Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... Process Facilities and Hydrochloric Acid Regeneration Plants (Renewal) AGENCY: Environmental Protection...: NESHAP for Steel Pickling, HCl Process Facilities and Hydrochloric Acid Regeneration Plants (Renewal...: Steel pickling, HCl process facilities and hydrochloric acid regeneration plants. Estimated Number of...
40 CFR 63.600 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.600 Applicability. (a... apply to the owner or operator of each phosphoric acid manufacturing plant. (b) The requirements of this... affected sources at a phosphoric acid manufacturing plant: (1) Each wet-process phosphoric acid process...
40 CFR 63.600 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.600 Applicability. (a... apply to the owner or operator of each phosphoric acid manufacturing plant. (b) The requirements of this... affected sources at a phosphoric acid manufacturing plant: (1) Each wet-process phosphoric acid process...
Production of orthophosphate suspension fertilizers from wet-process acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.M.; Burnell, J.R.
1984-01-01
For many years, the Tennessee Valley Authority (TVA) has worked toward development of suspension fertilizers. TVA has two plants for production of base suspension fertilizers from wet-process orthophosphoric acid. One is a demonstration-scale plant where a 13-38-0 grade base suspension is produced by a three-stage ammoniation process. The other is a new batch-type pilot plant which is capable of producing high-grade base suspensions of various ratios and grades from wet-process acid. In this batch plant, suspensions and solutions can also be produced from solid intermediates.
40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the metallurgical acid plants subcategory. The provisions of this subpart apply to process wastewater discharges...
Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants
Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.
1995-01-01
The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.
Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants
Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.
1995-07-04
The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.
Phenolic acids as bioindicators of fly ash deposit revegetation.
Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O
2006-05-01
The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.
Phosphate Fertilizer Industry: New Source Performance Standards - 40 CFR 60 Subparts T, U, V, W & X
Learn about the the NSPS regulations for Diammonium phosphate plants, superphosphoric acid plants, granular triple superphosphate storage facilities, triple superphosphate plants & wet-process phosphoric acid plants
Methods of producing compounds from plant material
Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.
2006-01-03
The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.
Methods of producing compounds from plant materials
Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL
2010-01-26
The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... Anodizing Tanks; and Steel Pickling--HCl Process Facilities and Hydrochloric Acid Regeneration Plants AGENCY... regeneration plants. DATES: Effective: April 19, 2013. Petitions: Any petitions for review of the letter and...--HCl process facilities and hydrochloric acid regeneration plants, and was issued pursuant to the EPA's...
Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.
Beddow, H; Black, S; Read, D
2006-01-01
In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., but not the cost of compliance). (i) Retrofit control technologies. (A) Sulfuric acid plant in conjunction with an adequately demonstrated replacement technology or process modification; (B) Magnesium... burning in conjunction with acid plant; (D) Electric Furnace; (E) Noranda process; (F) Fluid bed roaster...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fertilizer Industry: Wet Process Phosphoric Acid Plants X X X X U Phosphate Fertilizer Industry: Superphosphoric Acid Plants X X X X V Phosphate Fertilizer Industry: Diammonium Phosphate Plants X X X X W Phosphate Fertilizer Industry: Triple Superphosphate Plants X X X X X Phosphate Fertilizer Industry...
Fact Sheet summarizing the main points of the national emssions standard for hazaradous air pollutants (NESHAP) for Steel Pickling— HCl Process Facilities and Hydrochloric Acid Regeneration Plants as promulgated on June 22, 1999.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...
Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei
2018-01-01
The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a high value α-olefin product with high carbon utilization.
Phenolic acids as bioindicators of fly ash deposit revegetation
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Djurdjevic; M. Mitrovic; P. Pavlovic
The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central partmore » of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regeneration Plants § 63.1156 Definitions. Terms used in this subpart are defined in the Clean Air Act, in.... This definition includes continuous spray towers. Hydrochloric acid regeneration plant means the... from spent pickle liquor using a thermal treatment process. Hydrochloric acid regeneration plant...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regeneration Plants § 63.1156 Definitions. Terms used in this subpart are defined in the Clean Air Act, in.... This definition includes continuous spray towers. Hydrochloric acid regeneration plant means the... from spent pickle liquor using a thermal treatment process. Hydrochloric acid regeneration plant...
Controlling plant architecture by manipulation of gibberellic acid signalling in petunia
USDA-ARS?s Scientific Manuscript database
Gibberellic acid (GA), a plant hormone, regulates many crucial growth and developmental processes, including seed germination, leaf expansion, induction of flowering and stem elongation. A common problem in the production of ornamental potted plants is undesirably tall growth, so inhibitors of gibbe...
Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.
Zhang, Chaojie; Yan, Hong; Li, Fei; Zhou, Qi
2015-02-01
Perfluorinated acids (PFAs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The discharge of wastewater effluent from municipal wastewater treatment plants (WWTPs) is a significant source of PFAs to the environment. In this study, wastewater and sludge samples were collected from two WWTPs in Shanghai, China, to investigate the contamination level and fate of PFAs in different stages of processing. The total concentrations of PFAs (∑PFAs) in influent from plants A and B were 2,452 and 292 ng L(-1), respectively. Perfluoropentanoic acid (1,520 ± 80 ng L(-1) in plant A and 89.2 ± 12.1 ng L(-1) in plant B) was the predominant PFA in influent waters, followed by perfluorooctanoic acid. The concentration of ∑PFAs ranged from 75.0 to 126.0 ng g(-1) dry weight in sludge samples from plant B, with perfluorooctanesulfonic acid as the predominant contaminant. The concentrations and fate of PFAs in different WWTPs vary. The ∑PFAs entering plant A decreased significantly in the final effluent of activated sludge process, while that in plant B increased significantly in the final effluent of sequencing batch reactor system. The concentration changes could be due to the sorption onto sludge, or the degradation of PFAs precursors.
Advanced coal gasifier-fuel cell power plant systems design
NASA Technical Reports Server (NTRS)
Heller, M. E.
1983-01-01
Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.
40 CFR 63.1158 - Emission standards for new or reconstructed sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1158 Emission standards for new or... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of a new or reconstructed...
40 CFR 63.1158 - Emission standards for new or reconstructed sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1158 Emission standards for new or... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of a new or reconstructed...
40 CFR 63.1158 - Emission standards for new or reconstructed sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1158 Emission standards for new or... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of a new or reconstructed...
40 CFR 63.1158 - Emission standards for new or reconstructed sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1158 Emission standards for new or... percent. (b) Hydrochloric acid regeneration plants. (1) No owner or operator of a new or reconstructed...
Micropropagation of Agave salmiana: Means to Production of Antioxidant and Bioactive Principles
Puente-Garza, César A.; Gutiérrez-Mora, Antonia; García-Lara, Silverio
2015-01-01
Maguey, Agave salmiana, is an important plant for the “pulque” beverage and functional food industries; however, it has several constraints for elite and homogeneous plant production. In this study, a micropropagation process was established to generate in vitro plants. The effect of the method on metabolite content and antioxidant (AOX) activity in regenerated plants was evaluated. Young germinated plantlets were micropropagated from axillary shoots using Murashige and Skoog medium supplemented with L2 vitamins, 0.04 mg/L 2,4-dichlorophenoxyacetic acid and 10 mg/L 6-benzylaminopurine. Total soluble sugars from the aqueous fraction and total phenolic acids, total saponins, and AOX activity of the methanol fraction were determined in wild-type (WT) plants, in in vitro (IN) plants, and ex vitro acclimated plants (EN). The results showed that IN plants have a 50% lower soluble sugar content compared to WT, and EN. The total phenolic acids content was at least 30% higher in micropropagated (IN) and regenerated (EN) plants compared to WT. The total saponin content in IN, and EN plants was 36 and 25 times higher compared to WT. The AOX capacity of IN plants was on average three times higher compared to other treatments. However, no correlation was found between the AOX activity and total phenolic acids or total saponins. A negative and significant correlation (r = –0.927; p = 0.003) was found between the AOX activity and the total soluble sugars content. Micropropagated plants of A. salmiana have a different phytochemical content and bioactivity after the in vitro process compared to WT plants. The micropropagation process could be used as a platform for phytochemical enhancement of Agave plants. PMID:26635850
Micropropagation of Agave salmiana: Means to Production of Antioxidant and Bioactive Principles.
Puente-Garza, César A; Gutiérrez-Mora, Antonia; García-Lara, Silverio
2015-01-01
Maguey, Agave salmiana, is an important plant for the "pulque" beverage and functional food industries; however, it has several constraints for elite and homogeneous plant production. In this study, a micropropagation process was established to generate in vitro plants. The effect of the method on metabolite content and antioxidant (AOX) activity in regenerated plants was evaluated. Young germinated plantlets were micropropagated from axillary shoots using Murashige and Skoog medium supplemented with L2 vitamins, 0.04 mg/L 2,4-dichlorophenoxyacetic acid and 10 mg/L 6-benzylaminopurine. Total soluble sugars from the aqueous fraction and total phenolic acids, total saponins, and AOX activity of the methanol fraction were determined in wild-type (WT) plants, in in vitro (IN) plants, and ex vitro acclimated plants (EN). The results showed that IN plants have a 50% lower soluble sugar content compared to WT, and EN. The total phenolic acids content was at least 30% higher in micropropagated (IN) and regenerated (EN) plants compared to WT. The total saponin content in IN, and EN plants was 36 and 25 times higher compared to WT. The AOX capacity of IN plants was on average three times higher compared to other treatments. However, no correlation was found between the AOX activity and total phenolic acids or total saponins. A negative and significant correlation (r = -0.927; p = 0.003) was found between the AOX activity and the total soluble sugars content. Micropropagated plants of A. salmiana have a different phytochemical content and bioactivity after the in vitro process compared to WT plants. The micropropagation process could be used as a platform for phytochemical enhancement of Agave plants.
Role of plant hormones in plant defence responses.
Bari, Rajendra; Jones, Jonathan D G
2009-03-01
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.
40 CFR 63.605 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.605 Monitoring requirements. (a)(1) Each owner or operator of a new or existing wet-process phosphoric acid process line or superphosphoric acid process line subject to the provisions of this subpart shall install...
A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid
USDA-ARS?s Scientific Manuscript database
Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-ß-D-...
Zhang, Yong; Li, Jing; Zhang, Weiqi; Wang, Rongsheng; Qiu, Qiaoqing; Luo, Feng; Hikichi, Yasufumi; Ohnishi, Kouhei; Ding, Wei
2017-01-01
Hydroxycinnamic acids (HCAs) are typical monocyclic phenylpropanoids, including cinnamic acid (Cin), coumaric acid (Cou), caffeic acid (Caf), ferulic acid (FA) and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS) in Ralstonia solanacearum . FA significantly induced the expression of the T3SS and some type III effectors (T3Es) genes in hrp -inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR) in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum , was able to promote its infection process in host plants under hydroponics condition.
Fuel alcohol production from agricultural lignocellulosic feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, G.E.; Barrier, J.W.; Forsythe, M.L.
1988-01-01
A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa,more » kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.« less
Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj
2011-04-01
Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
40 CFR 63.602 - Standards for existing sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.602 Standards for existing sources. (a) Wet process phosphoric acid process line. On and after the date on which... of equivalent P2O5 feed (0.020 lb/ton). (b) Superphosphoric acid process line—(1) Vacuum evaporation...
40 CFR 63.602 - Standards for existing sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.602 Standards for existing sources. (a) Wet process phosphoric acid process line. On and after the date on which... of equivalent P2O5 feed (0.020 lb/ton). (b) Superphosphoric acid process line—(1) Vacuum evaporation...
40 CFR 63.602 - Standards for existing sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.602 Standards for existing sources. (a) Wet process phosphoric acid process line. On and after the date on which... of equivalent P2O5 feed (0.020 lb/ton). (b) Superphosphoric acid process line—(1) Vacuum evaporation...
An eco-balance of a recycling plant for spent lead-acid batteries.
Salomone, Roberta; Mondello, Fabio; Lanuzza, Francesco; Micali, Giuseppe
2005-02-01
This study applies Life Cycle Assessment (LCA) methodology to present an eco-balance of a recycling plant that treats spent lead-acid batteries. The recycling plant uses pyrometallurgical treatment to obtain lead from spent batteries. The application of LCA methodology (ISO 14040 series) enabled us to assess the potential environmental impacts arising from the recycling plant's operations. Thus, net emissions of greenhouse gases as well as other major environmental consequences were examined and hot spots inside the recycling plant were identified. A sensitivity analysis was also performed on certain variables to evaluate their effect on the LCA study. The LCA of a recycling plant for spent lead-acid batteries presented shows that this methodology allows all of the major environmental consequences associated with lead recycling using the pyrometallurgical process to be examined. The study highlights areas in which environmental improvements are easily achievable by a business, providing a basis for suggestions to minimize the environmental impact of its production phases, improving process and company performance in environmental terms.
Camoni, Lorenzo; Di Lucente, Cristina; Pallucca, Roberta; Visconti, Sabina; Aducci, Patrizia
2012-08-01
Phosphatidic acid is a phospholipid second messenger implicated in various cellular processes in eukaryotes. In plants, production of phosphatidic acid is triggered in response to a number of biotic and abiotic stresses. Here, we show that phosphatidic acid binds to 14-3-3 proteins, a family of regulatory proteins which bind client proteins in a phosphorylation-dependent manner. Binding of phosphatidic acid involves the same 14-3-3 region engaged in protein target binding. Consequently, micromolar phosphatidic acid concentrations significantly hamper the interaction of 14-3-3 proteins with the plasma membrane H(+)-ATPase, a well characterized plant 14-3-3 target, thus inhibiting the phosphohydrolitic enzyme activity. Moreover, the proton pump is inhibited when endogenous PA production is triggered by phospholipase D and the G protein agonist mastoparan-7. Hence, our data propose a possible mechanism involving PA that regulates 14-3-3-mediated cellular processes in response to stress. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Rivera Casado, Noemí Araceli; Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio; Calva Calva, Graciano
2015-01-01
The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process.
Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio
2015-01-01
The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process. PMID:26473488
Balabanova, Dobrinka A.; Paunov, Momchil; Goltsev, Vasillij; Cuypers, Ann; Vangronsveld, Jaco; Vassilev, Andon
2016-01-01
The herbicide imazamox may provoke temporary yellowing and growth retardation in IMI-R sunflower hybrids, more often under stressful environmental conditions. Although, photosynthetic processes are not the primary sites of imazamox action, they might be influenced; therefore, more information about the photosynthetic performance of the herbicide-treated plants could be valuable for a further improvement of the Clearfield technology. Plant biostimulants have been shown to ameliorate damages caused by different stress factors on plants, but very limited information exists about their effects on herbicide-stressed plants. In order to characterize photosynthetic performance of imazamox-treated sunflower IMI-R plants, we carried out experiments including both single and combined treatments by imazamox and a plant biostimulants containing amino acid extract. We found that imazamox application in a rate of 132 μg per plant (equivalent of 40 g active ingredient ha−1) induced negative effects on both light-light dependent photosynthetic redox reactions and leaf gas exchange processes, which was much less pronounced after the combined application of imazamox and amino acid extract. PMID:27826304
40 CFR 63.603 - Standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.603 Standards for new sources. (a) Wet process phosphoric acid process line. On and after the date on which the... equivalent P2O5 feed (0.01350 lb/ton). (b) Superphosphoric acid process line. On and after the date on which...
40 CFR 63.603 - Standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.603 Standards for new sources. (a) Wet process phosphoric acid process line. On and after the date on which the... equivalent P2O5 feed (0.01350 lb/ton). (b) Superphosphoric acid process line. On and after the date on which...
40 CFR 63.603 - Standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.603 Standards for new sources. (a) Wet process phosphoric acid process line. On and after the date on which the... equivalent P2O5 feed (0.01350 lb/ton). (b) Superphosphoric acid process line. On and after the date on which...
Melatonin and its relationship to plant hormones.
Arnao, M B; Hernández-Ruiz, J
2018-02-12
Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
76 FR 38024 - Standards of Performance for New Stationary Sources
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
..., and Prior to July 23, 1984. Kb Volatile Organic Liquid Storage X Vessels (Including Petroleum Liquid... R Primary Lead Smelters X X S Primary Aluminum Reduction Plants X X T Phosphate Fertilizer Industry: X X Wet Process Phosphoric Acid Plants. U Phosphate Fertilizer Industry: X X Superphosphoric Acid...
40 CFR 63.1159 - Operational and equipment standards for existing, new, or reconstructed sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Pollutants for Steel Pickling-HCl Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1159... regeneration plant. The owner or operator of an affected plant must operate the affected plant at all times...
40 CFR 63.1159 - Operational and equipment standards for existing, new, or reconstructed sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pollutants for Steel Pickling-HCl Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1159... regeneration plant. The owner or operator of an affected plant must operate the affected plant at all times...
40 CFR 63.1159 - Operational and equipment standards for existing, new, or reconstructed sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Pollutants for Steel Pickling-HCl Process Facilities and Hydrochloric Acid Regeneration Plants § 63.1159... regeneration plant. The owner or operator of an affected plant must operate the affected plant at all times...
Application of organic acids for plant protection against phytopathogens.
Morgunov, Igor G; Kamzolova, Svetlana V; Dedyukhina, Emilia G; Chistyakova, Tatiana I; Lunina, Julia N; Mironov, Alexey A; Stepanova, Nadezda N; Shemshura, Olga N; Vainshtein, Mikhail B
2017-02-01
The basic tendency in the field of plant protection concerns with reducing the use of pesticides and their replacement by environmentally acceptable biological preparations. The most promising approach to plant protection is application of microbial metabolites. In the last years, bactericidal, fungicidal, and nematodocidal activities were revealed for citric, succinic, α-ketoglutaric, palmitoleic, and other organic acids. It was shown that application of carboxylic acids resulted in acceleration of plant development and the yield increase. Of special interest is the use of arachidonic acid in very low concentrations as an inductor (elicitor) of protective functions in plants. The bottleneck in practical applications of these simple, nontoxic, and moderately priced preparations is the absence of industrial production of the mentioned organic acids of required quality since even small contaminations of synthetic preparations decrease their quality and make them dangerous for ecology and toxic for plants, animals, and human. This review gives a general conception on the use of organic acids for plant protection against the most dangerous pathogens and pests, as well as focuses on microbiological processes for production of these microbial metabolites of high quality from available, inexpensive, and renewable substrates.
Transformation of 5-O-caffeoylquinic acid in blueberries during high-temperature processing.
Dawidowicz, Andrzej L; Typek, Rafal
2014-11-12
Chlorogenic acid (CQA), an ester of caffeic with quinic acid, is a natural compound found in a wide array of plants. Although coffee beans are most frequently mentioned as plant products remarkably rich in CQAs, their significant amounts can also be found in many berries, for example, blueberries. This paper shows and discusses the thermal stability of the main CQA representative, that is, 5-O-caffeoylquinic acid (5-CQA), during high-temperature processing of blueberries (as in the production of blueberry foods) in systems containing sucrose in low and high concentration. It has been found that up to 11 components (5-CQA derivatives and its reaction product with water) can be formed from 5-CQA during the processing of blueberries. Their formation speed depends on the sucrose concentration in the processed system, which has been confirmed in the artificial system composed of 5-CQA water solution containing different amounts of the sugar.
Sulfuric Acid Regeneration Waste Disposal Technology.
1986-11-01
or poorer correlations of acid load with SAR production. The National Pollutant Discharge Elimination System (NPDES) permit requires one daily 24 hour...systems; and * essentially eliminates [(NH4 )2So4 ] disposal problem. The chief concerns for this process are: " high chemical cost of BaCO 3... biofiltration and fluorination prior to being discharged to a stream which feeds into the Allegheny River. PLANT 6: Sulfuric acid plant in New Jersey
Kang, S-M; Radhakrishnan, R; You, Y-H; Khan, A-L; Lee, K-E; Lee, J-D; Lee, I-J
2015-09-01
This study aimed to elucidate the role played by Enterobacter asburiae KE17 in the growth and metabolism of soybeans during copper (100 μm Cu) and zinc (100 μm Zn) toxicity. When compared to controls, plants grown under Cu and Zn stress exhibited significantly lower growth rates, but inoculation with E. asburiae KE17 increased growth rates of stressed plants. The concentrations of plant hormones (abscisic acid and salicylic acid) and rates of lipid peroxidation were higher in plants under heavy metal stress, while total chlorophyll, carotenoid content and total polyphenol concentration were lower. While the bacterial treatment reduced the abscisic acid and salicylic acid content and lipid peroxidation rate of Cu-stressed plants, it also increased the concentration of photosynthetic pigments and total polyphenol. Moreover, the heavy metals induced increased accumulation of free amino acids such as aspartic acid, threonine, serine, glycine, alanine, leucine, isoleucine, tyrosine, proline and gamma-aminobutyric acid, while E. asburiae KE17 significantly reduced concentrations of free amino acids in metal-affected plants. Co-treatment with E. asburiae KE17 regulated nutrient uptake by enhancing nitrogen content and inhibiting Cu and Zn accumulation in soybean plants. The results of this study suggest that E. asburiae KE17 mitigates the effects of Cu and Zn stress by reprogramming plant metabolic processes. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Wianowska, Dorota; Typek, Rafał; Dawidowicz, Andrzej L
2015-09-01
The analytical procedures for determining plant constituents involve the application of sample preparation methods to fully isolate and/or pre-concentrate the analyzed substances. High-temperature liquid extraction is still applied most frequently for this purpose. The present paper shows that high-temperature extraction cannot be applied for the analysis of chlorogenic acids (CQAs) and their derivatives in plants as it causes the CQAs transformation leading to erroneous quantitative estimations of these compounds. Experiments performed on different plants (black elder, hawthorn, nettle, yerba maté, St John's wort and green coffee) demonstrate that the most appropriate method for the estimation of CQAs/CQAs derivatives is sea sand disruption method (SSDM) because it does not induce any transformation and/or degradation processes in the analyzed substances. Owing to the SSDM method application we found that the investigated plants, besides four main CQAs, contain sixteen CQAs derivatives, among them three quinic acids. The application of SSDM in plant analysis not only allows to establish a true concentration of individual CQAs in the examined plants but also to determine which chlorogenic acids derivatives are native plant components and what is their concentration level. What is even more important, the application of SSDM in plant analysis allows to eliminate errors that may arise or might have arisen in the study of chlorogenic acids and their derivatives in plant metabolism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preparation of Grinding Aid Using Waste Acid Residue from Plasticizer Plant
NASA Astrophysics Data System (ADS)
Li, Lingxiao; Feng, Yanchao; Liu, Manchao; Zhao, Fengqing
2017-09-01
The grinding aid for granulated blast-furnace slag were prepared from waste acid residue from plasticizer plant through neutralization, de-methanol and granulation process. In this process, sulfuric acid was transformed into gypsum which has much contribution for grinding effect by combined use with the glycerol and poly glycerin in the waste. Fly ash was used for granulation for the composite grinding aid. Methanol can be recycled in the process. The result showed that the suitable addition of grinding aid is 0.03 % of granulated blast-furnace slag (mass). In this case, the specific surface area is 14% higher than that of the blank. Compared with the common grinding aids, it has excellent performance and low cost.
40 CFR 180.1159 - Pelargonic acid; exemption from the requirement of tolerances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... food commodities when used as a plant regulator on plants, seeds, or cuttings and on all food..., dairies, breweries, wineries, beverage and food processing plants. [62 FR 28364, May 23, 1997, as amended...
40 CFR 180.1159 - Pelargonic acid; exemption from the requirement of tolerances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... food commodities when used as a plant regulator on plants, seeds, or cuttings and on all food..., dairies, breweries, wineries, beverage and food processing plants. [62 FR 28364, May 23, 1997, as amended...
40 CFR 180.1159 - Pelargonic acid; exemption from the requirement of tolerances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... food commodities when used as a plant regulator on plants, seeds, or cuttings and on all food..., dairies, breweries, wineries, beverage and food processing plants. [62 FR 28364, May 23, 1997, as amended...
40 CFR 180.1159 - Pelargonic acid; exemption from the requirement of tolerances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... food commodities when used as a plant regulator on plants, seeds, or cuttings and on all food..., dairies, breweries, wineries, beverage and food processing plants. [62 FR 28364, May 23, 1997, as amended...
40 CFR 180.1159 - Pelargonic acid; exemption from the requirement of tolerances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... food commodities when used as a plant regulator on plants, seeds, or cuttings and on all food..., dairies, breweries, wineries, beverage and food processing plants. [62 FR 28364, May 23, 1997, as amended...
2-Hydroxy Acids in Plant Metabolism
Maurino, Veronica G.; Engqvist, Martin K. M.
2015-01-01
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis. PMID:26380567
Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones.
Baccelli, Ivan; Mauch-Mani, Brigitte
2016-08-01
Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process.
Kozlovsky, A G; Zhelifonova, V P; Antipova, T V; Baskunov, B P; Ivanushkina, N E; Ozerskaya, S M
2014-01-01
Data were obtained on the species composition of mycelial fungi isolated from the air of workrooms and production premises in cheese-making and meat-processing plants. The strains studied were shown to be capable of producing various low molecular weight compounds. Many of them are mycotoxins such as α-cyclopiazonic acid (CPA), mycophenolic acid (MPA), citrinin, cladosporin, roquefortine and ergot alkaloids. The profiles of the secondary metabolites were used to elucidate the species' names of the isolated strains.
Case study, comparison of trial burn results from similar sulfuric acid regeneration plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milaszewski, M.; Johns, T.; Dickerson, W.F.
The primary business of Rhodia Eco Services (Rhodia) is the regeneration of sulfuric acid. Sulfuric acid regeneration requires thermal decomposition of acid to sulfur dioxide, and remaking the acid through chemical reaction. The sulfuric acid regeneration furnace is the ideal place to process pumpable wastes for energy recovery and for thermal destruction. Rhodia is regulated by the Boiler and Industrial Furnace (BIF) regulations (40 CFR 266, Subpart H). The Hammond, Indiana plant is an interim status BIF facility and the Houston, Texas facility is renewing its RCRA incineration permit as a BIF facility. Both plants have conducted BIF Trial Burnsmore » with very similar results. The performance levels demonstrated were at levels better than RCRA/BIF standards for destruction and removal efficiency, metal, HCl/Cl, particulate, dioxin/furan, and organic emissions.« less
Cara M. Stripe; Louis S. Santiago; Pamela E. Padgett
2014-01-01
Ozone (O3) and nitric acid (HNO3) are synthesized by the same atmospheric photochemical processes and are almost always co-pollutants. Effects of O3 on plants have been well-elucidated, yet less is known about the effects of HNO3 on plants. We investigated the physiological...
15. international conference on plant growth substances: Program -- Abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Since the 14th Conference in Amsterdam in 1991, progress in plant hormone research and developmental plant biology has been truly astonishing. The five ``classical`` plant hormones, auxin, gibberellin, cytokinin, ethylene, and abscisic acid, have been joined by a number of new signal molecules, e.g., systemin, jasmonic acid, salicylic acid, whose biosynthesis and functions are being understood in ever greater detail. Molecular genetics has opened new vistas in an understanding of transduction pathways that regulate developmental processes in response to hormonal and environmental signals. The program of the 15th Conference includes accounts of this progress and brings together scientists whose workmore » focuses on physiological, biochemical, and chemical aspects of plant growth regulation. This volume contains the abstracts of papers presented at this conference.« less
Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I
2015-08-01
Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. Copyright © 2015 Elsevier Ltd. All rights reserved.
Somerville, Christopher R.; Nawrath, Christiane; Poirier, Yves
1997-03-11
The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid.
Plant hormones: a fungal point of view.
Chanclud, Emilie; Morel, Jean-Benoit
2016-10-01
Most classical plant hormones are also produced by pathogenic and symbiotic fungi. The way in which these molecules favour the invasion of plant tissues and the development of fungi inside plant tissues is still largely unknown. In this review, we examine the different roles of such hormone production by pathogenic fungi. Converging evidence suggests that these fungal-derived molecules have potentially two modes of action: (i) they may perturb plant processes, either positively or negatively, to favour invasion and nutrient uptake; and (ii) they may also act as signals for the fungi themselves to engage appropriate developmental and physiological processes adapted to their environment. Indirect evidence suggests that abscisic acid, gibberellic acid and ethylene produced by fungi participate in pathogenicity. There is now evidence that auxin and cytokinins could be positive regulators required for virulence. Further research should establish whether or not fungal-derived hormones act like other fungal effectors. © 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Improving Plant Nitrogen Use Efficiency through Alteration of Amino Acid Transport Processes1[OPEN
Perchlik, Molly
2017-01-01
Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea (Pisum sativum) plants overexpressing AMINO ACID PERMEASE1 (AAP1) were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the AAP1-overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments. PMID:28733388
[Process and mechanism of plants in overcoming acid soil aluminum stress].
Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi
2013-10-01
Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.
Dempsey, D'Maris Amick; Klessig, Daniel F
2017-03-23
Salicylic acid (SA) is an important plant hormone that regulates many aspects of plant growth and development, as well as resistance to (a)biotic stress. Efforts to identify SA effector proteins have revealed that SA binds to and alters the activity of multiple plant proteins-this represents a shift from the paradigm that hormones mediate their functions via one or a few receptors. SA and its derivatives also have multiple targets in animals; some of these proteins, like their plant counterparts, are associated with pathological processes. Together, these findings suggest that SA exerts its defense-associated effects in both kingdoms via a large number of targets.
Role of various hormones in photosynthetic responses of green plants under environmental stresses.
Poonam; Bhardwaj, Renu; Kaur, Ravdeep; Bali, Shagun; Kaur, Parminder; Sirhindi, Geetika; Thukral, Ashwani K; Ohri, Puja; Vig, Adarsh P
2015-01-01
Environmental stress includes adverse factors like water deficit, high salinity, enhanced temperature and heavy metals etc. These stresses alter the normal growth and metabolic processes of plants including photosynthesis. Major photosynthetic responses under various stresses include inhibition of photosystems (I and II), changes in thylakoid complexes, decreased photosynthetic activity and modifications in structure and functions of chloroplasts etc. Various defense mechanisms are triggered inside the plants in response to these stresses that are regulated by plant hormones or plant growth regulators. These phytohormones include abscisic acid, auxins, cytokinins, ethylene, brassinosteroids, jasmonates and salicylic acid etc. The present review focuses on stress protective effects of plants hormones on the photosynthetic responses.
Morozesk, Mariana; Bonomo, Marina Marques; Souza, Iara da Costa; Rocha, Lívia Dorsch; Duarte, Ian Drumond; Martins, Ian Oliveira; Dobbss, Leonardo Barros; Carneiro, Maria Tereza Weitzel Dias; Fernandes, Marisa Narciso; Matsumoto, Silvia Tamie
2017-10-01
Biological process treatment of landfill leachate produces a significant amount of sludge, characterized by high levels of organic matter from which humic acids are known to activate several enzymes of energy metabolism, stimulating plant growth. This study aimed to characterize humic acids extracted from landfill sludge and assess the effects on plants exposed to different concentrations (0.5, 1, 2 and 4 mM C L -1 ) by chemical and biological analysis, to elucidate the influence of such organic material and minimize potential risks of using sludge in natura. Landfill humic acids showed high carbon and nitrogen levels, which may represent an important source of nutrients for plants. Biochemical analysis demonstrated an increase of enzyme activity, especially H + -ATPase in 2 mM C L -1 landfill humic acid. Additionally, cytogenetic alterations were observed in meristematic and F 1 cells, through nuclear abnormalities and micronuclei. Multivariate statistical analysis provided integration of physical, chemical and biological data. Despite all the nutritional benefits of humic acids and their activation of plant antioxidant systems, the observed biological effects showed concerning levels of mutagenicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regeneration Plants § 63.1156 Definitions. Terms used in this subpart are defined in the Clean Air Act, in... regeneration plant means the collection of equipment and processes configured to reconstitute fresh... acid regeneration plant production mode means operation under conditions that result in production of...
Sarwat, Maryam; Naqvi, Afsar Raza; Ahmad, Parvaiz; Ashraf, Muhammad; Akram, Nudrat Aisha
2013-12-01
Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence. Copyright © 2013 Elsevier Inc. All rights reserved.
Somerville, C.R.; Nawrath, C.; Poirier, Y.
1997-03-11
The present invention relates to a process for producing poly-D-(-)-3-hydroxybutyric acid (PHB) and related polyhydroxyalkanoates (PHA) in the plastids of plants. The production of PHB is accomplished by genetically transforming plants with modified genes from microorganisms. The genes encode the enzymes required to synthesize PHB from acetyl-CoA or related metabolites and are fused with additional plant sequences for targeting the enzymes to the plastid. 37 figs.
Minimising toxicity of cadmium in plants--role of plant growth regulators.
Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A
2015-03-01
A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.
Achmon, Yigal; Sade, Nir; Wilhelmi, María Del Mar Rubio; Fernández-Bayo, Jesus D; Harrold, Duff R; Stapleton, James J; VanderGheynst, Jean S; Blumwald, Eduardo; Simmons, Christopher W
2018-06-06
Conventional solarization and biosolarization with mature compost and tomato processing residue amendments were compared with respect to generation of pesticidal conditions and tomato ( Solanum lycopersicum L.) plant growth in treated soils. Soil oxygen depletion was examined as a response that has previously not been measured across multiple depths during biosolarization. For biosolarized soil, volatile fatty acids were found to accumulate concurrent with oxygen depletion, and the magnitude of these changes varied by soil depth. Two consecutive years of experimentation showed varying dissipation of volatile fatty acids from biosolarized soils post-treatment. When residual volatile fatty acids were detected in the biosolarized soil, fruit yield did not significantly differ from plants grown in solarized soil. However, when there was no residual volatile fatty acids in the soil at the time of planting, plants grown in biosolarized soil showed a significantly greater vegetation amount, fruit quantity, and fruit ripening than those of plants grown in solarized soil.
Suh, Joon Hyuk; Han, Sang Beom; Wang, Yu
2018-02-02
Despite their importance in pivotal signaling pathways due to trace quantities and complex matrices, the analysis of plant hormones is a challenge. Here, to improve this issue, we present an electromembrane extraction technology combined with liquid chromatography-tandem mass spectrometry for determination of acidic plant hormones including jasmonic acid, abscisic acid, salicylic acid, benzoic acid, gibberellic acid and gibberellin A 4 in plant tissues. Factors influencing extraction efficiency, such as voltage, extraction time and stirring rate were optimized using a design of experiments. Analytical performance was evaluated in terms of specificity, linearity, limit of quantification, precision, accuracy, recovery and repeatability. The results showed good linearity (r 2 > 0.995), precision and acceptable accuracy. The limit of quantification ranged from 0.1 to 10 ng mL -1 , and the recoveries were 34.6-50.3%. The developed method was applied in citrus leaf samples, showing better clean-up efficiency, as well as higher sensitivity compared to a previous method using liquid-liquid extraction. Organic solvent consumption was minimized during the process, making it an appealing method. More noteworthy, electromembrane extraction has been scarcely applied to plant tissues, and this is the first time that major plant hormones were extracted using this technology, with high sensitivity and selectivity. Taken together, this work gives not only a novel sample preparation platform using an electric field for plant hormones, but also a good example of extracting complex plant tissues in a simple and effective way. Copyright © 2017 Elsevier B.V. All rights reserved.
Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants
Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.
2015-01-01
Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738
Aluminum exclusion and aluminum tolerance in woody plants.
Brunner, Ivano; Sperisen, Christoph
2013-01-01
The aluminum (Al) cation Al(3) (+) is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al(3) (+) conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al(3) (+) from root cells (exclusion mechanisms) and those that enable plants to tolerate Al(3) (+) once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al(3) (+) exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al(3) (+) adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.
miR156 modulates rhizosphere acidification in response to phosphate limitation in Arabidopsis.
Lei, Kai Jian; Lin, Ya Ming; An, Guo Yong
2016-03-01
Rhizosphere acidification is a general response to Pi deficiency, especially in dicotyledonous plants. However, the signaling pathway underlying this process is still unclear. Here, we demonstrate that miR156 is induced in the shoots and roots of wild type Arabidopsis plants during Pi starvation. The rhizosphere acidification capacity was increased in 35S:MIR156 (miR156 overexpression) plants, but was completely inhibited in 35S:MIM156 (target mimicry) plants. Both 35S:MIR156 and 35S:MIM156 plants showed altered proton efflux and H(+)-ATPase activity. In addition, significant up-regulation of H(+)-ATPase activity in 35S:MIR156 roots coupled with increased citric acid and malic acid exudates was observed. qRT-PCR results showed that most H(+)-ATPase and PPCK gene transcript levels were decreased in 35S:MIM156 plants, which may account for the decreased H(+)-ATPase activity in 35S:MIM156 plants. MiR156 also affect the root architecture system. Collectively, our results suggest that miR156 regulates the process of rhizosphere acidification in plants.
Ascorbate as a Biosynthetic Precursor in Plants
Debolt, Seth; Melino, Vanessa; Ford, Christopher M.
2007-01-01
Background and Aims l-Ascorbate (vitamin C) has well-documented roles in many aspects of redox control and anti-oxidant activity in plant cells. This Botanical Briefing highlights recent developments in another aspect of l-ascorbate metabolism: its function as a precursor for specific processes in the biosynthesis of organic acids. Scope The Briefing provides a summary of recent advances in our understanding of l-ascorbate metabolism, covering biosynthesis, translocation and functional aspects. The role of l-ascorbate as a biosynthetic precursor in the formation of oxalic acid, l-threonic acid and l-tartaric acid is described, and progress in elaborating the mechanisms of the formation of these acids is reviewed. The potential conflict between the two roles of l-ascorbate in plant cells, functional and biosynthetic, is highlighted. Conclusions Recent advances in the understanding of l-ascorbate catabolism and the formation of oxalic and l-tartaric acids provide compelling evidence for a major role of l-ascorbate in plant metabolism. Combined experimental approaches, using classic biochemical and emerging ‘omics’ technologies, have provided recent insight to previously under-investigated areas. PMID:17098753
Near-Zero Emissions Oxy-Combustion Flue Gas Purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minish Shah; Nich Degenstein; Monica Zanfir
2012-06-30
The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plantsmore » burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions, produce high purity CO{sub 2} relatively free of trace impurities and achieve ~99% CO{sub 2} capture rate while lowering the CO{sub 2} capture costs.« less
Debnath, Biswojit; Hussain, Mubasher; Irshad, Muhammad; Mitra, Sangeeta; Li, Min; Liu, Shuang; Qiu, Dongliang
2018-02-11
Acid rain (AR) is a serious global environmental issue causing physio-morphological changes in plants. Melatonin, as an indoleamine molecule, has been known to mediate many physiological processes in plants under different kinds of environmental stress. However, the role of melatonin in acid rain stress tolerance remains inexpressible. This study investigated the possible role of melatonin on different physiological responses involving reactive oxygen species (ROS) metabolism in tomato plants under simulated acid rain (SAR) stress. SAR stress caused the inhibition of growth, damaged the grana lamella of the chloroplast, photosynthesis, and increased accumulation of ROS and lipid peroxidation in tomato plants. To cope the detrimental effect of SAR stress, plants under SAR condition had increased both enzymatic and nonenzymatic antioxidant substances compared with control plants. But such an increase in the antioxidant activities were incapable of inhibiting the destructive effect of SAR stress. Meanwhile, melatonin treatment increased SAR-stress tolerance by repairing the grana lamella of the chloroplast, improving photosynthesis and antioxidant activities compared with those in SAR-stressed plants. However, these possible effects of melatonin are dependent on concentration. Moreover, our study suggests that 100-μM melatonin treatment improved the SAR-stress tolerance by increasing photosynthesis and ROS scavenging antioxidant activities in tomato plants.
1986 fuel cell seminar: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1986-10-01
Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)
Nguyen, Duy; D'Agostino, Nunzio; Tytgat, Tom O G; Sun, Pulu; Lortzing, Tobias; Visser, Eric J W; Cristescu, Simona M; Steppuhn, Anke; Mariani, Celestina; van Dam, Nicole M; Rieu, Ivo
2016-07-01
In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann
2014-05-01
Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium, lanthan, neodymium, gadolinium and erbium in the rhizosphere and therefore the enhancement of bioavailability of the mentioned elements to plants. Based on the suction cup experiment we conclude that in vertical soil profile the bioavailable germanium is heavily affected by the activity of exudates, as the complexation processes of germanium take place at the root zone and below affected by the interplay of the infiltration of citric acid solutions and the actually produced exudates. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.
Characteristics of dioxin emissions from a Waelz plant with acid and basic kiln mode.
Hung, Pao Chen; Chi, Kai Hsien; Chen, Mei Lien; Chang, Moo Been
2012-01-30
The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in the flue gas of a Waelz plant operated in acid and basic modes, respectively. To abate (PCDD/F) and other pollutants, the plant operates with a post-treatment of flue gases by activated carbon injection and subsequent filtration. Relatively high PCDD/F discharge by fly ashes is found with acid kiln mode of the Waelz process. Therefore, basic kiln mode of the Waelz process is investigated and compared in this plant. With the adsorbent injection rate of 7 kg/h (95 mg/Nm(3)), the PCDD/F concentration in stack gas was measured as 0.123 ng I-TEQ/Nm(3) in the basic operating mode. The added Ca(OH)(2) reacted with metal catalysts and HCl((g)) in the flue gas and thus effectively suppressed the formation of PCDD/Fs. PCDD/F concentrations in fly ashes sampled from the dust settling chamber, cyclone, primary filter and secondary filter in basic kiln mode were significantly lower than that in acid kiln mode. Total PCDD/F emission on the basis of treating one kg of electric arc furnace dust in the basic operation mode was 269 ng I-TEQ/kg EAF-dust treated which was significantly lower than that in acid mode (640 ng I-TEQ/kg EAF-dust treated). Copyright © 2011 Elsevier B.V. All rights reserved.
Leenheer, J.A.; Hsu, J.; Barber, L.B.
2001-01-01
In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .
Abscisic acid and abiotic stress tolerance in crop plants
USDA-ARS?s Scientific Manuscript database
biotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the ...
Dissecting a new connection between cytokinin and jasmonic acid in control of leaf growth
USDA-ARS?s Scientific Manuscript database
Plant growth is mediated by two cellular processes: division and elongation. The maize leaf is an excellent model to study plant growth since these processes are spatially separated into discreet zones - a division zone (DZ), transition zone (TZ), and elongation zone (EZ) - at the base of the leaf. ...
8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...
8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
USDA-ARS?s Scientific Manuscript database
Salmonella enterica serovars isolated from turkeys in commercial processing plants were characterized for susceptibility to antibiotics, disinfectants, disinfectant components, and the organoarsenical growth promotant 4-hydroxy-3-nitrophenylarsonic acid (3-NHPAA) and its metabolites NaAsO2 (As[III])...
Czarnotta, Eik; Dianat, Mariam; Korf, Marcel; Granica, Fabian; Merz, Juliane; Maury, Jérôme; Baallal Jacobsen, Simo A; Förster, Jochen; Ebert, Birgitta E; Blank, Lars M
2017-11-01
Microbial production of plant derived, biologically active compounds has the potential to provide economic and ecologic alternatives to existing low productive, plant-based processes. Current production of the pharmacologically active cyclic triterpenoid betulinic acid is realized by extraction from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into Saccharomyces cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg/L, and total triterpenoid concentrations of 854 mg/L, the highest concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic solvents such as acetone or ethyl acetate and subsequent precipitation with strong acids. This study highlights the potential of microbial production of plant derived triterpenoids in S. cerevisiae by combining metabolic and process engineering. © 2017 Wiley Periodicals, Inc.
Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid.
van Aubel, Géraldine; Cambier, Pierre; Dieu, Marc; Van Cutsem, Pierre
2016-06-01
Plant innate immunity offers considerable opportunities for plant protection but beside flagellin and chitin, not many molecules and their receptors have been extensively characterized and very few have successfully reached the field. COS-OGA, an elicitor that combines cationic chitosan oligomers (COS) with anionic pectin oligomers (OGA), efficiently protected tomato (Solanum lycopersicum) grown in greenhouse against powdery mildew (Leveillula taurica). Leaf proteomic analysis of plants sprayed with COS-OGA showed accumulation of Pathogenesis-Related proteins (PR), especially subtilisin-like proteases. qRT-PCR confirmed upregulation of PR-proteins and salicylic acid (SA)-related genes while expression of jasmonic acid/ethylene-associated genes was not modified. SA concentration and class III peroxidase activity were increased in leaves and appeared to be a cumulative process dependent on the number of sprayings with the elicitor. These results suggest a systemic acquired resistance (SAR) mechanism of action of the COS-OGA elicitor and highlight the importance of repeated applications to ensure efficient protection against disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues.
Li, Meng; Zheng, Shili; Liu, Biao; Du, Hao; Dreisinger, David Bruce; Tafaghodi, Leili; Zhang, Yi
2017-07-01
A large amount of Cu-Cd zinc plant residues (CZPR) are produced from the hydrometallurgical zinc plant operations. Since these residues contain substantial amount of heavy metals including Cd, Zn and Cu, therefore, they are considered as hazardous wastes. In order to realize decontamination treatment and efficient extraction of the valuable metals from the CZPR, a comprehensive recovery process using sulfuric acid as the leaching reagent and air as the oxidizing reagent has been proposed. The effect of temperature, sulfuric acid concentration, particle size, solid/liquid ratio and stirring speed on the cadmium extraction efficiency was investigated. The leaching kinetics of cadmium was also studied. It was concluded that the cadmium leaching process was controlled by the solid film diffusion process. Moreover, the order of the reaction rate constant versus H 2 SO 4 concentration, particle size, solid/liquid ratio and stirring speed was calculated. The XRD and SEM-EDS analysis results showed that the main phases of the secondary sulfuric acid leaching residues were lead sulfate and calcium sulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hodek, Ondřej; Křížek, Tomáš; Coufal, Pavel; Ryšlavá, Helena
2017-03-01
In this study, we optimized a method for the determination of free amino acids in Nicotiana tabacum leaves. Capillary electrophoresis with contactless conductivity detector was used for the separation of 20 proteinogenic amino acids in acidic background electrolyte. Subsequently, the conditions of extraction with HCl were optimized for the highest extraction yield of the amino acids because sample treatment of plant materials brings some specific challenges. Central composite face-centered design with fractional factorial design was used in order to evaluate the significance of selected factors (HCl volume, HCl concentration, sonication, shaking) on the extraction process. In addition, the composite design helped us to find the optimal values for each factor using the response surface method. The limits of detection and limits of quantification for the 20 proteinogenic amino acids were found to be in the order of 10 -5 and 10 -4 mol l -1 , respectively. Addition of acetonitrile to the sample was tested as a method commonly used to decrease limits of detection. Ambiguous results of this experiment pointed out some features of plant extract samples, which often required specific approaches. Suitability of the method for metabolomic studies was tested by analysis of a real sample, in which all amino acids, except for L-methionine and L-cysteine, were successfully detected. The optimized extraction process together with the capillary electrophoresis method can be used for the determination of proteinogenic amino acids in plant materials. The resulting inexpensive, simple, and robust method is well suited for various metabolomic studies in plants. As such, the method represents a valuable tool for research and practical application in the fields of biology, biochemistry, and agriculture.
Salicylic acid beyond defence: its role in plant growth and development.
Rivas-San Vicente, Mariana; Plasencia, Javier
2011-06-01
In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.
Yan, Kun; Cui, Mingxing; Zhao, Shijie; Chen, Xiaobing; Tang, Xiaoli
2016-01-01
Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of honeysuckle by promoting accumulation of chlorogenic acids, however, the mechanisms underlying this process were not consistent in flower buds and leaves. Honeysuckle appears to be a promising plant for cultivation in saline land. Our study deepens knowledge of medicinal plant ecology and may provide a guide for developing saline agriculture. PMID:27803710
Yan, Kun; Cui, Mingxing; Zhao, Shijie; Chen, Xiaobing; Tang, Xiaoli
2016-01-01
Honeysuckle ( Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of honeysuckle by promoting accumulation of chlorogenic acids, however, the mechanisms underlying this process were not consistent in flower buds and leaves. Honeysuckle appears to be a promising plant for cultivation in saline land. Our study deepens knowledge of medicinal plant ecology and may provide a guide for developing saline agriculture.
Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions
Nguyen, Quoc Thien.; Kisiala, Anna; Andreas, Peter; Neil Emery, R.J.; Narine, Suresh
2016-01-01
Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591
40 CFR 98.264 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-process phosphoric acid process line. You can use existing plant procedures that are used for accounting... the process line. Conduct the representative bulk sampling using the applicable standard method in the...
Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing.
Rasmussen, M L; Khanal, S K; Pometto, A L; van Leeuwen, J Hans
2014-01-01
Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5 d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein - a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Literally Green Chemical Synthesis of Artemisinin from Plant Extracts.
Triemer, Susann; Gilmore, Kerry; Vu, Giang T; Seeberger, Peter H; Seidel-Morgenstern, Andreas
2018-05-04
Active pharmaceutical ingredients are either extracted from biological sources-where they are synthesized in complex, dynamic environments-or prepared in stepwise chemical syntheses by reacting pure reagents and catalysts under controlled conditions. A combination of these two approaches, where plant extracts containing reagents and catalysts are utilized in intensified chemical syntheses, creates expedient and sustainable processes. We illustrate this principle by reacting crude plant extract, oxygen, acid, and light to produce artemisinin, a key active pharmaceutical ingredient of the most powerful antimalarial drugs. The traditionally discarded extract of Artemisia annua plants contains dihydroartemisinic acid-the final biosynthetic precursor-as well as chlorophyll, which acts as a photosensitizer. Efficient irradiation with visible light in a continuous-flow setup produces artemisinin in high yield, and the artificial biosynthetic process outperforms syntheses with pure reagents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process development for scum to biodiesel conversion.
Bi, Chong-hao; Min, Min; Nie, Yong; Xie, Qing-long; Lu, Qian; Deng, Xiang-yuan; Anderson, Erik; Li, Dong; Chen, Paul; Ruan, Roger
2015-06-01
A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kumar, Deepak; Murthy, Ganti S
2011-09-05
While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.
2011-01-01
Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies. PMID:21892958
Baziramakenga, R; Simard, R R; Leroux, G D
1994-11-01
Organic acids are major water-soluble allelochemicals found in soil infested with quackgrass and are involved in several processes that are important in plant growth and development. This study was carried out to gain more information on the effects of benzoic acid (BEN) andtrans-cinnamic acid (CIN) on growth, mineral composition, and chlorophyll content of soybean [Glycine max (L.) Merr. cv. Maple Bell] grown in nutrient solution. The two allelochemicals reduced root and shoot dry biomass of soybean. Treated plants had fewer lateral roots and tended to grow more horizontally compared to the untreated plants. Lateral roots were stunted and less flexible. The amounts of P, K, Mg, Mn, Cl(-), and SO 4 (2-) were lower, and Zn and Fe contents were higher in roots of plants grown with BEN or CIN as compared to untreated plants. Shoots of plants grown with the allelochemical showed greater accumulation of Ca, Mg, and Zn, whereas P and Fe contents were reduced. The BEN and CIN also caused reductions in leaf chlorophyll content. The BEN and CIN may be responsible for negative allelopathic effects of quackgrass on soybean by inhibiting root growth, by altering ion uptake and transport, and by reducing chlorophyll content.
BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS.
Creelman, Robert A.; Mullet, John E.
1997-06-01
Jasmonic acid and its derivatives can modulate aspects of fruit ripening, production of viable pollen, root growth, tendril coiling, and plant resistance to insects and pathogens. Jasmonate activates genes involved in pathogen and insect resistance, and genes encoding vegetative storage proteins, but represses genes encoding proteins involved in photosynthesis. Jasmonic acid is derived from linolenic acid, and most of the enzymes in the biosynthetic pathway have been extensively characterized. Modulation of lipoxygenase and allene oxide synthase gene expression in transgenic plants raises new questions about the compartmentation of the biosynthetic pathway and its regulation. The activation of jasmonic acid biosynthesis by cell wall elicitors, the peptide systemin, and other compounds will be related to the function of jasmonates in plants. Jasmonate modulates gene expression at the level of translation, RNA processing, and transcription. Promoter elements that mediate responses to jasmonate have been isolated. This review covers recent advances in our understanding of how jasmonate biosynthesis is regulated and relates this information to knowledge of jasmonate modulated gene expression.
Gómez, Diego A; Carpena, Ramón O
2014-09-15
The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone. Copyright © 2014 Elsevier GmbH. All rights reserved.
A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.
Ghare, N Y; Wani, K S; Patil, V S
2013-04-01
Pickling is the process of removal of oxide layer and rust formed on metal surface. It also removes sand and corrosion products from the surface of metal. Acids such as sulfuric acid, hydrochloric acid are used for pickling. Hydrofluoric acid-Nitric acid mixture is used for stainless steel pickling. Pickling solutions are spent when acid concentration in pickling solutions decreases by 75-85%, which also has metal content up to 150-250 g/ dm3. Spent pickling liquor (SPL) should be dumped because the efficiency of pickling decreases with increasing content of dissolved metal in the bath. The SPL content depends on the plant of origin and the pickling method applied there. SPL from steel pickling in hot-dip galvanizing plants contains zinc(II), iron, traces of lead, chromium. and other heavy metals (max. 500 mg/dm3) and hydrochloric acid. Zinc(II) passes tothe spent solution after dissolution of this metal from zinc(II)-covered racks, chains and baskets used for transportation of galvanized elements. Unevenly covered zinc layers are usually removed in another pickling bath. Due to this, zinc(II) concentration increases even up to 110 g/dm3, while iron content may reach or exceed even 80 g/dm3 in the same solution. This review presents an overview on different aspects of generation and treatment of SPL with recourse to recovery of acid for recycling. Different processes are described in this review and higher weightage is given to membrane processes.
Chicoric acid: chemistry, distribution, and production
NASA Astrophysics Data System (ADS)
Lee, Jungmin; Scagel, Carolyn
2013-12-01
Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.
Chicoric acid: chemistry, distribution, and production.
Lee, Jungmin; Scagel, Carolyn F
2013-01-01
Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.
Chicoric acid: chemistry, distribution, and production
Lee, Jungmin; Scagel, Carolyn F.
2013-01-01
Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed. PMID:24790967
Role of salicylic acid in resistance to cadmium stress in plants.
Liu, Zhouping; Ding, Yanfei; Wang, Feijuan; Ye, Yaoyao; Zhu, Cheng
2016-04-01
We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity. Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.
El-kereamy, Ashraf; Bi, Yong-Mei; Ranathunge, Kosala; Beatty, Perrin H.; Good, Allen G.; Rothstein, Steven J.
2012-01-01
Temperatures higher than the optimum negatively affects plant growth and development. Tolerance to high temperature is a complex process that involves several pathways. Understanding this process, especially in crops such as rice, is essential to prepare for predicted climate changes due to global warming. Here, we show that OsMYB55 is induced by high temperature and overexpression of OsMYB55 resulted in improved plant growth under high temperature and decreased the negative effect of high temperature on grain yield. Transcriptome analysis revealed an increase in expression of several genes involved in amino acids metabolism. We demonstrate that OsMYB55 binds to the promoter regions of target genes and directly activates expression of some of those genes including glutamine synthetase (OsGS1;2) glutamine amidotransferase (GAT1) and glutamate decarboxylase 3 (GAD3). OsMYB55 overexpression resulted in an increase in total amino acid content and of the individual amino acids produced by the activation of the above mentioned genes and known for their roles in stress tolerance, namely L-glutamic acid, GABA and arginine especially under high temperature condition. In conclusion, overexpression of OsMYB55 improves rice plant tolerance to high temperature, and this high tolerance is associated with enhanced amino acid metabolism through transcription activation. PMID:23251677
Liu, Yunpeng; Zhang, Nan; Qiu, Meihua; Feng, Haichao; Vivanco, Jorge M; Shen, Qirong; Zhang, Ruifu
2014-04-01
Root exudates play important roles in root-soil microorganism interactions and can mediate tripartite interactions of beneficial microorganisms-plant-pathogen in the rhizosphere. However, the roles of organic acid components in this process have not been well studied. In this study the colonization of a plant growth-promoting rhizobacterium, Bacillus amyloliquefaciens SQR9, on cucumber root infected by Fusarium oxysporum f. sp. cucumerinum J. H. Owen (FOC) was investigated. Chemotaxis and biofilm formation response of SQR9 to root exudates and their organic acid components were analysed. Infection of FOC on cucumber had a positive effect (3.30-fold increase) on the root colonization of SQR9 compared with controls. Root secretion of citric acid (2.3 ± 0.2 μM) and fumaric acid (5.7 ± 0.5 μM) was enhanced in FOC-infected cucumber plants. Bacillus amyloliquefaciens SQR9 exhibited enhanced chemotaxis to root exudates of FOC-infected cucumber seedlings. Further experiments demonstrated that citric acid acts as a chemoattractant and fumaric acid as a stimulator of biofilm formation in this process. These results suggest that root exudates mediate the interaction of cucumber root and rhizosphere strain B. amyloliquefaciens SQR9 and enhance its root colonization. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Effect of plant diversity on the diversity of soil organic compounds.
El Moujahid, Lamiae; Le Roux, Xavier; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck
2017-01-01
The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms.
Effect of plant diversity on the diversity of soil organic compounds
El Moujahid, Lamiae; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck
2017-01-01
The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms. PMID:28166250
Garg, Rohini; Tyagi, Akhilesh K.; Jain, Mukesh
2012-01-01
Hormones exert pleiotropic effects on plant growth and development throughout the life cycle. Many of these effects are mediated at molecular level via altering gene expression. In this study, we investigated the exogenous effect of plant hormones, including auxin, cytokinin, abscisic acid, ethylene, salicylic acid and jasmonic acid, on the transcription of rice genes at whole genome level using microarray. Our analysis identified a total of 4171 genes involved in several biological processes, whose expression was altered significantly in the presence of different hormones. Further, 28% of these genes exhibited overlapping transcriptional responses in the presence of any two hormones, indicating crosstalk among plant hormones. In addition, we identified genes showing only a particular hormone-specific response, which can be used as hormone-specific markers. The results of this study will facilitate further studies in hormone biology in rice. PMID:22827941
Weathers, Pamela J.; Towler, Melissa J.
2014-01-01
Artemisia annua L., long used as a tea infusion in traditional Chinese medicine, produces artemisinin. Although artemisinin is currently used as artemisinin-based combination therapy (ACT) against malaria, oral consumption of dried leaves from the plant showed efficacy and will be less costly than ACT. Many compounds in the plant have some antimalarial activity. Unknown, however, is how these plant components change as leaves are processed into tablets for oral consumption. Here we compared extracts from fresh and dried leaf biomass with compressed leaf tablets of A. annua. Using GC-MS, nineteen endogenous compounds, including artemisinin and several of its pathway metabolites, nine flavonoids, three monoterpenes, a coumarin, and two phenolic acids, were identified and quantified from solvent extracts to determine how levels of these compounds changed during processing. Results showed that compared to dried leaves, artemisinin, arteannuin B, artemisinic acid, chlorogenic acid, scopoletin, chrysoplenetin, and quercetin increased or remained stable with powdering and compression into tablets. Dihydroartemisinic acid, monoterpenes, and chrysoplenol-D decreased with tablet formation. Five target compounds were not detectable in any of the extracts of this cultivar. In contrast to the individually measured aglycone flavonoids, using the AlCl3 method, total flavonoids increased nearly fivefold during the tablet formation. To our knowledge this is the first study documenting changes that occurred in processing dried leaves of A. annua into tablets. These results will improve our understanding of the potential use of not only this medicinal herb, but also others to afford better quality control of intact plant material for therapeutic use. PMID:25228784
Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei
2009-01-01
Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed. PMID:19015126
Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei
2009-01-01
Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed.
Rontani, Jean-François; Rabourdin, Adélaïde; Pinot, Franck; Kandel, Sylvie; Aubert, Claude
2005-02-01
9-Hydroperoxy-18-hydroxyoctadec-10(trans)-enoic and 10-hydroperoxy-18-hydroxyoctadec-8(trans)-enoic acids deriving from type II (i.e. involving 1O2) photooxidation of 18-hydroxyoleic acid were detected after visible light-induced senescence experiments carried out with Petroselinum sativum and subsequent cutin depolymerisation. These results showed that in senescent plants, where the 1O2 formation rate exceeds the quenching capacity of the photoprotective system, 1O2 can migrate outside the chloroplasts and affect the unsaturated components of cutins. Significant amounts of 9,18-dihydroxyoctadec-10(trans)-enoic and 10,18-dihydroxyoctadec-8(trans)-enoic acids resulting from the reduction of these photoproducts of 18-hydroxyoleic acid were also detected in different natural samples. These results well support the significance of the photooxidation of the unsaturated components of higher plant cutins in the natural environment.
Rai, Krishna Kumar; Rai, Nagendra; Rai, Shashi Pandey
2018-07-01
Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Self-assembled polyhydroxy fatty acids vesicles: a mechanism for plant cutin synthesis.
Heredia-Guerrero, José A; Benítez, José J; Heredia, Antonio
2008-03-01
Despite its biological importance, the mechanism of formation of cutin, the polymeric matrix of plant cuticles, has not yet been fully clarified. Here, for the first time, we show the participation in the process of lipid vesicles formed by the self-assembly of endogenous polyhydroxy fatty acids. The accumulation and fusion of these vesicles (cutinsomes) at the outer part of epidermal cell wall is proposed as the mechanism for early cuticle formation.
Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen
2016-01-01
Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225
Bosco, Renato; Caser, Matteo; Vanara, Francesca; Scariot, Valentina
2013-11-20
Plant hormones play a crucial role in controlling plant growth and development. These groups of naturally occurring substances trigger physiological processes at very low concentrations, which mandate sensitive techniques for their quantitation. This paper describes a method to quantify endogenous (±)-2-cis-4-trans-abscisic acid, indole-3-acetic acid, indole-3-propionic acid, and indole-3-butyric acid. The method combines high-performance liquid chromatography (HPLC) with diode array and fluorescence detection in a single run. Hybrid tea rose 'Monferrato' matrices (leaves, petals, roots, seeds, androecium, gynoecium, and pollen) were used as references. Rose samples were separated and suspended in extracting methanol, after which (±)-2-cis-4-trans-abscisic acid and auxins were extracted by solvent extraction. Sample solutions were added first to cation solid phase extraction (SPE) cartridges and the eluates to anion SPE cartridges. The acidic hormones were bound to the last column and eluted with 5% phosphoric acid in methanol. Experimental results showed that this approach can be successfully applied to real samples and that sample preparation and total time for routine analysis can be greatly reduced.
The Plant Target of Rapamycin Kinase: A connecTOR between Sulfur and Growth.
Forzani, Céline; Turqueto Duarte, Gustavo; Meyer, Christian
2018-06-01
Sulfur is an essential macronutrient for plants that is incorporated into sulfur-containing amino acids or metabolites crucial for plant growth and stress adaptation. A recent publication shows a connection between sulfur sensing, growth processes, and the conserved eukaryotic target of rapamycin (TOR) kinase signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pamela E. Padgett; Sally D. Parry; Andrzej Bytnerowicz; Robert L. Heath
2009-01-01
Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric...
Kania, Joanna; Mączyńska, Agnieszka; Głazek, Mariola; Krawczyk, Tomasz; Gillner, Danuta M
2018-06-01
Cultivation of oilseed rape requires application of specific fungicides. Besides their protective role, they can potentially influence the expression and activity of crucial enzymes in the plant. Among the large number of enzymes expressed in plants, aminopeptidases play a key role in all crucial physiological processes during the whole life cycle (e.g. storage protein mobilization and thus supplying plant with needed amino acids, as well as plant aging, protection and defense responses). In the present paper, we evaluate for the first time, the influence of the treatment of winter oilseed rape with commercially available fungicides (Pictor 400 SC, Propulse 250 SE and Symetra 325 SC), on the activity of aminopeptidases expressed in each plant organ (flowers, leaves, stems and pods separately). Fungicides were applied once, at one of the three stages of oilseed rape development (BBCH 59-61, BBCH 63-65 and BBCH 67-69). The aminopeptidase activity was determined using six different amino acid p-nitroanilides as substrates. The results have shown, that in control plants, at the beginning of intensive pods development and seeds production, hydrophobic amino acids with bulky side chains (Phe, Leu) were preferentially hydrolysed. In control plants, the activity was ~3.5 times higher in stems and pods, compared to leaves. The treatment with all pesticides caused significant increase in aminopeptidases hydrolytic activity toward small amino acids Gly, Ala as well as proline, mostly in flowers and leaves. These amino acids are proven to be crucial in the mechanisms of delaying of plant aging, development of better resistance to stress and plant defense. It can be suggested, that studied fungicides enhance such mechanisms, by activating the expression of genes coding for aminopeptidases, which are active in hydrolysis of N-terminal amino acids such as Gly, Ala, Pro from storage peptides and proteins. Depending on fungicide, the major increase of aminopeptidase activity was observed after application at BBCH 67-69 (Pictor 400 SC and Symetra 325 SC) and BBCH 63-65 (Propulse 250 SE) stages of development. Our study revealed, that agrochemical treatment and time of application, influenced the expression and activity of aminopeptidases, even though they were not molecular targets of applied fungicides. Since aminopeptidases are widely distributed throughout all organisms and are crucial in many key physiological processes, it can be expected, that factors influencing their expression and activity in plants, can also influence these enzymes in other organisms, especially humans and other mammals. Copyright © 2018 Elsevier Inc. All rights reserved.
Plants with modified lignin content and methods for production thereof
Zhao, Qiao; Chen, Fang; Dixon, Richard A.
2014-08-05
The invention provides methods for decreasing lignin content and for increasing the level of fermentable carbohydrates in plants by down-regulation of the NST transcription factor. Nucleic acid constructs for down-regulation of NST are described. Transgenic plants are provided that comprise reduced lignin content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops. Methods for processing plant tissue and for producing ethanol by utilizing such plants are also provided.
Boyd, Glen R; Reemtsma, Helge; Grimm, Deborah A; Mitra, Siddhartha
2003-07-20
A newly developed analytical method was used to measure concentrations of nine pharmaceuticals and personal care products (PPCPs) in samples from two surface water bodies, a sewage treatment plant effluent and various stages of a drinking water treatment plant in Louisiana, USA, and from one surface water body, a drinking water treatment plant and a pilot plant in Ontario, Canada. The analytical method provides for simultaneous extraction and quantification of the following broad range of PPCPs and endocrine-disrupting chemicals: naproxen; ibuprofen; estrone; 17beta-estradiol; bisphenol A; clorophene; triclosan; fluoxetine; and clofibric acid. Naproxen was detected in Louisiana sewage treatment plant effluent at 81-106 ng/l and Louisiana and Ontario surface waters at 22-107 ng/l. Triclosan was detected in Louisiana sewage treatment plant effluent at 10-21 ng/l. Of the three surface waters sampled, clofibric acid was detected in Detroit River water at 103 ng/l, but not in Mississippi River or Lake Pontchartrain waters. None of the other target analytes were detected above their method detection limits. Based on results at various stages of treatment, conventional drinking-water treatment processes (coagulation, flocculation and sedimentation) plus continuous addition of powdered activated carbon at a dosage of 2 mg/l did not remove naproxen from Mississippi River waters. However, chlorination, ozonation and dual media filtration processes reduced the concentration of naproxen below detection in Mississippi River and Detroit River waters and reduced clofibric acid in Detroit River waters. Results of this study demonstrate that existing water treatment technologies can effectively remove certain PPCPs. In addition, our study demonstrates the importance of obtaining data on removal mechanisms and byproducts associated with PPCPs and other endocrine-disrupting chemicals in drinking water and sewage treatment processes.
Iyer, Prashanti R.; Buanafina, M. Fernanda; Shearer, Erica A.
2017-01-01
A feature of cell wall arabinoxylan in grasses is the presence of ferulic acid which upon oxidative coupling by the action of peroxidases forms diferuloyl bridges between formerly separated arabinoxylans. Ferulate cross-linking is suspected of playing various roles in different plant processes. Here we investigate the role of cell wall feruloyaltion in two major processes, that of leaf growth and the turnover of cell wall arabinoxylans on leaf senescence in tall fescue using plants in which the level of cell wall ferulates has been reduced by targeted expression of the Aspergillus niger ferulic acid esterase A (FAEA) to the apoplast or Golgi. Analysis of FAE expressing plants showed that all the lines had shorter and narrower leaves compared to control, which may be a consequence of the overall growth rate being lower and occurring earlier in FAE expressing leaves than in controls. Furthermore, the final length of epidermal cells was shorter than controls, indicating that their expansion was curtailed earlier than in control leaves. This may be due to the observations that the deposition of both ether and ester linked monomeric hydroxycinnamic acids and ferulate dimerization stopped earlier in FAE expressing leaves but at a lower level than controls, and hydroxycinnamic acid deposition started to slow down when peroxidase levels increased. It would appear therefore that one of the possible mechanisms for controlling overall leaf morphology such as leaf length and width in grasses, where leaf morphology is highly variable between species, may be the timing of hydroxycinnamic acid deposition in the expanding cell walls as they emerge from cell division into the elongation zone, controlled partially by the onset of peroxidase activity in this region. PMID:28934356
Shang, Jing; Xi, De-Hui; Xu, Fei; Wang, Shao-Dong; Cao, Sen; Xu, Mo-Yun; Zhao, Ping-Ping; Wang, Jian-Hui; Jia, Shu-Dan; Zhang, Zhong-Wei; Yuan, Shu; Lin, Hong-Hui
2011-02-01
Plant viruses cause many diseases that lead to significant economic losses. However, most of the approaches to control plant viruses, including transgenic processes or drugs are plant-species-limited or virus-species-limited, and not very effective. We introduce an application of jasmonic acid (JA) and salicylic acid (SA), a broad-spectrum, efficient and nontransgenic method, to improve plant resistance to RNA viruses. Applying 0.06 mM JA and then 0.1 mM SA 24 h later, enhanced resistance to Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV) and Turnip crinkle virus (TCV) in Arabidopsis, tobacco, tomato and hot pepper. The inhibition efficiency to virus replication usually achieved up to 80-90%. The putative molecular mechanism was investigated. Some possible factors affecting the synergism of JA and SA have been defined, including WRKY53, WRKY70, PDF1.2, MPK4, MPK2, MPK3, MPK5, MPK12, MPK14, MKK1, MKK2, and MKK6. All genes involving in the synergism of JA and SA were investigated. This approach is safe to human beings and environmentally friendly and shows potential as a strong tool for crop protection against plant viruses.
Spectroscopic study of the humification process during sewage sludge treatment
NASA Astrophysics Data System (ADS)
Pajączkowska, J.; Sułkowska, A.; Sułkowski, W. W.; Jędrzejczyk, M.
2003-06-01
The aim of this work was to study the free radical transition of organic materials during the sewage treatment process. Investigations of sludge from biologic-mechanical sewage treatment plant in Sosnowiec Zagórze were carried out. The course of the humification processes during sewage treatment was studied by electron paramagnetic resonance (EPR) technique. The concentration of free radicals at each process stage and the value g were determined. Sludge samples and extracted fractions of humic acids were examined. Humic acids were extracted from sludge by means of conventional methods elaborated by Stevenson. For study of humic acids structures, besides EPR, the UV-Vis and IR spectroscopy were used.
High-level semi-synthetic production of the potent antimalarial artemisinin.
Paddon, C J; Westfall, P J; Pitera, D J; Benjamin, K; Fisher, K; McPhee, D; Leavell, M D; Tai, A; Main, A; Eng, D; Polichuk, D R; Teoh, K H; Reed, D W; Treynor, T; Lenihan, J; Fleck, M; Bajad, S; Dang, G; Dengrove, D; Diola, D; Dorin, G; Ellens, K W; Fickes, S; Galazzo, J; Gaucher, S P; Geistlinger, T; Henry, R; Hepp, M; Horning, T; Iqbal, T; Jiang, H; Kizer, L; Lieu, B; Melis, D; Moss, N; Regentin, R; Secrest, S; Tsuruta, H; Vazquez, R; Westblade, L F; Xu, L; Yu, M; Zhang, Y; Zhao, L; Lievense, J; Covello, P S; Keasling, J D; Reiling, K K; Renninger, N S; Newman, J D
2013-04-25
In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.
Li, Maoyin; Bahn, Sung Chul; Guo, Liang; Musgrave, William; Berg, Howard; Welti, Ruth; Wang, Xuemin
2011-01-01
The release of fatty acids from membrane lipids has been implicated in various plant processes, and the patatin-related phospholipases (pPLAs) constitute a major enzyme family that catalyzes fatty acid release. The Arabidopsis thaliana pPLA family has 10 members that are classified into three groups. Group 3 pPLAIII has four members but lacks the canonical lipase/esterase consensus catalytic sequences, and their enzymatic activity and cellular functions have not been delineated. Here, we show that pPLAIIIβ hydrolyzes phospholipids and galactolipids and additionally has acyl-CoA thioesterase activity. Alterations of pPLAIIIβ result in changes in lipid levels and composition. pPLAIIIβ-KO plants have longer leaves, petioles, hypocotyls, primary roots, and root hairs than wild-type plants, whereas pPLAIIIβ-OE plants exhibit the opposite phenotype. In addition, pPLAIIIβ-OE plants have significantly lower cellulose content and mechanical strength than wild-type plants. Root growth of pPLAIIIβ-KO plants is less sensitive to treatment with free fatty acids, the enzymatic products of pPLAIIIβ, than wild-type plants; root growth of pPLAIIIβ-OE plants is more sensitive. These data suggest that alteration of pPLAIIIβ expression and the resulting lipid changes alter cellulose content and cell elongation in Arabidopsis. PMID:21447788
Bore, E; Langsrud, S
2005-01-01
To characterize micro-organisms isolated from Norwegian dairy production plants after cleaning and fogging disinfection with alkyl amine/peracetic acid and to indicate reasons for survival. Microbial samples were collected from five dairy plants after cleaning and fogging disinfection. Isolates from two of these production plants, which used fogging with alkylamino acetate (plant A), and peracetic acid (plant B), were chosen for further characterization. The sequence of the 16S ribosomal DNA, fatty acid analysis and biochemical characteristics were used to identify isolates. Three isolates identified as Rhodococcus erythropolis, Methylobacterium rhodesianum and Rhodotorula mucilaginosa were isolated from plant A and one Sphingomonas sp. and two M. extorquens from plant B. Different patterns of resistance to seven disinfectants in a bactericidal suspension test and variable degree of attachment to stainless steel were found. The strains with higher disinfectant resistance showed lower degree of attachment than susceptible strains. The study identifies and characterizes micro-organisms present after cleaning and fogging disinfection. Both surface attachment and resistance were shown as possible reasons for the presence of the isolates after cleaning and disinfection. These results contribute to the awareness of disinfectant resistance as well as attachment as mechanisms of survival in dairy industry. It also strengthens the argument of frequent alternation of disinfectants in the food processing industry to avoid the establishment of resistant house strains.
Abscisic Acid and Abiotic Stress Tolerance in Crop Plants
Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu
2016-01-01
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044
IDAHO CHEMICAL PROCESSING PLANT TECHNICAL PROGRESS REPORT FOR APRIL THROUGH JUNE 1958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, C.E.
1958-11-01
Processing of uranium -aluminum alloy was continued with slight process modifications. Means for recovering rare gases from dissolver off-gas are described. Results of extensive decontamination procedures required to enable entrance to the continuous dissolver cell are also indicated. Pilot plant studies of dissolving aluminum continuously showed that rates of dissolution were decreased by factors of 2 to 4 as the concentration of nitric acid fed was increased from 5.4 to 11N. The rate of aluminum dissolution was found to be proportional to initial area exposed for pieces of different shape. It was found possible to produce a highly basic aluminummore » nitrate solution at a reasonable rate by dissolving to low concentration in dilute acid, followed by evaporation to the desired level. Uranium exchange rate measurements for the TBP extraction process are described. A canned rotor pump under test with graphite bearings operated 6000 hours with nominal wear. Difficulties were experienced in testing a nutating disc pump. Measurements of the potential of zirconium in hydrofluoric acid as a function of pH confirmed the predicted equation. In teflon vessels, zirconium dissolves a little more rapidly in nitric-hydrofluoric acid mixtures than in glass vessels, presumably due to reaction of fluoride with silica. Titunium alloy Types 55A and 75A were found to resist corrosion by certain boiling nitric-hydrochloric acid mixtures. Initial tests have commenced with a NaK-heated 100 liter/hour pilot plant aluminum nitrate calciner to continue process demonstration. In tests in the smaller pilot plant unit, increasing feed spray air ratio was found to increase particle loading in the cyclone effluent. Laboratory studies indicated that a venturi scrubber using dilute nitric acid at 80 C should remove ruthenium effectively from calciner off-gas. In a pilot plant test in which a significant fraction of ruthenium feed was retained by the alumina, substantial absorption of volatilized ruthenium was obtained. Thermal conductivity of alumina near 3000 F was about 0.26 Btu/hr)(ft)( F). In leaching studies, very little strontium or plutonium was removed by water from alumina calcined at 550 C. Dilute nitric acid, however, extracted strontium from this material to the same degree (~ 50 percent) as from material calcined at 400 C. Concentrated basic aluminum nitrate was produced from simulated aluminum nitrate waste by slow hydrolysis with urea followed by evaporation. Aluminum was efficiently extracted from buffered aluminum nitrate solution by acetylacetone and was stripped back into nitric acid. A filterable aluminum phosphate was precipituted from aluminum nitrate solution by urea hydrolysis; the phosphate effectively carried fission products, however. Spectrophotometric methods were developed for macro and micro quantities of uranium, in the presence of high concentrations of other ions, based on tetrapropylammonium nitrate extraction. (For preceding period see ID0-14443.) (auth)« less
NASA Astrophysics Data System (ADS)
Sun, Qingshan; Song, Yingli; Liu, Shengnan; Wang, Fei; Zhang, Lin; Xi, Shuhua; Sun, Guifan
2015-10-01
The investigation was carried out to evaluate arsenic exposure and the urine metabolite profiles of workers with different working departments, including administration (Group1), copper ore mining (Group2), copper ore grinding (Group3), electrolytic procession (Group4) and copper smelting (Group5) in a Copper mining and processing plant in China. Information about characteristics of each subject was obtained by questionnaire and inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The highest urinary levels of iAs, MMA and DMA all were found in the Group 5. Group 4 workers had a higher iAs% and a lower PMI compared to Group 3. The urinary total As (TAs) levels of 54.7% subjects exceeded 50 μg/g Cr, and the highest percentage (93.3%) was found in Group 5, smelters. The results of the present study indicate that workers in copper production plant indeed exposed to As, especially for smelters and workers of electrolytic process.
Jasmonate signaling in plant stress responses and development - active and inactive compounds.
Wasternack, Claus; Strnad, Miroslav
2016-09-25
Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Lisha; Zhang, Songhe; Lv, Xiaoyang; Qiu, Zheng; Zhang, Ziqiu; Yan, Liying
2018-08-15
This study investigated the alterations in biomass, nutrients and dissolved organic matter concentration in overlying water and determined the bacterial 16S rRNA gene in biofilms attached to plant residual during the decomposition of Myriophyllum verticillatum. The 55-day decomposition experimental results show that plant decay process can be well described by the exponential model, with the average decomposition rate of 0.037d -1 . Total organic carbon, total nitrogen, and organic nitrogen concentrations increased significantly in overlying water during decomposition compared to control within 35d. Results from excitation emission matrix-parallel factor analysis showed humic acid-like and tyrosine acid-like substances might originate from plant degradation processes. Tyrosine acid-like substances had an obvious correlation to organic nitrogen and total nitrogen (p<0.01). Decomposition rates were positively related to pH, total organic carbon, oxidation-reduction potential and dissolved oxygen but negatively related to temperature in overlying water. Microbe densities attached to plant residues increased with decomposition process. The most dominant phylum was Bacteroidetes (>46%) at 7d, Chlorobi (20%-44%) or Proteobacteria (25%-34%) at 21d and Chlorobi (>40%) at 55d. In microbes attached to plant residues, sugar- and polysaccharides-degrading genus including Bacteroides, Blvii28, Fibrobacter, and Treponema dominated at 7d while Chlorobaculum, Rhodobacter, Methanobacterium, Thiobaca, Methanospirillum and Methanosarcina at 21d and 55d. These results gain the insight into the dissolved organic matter release and bacterial community shifts during submerged macrophytes decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.
β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage
Kim, Yeong Chae; Kim, Yeon Hwa; Lee, Young Hee; Lee, Sang Woo; Chae, Yun-Soek; Kang, Hyun-Kyung; Yun, Byung-Wook; Hong, Jeum Kyu
2013-01-01
Non-protein amino acid, β-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant. PMID:25288957
Lactic acid production with undefined mixed culture fermentation of potato peel waste.
Liang, Shaobo; McDonald, Armando G; Coats, Erik R
2014-11-01
Potato peel waste (PPW) as zero value byproduct generated from food processing plant contains a large quantity of starch, non-starch polysaccharide, lignin, protein, and lipid. PPW as one promising carbon source can be managed and utilized to value added bioproducts through a simple fermentation process using undefined mixed cultures inoculated from wastewater treatment plant sludge. A series of non-pH controlled batch fermentations under different conditions such as pretreatment process, enzymatic hydrolysis, temperature, and solids loading were studied. Lactic acid (LA) was the major product, followed by acetic acid (AA) and ethanol under fermentation conditions without the presence of added hydrolytic enzymes. The maximum yields of LA, AA, and ethanol were respectively, 0.22 g g(-1), 0.06 g g(-1), and 0.05 g g(-1). The highest LA concentration of 14.7 g L(-1) was obtained from a bioreactor with initial solids loading of 60 g L(-1) at 35°C. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi
1988-01-01
One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.
Identification of Novel Growth Regulators in Plant Populations Expressing Random Peptides1[OPEN
Bao, Zhilong; Clancy, Maureen A.
2017-01-01
The use of chemical genomics approaches allows the identification of small molecules that integrate into biological systems, thereby changing discrete processes that influence growth, development, or metabolism. Libraries of chemicals are applied to living systems, and changes in phenotype are observed, potentially leading to the identification of new growth regulators. This work describes an approach that is the nexus of chemical genomics and synthetic biology. Here, each plant in an extensive population synthesizes a unique small peptide arising from a transgene composed of a randomized nucleic acid sequence core flanked by translational start, stop, and cysteine-encoding (for disulfide cyclization) sequences. Ten and 16 amino acid sequences, bearing a core of six and 12 random amino acids, have been synthesized in Arabidopsis (Arabidopsis thaliana) plants. Populations were screened for phenotypes from the seedling stage through senescence. Dozens of phenotypes were observed in over 2,000 plants analyzed. Ten conspicuous phenotypes were verified through separate transformation and analysis of multiple independent lines. The results indicate that these populations contain sequences that often influence discrete aspects of plant biology. Novel peptides that affect photosynthesis, flowering, and red light response are described. The challenge now is to identify the mechanistic integrations of these peptides into biochemical processes. These populations serve as a new tool to identify small molecules that modulate discrete plant functions that could be produced later in transgenic plants or potentially applied exogenously to impart their effects. These findings could usher in a new generation of agricultural growth regulators, herbicides, or defense compounds. PMID:28807931
NASA Astrophysics Data System (ADS)
Takehisa, M.; Arai, H.; Arai, M.; Miyata, T.; Sakumoto, A.; Hashimoto, S.; Nishimura, K.; Watanabe, H.; Kawakami, W.; Kuriyama, I.
Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users.
NASA Astrophysics Data System (ADS)
Vergara, Fredd; Kikuchi, Jun; Breuer, Christian
2016-05-01
Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.
Methods and compositions for altering lignin composition in plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Avinash C.; Tang, Yuhong; Blancaflor, Elison
The invention provides methods for decreasing lignin content in plants by reducing expression of a folylpolyglutamate synthetase 1 (FPGS1) coding sequence in the plant. Also provided are methods for reducing lignin content in a plant by down-regulation of FPGS1 expression in the plant. Nucleic acid molecules for modulation of FPGS1 expression and transgenic plants the same are also provided. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops. Methods for processing plant tissue and for producing biofuels by utilizing such plants are also provided.
Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.
Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P
2005-05-01
Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.
Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.
Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña
2016-10-01
Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of gibberellic acid as a presowing treatment for cherrybark and Nuttall oak acorns
John C. Adams; Joshua P. Adams; R. A. Williams
2010-01-01
The use of gibberellic acid to enhance growth and development in plants has been shown in many species. Gibberellic acid is a naturally occurring hormone that can, in certain concentrations, affect dormancy, flowering, fruit set, growth, frost protection, root formation, and other growth processes. The positive effect on germination by this hormone treatment could help...
Mechanisms and strategies of plant defense against Botrytis cinerea.
AbuQamar, Synan; Moustafa, Khaled; Tran, Lam Son
2017-03-01
Biotic factors affect plant immune responses and plant resistance to pathogen infections. Despite the considerable progress made over the past two decades in manipulating genes, proteins and their levels from diverse sources, no complete genetic tolerance to environmental stresses has been developed so far in any crops. Plant defense response to pathogens, including Botrytis cinerea, is a complex biological process involving various changes at the biochemical, molecular (i.e. transcriptional) and physiological levels. Once a pathogen is detected, effective plant resistance activates signaling networks through the generation of small signaling molecules and the balance of hormonal signaling pathways to initiate defense mechanisms to the particular pathogen. Recently, studies using Arabidopsis thaliana and crop plants have shown that many genes are involved in plant responses to B. cinerea infection. In this article, we will review our current understanding of mechanisms regulating plant responses to B. cinerea with a particular interest on hormonal regulatory networks involving phytohormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA). We will also highlight some potential gene targets that are promising for improving crop resistance to B. cinerea through genetic engineering and breeding programs. Finally, the role of biological control as a complementary and alternative disease management will be overviewed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Code of Federal Regulations, 2014 CFR
2014-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Code of Federal Regulations, 2012 CFR
2012-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Code of Federal Regulations, 2010 CFR
2010-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Code of Federal Regulations, 2013 CFR
2013-07-01
... contained in the concentrate as it passes through an oxidizing atmosphere, or the combustion of a fossil...) Sulfuric acid plant means any facility producing sulfuric acid by the contact process. (i) Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such...
Meng, Linghua; Lozano, Yves; Bombarda, Isabelle; Gaydou, Emile; Li, Bin
2006-06-14
Extraction and concentration at a pilot plant scale of anthocyanins and flavonoids from Perilla frutescens var. frutescens harvested in the Guangzhou area of China were investigated. The study of extraction efficiency using mineral acids and organic acids showed that 0.01 mol/L nitric acid was the most suitable to extract flavonoids from this slightly red leaf cultivar. The red extract contained 12 mg/L (as cyanidin equivalent) anthocyanins and other flavones. The multistep process included cross-flow microfiltration (CFM) with a ceramic type membrane, reverse osmosis (RO), and rotating evaporation (RE). The filtration fluxes were high and constant for CFM (150 L/h/m2 at 0.6 b) and for RO (22 L/h/m2 at 40 b). The red extract was concentrated 9.4 times by RO and then 5.4 times by RE. It contained 422 mg/L anthocyanins, representing 77% of the total extracted anthocyanin. The proportion of flavonoids was found unchanged during processing. The concentrated extract showed a pH of 2.7, and its free acidity was found to be 46% of the acidity added for extraction, because of the buffering capacity of the extract. At the concentration level reached, a crystallized deposit occurred and was identified as tartrate.
Chen, Yicun; Cui, Qinqin; Xu, Yongjie; Yang, Susu; Gao, Ming; Wang, Yangdong
2015-08-01
Genetic engineering to produce valuable lipids containing unsaturated fatty acids (UFAs) holds great promise for food and industrial applications. Efforts to genetically modify plants to produce desirable UFAs with single enzymes, however, have had modest success. The key enzymes fatty acid desaturase (FAD) and diacylglycerol acyltransferase (DGAT) are responsible for UFA biosynthesis (a push process) and assembling fatty acids into lipids (a pull process) in plants, respectively. To examine their roles in UFA accumulation, VfFAD2 and VfDGAT2 genes cloned from Vernicia fordii (tung tree) oilseeds were conjugated and transformed into Rhodotorula glutinis and Arabidopsis thaliana via Agrobacterium tumefaciens. Real-time quantitative PCR revealed variable gene expression levels in the transformants, with a much higher level of VfDGAT2 than VfFAD2. The relationship between VfFAD2 expression and linoleic acid (C18:2) increases in R. glutinis (R (2) = 0.98) and A. thaliana (R (2) = 0.857) transformants was statistically linear. The VfDGAT2 expression level was statistically correlated with increased total fatty acid content in R. glutinis (R (2) = 0.962) and A. thaliana (R (2) = 0.8157) transformants. With a similar expression level between single- and two-gene transformants, VfFAD2-VfDGAT2 co-transformants showed a higher linolenic acid (C18:3) yield in R. glutinis (174.36 % increase) and A. thaliana (14.61 % increase), and eicosatrienoic acid (C20:3) was enriched (17.10 % increase) in A. thaliana. Our data suggest that VfFAD2-VfDGAT2 had a synergistic effect on UFA metabolism in R. glutinis, and to a lesser extent, A. thaliana. These results show promise for further genetic engineering of plant lipids to produce desirable UFAs.
De Diego, N; Saiz-Fernández, I; Rodríguez, J L; Pérez-Alfocea, P; Sampedro, M C; Barrio, R J; Lacuesta, M; Moncaleán, P
2015-09-01
Studies of metabolic and physiological bases of plant tolerance and hardening against drought are essential to improve genetic breeding programs, especially in productive species such as Pinus radiata. The exposure to different drought cycles is a highly effective tool that improves plant conditioning, but limited information is available about the mechanisms that modulate this process. To clarify this issue, six P. radiata breeds with well-known differences in drought tolerance were analyzed after two consecutive drought cycles. Survival rate, concentration of several metabolites such as free soluble amino acids and polyamines, and main plant hormones varied between them after drought hardening, while relative growth ratio and water potential at both predawn and dawn did not. Hardening induced a strong increase in total soluble amino acids in all breeds, accumulating mainly those implicated in the glutamate metabolism (GM), especially L-proline, in the most tolerant breeds. Other amino acids from GM such as γ-aminobutyric acid (GABA) and L-arginine (Arg) were also strongly increased. GABA pathway could improve the response against drought, whereas Arg acts as precursor for the synthesis of spermidine. This polyamine showed a positive relationship with the survival capacity, probably due to its role as antioxidant under stress conditions. Finally, drought hardening also induced changes in phytohormone content, showing each breed a different profile. Although all of them accumulated indole-3-acetic acid and jasmonic acid and reduced zeatin content in needles, significant differences were observed regarding abscisic acid, salicylic acid and mainly zeatin riboside. These results confirm that hardening is not only species-dependent but also an intraspecific processes controlled through metabolite changes. Copyright © 2015 Elsevier GmbH. All rights reserved.
Othman, Ahmad Razi; Abdullah, Norhani; Ahmad, Syahida; Ismail, Intan Safinar; Zakaria, Mohamad Pauzi
2015-02-05
The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved. In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites. The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid. This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.
Dual Fatty Acid Elongase Complex Interactions in Arabidopsis
Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis
2016-01-01
Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting. PMID:27583779
Dual Fatty Acid Elongase Complex Interactions in Arabidopsis.
Morineau, Céline; Gissot, Lionel; Bellec, Yannick; Hematy, Kian; Tellier, Frédérique; Renne, Charlotte; Haslam, Richard; Beaudoin, Frédéric; Napier, Johnathan; Faure, Jean-Denis
2016-01-01
Very long chain fatty acids (VLCFAs) are involved in plant development and particularly in several cellular processes such as membrane trafficking, cell division and cell differentiation. However, the precise role of VLCFAs in these different cellular processes is still poorly understood in plants. In order to identify new factors associated with the biosynthesis or function of VLCFAs, a yeast multicopy suppressor screen was carried out in a yeast mutant strain defective for fatty acid elongation. Loss of function of the elongase 3 hydroxyacyl-CoA dehydratase PHS1 in yeast and PASTICCINO2 in plants prevents growth and induces cytokinesis defects. PROTEIN TYROSIN PHOSPHATASE-LIKE (PTPLA) previously characterized as an inactive dehydratase was able to restore yeast phs1 growth and VLCFAs elongation but not the plant pas2-1 defects. PTPLA interacted with elongase subunits in the Endoplasmic Reticulum (ER) and its absence induced the accumulation of 3-hydroxyacyl-CoA as expected from a dehydratase involved in fatty acid (FA) elongation. However, loss of PTPLA function increased VLCFA levels, an effect that was dependent on the presence of PAS2 indicating that PTPLA activity repressed FA elongation. The two dehydratases have specific expression profiles in the root with PAS2, mostly restricted to the endodermis, while PTPLA was confined in the vascular tissue and pericycle cells. Comparative ectopic expression of PTPLA and PAS2 in their respective domains confirmed the existence of two independent elongase complexes based on PAS2 or PTPLA dehydratase that are functionally interacting.
Decarboxylation of Δ 9-tetrahydrocannabinol: Kinetics and molecular modeling
NASA Astrophysics Data System (ADS)
Perrotin-Brunel, Helene; Buijs, Wim; van Spronsen, Jaap; van Roosmalen, Maaike J. E.; Peters, Cor J.; Verpoorte, Rob; Witkamp, Geert-Jan
2011-02-01
Efficient tetrahydrocannabinol (Δ 9-THC) production from cannabis is important for its medical application and as basis for the development of production routes of other drugs from plants. This work presents one of the steps of Δ 9-THC production from cannabis plant material, the decarboxylation reaction, transforming the Δ 9-THC-acid naturally present in the plant into the psychoactive Δ 9-THC. Results of experiments showed pseudo-first order reaction kinetics, with an activation barrier of 85 kJ mol -1 and a pre-exponential factor of 3.7 × 10 8 s -1. Using molecular modeling, two options were identified for an acid catalyzed β-keto acid type mechanism for the decarboxylation of Δ 9-THC-acid. Each of these mechanisms might play a role, depending on the actual process conditions. Formic acid proved to be a good model for a catalyst of such a reaction. Also, the computational idea of catalysis by water to catalysis by an acid, put forward by Li and Brill, and Churchev and Belbruno was extended, and a new direct keto-enol route was found. A direct keto-enol mechanism catalyzed by formic acid seems to be the best explanation for the observed activation barrier and the pre-exponential factor of the decarboxylation of Δ 9-THC-acid. Evidence for this was found by performing an extraction experiment with Cannabis Flos. It revealed the presence of short chain carboxylic acids supporting this hypothesis. The presented approach is important for the development of a sustainable production of Δ 9-THC from the plant.
The secretion of organic acids is also regulated by factors other than aluminum.
Ding, Haiyan; Wen, Danni; Fu, Zhengwei; Qian, Haifeng
2014-02-01
As a result of natural processes and human activities, aluminum (Al) toxicity is recognized as a major limiting factor for plant productivity, and the secretion of organic acids facilitated by channel proteins is one of the most important Al resistance mechanisms in plants. The objective of this study was to evaluate the effects of several types of stress, including herbicide (imazethapyr (IM) and diclofop-methyl (DM)), heavy metal (Al and Cu), salt stress (NaCl), and proton stress (HCl), on the release of organic acids in rice. The results showed that 0.05 mg/L IM, 0.1 mg/L DM, 4680 mg/L NaCl, 0.5 mg/L CuSO4, and 18 mg/L AlCl3 significantly inhibited rice root elongation and the root fresh weight. In contrast, no significant inhibitory effects on rice growth were found with HCl (pH = 4.5). Similar to the effect of AlCl3 on organic acid induction, treatment with IM, DM, NaCl, and CuSO4 also induced the synthesis of endogenous citric acid and oxalic acid but decreased endogenous malic acid synthesis in the seedlings, though only citric acid was released into the environment after these treatments. We also analyzed the transcripts of three citrate channel proteins and found they were up-regulated by NaCl, CuSO4, and AlCl3 but not by IM or DM. This study clarified that organic acid secretion in plants might be a common phenomenon when plants are exposed to environmental stress other than Al toxicity.
Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.
Unno, Yusuke; Shinano, Takuro
2013-01-01
While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil.
Ontogenetic changes in vitamin C in selected rice varieties
USDA-ARS?s Scientific Manuscript database
Vitamin C (L-ascorbic acid, AsA) is a key antioxidant for both plants and animals. In plants, AsA is involved in several key physiological processes including photosynthesis, cell expansion, cell division, growth, flowering, and senescence. In addition, AsA is an enzyme cofactor and a regulator of...
Pretto, Juliana B; Cechinel-Filho, Valdir; Noldin, Vânia F; Sartori, Mara R K; Isaias, Daniela E B; Cruz, Alexandre Bella
2004-01-01
Calophyllum brasiliense (Clusiaceae/Guttiferae) is a native Brazilian medicinal plant traditionally used against several diseases, including infectious pathologies. Crude methanolic extracts (CME) and two fractions, denoted non-polar (soluble in chloroform) and polar (nonsoluble in chloroform), were prepared from different parts of the plant (roots, stems, leaves, flowers and fruits) and studied. The following compounds were isolated and tested against pathogenic bacteria and yeasts by determination of the minimal inhibitory concentration (MIC): brasiliensic acid (1), gallic acid (2), epicatechin (3), protocatechuic acid (4), friedelin (5) and 1,5-dihydroxyxanthone (6). The results indicated that all the parts of the plant exhibited antimicrobial activity against Gram-positive bacteria, which are selectively inhibited by components of C. brasiliense. No activity was observed against Gram-negative bacteria and yeasts tested. Regarding the isolated compounds, substance 4 showed antimicrobial activity against all the tested microorganisms, whereas compound 6 exhibited antimicrobial activity only against Gram-positive bacteria. The results from the current study confirm and justify the popular use of this plant to treat infectious processes.
Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei
2013-01-01
Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.
NASA Astrophysics Data System (ADS)
Guo, Ning; Guo, Wei; Xu, Changsheng; Du, Yongpeng; Feng, Jicai
2015-06-01
Underwater wet welding is a crucial repair and maintenance technology for nuclear plant. A boric acid environment raises a new challenge for the underwater welding maintenance of nuclear plant. This paper places emphasis on studying the influence of a boric acid environment in nuclear plant on the underwater welding process. Several groups of underwater wet welding experiments have been conducted in boric acid aqueous solution with different concentration (0-35000 ppm). The viscosity of the welding slag and the mechanical properties of welds, such as the hardness, strength, and elongation, have been studied. The results show that with increasing boric acid concentration, the viscosity of the slag decreases first and then increases at a lower temperature (less than 1441 °C). However, when the temperature is above 1480 °C, the differences between the viscosity measurements become less pronounced, and the viscosity tends to a constant value. The hardness and ductility of the joints can be enhanced significantly, and the maximum strength of the weld metal can be reached at 2300 ppm.
Poerschmann, J; Weiner, B; Wedwitschka, H; Zehnsdorf, A; Koehler, R; Kopinke, F-D
2015-01-01
The invasive aquatic plant Elodea nuttallii was subjected to hydrothermal carbonization at 200 °C and 240 °C to produce biochar. About 58% w/w of the organic carbon of the pristine plant was translocated into the solid biochar irrespectively of the operating temperature. The process water rich in dissolved organic matter proved a good substrate for biogas production. The E. nuttallii plants showed a high capability of incorporating metals into the biomass. This large inorganic fraction which was mainly transferred into the biochar (except sodium and potassium) may hamper the prospective application of biochar as soil amendment. The high ash content in biochar (∼ 40% w/w) along with its relatively low content of organic carbon (∼ 36% w/w) is associated with low higher heating values. Fatty acids were completely hydrolyzed from lipids due to hydrothermal treatment. Low molecular-weight carboxylic acids (acetic and lactic acid), phenols and phenolic acids turned out major organic breakdown products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mimmo, Tanja; Ghizzi, Massimiliano; Cesco, Stefano; Tomasi, Nicola; Pinton, Roberto; Puschenreiter, Markus
2013-12-01
Plants differ in their response to high aluminium (Al) concentrations, which typically cause toxicity in plants grown on acidic soils. The response depends on plant species and environmental conditions such as substrate and cultivation system. The present study aimed to assess Al-phosphate (P) dynamics in the rhizosphere of two bean species, Phaseolus vulgaris L. var. Red Kidney and Phaseolus lunatus L., in rhizobox experiments. Root activity of the bean species induced up to a sevenfold increase in exchangeable Al and up to a 30-fold decrease in extractable P. High soluble Al concentrations triggered the release of plant-specific carboxylates, which differed between soil type and plant species. The results suggest that P. vulgaris L. mitigates Al stress by an internal defence mechanism and P. lunatus L. by an external one, both mechanisms involving organic acids. Rhizosphere mechanisms involved in Al detoxification were found to be different for P. vulgaris L. and P. lunatus L., suggesting that these processes are plant species-specific. Phaseolus vulgaris L. accumulates Al in the shoots (internal tolerance mechanism), while P. lunatus L. prevents Al uptake by releasing organic acids (exclusion mechanism) into the growth media. © 2013 Society of Chemical Industry.
Correlating the cold flow and melting properties of fatty acid methyl ester (FAME) mixtures
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl ester (FAME) mixtures derived from plant oils or animal fats are used to make biodiesel, lubricants, surfactants, plasticizers, ink solvents, paint strippers and other products. Processing requires a precise knowledge of the physico-chemical properties of mixtures with diverse and ...
Vogeleer, Philippe; Tremblay, Yannick D. N.; Mafu, Akier A.; Jacques, Mario; Harel, Josée
2014-01-01
Escherichia coli is a heterogeneous species that can be part of the normal flora of humans but also include strains of medical importance. Among pathogenic members, Shiga-toxin producing E. coli (STEC) are some of the more prominent pathogenic E. coli within the public sphere. STEC disease outbreaks are typically associated with contaminated beef, contaminated drinking water, and contaminated fresh produce. These water- and food-borne pathogens usually colonize cattle asymptomatically; cows will shed STEC in their feces and the subsequent fecal contamination of the environment and processing plants is a major concern for food and public safety. This is especially important because STEC can survive for prolonged periods of time outside its host in environments such as water, produce, and farm soil. Biofilms are hypothesized to be important for survival in the environment especially on produce, in rivers, and in processing plants. Several factors involved in biofilm formation such as curli, cellulose, poly-N-acetyl glucosamine, and colanic acid are involved in plant colonization and adherence to different surfaces often found in meat processing plants. In food processing plants, contamination of beef carcasses occurs at different stages of processing and this is often caused by the formation of STEC biofilms on the surface of several pieces of equipment associated with slaughtering and processing. Biofilms protect bacteria against several challenges, including biocides used in industrial processes. STEC biofilms are less sensitive than planktonic cells to several chemical sanitizers such as quaternary ammonium compounds, peroxyacetic acid, and chlorine compounds. Increased resistance to sanitizers by STEC growing in a biofilm is likely to be a source of contamination in the processing plant. This review focuses on the role of biofilm formation by STEC as a means of persistence outside their animal host and factors associated with biofilm formation. PMID:25071733
Role of phytohormones in insect-specific plant reactions
Erb, Matthias; Meldau, Stefan; Howe, Gregg A.
2012-01-01
The capacity to perceive and respond is integral to biological immune systems, but to what extent can plants specifically recognize and respond to insects? Recent findings suggest that plants possess surveillance systems that are able to detect general patterns of cellular damage as well as highly specific herbivore-associated cues. The jasmonate (JA) pathway has emerged as the major signaling cassette that integrates information perceived at the plant–insect interface into broad-spectrum defense responses. Specificity can be achieved via JA-independent processes and spatio-temporal changes of JA-modulating hormones, including ethylene, salicylic acid, abscisic acid, auxin, cytokinins, brassinosteroids and gibberellins. The identification of receptors and ligands and an integrative view of hormone-mediated response systems are crucial to understand specificity in plant immunity to herbivores. PMID:22305233
Duponnois, R; Kisa, M; Assigbetse, K; Prin, Y; Thioulouse, J; Issartel, M; Moulin, P; Lepage, M
2006-11-01
Cd-tolerant bacterial strains of fluorescent pseudomonads, mostly belonging to Pseudomonas monteillii, were isolated from termite mound soil (Macrotermes subhyalinus, a litter-forager and fungus-growing termite), in a Sudanese shrubby savanna, Burkina Faso. Such large mounds appeared as sites of great bacterial diversity and could be considered as hot spots of metal-tolerant fluorescent pseudomonads. Microbial isolates were inoculated to Sorghum plants (S. bicolor) in glasshouse experiments with soil amended with CdCl(2) (560 mg Cd kg(-1) soil). Microbial functional diversity was assessed at the end of the experiment by measurement of in situ patterns of catabolic potentials. All the bacteria isolates significantly improved the shoot and total biomass of sorghum plants compared to the control. Results concerning root biomass were not significant with some strains. Arbuscular mycorrhiza (AM) was greatly reduced by CdCl(2) amendment, and fluorescent pseudomonad inoculation significantly increased AM colonisation in the contaminated soil. The bacterial inoculation significantly improved Cd uptake by sorghum plants. Measurement of catabolic potentials on 16 substrates showed that the microbial communities were different according to the soil amendment. Soils samples inoculated with pseudomonad strains presented a higher use of ketoglutaric and hydroxybutiric acids, as opposed to fumaric acid in soil samples not inoculated. It is suggested that fluorescent pseudomonads could act indirectly in such metabolic processes by involving a lower rate of degradation of citric acid, in line with the effect of small organic acid on phytoextraction of heavy metals from soil. This is a first contribution to bioremediation of metal-contaminated sites with soil-to-plant transfer, using termite built structures. Further data are required on the efficiency of the bacterial strains isolated and on the processes involved.
Isoni, V; Kumbang, D; Sharratt, P N; Khoo, H H
2018-05-15
Aligned with Singapore's commitment to sustainable development and investment in renewable resources, cleaner energy and technology (Sustainable Singapore Blueprint), we report a techno-economic analysis of the biorefinery process in Southeast Asia. The considerations in this study provide an overview of the current and future challenges in the biomass-to-chemical processes with life-cycle thinking, linking the land used for agriculture and biomass to the levulinic acid production. 7-8 kg of lignocellulosic feedstock (glucan content 30-35 wt%) from agriculture residues empty fruit bunches (EFB) or rice straw (RS) can be processed to yield 1 kg of levulinic acid. Comparisons of both traditional and "green" alternative solvents and separation techniques for the chemical process were modelled and their relative energy profiles evaluated. Using 2-methyltetrahydrofuran (2-MeTHF) as the process solvent showed to approx. 20 fold less energy demand compared to methyl isobutyl ketone (MIBK) or approx. 180 fold less energy demand compared to direct distillation from aqueous stream. Greenhouse gases emissions of the major operations throughout the supply chain (energy and solvent use, transport, field emissions) were estimated and compared against the impact of deforestation to make space for agriculture purposes. A biorefinery process for the production of 20 ktonne/year of levulinic acid from two different types of lignocellulosic feedstock was hypothesized for different scenarios. In one scenario the chemical plant producing levulinic acid was located in Singapore whereas in other scenarios, its location was placed in a neighboring country, closer to the biomass source. Results from this study show the importance of feedstock choices, as well as the associated plant locations, in the quest for sustainability objectives. Copyright © 2018 Elsevier Ltd. All rights reserved.
Worldwide Environmental Compliance Assessment and Management System Program (ECAMP)
1993-09-01
where spices are produced using animal and vegetable acids 7.22 Coffee roasting facilities with capacities of 75 kg/h 7.23 Plants for roasting coffee ...22. Industrial plants Verify that dusty gases released during the processing of dusty materials hawe required to have are collected and passed through...standards for the release of dusty gases during the production, crushing, classification and loading of dusty materials or other process involving such
Xie, Yakun; Rolli, Eleonora; Guerard, Florence; Colcombet, Jean; Benhamed, Moussa; Depaepe, Thomas
2018-01-01
Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance. PMID:29554117
Mata-Pérez, Capilla; Padilla, María N; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B
2018-01-01
In the last few years, the role of nitric oxide (NO) and NO-related molecules has attracted attention in the field of plant systems. In this sense, the ability of NO to mediate several posttranslational modifications (NO-PTM) in different biomolecules, such as protein tyrosine nitration or S-nitrosylation, has shown the involvement of these reactive nitrogen species in a wide range of functions in plant physiology such as the antioxidant response or the involvement in processes such as germination, growth, development, or senescence. However, growing interest has focused on the interaction of these NO-derived molecules with unsaturated fatty acids, yielding nitro-fatty acids (NO 2 -FAs). It has recently been shown that these molecules are involved in key signaling pathways in animal systems through the implementation of antioxidant and anti-inflammatory responses. Nevertheless, this interaction has been poorly studied in plant systems. Very recently, the endogenous presence of NO 2 -FAs in the model plant Arabidopsis thaliana has been demonstrated as well as the significant involvement of nitro-linolenic acid (NO 2 -Ln) in the defence response against several abiotic and oxidative stress conditions. In this respect, the detection of NO 2 -FAs in plant systems can be a useful tool to determine the importance of these molecules in the regulation of different biochemical pathways. Using high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry (LC-MS/MS), the methods described in this chapter enable the determination of the NO 2 -FA content in a pM range as well as the characterization of these nitrated derivatives of unsaturated fatty acids in plant tissues.
Matschi, Susanne; Hake, Katharina; Herde, Marco; Hause, Bettina; Romeis, Tina
2015-01-01
Phytohormones play an important role in development and stress adaptations in plants, and several interacting hormonal pathways have been suggested to accomplish fine-tuning of stress responses at the expense of growth. This work describes the role played by the CALCIUM-DEPENDENT PROTEIN KINASE CPK28 in balancing phytohormone-mediated development in Arabidopsis thaliana, specifically during generative growth. cpk28 mutants exhibit growth reduction solely as adult plants, coinciding with altered balance of the phytohormones jasmonic acid (JA) and gibberellic acid (GA). JA-dependent gene expression and the levels of several JA metabolites were elevated in a growth phase-dependent manner in cpk28, and accumulation of JA metabolites was confined locally to the central rosette tissue. No elevated resistance toward herbivores or necrotrophic pathogens was detected for cpk28 plants, either on the whole-plant level or specifically within the tissue displaying elevated JA levels. Abolishment of JA biosynthesis or JA signaling led to a full reversion of the cpk28 growth phenotype, while modification of GA signaling did not. Our data identify CPK28 as a growth phase-dependent key negative regulator of distinct processes: While in seedlings, CPK28 regulates reactive oxygen species-mediated defense signaling; in adult plants, CPK28 confers developmental processes by the tissue-specific balance of JA and GA without affecting JA-mediated defense responses. PMID:25736059
Vitamins for enhancing plant resistance.
Boubakri, Hatem; Gargouri, Mahmoud; Mliki, Ahmed; Brini, Faiçal; Chong, Julie; Jbara, Moez
2016-09-01
This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors. Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.
Aires Almeida, Deborah; Aguiar, Raimundo Wagner de Souza; Viana, Kelvinson Fernandes; Barbosa, Luiz Carlos Bertucci; Cangussu, Edson Wagner da Silva; Brandi, Igor Viana; Portella, Augustus Caeser Franke; dos Santos, Gil Rodrigues; Sobrinho, Eliane Macedo; Lima, William James Nogueira
2018-01-01
Phytase plays a prominent role in monogastric animal nutrition due to its ability to improve phytic acid digestion in the gastrointestinal tract, releasing phosphorus and other micronutrients that are important for animal development. Moreover, phytase decreases the amounts of phytic acid and phosphate excreted in feces. Bioinformatics approaches can contribute to the understanding of the catalytic structure of phytase. Analysis of the catalytic structure can reveal enzymatic stability and the polarization and hydrophobicity of amino acids. One important aspect of this type of analysis is the estimation of the number of β-sheets and α-helices in the enzymatic structure. Fermentative processes or genetic engineering methods are employed for phytase production in transgenic plants or microorganisms. To this end, phytase genes are inserted in transgenic crops to improve the bioavailability of phosphorus. This promising technology aims to improve agricultural efficiency and productivity. Thus, the aim of this review is to present the characterization of the catalytic structure of plant and microbial phytases, phytase genes used in transgenic plants and microorganisms, and their biotechnological applications in animal nutrition, which do not impact negatively on environmental degradation. PMID:29713527
Cangussu, Alex Sander Rodrigues; Aires Almeida, Deborah; Aguiar, Raimundo Wagner de Souza; Bordignon-Junior, Sidnei Emilio; Viana, Kelvinson Fernandes; Barbosa, Luiz Carlos Bertucci; Cangussu, Edson Wagner da Silva; Brandi, Igor Viana; Portella, Augustus Caeser Franke; Dos Santos, Gil Rodrigues; Sobrinho, Eliane Macedo; Lima, William James Nogueira
2018-01-01
Phytase plays a prominent role in monogastric animal nutrition due to its ability to improve phytic acid digestion in the gastrointestinal tract, releasing phosphorus and other micronutrients that are important for animal development. Moreover, phytase decreases the amounts of phytic acid and phosphate excreted in feces. Bioinformatics approaches can contribute to the understanding of the catalytic structure of phytase. Analysis of the catalytic structure can reveal enzymatic stability and the polarization and hydrophobicity of amino acids. One important aspect of this type of analysis is the estimation of the number of β -sheets and α -helices in the enzymatic structure. Fermentative processes or genetic engineering methods are employed for phytase production in transgenic plants or microorganisms. To this end, phytase genes are inserted in transgenic crops to improve the bioavailability of phosphorus. This promising technology aims to improve agricultural efficiency and productivity. Thus, the aim of this review is to present the characterization of the catalytic structure of plant and microbial phytases, phytase genes used in transgenic plants and microorganisms, and their biotechnological applications in animal nutrition, which do not impact negatively on environmental degradation.
Sun, Li-Jun; Feng, Qiu-Mei; Yan, Yong-Feng; Pan, Zhong-Qin; Li, Xiao-Hui; Song, Feng-Ming; Yang, Haibing; Xu, Jing-Juan; Bao, Ning; Gu, Hai-Ying
2014-10-15
Detection of phytohormones in situ has gained significant attention due to their critical roles in regulating developmental processes and signaling for defenses in plants at low concentration. As one type of plant hormones, salicylic acid has recently been found to be one of pivotal signal molecules for physiological behaviors of plants. Here we report the application of paper-based electroanalytical devices for sensitively in situ detection of salicylic acid in tomato leaves with the sample volume of several microliters. Specifically, disposable working electrodes were fabricated by coating carbon tape with the mixture of multiwall carbon nanotubes and nafion. We observed that the treatment of the modified carbon tape electrodes with oxygen plasma could significantly improve electrochemical responses of salicylic acid. The tomato leaves had a punched hole of 1.5mm diameter to release salicylic acid with minor influence on continuous growth of tomatoes. By incorporating the tomato leaf with the paper-based analytical device, we were able to perform in situ determination of salicylic acid based on its electrocatalytic oxidation. Our experimental results demonstrated that the amounts of salicylic acid differed statistically in normal, phytoene desaturase (PDS) gene silent and diseased (infected by Botrytis cinerea) tomato leaves. By quantifying salicylic acid at the level of several nanograms in situ, the simple paper-based electroanalytical devices could potentially facilitate the study of defense mechanism of plants under biotic and abiotic stresses. This study might also provide a sensitive method with spatiotemporal resolution for mapping of chemicals released from living organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Mhlongo, M I; Piater, L A; Steenkamp, P A; Madala, N E; Dubery, I A
2015-01-01
Previous studies suggest that only trans-isomers of chlorogenic acid (CGA) are naturally produced. Cis-isomers have been noted in some plant tissues exposed to different mechanical processes as well as untreated tobacco leaves exposed to sunlight. Very little, however, is known about the biological significance and origin of cis-isomers. Here we show for the first time the accumulation of cis-5-caffeoylquinic acid in cultured tobacco cells treated with different inducers of plant defence (lipopolysaccharides, flagellin peptide-22, chitosan, acibenzolar-S-methyl and isonitrosoacetophenone), without exposure to UV light and with a 2-fold (on average) increase in the concentration of the pool in comparison to non-stimulated cells. Our UHPLC-Q-TOF-MS and multivariate statistical results suggest the presence of a possible biological pathway responsible for the production of cis-CGAs in tobacco plants.
10. VIEW OF CALCINER IN ROOM 146148. THE CALCINER HEATED ...
10. VIEW OF CALCINER IN ROOM 146-148. THE CALCINER HEATED PLUTONIUM PEROXIDE TO CONVERT IT TO PLUTONIUM OXIDE. THE PROCESS REMOVED RESIDUAL WATER AND NITRIC ACID LEAVING A DRY, POWDERED PRODUCT. (4/29/65) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo
2013-06-01
Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.
Roles of plant hormones in the regulation of host-virus interactions.
Alazem, Mazen; Lin, Na-Sheng
2015-06-01
Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones. © 2014 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY JOHN WILEY & SONS LTD AND BSPP.
Dynamics of Postcombustion CO2 Capture Plants: Modeling, Validation, and Case Study
2017-01-01
The capture of CO2 from power plant flue gases provides an opportunity to mitigate emissions that are harmful to the global climate. While the process of CO2 capture using an aqueous amine solution is well-known from experience in other technical sectors (e.g., acid gas removal in the gas processing industry), its operation combined with a power plant still needs investigation because in this case, the interaction with power plants that are increasingly operated dynamically poses control challenges. This article presents the dynamic modeling of CO2 capture plants followed by a detailed validation using transient measurements recorded from the pilot plant operated at the Maasvlakte power station in the Netherlands. The model predictions are in good agreement with the experimental data related to the transient changes of the main process variables such as flow rate, CO2 concentrations, temperatures, and solvent loading. The validated model was used to study the effects of fast power plant transients on the capture plant operation. A relevant result of this work is that an integrated CO2 capture plant might enable more dynamic operation of retrofitted fossil fuel power plants because the large amount of steam needed by the capture process can be diverted rapidly to and from the power plant. PMID:28413256
Research and engineering assessment of biological solubilization of phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.
This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidationmore » of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.« less
USDA-ARS?s Scientific Manuscript database
Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the c...
40 CFR 180.1225 - Decanoic acid; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., breweries, wineries, beverage and food processing plants. [68 FR 7939, Feb. 19, 2003; 68 FR 17308, Apr. 9... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... acid (up to 170 ppm per application) on food contact surfaces such as equipment, pipelines, tanks, vats...
Escherichia coli as a fatty acid and biodiesel factory: current challenges and future directions.
Rahman, Ziaur; Rashid, Naim; Nawab, Javed; Ilyas, Muhammad; Sung, Bong Hyun; Kim, Sun Chang
2016-06-01
Biodiesel has received widespread attention as a sustainable, environment-friendly, and alternative source of energy. It can be derived from plant, animal, and microbial organisms in the form of vegetable oil, fats, and lipids, respectively. However, biodiesel production from such sources is not economically feasible due to extensive downstream processes, such as trans-esterification and purification. To obtain cost-effective biodiesel, these bottlenecks need to be overcome. Escherichia coli, a model microorganism, has the potential to produce biodiesel directly from ligno-cellulosic sugars, bypassing trans-esterification. In this process, E. coli is engineered to produce biodiesel using metabolic engineering technology. The entire process of biodiesel production is carried out in a single microbial cell, bypassing the expensive downstream processing steps. This review focuses mainly on production of fatty acid and biodiesel in E. coli using metabolic engineering approaches. In the first part, we describe fatty acid biosynthesis in E. coli. In the second half, we discuss bottlenecks and strategies to enhance the production yield. A complete understanding of current developments in E. coli-based biodiesel production and pathway optimization strategies would reduce production costs for biofuels and plant-derived chemicals.
Hu, Tao; Liu, Shu-Qian; Amombo, Erick; Fu, Jin-Min
2015-01-01
When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as “stress memory”. However, there is insufficient information about plants' stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP) genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4) relative to the first stress (S1), and basal transcript levels during the recovery states (R1, R2, and R3). Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC) for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid), sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose), amino acids (serine, proline, pyroglutamic acid, glycine, alanine), and one fatty acid (butanoic acid) in pre-acclimated plants. These observations involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process. PMID:26136755
WRKY Transcription Factors: Key Components in Abscisic Acid Signaling
2011-01-01
Review article WRKY transcription factors : key components in abscisic acid signalling Deena L. Rushton1, Prateek Tripathi1, Roel C. Rabara1, Jun Lin1...May 2011. *Correspondence (Tel +605 688 5749; fax +605 688 5624; email paul.rushton@sdstate.edu) Keywords: abscisic acid, WRKY transcription factor ...seed germination, drought, abiotic stress. Summary WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses
1985-10-02
represents no particular problem. For instance, some are obtained in the process of Improving the quality of food products ( chlorogenic acid , protein...synthesis may prove to be promising fungicides and bactericides. We have already written about chlorogenic acid and its significance in the plant world...and N-C Bonds in Acid Hydrolysis of N-Nitrosoamines (V. N. Nikulin, V. N. Klochkova, et al.; KINETIKA I KATALIZ, No 3, May-Jun 85) 23 - d
NASA Astrophysics Data System (ADS)
Mimmo, T.; Terzano, R.; Medici, L.; Lettino, A.; Fiore, S.; Tomasi, N.; Pinton, R.; Cesco, S.
2012-04-01
Plants release significant amounts of high and low molecular weight organic compounds into the rhizosphere. Among these exudates organic acids (e.g. citric acid, malic acid, oxalic acid), phenolic compounds (e.g. flavonoids), amino acids and siderophores of microbial and/or plant origin strongly influence and modify the biogeochemical cycles of several elements, thus causing changes in their availability for plant nutrition. One class of these elements is composed by the trace elements; some of them are essential for plants even if in small concentrations and are considered micronutrients, such as Fe, Zn, Mn. Their solubility and bioavailability can be influenced, among other factors, by the presence in soil solution of low molecular weight root exudates acting as organic complexing agents that can contribute to the mineral weathering and therefore, to their mobilization in the soil solution. The mobilized elements, in function of the element and of its concentration, can be either important nutrients or toxic elements for plants. The objective of this study was to assess the influence of several root exudates (citric acid, malic acid, oxalic acid, genistein, quercetin and siderophores) on the mineralogy of two different soils (an agricultural calcareous soil and an acidic polluted soil) and to evaluate possible synergic or competitive behaviors. X-ray diffraction (XRD) coupled with Electron Probe Micro Analysis (EPMA) was used to identify the crystalline and amorphous phases which were subjected to mineral alteration when exposed to the action of root exudates. Solubilization of trace metals such as Cu, Zn, Ni, Cr, Pb, Cd as well as of major elements such as Si, Al, Fe and Mn was assessed by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Soil microorganisms have proven to decrease mineral weathering by reducing the concentration of active root exudates in solution. Results obtained are an important cornerstone to better understand the biogeochemical processes acting in the rhizosphere which can play an important role in the availability of trace elements (either nutrient or toxic) for plant uptake. Research is supported by MIUR - FIRB "Futuro in ricerca", internal grant of Unibz (TN5031 & TN5046) and the Autonomous Province of Bolzano (Rhizotyr TN5218).
Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues.
Asahina, Masashi; Satoh, Shinobu
2015-05-01
Interactions among the functionally specialized organs of higher plants ensure that the plant body develops and functions properly in response to changing environmental conditions. When an incision or grafting procedure interrupts the original organ or tissue connection, cell division is induced and tissue reunion occurs to restore physiological connections. Such activities have long been observed in grafting techniques, which are advantageous not only for agriculture and horticulture but also for basic research. To understand how this healing process is controlled and how this process is initiated and regulated at the molecular level, physiological and molecular analyses of tissue reunion have been performed using incised hypocotyls of cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) and incised flowering stems of Arabidopsis thaliana. Our results suggest that leaf gibberellin and microelements from the roots are required for tissue reunion in the cortex of the cucumber and tomato incised hypocotyls. In addition, the wound-inducible hormones ethylene and jasmonic acid contribute to the regulation of the tissue reunion process in the upper and lower parts, respectively, of incised Arabidopsis stems. Ethylene and jasmonic acid modulate the expression of ANAC071 and RAP2.6L, respectively, and auxin signaling via ARF6/8 is essential for the expression of these transcription factors. In this report, we discuss recent findings regarding molecular and physiological mechanisms of the graft union and the tissue reunion process in wounded tissues of plants.
Pandino, Gaetano; Lombardo, Sara; Antonino, Lo Monaco; Ruta, Claudia; Mauromicale, Giovanni
2017-09-01
The commercial importance of plant tissue culture has grown in recent years, reflecting its application to vegetative propagation, disease elimination, plant improvement and the production of polyphenols. The level of polyphenols present in plant tissue is influenced by crop genotype, the growing environment, the crop management regime and the post-harvest processing practice. Globe artichoke is a significant component of the Mediterranean Basin agricultural economy, and is rich in polyphenols (phenolic acids and flavones). Most commercially grown plants are derived via vegetative propagation, with its attendant risk of pathogen build-up. Here, a comparison was drawn between the polyphenol profiles of conventionally propagated and micropropagated/mycorrhized globe artichoke plants. Micropropagation/mycorrhization appeared to deliver a higher content of caffeoylquinic acids. The accumulation of these compounds, along with luteolin and its derivatives, was not season-dependent. Luteolin aglycone was accumulated preferentially in the conventionally propagated plants. Overall, it appeared that micropropagation/mycorrhization enhanced the accumulation of polyphenols. Copyright © 2017. Published by Elsevier Ltd.
Sheikhian, Leila; Bina, Sedigheh
2016-01-15
In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Removal of indicator organisms by chemical treatment of wastewater.
De Zutter, L; van Hoof, J
1981-01-01
Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.
1987-11-10
The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.
Edwards, H M; Douglas, M W; Parsons, C M; Baker, D H
2000-04-01
A conventional and two genetically modified soybean samples were processed to dehulled soybean meal (SBM) at a pilot plant and were compared with SBM from a commercial processing plant. Crude protein levels (%) of the experimental SBM samples were M700, 52.5; M702, 53.4; and M703, 62.7. The commercial SBM sample (UI) contained 47.5% protein. Amino acid, gross energy, lipid, and fiber analyses were carried out, and true metabolizable energy and true amino acid digestibility were determined with adult cecectomized cockerels. Digestible Lys, Met, Cys, Thr, and Val, and also TMEn, were higher (P < 0.05) and NDF, fat, and phospholipids were lower in M703 than in the other SBM samples. The results of this study indicate that M703 has considerable advantages over conventional SBM as a feed ingredient for broiler chickens.
Structural basis for expanding the application of bioligand in metal bioremediation: A review.
Sharma, Virbala; Pant, Deepak
2018-03-01
Bioligands (BL) present in plant and microbes are primarily responsible for their use in metal decontamination. Both primary (proteins and amino acid) and secondary (proliferated) response in the form of BL is possible in plants and microbes toward metal bioremediation. Structure of these BL have specific requirement for preferential binding towards a particular metal in biomass. The aim of this review is to explore various templates from BL (as metal host) for the metal detoxification/decontamination and associated bioremediation. Mechanistic explanation for bioremediation may involve the various processes like: (i) electron transfer; (ii) translocation; and (iii) coordination number variation. HSAB (hard and soft acid and base) concept can act as guiding principle for many such processes. It is possible to investigate various structural homolog of BL (similar to secondary response in living stage) for the possible improvement in bioremediation process. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.
2000-09-28
This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less
Chen, Qi; Lu, Xueyan; Guo, Xiaorui; Guo, Qingxi; Li, Dewen
2017-06-17
Catharanthus roseus ( C. roseus ) and Vinca minor ( V. minor ) are two common important medical plants belonging to the family Apocynaceae. In this study, we used non-targeted GC-MS and targeted LC-MS metabolomics to dissect the metabolic profile of two plants with comparable phenotypic and metabolic differences. A total of 58 significantly different metabolites were present in different quantities according to PCA and PLS-DA score plots of the GC-MS analysis. The 58 identified compounds comprised 16 sugars, eight amino acids, nine alcohols and 18 organic acids. We subjected these metabolites into KEGG pathway enrichment analysis and highlighted 27 metabolic pathways, concentrated on the TCA cycle, glycometabolism, oligosaccharides, and polyol and lipid transporter (RFOS). Among the primary metabolites, trehalose, raffinose, digalacturonic acid and gallic acid were revealed to be the most significant marker compounds between the two plants, presumably contributing to species-specific phenotypic and metabolic discrepancy. The profiling of nine typical alkaloids in both plants using LC-MS method highlighted higher levels of crucial terpenoid indole alkaloid (TIA) intermediates of loganin, serpentine, and tabersonine in V. minor than in C. roseus . The possible underlying process of the metabolic flux from primary metabolism pathways to TIA synthesis was discussed and proposed. Generally speaking, this work provides a full-scale comparison of primary and secondary metabolites between two medical plants and a metabolic explanation of their TIA accumulation and phenotype differences.
Thompson, Jack; Eaglesham, Geoff; Reungoat, Julien; Poussade, Yvan; Bartkow, Michael; Lawrence, Michael; Mueller, Jochen F
2011-01-01
This paper examines the fate of perfluorinated sulfonates (PFSAs) and carboxylic acids (PFCAs) in two water reclamation plants in Australia. Both facilities take treated water directly from WWTPs and treat it further to produce high quality recycled water. The first plant utilizes adsorption and filtration methods alongside ozonation, whilst the second uses membrane processes and advanced oxidation to produce purified recycled water. At both facilities perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) were the most frequently detected PFCs. Concentrations of PFOS and PFOA in influent (WWTP effluent) ranged up to 3.7 and 16 ng L⁻¹ respectively, and were reduced to 0.7 and 12 ng L⁻¹ in the finished water of the ozonation plant. Throughout this facility, concentrations of most of the detected perfluoroalkyl compounds (PFCs) remained relatively unchanged with each successive treatment step. PFOS was an exception to this, with some removal following coagulation and dissolved air flotation/sand filtration (DAFF). At the second plant, influent concentrations of PFOS and PFOA ranged up to 39 and 29 ng L⁻¹. All PFCs present were removed from the finished water by reverse osmosis (RO) to concentrations below detection and reporting limits (0.4-1.5 ng L⁻¹). At both plants the observed concentrations were in the low parts per trillion range, well below provisional health based drinking water guidelines suggested for PFOS and PFOA. Copyright © 2010 Elsevier Ltd. All rights reserved.
Xia, Xiao-Jian; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Foyer, Christine H; Yu, Jing-Quan
2015-05-01
As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Somerville, Chris; Broun, Pierre; van de Loo, Frank
2001-01-01
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
Gas plant converts amine unit to MDEA-based solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mak, H.Y.
1992-10-01
This paper reports that methyldiethanolamine (MDEA) has successfully replaced monoethanolamine (MEA) solvent at one of Canada's largest gas processing plants. This acid gas treating solvent lowered costs associated with pumping horsepower, reboiler duty, solvent losses, corrosion and other gas processing problems. Not all operating conditions at a gas processing plant favor MDEA or MEA. In the Rimbey plant, originally designed to process sour gas, more sweet gas feed (per volume) called for considering advantages of the lesser-used MDEA. Gulf Canada Resources operates several major sour gas plants in Alberta. The Rimbey Plant was designed in 1960 to process 400 MMscfdmore » of sour gas with 2% H[sub 2]S and 1.32% CO[sub 2]. The amine unit was designed to circulate 2,400 gpm of 20 wt% MEA solution. The single train amine plant has four gas conductors and two amine regenerators. The present raw inlet gas flowrate to the Rimbey Plant is about 312 MMscfd which is made up of three sources: 66 MMscfd of sour gas with 1.5% H[sub 2]S and 1.8% CO[sub 2]; 65 MMscfd of high CO[sub 2] gas with 400 ppmv H[sub 2]S and 3.9% CO[sub 2]; and 181 MMscfd of sweet gas with 2.2% CO[sub 2].« less
de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R
2009-08-01
The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.
In situ micro-spectroscopic investigation of lignin in poplar cell walls pretreated by maleic acid
Zeng, Yining; Zhao, Shuai; Wei, Hui; ...
2015-08-27
In higher plant cells, lignin provides necessary physical support for plant growth and resistance to attack by microorganisms. For the same reason, lignin is considered to be a major impediment to the process of deconstructing biomass to simple sugars by hydrolytic enzymes. Furthermore, the in situ variation of lignin in plant cell walls is important for better understanding of the roles lignin play in biomass recalcitrance.
Metabolic engineering of plant oils and waxes for use as industrial feedstocks.
Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G
2013-02-01
Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. © 2012 CSIRO Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Allelobiosis in the interference of allelopathic wheat with weeds.
Li, Yong-Hua; Xia, Zhi-Chao; Kong, Chui-Hua
2016-11-01
Plants may chemically affect the performance of neighbouring plants through allelopathy, allelobiosis or both. In spite of increasing knowledge about allelobiosis, defined as the signalling interactions mediated by non-toxic chemicals involved in plant-plant interactions, the phenomenon has received relatively little attention in the scientific literature. This study examined the role of allelobiosis in the interference of allelopathic wheat with weeds. Allelopathic wheat inhibited the growth of five weed species tested, and the allelochemical (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) production of wheat was elicited in the presence of these weeds, even with root segregation. The inhibition and allelochemical levels varied greatly with the mixed species density. Increased inhibition and allelochemical levels occurred at low and medium densities but declined at high densities. All the root exudates and their components of jasmonic acid and salicylic acid from five weeds stimulated allelochemical production. Furthermore, jasmonic acid and salicylic acid were found in plants, root exudates and rhizosphere soils, regardless of weed species, indicating their participation in the signalling interactions defined as allelobiosis. Through root-secreted chemical signals, allelopathic wheat can detect competing weeds and respond by increased allelochemical levels to inhibit them, providing an advantage for its own growth. Allelopathy and allelobiosis are two probably inseparable processes that occur together in wheat-weed chemical interactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hinton, Arthur; Cason, J A; Hume, Michael E; Ingram, Kimberly D
2004-08-01
The presence of Campylobacter spp. on broiler carcasses and in scald water taken from a commercial poultry processing facility was monitored on a monthly basis from January through June. Campylobacter agar, Blaser, was used to enumerate Campylobacter in water samples from a multiple-tank scalder; on prescalded, picked, eviscerated, and chilled carcasses; and on processed carcasses stored at 4 degrees C for 7 or 14 days. The MIDI Sherlock microbial identification system was used to identify Campylobacter-like isolates based on the fatty acid methyl ester profile of the bacteria. The dendrogram program of the Sherlock microbial identification system was used to compare the fatty acid methyl ester profiles of the bacteria and determine the degree of relatedness between the isolates. Findings indicated that no Campylobacter were recovered from carcasses or scald tank water samples collected in January or February, but the pathogen was recovered from samples collected in March, April, May, and June. Processing generally produced a significant (P < 0.05) decrease in the number of Campylobacter recovered from broiler carcasses, and the number of Campylobacter recovered from refrigerated carcasses generally decreased during storage. Significantly (P < 0.05) fewer Campylobacter were recovered from the final tank of the multiple-tank scald system than from the first tank. MIDI similarity index values ranged from 0.104 to 0.928 based on MIDI-fatty acid methyl ester analysis of Campylobacterjejuni and Campylobacter coli isolates. Dendrograms of the fatty acid methyl ester profile of the isolates indicated that poultry flocks may introduce several strains of C. jejuni and C. coli into processing plants. Different populations of the pathogen may be carried into the processing plant by successive broiler flocks, and the same Campylobacter strain may be recovered from different poultry processing operations. However, Campylobacter apparently is unable to colonize equipment in the processing facility and contaminate broilers from flocks processed at later dates in the facility.
Busato, Jader G; Zandonadi, Daniel B; Mól, Alan R; Souza, Rafaela S; Aguiar, Kamilla P; Júnior, Fábio B Reis; Olivares, Fábio L
2017-02-01
Phosphorus-containing fertilizers play an important role in tropical agriculture owing to the well documented shortage of plant-available P in soils. Traditional P fertilizer production is based on chemical processing of insoluble rock phosphate (RP), which includes an acid treatment at high temperature. Processing the RP increases fertilizer costs, making it unavailable for undercapitalized and typically family-based farmers. Biotechnological methods have been proposed as an alternative to increase phosphate availability in RP. In this study, Burkholderia silvatlantica and Herbaspirillum seropedicae were co-inoculated into an RP-enriched compost with the aim of determining the effects of this technology on the levels of phosphatase activities and release of plant-available P. Inoculation of both microorganisms resulted in higher organic matter decomposition and higher humic acid formation in composting. Herbaspirillum seropedicae was the most promising microorganism for the production of acid and alkaline phosphatase enzymes. Both microorganisms presented potential to increase the supply of P from poorly soluble sources owing to increased levels of water-soluble P and citric acid P. Burkholderia silvatlantica and H. seropedicae in RP-enriched compost may represent an important biotechnological tool to reduce the overall time required for composting and increase the supply of P from poorly soluble sources. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Biogas: Production and utilization
NASA Astrophysics Data System (ADS)
Price, E. C.; Cheremisinoff, P. N.
Among the aspects of biogas production and utilization covered are: (1) the microbiology and biochemistry of the acid and methane production stages in the anaerobic process; (2) factors affecting the process, such as temperature, acidity and alkalinity, nutrients, and cations; (3) denitrification processes and systems; and (4) the process kinetics of suspended growth systems, packed columns, and fluidized beds. Also considered are such issues in the application of this technology as the digestion of municipal treatment plant sludges, animal wastes, food processing wastes and energy crops. Attention is in addition given to anaerobic digester design, offgas measurement of anaerobic digesters, and sludge treatment through soil conditioning and composting.
... global population has increased and our reliance on fossil fuels (such as coal, oil and natural gas) ... agricultural sources for the gas, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid ...
Steele, Valerie J; Stern, Ben; Stott, Andy W
2010-12-15
Distinguishing animal fats from plant oils in archaeological residues is not straightforward. Characteristic plant sterols, such as β-sitosterol, are often missing in archaeological samples and specific biomarkers do not exist for most plant fats. Identification is usually based on a range of characteristics such as fatty acid ratios, all of which indicate that a plant oil may be present, none of which uniquely distinguish plant oils from other fats. Degradation and dissolution during burial alter fatty acid ratios and remove short-chain fatty acids, resulting in degraded plant oils with similar fatty acid profiles to other degraded fats. Compound-specific stable isotope analysis of δ(13)C(18:0) and δ(13)C(16:0), carried out by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), has provided a means of distinguishing fish oils, dairy fats, ruminant and non-ruminant adipose fats, but plant oils are rarely included in these analyses. For modern plant oils where C(18:1) is abundant, δ(13)C(18:1) and δ(13)C(16:0) are usually measured. These results cannot be compared with archaeological data or data from other modern reference fats where δ(13)C(18:0) and δ(13)C(16:0) are measured, as C(18:0) and C(18:1) are formed by different processes resulting in different isotopic values. Eight samples of six modern plant oils were saponified, releasing sufficient C(18:0) to measure the isotopic values, which were plotted against δ(13)C(16:0). The isotopic values for these oils, with one exception, formed a tight cluster between ruminant and non-ruminant animal fats. This result complicates the interpretation of mixed fatty residues in geographical areas where both animal fats and plant oils were in use. Copyright © 2010 John Wiley & Sons, Ltd.
Strategies for emission reduction of air pollutants produced from a chemical plant.
Lee, Byeong-Kyu; Cho, Sung-Woong
2003-01-01
Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.
Montiel-Rozas, M M; Madejón, E; Madejón, P
2016-09-01
Bioavailability of heavy metals can be modified by different root exudates. Among them, low molecular weight organic acids (LMWOAs) play an important role in this process. Three plant species (Poa annua, Medicago polymorpha and Malva sylvestris), potentially used for phytoremediation, have been assessed for both metal uptake and LMWOAs excretion in contaminated environments with different concentrations of Cd, Cu and Zn. The experiments have been carried out in washed sand and in three contaminated soils where two organic amendments were added (biosolid compost and alperujo compost). The most abundant LMWOAs excreted by all studied plants were oxalic and malic acids, although citric and fumaric acids were also detected. The general tendency was that plants responded to an increase of heavy metal stress releasing higher amounts of LMWOAs. This is an efficient exclusion mechanism reducing the metal uptake and allowing the plant growth at high levels of contamination. In the experiment using wash sand as substrate, the organic acids composition and quantity depended mainly on plant species and metal contamination. M. polymorpha was the species that released the highest concentrations of LMWOAs, both in sand and in soils with no amendment addition, whereas a decrease of these acids was observed with the addition of amendments. Our results established a clear effect of organic matter on the composition and total amount of LMWOAs released. The increase of organic matter and nutrients, through amendments, improved the soil quality reducing phytotoxicity. As a result, organic acids exudates decreased and were solely composed of oxalic acid (except for M. polymorpha). The release of LMWOAs has proved to be an important mechanism against heavy metal stress, unique to each species and modifiable by means of organic amendment addition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nilsson, Robert; Bauer, Fredric; Mesfun, Sennai; Hulteberg, Christian; Lundgren, Joakim; Wännström, Sune; Rova, Ulrika; Berglund, Kris Arvid
2014-06-01
This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7g/g substrate. Additionally, a carbon dioxide fixation of up to 13ktonnes could be achieved at a plant with an annual butanol production of 10ktonnes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.
Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin
2015-01-01
Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.
Nutritional Value of Commercial Protein-Rich Plant Products.
Mattila, Pirjo; Mäkinen, Sari; Eurola, Merja; Jalava, Taina; Pihlava, Juha-Matti; Hellström, Jarkko; Pihlanto, Anne
2018-06-01
The goal of this work was to analyze nutritional value of various minimally processed commercial products of plant protein sources such as faba bean (Vicia faba), lupin (Lupinus angustifolius), rapeseed press cake (Brassica rapa/napus subsp. Oleifera), flaxseed (Linum usitatissimum), oil hemp seed (Cannabis sativa), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa). Basic composition and various nutritional components like amino acids, sugars, minerals, and dietary fiber were determined. Nearly all the samples studied could be considered as good sources of essential amino acids, minerals and dietary fiber. The highest content of crude protein (over 30 g/100 g DW) was found in faba bean, blue lupin and rapeseed press cake. The total amount of essential amino acids (EAA) ranged from 25.8 g/16 g N in oil hemp hulls to 41.5 g/16 g N in pearled quinoa. All the samples studied have a nutritionally favorable composition with significant health benefit potential. Processing (dehulling or pearling) affected greatly to the contents of analyzed nutrients.
Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria
2015-10-01
This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Chlorogenic acid stability in pressurized liquid extraction conditions.
Wianowska, Dorota; Typek, Rafał; Dawidowicz, Andrzej L
2015-01-01
Chlorogenic acids (CQAs) are phenolic compounds naturally occurring in all higher plants. They are potentially useful in pharmaceuticals, foodstuffs, food additives, and cosmetics due to their recently suggested biomedical activity. Hence, research interest in CQA properties, their isomers, and natural occurrence has been growing. Pressurized liquid extraction (PLE) is regarded as an effective and quick sample preparation method in plant analysis. The short time of PLE decreases the risk of chemical degradation of extracted compounds, thus increasing the attractiveness of its application. However, PLE applied for plant sample preparation is not free from limitations. We found that trans-5-O-caffeoylquinic acid (trans-5-CQA), the main CQA isomer, isomerizes to 3- and 4-O-caffeoylquinic acids and undergoes transesterification, hydrolysis, and reaction with water even in rapid PLE. Moreover, the number and concentration of trans-5-CQA derivatives formed in PLE strongly depends on extractant composition, its pH, and extraction time and temperature. It was not possible to find the PLE conditions in which the transformation process of trans-5-CQA would be eliminated.
Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria
2015-01-01
This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970
Greasy tactics in the plant-pathogen molecular arms race.
Boyle, Patrick C; Martin, Gregory B
2015-03-01
The modification of proteins by the attachment of fatty acids is a targeting tactic involved in mechanisms of both plant immunity and bacterial pathogenesis. The plant plasma membrane (PM) is a key battleground in the war against disease-causing microbes. This membrane is armed with an array of sensor proteins that function as a surveillance system to detect invading pathogens. Several of these sensor proteins are directed to the plasma membrane through the covalent addition of fatty acids, a process termed fatty acylation. Phytopathogens secrete effector proteins into the plant cell to subvert these surveillance mechanisms, rendering the host susceptible to infection. The targeting of effectors to specific locales within plant cells, particularly the internal face of the host PM, is critical for their virulence function. Several bacterial effectors hijack the host fatty acylation machinery to be modified and directed to this contested locale. To find and fight these fatty acylated effectors the plant leverages lipid-modified intracellular sensors. This review provides examples featuring how fatty acylation is a battle tactic used by both combatants in the molecular arms race between plants and pathogens. Also highlighted is the exploitation of a specific form of host-mediated fatty acid modification, which appears to be exclusively employed by phytopathogenic effector proteins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment.
Matamoros, Víctor; Nguyen, Loc Xuan; Arias, Carlos A; Salvadó, Victòria; Brix, Hans
2012-08-01
Microcosm wetland systems (5 L containers) planted with Salvinia molesta, Lemna minor, Ceratophyllum demersum, and Elodea canadensis were investigated for the removal of diclofenac, triclosan, naproxen, ibuprofen, caffeine, clofibric acid and MCPA. After 38 days of incubation, 40-99% of triclosan, diclofenac, and naproxen were removed from the planted and unplanted reactors. In covered control reactors no removal was observed. Caffeine and ibuprofen were removed from 40% to 80% in planted reactors whereas removals in control reactors were much lower (2-30%). Removal of clofibric acid and MCPA were negligible in both planted and unplanted reactors. The findings suggested that triclosan, diclofenac, and naproxen were removed predominantly by photodegradation, whereas caffeine and naproxen were removed by biodegradation and/or plant uptake. Pseudo-first-order removal rate constants estimated from nonlinear regressions of time series concentration data were used to describe the contaminant removals. Removal rate constants ranged from 0.003 to 0.299 d(-1), with half-lives from 2 to 248 days. The formation of two major degradation products from ibuprofen, carboxy-ibuprofen and hydroxy-ibuprofen, and a photodegradation product from diclofenac, 1-(8-Chlorocarbazolyl)acetic acid, were followed as a function of time. This study emphasizes that plants contribute to the elimination capacity of microcontaminants in wetlands systems through biodegradation and uptake processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nishiyama, Rie; Watanabe, Yasuko; Fujita, Yasunari; Le, Dung Tien; Kojima, Mikiko; Werner, Tomás; Vankova, Radomira; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Kakimoto, Tatsuo; Sakakibara, Hitoshi; Schmülling, Thomas; Tran, Lam-Son Phan
2011-01-01
Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development. PMID:21719693
Production of hydroxylated fatty acids in genetically modified plants
Somerville, Chris [Portola Valley, CA; Broun, Pierre [Burlingame, CA; van de Loo, Frank [Weston, AU; Boddupalli, Sekhar S [Manchester, MI
2011-08-23
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
Production of hydroxylated fatty acids in genetically modified plants
Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.
2005-08-30
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.
NASA Technical Reports Server (NTRS)
Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.
1982-01-01
Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.
Rai, Santosh Kumar; Sharma, Meena; Jain, Madhu; Awasthi, Abhishek; Purshottam, Dharmendra Kumar; Nair, Narayanan Kuttanpillai; Sharma, Ashok Kumar
2010-11-01
An efficient in vitro process for rapid production of cloned plants of Uraria picta has been developed employing nodal stem segments taken from field-grown plants. Explants showed bud-break followed by regeneration of shoots with restricted growth within 12 days on modified Murashige and Skoog's medium supplemented with 0.25 mg l(-1) each of 6-benzylaminopurine and indole-3-acetic acid and 25 mg l(-1) adenine sulfate. Normal growth of shoots with good proliferation rate was achieved by reducing the concentrations of 6-benzylaminopurine and indole-3-acetic acid to 0.1 mg l(-1) each and incorporating 0.5 mg l(-1) gibberellic acid in the medium in which, on an average, 19.6 shoots per explant were produced. Further, during successive subcultures, increased concentrations of adenine sulfate (50 mg l(-l)) and gibberellic acid (2 mg l(-l)) along with the addition of 20 mg l(-l) DL: -tryptophan were found conducive to control the problem of necrosis of shoots. In this treatment, several "crops" of shoots were obtained from single culture by repeated subculturing of basal portion of stalk in long-term. Isolated shoots rooted 100% in 0.25 mg l(-1) indole-3-butyric acid. In vitro-raised plants after hardening in inorganic salt solution grew normally in soil and came to flowering. Genetic fidelity of in vitro-raised plants was ascertained by rapid amplified polymorphic DNA (RAPD) markers. Also, quantitative estimation of two isoflavonones in their root extracts further confirmed true-to-type nature of plantlets.
Finiti, Ivan; de la O Leyva, María; Vicedo, Begonya; Gómez-Pastor, Rocío; López-Cruz, Jaime; García-Agustín, Pilar; Real, Maria Dolores; González-Bosch, Carmen
2014-08-01
Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection. © 2013 BSPP AND JOHN WILEY & SONS LTD.
Habibi, Ghader; Ajory, Neda
2015-11-01
Photosynthesis is a biological process most affected by water deficit. Plants have various photosynthetic mechanisms that are matched to specific climatic zones. We studied the photosynthetic plasticity of C3 plants at water deficit using ecotypes of Marrubium vulgare L. from high (2,200 m) and low (1,100 m) elevation sites in the Mishou-Dagh Mountains of Iran. Under experimental drought, high-altitude plants showed more tolerance to water stress based on most of the parameters studied as compared to the low-altitude plants. Increased tolerance in high-altitude plants was achieved by lower levels of daytime stomatal conductance (g s) and reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v /F m ) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). High-altitude plants exhibited higher water use efficiency (WUE) than that in low-altitude plants depending on the presence of thick leaves and the reduced daytime stomatal conductance. Additionally, we have studied the oscillation in H(+) content and diel gas exchange patterns to determine the occurrence of C3 or weak CAM (Crassulacean acid metabolism) in M. vulgare through 15 days drought stress. Under water-stressed conditions, low-altitude plants exhibited stomatal conductance and acid fluctuations characteristic of C3 photosynthesis, though high-altitude plants exhibited more pronounced increases in nocturnal acidity and phosphoenolpyruvate carboxylase (PEPC) activity, suggesting photosynthetic flexibility. These results indicated that the regulation of carotenoids, NPQ, stomatal conductance and diel patterns of CO2 exchange presented the larger differences among studied plants at different altitudes and seem to be the protecting mechanisms controlling the photosynthetic performance of M. vulgare plants under drought conditions.
Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai
2016-10-01
Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
(Hydroxyproline-rich glycoproteins of the plant cell wall)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, J.E.
1990-01-01
We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.
Cyanogenic glycosides in plant-based foods available in New Zealand.
Cressey, Peter; Saunders, Darren; Goodman, Janet
2013-01-01
Cyanogenic glycosides occur in a wide range of plant species. The potential toxicity of cyanogenic glycosides arises from enzymatic degradation to produce hydrogen cyanide, which may result in acute cyanide poisoning and has also been implicated in the aetiology of several chronic diseases. One hundred retail foods were sampled and analysed for the presence of total hydrocyanic acid using an acid hydrolysis-isonicotinic/barbituric acid colourimetric method. Food samples included cassava, bamboo shoots, almonds and almond products, pome fruit products, flaxseed/linseed, stone fruit products, lima beans, and various seeds and miscellaneous products, including taro leaves, passion fruit, spinach and canned stuffed vine leaves. The concentrations of total hydrocyanic acid (the hydrocyanic acid equivalents of all cyanogenic compounds) found were consistent with or lower than concentrations reported in the scientific literature. Linseed/flaxseed contained the highest concentrations of total hydrocyanic acid of any of the analysed foods (91-178 mg kg(-1)). Linseed-containing breads were found to contain total hydrocyanic acid at concentrations expected from their linseed content, indicating little impact of processing on the total hydrocyanic acid content. Simulation modelling was used to assess the risk due to the total hydrocyanic acid in fruit juice and linseed-containing bread.
Lokhandwala, Kaaeid A.
2000-01-01
A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.
Distillate fuel-oil processing for phosphoric acid fuel cell power plants
NASA Astrophysics Data System (ADS)
1980-02-01
Efforts to develop distillate oil steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high temperature steam reforming; autothermal reforming; autothermal gasification; and ultra desulfurization followed by steam reforming. Sulfur in the feed is a problem in the process development.
Development of Agave as a dedicated biomass source: production of biofuels from whole plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A
Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with themore » use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.« less
Development of Agave as a dedicated biomass source: production of biofuels from whole plants
Mielenz, Jonathan R.; Rodriguez, Jr, Miguel; Thompson, Olivia A; ...
2015-01-01
Background: Agave species can grow well in semi-arid marginal agricultural lands around the world. Selected Agave species are used largely for alcoholic beverage production in Mexico. There are expanding research efforts to use the plentiful residues (bagasse) for ethanol production as the beverage manufacturing process only uses the juice from the central core of mature plants. Here we investigate the potential of over a dozen Agave species, including three from cold semi-arid regions of the United States, to produce biofuels using the whole plant. Results: Ethanol was readily produced by Saccharomyces cerevisiae from hydrolysate of ten whole Agaves with themore » use of a proper blend of biomass degrading enzymes that overcomes toxicity of most of the species tested. Unlike yeast fermentations, Clostridium beijerinckii produced butanol plus acetone from nine species tested. Butyric acid, a precursor of butanol, was also present due to incomplete conversion during the screening process. Since Agave contains high levels of free and poly-fructose which are readily destroyed by acidic pretreatment, a two step process was used developed to depolymerized poly-fructose while maintaining its fermentability. The hydrolysate from before and after dilute acid processing was used in C. beijerinckii acetone and butanol fermentations with selected Agave species. Conclusions: Results have shown Agave s potential to be a source of fermentable sugars beyond the existing beverage species to now include species previously unfermentable by yeast, including cold tolerant lines. This development may stimulate development of Agave as a dedicated feedstock for biofuels in semi-arid regions throughout the globe.« less
PROCESS DEVELOPMENT QUARTERLY REPORT. II. PILOT PLANT WORK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlman, N. ed.
1957-05-01
Progress is reported on the gross solubility of U in digestions of Mallinokrodt feed materials, studies of variables affecting U purity in a TBP hexane extraction cycle, low-acid flowsheet for TBP--hexane extraction process based on a 440 g U/liter in lM HNO/sub 3/ digest liquor, hacking studies in the pilot plant pumperdecanter system, recovery of U from residues from the dingot process, lowering the H level in dingot metal, forging of dingot bar stock, dingot extrusion, fubrication of UO/sub 2/ fuel elements, and the determination of H content of derby and ingot metal. (W.L.H.)
The long and winding road: transport pathways for amino acids in Arabidopsis seeds.
Karmann, Julia; Müller, Benedikt; Hammes, Ulrich Z
2018-03-16
Pathways for assimilates. During their life cycle, plants alternate between a haploid stage, the gametophyte, and a diploid stage, the sporophyte. In higher plants, meiosis generates the gametophyte deeply embedded in the maternal tissue of the flower. The megaspore mother cell undergoes meiosis, and then, the surviving megaspore of the four megaspores produced undergoes mitotic divisions and finally gives rise to the female gametophyte, consisting of the egg cell, two synergids, the central cell, which due to the fusion of two nuclei is diploid (double haploid) in Arabidopsis and most angiosperms and the antipods, whose number is not fixed and varies significantly between species (Yadegari and Drews in Plant Cell 16(Suppl):S133-S141, 2004). The maternal tissues that harbor the female gametophyte and the female gametophyte are referred to as the ovule (Fig. 1). Double fertilization of the egg cell and the central cell by the two generative nuclei of the pollen leads to the diploid embryo and the endosperm, respectively (Hamamura et al. in Curr Opin Plant Biol 15:70-77, 2012). Upon fertilization, the ovule is referred to as the seed. Seeds combine two purposes: to harbor storage compounds for use by the embryo upon germination and to protect the embryo until the correct conditions for germination are encountered. As a consequence, seeds are the plant tissue that is of highest nutritional value and the human diet, by a considerable amount, consists of seeds or seed-derived products. Amino acids are of special interest, because plants serve as the main source for the so-called essential amino acids, that animals cannot synthesize de novo and are therefore often a limiting factor for human growth and development (WHO in Protein and amino acid requirements in human nutrition. WHO technical report series, WHO, Geneva, 2007). The plant embryo needs amino acids for general protein synthesis, and additionally they are used to synthesize storage proteins in the seeds of certain plants, e.g., legumes as a resource to support the growth of the seedling after germination. The support of the embryo depends on transport processes that occur between the mother plant and the seed tissues including the embryo. In this review, we will focus on the processes of unloading amino acids from the phloem and their post-phloem transport. We will further highlight similarities between amino acid transport and the transport of the main assimilate and osmolyte, sucrose. Finally, we will discuss similarities and differences between different plant species in terms of structural aspects but for the molecular aspects we are almost exclusively focusing on Arabidopsis. Fig. 1 Vascularization of the Arabidopsis ovule and seed. Plants expressing ER-localized mCherry under control of the companion cell-specific SUC2 promoter and ER-localized GFP under control of the sieve element marker PD1 as described (Müller et al. 2015) are shown to visualize the phloem in the funiculus and the chalazal regions. a Overview over an ovule. FG: female gametophyte. b A magnification of the region marked by a square in panel a. c Overview over a seed. ES: endosperm; E: embryo. d A magnification of the region marked by a square in panel c. The arrows in b and d point to the terminal companion cell and arrowheads to terminal sieve elements.
Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin
2015-01-01
Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.
Unknown components of the plastidial permeome
Pick, Thea R.; Weber, Andreas P. M.
2014-01-01
Beyond their role in photosynthesis plastids provide a plethora of additional metabolic functions to plant cells. For example, they harbor complete biosynthetic pathways for the de novo synthesis of carotenoids, fatty acids, and amino acids. Furthermore plastids contribute important reactions to multi-compartmentalized pathways, such as photorespiration or plant hormone syntheses, and they depend on the import of essential molecules that they cannot synthesize themselves, such as ascorbic acid. This causes a high traffic of metabolites across the plastid envelope. Although it was recently shown that non-polar substrates could be exchanged between the plastid and the ER without involving transporters, various essential transport processes are mediated by highly selective but still unknown metabolite transporters. This review focuses on selected components of the plastidial permeome that are predicted to exist but that have not yet been identified as molecular entities, such as the transporters for isopentenyl diphosphate (IPP) or ascorbic acid. PMID:25191333
Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.
Thomas, Paul M; Foster, Gregory D
2005-01-01
Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.
Plants having modified response to ethylene by transformation with an ETR nucleic acid
Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.
2001-01-01
The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
..., Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984. Kb Volatile Organic... Primary Lead Smelters X X X X S Primary Aluminum Reduction Plants.... X X X X T Phosphate Fertilizer Industry: Wet X X X X Process Phosphoric Acid Plants. U Phosphate Fertilizer Industry: X X X X...
Industrial Hardening Demonstration.
1980-09-01
products are obtained without simultaneous formation of coke and large quantities of gas. Purification Processes Sulfuric acid treatment removes sulfur by...attack ranged from 6 to 18 psi at six plants; two plants were rendered essentially invulnerable because of complete removal to a host area; and one...hazards. Such methods include: removal of conbustibles and potential missiles; strengthening or shielding of equipment against missiles and * "Crisis
Exploring the trans-acting short interfering RNAs (ta-siRNAs) technology for virus control in plants
USDA-ARS?s Scientific Manuscript database
Small ribonucleic acid (RNAs) (~20-24nt) processed from double-stranded RNA in plants can trigger degradation of the target mRNAs in cytoplasm or de novo DNA methylation in nucleus leading to gene silencing. Trans-acting short-interfering RNAs (ta-siRNAs) have been shown to enhance the target mRNA d...
Regulation of Plant Cellular and Organismal Development by SUMO.
Elrouby, Nabil
2017-01-01
This chapter clearly demonstrates the breadth and spectrum of the processes that SUMO regulates during plant development. The gross phenotypes observed in mutants of the SUMO conjugation and deconjugation enzymes reflect these essential roles, and detailed analyses of these mutants under different growth conditions revealed roles in biotic and abiotic stress responses, phosphate starvation, nitrate and sulphur metabolism, freezing and drought tolerance and response to excess copper. SUMO functions also intersect with those regulated by several hormones such as salicylic acid , abscisic acid , gibberellins and auxin, and detailed studies provide mechanistic clues of how sumoylation may regulate these processes. The regulation of COP1 and PhyB functions by sumoylation provides very strong evidence that SUMO is heavily involved in the regulation of light signaling in plants. At the cellular and subcellular levels, SUMO regulates meristem architecture, the switch from the mitotic cycle into the endocycle, meiosis, centromere decondensation and exit from mitosis, transcriptional control, and release from transcriptional silencing. Most of these advances in our understanding of SUMO functions during plant development emerged over the past 6-7 years, and they may only predict a prominent rise of SUMO as a major regulator of eukaryotic cellular and organismal growth and development.
Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.
Smolinska, Beata
2015-03-01
Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.
Acid Extraction - Ion Exchange Recovery of Cinchona Alkaloids Process and Plant Development
1945-06-08
of commercial vinegar for a period of three days. The maceration was followed by successive percola- tions with the same material. A yield of...16.2 grams out of a possible 25 was effected for an efficiency of 72 percent. The extraction with commflrcial vinegar was conducted at the request...Program by Lt. Ronsone 75 The Sulfur ic Acid Extraction of Remijia Bark, by Dr. Arthur W. Walde 85 Preliminary Vinegar and Acetic Acid Extraction
Treatment of iron(II)-rich acid mine water with limestone and oxygen.
Mohajane, G B; Maree, J P; Panichev, N
2014-01-01
The main components of acid mine water are free acid, sulphate, and Fe²⁺. Limestone is the most cost-effective alkali that can be used for neutralization. The purpose of this investigation was to identify conditions where Fe²⁺ is removed with limestone and simultaneously oxidized with oxygen to Fe³⁺, in a polyvinyl chloride pipe under pressure. Gypsum scaling is prevented by passing rubber balls through the pipe of the so-called Oxygen-Pipe-Neutralization (OPeN) process pilot plant. Two synthetic waters were treated: (A) acid mine water containing 123 mg L⁻¹ Fe²⁺ representing gold mine water, and (B) acid mine water containing 6,032 mg L⁻¹ Fe²⁺ representing coal mine water. Batch studies were carried out in a pipe reactor and showed that the rate of Fe²⁺ oxidation depended on the Fe²⁺ concentration, oxygen pressure, amount of recycled sludge, limestone dosage and the mixing rate. Continuous studies in an OPeN process pilot plant resulted in 100% removal of total acidity from synthetic coal mine water and a 98% removal from synthetic gold mine water. Fe²⁺ was removed completely as precipitated Fe(OH)₃ from both synthetic coal and gold mine water at around pH 7 at 200 and 100 kPa oxygen pressure, respectively.
Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo
2013-01-01
Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371
2012-01-01
Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS) was applied to analyze the molecular weight (Mw), number average molecular weight (Mn), and polydispersity index (Mw/Mn). Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%), glucose (37.1-45.1%), arabinose (0.58-3.41%), and xylose (0.3-3.21%). The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:2). The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%), lysine (6.04-8.36%), aspartic acid (6.10-7.19%), glycine (6.07-7.42%), alanine (5.24-6.14%), glutamic acid (5.57-7.09%), valine (4.5-5.50%), proline (3.87-4.81%), serine (4.39-5.18%), threonine (3.44-6.50%), isoleucine (3.30-4.07%), and phenylalanine (3.11-9.04%). Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value. PMID:23062269
Studies on Somatic Embryogenesis in Sweetpotato
NASA Technical Reports Server (NTRS)
Bennett, J. Rasheed; Prakash, C. S.
1997-01-01
The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweetpotato Ipomoea batatas L.(Lam)l. Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 Explants isolated from those plants developed through somatic embryo-genesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants. They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.
Studies for Somatic Embryogenesis in Sweet Potato
NASA Technical Reports Server (NTRS)
Bennett, J. Rasheed; Prakash, C. S.
1997-01-01
The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.
A facile means for the identification of indolic compounds from plant tissues.
Yu, Peng; Hegeman, Adrian D; Cohen, Jerry D
2014-09-01
The bulk of indole-3-acetic acid (IAA) in plants is found in the form of conjugated molecules, yet past research on identifying these compounds has largely relied on methods that were both laborious and inefficient. Using recent advances in analytical instrumentation, we have developed a simple yet powerful liquid chromatography-mass spectrometry (LC-MS)-based method for the facile characterization of the small IAA conjugate profile of plants. The method uses the well-known quinolinium ion (m/z 130.0651) generated in MS processes as a signature with high mass accuracy that can be used to screen plant extracts for indolic compounds, including IAA conjugates. We reinvestigated Glycine max (soybean) for its indoles and found indole-3-acetyl-trytophan (IA-Trp) in addition to the already known indole-3-acetyl-aspartic acid (IA-Asp) and indole-3-acetyl-glutamic acid (IA-Glu) conjugates. Surprisingly, several organic acid conjugates of tryptophan were also discovered, many of which have not been reported in planta before. These compounds may have important physiological roles in tryptophan metabolism, which in turn can affect human nutrition. We also demonstrated the general applicability of this method by identifying indolic compounds in different plant tissues of diverse phylogenetic origins. It involves minimal sample preparation but can work in conjunction with sample enrichment techniques. This method enables quick screening of IAA conjugates in both previously characterized as well as uncharacterized species, and facilitates the identification of indolic compounds in general. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Acid rain in Shenandoah National Park, Virginia
Rice, Karen C.; Deviney, Frank A.; Olson, Gordon
2007-01-01
Visitors to Shenandoah National Park (SNP) enjoy the animal and plant life and the scenery but may not realize how vulnerable these features are to various threats, such as invasion of exotic plants and insects, improper use of park resources by humans, and air and water pollution. The National Park Service strives to protect natural resources from such threats to ensure that the resources will be available for enjoyment now and in the future. Because SNP has limited influence over the air pollution that envelops the region, acidic deposition--commonly known as acid rain--is one of the more challenging threats facing park managers. With the help of U.S. Geological Survey (USGS) scientists, park managers can understand how acid rain interacts with ground- and surface-water resources, which enables them to explain why reductions in air pollution can help preserve park resources. Such understanding also provides essential insight into ecosystem processes, as managers strive to unravel and resolve other environmental problems that are interrelated to acid rain.
Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1
Terzaghi, William B.
1989-01-01
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997
Acid Tar Lagoons: Management and Recovery
NASA Astrophysics Data System (ADS)
Bohers, Anna; Hroncová, Emília; Ladomerský, Juraj
2017-04-01
This contribution presents the issue with possibility of definitive removal of dangerous environmental burden in Slovakia - serious historical problem of two acid tar lagoons. In relation to their removal, no technology has been found so far - technologically and economically suitable, what caused problems with its management. Locality Predajná is well known in Slovakia by its character of contrasts: it is situated in the picturesque landscape of National Park buffer zone of Nízke Tatry, on the other site it is contaminated by 229 211m3 of acid tar with its characteristics of toxicity, carcinogenicity, teratogenicity, mutagenicity and toxicity especially for animals and plants. Acid tar in two landfills with depth of 1m in case of the first lagoon and 9,5m in case of the second lagoon is a waste product derived from operation of Petrochema Dubová - refinery and petrochemical plant whose activity was to process the crude oil through processes of sulfonation and adsorption technology for producing lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. A part of acid tar was incinerated in two incineration plats. Concentration of SO2 in combustion gases was too high and it was not possible to decrease it under the value of 2000 mg.mn-3 [LADOMERSKÝ, J. - SAMEŠOVÁ, D.: Reduction in sulfur dioxide emissions waste gases of incineration plant. Acta facultatis ecologiae. 1999, p. 217-223]. That is why it was necessary to put them out of operation. Later, because of public opposition it was not possible to build a new incineration plat corresponding to the state of the art. Even though actual Slovak and European legislative for protection of environment against such impacts, neither of tried methods - bio or non-biologic treatment methods - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. Because of lack of geological research caused by fragile limestone bedrock under the lagoon in combination with aggressive substance in the lagoon, waste management of this contaminated site became even more complicated. The main aim of this work is to present by analysis a new possibility of acid tarry-waste management thanks to the technique of thermal desorption as a method for acid tar processing, through which it is possible to gain only organic part; and a technology of Blowing Decomposition as a method for its consequent recovery. Thermal desorption process is an effective separation process through which is possible to split acid tarry material into matrix (soil, sediments) and organic contaminants (PCB and POPs compounds). The process is carried out through a mobile unit which is relocatable. The work also presents a relation between volume of de-contaminated matrix and organic compounds. In order to boost the efficiency in processing of acid tar waste through thermal desorption, the work will present possibility of application of innovative technology - method of Blowing Decomposition for recovering of organic matter into technological lubricating oil.
Floková, Kristýna; Miersch, Otto; Strnad, Miroslav; Novák, Ondřej; Wasternack, Claus; Hause, Bettina
2016-01-01
Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile. PMID:27611078
Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P
2012-04-01
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.
Synthesis of the sulfur amino acids: cysteine and methionine.
Wirtz, Markus; Droux, Michel
2005-12-01
This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.
Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma
2014-01-01
In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949
40 CFR 180.1196 - Peroxyacetic acid; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... handling establishments including, but not limited to dairies, dairy barns, restaurants, food service operations, breweries, wineries, and beverage and food processing plants. [74 FR 26535, June 3, 2009] ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nick Degenstein; Minish Shah; Doughlas Louie
2012-05-01
The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing.more » During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.« less
Radiation preservation of foods of plant origin. Part 1. Potatoes and other tuber crops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, P.
1984-01-01
In Part 1 of a planned series of articles on preservation of foods of plant origin by gamma irradiation, the current state of research on the technological, nutritional, and biochemical aspects of sprout inhibition of potatoes and other tuber crops are reviewed. These include varietal responses, dose effects, time of irradiation, pre- and postirradiation storage, and handling requirements; postirradiation changes in carbohydrates, ascorbic acid, amino acids, and other nutrients; respiration; biochemical mechanisms involved in sprout inhibition; wound healing and microbial infection during storage; formation of wound and light-induced glycoalkaloids and identification of irradiated potatoes. The culinary and processing qualities withmore » particular reference to darkening of boiled and processed potatoes are discussed. The prospects of irradiation on an industrial scale as an alternative to chemical sprout inhibitors or mechanical refrigeration are considered.« less
Glutamate Receptor Homologs in Plants: Functions and Evolutionary Origins
Price, Michelle Beth; Jelesko, John; Okumoto, Sakiko
2012-01-01
The plant glutamate-like receptor homologs (GLRs) are homologs of mammalian ionotropic glutamate receptors (iGluRs) which were discovered more than 10 years ago, and are hypothesized to be potential amino acid sensors in plants. Although initial progress on this gene family has been hampered by gene redundancy and technical issues such as gene toxicity; genetic, pharmacological, and electrophysiological approaches are starting to uncover the functions of this protein family. In parallel, there has been tremendous progress in elucidating the structure of animal glutamate receptors (iGluRs), which in turn will help understanding of the molecular mechanisms of plant GLR functions. In this review, we will summarize recent progress on the plant GLRs. Emerging evidence implicates plant GLRs in various biological processes in and beyond N sensing, and implies that there is some overlap in the signaling mechanisms of amino acids between plants and animals. Phylogenetic analysis using iGluRs from metazoans, plants, and bacteria showed that the plant GLRs are no more closely related to metazoan iGluRs as they are to bacterial iGluRs, indicating the separation of plant, other eukaryotic, and bacterial GLRs might have happened as early on as the last universal common ancestor. Structural similarities and differences with animal iGluRs, and the implication thereof, are also discussed. PMID:23115559
Hamiaux, Cyril; Drummond, Revel S M; Luo, Zhiwei; Lee, Hui Wen; Sharma, Prachi; Janssen, Bart J; Perry, Nigel B; Denny, William A; Snowden, Kimberley C
2018-04-27
The strigolactone (SL) family of plant hormones regulates a broad range of physiological processes affecting plant growth and development and also plays essential roles in controlling interactions with parasitic weeds and symbiotic fungi. Recent progress elucidating details of SL biosynthesis, signaling, and transport offers many opportunities for discovering new plant-growth regulators via chemical interference. Here, using high-throughput screening and downstream biochemical assays, we identified N -phenylanthranilic acid derivatives as potent inhibitors of the SL receptors from petunia (DAD2), rice (OsD14), and Arabidopsis (AtD14). Crystal structures of DAD2 and OsD14 in complex with inhibitors further provided detailed insights into the inhibition mechanism, and in silico modeling of 19 other plant strigolactone receptors suggested that these compounds are active across a large range of plant species. Altogether, these results provide chemical tools for investigating SL signaling and further define a framework for structure-based approaches to design and validate optimized inhibitors of SL receptors for specific plant targets. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Microbial Glucuronoyl Esterases: 10 Years after Discovery
2016-01-01
A carbohydrate esterase called glucuronoyl esterase (GE) was discovered 10 years ago in a cellulolytic system of the wood-rotting fungus Schizophyllum commune. Genes coding for GEs were subsequently found in a number of microbial genomes, and a new family of carbohydrate esterases (CE15) has been established. The multidomain structures of GEs, together with their catalytic properties on artificial substrates and positive effect on enzymatic saccharification of plant biomass, led to the view that the esterases evolved for hydrolysis of the ester linkages between 4-O-methyl-d-glucuronic acid of plant glucuronoxylans and lignin alcohols, one of the crosslinks in the plant cell walls. This idea of the function of GEs is further supported by the effects of cloning of fungal GEs in plants and by very recently reported evidence for changes in the size of isolated lignin-carbohydrate complexes due to uronic acid de-esterification. These facts make GEs interesting candidates for biotechnological applications in plant biomass processing and genetic modification of plants. This article is a brief summary of current knowledge of these relatively recent and unexplored esterases. PMID:27694239
ARD remediation with limestone in a CO2 pressurized reactor
Sibrell, Philip L.; Watten, Barnaby J.; Friedrich, Andrew E.; Vinci, Brian J.
2000-01-01
We evaluated a new process for remediation of acid rock drainage (ARD). The process treats ARD with intermittently fluidized beds of granular limestone maintained within a continuous flow reactor pressurized with CO2. Tests were performed over a thirty day period at the Toby Creek mine drainage treatment plant, Elk County, Pennsylvania in cooperation with the Pennsylvania Department of Environmental Protection. Equipment performance was established at operating pressures of 0, 34, 82, and 117 kPa using an ARD flow of 227 L/min. The ARD had the following characteristics: pH, 3.1; temperature, 10 °C; dissolved oxygen, 6.4 mg/L; acidity, 260 mg/L; total iron, 21 mg/L; aluminum, 22 mg/L; manganese, 7.5 mg/L; and conductivity, 1400 μS/cm. In all cases tested, processed ARD was net alkaline with mean pH and alkalinities of 6.7 and 59 mg/L at a CO2 pressure of 0 kPa, 6.6 and 158 mg/L at 34 kPa, 7.4 and 240 mg/L at 82 kPa, and 7.4 and 290 mg/L at 117 kPa. Processed ARD alkalinities were correlated to the settled bed depth (p<0.001) and CO2 pressure (p<0.001). Iron, aluminum, and manganese removal efficiencies of 96%, 99%, and 5%, respectively, were achieved with filtration following treatment. No indications of metal hydroxide precipitation or armoring of the limestone were observed. The surplus alkalinity established at 82 kPa was successful in treating an equivalent of 1136 L/min (five-fold dilution) of the combined three ARD streams entering the Toby Creek Plant. This side-stream capability provides savings in treatment unit scale as well as flexibility in treatment effect. The capability of the system to handle higher influent acidity was tested by elevating the acidity to 5000 mg/L with sulfuric acid. Net alkaline effluent was produced, indicating applicability of the process to highly acidic ARD.
Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui
2014-02-10
The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.
Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui
2014-01-01
The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants. PMID:24518684
Grzeszczuk, Monika; Salachna, Piotr; Meller, Edward
2018-05-29
Salvia coccinea (Lamiaceae) is a promising source of potential antioxidants, and its extracts can be used in pharmaceutical industry, as well as in food products and cosmetics. Salicylic acid (SA) affects many physiological and metabolic processes in vascular plants under salinity stress. The aim of this study was to investigate the response of S. coccinea to either SA, or sodium chloride (NaCl), or a combination of both. The plants were sprayed with a solution of 0.5 or 1.0 mM SA and watered with 0, 100, 200, or 300 mM NaCl. Exogenous application of SA increased the number of branches, fresh herbal weight, and total chlorophyll content vs control plants. Salinity-exposed plants showed reduced growth, content of photosynthetic pigments total polyphenols, and antioxidant activity. However, foliar application of SA relieved the adverse effects of 100 mM NaCl, as demonstrated by increased number of branches, greater fresh herbal weight, higher content of total chlorophyll, total carotenoids, and total polyphenols, as well as antioxidant potential, detected using ferric-reducing ability of plasma (FRAP) and 2.2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), compared with untreated plants.
Plant Hormones: Key Players in Gut Microbiota and Human Diseases?
Chanclud, Emilie; Lacombe, Benoît
2017-09-01
It is well established that plant hormones such as auxins, cytokinins (CKs), and abscisic acid (ABA) not only govern important plant physiological traits but are key players in plant-microbe interactions. A poorly appreciated fact, however, is that both microbes and animals produce and perceive plant hormones and their mimics. Moreover, dietary plant hormones impact on human physiological process such as glucose assimilation, inflammation, and cell division. This leads us to wonder whether plant hormones could ensure functions in microbes per se as well as in animal-microbe interactions. We propose here and explore the hypothesis that plant hormones play roles in animal-microbiota relationships, with consequences for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Emissions model of waste treatment operations at the Idaho Chemical Processing Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindler, R.E.
1995-03-01
An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less
40 CFR 57.302 - Performance level of interim constant controls.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exceed the following: (i) For sulfuric acid plants on copper smelters, 12-hour running average; (ii) For sulfuric acid plants on lead smelters, 6-hour running average; (iii) For sulfuric acid plants on zinc... limitation shall take into account unavoidable catalyst deterioration in sulfuric acid plants, but may...
Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko
2018-01-01
Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.
Hormone Profiling in Plant Tissues.
Müller, Maren; Munné-Bosch, Sergi
2017-01-01
Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.
Abreu, Maria Elizabeth; Munné-Bosch, Sergi
2009-01-01
Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by Fv/Fm ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of α- and γ-tocopherol (vitamin E) and β-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants. PMID:19188277
Severino, Valeria; Farina, Annarita; Fleischmann, Frank; Dalio, Ronaldo J D; Di Maro, Antimo; Scognamiglio, Monica; Fiorentino, Antonio; Parente, Augusto; Osswald, Wolfgang; Chambery, Angela
2014-01-01
The understanding of molecular mechanisms underlying host-pathogen interactions in plant diseases is of crucial importance to gain insights on different virulence strategies of pathogens and unravel their role in plant immunity. Among plant pathogens, Phytophthora species are eliciting a growing interest for their considerable economical and environmental impact. Plant infection by Phytophthora phytopathogens is a complex process coordinated by a plethora of extracellular signals secreted by both host plants and pathogens. The characterization of the repertoire of effectors secreted by oomycetes has become an active area of research for deciphering molecular mechanisms responsible for host plants colonization and infection. Putative secreted proteins by Phytophthora species have been catalogued by applying high-throughput genome-based strategies and bioinformatic approaches. However, a comprehensive analysis of the effective secretome profile of Phytophthora is still lacking. Here, we report the first large-scale profiling of P. plurivora secretome using a shotgun LC-MS/MS strategy. To gain insight on the molecular signals underlying the cross-talk between plant pathogenic oomycetes and their host plants, we also investigate the quantitative changes of secreted protein following interaction of P. plurivora with the root exudate of Fagus sylvatica which is highly susceptible to the root pathogen. We show that besides known effectors, the expression and/or secretion levels of cell-wall-degrading enzymes were altered following the interaction with the host plant root exudate. In addition, a characterization of the F. sylvatica root exudate was performed by NMR and amino acid analysis, allowing the identification of the main released low-molecular weight components, including organic acids and free amino acids. This study provides important insights for deciphering the extracellular network involved in the highly susceptible P. plurivora-F. sylvatica interaction.
BER-Myriant Succinic Acid Biorefinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmorhun, Mark
Myriant Corporation (Myriant) has successfully produced the bioproduct succinic acid by the fermentation of glucose at a commercial scale operation in Lake Providence, Louisiana. The MySAB facility (Myriant Succinic Acid Biorefinery) came on stream in May 2013 and has been producing product since then. The MySAB facility is a demonstration-scale plant, capable of utilizing sorghum grits and commercially available dextrose, to ferment glucose into succinic acid. A downstream processing train has demonstrated the ability to produce an industrial, a standard and a polymer grade product. It consists of cell separation, membrane filtration, continuous chromatography, polishing to remove ionic and colormore » bodies impurities, and final evaporation and crystallization. A by-product of the process is ammonium sulfate which is sold as a liquid fertilizer product. Since 2007 when development work began in the Woburn, Massachusetts R&D laboratories, the succinic acid bio-process has evolved through: Process development (microbiology, fermentation, and downstream) – R&D development laboratories; Piloting efforts at Fermic S.A. de C.V., Mexico City, Mexico – upstream and downstream processes; Design, construction, commissioning, and commercial production operations at the MySAB facility Additionally, Myriant became a wholly-owned subsidiary of the PTT Global Chemical Plc., Thailand, in late 2015, their investment into and support of Myriant goes back to 2011. The support of PTT Global Chemical Plc. helped to improve the upstream and downstream processes, and produce significant metric ton quantities of high quality bio-based succinic acid. The product has gone into a number of commercial markets worldwide for customer applications, development and production. The experience base gained via operations at the MySAB facility since May 2013, along with continued R&D development efforts involving Microbiology, Fermentation, and Downstream processes, at both the Woburn, Massachusetts and PTT Global Chemical Plc. Thailand laboratories, positions the company well for future production at the plant and commercialization of new bio-based products. This will be especially important and valuable as the green chemistry business climate continues to take root and flourish.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogliati, G.; Lanz, R.; Lepscky, C.
1963-10-01
S>The catalytic reduction of U(VI) to U(IV) by means of formic acid has been studied, considering particularly the uranyl nltrate solutions, This process will be applied in the urania--thoria mixed fuel reprocessing plant, (PCUT). Various catalysts have been tested and the influence of formic acid concentration, temperature and catalyst concentration on the reaction rate have been determined. A possible reduction mechanism coherent with Ihe experimental data is discussed. (auth)
77 FR 48433 - New Source Performance Standards Review for Nitric Acid Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
...) for nitric acid plants. Nitric acid plants include one or more nitric acid production units (NAPUs... requirements for new nitric acid production units? IV. Summary of Significant Changes Since Proposal A. How is..., Energy, and Economic Impacts of These Standards A. What are the impacts for Nitric Acid Production Units...
Steel Pickling Inspection Checklist
Checklist to establish whether a facility or operations within a facility are subject to and are in compliance with 40 C.F.R Part 63 Subpart CCC (Steel Pickling—HCl Process Facilities and Hydrochloric Acid Regeneration Plants NESHAP).
Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan
2017-01-01
Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways. PMID:28222174
Li, Yunzhou; Qin, Lei; Zhao, Jingjing; Muhammad, Tayeb; Cao, Hehe; Li, Hailiang; Zhang, Yan; Liang, Yan
2017-01-01
Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.
CE of phytosiderophores and related metal species in plants.
Xuan, Yue; Scheuermann, Enrico B; Meda, Anderson R; Jacob, Peter; von Wirén, Nicolaus; Weber, Günther
2007-10-01
Phytosiderophores (PS) and the closely related substance nicotianamine (NA) are key substances in metal uptake into graminaceous plants. Here, the CE separation of these substances and related metal species is demonstrated. In particular, the three PS 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), and NA, are separated using MES/Tris buffer at pH 7.3. Moreover, three Fe(III) species of the different PS are separated without any stability problems, which are often present in chromatographic analyses. Also divalent metal species of Cu, Ni, and Zn with the ligands DMA and NA are separated with the same method. By using a special, zwitterionic CE capillary, even the separation of two isomeric Fe(III) chelates with the ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) is possible (i.e., meso-Fe(III)-EDDHA and rac-Fe(III)-EDDHA), and for fast separations of NA and respective divalent and trivalent metal species, a polymer CE microchip with suppressed EOF is described. The proposed CE method is applicable to real plant samples, and enables to detect changes of metal species (Cu-DMA, Ni-NA), which are directly correlated to biological processes.
Plant hormone signaling in flowering: An epigenetic point of view.
Campos-Rivero, Gerardo; Osorio-Montalvo, Pedro; Sánchez-Borges, Rafael; Us-Camas, Rosa; Duarte-Aké, Fátima; De-la-Peña, Clelia
2017-07-01
Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering. Copyright © 2017 Elsevier GmbH. All rights reserved.
The Role of the Plasma Membrane H+-ATPase in Plant Responses to Aluminum Toxicity.
Zhang, Jiarong; Wei, Jian; Li, Dongxu; Kong, Xiangying; Rengel, Zed; Chen, Limei; Yang, Ye; Cui, Xiuming; Chen, Qi
2017-01-01
Aluminum (Al) toxicity is a key factor limiting plant growth and crop production on acid soils. Increasing the plant Al-detoxification capacity and/or breeding Al-resistant cultivars are a cost-effective strategy to support crop growth on acidic soils. The plasma membrane H + -ATPase plays a central role in all plant physiological processes. Changes in the activity of the plasma membrane H + -ATPase through regulating the expression and phosphorylation of this enzyme are also involved in many plant responses to Al toxicity. The plasma membrane H + -ATPase mediated H + influx may be associated with the maintenance of cytosolic pH and the plasma membrane gradients as well as Al-induced citrate efflux mediated by a H + -ATPase-coupled MATE co-transport system. In particular, modulating the activity of plasma membrane H + -ATPase through application of its activators (e.g., magnesium or IAA) or using transgenics has effectively enhanced plant resistance to Al stress in several species. In this review, we critically assess the available knowledge on the role of the plasma membrane H + -ATPase in plant responses to Al stress, incorporating physiological and molecular aspects.
NASA Astrophysics Data System (ADS)
Goñi, Miguel A.; Hedges, John I.
1990-11-01
An extensive suite of C 14-C 18 hydroxylated fatty acids of cutin origin was identified among the nonlignin CuO reaction products from tissues of 67 different plant species. These mid-chain and ω-hydroxylated cutin acids together accounted for 0.5 to 4% of the organic carbon (OC) in these nonwoody vascular plant tissues and were produced in characteristically different yields by the various plant types. Nonvascular plants, including bulk phytoplankton, kelps, mosses, and liverworts, did not yield measurable amounts of cutin acids, except for trace levels of ω-hydroxytetradecanoic acid detected in kelps. Most of the "lower" vascular plants, such as clubmosses and ferns, produced simple cutin acid suites composed mainly of ω-hydroxy C 14 and C 16 acids. Gymnosperm needles yielded cutin acid suites dominated by C 16 acids, in which 9,16- and 10,16-dihydroxyhexadecanoic acids were characteristically abundant. Relatively high yields of C 18 acids were obtained from angiosperm tissues, among which dicotyledons exhibited a predominance of 9,10,18-trihydroxyoctadecanoic acid over all the other C 18 acids. The Chromatographie peak corresponding to dihydroxyhexadecanoic acid was a mixture of the positional isomers 8,16-, 9, 16-, and 10,16-dihydroxyhexadecanoic acids, whose relative abundances uniquely characterized monocotyledon tissues and distinguished among different types of gymnosperm tissues. Based on the cutin acid yields obtained from the different plant types, several geochemical parameters were developed to distinguish up to six different cutin-bearing plant groups as possible components of sedimentary mixtures.
Huang, Wu-Xing; Cao, Yi; Huang, Li-Juan; Ren, Cong; Xiong, Zhi-Ting
2011-09-01
Recent evidence indicates that during copper (Cu) stress, the roots of metallicolous plants manifest a higher activity of acid invertase enzymes, which are rate-limiting in sucrose catabolism, than non-metallicolous plants. To test whether the higher activity of acid invertases is the result of higher expression of acid invertase genes, we isolated partial cDNAs for acid invertases from two populations of Rumex japonicus (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, and designed primers to measure changes in transcript levels during Cu stress. We also determined the growth of the plants' roots, Cu accumulation, and acid invertase activities. The seedlings of R. japonicus were exposed to control or 20 μM Cu(2+) for 6d under hydroponic conditions. The transcript level and enzyme activity of acid invertases in metallicolous plants were both significantly higher than those in non-metallicolous plants when treated with 20 μM. Under Cu stress, the root length and root biomass of metallicolous plants were also significantly higher than those of non-metallicolous plants. The results suggested that under Cu stress, the expression of acid invertase genes in metallicolous plants of R. japonicus differed from those in non-metallicolous plants. Furthermore, the higher acid invertase activities of metallicolous plants under Cu stress could be due in part to elevated expression of acid invertase genes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Savchenko, Tatyana; Walley, Justin W.; Chehab, E. Wassim; Xiao, Yanmei; Kaspi, Roy; Pye, Matthew F.; Mohamed, Maged E.; Lazarus, Colin M.; Bostock, Richard M.; Dehesh, Katayoon
2010-01-01
Fatty acid structure affects cellular activities through changes in membrane lipid composition and the generation of a diversity of bioactive derivatives. Eicosapolyenoic acids are released into plants upon infection by oomycete pathogens, suggesting they may elicit plant defenses. We exploited transgenic Arabidopsis thaliana plants (designated EP) producing eicosadienoic, eicosatrienoic, and arachidonic acid (AA), aimed at mimicking pathogen release of these compounds. We also examined their effect on biotic stress resistance by challenging EP plants with fungal, oomycete, and bacterial pathogens and an insect pest. EP plants exhibited enhanced resistance to all biotic challenges, except they were more susceptible to bacteria than the wild type. Levels of jasmonic acid (JA) were elevated and levels of salicylic acid (SA) were reduced in EP plants. Altered expression of JA and SA pathway genes in EP plants shows that eicosapolyenoic acids effectively modulate stress-responsive transcriptional networks. Exogenous application of various fatty acids to wild-type and JA-deficient mutants confirmed AA as the signaling molecule. Moreover, AA treatment elicited heightened expression of general stress-responsive genes. Importantly, tomato (Solanum lycopersicum) leaves treated with AA exhibited reduced susceptibility to Botrytis cinerea infection, confirming AA signaling in other plants. These studies support the role of AA, an ancient metazoan signaling molecule, in eliciting plant stress and defense signaling networks. PMID:20935246
2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...
2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO
Effects and mechanism of acid rain on plant chloroplast ATP synthase.
Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2016-09-01
Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.
Biological detoxification of fungal toxins and its use in plant breeding, feed and food production.
Karlovsky, P
1999-01-01
Enzymatic inactivation of fungal toxins is an attractive strategy for the decontamination of agricultural commodities and for the protection of crops from phytotoxic effects of fungal metabolites. This review summarizes research on the biological detoxification of fungal toxins by microorganisms and plants and its practical applications. Some mycotoxins are detoxified during ensiling and other fermentation processes (aflatoxins, alternariol, mycophenolic acid, patulin, PR toxin) while others are transformed into toxic products or survive fermentation unchanged. Plants can detoxify fomannoxin, fusaric acid, HC-toxin, ochratoxin A and oxalate but the degradation of deoxynivalenol has yet to be proven. Microflora of the digestive tract of vertebrates and invertebrates exhibit detoxification activities towards aflatoxins, ochratoxin A, oxalate and trichothecenes. Some toxin-producing fungi are able to degrade or transform their own products under suitable conditions. Pure cultures of bacteria and fungi which detoxify mycotoxins have been isolated from complex microbial populations by screening and enrichment culture techniques. Genes responsible for some of the detoxification activities have been cloned and expressed in heterologous hosts. The detoxification of aflatoxins, cercosporin, fumonisins, fusaric acid, ochratoxin A, oxalic acid, patulin, trichothecenes and zearalenone by pure cultures is reviewed. Finally, current application of these results in food and feed production and plant breeding is summarized and expected future developments are outlined. Copyright 1999 John Wiley & Sons, Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
... designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions. The cell cathodic...
Plants having modified response to ethylene
Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.
1997-01-01
The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.
Plants having modified response to ethylene
Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.
1998-10-20
The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 67 figs.
Plants having modified response to ethylene
Meyerowitz, Elliot M.; Chang, Caren; Bleecker, Anthony B.
1998-01-01
The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.
Plants having modified response to ethylene
Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.
1997-11-18
The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.
Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes.
Bayr, Suvi; Rantanen, Marianne; Kaparaju, Prasad; Rintala, Jukka
2012-01-01
Co-digestion of rendering and slaughterhouse wastes was studied in laboratory scale semi-continuously fed continuously stirred tank reactors (CSTRs) at 35 and 55 °C. All in all, 10 different rendering plant and slaughterhouse waste fractions were characterised showing high contents of lipids and proteins, and methane potentials of 262-572 dm(3)CH(4)/kg volatile solids(VS)(added). In mesophilic CSTR methane yields of ca 720 dm(3) CH(4)/kg VS(fed) were obtained with organic loading rates (OLR) of 1.0 and 1.5 kg VS/m(3) d, and hydraulic retention time (HRT) of 50 d. For thermophilic process, the lowest studied OLR of 1.5 kg VS/m(3) d, turned to be unstable after operation of 1.5 HRT, due to accumulating ammonia, volatile fatty acids (VFAs) and probably also long chain fatty acids (LCFAs). In conclusion, mesophilic process was found to be more feasible for co-digestion than thermophilic process, methane yields being higher and process more stable in mesophilic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Production of hydroxylated fatty acids in genetically modified plants
Somerville, Chris; Broun, Pierre; van de Loo, Frank
2001-01-01
This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.
NASA Astrophysics Data System (ADS)
Solihin, Indriani, Mubarok, M. Zaki
2018-05-01
Dolomite is one of carbonate minerals that contain magnesium. Magnesium is important element used in many aspects of life such as cofactor of many enzymes in human body, nutrient for plants, and raw material in automotive industry. Dolomite can be processed through low temperature process to obtain magnesium and calcium oxide that is needed in important applications such as base material for making drugs, raw material in the synthesize slow release fertilizer, materials for fire retardant, component for catalyst, etc. One of the important step of this low temperature process is dissolution of dolomite. Optimizing the dissolution process determines the % extraction of magnesium and calcium oxide from dolomite. The dissolution of dolomite from Gresik, East Java Provence Indonesia, in chloric acid solution has been conducted. Chloric acid concentration and pulp density are the variables that were observed. The dissolution of magnesium and calcium from Gresik dolomite was found to be very fast. The stable stage of dissolution can be reached for 5-10 seconds. The % extraction is mainly determined by the molar ratio of chloric acid / dolomite. At molar ratio of chloric acid / dolomite equal or above stoichiometric of dolomite dissolution, % extraction of magnesium is almost 100 %.
URANIUM RECOVERY FROM COMPOSITE UF$sub 4$ REDUCTION BOMB WASTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, E R; Doyle, R L; Coleman, J R
1954-01-28
A number of techniques have been investigated on a laboratory-scale for separating uranium from fluorides during the recovery of uranium from UF4 reduction bomb wastes (C-oxide) by an HCl leach - NH4OH precipitation process. Among these are included adsorption of fluorides from filtered leach liquors, fractional precipitation of fluorides and uranium, complexing of fluorides into forms soluble in slightly acid solutions, and fluoride volatilization from the uranium concentrate. Solubility studies of CaF2 and MgF2 in aqueous hydrochloric acid at various acidities and temperatures were also conducted. A description of the production-scale processing of C-oxide in the FMPC scrap plant hasmore » been included.« less
Lesage, E; Meers, E; Vervaeke, P; Lamsal, S; Hopgood, M; Tack, F M G; Verloo, M G
2005-01-01
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.
Arabidopsis YAK1 regulates abscisic acid response and drought resistance.
Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming
2016-07-01
Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.
Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne
2016-01-01
Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861
Scaled-up production of poacic acid, a plant-derived antifungal agent
Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.; ...
2017-09-01
Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less
Scaled-up production of poacic acid, a plant-derived antifungal agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.
Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less
Kaya, Merve; Sousa, António G.; Crépeau, Marie-Jeanne; Sørensen, Susanne O.; Ralet, Marie-Christine
2014-01-01
Background and Aims Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples. Methods Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined. Key Results Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones. Conclusions Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains. PMID:25081519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goni, M.A.; Hedges, J.I.
An extensive suite of C{sub 14}-C{sub 18} hydroxylated fatty acids of cutin origin was identified among the nonlignin CuO reaction products from tissues of 67 different plant species. These mid-chain and {omega}-hydroxylated cutin acids together accounted for 0.5 to 4% of the organic carbon (OC) in these nonwoody vascular plant tissues and were produced in characteristically different yields by the various plant types. Nonvascular plants, including bulk phytoplankton, kelps, mosses, and liverworts, did not yield measurable amounts of cutin acids, except for trace levels of {omega}-hydroxytetradecanoic acid detected in kelps. Most of the lower vascular plants, such as clubmosses andmore » ferns, produced simple cutin acid suites composed mainly of {omega}-hydroxy C{sub 14} and C{sub 16} acids. Gymnosperm needles yielded cutin acid suites dominated by C{sub 16} acids, in which 9,16- and 10,16-dihydroxyhexadecanoic acids were characteristically abundant. Relatively high yields of C{sub 18} acids were obtained from angiosperm tissues, among which dicotyledons exhibited a predominance of 9,10,18-trihydroxyoctadecanoic acid over all the other C{sub 18} acids. The chromatographic peak corresponding to dihydroxyhexadecanoic acid was a mixture of the positional isomers 8,16-, 9,16-, and 10,16-dihydroxyhexadecanoic acids, whose relative abundances uniquely characterized monocotyledon tissues and distinguished among different types of gymnosperm tissues. Based on the cutin acid yields obtained from the different plant types, several geochemical parameters were developed to distinguish up to six different cutin-bearing plant groups as possible components of sedimentary mixtures.« less
Albishri, Hassan M; Almaghrabi, Omar A; Moussa, Tarek A A
2013-01-01
The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.
Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle
2015-04-21
The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed.
Mozzetti Monterumici, Chiara; Rosso, Daniele; Montoneri, Enzo; Ginepro, Marco; Baglieri, Andrea; Novotny, Etelvino Henrique; Kwapinski, Witold; Negre, Michèle
2015-01-01
The aim of this work was to address the issue of processed vs. non-processed biowastes for agriculture, by comparing materials widely differing for the amount of process energy consumption. Thus, residual post harvest tomato plants (TP), the TP hydrolysates obtained at pH 13 and 60 °C, and two known biochar products obtained by 650 °C pyrolysis were prepared. All products were characterized and used in a cultivation of radish plants. The chemical composition and molecular nature of the materials was investigated by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The plants were analysed for growth and content of chlorophyll, carotenoids and soluble proteins. The results show that the TP and the alkaline hydrolysates contain lignin, hemicellulose, protein, peptide and/or amino acids moieties, and several mineral elements. The biochar samples contain also similar mineral elements, but the organic fraction is characterized mainly by fused aromatic rings. All materials had a positive effect on radish growth, mainly on the diameter of roots. The best performances in terms of plant growth were given by miscanthus originated biochar and TP. The most significant effect was the enhancement of soluble protein content in the plants treated with the lowest energy consumption non processed TP. The significance of these findings for agriculture and the environment is discussed. PMID:25906472
Koubaa, Mohamed; Roselló-Soto, Elena; Šic Žlabur, Jana; Režek Jambrak, Anet; Brnčić, Mladen; Grimi, Nabil; Boussetta, Nadia; Barba, Francisco J
2015-08-12
The South American plant Stevia rebaudiana Bertoni is a great source of noncaloric sweeteners (steviol glycosides), mainly concentrated in its leaves, but also has important antioxidant compounds (vitamin C, polyphenols, chlorophylls, and carotenoids) and other important macro- and micronutrients such as folic acid and all of the essential amino acids except tryptophan. Traditionally, conventional methods have been used to recover nutritionally valuable compounds from plant food matrices. However, nowadays, the need for obtaining greener, sustainable, and viable processes has led both food industries and food scientists to develop new processes in full correspondence with the green extraction concept. This review focuses on some of the most promising nonconventional and emerging technologies, which may constitute a potential alternative to conventional methods or even could be combined to obtain a synergistic effect, thus reducing extraction time as well as solvent consumption and avoiding the use of toxic solvents.
Padilla, María N.; Begara-Morales, Juan C.; Luque, Francisco; Melguizo, Manuel; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel
2016-01-01
Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant’s development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746
Vihavainen, Elina; Lundström, Hanna-Saara; Susiluoto, Tuija; Koort, Joanna; Paulin, Lars; Auvinen, Petri; Björkroth, K. Johanna
2007-01-01
Some psychrotrophic lactic acid bacteria (LAB) are specific meat spoilage organisms in modified-atmosphere-packaged (MAP), cold-stored meat products. To determine if incoming broilers or the production plant environment is a source of spoilage LAB, a total of 86, 122, and 447 LAB isolates from broiler carcasses, production plant air, and MAP broiler products, respectively, were characterized using a library of HindIII restriction fragment length polymorphism (RFLP) patterns of the 16 and 23S rRNA genes as operational taxonomic units in numerical analyses. Six hundred thirteen LAB isolates from the total of 655 clustered in 29 groups considered to be species specific. Sixty-four percent of product isolates clustered either with Carnobacterium divergens or with Carnobacterium maltaromaticum type strains. The third major product-associated cluster (17% of isolates) was formed by unknown LAB. Representative strains from these three clusters were analyzed for the phylogeny of their 16S rRNA genes. This analysis verified that the two largest RFLP clusters consisted of carnobacteria and showed that the unknown LAB group consisted of Lactococcus spp. No product-associated LAB were detected in broiler carcasses sampled at the beginning of slaughter, whereas carnobacteria and lactococci, along with some other specific meat spoilage LAB, were recovered from processing plant air at many sites. This study reveals that incoming broiler chickens are not major sources of psychrotrophic spoilage LAB, whereas the detection of these organisms from the air of the processing environment highlights the role of processing facilities as sources of LAB contamination. PMID:17142357
Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Edward; Bilirgen, Harun; DuPont, John
2011-03-31
Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristicsmore » of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.« less
Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Levy; Harun Bilirgen; John DuPoint
2011-03-31
Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristicsmore » of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.« less
Wu, Jinwei; Zhao, Hua-Bin; Yu, Dan; Xu, Xinwei
2017-01-31
Waterlogging or flooding is one of the most challenging abiotic stresses experienced by plants. Unlike many flooding-tolerant plants, floating-leaved aquatic plants respond actively to flooding stress by fast growth and elongation of its petioles to make leaves re-floating. However, the molecular mechanisms of this plant group responding to flood have not been investigated before. Here, we investigated the genetic basis of this adaptive response by characterizing the petiole transcriptomes of a floating-leaved species Nymphoides peltata under normal and flooding conditions. Clean reads under normal and flooding conditions with pooled sampling strategy were assembled into 124,302 unigenes. A total of 8883 unigenes were revealed to be differentially expressed between normal and flooding conditions. Among them, top ranked differentially expressed genes were mainly involved in antioxidant process, photosynthesis process and carbohydrate metabolism, including the glycolysis and a modified tricarboxylic acid cycle - alanine metabolism. Eight selected unigenes with significantly differentiated expression changes between normal and flooding conditions were validated by qRT-PCR. Among these processes, antioxidant process and glycolysis are commonly induced by waterlogging or flooding environment in plants, whereas photosynthesis and alanine metabolism are rarely occurred in other flooding-tolerant plants, suggesting the significant contributions of the two processes in the active response of N. peltata to flooding stress. Our results provide a valuable genomic resource for future studies on N. peltata and deepen our understanding of the genetic basis underlying the response to flooding stress in aquatic plants.
Phung, Thu-Ha; Jung, Sunyo
2015-04-03
This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. Copyright © 2015 Elsevier Inc. All rights reserved.
Abscisic Acid and abiotic stress signaling.
Tuteja, Narendra
2007-05-01
Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis.
Abscisic Acid and Abiotic Stress Signaling
2007-01-01
Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis. PMID:19516981
Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chia, D.W.; Yoder, T.J.; Reiter, W.D.
2000-10-01
Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulatemore » to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.« less
Fortifying Horticultural Crops with Essential Amino Acids: A Review.
Wang, Guoping; Xu, Mengyun; Wang, Wenyi; Galili, Gad
2017-06-19
To feed the world's growing population, increasing the yield of crops is not the only important factor, improving crop quality is also important, and it presents a significant challenge. Among the important crops, horticultural crops (particularly fruits and vegetables) provide numerous health compounds, such as vitamins, antioxidants, and amino acids. Essential amino acids are those that cannot be produced by the organism and, therefore, must be obtained from diet, particularly from meat, eggs, and milk, as well as a variety of plants. Extensive efforts have been devoted to increasing the levels of essential amino acids in plants. Yet, these efforts have been met with very little success due to the limited genetic resources for plant breeding and because high essential amino acid content is generally accompanied by limited plant growth. With a deep understanding of the biosynthetic pathways of essential amino acids and their interactions with the regulatory networks in plants, it should be possible to use genetic engineering to improve the essential amino acid content of horticultural plants, rendering these plants more nutritionally favorable crops. In the present report, we describe the recent advances in the enhancement of essential amino acids in horticultural plants and possible future directions towards their bio-fortification.
Wang, Yukun; Yuan, Guoliang; Yuan, Shaohua; Duan, Wenjing; Wang, Peng; Bai, Jianfang; Zhang, Fengting; Gao, Shiqing; Zhang, Liping; Zhao, Changping
2016-01-29
The 12-oxo-phytodienoic acid reductases (OPRs) are involved in the various processes of growth and development in plants, and classified into the OPRⅠ and OPRⅡ subgroups. In higher plants, only OPRⅡ subgroup genes take part in the biosynthesis of endogenous jasmonic acid. In this study, we isolated a novel OPRⅡ subgroup gene named TaOPR2 (GeneBank accession: KM216389) from the thermo-sensitive genic male sterile (TGMS) wheat cultivar BS366. TaOPR2 was predicted to encode a protein with 390 amino acids. The encoded protein contained the typical oxidored_FMN domain, the C-terminus peroxisomal-targeting signal peptide, and conserved FMN-binding sites. TaOPR2 was mapped to wheat chromosome 7B and located on peroxisome. Protein evolution analysis revealed that TaOPR2 belongs to the OPRⅡ subgroup and shares a high degree of identity with other higher plant OPR proteins. The quantitative real-time PCR results indicated that the expression of TaOPR2 is inhibited by abscisic acid (ABA), salicylic acid (SA), gibberellic acid (GA3), low temperatures and high salinity. In contrast, the expression of TaOPR2 can be induced by wounding, drought and methyl jasmonate (MeJA). Furthermore, the transcription level of TaOPR2 increased after infection with Puccinia striiformis f. sp. tritici and Puccinia recondite f. sp. tritici. TaOPR2 has NADPH-dependent oxidoreductase activity. In addition, the constitutive expression of TaOPR2 can rescue the male sterility phenotype of Arabidopsis mutant opr3. These results suggest that TaOPR2 is involved in the biosynthesis of jasmonic acid (JA) in wheat. Copyright © 2016 Elsevier Inc. All rights reserved.
Orjuela, Alvaro; Orjuela, Andrea; Lira, Carl T; Miller, Dennis J
2013-07-01
Recovery and purification of organic acids produced in fermentation constitutes a significant fraction of total production cost. In this paper, the design and economic analysis of a process to recover succinic acid (SA) via dissolution and acidification of succinate salts in ethanol, followed by reactive distillation to form succinate esters, is presented. Process simulation was performed for a range of plant capacities (13-55 million kg/yr SA) and SA fermentation titers (50-100 kg/m(3)). Economics were evaluated for a recovery system installed within an existing fermentation facility producing succinate salts at a cost of $0.66/kg SA. For a SA processing capacity of 54.9 million kg/yr and a titer of 100 kg/m(3) SA, the model predicts a capital investment of $75 million and a net processing cost of $1.85 per kg SA. Required selling price of diethyl succinate for a 30% annual return on investment is $1.57 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.
Weiss, Julia; Ros-Chumillas, Maria; Peña, Leandro; Egea-Cortines, Marcos
2007-01-30
Recombinant DNA technology is an important tool in the development of plant varieties with new favourable features. There is strong opposition towards this technology due to the potential risk of horizontal gene transfer between genetically modified plant material and food-associated bacteria, especially if genes for antibiotic resistance are involved. Since horizontal transfer efficiency depends on size and length of homologous sequences, we investigated the effect of conditions required for orange juice processing on the stability of DNA from three different origins: plasmid DNA, yeast genomic DNA and endogenous genomic DNA from transgenic sweet orange (C. sinensis L. Osb.). Acidic orange juice matrix had a strong degrading effect on plasmid DNA which becomes apparent in a conformation change from supercoiled structure to nicked, linear structure within 5h of storage at 4 degrees C. Genomic yeast DNA was degraded during exposure to acidic orange juice matrix within 4 days, and also the genomic DNA of C. sinensis suffered degradation within 2 days of storage as indicated by amplification results from transgene markers. Standard pasteurization procedures affected DNA integrity depending on the method and time used. Our data show that the current standard industrial procedures to pasteurize orange juice as well as its acidic nature causes a strong degradation of both yeast and endogenous genomic DNA below sizes reported to be suitable for horizontal gene transfer.
Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.
Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim
2017-12-15
Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.
Mirian, Estévez-Carmona María; Juanita, Narvaéz-Morales; Christophe, Barbier Olivier; Estela, Meléndez-Camargo María
2013-06-01
Urolithiasis is a multifaceted process, progressing from urine supersaturation to the formation of mature renal calculi. Calcium oxalate, the main component of kidney stones, has toxicological effects on renal epithelial cells. Some medicinal plants have shown pharmacological effects against renal lithiasis, such as Selaginella lepidophylla (Hook. et Grev) Spring, a plant empirically used in Mexico for its diuretic and antilithiasic activity. The plant was identified and ground, and a chloroform extract (CE) was obtained. Urolithiasis was induced in Wistar female rats by administration of ethylene glycol and ammonium chloride for 21 days. Urolithiasis rats were treated with the CE (50 mg/kg) for 21 days. Osmolality, creatinine, sodium and potassium concentrations were measured in blood and urine. Glomerular filtration rate (GFR), and electrolytic and water balances were calculated. Urinary oxalic acid concentration was measured. Apoptosis, lipoperoxidation, ROS and p-amino hippuric acid were determined in cortical tissue. Urolithiasis rats showed a decrease of urinary flow, GFR, electrolytic balance, renal tubular secretion and ATP concentration and increase of urinary oxalic acid, lipoperoxidation, oxidative stress and apoptosis in cortical tissue. After treatment with the CE, urinary flow rate, GFR and renal tubular secretion levels were recovered; on the other hand, serum creatinine and urinary oxalic acid decreased on day 21. CE of Selaginella lepidophylla prevented the damage caused by lithiasic process by improving the active secretion in the proximal tubules, counteracting the ROS and lipoperoxidation effects by oxalate and decreased the OAT3 expression on kidney.
Plants and microorganisms as drivers of mineral weathering
NASA Astrophysics Data System (ADS)
Dontsova, K.; Chorover, J.; Maier, R.; Hunt, E.; Zaharescu, D. G.
2011-12-01
Plants and microorganisms play important role in mineral weathering and soil formation modifying their environment to make it more hospitable for life. This presentation summarizes several collaborative studies that focused on understanding how interactions between plants and microorganisms, where plants provide the energy through photosynthesis, drive mineral weathering and result in soil formation. Plants influence weathering through multiple mechanisms that have been previously established, such as increase in CO2 concentration in the soil through root respiration and degradation of plant residues and exudates by heterotrophic microorganisms, release of organic acids that promote mineral dissolution, removal of weathering products from soil solution through uptake, and water redistribution. Weathering processes result in nutrient release that satisfies immediate needs of the plants and microorganisms, as well as precipitation of secondary phases, that provide surfaces for retention of nutrients and organic carbon accumulation. What makes understanding contribution of plants and microorganisms, such as bacteria and fungi, to mineral weathering challenging is the fact that they closely interact, enhancing and amplifying each other's contribution. In order to address multiple processes that contribute to and result from biological weathering a combination of chemical, biological, mineralogical, and computational techniques and methodologies is needed. This complex array of methodologies includes bulk techniques, such as determination of total dissolved organic and inorganic carbon and nitrogen, ion chromatography and high performance liquid chromatography to characterize amount and composition of exuded organic acids, inductively coupled plasma mass spectrometry to determine concentrations of lithogenic elements in solution, X-ray diffraction to characterize changes in mineral composition of the material, DNA extraction to characterize community structure, as well as microscopic techniques. These techniques in combination with numerical geochemical modeling are being employed to improve our understanding of biological weathering.
Siecińska, Joanna; Nosalewicz, Artur
Aluminium toxicity to crops depends on the acidity of the soil and specific plant resistance. However, it is also strongly affected by other environmental factors that have to be considered to properly evaluate the resultant effects on plants. Observed weather perturbations and predicted climate changes will increase the probability of co-occurrence of aluminium toxicity and other abiotic stresses.In this review the mechanisms of plant-aluminium interactions are shown to be influenced by soil mineral nutrients, heavy metals, organic matter, oxidative stress and drought. Described effects of aluminium toxicity include: root growth inhibition, reduction in the uptake of mineral nutrients resulting from the inhibition of transport processes through ion channels; epigenetic changes to DNA resulting in gene silencing. Complex processes occurring in the rhizosphere are highlighted, including the role of soil organic matter and aluminium detoxification by mucilage.There is a considerable research gap in the understanding of root growth in the soil environment in the presence of toxic aluminium concentrations as affected by interactions with abiotic stressors. This knowledge is important for the selection of feasible methods aimed at the reduction of negative consequences of crop production in acidic soils affected by adverse growth environment.
Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.
Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi
2015-02-01
Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin's function in soybeans and other crops. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
López-Carbonell, Marta; Gabasa, Marta; Jáuregui, Olga
2009-04-01
An improved, quick and simple method for the extraction and quantification of the phytohormones (+)-abscisic acid (ABA) and its major glucose conjugate, abscisic acid glucose ester (ABA-GE) in plant samples is described. The method includes the addition of deuterium-labeled internal standards to the leaves at the beginning of the extraction for quantification, a simple extraction/centrifugation process and the injection into the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) system in multiple reaction monitoring mode (MRM). Quality parameters of the method (detection limits, repeatability, reproducibility and linearity) have been studied. The objective of this work is to show the applicability of this method for quantifying the endogenous content of both ABA and ABA-GE in Cistus albidus plants that have been grown during an annual cycle under Mediterranean field conditions. Leaf samples from winter plants have low levels of ABA which increase in spring and summer showing two peaks that corresponded to April and August. These increases are coincident with the high temperature and solar radiation and the low RWC and RH registered along the year. On the other hand, the endogenous levels of ABA-GE increase until maximum values in July just before the ABA content reaches its highest concentration, decreasing in August and during autumn and winter. Our results suggest that the method is useful for quantifying both compounds in this plant material and represents the advantage of a short-time sample preparation with a high accuracy and viability.
Recycling agroindustrial waste by lactic fermentations: coffee pulp silage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrizales, V.; Ferrer, J.
1985-04-03
This UNIDO publication on lactic acid fermentation of coffee pulp for feed production covers (1) a process which can be adapted to existing coffee processing plants for drying the product once harvesting time has finished (2) unit operations involved: pressing (optional), silaging, liming and drying (3) experiments, results and discussion, bibliography, process statistics, and diagrams. Additional references: storage, biotechnology, lime, agricultural wastes, recycling, waste utilization.
Lionetti, Vincenzo; Francocci, Fedra; Ferrari, Simone; Volpi, Chiara; Bellincampi, Daniela; Galletti, Roberta; D'Ovidio, Renato; De Lorenzo, Giulia; Cervone, Felice
2010-01-12
Plant cell walls represent an abundant, renewable source of biofuel and other useful products. The major bottleneck for the industrial scale-up of their conversion to simple sugars (saccharification), to be subsequently converted by microorganisms into ethanol or other products, is their recalcitrance to enzymatic saccharification. We investigated whether the structure of pectin that embeds the cellulose-hemicellulose network affects the exposure of cellulose to enzymes and consequently the process of saccharification. Reduction of de-methyl-esterified homogalacturonan (HGA) in Arabidopsis plants through the expression of a fungal polygalacturonase (PG) or an inhibitor of pectin methylesterase (PMEI) increased the efficiency of enzymatic saccharification. The improved enzymatic saccharification efficiency observed in transformed plants could also reduce the need for acid pretreatment. Similar results were obtained in PG-expressing tobacco plants and in PMEI-expressing wheat plants, indicating that reduction of de-methyl-esterified HGA may be used in crop species to facilitate the process of biomass saccharification.
Pouliot, Rémy; Rochefort, Line; Graf, Martha D
2012-08-01
Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.
Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, S. W.; Energy Systems
2010-02-08
Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized withmore » ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.« less
Gruszka, Damian
2013-01-01
Brassinosteroids (BRs) are a class of steroid hormones regulating a wide range of physiological processes during the plant life cycle from seed development to the modulation of flowering and senescence. The last decades, and recent years in particular, have witnessed a significant advance in the elucidation of the molecular mechanisms of BR signaling from perception by the transmembrane receptor complex to the regulation of transcription factors influencing expression of the target genes. Application of the new approaches shed light on the molecular functions of the key players regulating the BR signaling cascade and allowed identification of new factors. Recent studies clearly indicated that some of the components of BR signaling pathway act as multifunctional proteins involved in other signaling networks regulating diverse physiological processes, such as photomorphogenesis, cell death control, stomatal development, flowering, plant immunity to pathogens and metabolic responses to stress conditions, including salinity. Regulation of some of these processes is mediated through a crosstalk between BR signalosome and the signaling cascades of other hormones, including auxin, abscisic acid, ethylene and salicylic acid. Unravelling the complicated mechanisms of BR signaling and its interconnections with other molecular networks may be of great importance for future practical applications in agriculture. PMID:23615468
Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong
2016-08-17
Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.
Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T; Lindow, Steven E
2016-07-19
Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. X. fastidiosa, having a complicated lifestyle in which it moves and multiplies within plants but also must be vectored by insects, utilizes DSF-based quorum sensing to partition the expression of traits needed for these two processes within different cells in this population based on local cellular density. The finding that it can produce a variety of DSF species in a strongly environmentally context-dependent manner provides insight into how it coordinates the many genes under the control of DSF signaling to successfully associate with its two hosts. Since the new DSF variant XfDSF2 described here is much more active than the previously recognized DSF species, it should contribute to plant disease control, given that the susceptibility of plants can be greatly reduced by artificially elevating the levels of DSF in plants, creating "pathogen confusion," resulting in lower virulence. Copyright © 2016 Ionescu et al.
Audenaert, Kris; De Meyer, Geert B.; Höfte, Monica M.
2002-01-01
Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinerea in sitiens plants and increased susceptibility in WT plants. These results indicate that ABA plays a major role in the susceptibility of tomato to B. cinerea. ABA appeared to interact with a functional plant defense response against B. cinerea. Experiments with transgenic NahG tomato plants and benzo(1,2,3)thiadiazole-7-carbothioic acid demonstrated the importance of salicylic acid in the tomato-B. cinerea interaction. In addition, upon infection with B. cinerea, sitiens plants showed a clear increase in phenylalanine ammonia lyase activity, which was not observed in infected WT plants, indicating that the ABA levels in healthy WT tomato plants partly repress phenylalanine ammonia lyase activity. In addition, sitiens plants became more sensitive to benzo(1,2,3)thiadiazole-7-carbothioic acid root treatment. The threshold values for PR1a gene expression declined with a factor 10 to 100 in sitiens compared with WT plants. Thus, ABA appears to negatively modulate the salicylic acid-dependent defense pathway in tomato, which may be one of the mechanisms by which ABA levels determine susceptibility to B. cinerea. PMID:11842153
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Mojave Desert Air Quality Management District. (i) Natural Gas and Gasoline Processing Equipment and...) Sacramento Metropolitan Air Quality Management District. (i) Plastic Parts Coating: Business Machines and...) Sacramento Metropolitan Air Quality Management District. (i) Nitric and Adipic Acid Manufacturing Plants...
Albishri, Hassan M.; Almaghrabi, Omar A.; Moussa, Tarek A. A.
2013-01-01
Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants. PMID:23661995
Hashida, Shin-Nosuke; Itami, Taketo; Takahara, Kentaro; Hirabayashi, Takayuki; Uchimiya, Hirofumi; Kawai-Yamada, Maki
2016-11-01
NAD is a well-known co-enzyme that mediates hundreds of redox reactions and is the basis of various processes regulating cell responses to different environmental and developmental cues. The regulatory mechanism that determines the amount of cellular NAD and the rate of NAD metabolism remains unclear. We created Arabidopsis thaliana plants overexpressing the NAD synthase (NADS) gene that participates in the final step of NAD biosynthesis. NADS overexpression enhanced the activity of NAD biosynthesis but not the amounts of NAD + , NADH, NADP + or NADPH. However, the amounts of some intermediates were elevated, suggesting that NAD metabolism increased. The NAD redox state was greatly facilitated by an imbalance between NAD generation and degradation in response to bolting. Metabolite profiling and transcriptional analysis revealed that the drastic modulation of NAD redox homeostasis increased tricarboxylic acid flux, causing the ectopic generation of reactive oxygen species. Vascular bundles suffered from oxidative stress, leading to a malfunction in amino acid and organic acid transportation that caused early wilting of the flower stalk and shortened plant longevity, probably due to malnutrition. We concluded that the mechanism regulating the balance between NAD synthesis and degradation is important in the systemic plant response to developmental cues during the growth-phase transition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisessar, S.; Palmer, K.T.; Kuja, A.L.
Ambient rain in southern Ontario has a volume-weighted average pH of approximately 4.2. Tomato (Lycopersicon esculentum Mill var. 'Chico III') seedlings were exposed to simulated acidic rain in specially designed chambers. The inoculum of Pseudomonas tomato (Okabe) Alstatt, causal agent of bacterial speck, was sprayed on plants before or after exposure to acidic rain of pH 2.5, 3.5, and 4.5, as well as on plants not exposed to the simulated acidic rain. Speck symptoms (small, dark, brown spots with yellow halos) were found on all inoculated plants. Exposure of plants to simulted acidic rain inhibited speck development, but the inhibitionmore » was greater on plants exposed to acidic rain after inoculation. Spot necrosis, a typical response to acid rain, occurred on up to 15 to 20% of the leaf area on all tomato plants treated with acidic rain at pH 2.5. Plants alos showed a decrease in growth (height and fresh and dry weights) with an increase in rain acidity. Leaves injured by simulated acidic rain and examined histopathologically displayed cellular malformations including hyperplasia and hypertrophy. Pseudomonas tomato failed to grow on acidified King B medium or Difco nutrient broth adjusted to pH 3.5 or lower.« less
40 CFR 62.1875 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Sources: The plan includes the following sulfuric acid plants: (1) Allied Chemical Company... Mist from Existing Sulfuric Acid Plants § 62.1875 Identification of plan. (a) Title of plan: State implementation plan for control of sulfuric acid mist from existing sulfuric acid plants. (b) The plan was...
40 CFR 62.1875 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of Sources: The plan includes the following sulfuric acid plants: (1) Allied Chemical Company... Mist from Existing Sulfuric Acid Plants § 62.1875 Identification of plan. (a) Title of plan: State implementation plan for control of sulfuric acid mist from existing sulfuric acid plants. (b) The plan was...
40 CFR 62.1875 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Sources: The plan includes the following sulfuric acid plants: (1) Allied Chemical Company... Mist from Existing Sulfuric Acid Plants § 62.1875 Identification of plan. (a) Title of plan: State implementation plan for control of sulfuric acid mist from existing sulfuric acid plants. (b) The plan was...
40 CFR 62.1875 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of Sources: The plan includes the following sulfuric acid plants: (1) Allied Chemical Company... Mist from Existing Sulfuric Acid Plants § 62.1875 Identification of plan. (a) Title of plan: State implementation plan for control of sulfuric acid mist from existing sulfuric acid plants. (b) The plan was...
NASA Astrophysics Data System (ADS)
Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna
2016-04-01
The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.
Li, Ning; Zhang, Song-jie; Zhao, Qi; Long, Yue; Guo, Hao; Jia, Hong-fang; Yang, Yong-xia; Zhang, Hong-ying; Ye, Xie-feng; Zhang, Song-tao
2018-01-01
General control non-derepressible-2 (GCN2) is a ubiquitous protein kinase that phosphorylates the α subunit of the eukaryotic initiation factor, eIF2, preventing the initiation of a new cycle of protein synthesis, subsequently reducing the global protein biosynthesis. GCN2 can also regulate the response of plants to biotic and abiotic stresses. In this study, two GCN2 homologs, NtGCN2-1 and NtGCN2-2, were cloned from Nicotiana tabacum, and were predicted to have been derived from their progenitors in N. tomentosiformis and N. sylvestris, respectively. The phosphorylation of NteIF2α could be activated by promoting the expression of NtGCN2 with plant hormones, including salicylic acid (SA), azelaic acid (AZA), methyl jasmonate (MeJA), and by imposition of different stresses (Bemisia tabaci infection, drought, and cold), indicating that NtGCN2 is involved in the response of plants to multiple biotic and abiotic stresses. We also observed that the overexpression of NtGCN2-1 significantly influenced different physiological processes. It promoted seed germination and root elongation. The content of total soluble sugars and reducing sugars were decreased, whereas those of chlorophyll a and b were increased in the GCN2 overexpressing plants. In addition, the overexpressing plants had lower content of reactive oxygen species and exhibited higher antioxidant activities. These physiological alterations could be attributed to the changes in the endogenous phytohormones, decrease in the SA and abscisic acid content, and accumulation of MeJA and AZA. It indicated that the overexpression of NtGCN2 in tobacco, stimulated the plant defense responses via phosphorylation of NteIF2α and regulation of plant hormones, and changes in the antioxidant ability and plant nutrient status. PMID:29910821
Solís-Dominguez, Fernando A; White, Scott A; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A; Chorover, Jon; Maier, Raina M
2012-01-17
Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites.
Solís-Dominguez, Fernando A.; White, Scott A.; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A.; Chorover, Jon; Maier, Raina M.
2012-01-01
Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ~ 2.5) metalliferous (As, Pb, Zn: 2000–3000 mg kg−1) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites. PMID:22191663
Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Lorenzo-Martin, Cinta
Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.
Wang, Jianfei; Shen, Qirong
2006-11-01
Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.
Metal resistant plants and phytoremediation of environmental contamination
Meagher, Richard B.; Li, Yujing; Dhankher, Om P.
2010-04-20
The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.
40 CFR 62.8351 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (5) Northeast Chemical Company in New Hanover County. (b) There are no oleum plants. (c) There are no... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.8351 Identification of sources. The plan applies to existing facilities at the following sulfuric acid plants: (a) Sulfur-burning plants operated by...
40 CFR 62.8351 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (5) Northeast Chemical Company in New Hanover County. (b) There are no oleum plants. (c) There are no... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.8351 Identification of sources. The plan applies to existing facilities at the following sulfuric acid plants: (a) Sulfur-burning plants operated by...
40 CFR 62.8351 - Identification of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (5) Northeast Chemical Company in New Hanover County. (b) There are no oleum plants. (c) There are no... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.8351 Identification of sources. The plan applies to existing facilities at the following sulfuric acid plants: (a) Sulfur-burning plants operated by...
40 CFR 62.8351 - Identification of sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (5) Northeast Chemical Company in New Hanover County. (b) There are no oleum plants. (c) There are no... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.8351 Identification of sources. The plan applies to existing facilities at the following sulfuric acid plants: (a) Sulfur-burning plants operated by...
40 CFR 62.8351 - Identification of sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (5) Northeast Chemical Company in New Hanover County. (b) There are no oleum plants. (c) There are no... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.8351 Identification of sources. The plan applies to existing facilities at the following sulfuric acid plants: (a) Sulfur-burning plants operated by...
Alvarenga, R; Moraes, J C; Auad, A M; Coelho, M; Nascimento, A M
2017-08-01
The aim of this study was to evaluate the effects of silicon application and administration of the phytohormone gibberellic acid on resistance of the corn plants to the fall armyworm (FAW), Spodoptera frugiperda, and their vegetative characteristics. We evaluated larval and pupal duration, survival and biomass, and adult longevity, malformation and fecundity of S. frugiperda after feeding on plant matter treated with silicon and/or gibberellic acid. The feeding preference of FAW first-instar larvae, the total leaf area consumed by the insects, and the vegetative parameters of corn plants were also evaluated. No significant differences were observed in the measured parameters of larval and pupal stages of S. frugiperda in response to silicon or gibberellic acid. In adult stage insects, the number of eggs per female was significantly reduced in insects derived from larvae fed plants treated with silicon or gibberellic acid. In a non-preference test, 48 h after release, caterpillars preferred control untreated plants and consumed less matter from plants that had received hormonal treatment (gibberellic acid). Gibberellic acid also altered the vegetative characteristics of plants, by increasing their height, shoot fresh and dry mass, and silicon content. We conclude that gibberellic acid can alter the vegetative characteristics and silicon uptake of corn plants, leading to a reduction in their consumption by S. frugiperda larvae and a decrease in female insect oviposition.
Nazaruddin, Nazaruddin; Samad, Abdul Fatah A; Sajad, Muhammad; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan
2017-06-01
Persicaria minor (Kesum) is an important medicinal plant with high level of secondary metabolite contents, especially, terpenoids and flavonoids. Previous studies have revealed that application of exogenous phytohormone could increase secondary metabolite contents of the plant. MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in various biological processes. In order to explore the possible role of miRNA in the regulation of these phytohormones signaling pathway and uncovering their potential correlation, we, for the first time, have generated the smallRNA library of Kesum plant. The library was developed in response to methyl jasmonate (MJ) and abscisic acid (ABA) treatment by using next-generation sequencing technology. Raw reads have been deposited to SRA database with the accession numbers, SRX2655642 and SRX2655643 (MJ-treated), SRXSRX2655644 and SRX2655645 (ABA-treated) and SRX2655646and SRX2655647 (Control).
MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism.
Deborde, Catherine; Jacob, Daniel
2014-01-01
Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a particular tissue (4) find information on a primary metabolite regardless of the species.
Bellés, José M; Garro, Rafael; Pallás, Vicente; Fayos, Joaquín; Rodrigo, Ismael; Conejero, Vicente
2006-02-01
In the present work we have studied the accumulation of gentisic acid (2,5-dihydroxybenzoic acid, a metabolic derivative of salicylic acid, SA) in the plant-pathogen systems, Cucumis sativus and Gynura aurantiaca, infected with either prunus necrotic ringspot virus (PNRSV) or the exocortis viroid (CEVd), respectively. Both pathogens produced systemic infections and accumulated large amounts of the intermediary signal molecule gentisic acid as ascertained by electrospray ionization mass spectrometry (ESI-MS) coupled on line with high performance liquid chromatography (HPLC). The compound was found mostly in a conjugated (beta-glucoside) form. Gentisic acid has also been found to accumulate (although at lower levels) in cucumber inoculated with low doses of Pseudomonas syringae pv. tomato, producing a nonnecrotic reaction. In contrast, when cucumber was inoculated with high doses of this pathogen, a hypersensitive reaction occurred, but no gentisic-acid signal was induced. This is consistent with our results supporting the idea that gentisic-acid signaling may be restricted to nonnecrotizing reactions of the host plant (Bellés et al. in Mol Plant-Microbe Interact 12:227-235, 1999). In cucumber and Gynura plants, the activity of gentisic acid as inducing signal was different to that of SA, thus confirming the data found for tomato. Exogenously supplied gentisic acid was able to induce peroxidase activity in both Gynura and cucumber plants in a similar way as SA or pathogens. However, gentisic-acid treatments strongly induced polyphenol oxidase activity in cucumber, whereas pathogen infection or SA treatment resulted in a lower induction of this enzyme. Nevertheless, gentisic acid did not induce other defensive proteins which are induced by SA in these plants. This indicates that gentisic acid could act as an additional signal to SA for the activation of plant defenses in cucumber and Gynura plants.
Eriksson, Ulrika; Haglund, Peter; Kärrman, Anna
2017-11-01
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in sludge and water from waste water treatment plants, as a result of their incorporation in everyday products and industrial processes. In this study, we measured several classes of persistent PFASs, precursors, transformation intermediates, and newly identified PFASs in influent and effluent sewage water and sludge from three municipal waste water treatment plants in Sweden, sampled in 2015. For sludge, samples from 2012 and 2014 were analyzed as well. Levels of precursors in sludge exceeded those of perfluoroalkyl acids and sulfonic acids (PFCAs and PFSAs), in 2015 the sum of polyfluoroalkyl phosphoric acid esters (PAPs) were 15-20ng/g dry weight, the sum of fluorotelomer sulfonic acids (FTSAs) was 0.8-1.3ng/g, and the sum of perfluorooctane sulfonamides and ethanols ranged from non-detected to 3.2ng/g. Persistent PFSAs and PFCAs were detected at 1.9-3.9ng/g and 2.4-7.3ng/g dry weight, respectively. The influence of precursor compounds was further demonstrated by an observed substantial increase for a majority of the persistent PFCAs and PFSAs in water after waste water treatment. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) had a net mass increase in all WWTPs, with mean values of 83%, 28%, 37% and 58%, respectively. The load of precursors and intermediates in influent water and sludge combined with net mass increase support the hypothesis that degradation of precursor compounds is a significant contributor to PFAS contamination in the environment. Copyright © 2017. Published by Elsevier B.V.
SOURCE ASSESSMENT: NITROGEN FERTILIZER INDUSTRY WATER EFFLUENTS
The report describes a study of waterborne pollutants from the manufacture of nitrogen fertilizers. It includes an evaluation of the ammonia, ammonium nitrate, urea, and nitric acid manufacturing processes. Water effluents in a nitrogen fertilizer plant originate from a variety o...
A novel process for low-sulfur biodiesel production from scum waste.
Ma, Huan; Addy, Min M; Anderson, Erik; Liu, Weiwei; Liu, Yuhuan; Nie, Yong; Chen, Paul; Cheng, Beijiu; Lei, Hanwu; Ruan, Roger
2016-08-01
Scum is an oil-rich waste from the wastewater treatment plants with a high-sulfur level. In this work, a novel process was developed to convert scum to high quality and low sulfur content biodiesel. A combination of solvent extraction and acid washing as pretreatment was developed to lower the sulfur content in the scum feedstock and hence improve biodiesel conversion yield and quality. Glycerin esterification was then employed to convert free fatty acids to glycerides. Moreover, a new distillation process integrating the traditional reflux distillation and adsorptive desulfurization was developed to further remove sulfur from the crude biodiesel. As a result, 70% of the filtered and dried scum was converted to biodiesel with sulfur content lower than 15ppm. The fatty acid methyl ester profiles showed that the refined biodiesel from the new process exhibited a higher quality and better properties than that from traditional process reported in previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Ying; Wu, Feng-Zhi; Wang, Yu-Yan
2011-11-01
Taking cucumber cultivars' Jinlv No. 5' (salt-tolerant) and 'Jinyou No. 1' (salt-sensitive) as test materials, a pot experiment was conducted to study the effects of applying cinnamic acid on the accumulation of applied cinnamic acid in cucumber seedling-soil system under NaCl (585 mg x kg(-1) soil) stress. The concentration of applied cinnamic acid was the main factor affecting the accumulation of the exogenous cinnamic acid in the cucumber plant and soil. With the increasing concentration of applied cinnamic acid, except in the treatment of highest concentration (200 mg x kg(-1) soil) cinnamic acid, the total content of cinnamic acid in cucumber plant was increased. NaCl stress enhanced the toxicity of cinnamic acid. In the treatments of low and medium concentration cinnamic acid, the cinnamic acid content in cucumber plant increased; whereas in the treatments of high concentration cinnamic acid, the decline of the seedlings growth was observed, and led to the decrease of the cinnamic acid content in the plant. The content of cinnamic acid in 'Jinlv No. 5' plant decreased at the concentration of applied cinnamic acid being > 200 mg x kg(-1) soil, while that in 'Jinyou No. 1' started to decrease when the concentration of applied cinnamic acid was > 100 mg x kg(-1) soil, reflecting the discrepancy in salt tolerance of the two cultivars. For the cucumber plant, its leaf had the highest content of cinnamic acid. In the cucumber seedling-soil system, most of applied cinnamic acid was mainly accumulated in soil.
Li, Chunmei; Wang, Donghong; Xu, Xiong; Xu, Meijia; Wang, Zijian; Xiao, Ruiyang
2017-12-31
Dissolved organic matter (DOM) can affect the performance of water treatment processes and produce undesirable disinfection by-products during disinfection. Several studies have been undertaken on the structural characterization of DOM, but its fate during drinking water treatment processes is still not fully understood. In this work, the nontargeted screening method of comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) was used to reveal the detailed changes of different chemical classes of compounds in DOM during conventional and advanced drinking water treatment processes at three drinking water treatment plants in China. The results showed that when the dissolved organic carbon removal was low, shifts in the DOM composition could not be detected with the specific ultraviolet absorbance at 254nm, but the changes were clear in the three-dimensional fluorescence excitation-emission matrix or GC×GC-qMS analyses. Coagulation-sedimentation processes selectively removed 37-59% of the nitrogenous compounds, alcohols and aromatic hydrocarbons but increased the concentrations of halogen-containing compounds by 17-26% because of the contact time with chlorine in this step. Filtration was less efficient at removing DOM but preferentially removed 21-60% of the acids. However, other organic matter would be released from the filter (e.g., nitrogenous compounds, acids, and aromatic hydrocarbons). Biological activated carbon (BAC) treatment removed most of the compounds produced from ozonation, particularly ketones, alcohols, halogen-containing compounds and acids. However, it should be noted that certain highly polar or high molecular weight compounds not identified in this study might be released from the BAC bed. After the whole treatment processes, the concentrations of nitrogenous compounds, alcohols, alkenes, aromatic hydrocarbons and ketones were decreased more by the advanced treatment processes than by the conventional treatment processes. Alcohol and ketone removals were probably related to the reduction in protein-like materials. Alkane removal was probably related to the reduction in fulvic acid-like and humic acid-like materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Rakesh Minocha; Subhash C. Minocha; Stephanie L. Long; Walter C. Shortle
1992-01-01
Increased aluminum (Al) solubility in soil waters due to acid precipitation has aroused considerable interest in the problem of Al toxicity in plants. In the present study, an in vitro suspension culture system of Catharanthus roseus (L.) G. Don was used to analyze the effects of aluminum on several biochemical processes in these cells. The aliphatic...
Young, Ellen; Carey, Manus; Meharg, Andrew A; Meharg, Caroline
2018-03-20
Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.
Mark, Christina; Zór, Kinga; Heiskanen, Arto; Dufva, Martin; Emnéus, Jenny; Finnie, Christine
2016-12-15
Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts. Copyright © 2016 Elsevier Inc. All rights reserved.
Production of γ-aminobutyric acid by microorganisms from different food sources.
Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita
2015-04-01
γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.
Microbial removal of no.sub.x from gases
Sublette, Kerry L.
1991-01-01
Disclosed is a process by which a gas containing nitric oxide is contacted with an anaerobic microbial culture of denitrifying bacteria to effect the chemical reduction of the nitric oxide to elemental nitrogen. The process is particularly suited to the removal of nitric oxide from flue gas streams and gas streams from nitric acid plants. Thiobacillus dentrificians as well as other bacteria are disclosed for use in the process.
Studenroth, Sabine; Huber, Stefan G; Kotte, Karsten; Schöler, Heinz F
2013-02-05
Oxalic acid is the smallest dicarboxylic acid and plays an important role in soil processes (e.g., mineral weathering and metal detoxification in plants). We have first proven its abiotic formation in soils and investigated natural abiotic degradation processes based on the oxidation of soil organic matter, enhanced by Fe(3+) and H(2)O(2) as hydroxyl radical suppliers. Experiments with the model compound catechol and further hydroxylated benzenes were performed to examine a common degradation pathway and to presume a general formation mechanism of oxalic acid. Two soil samples were tested for the release of oxalic acid and the potential effects of various soil parameters on oxalic acid formation. Additionally, the soil samples were treated with different soil sterilization methods to prove the oxalic acid formation under abiotic soil conditions. Different series of model experiments were conducted to determine a range of factors including Fe(3+), H(2)O(2), reaction time, pH, and chloride concentration on oxalic acid formation. Under certain conditions, catechol is degraded up to 65.6% to oxalic acid referring to carbon. In serial experiments with two soil samples, oxalic acid was produced, and the obtained results are suggestive of an abiotic degradation process. In conclusion, Fenton-like conditions with low Fe(3+) concentrations and an excess of H(2)O(2) as well as acidic conditions were required for an optimal oxalic acid formation. The presence of chloride reduced oxalic acid formation.
Fayos, Joaquín; Bellés, José María; López-Gresa, M Pilar; Primo, Jaime; Conejero, Vicente
2006-01-01
Tomato plants infected with the citrus exocortis viroid exhibited strongly elevated levels of a compound identified as 2,5-dihydroxybenzoic acid (gentisic acid, GA) 5-O-beta-D-xylopyranoside. The compound accumulated early in leaves expressing mild symptoms from both citrus exocortis viroid-infected tomato, and prunus necrotic ringspot virus-infected cucumber plants, and progressively accumulated concomitant with symptom development. The work presented here demonstrates that GA, mainly associated with systemic infections in compatible plant-pathogen interactions [Bellés, J.M., Garro, R., Fayos, J., Navarro, P., Primo, J., Conejero, V., 1999. Gentisic acid as a pathogen-inducible signal, additional to salicylic acid for activation of plant defenses in tomato. Mol. Plant-Microbe Interact. 12, 227-235], is conjugated to xylose. Notably, this result contrasts with those previously found in other plant-pathogen interactions in which phenolics analogues of GA as benzoic or salicylic acids, are conjugated to glucose.
40 CFR 62.9110 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.9110 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants. (1) National Zinc Co...] Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.9110 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.9110 Identification of sources. (a) Identification of sources. The plan includes the following sulfuric acid production plants. (1) National Zinc Co...] Fluoride Emissions From Phosphate Fertilizer Plants ...
AM symbiosis alters phenolic acid content in tomato roots
Flors, Victor; García, Juan M; Pozo, Maria J
2010-01-01
Arbuscular mycorrhizal (AM) fungi colonize the roots of most plants to establish a mutualistic symbiosis leading to important benefits for plant health. We have recently shown that AM symbiosis alters both transcriptional and hormonal profiles in tomato roots, many of these changes related to plant defense. Here, we analytically demonstrate that the levels of other important defense-related compounds as phenolic acids are also altered in the symbiosis. Both caffeic and chlorogenic acid levels significantly decreased in tomato roots upon mycorrhization, while ferulic acid increased. Moreover, in the case of caffeic acid a differential reduction was observed depending on the colonizing AM fungus. The results confirm that AM associations imply the regulation of plant defense responses, and that the host changes may vary depending on the AM fungus involved. The potential implications of altered phenolic acid levels on plant control over mycorrhizal colonization and in the plant resistance to pathogens is discussed. PMID:21490421
Application of phytoextraction for uranium contaminated soil in korea
NASA Astrophysics Data System (ADS)
Ryu, Y.; Han, Y.; Lee, M.
2013-12-01
The soils having high concentration of uranium, sampled from Goesan Deokpyungri area in Korea, were identified with the uranium removal efficiency of phytoextraction by using several plants. According to the results of physicochemical properties, uranium concentration from soil was 28.85mg/kg, pH 5.43 and soil texture was "Sand". Results of SEP(Sequential Extraction Procedure) test, uranium concentrations ratio of soil in the status of exchangeable/carbonate was 13.4%. Five plants such as Lettuce (Lactuca sativa L.), Chinese cabbage (Brassica campestris L.), Sweet potato (Ipomoea batatas (L.) Lam), Radish (Raphanus sativus), Sesame (Perilla frutescens var. japonica) were cultivated during 56 days in phytotron. All the cultivation processes were conducted in a growth chamber at 25 degrees celsius, 70% relative humidity, 4000 Lux illumination (16 hours/day) and CO2 concentration of 600 ppm. Four times at intervals of 2 weeks leaves and roots collected were analyzed for uranium concentration. Ranges of uranium concentration of the roots and leaves from the five plants were measured to 206.81-721.22μg/kg and 3.45-10.21μg/kg respectively. The majority of uranium was found to accumulate in the roots. Uranium concentration in the leaves, regardless of the type of plants were presented below standard of drinking water(30μg/l) by U.S EPA. Phytoextraction pot experiments with citric acid were conducted. Citric acid as chelating agent was applied to soil to enhance uranium accumulation in five crop plants. 6 days before harvest crops, Each citric acid 25mM and 50mM was injected into the soil by 300ml. After injecting citric acid 25mM , pH of the soil was reduced to 4.95. Uranium concentration of leaves and roots collected from five plants was increased to 2-4times and 7-30times compared to control soil. Injected with citric acid 50mM , pH of the soil was reduced to 4.79. Uranium concentration of leaves and roots collected from five plants was increased to 3-10times and 10-50times compared to control soil. The results of TOC (Total Organic Carbon content), CEC (Cation Exchange Capacity), T-N and T-P analysis of the soil with citric acid 25mM and 50mM were similar to control soil. Finally, the chelating agent was effective to use a citric acid 50mM .
A global trait-based approach to estimate leaf nitrogen functional allocation from observations
Ghimire, Bardan; Riley, William J.; Koven, Charles D.; ...
2017-03-28
Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained “residual” nitrogen pool. Based on our analysis, crops partition the largest fractionmore » of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73% respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple plant functional types, and report substantial differences in nitrogen allocation across different plant functional types. Furthermore, the resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.« less
A global trait-based approach to estimate leaf nitrogen functional allocation from observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghimire, Bardan; Riley, William J.; Koven, Charles D.
Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained “residual” nitrogen pool. Based on our analysis, crops partition the largest fractionmore » of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73% respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple plant functional types, and report substantial differences in nitrogen allocation across different plant functional types. Furthermore, the resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.« less
Kenrick, Janette R.; Bishop, David G.
1986-01-01
The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylglycerol has been measured in the leaves of 27 species of higher plants from six families whose members differed in their degrees of chilling sensitivity. The content of high melting point fatty acids (represented by the sum of hexadecanoic, trans-3-hexadecenoic and octadecanoic acids) in phosphatidylglycerols varied little between members of the same plant family and was not obviously related to the relative chilling sensitivity of members of that family. The saturated fatty acid content (hexadecanoic + octadecanoic acids) of sulfoquinovosyldiacylglycerols also appeared to be characteristic of a plant family, although some exceptions were found. In one case, (Carica papaya) the content of saturated fatty acids in sulfoquinovosyldiacylglycerol was sufficiently high to suggest that this lipid could undergo phase separations above 0°C. It is concluded that the content of high melting point fatty acids in leaf phosphatidylglycerol is not a direct indication of the chilling sensitivity of a plant, but rather may be a reflection of the genetic origin of that plant. PMID:16664962
Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker
2014-12-01
Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Zhang, Qing; Yu, Zhu; Wang, Xianguo; Na, Risu
2017-03-01
The effects of pesticides and Lactobacillus plantarum (LP) on fermentation quality of alfalfa (Medicago sativa L.) silage were investigated. Chlorpyrifos and chlorantraniliprole were sprayed on the surface of alfalfa plants at 658.6 and 45.0 g active ingredient/ha, respectively. Alfalfa plants were harvested on day 5 post-application and ensiled with or without LP. Chlorpyrifos and chlorantraniliprole decreased the yeast count of alfalfa material (P < 0.05). Both pesticides increased the butyric acid content of alfalfa silage (P < 0.001). Chlorpyrifos increased pH and decreased lactic acid, acetic acid and short-chain fatty acid contents (P < 0.05). LP decreased pH and butyric acid content, and increased lactic acid and short-chain fatty acid contents of alfalfa silage treated with pesticides (P < 0.05). LP increased the concentration of chlorpyrifos residue in alfalfa silage (P < 0.05). Chlorpyrifos and chlorantraniliprole affected the microbial communities of the material before ensiling, especially coliform bacteria and yeast; the two pesticide residues were reduced after the fermentation of alfalfa silage and affected the fermentation process, whereas LP improved the fermentation quality of pesticides-contaminated alfalfa silage and slowed down the dissipation of chlorpyrifos. © 2016 Japanese Society of Animal Science.
Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia.
Acevedo, Juan C; Hernández, Jorge A; Valdés, Carlos F; Khanal, Samir Kumar
2015-01-01
The present study aims to evaluate the operating costs of biodiesel production using palm oil in a pilot-scale plant with a capacity of 20,000 L/day (850 L/batch). The production plant uses crude palm oil as a feedstock, and methanol in a molar ratio of 1:10. The process incorporated acid esterification, basic transesterification, and dry washing with absorbent powder. Production costs considered in the analysis were feedstock, supplies, labor, electricity, quality and maintenance; amounting to $3.75/gal ($0.99/L) for 2013. Feedstocks required for biodiesel production were among the highest costs, namely 72.6% of total production cost. Process efficiency to convert fatty acids to biodiesel was over 99% and generated a profit of $1.08/gal (i.e., >22% of the total income). According to sensitivity analyses, it is more economically viable for biodiesel production processes to use crude palm oil as a feedstock and take advantage of the byproducts such as glycerine and fertilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Differential distribution of amino acids in plants.
Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz
2017-05-01
Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1.0), tryptophan (0.3), tyrosine (0.7) and valine (1.2).
Production of a carob enzymatic extract: potential use as a biofertilizer.
Parrado, J; Bautista, J; Romero, E J; García-Martínez, A M; Friaza, V; Tejada, M
2008-05-01
In this paper, we describe a biological process that converts carob germ (CG), a proteinic vegetable by-product, into a water-soluble enzymatic hydrolyzate extract (CGHE). The chemical and physical properties are also described. The conversion is done using a proteolytic enzyme mixture. The main component of CGHE extracted by the enzymatic process is protein (68%), in the form of peptides and free amino acids, having a high content of glutamine and arginine, and a minor component of phytohormones, which are also extracted and solubilized from the CG. We have also compared its potential fertilizer/biostimulant capacity on growth, flowering, and fruiting of tomato plants (Licopericon pimpinellifolium cv. Momotaro) with that of an animal enzymatic protein hydrolyzate. CGHE had a significantly beneficial impact, most notably regarding the greater plant height, number of flowers per plant, and number of fruits per plant. This could be due primarily to its phytohormonal action.
Toxic Compounds in Our Food: Arsenic Uptake By Rice and Potential Mitigation By Silicon
NASA Astrophysics Data System (ADS)
Seyfferth, A.; Gill, R.; Penido, E.
2014-12-01
Arsenic is a ubiquitous element in soils worldwide and has the potential to negatively impact human and ecosystem health under certain biogeochemical conditions. While arsenic is relatively immobile in most oxidized soils due to a high affinity for soil solids, arsenic becomes mobilized under reduced soil conditions due to the reductive dissolution of iron(III) oxides thereby releasing soil-bound arsenic. Since arsenic is a well-known carcinogen, this plant-soil process has the potential to negatively impact the lives of billions of rice consumers worldwide upon plant uptake and grain storage of released arsenic. Moreover, arsenic uptake by rice is excacerbated by the use of As-laden groundwater for rice irrigation. One proposed strategy to decrease arsenic uptake by rice plants is via an increase in dissolved silicon in paddy soil solution (pore-water), since silicic acid and arsenous acid share an uptake pathway. However, several soil processes that influence arsenic cycling may be affected by silicon including desorption from bulk soil, formation and mineralogy of iron(III) oxide plaque, and adsorption/desorption onto/from iron plaque; the effect of silicon on these soil processes will ultimately dictate the effectiveness of altered dissolved silicon in decreasing arsenic uptake at the root, which in turn dictates the concentration of arsenic found in grains. Furthermore, the source of silicon may impact carbon cycling and, in particular, methane emissions. Here, impacts of altered dissolved silicon on processes that affect rhizospheric biogeochemical cycling of arsenic and subsequent plant-uptake, and how it influences other biogeochemical cycles such as carbon and iron are investigated. We show that silicon can decrease arsenic uptake and grain storage under certain conditions, and that altered silicon affects the type of iron (III) oxide that comprises iron plaque.
Urbain, V; Wright, P; Thomas, M
2001-01-01
Stringent effluent quality guidelines are progressively implemented in coastal and sensitive areas in Australia. Biological Nutrient Removal (BNR) plants are becoming a standard often including a tertiary treatment for disinfection. The BNR plant in Noosa - Queensland is designed to produce a treated effluent with less than 5 mg/l of BOD5, 5 mg/l of total nitrogen, 1 mg/l of total phosphorus, 5 mg/l of suspended solids and total coliforms of less than 10/100 ml. A flexible multi-stage biological process with a prefermentation stage, followed by sand filtration and UV disinfection was implemented to achieve this level of treatment. Acetic acid is added for phosphorus removal because: i) the volatile fatty acids (VFA) concentration in raw wastewater varies a lot, and ii) the prefermenter had to be turned off due to odor problems on the primary sedimentation tanks. An endogenous anoxic zone was added to the process to further reduce the nitrate concentration. This resulted in some secondary P-release events, a situation that happens when low nitrate and low phosphorus objectives are targeted. Long-term performance data and specific results on nitrogen removal and disinfection are presented in this paper.
Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust
Zaromb, Solomon; Lawson, Daniel B.
1994-01-01
A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.
Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust
Zaromb, S.; Lawson, D.B.
1994-02-15
A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazari, E.; Rashchi, F., E-mail: rashchi@ut.ac.ir; Saba, M.
2014-12-15
Highlights: • Leaching of vanadium and nickel from fly ash (14.43% V and 5.19% Ni) in sulfuric acid was performed. • Optimization of leaching parameters was carried out using a response surface methodology. • Using optimum conditions, 94.28% V and 81.01% Ni “actual recovery” was obtained. - Abstract: Simultaneous recovery of vanadium (V) and nickel (Ni), which are classified as two of the most hazardous metal species from power plant heavy fuel fly-ash, was studied using a hydrometallurgical process consisting of acid leaching using sulfuric acid. Leaching parameters were investigated and optimized in order to maximize the recovery of bothmore » vanadium and nickel. The independent leaching parameters investigated were liquid to solid ratio (S/L) (5–12.5 wt.%), temperature (45–80 °C), sulfuric acid concentration (5–25 v/v%) and leaching time (1–5 h). Response surface methodology (RSM) was used to optimize the process parameters. The most effective parameter on the recovery of both elements was found to be temperature and the least effective was time for V and acid concentration for Ni. Based on the results, optimum condition for metals recovery (actual recovery of ca.94% for V and 81% for Ni) was determined to be solid to liquid ratio of 9.15 wt.%, temperature of 80 °C, sulfuric acid concentration of 19.47 v/v% and leaching time of 2 h. The maximum V and Ni predicted recovery of 91.34% and 80.26% was achieved.« less
Meesapyodsuk, Dauenpen; Qiu, Xiao
2008-07-01
Claviceps purpurea, a fungal pathogen responsible for ergot diseases in many agriculturally important cereal crops, produces high levels of ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) in its sclerotia. It has been believed for many years that the biosynthesis of this fatty acid in C. purpurea involves a hydration process with linoleic acid as the substrate. Using degenerate polymerase chain reaction, we cloned a gene from the sclerotia encoding an enzyme (CpFAH) that has high sequence similarity to the C. purpurea oleate desaturase, but only low similarity to plant oleate hydroxylases. Functional analysis of CpFAH in yeast (Saccharomyces cerevisiae) indicated it acted predominantly as a hydroxylase, introducing hydroxyl groups at the 12-position of oleic acid and palmitoleic acid. As well, it showed Delta(12) desaturase activities on 16C and 18C monounsaturated fatty acids and, to a much lesser extent, omega(3) desaturase activities on ricinoleic acid. Heterologous expression of CpFAH under the guidance of a seed-specific promoter in Arabidopsis (Arabidopsis thaliana) wild-type and mutant (fad2/fae1) plants resulted in the accumulation of relatively higher levels of hydroxyl fatty acids in seeds. These data indicate that the biosynthesis of ricinoleic acid in C. purpurea is catalyzed by the fungal desaturase-like hydroxylase, and CpFAH, the first Delta(12) oleate hydroxylase of nonplant origin, is a good candidate for the transgenic production of hydroxyl fatty acids in oilseed crops.
Plant-microbe interactions driven by exometabolite preferences of rhizosphere bacteria
NASA Astrophysics Data System (ADS)
Zhalnina, K.; Louie, K. B.; Mansoori, N.; Hao, Z.; Gao, J.; Cho, H. J.; Karaoz, U.; Loqué, D.; Bowen, B.; Firestone, M.; Brodie, E.; Northen, T.
2016-12-01
It is known that rhizosphere bacteria can impact important processes during plant development. In `return' plants release substantial quantities of soluble C into the soil surrounding its roots, attracting bacteria and other soil organisms. Given the potential beneficial and detrimental consequences of stimulating high densities of organisms adjacent to newly formed root, regulating the chemical composition of exudates would represent a potential means of plant selection for beneficial microorganisms. If exudate resource composition functions to select specific microorganisms, then one would expect that substrate specialization exists within the rhizosphere microbiome. Here we provide evidence that in the rhizosphere of wild oats (Avena barbata), specific metabolites are exuded that are preferentially used by selected bacteria in rhizosphere and this substrate specialization, together with the changing composition of root exudates, drives the observed successional patterns. To investigate the relationship between exudates and rhizosphere bacteria we first analyzed exudate composition of hydroponically grown plants using LC-MS/MS based metabolomics. We then designed a medium to simulate plant exudates and using this medium we examined the substrate preferences of a diversity of rhizosphere bacterial isolates. We then assessed the ability of soil isolates to consume exudate components by LC-MS/MS based metabolomics. These substrate preferences were then related to genomic features and successional patterns of bacteria in the Avena rhizosphere. The major fraction of plant exudates was found to be composed of amino- and carboxylic acids, sugars, nucleosides, quaternary amines and plant hormones. Amino acids, sugars and nucleosides were consumed by all analyzed isolates. However, isolates that were preferentially stimulated by plant growth, revealed substrate utilization preferences towards aromatic organic acids, while those not responding to growing roots did not utilize these compounds under these conditions. This substrate partitioning among rhizosphere bacteria can be suggested as a potential mechanism for how plants influence the structure of their rhizosphere microbiome and provides a key insight into the mechanisms underlying patterns of ecological succession in soil.
Uric acid in plants and microorganisms: Biological applications and genetics - A review.
Hafez, Rehab M; Abdel-Rahman, Tahany M; Naguib, Rasha M
2017-09-01
Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.
Phosphatidylglycerol and Chilling Sensitivity in Plants
Roughan, P. Grattan
1985-01-01
The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures. `Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment. Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol. Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus. PMID:16664127
40 CFR 63.605 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.605... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an...
Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen
2011-01-01
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice. PMID:21984727
Qi, Jinfeng; Zhou, Guoxin; Yang, Lijuan; Erb, Matthias; Lu, Yanhua; Sun, Xiaoling; Cheng, Jiaan; Lou, Yonggen
2011-12-01
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.
Nell, Monika; Wawrosch, Christoph; Steinkellner, Siegrid; Vierheilig, Horst; Kopp, Brigitte; Lössl, Andreas; Franz, Chlodwig; Novak, Johannes; Zitterl-Eglseer, Karin
2010-03-01
In some medicinal plants a specific plant-fungus association, known as arbuscular mycorrhizal (AM) symbiosis, increases the levels of secondary plant metabolites and/or plant growth. In this study, the effects of three different AM treatments on biomass and sesquiterpenic acid concentrations in two IN VITRO propagated genotypes of valerian ( VALERIANA OFFICINALIS L., Valerianaceae) were investigated. Valerenic, acetoxyvalerenic and hydroxyvalerenic acid levels were analyzed in the rhizome and in two root fractions. Two of the AM treatments significantly increased the levels of sesquiterpenic acids in the underground parts of valerian. These treatments, however, influenced the biomass of rhizomes and roots negatively. Therefore this observed increase was not accompanied by an increase in yield of sesquiterpenic acids per plant. Furthermore, one of the two genotypes had remarkably high hydroxyvalerenic acid contents and can be regarded as a hydroxyvalerenic acid chemotype. Copyright Georg Thieme Verlag KG Stuttgart New York.
Nguyen, Cuong Mai; Kim, Jin-Seog; Nguyen, Thanh Ngoc; Kim, Seul Ki; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Kim, Jin-Cheol
2013-10-01
Simultaneous saccharification and cofermentation (SSCF) of Curcuma longa waste biomass obtained after turmeric extraction to L- and D-lactic acid by Lactobacillus coryniformis and Lactobacillus paracasei, respectively, was investigated. This is a rich, starchy, agro-industrial waste with potential for use in industrial applications. After optimizing the fermentation of the biomass by adjusting nitrogen sources, enzyme compositions, nitrogen concentrations, and raw material concentrations, the SSCF process was conducted in a 7-l jar fermentor at 140 g dried material/L. The maximum lactic acid concentration, average productivity, reducing sugar conversion and lactic acid yield were 97.13 g/L, 2.7 g/L/h, 95.99% and 69.38 g/100 g dried material for L-lactic acid production, respectively and 91.61 g/L, 2.08 g/L/h, 90.53% and 65.43 g/100 g dried material for D-lactic acid production, respectively. The simple and efficient process described in this study could be utilized by C. longa residue-based lactic acid industries without requiring the alteration of plant equipment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Baumann, Ivan; Westermann, Peter
2016-01-01
Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.
Baumann, Ivan
2016-01-01
Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042
Rascher, U; Bobich, E G; Osmond, C B
2006-01-01
Crassulacean acid metabolism (CAM) is recognized as a photosynthetic adaptation of plants to arid habitats. This paper presents a proof-of-concept evaluation of partitioning net CO2 exchanges for soil and plants in an arid, exclusively CAM mesocosm, with soil depth and succulent plant biomass approximating that of natural Sonoran Desert ecosystems. We present the first evidence that an enclosed CAM-dominated soil and plant community exposed to a substantial day/night temperature difference (30/20 degrees C), exhibits a diel gas exchange pattern consisting of four consecutive phases with a distinct nocturnal CO2 uptake. These phases were modulated by plant assimilation and soil respiration processes. Day-time stomatal closure of the CAM cycle during phase III was used to eliminate aboveground photosynthetic assimilation and respiration and thereby to estimate belowground plant plus soil respiration. Rapid changes in temperature appeared to synchronize single plant gas exchange but individual plant gas exchange patterns were desynchronized at constant day/night temperatures (25 degrees C), masking the distinct mesocosm pattern. Overall, the mean carbon budget of this CAM model Sonoran Desert system was negative, releasing an average of 22.5 mmol CO2 m-2 d-1. The capacity for nocturnal CO2 assimilation in this exclusively CAM mesocosm was inadequate to recycle CO2 released by plant and soil respiration.
Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.
Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter
2014-08-28
Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further improve systems-level understanding of the seed filling process and provide rational strategies for plant bioengineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Gui-Zhi; Jin, Shang-Hui; Li, Pan; Jiang, Xiao-Yi; Li, Yan-Jie; Hou, Bing-Kai
2017-12-01
Ectopic expression of auxin glycosyltransferase UGT84A2 in Arabidopsis can delay flowering through increased indole-3-butyric acid and suppressed transcription of ARF6, ARF8 and flowering-related genes FT, SOC1, AP1 and LFY. Auxins are critical regulators for plant growth and developmental processes. Auxin homeostasis is thus an important issue for plant biology. Here, we identified an indole-3-butyric acid (IBA)-specific glycosyltransferase, UGT84A2, and characterized its role in Arabidopsis flowering development. UGT84A2 could catalyze the glycosylation of IBA, but not indole-3-acetic acid (IAA). UGT84A2 transcription expression was clearly induced by IBA. When ectopically expressing in Arabidopsis, UGT84A2 caused obvious delay in flowering. Correspondingly, the increase of IBA level, the down-regulation of AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, and the down-regulation of flowering-related genes such as FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1), APETALA1 (AP1), and LEAFY(LFY) were observed in transgenic plants. When exogenously applying IBA to wild-type plants, the late flowering phenotype, the down-regulation of ARF6, ARF8 and flowering-related genes recurred. We examined the arf6arf8 double mutants and found that the expression of flowering-related genes was also substantially decreased in these mutants. Together, our results suggest that glycosyltransferase UGT84A2 may be involved in flowering regulation through indole-3-butyric acid-mediated transcriptional repression of ARF6, ARF8 and downstream flowering pathway genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett; ...
2016-06-16
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions.
Chen, Yiyong; Zhou, Bo; Li, Jianlong; Tang, Hao; Tang, Jinchi; Yang, Ziyin
2018-02-26
Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, J.M.; Luina, A.P.; Jodra, L.G.
1957-01-01
In the recovery of uraniuma from leach solutions, the pilot plant of the J.E.N, does not clarify the solution and the sodium uranate carries with it a high proportion of impurities. Therefore, a study was made to determine the optimum conditions for the filtration of sodium uranate from nitric acid solution and to establish modifications in the dissolution processes at present in use for the concentrates. The effects of pressure, addition of CaSO/sub 4/ and Kieselgur, pH, and temperature were investigated The modifications made to the pilot plant as a result of these studies are briefly described. (J.S.R.)
Recovery of polypropylene from spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, M.E.
1995-12-31
The recovery of the constituent components of spent lead-acid batteries was pioneered in the early 1970`s by M.A. Industries, Inc. M.A.`s main reason for research and development in this area was to recover the polypropylene casings for use as feed stock in their injection molding plants. At that time spent and reject casings were either disposed of or being fed with the lead bearing materials into the smelting process. M.A. has since developed, built and operated a plant for the conversion of scrap casing into reusable copolymer resins. The system is composed of washing, sizing, extrusion and pelletizing the polymermore » into a form which is ready to be injection molded into new products.« less
Zhang, Ya-Jian; Wang, Xing-Jian; Wu, Ju-Xun; Chen, Shan-Yan; Chen, Hong; Chai, Li-Jun; Yi, Hua-Lin
2014-01-01
A spontaneous late-ripening mutant of ‘Jincheng’ (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening. PMID:25551568
Li, Hua; Li, Min; Wei, Xingliang; Zhang, Xia; Xue, Ruili; Zhao, Yidan; Zhao, Huijie
2017-10-01
Drought is an environmental factor that deeply impacts wheat yield and quality. Hydrogen sulfide (H 2 S) is a known regulator of drought resistance in plants. To preliminarily elucidate the regulatory mechanisms of H 2 S on drought tolerance, the effects of H 2 S on drought-responsive genes were investigated by transcriptome analysis. As a result, a total of 7552 transcripts not only responded to drought stress but also exhibited differential expression relative to the polyethylene glycol (PEG) treatment (P) and the NaHS pretreatment with PEG treatment (SP). GO categories of 'transport' were especially enriched under the SP treatment and ion transport categories (especially 'iron ion transport') were more significantly enriched among up-regulated transcripts in SP versus P treatments (SP.vs.P). Indeed, a higher translocation of iron from root to shoot and iron availability in shoots was detected in SP compared to P. The KEGG pathway of 'ribosome biogenesis in eukaryotes', 'protein processing in endoplasmic reticulum', 'fatty acid degradation', and 'cyanoamino acid metabolism' was induced by H 2 S under drought stress. Further, H 2 S was involved in plant hormones signal transduction, and drought-induced transcription factors, protein kinases, and functional genes exhibited higher expression levels under SP relative to P. Additionally, several effectors or master regulatory genes of H 2 S were identified genome-wide. Summarily, these results showed that H 2 S alleviated drought damage probably related to transport systems, plant hormones signal transduction, protein processing pathway, fatty acids and amino acids metabolism, which provides a guide for future experimentation to analyze hydrogen sulfide-dependent drought tolerance mechanisms in wheat.
Oligosaccharins — a new class of signalling molecules in plants
NASA Astrophysics Data System (ADS)
Usov, Anatolii I.
1993-11-01
The review deals with oligosaccharins — biologically active oligosaccharides of the following structural types: the (1→6, 1→3)-β-D-glucan fragments of the fungal cell wall; the chitin and chitosan fragments; polygalacturonic acid fragments; the xyloglucan fragments of the plant cell wall; lipooligosaccharides synthesised by bacteria — symbionts of leguminous plants. The isolation, determination of the structure, and total syntheses of these complex compounds as well as the results of the study of their biological role as inductors of the immunity of plants to attack by pathogenic fungi and bacteria and as regulators of the morphogenesis in the development processes in plants and of interaction of the latter with symbiont bacteria are described. The bibliography includes 197 references.
Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1
Yang, Joan C.; Loewus, Frank A.
1975-01-01
l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288
Development of a Chemical Process for Production of Cesium Chloride from a Canadian Pollucite Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, H. W.; Vezina, J. A.; Simard, R.
1963-01-01
A chemical process was developed for the production of a high-purity cesium chioride from a pollucite (cesium aluminum silicate) ore from the Manitoba deposit of Chemalloy Minerais Ltd. The history of the deposit, and the present and possible future uses of cesium are briefly reviewed. Laboratory and piiot plant investigations on this ore have shown that a cyclic sulphuric acid leach followed by fractional crystallization will produce a rubidiumfree cesium alum, which can be converted to cesium chloride by thermal decomposition and ion exchange. On the basis of these findings it is concluded that the process is applicable to themore » tonnage production of cesium chloride. Reagent consumption was found to be 3.3 sulphuric acid and 0.3 lb hydrochloric acid per pound of cesium extracted. Overall extraction of cesium was 95 to 96%. (auth)« less
Zhang, Luan; Xiong, Zhi-ting; Xu, Zhong-rui; Liu, Chen; Cai, Shen-wen
2014-06-01
The roots of metallophytes serve as the key interface between plants and heavy metal-contaminated underground environments. It is known that the roots of metallicolous plants show a higher activity of acid invertase enzymes than those of non-metallicolous plants when under copper stress. To test whether the higher activity of acid invertases is the result of increased expression of acid invertase genes or variations in the amino acid sequences between the two population types, we isolated full cDNAs for acid invertases from two populations of Kummerowia stipulacea (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, expressed them in Pichia pastoris, and conducted real-time PCR to determine differences in transcript levels during Cu stress. Heterologous expression of acid invertase cDNAs in P. pastoris indicated that variations in the amino acid sequences of acid invertases between the two populations played no significant role in determining enzyme characteristics. Seedlings of K. stipulacea were exposed to 0.3µM Cu(2+) (control) and 10µM Cu(2+) for 7 days under hydroponics׳ conditions. The transcript levels of acid invertases in metallicolous plants were significantly higher than in non-metallicolous plants when under copper stress. The results suggest that the expression of acid invertase genes in metallicolous plants of K. stipulacea differed from those in non-metallicolous plants under such conditions. In addition, the sugars may play an important role in regulating the transcript level of acid invertase genes and acid invertase genes may also be involved in root/shoot biomass allocation. Copyright © 2014 Elsevier Inc. All rights reserved.
Song, Junqi; Bent, Andrew F
2014-04-01
Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues.
Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta
2015-01-01
Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality. PMID:26341209
Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Liao, Yinyin; Yuan, Yunfei; Jia, Yongxia; Dong, Fang; Yang, Ziyin
2018-04-18
Jasmine lactone has a potent odor that contributes to the fruity, sweet floral aroma of tea ( Camellia sinensis). Our previous study demonstrated that jasmine lactone was mostly accumulated at the turnover stage of the oolong tea manufacturing process. This study investigates the previously unknown mechanism of formation of jasmine lactone in tea leaves exposed to multiple stresses occurring during the growth and manufacturing processes. Both continuous mechanical damage and the dual stress of low temperature and mechanical damage enhanced jasmine lactone accumulation in tea leaves. In addition, only one pathway, via hydroperoxy fatty acids from unsaturated fatty acid, including linoleic acid and α-linolenic acid, under the action of lipoxygenases (LOXs), especially CsLOX1, was significantly affected by these stresses. This is the first evidence of the mechanism of jasmine lactone formation in tea leaves and is a characteristic example of plant volatile formation in response to dual stress.
Abscisic Acid-Cytokinin Antagonism Modulates Resistance Against Pseudomonas syringae in Tobacco.
Großkinsky, Dominik K; van der Graaff, Eric; Roitsch, Thomas
2014-12-01
Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco, antagonistic interaction of these phytohormones in plant immunity was identified. Kinetin reduced abscisic acid levels in tobacco, while increased abscisic acid levels by exogenous application or inhibition of abscisic acid catabolism by diniconazole neutralized kinetin-induced resistance. Based on these results, we conclude that reduction of abscisic acid levels by enhanced abscisic acid catabolism strongly contributes to cytokinin-mediated resistance effects. Thus, the identified cytokinin-abscisic acid antagonism is a novel regulatory mechanism in plant immunity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Pike, R.W.; Hertwig, T.A.
An effective approach for source reduction in chemical plants has been demonstrated using on-line optimization with flowsheeting (ASPEN PLUS) for process optimization and parameter estimation and the Tjao-Biegler algorithm implemented in a mathematical programming language (GAMS/MINOS) for data reconciliation and gross error detection. Results for a Monsanto sulfuric acid plant with a Bailey distributed control system showed a 25% reduction in the sulfur dioxide emissions and a 17% improvement in the profit over the current operating conditions. Details of the methods used are described.
40 CFR 62.6110 - Identification of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.6110 Identification of sources. The plan applies to existing plants at the following locations: Sulfur burning plant and oleum plant of Mississippi Chemical Corporation in Pascagoula. Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.6110 - Identification of sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.6110 Identification of sources. The plan applies to existing plants at the following locations: Sulfur burning plant and oleum plant of Mississippi Chemical Corporation in Pascagoula. Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.6110 - Identification of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.6110 Identification of sources. The plan applies to existing plants at the following locations: Sulfur burning plant and oleum plant of Mississippi Chemical Corporation in Pascagoula. Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.6110 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.6110 Identification of sources. The plan applies to existing plants at the following locations: Sulfur burning plant and oleum plant of Mississippi Chemical Corporation in Pascagoula. Fluoride Emissions From Phosphate Fertilizer Plants ...
40 CFR 62.6110 - Identification of sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Sulfuric Acid Mist from Existing Sulfuric Acid Plants § 62.6110 Identification of sources. The plan applies to existing plants at the following locations: Sulfur burning plant and oleum plant of Mississippi Chemical Corporation in Pascagoula. Fluoride Emissions From Phosphate Fertilizer Plants ...
Rozhon, Wilfried; Wang, Wuyan; Berthiller, Franz; Mayerhofer, Juliane; Chen, Tingting; Petutschnig, Elena; Sieberer, Tobias; Poppenberger, Brigitte; Jonak, Claudia
2014-06-19
Plant GSK-3/Shaggy-like kinases are key players in brassinosteroid (BR) signalling which impact on plant development and participate in response to wounding, pathogens and salt stress. Bikinin was previously identified in a chemical genetics screen as an inhibitor targeting these kinases. To dissect the structural elements crucial for inhibition of GSK-3/Shaggy-like kinases by bikinin and to isolate more potent compounds we synthesised a number of related substances and tested their inhibitory activity in vitro and in vivo using Arabidopsis thaliana. A pyridine ring with an amido succinic acid residue in position 2 and a halogen in position 5 were crucial for inhibitory activity. The compound with an iodine substituent in position 5, denoted iodobikinin, was most active in inhibiting BIN2 activity in vitro and efficiently induced brassinosteroid-like responses in vivo. Its methyl ester, methyliodobikinin, showed improved cell permeability, making it highly potent in vivo although it had lower activity in vitro. HPLC analysis revealed that the methyl residue was rapidly cleaved off in planta liberating active iodobikinin. In addition, we provide evidence that iodobikinin and bikinin are inactivated in planta by conjugation with glutamic acid or malic acid and that the latter process is catalysed by the malate transferase SNG1. Brassinosteroids participate in regulation of many aspects of plant development and in responses to environmental cues. Thus compounds modulating their action are valuable tools to study such processes and may be an interesting opportunity to modify plant growth and performance in horticulture and agronomy. Here we report the development of bikinin derivatives with increased potency that can activate BR signalling and mimic BR action. Methyliodobikinin was 3.4 times more active in vivo than bikinin. The main reason for the superior activity of methyliodobikinin, the most potent compound, is its enhanced plant tissue permeability. Inactivation of bikinin and its derivatives in planta involves SNG1, which constitutes a novel pathway for modification of xenobiotic compounds.
Mechanisms of action and medicinal applications of abscisic Acid.
Bassaganya-Riera, J; Skoneczka, J; Kingston, D G J; Krishnan, A; Misyak, S A; Guri, A J; Pereira, A; Carter, A B; Minorsky, P; Tumarkin, R; Hontecillas, R
2010-01-01
Since its discovery in the early 1960's, abscisic acid (ABA) has received considerable attention as an important phytohormone, and more recently, as a candidate medicinal in humans. In plants it has been shown to regulate important physiological processes such as response to drought stress, and dormancy. The discovery of ABA synthesis in animal cells has generated interest in the possible parallels between its role in plant and animal systems. The importance of this molecule has prompted the development of several methods for the chemical synthesis of ABA, which differ significantly from the biosynthesis of ABA in plants through the mevalonic acid pathway. ABA recognition in plants has been shown to occur at both the intra- and extracellularly but little is known about the perception of ABA by animal cells. A few ABA molecular targets have been identified in vitro (e.g., calcium signaling, G protein-coupled receptors) in both plant and animal systems. A unique finding in mammalian systems, however, is that the peroxisome proliferator-activated receptor, PPAR gamma, is upregulated by ABA in both in vitro and in vivo studies. Comparison of the human PPAR gamma gene network with Arabidopsis ABA-related genes reveal important orthologs between these groups. Also, ABA can ameliorate the symptoms of type II diabetes, targeting PPAR gamma in a similar manner as the thiazolidinediones class of anti-diabetic drugs. The use of ABA in the treatment of type II diabetes, offers encouragement for further studies concerning the biomedical applications of ABA.
Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling
2014-01-01
Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702
Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.
Xu, Enjun; Brosché, Mikael
2014-06-04
Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.
Agarwal, Parinita; Dabi, Mitali; Sapara, Komal K; Joshi, Priyanka S; Agarwal, Pradeep K
2016-01-01
Plants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF. The JcWRKY overexpression confers salinity tolerance in transgenic tobacco, as was evident by increased chlorophyll content and seed germination potential. The transgenic plants showed increased soluble sugar, membrane stability, reduced electrolyte leakage and generation of reactive oxygen species (H 2 O 2 and [Formula: see text]) as compared to the wild type. Furthermore, the low SA treatment along with salinity improved the tolerance potential of the transgenics by maintaining ROS homeostasis and high K + /Na + ratio. The transcript expression of SA biosynthetic gene ICS1 and antioxidative enzymes ( CAT and SOD ) showed upregulation during stress. Thus, the present study reflects that JcWRKY is working in co-ordination with SA signaling to orchestrate the different biochemical and molecular pathways to maneuvre salt stress tolerance of the transgenic plants.
2016-01-01
Glutaredoxins (Grxs) are small proteins that function as oxidoreductases with roles in deglutathionylation of proteins, reduction of antioxidants, and assembly of iron-sulfur (Fe-S) cluster-containing enzymes. Which of the 33 Grxs in Arabidopsis (Arabidopsis thaliana) perform roles in Fe-S assembly in mitochondria is unknown. We have examined in detail the function of the monothiol GrxS15 in plants. Our results show its exclusive mitochondrial localization, and we are concluding it is the major or only Grx in this subcellular location. Recombinant GrxS15 has a very low deglutathionylation and dehydroascorbate reductase activity, but it binds a Fe-S cluster. Partially removing GrxS15 from mitochondria slowed whole plant growth and respiration. Native GrxS15 is shown to be especially important for lipoic acid-dependent enzymes in mitochondria, highlighting a putative role in the transfer of Fe-S clusters in this process. The enhanced effect of the toxin arsenic on the growth of GrxS15 knockdown plants compared to wild type highlights the role of mitochondrial glutaredoxin Fe-S-binding in whole plant growth and toxin tolerance. PMID:26672074
Ravibabu, K; Barman, T; Rajmohan, H R
2015-01-01
The interaction between serum neuron-specific enolase (NSE), biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin) levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs). In a cross-sectional study, we performed biochemical and neurobehavioral function tests on 146 workers exposed to lead from lead-acid battery manufacturing process. BLLs were assessed by an atomic absorption spectrophotometer. Serum NSE, dopamine and serotonin were measured by ELISA. Neurobehavioral functions were assessed by CDC-recommended tests---simple reaction time (SRT), symbol digit substitution test (SDST), and serial digit learning test (SDLT). There was a significant correlation (r 0.199, p<0.05) between SDST and BLL. SDLT and SRT had also a significant positive correlation (r 0.238, p<0.01). NSE had a negative correlation (r -0.194, p<0.05) with serotonin level. Multiple linear regression analysis revealed that both SRT and SDST had positive significant associations with BLL. SRT also had a positive significant association with age. Serum NSE cannot be used as a marker for BLL. The only domain of neurobehavioral function tests that is affected by increased BLL in workers of lead-acid battery manufacturing process is that of the "attention and perception" (SDST).
Fact Sheet - Phosphate Fertilizer Production Plants and Phosphoric Acid Manufacturing Plants NESHAP
Fact sheet summarizing National Emission Standards for Hazardous Air Pollutants (NESHAP) for Phosphate Fertilizer Production Plants and Phosphoric Acid Manufacturing Plants (40 CFR 63 Subparts AA and BB).
Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela
2017-01-01
Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes—Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress. PMID:28542385
Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela
2017-01-01
Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes-Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress.
Penicillium sp. mitigates Fusarium-induced biotic stress in sesame plants.
Radhakrishnan, Ramalingam; Pae, Suk-Bok; Shim, Kang-Bo; Baek, In-Youl
2013-07-01
Fusarium-infected sesame plants have significantly higher contents of amino acids (Asp, Thr, Ser, Asn, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, Lys, His, Try, Arg, and Pro), compared with their respective levels in the healthy control. These higher levels of amino acids induced by Fusarium infection were decreased when Penicillium was co-inoculated with Fusarium. Compared with the control, Fusarium-infected plants showed higher contents of palmitic (8%), stearic (8%), oleic (7%), and linolenic acids (4%), and lower contents of oil (4%) and linoleic acid (11%). Co-inoculation with Penicillium mitigated the Fusarium-induced changes in fatty acids. The total chlorophyll content was lower in Fusarium- and Penicillium-infected plants than in the healthy control. The accumulation of carotenoids and γ-amino butyric acid in Fusarium-infected plants was slightly decreased by co-inoculation with Penicillium. Sesamin and sesamolin contents were higher in Penicillium- and Fusarium- infected plants than in the control. To clarify the mechanism of the biocontrol effect of Penicillium against Fusarium by evaluating changes in primary and secondary metabolite contents in sesame plants.
Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R
2016-01-01
Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Lei; Li, Ying-Jun; Xiong, Ying; Tan, Wen-Bing; Zhang, Lie-Yu; Li, Xiang; Wang, Xiao-Shu; Xu, Jian-Feng; Li, Tong-Tong; Wang, Jin-Sheng; Cai, Ming-Xuan; Xi, Bei-Dou; Wang, Di-Hua
2017-01-01
The performance of the Sha-he wastewater reclamation plant was evaluated in this study. To remove residual nitrogen after Anaerobic-Anoxic-Oxic (A2O) treatment, three multistage Anoxic-Oxic (A/O) were added to investigate the nitrogen removal efficiency and its mechanism. In addition, the constituents and evolution of dissolved organic matter (DOM) during wastewater reclamation was also investigated using a method combining fluorescence spectroscopy with fluorescence regional integration (FRI). The results suggested that multistage A/O treatment can effectively improve the nitrogen removal ability under low concentrations of carbon sources. The total nitrogen (TN) exhibits significantly positive correlation with fulvic acid-like materials and humic acid-like materials. The correlation coefficient for TN and fulvic acid-like substances (R2 = 0.810, P < 0.01) removal was greater than that of humic acid-like substances (R2 = 0.636, P < 0.05). The results indicate that nitrogen removal may be achieved with the fulvic-like and humic-like substances, and the removal effects were higher by fulvic acid-like substances than humic-like substances, mostly due to that the latter were relatively more difficult to be utilized as carbon source during the nitrogen removal process. The effluent water quality of biological treatment reached the first grade A standard of "Cities sewage treatment plant pollutant discharge standard" (GB18918-2002). In addition, the effluent from the membrane bioreactor reached the "Standards of reclaimed water quality" (SL368-2006).
Wang, Lei; Li, Ying-Jun; Xiong, Ying; Tan, Wen-Bing; Zhang, Lie-Yu; Li, Xiang; Wang, Xiao-Shu; Xu, Jian-feng; Li, Tong-Tong; Wang, Jin-Sheng; Cai, Ming-Xuan; Xi, Bei-Dou; Wang, Di-Hua
2017-01-01
The performance of the Sha-he wastewater reclamation plant was evaluated in this study. To remove residual nitrogen after Anaerobic-Anoxic-Oxic (A2O) treatment, three multistage Anoxic-Oxic (A/O) were added to investigate the nitrogen removal efficiency and its mechanism. In addition, the constituents and evolution of dissolved organic matter (DOM) during wastewater reclamation was also investigated using a method combining fluorescence spectroscopy with fluorescence regional integration (FRI). The results suggested that multistage A/O treatment can effectively improve the nitrogen removal ability under low concentrations of carbon sources. The total nitrogen (TN) exhibits significantly positive correlation with fulvic acid-like materials and humic acid-like materials. The correlation coefficient for TN and fulvic acid-like substances (R2 = 0.810, P < 0.01) removal was greater than that of humic acid-like substances (R2 = 0.636, P < 0.05). The results indicate that nitrogen removal may be achieved with the fulvic-like and humic-like substances, and the removal effects were higher by fulvic acid-like substances than humic-like substances, mostly due to that the latter were relatively more difficult to be utilized as carbon source during the nitrogen removal process. The effluent water quality of biological treatment reached the first grade A standard of “Cities sewage treatment plant pollutant discharge standard” (GB18918-2002). In addition, the effluent from the membrane bioreactor reached the “Standards of reclaimed water quality” (SL368-2006). PMID:29149172
Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi
2010-11-01
Black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding elicits localized chlorotic injury to pecan foliage [Carya illinoinensis (Wangenh.) K Koch] and apparent acceleration of leaf senescence and defoliation. The ability of certain plant growth regulators (PGRs) (forchlorfenuron, gibberellic acid and aviglycine) to prevent M. caryaefoliae from triggering pecan leaf chlorosis and senescence-like processes was evaluated on two dates in both 2006 and 2007. Treatments were applied to orchard foliage and used in laboratory leaf-disc bioassays to assess possible reduction in aphid-elicited chlorosis and concomitant effects on aphid mortality and development. Foliage pretreated with forchlorfenuron + gibberellic acid prior to being challenged with aphids resulted in significantly less aphid-elicited chlorosis than did control or aviglycine-treated leaf discs. No PGR affected aphid mortality; however, development time was increased by forchlorfenuron + gibberellic acid in 2006 and by aviglycine + gibberellic acid on one date in 2007. Certain PGRs possess the potential for usage on pecan to protect foliar canopies from M. caryaefoliae via changes in the susceptibility of the host leaf to senescence-like factors being introduced by feeding aphids. This protective effect on host foliage and the associated suppressive effect on development of feeding aphids might also be relevant to pest management programs on other aphid-crop systems in which aphid-elicited chlorosis and senescence-like processes can limit profitability. Published 2010 by John Wiley & Sons, Ltd.
Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek
2013-10-01
Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus glauca through Hyperspectral Responses
Wang, Shanqian; Zhang, Xiuying; Ma, Yuandan; Li, Xinhui; Zhang, Xiaomin; Liu, Lei
2018-01-01
Acid rain, which has become one of the most severe global environmental issues, is detrimental to plant growth. However, effective methods for monitoring plant responses to acid rain stress are currently lacking. The hyperspectral technique provides a cost-effective and nondestructive way to diagnose acid rain stresses. Taking a widely distributed species (Quercus glauca) in Southern China as an example, this study aims to monitor the hyperspectral responses of Q. glauca to simulated sulfuric acid rain (SAR) and nitric acid rain (NAR). A total of 15 periods of leaf hyperspectral data under four pH levels of SAR and NAR were obtained during the experiment. The results showed that hyperspectral information could be used to distinguish plant responses under acid rain stress. An index (green peak area index, GPAI) was proposed to indicate acid rain stresses, based on the significantly variations in the region of 500–660 nm. Light acid rain (pH 4.5 SAR and NAR) promoted Q. glauca growth relative to the control groups (pH 5.6 SAR and NAR); moderate acid rain (pH 3.0 SAR) firstly promoted and then inhibited plant growth, while pH 3.0 NAR showed mild inhibitory effects during the experiment; and heavy acid rain (pH 2.0) significantly inhibited plant growth. Compared with NAR, SAR induced more serious damages to Q. glauca. These results could help monitor acid rain stress on plants on a regional scale using remote sensing techniques. PMID:29522488
Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus glauca through Hyperspectral Responses.
Wang, Shanqian; Zhang, Xiuying; Ma, Yuandan; Li, Xinhui; Cheng, Min; Zhang, Xiaomin; Liu, Lei
2018-03-09
Acid rain, which has become one of the most severe global environmental issues, is detrimental to plant growth. However, effective methods for monitoring plant responses to acid rain stress are currently lacking. The hyperspectral technique provides a cost-effective and nondestructive way to diagnose acid rain stresses. Taking a widely distributed species ( Quercus glauca ) in Southern China as an example, this study aims to monitor the hyperspectral responses of Q. glauca to simulated sulfuric acid rain (SAR) and nitric acid rain (NAR). A total of 15 periods of leaf hyperspectral data under four pH levels of SAR and NAR were obtained during the experiment. The results showed that hyperspectral information could be used to distinguish plant responses under acid rain stress. An index (green peak area index, GPAI) was proposed to indicate acid rain stresses, based on the significantly variations in the region of 500-660 nm. Light acid rain (pH 4.5 SAR and NAR) promoted Q. glauca growth relative to the control groups (pH 5.6 SAR and NAR); moderate acid rain (pH 3.0 SAR) firstly promoted and then inhibited plant growth, while pH 3.0 NAR showed mild inhibitory effects during the experiment; and heavy acid rain (pH 2.0) significantly inhibited plant growth. Compared with NAR, SAR induced more serious damages to Q. glauca . These results could help monitor acid rain stress on plants on a regional scale using remote sensing techniques.
Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant.
Bolívar, J P; Martín, J E; García-Tenorio, R; Pérez-Moreno, J P; Mas, J L
2009-02-01
In recent years there has been an increasing awareness of the occupational and public hazards of the radiological impact of non-nuclear industries which process materials containing naturally occurring radionuclides. These include the industries devoted to the production of phosphoric acid by treating sedimentary phosphate rocks enriched in radionuclides from the uranium series. With the aim of evaluating the radiological impact of a phosphoric acid factory located in the south-western Spain, the distribution and levels of radionuclides in the materials involved in its production process have been analysed. In this way, it is possible to asses the flows of radionuclides at each step and to locate those points where a possible radionuclide accumulation could be produced. A set of samples collected along the whole production process were analysed to determine their radionuclide content by both alpha-particle and gamma spectrometry techniques. The radionuclide fractionation steps and enrichment sources have been located, allowing the establishment of their mass (activity) balances per year.
Zhang, Feng Juan; Jin, You Ju; Xu, Xing You; Lu, Rong Chun; Chen, Hua Jun
2008-01-01
Jasmonic acid (JA), abscisic acid (ABA) and indole-3-acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C(18) cartridges. The final extracts were derivatised with diazomethane and then measured by GC-MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Sequential elution of the assimilates from the C(18 )cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue.
Nitrilase enzymes and their role in plant–microbe interactions
Howden, Andrew J. M.; Preston, Gail M.
2009-01-01
Summary Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living organisms is relatively underexplored. Current research suggests that nitrilases play important roles in a range of biological processes. In the context of plant–microbe interactions they may have roles in hormone synthesis, nutrient assimilation and detoxification of exogenous and endogenous nitriles. Nitrilases are produced by both plant pathogenic and plant growth‐promoting microorganisms, and their activities may have a significant impact on the outcome of plant–microbe interactions. In this paper we review current knowledge of the role of nitriles and nitrilases in plants and plant‐associated microorganisms, and discuss how greater understanding of the natural functions of nitrilases could be applied to benefit both industry and agriculture. PMID:21255276
Huang, Chengjian; Zhou, Jinghua; Jie, Yucheng; Xing, Hucheng; Zhong, Yingli; Yu, Weilin; She, Wei; Ma, Yushen; Liu, Zehang; Zhang, Ying
2016-12-01
bZIP transcription factors play key roles in plant growth, development, and stress signaling. A bZIP gene BnbZIP2 (GenBank accession number: KP642148) was cloned from ramie. BnbZIP2 has a 1416 base pair open reading frame, encoding a 471 amino acid protein containing a characteristic bZIP domain and a leucine zipper. BnbZIP2 shares high sequence similarity with bZIP factors from other plants. The BnbZIP2 protein is localized to both nuclei and cytoplasm. Transcripts of BnbZIP2 were found in various tissues in ramie, with significantly higher levels in female and male flowers. Its expression was induced by drought, high salinity, and abscisic acid treatments. Analysis of the cis-elements in promoters of BnbZIP2 identified cis-acting elements involved in growth, developmental processes, and a variety of stress responses. Transgenic Arabidopsis plants' overexpression of BnbZIP2 exhibited more sensitivity to drought and heavy metal Cd stress during seed germination, whereas more tolerance to high-salinity stress than the wild type during both seed germination and plant development. Thus, BnbZIP2 may act as a positive regulator in plants' response to high-salinity stress and be an important candidate gene for molecular breeding of salt-tolerant plants.
Ströher, Elke; Grassl, Julia; Carrie, Chris; Fenske, Ricarda; Whelan, James; Millar, A Harvey
2016-03-01
Glutaredoxins (Grxs) are small proteins that function as oxidoreductases with roles in deglutathionylation of proteins, reduction of antioxidants, and assembly of iron-sulfur (Fe-S) cluster-containing enzymes. Which of the 33 Grxs in Arabidopsis (Arabidopsis thaliana) perform roles in Fe-S assembly in mitochondria is unknown. We have examined in detail the function of the monothiol GrxS15 in plants. Our results show its exclusive mitochondrial localization, and we are concluding it is the major or only Grx in this subcellular location. Recombinant GrxS15 has a very low deglutathionylation and dehydroascorbate reductase activity, but it binds a Fe-S cluster. Partially removing GrxS15 from mitochondria slowed whole plant growth and respiration. Native GrxS15 is shown to be especially important for lipoic acid-dependent enzymes in mitochondria, highlighting a putative role in the transfer of Fe-S clusters in this process. The enhanced effect of the toxin arsenic on the growth of GrxS15 knockdown plants compared to wild type highlights the role of mitochondrial glutaredoxin Fe-S-binding in whole plant growth and toxin tolerance. © 2016 American Society of Plant Biologists. All Rights Reserved.
Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati
2013-06-01
The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 63.1161 - Performance testing and test methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) Establishment of hydrochloric acid regeneration plant operating parameters. (1) During the performance test for hydrochloric acid regeneration plants, the owner or operator shall establish site-specific operating parameter...
40 CFR 63.1161 - Performance testing and test methods.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) Establishment of hydrochloric acid regeneration plant operating parameters. (1) During the performance test for hydrochloric acid regeneration plants, the owner or operator shall establish site-specific operating parameter...
Mittendorf, V; Bongcam, V; Allenbach, L; Coullerez, G; Martini, N; Poirier, Y
1999-10-01
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Gonzalez, Lauren E; Keller, Kristen; Chan, Karen X; Gessel, Megan M; Thines, Bryan C
2017-07-17
The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1-1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level.
Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals.
Falås, P; Baillon-Dhumez, A; Andersen, H R; Ledin, A; la Cour Jansen, J
2012-03-15
Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct difference between nitrifying activated sludge and suspended biofilm carrier removal of several pharmaceuticals was demonstrated. Biofilm carriers from full-scale nitrifying wastewater treatment plants, demonstrated considerably higher removal rates per unit biomass (i.e. suspended solids for the sludges and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast to the pharmaceutical removal, the nitrification capacity per unit biomass was lower for the carriers than the sludges, which suggests that neither the nitrite nor the ammonia oxidizing bacteria are primarily responsible for the observed differences in pharmaceutical removal. The low ability of ammonia oxidizing bacteria to degrade or transform the target pharmaceuticals was further demonstrated by the limited pharmaceutical removal in an experiment with continuous nitritation and biofilm carriers from a partial nitritation/anammox sludge liquor treatment process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cotrozzi, Lorenzo; Pellegrini, Elisa; Guidi, Lucia; Landi, Marco; Lorenzini, Giacomo; Massai, Rossano; Remorini, Damiano; Tonelli, Mariagrazia; Trivellini, Alice; Vernieri, Paolo; Nali, Cristina
2017-01-01
Understanding the interactions between drought and acute ozone (O 3 ) stress in terms of signaling molecules and cell death would improve the predictions of plant responses to climate change. The aim was to investigate whether drought stress influences the responses of plants to acute episodes of O 3 exposure. In this study, the behavior of 84 Mediterranean evergreen Quercus ilex plants was evaluated in terms of cross-talk responses among signaling molecules. Half of the sample was subjected to drought (20% of the effective daily evapotranspiration, for 15 days) and was later exposed to an acute O 3 exposure (200 nL L -1 for 5 h). First, our results indicate that in well-water conditions, O 3 induced a signaling pathway specific to O 3 -sensitive behavior. Second, different trends and consequently different roles of phytohormones and signaling molecules (ethylene, ET; abscisic acid, ABA; salycilic acid, SA and jasmonic acid, JA) were observed in relation to water stress and O 3 . A spatial and functional correlation between these signaling molecules was observed in modulating O 3 -induced responses in well-watered plants. In contrast, in drought-stressed plants, these compounds were not involved either in O 3 -induced signaling mechanisms or in leaf senescence (a response observed in water-stressed plants before the O 3 -exposure). Third, these differences were ascribable to the fact that in drought conditions, most defense processes induced by O 3 were compromised and/or altered. Our results highlight how Q. ilex plants suffering from water deprivation respond differently to an acute O 3 episode compared to well-watered plants, and suggest new effect to be considered in plant responses to environmental changes. This poses the serious question as to whether or not multiple high-magnitude O 3 events (as predicted) can change these cross-talk responses, thus opening it up possible further investigations.
Micropropagation of Helleborus through axillary budding.
Beruto, Margherita; Viglione, Serena; Bisignano, Alessandro
2013-01-01
Helleborus genus, belonging to the Ranunculaceae family, has 20 species of herbaceous perennial flowering plants. The commercial exploitation of this plant is dependent on the selection and propagation of appropriate lines. High propagation rate could be accomplished by using a suitable tissue culture method enabling the rapid introduction of valuable selections in the market. However, in vitro cultivation of Helleborus is still very difficult. Thereby the development of reliable in vitro propagation procedures is crucial for future production systems. Axillary buds cultured on agar-solidified Murashige and Skoog medium supplemented with 1 mg/L benzyladenine, 0.1 mg/L β-naphthoxyacetic acid, and 2 mg/L isopentenyl adenine develop shoots after 16 weeks of culture under 16 h light regime, 50-60 μmol/s/m(2), and 19 ± 1°C. The multiplication rate ranges from 1.4 to 2.1. However, the genotype and the number of subcultures affect the efficiency of the micropropagation process. The rooting of shoots is about 80% in solidified MS medium containing 1 mg/L 1-naphthaleneacetic acid and 3 mg/L indole-3-butyric acid. The described protocol provides information which can contribute to the commercial production of Helleborus plants.
Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings.
Elektorowicz, M; Keropian, Z
2015-01-01
The potential for phytoremediation and phytostabilization of lithium in lieu with vanadium and chromium on a formulated acidic heterogeneous growth media engineered around lithium mine tailings, was investigated in four phases: (1) overall efficiency of the removal of the three metals, (2) bioaccumulation ratios of the three metals, (3) overall relative growth rate, and (4) translocation index of the three metals in the physiology of the hyperaccumulator plant. A pot study was conducted to assess the suitability of Brassica juncea (Indian mustard) in a phytoremediation process whereby it was lingered for eighty-six days under homogeneous growth conditions and irrigated bidaily with organic fertilizer amended with LiCl. A post harvest data analysis was achieved through ashing and the implementation of cold digestion procedure in a concentrated hydrochloric acidic matrix. In physiological efficiency parameters, the hyperaccumulator plant was twice as able to phytostabilize chromium and four times was able to phytostabilize vanadium in comparison to lithium. Moreover, it was extremely efficient in translocating and accumulating lithium inside its upper physiological sites, more so than chromium and vanadium, thereby demonstrating Indian mustard, as a hyperaccumulator plant, for phytoextraction and phytostabilization in an acidic heterogeneous rhizosphere, with an extremely low relative growth rate.
Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Mikula, Randy J; Germida, James J
2010-01-01
During reclamation the water associated with the runoff or groundwater flushing from dry stackable tailings technologies may become available to the reclaimed environment within an oil sands lease. Here we evaluate the performance of the emergent macrophyte, common reed (Phragmites australis), grown in chemically amended mature fine tailings (MFT) and simulated runoff/seepage water from different MFT drying treatments. The present study also investigated the phytotoxicity of the concentration of oil sands naphthenic acids (NAs) in different MFT drying chemical treatments, in both planted and unplanted systems. We demonstrate that although growth was reduced, the emergent macrophyte common reed was capable of growing in diluted unamended MFT runoff, as well as in diluted runoff from MFT amended with either 0.25% lime and gypsum or 0.5% gypsum. Common reed can thus assist in the dewatering process of oil sands MFT. However, simulated runoff or seepage waters from chemically amended and dried MFT were phytotoxic, due to combined levels of salts, naphthenic acids and pH. Phytoremediation of runoff water/ground water seepage from dry-land applied MFT will thus require pre-treatment in order to make conditions more favorable for plant growth.
Vanderstraeten, Lisa; Van Der Straeten, Dominique
2017-01-01
1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy. PMID:28174583
Vanderstraeten, Lisa; Van Der Straeten, Dominique
2017-01-01
1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin
Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, ismore » also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.« less
Koutinas, A A; Wang, R; Webb, C
2004-03-05
Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested. Copyright 2004 Wiley Periodicals, Inc.
Mathew, Sindhu; Abraham, T Emilia
2004-01-01
Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.
Zhang, Xiaotian; Ji, Feng; Li, Yueqi; He, Tian; Han, Ya; Wang, Daidong; Lin, Zongtao; Chen, Shizhong
2018-01-01
In this study, an on-line supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) method was developed for the rapid determination of oleanoic acid and ursolic acid in Chaenomelis Fructus. After optimization of the conditions, the two triterpenoid acids was obtained by SFE using 20% methanol as a modifier at 35°C in 8 min. They were resolved on a Shim-pack UC-X Diol column (4.6 × 150 mm, 3 μm) in 14 min (0 - 10 min, 5 - 10%; 10 - 14 min, 10% methanol in CO 2 ) with a backpressure of 15 MPa at 40°C. The on-line SFE-SFC method could be completed within 40 min (10.79 mg/g dry plant, R s = 2.36), while the ultrasound-assisted extraction and HPLC method required at least 90 min (3.55 mg/g dry plant, R s = 1.92). This on-line SFE-SFC method is powerful to simplify the pre-processing and quantitative analysis of natural products.
Engineering microbial fatty acid metabolism for biofuels and biochemicals.
Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena; Borodina, Irina
2018-04-01
Traditional oleochemical industry chemically processes animal fats and plant oils to produce detergents, lubricants, biodiesel, plastics, coatings, and other products. Biotechnology offers an alternative process, where the same oleochemicals can be produced from abundant biomass feedstocks using microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining metabolites with different functionalities. The prospects of commercializing microbial oleochemicals are also discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang
2007-03-01
Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal-fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October 2000 to July 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO4(2-), NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO4(2-) added accumulated in the soil. Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of, the leaf K, Ca and Mg concentrations when the treatment acidity increased. Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.
Giacomelli, Nino; Yongping, Yang; Huber, Franz K; Ankli, Anita; Weckerle, Caroline S
2017-03-14
Background: Dang gui (Apiaceae; Angelica sinensis radix) is among the most often used Chinese medicinal plants. However, hardly anything is known about its value chain and its influence on the main marker compounds of the drug. The aim of this study is to investigate the value chain of dang gui in Gansu and Yunnan, and the analysis of the marker compounds ferulic acid and Z-ligustilide concentration in relation to quality criteria such as the production area and size of the roots. Methods: During six months of field research in China, semi-structured interviews with various stakeholders of the value chain were undertaken and plant material was collected. High-performance thin layer chromatography (HPTLC) was used for semi-quantitative analysis of ferulic acid and Z-ligustilide. Results: Small-scale household cultivation prevails and in Gansu-in contrast to Yunnan-the cultivation of dang gui is often the main income source of farmers. Farmers and dealers use size and odor of the root as main quality criteria. For Chinese medicine doctors, Gansu as the production area is the main criterion. Higher amounts of ferulic acid in plant material from Yunnan compared to Gansu were found. Additionally, a negative relation of root length with both ferulic acid and Z-ligustilide as well as head diameter with ferulic acid were found. Conclusions: HPTLC is a valid method for semi-quantitative analysis of the marker compounds of dang gui . However, the two main marker compounds cannot explain why size and smell of the root or production area are seen as quality criteria. This hints at the inherent difficulty to correlate quality notions of medicinal plants with specific chemical compounds. With respect to this, more attention should be paid to quality in terms of cultivation and processing techniques.
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
40 CFR 63.1161 - Performance testing and test methods.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) or measure the concentration of HCl (and Cl2 for hydrochloric acid regeneration plants) in gases... to the initial test or tests. (c) Establishment of hydrochloric acid regeneration plant operating...
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
40 CFR 63.1155 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regeneration Plants § 63.1155 Applicability. (a) The provisions of this subpart apply to the following... temperature of 100 °F or higher; and (2) All new and existing hydrochloric acid regeneration plants. (3) The... acid, to facilities that pickle only specialty steel, or to acid regeneration plants that regenerate...
40 CFR 63.1161 - Performance testing and test methods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) or measure the concentration of HCl (and Cl2 for hydrochloric acid regeneration plants) in gases... to the initial test or tests. (c) Establishment of hydrochloric acid regeneration plant operating...