhibiting the activation of pro-apoptotic molecules caspase 3 and caspase 9 as well as activation of the anti-apoptotic molecular Bcl-2. Additionally, SAL also improved mitochondrial membrane potential (ΔΨm), reduced reactive oxygen species (ROS) and intercellular Ca(2+) concentration ([Ca(2+)]i) accumulation and inhibited the excessive consumption of ATP in H9c2 cells. PMID:26435418

  13. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes.

    PubMed

    Xu, Zhong-Wei; Chen, Xi; Jin, Xiao-Han; Meng, Xiang-Yan; Zhou, Xin; Fan, Feng-Xu; Mao, Shi-Yun; Wang, Yue; Zhang, Wen-Cheng; Shan, Na-Na; Li, Yu-Ming; Xu, Rui-Cheng

    2016-01-01

    Hypoxic status alters the energy metabolism and induces cell injury in cardiomyocytes, and it further triggers the occurrence and development of cardiovascular diseases. Our previous studies have shown that salidroside (SAL) exhibits anti-hypoxic activity. However, the mechanisms remain obscure. In the present study, we successfully screened 92 different expression proteins in CoCl2-induced hypoxic conditions, 106 different expression proteins in the SAL-mediated anti-hypoxic group were compared with the hypoxic group using quantitative proteomics strategy, respectively. We confirmed that SAL showed a positive protective function involving the acetyl-CoA metabolic, tricarboxylic acid (TCA) cycle using bioinformatics analysis. We also demonstrated that SAL plays a critical role in restoring the TCA cycle and in protecting cardiomyocytes from oxidative injury via up-regulation expressions of PDHE1-B, ACO2, SUCLG1, SUCLG2 and down-regulation of MDH2. SAL also inhibited H9c2 cell apoptosis by inhibiting the activation of pro-apoptotic molecules caspase 3 and caspase 9 as well as activation of the anti-apoptotic molecular Bcl-2. Additionally, SAL also improved mitochondrial membrane potential (ΔΨm), reduced reactive oxygen species (ROS) and intercellular Ca(2+) concentration ([Ca(2+)]i) accumulation and inhibited the excessive consumption of ATP in H9c2 cells.

  14. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  15. Plasmon enhanced photoconduction in porphyrin-gold nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Conklin, David J.

    2011-07-01

    This thesis describes a series of experiments to both determine the origins of charge transport and enhanced photoconduction in metal nanoparticle arrays linked with zinc-porphyrin complexes, but to also determine the nucleation and growth mechanisms related to Ferroelectric Nanolithography (FNL) as a platform for hybrid devices. The development of test structures on glass substrates was undertaken to not only allow the study of the mechanisms controlling charge transport but the photoconduction of zinc-porphyrin linked gold nanoparticle (AuNP) arrays. In this study, the dominate charge transport mechanism was determined to be thermally assisted tunneling and the origins of enhanced photoconduction in these systems was attributed to three mechanisms: direct exciton formation in the molecules, hot electrons and a field effect (optical antenna) due to the excitation of surface plasmons. In the hope of developing a platform for hybrid devices, FNL was utilized to systematically vary the parameters that effect the deposition of metal nanoparticles through domain directed deposition on ferroelectric surfaces. The nucleation and growth mechanisms were determined through this work, where the integrated photon flux controlled the particle density and the interface between the particle and the ferroelectric surface determined the particles size. Finally, with the ability to control the deposition of AuNPs on a ferroelectric surface, hybrid devices of zinc-porphyrin linked AuNPs were realized with FNL.

  16. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  17. Galactodendritic porphyrinic conjugates as new biomimetic catalysts for oxidation reactions.

    PubMed

    Castro, Kelly A D F; Silva, Sandrina; Pereira, Patrícia M R; Simões, Mário M Q; Neves, Maria da Graça P M S; Cavaleiro, José A S; Wypych, Fernando; Tomé, João P C; Nakagaki, Shirley

    2015-05-01

    This work employed [5,10,15,20-tetrakis(pentafluorophenyl)porphyrin] ([H2(TPPF20)], H2P1) as the platform to prepare a tetrasubstituted galactodendritic conjugate porphyrin (H2P3). After metalation with excess copper(II) acetate, H2P3 afforded a new solid porphyrin material, Cu4CuP3S. This work also assessed the ability of the copper(II) complex (CuP3) of H2P3 to coordinate with zinc(II) acetate, to yield the new material Zn4CuP3S. UV-visible, Fourier transform infrared, and electron paramagnetic resonance spectroscopies aided full characterization of the synthesized solids. (Z)-Cyclooctene epoxidation under heterogeneous conditions helped to evaluate the catalytic activity of Cu4CuP3S and Zn4CuP3S. The efficiency of Cu4CuP3S in the oxidation of another organic substrate, catechol, was also investigated. According to the results obtained in the heterogeneous process, Cu4CuP3S mimicked the activity of cytochrome P-450 and catecholase. In addition, Cu4CuP3S was reusable after recovery and reactivation. The data obtained herein were compared with the results achieved for the copper complex (CuP1) of [H2(TPPF20)] and for CuP3 under homogeneous conditions.

  18. Siamese-Twin Porphyrin Origami: Oxidative Fusing and Folding.

    PubMed

    Vogel, Anastasia; Dechert, Sebastian; John, Michael; Brückner, Christian; Meyer, Franc

    2016-02-12

    Oxidation of a nonaromatic Siamese-twin porphyrin, a pyrazole-containing expanded porphyrin with two porphyrinlike binding pockets, with a stoichiometric amount of the two-electron, two-proton oxidizing agent 2,3-dichloro-5,6-dicyano-1,4-benzochinone led to the formation of a single N(pz) -C(o-Ph) linkage between the pyrazole unit with a neighboring meso-phenyl group, forming a pyrazolo- [1,5-a]indole moiety. Repeated treatment with a second equivalent of the oxidant yielded a doubly N-fused species, involving the second pyrazole moiety. The conversion products were characterized by variable-temperature and multinuclear 1D and 2D NMR spectroscopy. The fusions strongly alter the conformation of the macrocycles, as shown by X-ray diffraction analyses of all three compounds, eventually leading to a folded structure. UV/Vis and NMR-spectroscopic investigations indicated the presence of highly delocalized but nonmacrocycle-aromatic π systems. This behavior of the Siamese-twin porphyrin in response to oxidation is in contrast to the behavior of related all-pyrrole-based expanded macrocycles that switch, by redox processes and protonation, between Hückel and Möbius aromatic states. PMID:26670580

  19. In vivo fluorescence spectroscopy and imaging of ALA-induced endogenous porphyrins in skin after Er:YAG ablation of human stratum corneum

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert; Boehncke, Wolf-Henning; Hibst, Raimund

    1994-09-01

    Limited regions of human stratum corneum were removed by laser ablation using an Er:YAG laser. Immediately after this procedure, an ointment containing 5-aminolevulinic acid (ALA) was applied topically to the laser-treated and surrounding skin. The time-dependent ALA- induced biosynthesis of protoporphyrin IX was measured by fluorescence detection. Fluorescence in the red spectral region was found to occur in the ablated skin regions only. Time-resolved measurements showed the formation of long-lived fluorophores (16 ns) indicating the presence of ALA-induced monomeric porphyrin. Naturally occurring fluorophores (NAD(P)H, flavins, collagen, elastin) possess shorter fluorescence decay times. Therefore, time-gated measurements in the nanosecond region enable the specific detection of ALA-stimulated porphyrin fluorescence by choosing an appropriate time-window. In addition, detection of backscattered excitation light can be avoided. High-contrast video images of ALA-incubated fluorescent areas were obtained using this novel imaging technique.

  20. Correlation of biological value of feed phosphates with their solubility in water, dilute hydrogen chloride, dilute citric acid, and neutral ammonium citrate.

    PubMed

    Sullivan, T W; Douglas, J H; Gonzalez, N J; Bond, P L

    1992-12-01

    Relative biological values (BV) of 36 feed phosphates were determined with female turkeys in bioassays of 21-day duration using three response criteria: weight gain, tibia ash percentage, and gain:feed ratio. Calcium phosphate, dibasic dihydrate (United States Pharmacopeia) was the reference standard. Nine mono-dicalcium phosphates (M-DCP, 21.0% phosphorus), 13 di-monocalcium phosphates (D-MCP, 18.5% phosphorus), and 14 defluorinated phosphates (DFP, 18.0% phosphorus) were evaluated. The average relative BV for M-DCP, D-MCP, and DFP samples were 97.6, 94.6, and 90.8%, respectively. Solubility of phosphates was determined by four recognized methods. The solvents were water, .4% HCl, 2.0% citric acid (CA), and neutral ammonium citrate (NAC). Water solubility of M-DCP samples was greater (67.5%) than that of D-MCP (38.8%) and DFP (8.9%) samples. Correlation of water solubility of phosphates to their relative BV was quite low, and water solubility was a poor indicator of BV. When .4% HCl was the solvent, correlation coefficients (r) were .55, .33, and .72 for M-DCP, D-MCP, and DFP, respectively. Based on these results and prediction equations, .4% HCl solubility would be inappropriate for estimating BV of M-DCP and D-MCP samples. Solubility of feed phosphates (mainly D-MCP and DFP) in 2.0% CA or NAC was positively correlated with BV; the r values were .87 to .95. Both of these solubility tests provided a good index of BV. However, it would seem inappropriate and risky to replace bioassays totally with these tests. Feed phosphate users could perform either the 2.0% CA or NAC solubility test easily as a screen for BV along with other quality control procedures (i.e., phosphorus, calcium, sodium, and fluoride determinations).