Science.gov

Sample records for acid producing potential

  1. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products.

    PubMed

    Capozzi, Vittorio; Russo, Pasquale; Dueñas, María Teresa; López, Paloma; Spano, Giuseppe

    2012-12-01

    Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed.

  2. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    PubMed Central

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  3. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    PubMed

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  4. Complete genome sequence of probiotic Bacillus coagulans HM-08: A potential lactic acid producer.

    PubMed

    Yao, Guoqiang; Gao, Pengfei; Zhang, Wenyi

    2016-06-20

    Bacillus coagulans HM-08 is a commercialized probiotic strain in China. Its genome contains a 3.62Mb circular chromosome with an average GC content of 46.3%. In silico analysis revealed the presence of one xyl operon as well as several other genes that are correlated to xylose utilization. The genetic information provided here may help to expand its future biotechnology potential in lactic acid production.

  5. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide.

    PubMed

    Zhou, Lian; Jiang, Hai-Xia; Sun, Shuang; Yang, Dan-Dan; Jin, Kai-Ming; Zhang, Wei; He, Ya-Wen

    2016-03-01

    Bacterial phenazine metabolites belong to a group of nitrogen-containing heterocyclic compounds with antimicrobial activities. In this study, a rhizosphere Pseudomonas aeruginosa strain PA1201 was isolated and identified through 16S rDNA sequence analysis and fatty acid profiling. PA1201 inhibited the growth of various pathogenic microorganisms, including Rhizotonia solani, Magnaporthe grisea, Fusarium graminearum, Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Staphylococcus aureus. High Performance Liquid Chromatography showed that PA1201 produced high levels of phenazine-1-carboxylic acid (PCA), a registered green fungicide 'Shenqinmycin' with the fermentation titers of 81.7 mg/L in pigment producing medium (PPM) and 926.9 mg/L in SCG medium containing soybean meal, corn steep liquor and glucose. In addition, PA1201 produced another antifungal metabolite, phenazine-1-carboxaminde (PCN), a derivative of PCA, with the fermentation titers of 18.1 and 489.5 mg/L in PPM and SCG medium respectively. To the best of our knowledge, PA1201 is a rhizosphere originating P. aeruginosa strain that congenitally produces the highest levels of PCA and PCN among currently reported P. aeruginosa isolates, which endows it great biotechnological potential to be transformed to a biopesticide-producing engineering strain.

  6. Pyrenophoric acid, a phytotoxic sesquiterpenoid penta-2,4-dienoic acid produced by a potential mycoherbicide, Pyrenophora semeniperda.

    PubMed

    Masi, Marco; Meyer, Susan; Cimmino, Alessio; Andolfi, Anna; Evidente, Antonio

    2014-04-25

    A new phytotoxic sesquiterpenoid penta-2,4-dienoic acid, named pyrenophoric acid, was isolated from solid wheat seed culture of Pyrenophora semeniperda, a fungal pathogen proposed as a mycoherbicide for biocontrol of cheatgrass (Bromus tectorum) and other annual bromes. These bromes are serious weeds in winter cereals and also on temperate semiarid rangelands. Pyrenophoric acid was characterized as (2Z,4E)-5-[(7S,9S,10R,12R)-3,4-dihydroxy-2,2,6-trimethylcyclohexyl)]-3-methylpenta-2,4-dienoic acid by spectroscopic and chemical methods. The relative stereochemistry of pyrenophoric acid was assigned using 1H,1H couplings and NOESY experiments, while its absolute configuration was determined by applying the advanced Mosher's method. Pyrenophoric acid is structurally quite closely related to the plant growth regulator abscisic acid. When bioassayed in a cheatgrass coleoptile elongation test at 10(-3) M, pyrenophoric acid showed strong phytotoxicity, reducing coleoptile elongation by 51% relative to the control. In a mixture at 10(-4) M, its negative effect on coleoptile elongation was additive with that of cytochalasin B, another phytotoxic compound found in the wheat seed culture extract of this fungus, demonstrating that the extract toxicity observed in earlier studies was due to the combined action of multiple phytotoxic compounds.

  7. Potential of bacteriocin-producing lactic acid bacteria for safety improvements of traditional Thai fermented meat and human health.

    PubMed

    Swetwiwathana, Adisorn; Visessanguan, Wonnop

    2015-11-01

    Lactic acid bacteria (LAB) are very important in converting of agricultural products into safe, delicious and shelf stable foods for human consumption. The preservative activity of LAB in foods is mainly attributed to the production of anti-microbial metabolites such as organic acids and bacteriocins which enables them to grow and control the growth of pathogens and spoilage microorganisms. Besides ensuring safety, bacteriocin-producing LAB with their probiotic potentials could also be emerging as a means to develop functional meat products with desirable health benefits. Nevertheless, to be qualified as a candidate probiotic culture, other prerequisite probiotic properties of bacteriocin-producing LAB have to be assessed according to regulatory guidelines for probiotics. Nham is an indigenous fermented sausage of Thailand that has gained popularity and acceptance among Thais. Since Nham is made from raw meat and is usually consumed without cooking, risks due to undesirable microorganisms such as Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes, are frequently observed. With an ultimate goal to produce safer and healthier product, our research attempts on the development of a variety of new Nham products are discussed.

  8. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  9. Phytase-Producing Potential and Other Functional Attributes of Lactic Acid Bacteria Isolates for Prospective Probiotic Applications.

    PubMed

    Andrabi, Syed Tabia; Bhat, Bilqeesa; Gupta, Mahak; Bajaj, Bijender Kumar

    2016-09-01

    Wide variations among multifaceted-health benefitting attributes of probiotics fueled investigations on targeting efficacious probiotics. In the current study, lactic acid bacteria (LAB) isolated from poultry gut, feces of rat, chicken, human infants, and fermented foods were characterized for desired probiotic functional properties including the phytase-producing ability which is one of the wanted characteristics for probiotics for potential applications for upgrading animal nutrition, enhancing feed conversion, and minimizing anti-nutritional properties. Among 62 LAB isolates Weissella kimchii R-3 an isolate from poultry gut exhibited substantial phytase-producing ability (1.77 U/ml) in addition to other functional probiotic characteristics viz. hydrophobicity, autoaggregation, coaggregation with bacterial pathogens, and antimicrobial activity against pathogens. Survival of W. kimchii R-3 cells (in free and calcium alginate encapsulated state) was examined sequentially in simulated gastric and intestinal juices. Encapsulated cells exhibited better survival under simulated gut conditions indicating that encapsulation conferred considerable protection against adverse gut conditions. Furthermore, simulated gastric and intestinal juices with pepsin and pancreatin showed higher survival of cells than the juices without pepsin and pancreatin. W. kimchii R-3 due to its significant functional probiotic attributes may have prospective for commercial applications in human/animal nutrition.

  10. Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation.

    PubMed

    Nakayama, Shunichi; Morita, Tomotake; Negishi, Hideyuki; Ikegami, Toru; Sakaki, Keiji; Kitamoto, Dai

    2008-08-01

    The development of fermentative yeasts secreting no organic acids is highly desirable for ethanol production coupled with membrane separation processes, because the acidic byproduct, succinic acid, significantly inhibits the membrane permeation of ethanol. Of the Pichia and Candida yeasts tested, Candida krusei IA-1 showed the highest ethanol productivity [55 g L(-1) day(-1) from 150 g L(-1) (w/v) of glucose], comparable to the strains of Saccharomyces cerevisiae, and produced much less of the acid (0.6 g L(-1) day(-1)) than the Saccharomyces strains (1.5-1.8 g L(-1) day(-1)) under semi-aerobic conditions. Interestingly, under aerobic conditions, strain IA-1 showed no production of the acid. Stain IA-1 exhibited a good assimilation of the acid, while S. cerevisiae NBRC 0216 showed no assimilation. The activity of succinate dehydrogenase (SDH) in strain IA-1 was 37.5 mU mg(-1), and 7.8-fold higher than that in S. cerevisiae strain NBRC 0216. More significantly, SDH1 was abundantly transcribed in strain IA-1, different from that in strain NBRC 0216, regardless of the culture conditions. From these results, C. krusei IA-1 efficiently takes up succinic acid and metabolizes it in the Krebs cycle, producing an extremely low level of byproducts in the culture medium. Therefore, C. krusei is not only a promising alternative to S. cerevisiae but also a suitable model for metabolic engineering of S. cerevisiae.

  11. Acid-producing potential of the various lithic units associated with the mining of coal. Technical completion report

    SciTech Connect

    Renton, J.J.; Stiller, A.H.

    1986-01-01

    A collection of the seven different potentially toxic lithotypes encountered in the mining of coal were collected for five coals in 18 mines over a 5 county area in northern West Virginia for a total of 89 samples. Each sample was subjected to total sulfur analysis and to the soxhlet extraction/oven reoxidation procedure devised by the authors for the evaluation of an acid-production rate constant, alpha. The data show that the samples with the lowest sulfur contents have the highest acid production rate constants.

  12. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  13. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress.

    PubMed

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.

  14. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress* #

    PubMed Central

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    2017-01-01

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses. PMID:28124841

  15. Low acid producing solid propellants

    NASA Technical Reports Server (NTRS)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  16. Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce D(-)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens.

    PubMed

    de Oliveira Moraes, Anelize; Ramirez, Ninoska Isabel Bojorge; Pereira, Nei

    2016-12-01

    Lactic acid is widely used in chemical, pharmaceutical, cosmetic, and food industries, besides it is the building block to produce polylactic acid, which is a sustainable alternative biopolymer to synthetic plastic due to its biodegradability. Aiming at producing an optically pure isomer, the present work evaluated the potential of pulp mill residue as feedstock to produce D(-)-lactic acid by a strain of the bacterium Lactobacillus coryniformis subsp. torquens using separate hydrolysis and fermentation process. Enzymatic hydrolysis, optimized through response surface methodology for 1 g:4 mL solid/liquid ratio and 24.8 FPU/gcellulose enzyme loading, resulted in 140 g L(-1) total reducing sugar and 110 g L(-1) glucose after 48 h, leading to 61 % of efficiency. In instrumented bioreactor, 57 g L(-1) of D(-)-lactic acid was achieved in 20 h of fermentation, while only 0.5 g L(-1) of L(+)-lactic acid was generated. Furthermore, product yield of 0.97 g/g and volumetric productivity of 2.8 g L(-1) h(-1) were obtained.

  17. Screening of microbial lipases and evalutaion of their potential to produce glycerides with high gamma linolenic acid concentration

    PubMed Central

    Fregolente, Patricia B.L.; Fregolente, Leonardo V.; Maciel, Maria R.W.; Carvalho, Patricia O.

    2009-01-01

    Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC. PMID:24031421

  18. Nondairy beverage produced by controlled fermentation with potential probiotic starter cultures of lactic acid bacteria and yeast.

    PubMed

    Freire, Ana Luiza; Ramos, Cintia Lacerda; da Costa Souza, Patrícia Nirlane; Cardoso, Mauro Guilherme Barros; Schwan, Rosane Freitas

    2017-02-21

    This work aimed to develop a nondairy fermented beverage from a blend of cassava and rice based on Brazilian indigenous beverage cauim using probiotic lactic acid bacteria (LAB) and yeast. The indigenous strains Lactobacillus plantarum CCMA 0743 (from cauim) and Torulaspora delbrueckii CCMA 0235 (from tarubá), and the commercial probiotic, L. acidophilus LAC-04, were used as starter cultures in single and co-cultivations. The bacteria populations were around 8.0 log (CFU/mL) at the end of all fermentations as recommended for probiotic products. Higher residual starch contents were noted in the single LAB cultures (10.6% [w/w]) than in co-cultures (<6% [w/w]), showing that co-culture may help the digestibility. For all different assays (single and co-culture), lactic acid was the main organic acid detected (>1.6g/L) and ethanol was lower than 0.5% (w/v) consisting in a non-alcoholic beverage. The assays containing yeast showed the highest antioxidant activity (around 10% by DPPH and ABTS methods). Therefore, a nondairy fermented beverage was successfully obtained, and the co-culture of LAB and T. delbrueckii could increase the product's functional properties.

  19. Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and invasive potential.

    PubMed Central

    Jouanneau, J; Gavrilovic, J; Caruelle, D; Jaye, M; Moens, G; Caruelle, J P; Thiery, J P

    1991-01-01

    Addition of exogenous acidic fibroblast growth factor (aFGF) to NBT-II epithelial carcinoma cells results in fibroblastic transformation and cell motility. We have generated aFGF-producing NBT-II cells by transfection with recombinant expression vectors containing human aFGF cDNA, or the human aFGF cDNA coupled to a signal peptide (SP) sequence. The effects of the nonsecreted and the secreted 16-kDa growth factor on the morphology, motility, and cell invasive potential (gelatinase activity) were compared. aFGF coupled to a SP was actively secreted out of the producing cells. The secretion of aFGF was not necessary for induction of gelatinase activity, as this was observed in NBT-II cells producing aFGF with or without SP. Production of aFGF, whether secreted or not secreted, resulted in increased in vitro motility of most isolated clones; however, there was no correlation between aFGF level and motility rate. The data suggest that expression of aFGF in NBT-II cells induces metastatic potential through an autocrine or intracrine mechanism. Images PMID:1707175

  20. Papyracillic acid, a phytotoxic 1,6-dioxaspiro[4,4]nonene produced by Ascochyta agropyrina Var. nana, a potential mycoherbicide for Elytrigia repens biocontrol.

    PubMed

    Evidente, Antonio; Berestetskiy, Alexander; Cimmino, Alessio; Tuzi, Angela; Superchi, Stefano; Melck, Dominique; Andolfi, Anna

    2009-12-09

    A strain of Ascochyta agropyrina var. nana was isolated from Elytrigia repens (quack grass), a noxious perennial weed widespread through the cold regions of the northen and southern hemispheres. Papyracillic acid was isolated for the first time from the fungal solid culture and identified using spectroscopic methods, including X-ray diffractometric and CD analysis for the assignment of the relative and absolute stereochemistries. Some key derivatives were prepared and used in a structure-activity relationship study. Tested by leaf disk-puncture assay, papyracillic acid at the concentration of 1 mg/mL was shown to be phytotoxic both for the host plant and a number of nonhost plants of the fungus. Papyracillic acid was active against bacteria (Xanthomonas campestris and Bacillus subtilis) and the fungus Candida tropicalis at 6 microg/disk. Derivatives of papyracillic acid were significantly less active than original toxin. However, the monoacetyl derivative of the toxin did not possess antimicrobial activity but remained highly phytotoxic to quack grass. Hence, papyracillic acid and its analogues have potential as nonselective herbicides of natural origin. Some structure-activity relationship observations for papyracillic acid and its derivatives were also made.

  1. Producing dicarboxylic acids using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  2. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  3. Poly-γ-glutamic acid produced from Bacillus licheniformis CGMCC 2876 as a potential substitute for polyacrylamide in the sugarcane industry.

    PubMed

    Yan, Shan; Yao, Haosheng; Chen, Zhen; Zeng, Shengquan; Xi, Xi; Wang, Yuanpeng; He, Ning; Li, Qingbiao

    2015-01-01

    As an environmentally friendly and industrially useful biopolymer, poly-γ-glutamic acid (γ-PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high-resolution mass spectrometry and (1)H NMR. A flocculating activity of 11,474.47 U mL(-1) obtained with γ-PGA, and the effects of carbon sources, ions, and chemical properties (D-/L-composition and molecular weight) on the production and flocculating activity of γ-PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ-PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry--polyacrylamide with 1 ppm. The γ-PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry.

  4. Recovery of carboxylic acids produced by fermentation.

    PubMed

    López-Garzón, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ.

  5. PROCESS FOR PRODUCING ALKYL ORTHOPHOSPHORIC ACID EXTRACTANTS

    DOEpatents

    Grinstead, R.R.

    1962-01-23

    A process is given for producing superior alkyl orthophosphoric acid extractants for use in solvent extraction methods to recover and purify various metals such as uranium and vanadium. The process comprises slurrying P/sub 2/O/ sub 5/ in a solvent diluent such as kerosene, benzene, isopropyl ether, and the like. An alipbatic alcohol having from nine to seventeen carbon atoms, and w- hcrein ihc OH group is situated inward of the terminal carbon atoms, is added to the slurry while the reaction temperature is mainiained below 60 deg C. The alcohol is added in the mole ratio of about 2 to l, alcohol to P/sub 2/O/sub 5/. A pyrophosphate reaotion product is formed in the slurry-alcohol mixture. Subsequently, the pyrophosphate reaction product is hydrolyzed with dilute mineral acid to produce the desired alkyl orthophosphoric aeid extractant. The extraetant may then be separated and utilized in metal-recovery, solvent- extraction processes. (AEC)

  6. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    PubMed Central

    Singh, Mamtesh; Patel, Sanjay KS; Kalia, Vipin C

    2009-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA. PMID:19619289

  7. Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential.

    PubMed

    Decarpentrie, Fanny; Vernet, Nadège; Mahadevaiah, Shantha K; Longepied, Guy; Streichemberger, Eric; Aknin-Seifer, Isabelle; Ojarikre, Obah A; Burgoyne, Paul S; Metzler-Guillemain, Catherine; Mitchell, Michael J

    2012-06-15

    Mammalian ZFY genes are located on the Y chromosome, and code putative transcription factors with 12-13 zinc fingers preceded by a large acidic (activating) domain. In mice, there are two genes, Zfy1 and Zfy2, which are expressed mainly in the testis. Their transcription increases in germ cells as they enter meiosis, both are silenced by meiotic sex chromosome inactivation (MSCI) during pachytene, and Zfy2 is strongly reactivated later in spermatids. Recently, we have shown that mouse Zfy2, but not Zfy1, is involved in triggering the apoptotic elimination of specific types of sex chromosomally aberrant spermatocytes. In humans, there is a single widely transcribed ZFY gene, and there is no evidence for a specific role in the testis. Here, we characterize ZFY transcription during spermatogenesis in mice and humans. In mice, we define a variety of Zfy transcripts, among which is a Zfy2 transcript that predominates in spermatids, and a Zfy1 transcript, lacking an exon encoding approximately half of the acidic domain, which predominates prior to MSCI. In humans, we have identified a major testis-specific ZFY transcript that encodes a protein with the same short acidic domain. This represents the first evidence that ZFY has a conserved function during human spermatogenesis. We further show that, in contrast to the full acidic domain, the short domain does not activate transcription in yeast, and we hypothesize that this explains the functional difference observed between Zfy1 and Zfy2 during mouse meiosis.

  8. [Bacteriocins produced by lactic acid bacteria].

    PubMed

    Bilková, Andrea; Sepova, Hana Kinová; Bilka, Frantisek; Balázová, Andrea

    2011-04-01

    Lactic acid bacteria comprise several genera of gram-positive bacteria that are known for the production of structurally different antimicrobial substances. Among them, bacteriocins are nowadays in the centre of scientific interest. Bacteriocins, proteinaceous antimicrobial substances, are produced ribosomally and have usually a narrow spectrum of bacterial growth inhibition. According to their structure and the target of their activity, they are divided into four classes, although there are some suggestions for a renewed classification. The most interesting and usable class are lantibiotics. They comprise the most widely commercially used and well examined bacteriocin, nisin. The non-pathogenic character of lactic acid bacteria is advantageous for using their bacteriocins in food preservation as well as in feed supplements or in veterinary medicine.

  9. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  10. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    PubMed Central

    2012-01-01

    Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction

  11. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  12. Nonstarter lactic acid bacteria volatilomes produced using cheese components.

    PubMed

    Sgarbi, E; Lazzi, C; Tabanelli, G; Gatti, M; Neviani, E; Gardini, F

    2013-07-01

    In long-ripened cheese, flavor formation occurs during ripening. The metabolism of lactic acid bacteria (LAB) leads to the production of different compounds that contribute to the flavor of cheese. The contribution of LAB to the formation of cheese flavor has previously been studied. However, the specific nonstarter LAB (NSLAB) metabolic reactions in ripened cheese that lead to the formation of flavor compounds remain unclear. In ripened cheese, the nutrient sources available include small peptides or amino acids, citrate, lactate, free fatty acids, and starter LAB cell lysis products. Thus, the aim of this study was to evaluate the ability of NSLAB to produce volatile flavor compounds by using an in vitro system that used only the nutrients available in ripened cheese as the energy source. Moreover, the potential contribution of the NSLAB volatilome on total cheese flavor is discussed. For this purpose, the production of volatile compounds on cheese-based medium (CBM) and on starter LAB lysed cell medium (LCM) by 2 Lactobacillus casei and 2 Lactobacillus rhamnosus strains, previously isolated from ripened Parmigiano Reggiano cheese, was investigated. The generated volatile compounds were analyzed with head-space gas chromatography mass spectrometry. Overall, ketones, aldehydes, alcohols, and acids were the most abundant compounds produced. Differences in volatilome production were found between NSLAB grown in LCM and CBM. The catabolic metabolism of amino acids and fatty acids were required for NSLAB growth on LCM. Conversely, pyruvate metabolism was the main catabolic pathway that supported growth of NSLAB in CBM. This study can be considered a first step toward a better understanding of how microbiota involved in the long ripening of cheese may contribute to the development of cheese flavor.

  13. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals.

    PubMed

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-06-17

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals.

  14. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals

    PubMed Central

    Yan, Na; Fan, Chengming; Chen, Yuhong; Hu, Zanmin

    2016-01-01

    As photosynthetic organisms, microalgae can efficiently convert solar energy into biomass. Microalgae are currently used as an important source of valuable natural biologically active molecules, such as carotenoids, chlorophyll, long-chain polyunsaturated fatty acids, phycobiliproteins, carotenoids and enzymes. Significant advances have been achieved in microalgae biotechnology over the last decade, and the use of microalgae as bioreactors for expressing recombinant proteins is receiving increased interest. Compared with the bioreactor systems that are currently in use, microalgae may be an attractive alternative for the production of pharmaceuticals, recombinant proteins and other valuable products. Products synthesized via the genetic engineering of microalgae include vaccines, antibodies, enzymes, blood-clotting factors, immune regulators, growth factors, hormones, and other valuable products, such as the anticancer agent Taxol. In this paper, we briefly compare the currently used bioreactor systems, summarize the progress in genetic engineering of microalgae, and discuss the potential for microalgae as bioreactors to produce pharmaceuticals. PMID:27322258

  15. Neurotoxicity produced by dibromoacetic acid in drinking water of rats.

    PubMed

    Moser, V C; Phillips, P M; Levine, A B; McDaniel, K L; Sills, R C; Jortner, B S; Butt, M T

    2004-05-01

    An evaluation of potential adverse human health effects of disinfection byproducts requires study of both cancer and noncancer endpoints; however, no studies have evaluated the neurotoxic potential of a common haloacetic acid, dibromoacetic acid (DBA). This study characterized the neurotoxicity of DBA during 6-month exposure in the drinking water of rats. Adolescent male and female Fischer 344 rats were administered DBA at 0, 0.2, 0.6, and 1.5 g/l. On a mg/kg/day basis, the consumed dosages decreased greatly over the exposure period, with average intakes of 0, 20, 72, and 161 mg/kg/day. Weight gain was depressed in the high-concentration group, and concentration-related diarrhea and hair loss were observed early in exposure. Testing with a functional observational battery and motor activity took place before dosing and at 1, 2, 4, and 6 months. DBA produced concentration-related neuromuscular toxicity (mid and high concentrations) characterized by limb weakness, mild gait abnormalities, and hypotonia, as well as sensorimotor depression (all concentrations), with decreased responses to a tail-pinch and click. Other signs of toxicity at the highest concentration included decreased activity and chest clasping. Neurotoxicity was evident as early as one month, but did not progress with continued exposure. The major neuropathological finding was degeneration of spinal cord nerve fibers (mid and high concentrations). Cellular vacuolization in spinal cord gray matter (mostly) and in white matter (occasionally) tracts was also observed. No treatment-related changes were seen in brain, eyes, peripheral nerves, or peripheral ganglia. The lowest-observable effect level for neurobehavioral changes was 20 mg/kg/day (produced by 0.2 g/l, lowest concentration tested), whereas this dosage was a no-effect level for neuropathological changes. These studies suggest that neurotoxicity should be considered in the overall hazard evaluation of haloacetic acids.

  16. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    SciTech Connect

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D.

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  17. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  18. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  19. Method to produce succinic acid from raw hydrolysates

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia Y.; Nghiem, Nhuan Phu

    2004-06-01

    A method for producing succinic acid from industrial-grade hydrolysates is provided, comprising supplying an organism that contains mutations for the genes ptsG, pflB, and ldhA, allowing said organism to accumulate biomass, and allowing said organism to metabolize the hydrolysate. Also provided is a bacteria mutant characterized in that it produces succinic acid from substrate contained in industrial-grade hydrolysate in a ratio of between 0.6:1 and 1.3:1 succinic acid to substrate.

  20. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    PubMed

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.

  1. Therapeutic Potential of Dietary Phenolic Acids

    PubMed Central

    Saibabu, Venkata; Fatima, Zeeshan; Khan, Luqman Ahmad; Hameed, Saif

    2015-01-01

    Although modern lifestyle has eased the quality of human life, this lifestyle's related patterns have imparted negative effects on health to acquire multiple diseases. Many synthetic drugs are invented during the last millennium but most if not all of them possess several side effects and proved to be costly. Convincing evidences have established the premise that the phytotherapeutic potential of natural compounds and need of search for novel drugs from natural sources are of high priority. Phenolic acids (PAs) are a class of secondary metabolites spread throughout the plant kingdom and generally involved in plethora of cellular processes involved in plant growth and reproduction and also produced as defense mechanism to sustain various environmental stresses. Extensive research on PAs strongly suggests that consumption of these compounds hold promise to offer protection against various ailments in humans. This paper focuses on the naturally derived PAs and summarizes the action mechanisms of these compounds during disease conditions. Based on the available information in the literature, it is suggested that use of PAs as drugs is very promising; however more research and clinical trials are necessary before these bioactive molecules can be made for treatment. Finally this review provides greater awareness of the promise that natural PAs hold for use in the disease prevention and therapy. PMID:26442119

  2. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods.

    PubMed

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.

  3. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    PubMed Central

    Vuković, Rosemary; Likić, Saša; Jelaska, Sibila

    2015-01-01

    Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326

  4. Using Spreadsheets to Produce Acid-Base Titration Curves.

    ERIC Educational Resources Information Center

    Cawley, Martin James; Parkinson, John

    1995-01-01

    Describes two spreadsheets for producing acid-base titration curves, one uses relatively simple cell formulae that can be written into the spreadsheet by inexperienced students and the second uses more complex formulae that are best written by the teacher. (JRH)

  5. NEUROXOTOXICITY PRODUCED BY DIBROMOACETIC ACID IN DRINKING WATER OF RATS.

    EPA Science Inventory

    The Safe Drinking Water Act requires that EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection byproducts (DBPs). Dibromoacetic acid (DBA) is one of many DBPs produced by the chlorination of drinking water. Its chlorinated analog, ...

  6. New fermentation processes for producing itaconic acid and citric acid for industrial uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Itaconic acid is an important industrial chemical that we have produced by fermentation of simple sugars using the yeast Pseudozyma antarctica. Itaconic acid is priced at ~$4 per kg and has an annual market volume of about 15,000 metric tons. Itaconic acid is used in the polymer industry and for m...

  7. Potential bronchoconstrictor stimuli in acid fog

    SciTech Connect

    Balmes, J.R.; Fine, J.M.; Gordon, T.; Sheppard, D.

    1989-02-01

    Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and nitric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction.

  8. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures

    PubMed Central

    Pise, Mashitha Vinod; Rudra, Jaishree Amal; Upadhyay, Avinash

    2015-01-01

    Medicinal properties of Asparagus racemosus (vernacular name: Shatavari) are attributed to its steroidal saponins called shatavarins. This plant is facing the threat of being endangered due to several developmental, seasonal constrains and malpractices involved in its collection and storage. To support its conservation, a tissue culture protocol is standardized which produces 20 fold higher levels of shatavarin. Here we evaluate the bioactivity and immunomodulatory potential of in vitro produced shatavarins from cell cultures of AR using human peripheral blood lymphocytes. In vitro produced shatavarin stimulated immune cell proliferation and IgG secretion in a dose dependent manner. It stimulated interleukin (IL)-12 production and inhibited production of IL-6. It also had strong modulatory effects on Th1/Th2 cytokine profile, indicating its potential application for immunotherapies where Th1/Th2 balance is envisaged. Our study demonstrating the bioactivity of tissue cultured AR extracts supports further in vivo evaluation of its immunomodulatory efficacy. PMID:26283842

  9. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures.

    PubMed

    Pise, Mashitha Vinod; Rudra, Jaishree Amal; Upadhyay, Avinash

    2015-01-01

    Medicinal properties of Asparagus racemosus (vernacular name: Shatavari) are attributed to its steroidal saponins called shatavarins. This plant is facing the threat of being endangered due to several developmental, seasonal constrains and malpractices involved in its collection and storage. To support its conservation, a tissue culture protocol is standardized which produces 20 fold higher levels of shatavarin. Here we evaluate the bioactivity and immunomodulatory potential of in vitro produced shatavarins from cell cultures of AR using human peripheral blood lymphocytes. In vitro produced shatavarin stimulated immune cell proliferation and IgG secretion in a dose dependent manner. It stimulated interleukin (IL)-12 production and inhibited production of IL-6. It also had strong modulatory effects on Th1/Th2 cytokine profile, indicating its potential application for immunotherapies where Th1/Th2 balance is envisaged. Our study demonstrating the bioactivity of tissue cultured AR extracts supports further in vivo evaluation of its immunomodulatory efficacy.

  10. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  11. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses.

  12. NEUROTOXICITY PRODUCED BY DIBROMOACETIC ACID IN DRINKING WATER OF RATS.

    EPA Science Inventory

    This manuscript examines the neurotoxic potential of a commonly found disinfection by-product (DBP), dibromoacetic acid (DBA). While the Safe Drinking Water Act requires evaluation of DBPs for noncancer health effects, surprisingly few have been tested for neurotoxicity. Rats e...

  13. Metabolic evolution of Escherichia coli strains that produce organic acids

    DOEpatents

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  14. Potential anti-inflammatory actions of the elmiric (lipoamino) acids

    PubMed Central

    Burstein, Sumner H.; Adams, Jeffrey K.; Bradshaw, Heather B.; Fraioli, Cristian; Rossetti, Ronald G.; Salmonsen, Rebecca A.; Shaw, John W.; Walker, J. Michael; Zipkin, Robert E.; Zurier, Robert B.

    2007-01-01

    A library of amino acid-fatty acid conjugates (elmiric acids) was synthesized and evaluated for activity as potential anti-inflammatory agents. The compounds were tested in vitro for their effects on cell proliferation and prostaglandin production and compared with their effects on in vivo models of inflammation. LPS stimulated RAW 267.4 mouse macrophage cells was the in vitro model and phorbol ester-induced mouse ear edema served as the principal in vivo model. The prostaglandin responses were found to be strongly dependent on the nature of the fatty acid part of the molecule. Polyunsaturated acid conjugates produced a marked increase in media levels of i15-deoxy-PGJ2 with minimal effects on PGE production. It is reported in the literature that prostaglandin ratios in which the J series predominates over the E series promote the resolution of inflammatory conditions. Several of the elmiric acids tested here produced such favorable ratios suggesting that their potential anti-inflammatory activity occurs via a novel mechanism of action. The ear edema assay results were generally in agreement with the prostaglandin assay findings indicating a connection between them. PMID:17383881

  15. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  16. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.

    PubMed

    Huang, Qin; Lin, Yuheng; Yan, Yajun

    2013-12-01

    Caffeic acid is a plant-specific phenylpropanoic acid with multiple health-improving effects reported, and its therapeutic derivatives have also been studied throughout the last decade. To meet its market need and achieve high-level production, microbial production of caffeic acid approaches have been developed in metabolically engineered Escherichia coli. In our previous work, we have established the first artificial pathway that realized de novo production of caffeic acid using E. coli endogenous 4-hydroxyphenylacetate 3-hydroxylase (4HP3H). In this work, we exploited the catalytic potential of 4HPA3H in the whole-cell bioconversion study and produced 3.82 g/L (461.12 mg/L/OD) caffeic acid from p-coumaric acid, a direct precursor. We further engineered a phenylalanine over-producer into a tyrosine over-producer and then introduced the artificial pathway. After adjusting the expression strategy and optimizing the inoculants timing, de novo production of caffeic acid reached 766.68 mg/L. Both results from the direct precursor and simple carbon sources represent the highest titers of caffeic acid from microbial production so far.

  17. D-amino acid oxidase: its potential in the production of 7-aminocephalosporanic acid.

    PubMed

    Mujawar, S K

    1999-01-01

    D-Amino acid oxidase (DAAO) used in the preparation of alpha-keto acids, in the determination of D-amino acids and in the resolution of racemic mixture of amino acids is produced by a wide range of microorganisms. In the recent past this enzyme is being recognized for its potential in the commercial production of 7-aminocephalosporanic acid (7-ACA), a starting material for various semisynthetic cephalosporins. Though this enzyme is widespread among microorganisms, very few microbial species have been explored for the production of 7-ACA; this is because cephalosporin C is quantitatively deaminated by limited microbial DAAOs. Comparison of physico-chemical properties of enzyme preparations indicate wide variations, however in general DAAOs are specific for D-configuration of amino acids. Both immobilized enzyme and cell preparations are developed for its various applications. The advantages of DAAO in the production of 7-ACA are discussed.

  18. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  19. Disposal of acid gases with oilfield produced water

    SciTech Connect

    Duckworth, G.L.; Kopperson, D.; Horne, S.; Kohn, G.; Romansky, D.; Chan, C.

    1998-12-31

    With tightening environmental policies, many companies are investigating alternatives to atmospheric sulfur and greenhouse gas emissions. The oil and gas industry of Alberta, Canada typically recovers a high percentage of sulfur in large sour gas processing plants, but is often looking for a more cost effective approach to dealing with small volume plants. PanCanadian Petroleum Limited and DPH Engineering Inc. have developed a disposal scheme that makes low volume sour gas processing more affordable and easier to operate by disposing of acid gases in an aqueous phase to a disposal well. The development of this scheme utilized the results of reservoir studies, computer simulations, laboratory tests and field tests. This work has further resulted in the implementation of two full scale schemes to dissolve acid gas in produced water and inject it into deep subsurface formations. These schemes have operated with minimal problems and have met their environmental requirements.

  20. Phoma glomerata D14: An Endophytic Fungus from Salvia miltiorrhiza That Produces Salvianolic Acid C.

    PubMed

    Li, Xiuqing; Zhai, Xin; Shu, Zhiheng; Dong, Ruifang; Ming, Qianliang; Qin, Luping; Zheng, Chengjian

    2016-07-01

    In recent years, more and more researches focus on endophytic fungi derived from important medicinal plants, which can produce the same bioactive metabolites as their host plants. Salvia miltiorrhiza Bunge is a traditional medicinal plant with versatile pharmacological effects. But the wild plant resource has been in short supply due to the overcollection for bioactive metabolites. Our study was therefore conducted to isolate endophytic fungi from S. miltiorrhiza and get candidate strains that produce the same bioactive compounds as the plant. As a result, an endophyte that produces salvianolic acid C was obtained and identified as Phoma glomerata D14 based on its morphology and internal transcribed spacer analysis. Salvianolic acid C was found present in both the mycelia and fermentation broth. Our study indicates that the endophytic fungus has significant industrial potential to meet the pharmaceutical demands for salvianolic acid C in a cost-effective, easily accessible, and reproducible way.

  1. Method for producing labeled single-stranded nucleic acid probes

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-10-19

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  2. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    SciTech Connect

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.; Chen, M. J.; Rathke, J. W.; Southern Illinois Univ.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.

  3. Lantibiotics produced by Actinobacteria and their potential applications (a Review).

    PubMed

    Gomes, Karen; Duarte, Rafael Silva; Bastos, Maria do Carmo de Freire

    2016-11-22

    The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally-synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumor cells, and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.

  4. Lantibiotics produced by Actinobacteria and their potential applications (a review).

    PubMed

    Gomes, Karen Machado; Duarte, Rafael Silva; de Freire Bastos, Maria do Carmo

    2017-02-01

    The phylum Actinobacteria, which comprises a great variety of Gram-positive bacteria with a high G+C content in their genomes, is known for its large production of bioactive compounds, including those with antimicrobial activity. Among the antimicrobials, bacteriocins, ribosomally synthesized peptides, represent an important arsenal of potential new drugs to face the increasing prevalence of resistance to antibiotics among microbial pathogens. The actinobacterial bacteriocins form a heterogeneous group of substances that is difficult to adapt to most proposed classification schemes. However, recent updates have accommodated efficiently the diversity of bacteriocins produced by this phylum. Among the bacteriocins, the lantibiotics represent a source of new antimicrobials to control infections caused mainly by Gram-positive bacteria and with a low propensity for resistance development. Moreover, some of these compounds have additional biological properties, exhibiting activity against viruses and tumour cells and having also potential to be used in blood pressure or inflammation control and in pain relief. Thus, lantibiotics already described in Actinobacteria exhibit potential practical applications in medical settings, food industry and agriculture, with examples at different stages of pre-clinical and clinical trials.

  5. Potential ecological roles of artemisinin produced by Artemisia annua L.

    PubMed

    Knudsmark Jessing, Karina; Duke, Stephen O; Cedergreeen, Nina

    2014-02-01

    Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin has a complex structure that requires a significant amount of energy for the plant to synthesize. So, what are the benefits to A. annua of producing this unique compound, and what is the ecological role of artemisinin? This review addresses these questions, discussing evidence of the potential utility of artemisinin in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species. Abiotic factors affecting the artemisinin production, as well as mechanisms of artemisinin release to the surroundings also are discussed, and new data are provided on the toxicity of artemisinin towards soil and aquatic organisms. The antifungal and antibacterial effects reported are not very pronounced. Several studies have reported that extracts of A. annua have insecticidal effects, though few studies have proven that artemisinin could be the single compound responsible for the observed effects. However, the pathogen(s) or insect(s) that may have provided the selection pressure for the evolution of artemisinin synthesis may not have been represented in the research thus far conducted. The relatively high level of phytotoxicity of artemisinin in soil indicates that plant/plant allelopathy could be a beneficial function of artemisinin to the producing plant. The release routes of artemisinin (movement from roots and wash off from leaf surfaces) from A. annua to the soil support the rationale for allelopathy.

  6. Evaluation of oil-producing algae as potential biodiesel feedstock.

    PubMed

    Zhou, XuPing; Ge, HongMei; Xia, Ling; Zhang, Delu; Hu, ChunXiang

    2013-04-01

    This study attempted to connect the dots between laboratory research and the outdoors. Chlorella sp. NJ-18 was selected among seven oil-producing algae cultivated in this study because it had the highest lipid productivity. The nitrogen and phosphorus concentrations for cultivating this Chlorella strain were optimized indoors. This strain was incubated outdoors in a 70 L photobioreactor, containing the favorable nitrogen (8.32 mM urea) and phosphorus (0.18 mM monopotassium phosphate) concentrations. Semi-continuous cultivation was performed by harvesting 30 L biomass and replacing it with fresh medium. The maximum biomass and lipid productivity acquired outdoors were 91.84 and 24.05 mg L(-1) d(-1), respectively. Furthermore, biomass productivity could be maintained at a high level throughout the cultivation process when using the semi-continuous mode, whereas it decreased dramatically in batch cultures. More than 95% of the total fatty acids obtained were C16 and C18, which are the main components for biofuel.

  7. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  8. Technological and economic potential of poly(lactic acid) and lactic acid derivatives

    SciTech Connect

    Datta, R.; Tsai, S.P.; Bonsignore, P.; Moon, S.H.; Frank, J.R.

    1993-10-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}40,000 tons/yr) used in a wide range of food processing and industrial applications. lactic acid h,as the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly ``green`` solvents, and specially chemical intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of tactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. In this paper, the recent technical advances in tactic and polylactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed.

  9. Fatty acids are potential endogenous regulators of aldosterone secretion.

    PubMed

    Goodfriend, T L; Ball, D L; Elliott, M E; Morrison, A R; Evenson, M A

    1991-05-01

    Adrenal glomerulosa cells washed with delipidated albumin produced increased amounts of aldosterone in response to angiotensin-II (AII) or (Bu)2cAMP. Albumin treatment also increased binding of 125I-labeled AII to high affinity binding sites on adrenal cells. Lipid extracts of albumin solutions that were used to wash cells inhibited AII binding and aldosterone responses by washed glomerulosa cells. Chromatographic fractionation and mass spectroscopic analysis indicated that the inhibitors removed from cells by albumin were long chain fatty acids. Exogenous fatty acids not only inhibited AII binding, but they inhibited basal aldosterone production and increments in aldosterone caused by AII or dbcAMP, suggesting an effect on postreceptor steps in aldosteronogenesis. The most potent and most abundant fatty acids removed from adrenal cells were oleic, linoleic, and arachidonic. These fatty acids inhibited at micromolar concentrations in the absence of albumin and at somewhat higher concentrations in its presence. Cells that had been washed, then inhibited by exogenous oleic acid in vitro, were restored to their enhanced responsiveness by a second albumin wash, making it unlikely that cell damage is the mechanism of inhibition by fatty acids. Responses of fasciculata cells were not potentiated by albumin washes, and cortisol production was less sensitive than aldosterone production to exogenous fatty acids. Binding of ANP to glomerulosa cells was not affected by albumin or fatty acids. These results combined with clinical correlations make it plausible that unesterified fatty acids are naturally occurring regulators of the adrenal glomerulosa. Insulin's ability to lower plasma levels of fatty acids may be one way that it causes sodium retention.

  10. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    PubMed Central

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D.

    2013-01-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. PMID:23948738

  11. Predominance and Metabolic Potential of Halanaerobium spp. in Produced Water from Hydraulically Fractured Marcellus Shale Wells.

    PubMed

    Lipus, Daniel; Vikram, Amit; Ross, Daniel; Bain, Daniel; Gulliver, Djuna; Hammack, Richard; Bibby, Kyle

    2017-04-15

    Microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across all 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense, an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure.IMPORTANCE There are an estimated 15,000 unconventional gas wells in the Marcellus Shale region, each generating up to 8,000 liters of hypersaline produced water per day

  12. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    PubMed

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties.

  13. Reduced carbon sequestration potential of biochar in acidic soil.

    PubMed

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH.

  14. Selection of a Bifidobacterium animalis subsp. lactis Strain with a Decreased Ability To Produce Acetic Acid

    PubMed Central

    Margolles, Abelardo

    2012-01-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain. PMID:22389372

  15. Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid.

    PubMed

    Margolles, Abelardo; Sánchez, Borja

    2012-05-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain.

  16. Inhibition of succinate dehydrogenase by malonic acid produces an "excitotoxic" lesion in rat striatum.

    PubMed

    Greene, J G; Porter, R H; Eller, R V; Greenamyre, J T

    1993-09-01

    Excitotoxicity and defects in neuronal energy metabolism have both been implicated in the pathogenesis of neurodegenerative disease. These two mechanisms may be linked through the NMDA receptor, activation of which is dependent on neuronal membrane potential. Because the ability to maintain membrane potential is dependent on neuronal energy metabolism, bioenergetic defects may affect NMDA receptor-mediated excitotoxicity. We now report that reversible inhibition of succinate dehydrogenase (SDH), an enzyme central to both the tricarboxylic acid cycle and the electron transport chain, produces an "excitotoxic" lesion in rat striatum that can be blocked by the NMDA antagonist MK-801. Male Sprague-Dawley rats received intrastriatal stereotaxic injections of the SDH inhibitor malonic acid (1 or 2 mumol) in combination with intraperitoneal injections of vehicle or MK-801 (5 mg/kg) 30 min before and 210 min after malonic acid. Animals were killed 72 h after surgery, and brains were processed for histology, cytochrome oxidase activity, and [3H]MK-801 and [3H]AMPA autoradiography. The higher dose of malonic acid (2 mumol) produced large lesions that were markedly attenuated by treatment with MK-801 (28.1 +/- 3.6 vs. 4.7 +/- 2.6 mm3; p < 0.001). [3H]MK-801 and [3H]AMPA binding were reduced in the lesions by 60 and 63%, respectively. One micromole of malonic acid produced smaller lesions that were almost completely blocked by MK-801 treatment (9.6 +/- 1.3 vs. 0.06 +/- 0.04 mm3; p < 0.0001). The toxic effects of malonic acid were due specifically to inhibition of SDH inasmuch as coinjection of a threefold excess of succinate with the malonic acid blocked the striatal lesions (p < 0.002).(ABSTRACT TRUNCATED AT 250 WORDS)

  17. NREL Creates New Pathways for Producing Biofuels and Acids from Cyanobacteria (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    Cyanobacteria use photosynthesis to convert carbon dioxide into glycogen, a carbohydrate that is stored in the cells as an energy source. However, researchers at the National Renewable Energy Laboratory (NREL) have discovered that this photosynthesis can be redirected to produce lipids and valuable organic acids. The research could yield a new source of biofuels, because the lipids can potentially be extracted from the bacteria and converted into biodiesel.

  18. Genome Sequence of Lactobacillus rhamnosus Strain CASL, an Efficient l-Lactic Acid Producer from Cheap Substrate Cassava

    PubMed Central

    Yu, Bo; Su, Fei; Wang, Limin; Zhao, Bo; Qin, Jiayang; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2011-01-01

    Lactobacillus rhamnosus is a type of probiotic bacteria with industrial potential for l-lactic acid production. We announce the draft genome sequence of L. rhamnosus CASL (2,855,156 bp with a G+C content of 46.6%), which is an efficient producer of l-lactic acid from cheap, nonfood substrate cassava with a high production titer. PMID:22123765

  19. Natural products as potential anticonvulsants: caffeoylquinic acids.

    PubMed

    Kim, Hyo Geun; Oh, Myung Sook

    2012-03-01

    Current anticonvulsant therapies are generally directed at symptomatic treatment by suppressing excitability within the brain. Consequently, they have adverse effects such as cognitive impairment, dependence, and abuse. The need for more effective and less toxic anticonvulsants has generated renewed interest in natural products for the treatment of convulsions. Caffeoylquinic acids (CQs) are naturally occurring phenolic acids that are distributed widely in plants. There has been increasing interest in the biological activities of CQs in diseases of the central nervous system. In this issue, Nugroho et al. give evidence for the anticonvulsive effect of a CQ-rich extract from Aster glehni Franchet et Sckmidt. They optimized the extract solvent conditions, resulting in high levels of CQs and peroxynitrite-scavenging activity. Then, they investigated the sedative and anticonvulsive effects in pentobarbital- and pentylenetetrazole-induced models in mice. The CQ-rich extract significantly inhibited tonic convulsions as assessed by onset time, tonic extent, and mortality. They suggested that the CQ-rich extract from A. glehni has potential for treating convulsions. This report provides preclinical data which may be used for the development of anticonvulsants from natural products.

  20. Studies on tetrahydrocannabinolic acid synthase that produces the acidic precursor of tetrahydrocannabinol, the pharmacologically active cannabinoid in marijuana.

    PubMed

    Taura, F

    2009-06-01

    Tetrahydrocannabinol (THC), the psychoactive component of marijuana, is now regarded as a promising medicine because this cannabinoid has been shown to exert a variety of therapeutic activities. It has been demonstrated that THC is generated from the acidic precursor, tetrahydrocannabinolic acid (THCA) by nonenzymatic decarboxylation, and that THCA is biosynthesized by THCA synthase, which catalyzes a unique biosynthetic reaction, the stereospecific oxidative cyclization of the geranyl group of the substrate cannabigerolic acid. Molecular characterization of THCA synthase has revealed its structural characteristics and reaction mechanism. THCA synthase is the first cannabinoid synthase to be studied and is potentially attractive target for various biotechnological applications as it produces the direct precursor of THC. This review describes the research history of this enzyme, i.e., purification, molecular cloning, biochemical characterization, and possible biotechnological application of THCA synthase.

  1. Ruminant and industrially produced trans fatty acids: health aspects

    PubMed Central

    Stender, Steen; Astrup, Arne; Dyerberg, Jørn

    2008-01-01

    Fatty acids of trans configuration in our food come from two different sources – industrially produced partially hydrogenated fat (IP-TFA) used in frying oils, margarines, spreads, and in bakery products, and ruminant fat in dairy and meat products (RP-TFA). The first source may contain up to 60% of the fatty acids in trans form compared to the content in ruminant fat which generally does not exceed 6%. In Western Europe, including Scandinavia, the average daily intake of IP-TFA has decreased during the recent decade due to societal pressure and a legislative ban, whereas the intake of RP-TFA has remained stable. In spite of this decrease we have found that in many countries consumption >20 g of IP-TFA in a one-meal menu consisting of some popular foods is possible, even though the average intake of IP-TFA in these countries is low. Subgroups of the populations may therefore, on average, consume >5 g IP-TFA per day. This level of consumption is generally not possible for RP-TFA. A daily intake of 5 g TFA (primarily IP-TFA) is associated with a 29% increased risk of coronary heart disease. Such an association is not found for RP-TFA up to a daily intake of 4 g. The high amount of IP-TFA in popular foods, the evidence of a more harmful effect on health by IP-TFA than by RP-TFA, and the feasibility of eliminating IP-TFA from foods without side effects for the population, suggest that a selective elimination of IP-TFA from our food is a ‘low hanging fruit’ in the quest for a more healthy diet for subgroups of the population. PMID:19109659

  2. Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids.

    PubMed

    Gong, Yangmin; Wan, Xia; Jiang, Mulan; Hu, Chuanjiong; Hu, Hanhua; Huang, Fenghong

    2014-10-01

    Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) have received growing attention due to their significant roles in human health. Currently the main source of these nutritionally and medically important fatty acids is marine fish, which has not met ever-increasing global demand. Microorganisms are an important alternative source also being explored. Although many microorganisms accumulate omega-3 LC-PUFAs naturally, metabolic engineering might still be necessary for significantly improving their yields. Here, we review recent research involving the engineering of microorganisms for production of omega-3 LC-PUFAs, including eicospentaenoic acid and docosohexaenoic acid. Both reconstitution of omega-3 LC-PUFA biosynthetic pathways and modification of existing pathways in microorganisms have demonstrated the potential to produce high levels of omega-3 LC-PUFAs. However, the yields of omega-3 LC-PUFAs in host systems have been substantially limited by potential metabolic bottlenecks, which might be caused partly by inefficient flux of fatty acid intermediates between the acyl-CoA and different lipid class pools. Although fatty acid flux in both native and heterologous microbial hosts might be controlled by several acyltransferases, evidence has suggested that genetic manipulation of one acyltransferase alone could significantly increase the accumulation of LC-PUFAs. The number of oleaginous microorganisms that can be genetically transformed is increasing, which will advance engineering efforts to maximize LC-PUFA yields in microbial strains.

  3. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  4. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction.

    PubMed

    Lemée, L; Pinard, L; Beauchet, R; Kpogbemabou, D

    2013-12-01

    Humic substances were extracted from biodegraded lignocellulosic biomass (LCBb) and submitted to catalytic hydroliquefaction. The resulting bio-oils were compared with those of the initial biomass. Compared to fulvic and humic acids, humin presented a high conversion rate (74 wt.%) and the highest amount of liquid fraction (66 wt.%). Moreover it represented 78% of LCBb. Humin produced 43 wt.% of crude oil and 33 wt.% of hexane soluble fraction containing hydrocarbons which is a higher yield than those from other humic substances as well as from the initial biomass. Hydrocarbons were mainly aromatics, but humin produces the highest amount of aliphatics. Considering the quantity, the quality and the molecular composition of the humic fractions, a classification of the potential of the latter to produce fuel using hydroliquefaction process can be assess: Hu>AF>AH. The higher heating value (HHV) and oxygen content of HSF from humin were fully compatible with biofuel characteristics.

  5. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    PubMed

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  6. Constructing a recombinant hyaluronic acid biosynthesis operon and producing food-grade hyaluronic acid in Lactococcus lactis.

    PubMed

    Sheng, Juzheng; Ling, Peixue; Wang, Fengshan

    2015-02-01

    Hyaluronic acid (HA), a natural high molecular weight polysaccharide, is produced by Streptococcus zooepidemicus. However, Streptococcus has several drawbacks including its potential to produce exotoxins, so there is demand for an alternative HA source. Here, a recombinant HA biosynthesis operon, as well as the HA biosynthesis operon of S. zooepidemicus were introduced into L. lactis using the nisin-controlled expression system, respectively. HA was successfully synthesized by recombinant L. lactis. Furthermore, overexpression of the endogenous enzymes directing the synthesis of precursor sugars was effective at increasing HA production, and increasing the supply of UDP-activated monosaccharide donors aided synthesis of monodisperse HA polysaccharides. Besides GRAS host strain (L. lactis) and NICE system, the selecting marker (lacF gene) of the recombinant strain is also food grade. Therefore, HA produced by recombinant L. lactis overcomes the problems associated with Streptococcus and provides a source of food-grading HA appropriate for widespread biotechnological applications.

  7. Potential of Unicellular Cyanobacteria from Saline Environments as Exopolysaccharide Producers

    PubMed Central

    De Philippis, Roberto; Margheri, Maria Cristina; Materassi, Riccardo; Vincenzini, Massimo

    1998-01-01

    Fifteen Cyanothece strains isolated from saline environments have been characterized with regard to exopolysaccharide (EPS) production. The polymers contained six to eight monosaccharides, with one or two acidic sugars. In some EPS samples, the additional presence of acetyl, pyruvyl, and/or sulfate groups was also detected. PMID:16349518

  8. Variations in mitochondrial membrane potential correlate with malic acid production by natural isolates of Saccharomyces cerevisiae sake strains.

    PubMed

    Oba, Takahiro; Kusumoto, Kenichi; Kichise, Yuki; Izumoto, Eiji; Nakayama, Shunichi; Tashiro, Kosuke; Kuhara, Satoru; Kitagaki, Hiroshi

    2014-08-01

    Research on the relationship between mitochondrial membrane potential and fermentation profile is being intensely pursued because of the potential for developing advanced fermentation technologies. In the present study, we isolated naturally occurring strains of yeast from sake mash that produce high levels of malic acid and demonstrate that variations in mitochondrial membrane potential correlate with malic acid production. To define the underlying biochemical mechanism, we determined the activities of enzymes required for malic acid synthesis and found that pyruvate carboxylase and malate dehydrogenase activities in strains that produce high levels of malic acid were elevated compared with the standard sake strain K901. These results inspired us to hypothesize that decreased mitochondrial membrane potential was responsible for increased malic acid synthesis, and we present data supporting this hypothesis. Thus, the mitochondrial membrane potential of high malic acid producers was lower compared with standard strains. We conclude that mitochondrial membrane potential correlates with malic acid production.

  9. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  10. Lytic bacteriophages: Potential interventions against enteric bacterial pathogens on produce.

    PubMed

    Sharma, Manan

    2013-04-01

    Foodborne illnesses resulting from the consumption of produce commodities contaminated with enteric pathogens continue to be a significant public health issue. Lytic bacteriophages may provide an effective and natural intervention to reduce bacterial pathogens on fresh and fresh-cut produce commodities. The use of multi-phage cocktails specific for a single pathogen has been most frequently assessed on produce commodities to minimize the development of bacteriophage insensitive mutants (BIM) in target pathogen populations. Regulatory approval for the use of several lytic phage products specific for bacterial pathogens such as Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in foods and on food processing surfaces has been granted by various agencies in the US and other countries, possibly allowing for the more widespread use of bacteriophages in the decontamination of fresh and minimally processed produce. Research studies have shown lytic bacteriophages specific for E. coli O157:H7, Salmonella spp. and Listeria monocytogenes have been effective in reducing pathogen populations on leafy greens, sprouts and tomatoes.

  11. Identification of an Arachidonic Acid-Producing Bacterium and Description of Kineococcus arachidonicus sp. nov.

    SciTech Connect

    Fliermans, C.B.

    2001-05-15

    The identification of bacterial with the ability to produce polyunsaturated fatty acids as been limited almost exclusively to gram-negative, psychrophilic, marine microorganisms. Here we describe a new gram-type-positive bactgerium, strain SRS30216T, that produces the polyunsaturated fatty acid, arachidonic acid, and is neither psychrophilic nor a marine isolate.

  12. New implicitly solvable potential produced by second order shape invariance

    SciTech Connect

    Cannata, F.; Ioffe, M.V.; Kolevatova, E.V.; Nishnianidze, D.N.

    2015-05-15

    The procedure proposed recently by Bougie et al. (2010) to study the general form of shape invariant potentials in one-dimensional Supersymmetric Quantum Mechanics (SUSY QM) is generalized to the case of Higher Order SUSY QM with supercharges of second order in momentum. A new shape invariant potential is constructed by this method. It is singular at the origin, it grows at infinity, and its spectrum depends on the choice of connection conditions in the singular point. The corresponding Schrödinger equation is solved explicitly: the wave functions are constructed analytically, and the energy spectrum is defined implicitly via the transcendental equation which involves Confluent Hypergeometric functions. - Highlights: • New potential with 2nd order irreducible shape invariance was constructed. • The connection conditions at the singularity of potential were obtained. • The explicit expressions for all wave functions were derived. • The implicit equation for the energy spectrum was obtained.

  13. Method for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.

    2016-08-30

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  14. Methods for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  15. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis.

    PubMed

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C; Latham, Catherine F; Ramsland, Paul A; Gugasyan, Raffi; Cone, Richard A; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.

  16. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    PubMed Central

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C.; Latham, Catherine F.; Ramsland, Paul A.; Gugasyan, Raffi; Cone, Richard A.; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs. PMID:26082720

  17. The potential of producing heterotrophic bacteria biomass on aquaculture waste.

    PubMed

    Schneider, Oliver; Sereti, Vasiliki; Machiels, Marcel A M; Eding, Ep H; Verreth, Johan A J

    2006-08-01

    The effluent from the drumfilter of a recirculation aquaculture system was used as substrate to produce heterotrophic bacteria in suspended growth reactors. The effects of organic carbon supplementation (0, 3, 6, 8 g/l sodium acetate) and of hydraulic retention times (11-1h) on bacteria biomass production and nutrient conversion were investigated. Bacteria production, expressed as volatile suspended solids (VSS), was enhanced by organic carbon supplementation, resulting in a production of 55-125 g VSS/kg fish feed (0.2-0.5 g VSS/g carbon). Maximum observed crude protein production was approximately 100 g protein/kg fish feed. The metabolic maintenance costs were 0.08 Cmol/Cmol h, and the maximum growth rate was 0.25-0.5 h(-1). Ninety percent of the inorganic nitrogenous and 80% of ortho-phosphate were converted. Producing bacteria on the drumfilter effluent results in additional protein retention and lowers overall nutrient discharge from recirculation aquaculture systems.

  18. Exploiting the genetic potential of polyketide producing streptomycetes.

    PubMed

    Weber, T; Welzel, K; Pelzer, S; Vente, A; Wohlleben, W

    2003-12-19

    Streptomycetes are the most important bacterial producers of bioactive secondary metabolites such as antibiotics or cytostatics. Due to the emerging resistance of pathogenic bacteria to all commonly used antibiotics, new and modified natural compounds are required for the development of novel drugs. In addition to the classical screening for natural compounds, genome driven approaches like combinatorial biosynthesis are permanently gaining relevance for the generation of new structures. This technology utilizes the combination of genes from different biosynthesis pathways resulting in the production of novel or modified metabolites. The basis for this strategy is the access to a significant number of genes and the knowledge about the activity and specificity of the enzymes encoded by them. A joint initiative was started to exploit the biosynthesis gene clusters from streptomycetes. In this publication, an overview of the strategy for the identification and characterization of numerous biosynthesis gene clusters for polyketides displaying interesting functions and particular structural features is given.

  19. The potential of algae blooms to produce renewable gaseous fuel.

    PubMed

    Allen, E; Browne, J; Hynes, S; Murphy, J D

    2013-11-01

    Ulva lactuca (commonly known as sea letuce) is a green sea weed which dominates Green Tides or algae blooms. Green Tides are caused by excess nitrogen from agriculture and sewage outfalls resulting in eutrophication in shallow estuaries. Samples of U. lactuca were taken from the Argideen estuary in West Cork on two consecutive years. In year 1 a combination of three different processes/pretreatments were carried out on the Ulva. These include washing, wilting and drying. Biomethane potential (BMP) assays were carried out on the samples. Fresh Ulva has a biomethane yield of 183LCH4/kgVS. For dried, washed and macerated Ulva a BMP of 250LCH4/kgVS was achieved. The resource from the estuary in West Cork was shown to be sufficient to provide fuel to 264 cars on a year round basis. Mono-digestion of Ulva may be problematic; the C:N ratio is low and the sulphur content is high. In year 2 co-digestion trials with dairy slurry were carried out. These indicate a potential increase in biomethane output by 17% as compared to mono-digestion of Ulva and slurry.

  20. Lift producing device exhibiting low drag and reduced ventilation potential and method for producing the same

    NASA Technical Reports Server (NTRS)

    Caldwell, Richard A. (Inventor)

    1991-01-01

    A lift producing device is disclosed which is adapted to be connected to a vehicle to provide lift to the vehicle when the vehicle is moved relative to a first fluid medium having a first density and viscosity and being in contact with a second fluid medium adjacent the vehicle. The second fluid medium has a second fluid density which is different from the first fluid density. The lift producing device comprises opposed first and second major surfaces joined at a longitudinally extending leading edge and at a longitudinally extending trailing edge, with at least a portion of the longitudinally extending leading edge being spaced from the longitudinally extending trailing edge by a predetermined mean chord length. When the vehicle is moved relative to the first fluid medium at a velocity within a range of predetermined velocities, with each of the velocities having a direction inclined from a plane extending through the leading edge and the trailing edge within a predetermined angular range, a region of high pressure is generated in the first fluid medium adjacent the first major surface and a region of low pressure is generated in the first fluid medium adjacent the second major surface. The lift producing device has a cross-sectional shape which will generate a pressure distribution around the device when the vehicle is moved relative to the first fluid medium at a velocity within the range of predetermined velocities such that the first fluid medium exhibits attached laminar flow along the device for a portion of the predetermined mean chord length from the leading edge to the trailing edge and will neither form a laminar separation bubble adjacent the second major surface of the device, nor exhibit turbulent separation adjacent the second major surface for substantially all of the predetermined mean chord length from the leading edge to the trailing edge. The portion along which attached laminar flow is maintained is the longest portion which will still fulfill

  1. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    PubMed Central

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  2. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    PubMed

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  3. Difference in amounts between titratable acid and total carboxylic acids produced by oral streptococci during sugar metabolism.

    PubMed

    Iwami, Y; Hata, S; Takahashi, N; Yamada, T

    1989-01-01

    The acid produced by the resting cells of Streptococcus mutants NCTC 10449 and HS 6 and S. sanguis ATCC 10556 during sugar metabolism was estimated with a pH-stat and a carboxylic acid analyzer. Lactic, formic, acetic, pyruvic, and carbonic acids were detected in the reaction mixtures, but propionic, citric, succinic, iso-butyric, butyric, iso-valeric, and valeric acids were not detected. The amount of titratable acid estimated by alkaline titration with the pH-stat was larger than the amount of total carboxylic acids estimated with the carboxylic acid analyzer. The difference in quantity between the titratable and the total carboxylic acids increased significantly with an increase in the period of incubation with sugar. Moreover, the value of the alkaline titration of standard lactic, formic, acetic, and pyruvic acids was equal to the amount analyzed with the carboxylic acid analyzer. The results indicated that these two streptococci produced not only these carboxylic acids but also other acid(s), possibly non-carboxylic acid(s), during their sugar metabolism.

  4. Determination of boron in produced water using the carminic acid assay.

    PubMed

    Floquet, Cedric F A; Sieben, Vincent J; MacKay, Bruce A; Mostowfi, Farshid

    2016-04-01

    Using the carminic acid assay, we determined the concentration of boron in oilfield waters. We investigated the effect of high concentrations of salts and dissolved metals on the assay performance. The influence of temperature, development time, reagent concentration, and water volume was studied. Ten produced and flowback water samples of different origins were measured, and the method was successfully validated against ICP-MS measurements. In water-stressed regions, produced water is a potential source of fresh water for irrigation, industrial applications, or consumption. Therefore, boron concentration must be determined and controlled to match the envisaged waste water reuse. Fast, precise, and onsite measurements are needed to minimize errors introduced by sample transportation to laboratories. We found that the optimum conditions for our application were a 5:1 mixing volume ratio (reagent to sample), a 1 g L(-1) carminic acid concentration in 99.99% sulfuric acid, and a 30 min reaction time at ambient temperature (20 °C to 23 °C). Absorption values were best measured at 610 nm and 630 nm and baseline corrected at 865 nm. Under these conditions, the sensitivity of the assay to boron was maximized while its cross-sensitivity to dissolved titanium, iron, barium and zirconium was minimized, alleviating the need for masking agents and extraction methods.

  5. A novel hydroxamic acid-containing antibiotic produced by a Saharan soil-living Streptomyces strain.

    PubMed

    Yekkour, A; Meklat, A; Bijani, C; Toumatia, O; Errakhi, R; Lebrihi, A; Mathieu, F; Zitouni, A; Sabaou, N

    2015-06-01

    During screening for potentially antimicrobial actinobacteria, a highly antagonistic strain, designated WAB9, was isolated from a Saharan soil of Algeria. A polyphasic approach characterized the strain taxonomically as a member of the genus Streptomyces. The strain WAB9 exhibited a broad spectrum of antimicrobial activity toward various multidrug-resistant micro-organisms. A PCR-based assay of genomic potential for producing bioactive metabolites revealed the presence of PKS-II gene. After 6 days of strain fermentation, one bioactive compound was extracted from the remaining aqueous phase and then purified by HPLC. The chemical structure of the compound was determined by spectroscopic (UV-visible, and (1)H and (13)C NMR) and spectrometric analysis. The compound was identified to be 2-amino-N-(2-amino-3-phenylpropanoyl)-N-hydroxy-3-phenylpropanamide, a novel hydroxamic acid-containing molecule. The pure molecule showed appreciable minimum inhibitory concentration values against a selection of drug-resistant bacteria, filamentous fungi and yeasts. Significance and impact of the study: This study presents the isolation of a Streptomyces strain, named WAB9, from a Saharan soil in Algeria. This strain was found to produce a new hydroxamic acid-containing molecule with interesting antimicrobial activities towards various multidrug-resistant micro-organisms. Although hydroxamic acid-containing molecules are known to exhibit low toxicities in general, only real evaluations of the toxicity levels could decide on the applications for which this new molecule is potentially most appropriate. Thus, this article provides a new framework of research.

  6. Glycerol metabolism and bitterness producing lactic acid bacteria in cidermaking.

    PubMed

    Garai-Ibabe, G; Ibarburu, I; Berregi, I; Claisse, O; Lonvaud-Funel, A; Irastorza, A; Dueñas, M T

    2008-02-10

    Several lactic acid bacteria were isolated from bitter tasting ciders in which glycerol was partially removed. The degradation of glycerol via glycerol dehydratase pathway was found in 22 out of 67 isolates. The confirmation of glycerol degradation by this pathway was twofold: showing their glycerol dehydratase activity and detecting the presence of the corresponding gene by a PCR method. 1,3-propanediol (1,3-PDL) and 3-hydroxypropionic acid (3-HP) were the metabolic end-products of glycerol utilization, and the accumulation of the acrolein precursor 3-hydroxypropionaldehyde (3-HPA) was also detected in most of them. The strain identification by PCR-DGGE rpoB showed that Lactobacillus collinoides was the predominant species and only 2 belonged to Lactobacillus diolivorans. Environmental conditions conducting to 3-HPA accumulation in cidermaking were studied by varying the fructose concentration, pH and incubation temperature in L. collinoides 17. This strain failed to grow with glycerol as sole carbon source and the addition of fructose enhanced both growth and glycerol degradation. Regarding end-products of glycerol metabolism, 1,3-PDL was always the main end-product in all environmental conditions assayed, the only exception being the culture with 5.55 mM fructose, where equimolar amounts of 1,3-PDL and 3-HP were found. The 3-HPA was transitorily accumulated in the culture medium under almost all culture conditions, the degradation rate being notably slower at 15 degrees C. However, no disappearance of 3-HPA was found at pH 3.6, a usual value in cider making. After sugar exhaustion, L. collinoides 17 oxidated lactic acid and/or mannitol to obtain energy and these oxidations were accompanied by the removal of the toxic 3-HPA increasing the 1,3-PDL, 3-HP and acetic acid contents.

  7. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance[S

    PubMed Central

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-01-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a “push” (synthesis) and “pull” (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. PMID:26323290

  8. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential.

    PubMed

    Su, Ming; Yu, Jianwei; Zhang, Junzhi; Chen, Hui; An, Wei; Vogt, Rolf D; Andersen, Tom; Jia, Dongmin; Wang, Jingshi; Yang, Min

    2015-01-01

    The production of odorant 2-methylisoborneol (MIB) in water bodies by Planktothrix sp. have not been understood very well. Through a four-year investigation in Miyun Reservoir, a huge mesotrophic drinking water reservoir known to have the MIB episodes, we found that the Planktothrix sp. bloomed during September and October causing the high levels of MIB in the reservoir. The concentration of MIB and the biomass of MIB-producing cyanobacteria Planktothrix were measured (n = 887) at different sites and depths during different seasons. The results indicated that the shallow region of the reservoir is the major habitat for Planktothrix sp. due to that the light is able to penetrate down to the relatively high concentrations of nutrients close to the sediments. Quantile regression analysis between Planktothrix biomass and MIB concentration shows that the risk of MIB exceeding the odor threshold (15 ng L⁻¹) in water was as high as 90% when the Planktothrix density was more than 4.0 × 10⁵ cells L⁻¹, while the risk was reduced to 10% when the Planktothrix density remained below 1.6 × 10⁴ cells L⁻¹. This study will improve the understanding of the environmental behaviors of Planktothrix sp., and can provide useful information for better management of drinking water lakes/reservoirs experiencing the taste and odor (T&O) problems caused by deep living cyanobacterial species.

  9. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids.

    PubMed

    Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2016-01-01

    One of the most promising alternatives to petroleum for the production of fuels and chemicals is bio-oil based chemistry. Microbial oils are gaining importance because they can be engineered to accumulate lipids enriched in desired fatty acids. These specific lipids are closer to the commercialized product, therefore reducing pollutants and costly chemical steps. Yarrowia lipolytica is the most widely studied and engineered oleaginous yeast. Different molecular and bioinformatics tools permit systems metabolic engineering strategies in this yeast, which can produce usual and unusual fatty acids. Usual fatty acids, those usually found in triacylglycerol, accumulate through the action of several pathways, such as fatty acid/triacylglycerol synthesis, transport and degradation. Unusual fatty acids are enzymatic modifications of usual fatty acids to produce compounds that are not naturally synthetized in the host. Recently, the metabolic engineering of microorganisms has produced different unusual fatty acids, such as building block ricinoleic acid and nutraceuticals such as conjugated linoleic acid or polyunsaturated fatty acids. Additionally, microbial sources are preferred hosts for the production of fatty acid-derived compounds such as γ-decalactone, hexanal and dicarboxylic acids. The variety of lipids produced by oleaginous microorganisms is expected to rise in the coming years to cope with the increasing demand.

  10. Producing ethanol from alfalfa stems with an acid ensilage pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass offers the potential to provide sustainable sugar streams from a variety of materials, including agricultural and forest residuals, and high-yielding bioenergy crops. However, if cropland is diverted from feed production to production of energy crops, there will still be an i...

  11. Halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery

    SciTech Connect

    Jenneman, G.E.; McInerney, M.J.; Knapp, R.M.; Clark, J.B.; Feero, J.M.; Revus, D.E.; Menzie, D.E.

    1983-01-01

    A biosurfactant-producing Bacillus licheniformis was isolated from oil-field injection water with properties potentially useful for in situ enhanced oil recovery. Conventional miscible flooding procedures use expensive synthetic detergents such as petroleum sulfonates that precipitate in high NaCl brines and adsorb to rock surfaces. The Bacillus sp. produced a biosurfactant when grown at 40 C in a sucrose mineral salts medium containing 5% NaCl. The biosurfactant was produced during the log phase of growth in the presence or absence of either crude oil or hexadecane. The surface tension of a 5% NaCl solution decreased from 74.0 mN/m to 27 mN/m when the surfactant was added. Interfacial tension of a 5% NaCl brine/octane mixture was as low as 0.43 mN/m when measured by a spinning drop tensiometer. The surfactant was extracted by acid precipitation at a pH of 2.0. The extracted surfactant exhibited optimal surface tension-lowering ability in 4-5% NaCl solutions between pH's of 6.0 to 10.0. The addition of calcium up to 340 mg/liter and incubation temperatures up to 100 C did not alter appreciably the surfactant activity. Mobilization of crude oil and oil bank formation occurred in a sandpack column after addition of the biosurfactant. 16 references, 1 figure, 2 tables.

  12. Clostridium strain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  13. Clostridium stain which produces acetic acid from waste gases

    DOEpatents

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  14. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain.

    PubMed

    Song, Hyohak; Huh, Yun Suk; Lee, Sang Yup; Hong, Won Hi; Hong, Yeon Ki

    2007-12-01

    There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.

  15. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain.

    PubMed

    Bohlen, Christopher J; Chesler, Alexander T; Sharif-Naeini, Reza; Medzihradszky, Katalin F; Zhou, Sharleen; King, David; Sánchez, Elda E; Burlingame, Alma L; Basbaum, Allan I; Julius, David

    2011-11-16

    Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception.

  16. Rat liver microsomal lipid peroxidation produced during the oxidative metabolism of ethacrynic acid.

    PubMed

    Yamamoto, K; Masubuchi, Y; Narimatsu, S; Kobayashi, S; Horie, T

    2001-04-01

    Thiobarbituric acid reactive substances (TBARS) were produced in rat liver microsomal suspension incubated with ethacrynic acid (loop diuretic drug) and NADPH. Two oxidative metabolites of ethacrynic acid with dicarboxylic acid and hydroxylated ethyl group, respectively, were formed in the reaction mixture. The oxidative metabolism of ethacrynic acid was inhibited by cytochrome P450 inhibitors. The formation of TBARS was remarkably depressed by inhibitors like diethyldithiocarbamate and disulfiram. These results indicate that lipid peroxidation occurred in rat liver microsomes through the oxidative metabolism of ethacrynic acid.

  17. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive.

  18. Potential effects of chlorogenic acids on platelet activiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coffee (Coffea sp) is a most consumed beverage world-wide. Chlorogenic acids (CHAs) are naturally occurring phenolic acid esters abundantly found in coffee. They are reported to have potential health effects on several chronic diseases such as obesity, diabetes and cardiovascular diseases (CVD). At...

  19. Isolation and characterization of bacteriocin-producing lactic acid bacteria from ready-to-eat food products.

    PubMed

    Kelly, W J; Asmundson, R V; Huang, C M

    1996-12-01

    Lactic acid bacteria isolated from a range of foods sold in ready-to-eat form were screened for bacteriocin production. Twenty-two bacteriocin-producing cultures were isolated from 14 of the 41 foods sampled. Bacteriocin-producing isolates from meat, fish and dairy products were Lactobacillus and Leuconostoc species typically found associated with these products. Most of these isolates gave only a narrow inhibitory spectrum although two showed activity against Listeria monocytogenes. Fruit and vegetable products gave a broader range of organisms but most of the bacteriocin-producing cultures were found to be strains of Lactococcus. Several lactococci produced a nisin-like activity, and showed a broad inhibitory spectrum against the indicator strains tested. The ease with which bacteriocin-producing strains could be isolated implies that they are already being safely consumed in food, and highlights the potential for using bacteriocin-producing cultures for biopreservation, especially in association with minimally processed products.

  20. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production.

    PubMed

    Poli, Jandora Severo; da Silva, Mirra Angelina Neres; Siqueira, Ezequias P; Pasa, Vânya M D; Rosa, Carlos Augusto; Valente, Patricia

    2014-06-01

    This study aimed to evaluate the effect of medium composition and culture conditions on lipid content, fatty acid profile and biomass production by the yeast Yarrowia lipolytica QU21. Lipid production by the yeast growing on glycerol/(NH4)2SO4 (10%/0.1%) reached 1.48g/L (30.1% according to total cell dry weight). When glycerol was replaced by crude glycerol (industrial waste), the lipid yield was 1.27g/L, with no significant difference. Some particular fatty acids were found when crude glycerol was combined with fresh yeast extract (FYE, brewery waste), as linolenic acid (C18:3n3), eicosadienoic acid (C20:2), eicosatrienoic acid (C20:3n3) and eicosapentaenoic acid (C20:5n3). In addition, the FYE promoted an increase of more than 300% on polyunsaturated fatty acid content (PUFA), which is an undesirable feature for biodiesel production. The fatty acid composition of the oil produced by Y. lipolytica QU21 growing on crude glycerol/(NH4)2SO4 presented a potential use as biodiesel feedstock, with low PUFA content.

  1. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts.

    PubMed

    Yang, En; Fan, Lihua; Jiang, Yueming; Doucette, Craig; Fillmore, Sherry

    2012-09-10

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity.LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated.Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods.

  2. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts

    PubMed Central

    2012-01-01

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity. LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated. Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods. PMID:22963659

  3. Acid mine drainage potential of raw, retorted, and combusted Eastern oil shale: Final report

    SciTech Connect

    Sullivan, P.J.; Yelton, J.L.; Reddy, K.J.

    1987-09-01

    In order to manage the oxidation of pyritic materials effectively, it is necessary to understand the chemistry of both the waste and its disposal environment. The objective of this two-year study was to characterize the acid production of Eastern oil shale waste products as a function of process conditions, waste properties, and disposal practice. Two Eastern oil shales were selected, a high pyrite shale (unweathered 4.6% pyrite) and a low pyrite shale (weathered 1.5% pyrite). Each shale was retorted and combusted to produce waste products representative of potential mining and energy conversion processes. By using the standard EPA leaching tests (TCLP), each waste was characterized by determining (1) mineralogy, (2) trace element residency, and (3) acid-base account. Characterizing the acid producing potential of each waste and potential trace element hazards was completed with laboratory weathering studies. 32 refs., 21 figs., 12 tabs.

  4. Volatile fatty acids influence on the structure of microbial communities producing PHAs

    PubMed Central

    Ciesielski, Slawomir; Przybylek, Grzegorz

    2014-01-01

    Polyhydroxyalkanoates (PHAs) can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3HB); 4 mL of acetic acid produced 279.8 mg/L 3HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3HB and 3HV (hydroxyvalerate). Ribosomal Intergenic Spacer Analysis (RISA) was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3HB; Paracoccus denitrificans in the biomass that produced 3HB-co-3HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate. PMID:25242921

  5. Potentiation of vasoconstrictor response and inhibition of endothelium-dependent vasorelaxation by gallic acid in rat aorta.

    PubMed

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2002-08-01

    In the isolated rat thoracic aorta, gallic acid potentiated the vasoconstrictor response to phenylephrine. The potentiation produced by gallic acid was absent in endothelium-denuded arteries. The potentiation was abolished by N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, and slightly attenuated by an addition of L-arginine, while indomethacin or BQ610 had no effect. The potentiation of response to phenylephrine was not found for structural modifications of gallic acid, except for caffeic acid. Gallic acid also inhibited vasorelaxation induced by acetylcholine, sodium nitroprusside or prostacyclin, especially that by acetylcholine. The effect on vasorelaxation induced by acetylcholine was decreased by esterification of the carboxy group of gallic acid, and in the absence or by the methylation of the o-dihydroxy group. Caffeic acid inhibited the vasorelaxation, though the effect was smaller than that of gallic acid. These findings indicate that gallic acid produces a potentiation of contractile response and inhibition of vasorelaxant responses, probably through inactivation of nitric oxide (NO), in which endothelially produced NO is principally involved, and that the modification of functional groups of the gallic acid molecule abolishes the potentiation of contractile response and attenuates the inhibition of vasorelaxant responses.

  6. Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin.

    PubMed

    Li, Ping; Gu, Qing

    2016-07-10

    Lactobacillus plantarum LZ95 is a potential probiotic isolated from newborn infant fecal and it is identified to produce riboflavin with great antimicrobial activity. The complete genome sequence of this strain was reported in the present study. The genome contains a 3,261,418-bp chromosome and two plasmids. Genes, related to the biosynthesis of bacteriocins and riboflavin, were identified. This work will facilitate to reveal the biosynthetic mechanism of bacteriocins and B-group vitamins in lactic acid bacteria and provide evidence for its potential application in food industry.

  7. Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp.

    PubMed

    Karthik, Narayanan; Binod, Parameswaran; Pandey, Ashok

    2015-01-01

    An extremely acidic extracellular chitinase produced by a Streptomyces sp. was purified 12.44-fold by ammonium sulphate precipitation, ion-exchange chromatography and gel-permeation chromatography and further characterised. The molecular mass of the enzyme was estimated to be about 40 kDa by SDS-PAGE. The optimum pH and temperature of the purified enzyme were pH 2 and 6, and 50 °C respectively. The enzyme showed high stability in the acidic pH range of 2-6 and temperature stability of up to 50 °C. Additionally, the effect of some cations and other chemical compounds on the chitinase activity was studied. The activity of the enzyme was considerably retained under salinity conditions of up to 3%. The Km and Vmax values of the enzyme were determined to be 6.74 mg mL(-1) and 61.3 U mg(-1) respectively using colloidal chitin. This enzyme exhibited antifungal activity against phytopathogens revealing a potential biocontrol application in agriculture.

  8. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    PubMed

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry.

  9. Gluconic acid produced by Gluconacetobacter diazotrophicus Pal5 possesses antimicrobial properties.

    PubMed

    Nieto-Peñalver, Carlos G; Savino, María J; Bertini, Elisa V; Sánchez, Leandro A; de Figueroa, Lucía I C

    2014-09-01

    Gluconic acid is produced in large quantities by the endophytic and diazotrophic bacterium Gluconacetobacter diazotrophicus Pal5. This organic acid derives from direct oxidation of glucose by a pyrroloquinoline-quinone-linked glucose dehydrogenase in this plant growth-promoting bacterium. In the present article, evidence is presented showing that gluconic acid is also responsible for the antimicrobial activity of G. diazotrophicus Pal5. The broad antagonistic spectrum includes Gram-positive and -negative bacteria. Eukaryotic microorganisms are more resistant to growth inhibition by this acid. Inhibition by gluconic acid can be modified through the presence of other organic acids. In contrast to other microorganisms, the Quorum Sensing system of G. diazotrophicus Pal5, a regulatory mechanism that plays a key role in several microbe-microbe interactions, is not related to gluconic acid production and the concomitant antagonistic activity.

  10. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions

    PubMed Central

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  11. Epoxy ceriporic acid produced by selective lignin-degrading fungus Ceriporiopsis subvermispora.

    PubMed

    Nishimura, Hiroshi; Setogawa, Yuichi; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2011-11-01

    Ceriporiopsis subvermispora is a selective white rot basidiomycete which degrades lignin in wood at a distance far from enzymes. Low molecular mass metabolites play a central role in the oxidative degradation of lignin. To understand the unique wood-decaying mechanism, we surveyed the oxidized derivatives of ceriporic acids (alk(en)ylitaconic acids) produced by C. subvermispora using high-resolution liquid chromatography multiple-stage mass spectrometry (HR-LC/MS(n)). The analysis of the precursor and product ions from the extract suggested that an epoxidized derivative of ceriporic acid is produced by the fungus. To identify the new metabolite, an authentic compound of ceriporic acid epoxide was synthesized in vitro by reacting (R)-3-[(Z)-hexadec-7-enyl]-itaconic acid (ceriporic acid C) with m-chloroperbenzoic acid. The precursor and product ions from the natural metabolite and authentic epoxide were identical and distinguishable from those of hydroxy and hydroperoxy derivatives after reduction with NaBD(4). Feeding experiments with [U-(13)C]-glucose, 99% and the subsequent analyses of the first and second generation product ions demonstrated that the oxidized ceriporic acid was (R)-3-(7,8-epoxy-hexadecyl)-itaconic acid. To our knowledge, this study is the first to report that natural alkylitaconic acid bears an epoxy group on its side chain.

  12. Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death.

    PubMed

    Kamijima, Tatsuro; Ohmura, Ayaka; Sato, Toshiya; Akimoto, Kaoru; Itabashi, Miki; Mizuguchi, Mineyuki; Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu; Takahashi, Masayuki; Kawano, Keiichi; Demura, Makoto

    2008-11-07

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells), which was identified in human breast milk as an alpha-lactalbumin (LA)-oleic acid complex, kills tumor cells, selectively. Although it may have potential as a therapeutic agent against various tumor cells, only low-volume methods for its production exist. In this study, heat treatment was used to produce complexes from LAs and oleic acid using a simple method. In the case of human LA and oleic acid, heat-treated samples apparently showed much stronger activities than those treated at room temperature, with cytotoxicities equal to that of HAMLET. Furthermore, circular dichroism spectroscopy revealed that heat-treated samples lost their tertiary structure, suggesting a molten globule as oleic acid-bound LA. BLA samples also showed strong activities by heat treatment. Batch production with heat treatment can efficiently convert LAs into tumoricidal complexes.

  13. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose.

    PubMed

    Zhao, Anqi; Hu, Xiaoqing; Wang, Xiaoyuan

    2017-02-11

    Biomass-derived xylose is an economically interesting substrate for the sustainable microbial production of value-added compounds. Escherichia coli could barely use xylose to directly produce gamma-aminobutyric acid. In this study, E. coli strains that could directly produce gamma-aminobutyric acid were developed through the deletion of eight genes sucA, puuE, gabT, gabP, xylA, xylB, waaC, and waaF, and the overexpression of two E. coli genes gadB and gdhA, as well as five Caulobacter crescent genes CcxylA, CcxylB, CcxylC, CcxylD, and CcxylX. Both E. coli strains W3110 and JM109 could directly produce gamma-aminobutyric acid from xylose after either overexpression of the seven genes or deletion of the eight genes. Overexpression of the seven genes of in the multiple deletion mutants further increased gamma-aminobutyric acid production. Among the 28 recombinant E. coli strains constructed in this study, the highest gamma-aminobutyric acid was produced by JWZ08/pWZt7-g3/pWZt7-xyl. JWZ08/pWZt7-g3/pWZt7-xyl could produce 3.95 g/L gamma-aminobutyric acid in flask cultivation, using xylose as the sole carbon source.

  14. Acid sulphate soil disturbance and metals in groundwater: implications for human exposure through home grown produce.

    PubMed

    Hinwood, Andrea Lee; Horwitz, Pierre; Appleyard, Steve; Barton, Caroline; Wajrak, Magda

    2006-09-01

    A significant emerging environmental problem is the disturbance and oxidation of soils with high levels of iron sulphide minerals resulting in acidification and causing the mobilization of metals into groundwater. This process is occurring in many parts of the world. In Western Australia, impacted groundwater is extracted by residents for domestic use. We sought to establish domestic use patterns of bore water and the concentration of metals. Sixty-seven domestic bore water samples clearly indicated oxidation of sulphidic materials with heavy metal concentrations ranging for aluminium (produce. The study suggests that there is potential for human exposure to heavy metals via the consumption of home grown produce. This warrants further investigation in light of increasing acid sulphate soil disturbance in many locations.

  15. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    PubMed

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  16. New Functions and Potential Applications of Amino Acids.

    PubMed

    Uneyama, Hisayuki; Kobayashi, Hisamine; Tonouchi, Naoto

    2016-11-22

    Currently, several types of amino acids are being produced and used worldwide. Nevertheless, several new functions of amino acids have been recently discovered that could result in other applications. For example, oral stimulation by glutamate triggers the cephalic phase response to prepare for food digestion. Further, the stomach and intestines have specific glutamate-recognizing systems in their epithelial mucosa. Regarding clinical applications, addition of monosodium glutamate to the medicinal diet has been shown to markedly enhance gastric secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs) are the major components of muscles, and ingestion of BCAAs has been found to be effective for decreasing muscle pain. BCAAs are expected to be a solution for the serious issue of aging. Further, ingestion of specific amino acids could be beneficial. Glycine can be ingested for good night's sleep: glycine ingestion before bedtime significantly improved subjective sleep quality. Ingestion of alanine and glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and theanine effectively prevents colds. Finally, amino acids could be used in a novel clinical diagnostic method: the balance of amino acids in the blood could be an indicator of the risk of diseases such as cancer. These newly discovered functions of amino acids are expected to contribute to the resolution of various issues.

  17. Phyllostictines A-D, Oxazatricycloalkenones Produced by Phyllosticta cirsii, A Potential Mycoherbicide for Cirsium arvense Biocontrol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phyllosticta cirsii, a fungal pathogen isolated from Cirsium arvense and proposed as biocontrol agent of this noxious perennial weed, produces in liquid cultures different phytotoxic metabolites with potential herbicidal activity. Four new oxazatricycloalkenones, named phyllostictines A-D, were isol...

  18. Produce from Africa’s Gardens: Potential for Leafy Vegetable and Fruit Fermentations

    PubMed Central

    Oguntoyinbo, Folarin A.; Fusco, Vincenzina; Cho, Gyu-Sung; Kabisch, Jan; Neve, Horst; Bockelmann, Wilhelm; Huch, Melanie; Frommherz, Lara; Trierweiler, Bernhard; Becker, Biserka; Benomar, Nabil; Gálvez, Antonio; Abriouel, Hikmate; Holzapfel, Wilhelm H.; Franz, Charles M. A. P.

    2016-01-01

    A rich variety of indigenous fruits and vegetables grow in Africa, which contribute to the nutrition and health of Africa’s populations. Fruits and vegetables have high moisture and are thus inherently prone to accelerated spoilage. Food fermentation still plays a major role in combating food spoilage and foodborne diseases that are prevalent in many of Africa’s resource disadvantaged regions. Lactic acid fermentation is probably the oldest and best-accepted food processing method among the African people, and is largely a home-based process. Fermentation of leafy vegetables and fruits is, however, underutilized in Africa, although such fermented products could contribute toward improving nutrition and food security in this continent, where many are still malnourished and suffer from hidden hunger. Fermentation of leafy vegetables and fruits may not only improve safety and prolong shelf life, but may also enhance the availability of some trace minerals, vitamins and anti-oxidants. Cassava, cow-peas, amaranth, African nightshade, and spider plant leaves have a potential for fermentation, as do various fruits for the production of vinegars or fruit beers and wines. What is needed to accelerate efforts for production of fermented leaves and vegetables is the development of fermentation protocols, training of personnel and scale-up of production methods. Furthermore, suitable starter cultures need to be developed and produced to guarantee the success of the fermentations. PMID:27458430

  19. The interactions between humic acids and Pluronic F127 produce nanoparticles useful for pharmaceutical applications

    NASA Astrophysics Data System (ADS)

    de Melo, Bruna Alice Gomes; Motta, Fernanda Lopes; Santana, Maria Helena Andrade

    2015-10-01

    Humic acids (HAs) are macromolecules composed of a large variety of functional groups including phenols and carboxylic acids, which have anti-inflammatory and antioxidant properties. HAs are completely soluble in aqueous medium in alkaline conditions only. At neutral pH, the protonation of the OH/OOH groups causes the formation of micelle-like structures containing a hydrophobic core. Pluronic F127 (PF127) is a nonionic and non-toxic block copolymer with surfactant properties, which are able to interact with HAs through hydrophobic interactions. In this work, these interactions were studied to determine the potential of HA-PF127 structures for pharmaceutical applications. The HAs used was composed of phenol (15.92 %), carboxylic (13.70 %), and other aromatic groups as characterized by 13C NMR, GC-MS, and FTIR. Initially, the HA-PF127 interactions were identified by a fivefold decrease in the CMC of PF127. The effects of the HA:PF127 molar ratio were studied by adding naturally occurring HAs to PF127 dispersions under mechanical stirring. The highest ratios, 1:8 and 1:80, favored the formation of submicellar aggregates of approximately 100 nm and zeta potentials of -28.37 and -30.23 mV, respectively. HA-PF127 structures were spherical, with a polydispersity of approximately 0.43. These results show that the interactions between HAs and PF127 produce stable nanoparticles. These nanoparticles may be used as a carrier for hydrophobic bioactives and as an antioxidant or anti-inflammatory agent. To the best of our knowledge, this work is the first attempt to develop HA-PF127 nanoparticles.

  20. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions.

    PubMed

    Geirnaert, Annelies; Steyaert, Alix; Eeckhaut, Venessa; Debruyne, Bo; Arends, Jan B A; Van Immerseel, Filip; Boon, Nico; Van de Wiele, Tom

    2014-12-01

    Butyrate has several beneficial properties that are essential to maintain gastrointestinal health. Therefore butyrate-producing bacteria are seen as the next generation of probiotics. The butyrate-producing bacterium Butyricicoccus pullicaecorum (a clostridial cluster IV strain) is such a promising probiotic candidate for people suffering from inflammatory bowel disease. To exert its beneficial properties, it is crucial that B. pullicaecorum survives the harsh conditions of the upper gastrointestinal tract to arrive in the colon in a viable and metabolically active state. Before developing a stable formulation of B. pullicaecorum for oral administration, it is important to know its intrinsic acid and bile tolerance. We monitored the survival during and short chain fatty acid production after incubation in conditions simulating the stomach and small intestine using in vitro batch experiments. In case of acid conditions (pH 2 and pH 3), B. pullicaecorum was viable and active but not cultivable. Cultivability was restored during subsequent small intestine conditions. Importantly, bile and pancreatic juice had no lethal effect. Milk, as a suspension medium, only had a protective effect on the cultivability during the first hour at pH 2. B. pullicaecorum was still metabolically active after upper gastrointestinal conditions and produced short chain fatty acids, but a shift from butyrate to acetate production was observed. Although the butyrate-producing anaerobe B. pullicaecorum showed good intrinsic acid and bile tolerance in terms of viability and metabolic activity, colonization efficiency and butyrate production under colon conditions is needed to further evaluate its probiotic potential.

  1. Decomposition of Pyruvic Acid on the Ground-State Potential Energy Surface.

    PubMed

    da Silva, Gabriel

    2016-01-21

    A potential energy surface is reported for isomerization and decomposition of gas-phase pyruvic acid (CH3C(O)C(O)OH) in its ground electronic state. Consistent with previous works, the lowest energy pathway for pyruvic acid decomposition is identified as decarboxylation to produce hydroxymethylcarbene (CH3COH), with overall barrier of 43 kcal mol(-1). This study discovers that pyruvic acid can also isomerize to the α-lactone form with a barrier of only 36 kcal mol(-1), from which CO elimination can occur at 49 kcal mol(-1) above pyruvic acid. An additional novel channel is identified for the tautomerisation of pyruvic acid to the enol form, via a double H-shift mechanism. The barrier for this process is 51 kcal mol(-1), which is around 20 kcal mol(-1) lower than the barrier for conventional keto-enol tautomerization via a 1,3-H shift transition state. Rate coefficients are calculated for pyruvic acid decomposition through RRKM theory/master equation simulations at 800-2000 K and 1 atm, showing good agreement with the available experimental data. The dissociation of vibrationally excited pyruvic acid produced through photoexcitation and subsequent internal conversion to the ground state is also modeled under tropospheric conditions and is seen to produce appreciable quantities of CO (∼1-4%) in addition to CH3COH via the dominant CO2 loss channel.

  2. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid

    PubMed Central

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H′ 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi’s potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  3. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu

    PubMed Central

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes. PMID:27611790

  4. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    PubMed

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  5. Isolation, molecular characterization and screening of indigenous lactobacilli for their abilities to produce bioactive conjugated linoleic acid (CLA).

    PubMed

    Dahiya, Dinesh Kumar; Puniya, Anil Kumar

    2017-03-01

    Ingestion of conjugated linoleic acid poised many health benefits; however, amount of CLA one can get through generalized diet in is inadequate in exerting the desired benefits. Therefore, presence of CLA producing lactobacilli in dairy fermented foods has a tremendous potential to increase the CLA content. Therefore, present study was focused to isolate and characterize CLA producing lactobacilli from different dairy products and human faeces. Arguably, 283 lactobacilli were isolated from various sources and tested for CLA production. Fifty-seven CLA producing (≥20 µg/ml) lactobacilli were selected from screening in de Man, Rogosa and Sharpe (MRS) broth and reconstituted with skim milk (SM), supplemented with 0.5 mg/ml of linoleic acid. Positive strains were classified into-L. plantarum (44%), L. gasseri (30%), L. fermentum (21%) and L. salivarius (5%) species. Nineteen most efficient strains (CLA ≥25 µg/ml) were further assessed in SM for CLA production. Total 08 strains produced significantly higher CLA in SM than MRS and also produced cis 9, trans 11, trans 10, cis 12 and trans 9, trans 11 isomers. Overall, L. plantarum HIF15 was reported as the best producer of CLA and other 08 lactobacilli may be utilized for the formulation of CLA-enriched functional foods to support these bacteria to synthesize CLA in the human gut.

  6. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    PubMed

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes.

  7. Design of homo-organic acid producing strains using multi-objective optimization.

    PubMed

    Kim, Tae Yong; Park, Jong Myoung; Kim, Hyun Uk; Cho, Kwang Myung; Lee, Sang Yup

    2015-03-01

    Production of homo-organic acids without byproducts is an important challenge in bioprocess engineering to minimize operation cost for separation processes. In this study, we used multi-objective optimization to design Escherichia coli strains with the goals of maximally producing target organic acids, while maintaining sufficiently high growth rate and minimizing the secretion of undesired byproducts. Homo-productions of acetic, lactic and succinic acids were targeted as examples. Engineered E. coli strains capable of producing homo-acetic and homo-lactic acids could be developed by taking this systems approach for the minimal identification of gene knockout targets. Also, failure to predict effective gene knockout targets for the homo-succinic acid production suggests that the multi-objective optimization is useful in assessing the suitability of a microorganism as a host strain for the production of a homo-organic acid. The systems metabolic engineering-based approach reported here should be applicable to the production of other industrially important organic acids.

  8. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes.

    PubMed

    Zhang, Shuo; Winestrand, Sandra; Chen, Lin; Li, Dengxin; Jönsson, Leif J; Hong, Feng

    2014-10-08

    Lignocellulosic biomass serves as a potential alternative feedstock for production of bacterial nanocellulose (BNC), a high-value-added product of bacteria such as Gluconacetobacter xylinus. The tolerance of G. xylinus to lignocellulose-derived inhibitors (formic acid, acetic acid, levulinic acid, furfural, and 5-hydroxymethylfurfural) was investigated. Whereas 100 mM formic acid completely suppressed the metabolism of G. xylinus, 250 mM of either acetic acid or levulinic acid still allowed glucose metabolism and BNC production to occur. Complete suppression of glucose utilization and BNC production was observed after inclusion of 20 and 30 mM furfural and 5-hydroxymethylfurfural, respectively. The bacterium oxidized furfural and 5-hydroxymethylfurfural to furoic acid and 5-hydroxymethyl-2-furoic acid, respectively. The highest yields observed were 88% for furoic acid/furfural and 76% for 5-hydroxymethyl-2-furoic acid/5-hydroxymethylfurfural. These results are the first demonstration of the capability of G. xylinus to tolerate lignocellulose-derived inhibitors and to convert furan aldehydes.

  9. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68.

    PubMed

    Knuf, Christoph; Nookaew, Intawat; Remmers, Ilse; Khoomrung, Sakda; Brown, Stephen; Berry, Alan; Nielsen, Jens

    2014-04-01

    Malic acid is a C₄ dicarboxylic acid that is currently mainly used in the food and beverages industry as an acidulant. Because of the versatility of the group of C₄ dicarboxylic acids, the chemical industry has a growing interest in this chemical compound. As malic acid will be considered as a bulk chemical, microbial production requires organisms that sustain high rates, yields, and titers. Aspergillus oryzae is mainly known as an industrial enzyme producer, but it was also shown that it has a very competitive natural production capacity for malic acid. Recently, an engineered A. oryzae strain, 2103a-68, was presented which overexpressed pyruvate carboxylase, malate dehydrogenase, and a malic acid transporter. In this work, we report a detailed characterization of this strain including detailed rates and yields under malic acid production conditions. Furthermore, transcript levels of the genes of interest and corresponding enzyme activities were measured. On glucose as carbon source, 2103a-68 was able to secrete malic acid at a maximum specific production rate during stationary phase of 1.87 mmol (g dry weight (DW))⁻¹ h⁻¹ and with a yield of 1.49 mol mol⁻¹. Intracellular fluxes were obtained using ¹³C flux analysis during exponential growth, supporting the success of the metabolic engineering strategy of increasing flux through the reductive cytosolic tricarboxylic acid (rTCA) branch. Additional cultivations using xylose and a glucose/xylose mixture demonstrated that A. oryzae is able to efficiently metabolize pentoses and hexoses to produce malic acid at high titers, rates, and yields.

  10. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  11. Microbiologically produced carboxylic acids used as building blocks in organic synthesis.

    PubMed

    Aurich, Andreas; Specht, Robert; Müller, Roland A; Stottmeister, Ulrich; Yovkova, Venelina; Otto, Christina; Holz, Martina; Barth, Gerold; Heretsch, Philipp; Thomas, Franziska A; Sicker, Dieter; Giannis, Athanassios

    2012-01-01

    Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-D-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building

  12. Nutraceutical potential of monofloral honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula).

    PubMed

    Tenore, Gian Carlo; Ritieni, Alberto; Campiglia, Pietro; Novellino, Ettore

    2012-06-01

    In the light of the growing interest in food and food products obtained through organic and environmentally friendly techniques, the present work represents the first approach to the evaluation of the biological profile of some Sicilian honeys produced in purity by the local black honeybees. Samples exhibited up to 10 times more total phenolics and higher antioxidant capacity than what already reported for the same variety of honeys produced by other honeybee subspecies from Sicily, other Italian regions and abroad. Noteworthy, the gallic acid contents in medlar and almond honeys represented the highest level of single phenolic acid reported in honey so far. A broad antimicrobial spectrum was showed by all of the honey samples and a good correlation between their inhibition capacity and polyphenolic contents was measured. Experimental results highlighted samples among the honeys characterised by the highest nutraceutical added value and most excellent quality.

  13. Draft Genome Sequence of Sorghum Grain Mold Fungus Epicoccum sorghinum, a Producer of Tenuazonic Acid

    PubMed Central

    Oliveira, Rodrigo C.; Davenport, Karen W.; Hovde, Blake; Silva, Danielle; Chain, Patrick S. G.; Correa, Benedito

    2017-01-01

    ABSTRACT The facultative plant pathogen Epicoccum sorghinum is associated with grain mold of sorghum and produces the mycotoxin tenuazonic acid. This fungus can have serious economic impact on sorghum production. Here, we report the draft genome sequence of E. sorghinum (USPMTOX48). PMID:28126937

  14. Glucansucrases from lactic acid bacteria which produce water-insoluble polysaccharides from sucrose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dextrans and related glucans produced from sucrose by lactic acid bacteria have been studied for many years and are used in numerous commercial applications and products. Most of these glucans are water-soluble, except for a few notable exceptions from cariogenic Streptococcus spp. and a very small ...

  15. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1997-09-16

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  16. Modification of wheat gluten with citric acid to produce superabsorbent materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten was reacted with citric acid to produce natural superabsorbent materials able to absorb up to 78 times its weight in water. The properties of the modified gluten samples were characterized using Fourier Transform Infra-red (FTIR) spectroscopy, thermogravimetric analysis, and water uptak...

  17. Draft Genome Sequence of Bacillus coagulans NL01, a Wonderful l-Lactic Acid Producer

    PubMed Central

    Zheng, Zhaojuan; Jiang, Ting; Lin, Xi; Zhou, Jie

    2015-01-01

    Here, we report the draft genome sequence of Bacillus coagulans NL01, which could produce high optically pure l-lactic acid using xylose as a sole carbon source. The draft genome is 3,505,081 bp, with 144 contigs. About 3,903 protein-coding genes and 92 rRNAs are predicted from this assembly. PMID:26089419

  18. Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph.

    PubMed

    Irla, Marta; Neshat, Armin; Winkler, Anika; Albersmeier, Andreas; Heggeset, Tonje M B; Brautaset, Trygve; Kalinowski, Jörn; Wendisch, Volker F; Rückert, Christian

    2014-10-20

    Bacillus methanolicus MGA3 was isolated from freshwater marsh soil and characterised as a thermotolerant and methylotrophic L-glutamate producer. The complete genome consists of a circular chromosome and the two plasmids pBM19 and pBM69. It includes genomic information about C1 metabolism and amino acid biosynthetic pathways.

  19. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1998-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  20. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2002-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  1. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1998-09-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  2. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1997-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  3. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  4. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  5. Fermented goats' milk produced with selected multiple starters as a potentially functional food.

    PubMed

    Minervini, Fabio; Bilancia, Maria Teresa; Siragusa, Sonya; Gobbetti, Marco; Caponio, Francesco

    2009-09-01

    A screening among five lactic acid bacteria, used alone or in combination, led to select a mixed starter (Streptococcus thermophilus CR12, Lactobacillus casei LC01, Lactobacillus helveticus PR4, Lactobacillus plantarum 1288) capable to produce a fermented goats' milk containing gamma-aminobutyric acid (GABA) and angiotensin-I converting enzyme (ACE)-inhibitory peptides. The fermented milk was characterized by cell counts of lactic acid bacteria not lower than 7.0 log cfu g(-1), even after 45 days of storage at 4 degrees C. Fermentation of goats' milk resulted in the production of ca. 28 mg kg(-1) of GABA. Furthermore the fermented goats' milk had an in vitro ACE-inhibitory activity of ca. 73%. Prolonged cold storage did not significantly affect both the concentration of GABA and the ACE-inhibitory activity. Moreover, the taurine content did not significantly vary during both fermentation and the entire storage period.

  6. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays).

    PubMed

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2015-04-15

    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ≤ C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs.

  7. The acidic and erosive potential of five sports drinks.

    PubMed

    Rees, Jeremy; Loyn, Theresa; McAndrew, Robert

    2005-12-01

    Sports drinks are becoming increasingly popular as we are all being encouraged to adopt a healthier lifestyle with regular exercise. However, many of these products are based on acidic fruits and may contribute to erosion. The aim of this study was to screen a number of these products for their potential to cause enamel erosion in vitro. The erosive potential of a number of readily available sports drinks was assessed in the laboratory by measuring their pH, neutralisable acidity and their ability to erode enamel. These were compared to a positive control, orange juice and a negative control, water. The pH of the sports drinks ranged from 3.16-3.70 with their neutralisable acidity ranging from 9.74-13.44 mls of 0.1M NaOH. The amount of enamel removed following 1-hour immersion in the sports drinks ranged from 1.18-5.36 microns. In comparison, the orange juice control had a pH of 3.68, a neutralisable acidity of 19.68 mls of 0.1 M NaOH and removed 3.24 microns of enamel. Many of the sports drinks tested were found to be erosive. This information will be of use to clinicians when counselling patients with tooth surface loss who use fruit based sports drinks regularly.

  8. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2014-09-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site in June-July of 2010 during CalNex and a site in an oil and gas producing region in January-February of 2013 during UBWOS 2013 will be discussed. Although the VOC compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 ppb in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 8%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Inclusion of recent findings on additional precursors and formation pathways of formic acid in the box model increases modeled formic acid concentrations for UBWOS 2013 and CalNex by a factor of 6.4 and 4.5, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 21 and 47% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be -7 and 0-6% in UBWOS 2013 and CalNex, respectively. We observe that air-snow exchange processes and morning fog events may also contribute to ambient formic acid concentrations during UBWOS 2013 (∼20% in total). In total, 50-57% in UBWOS 2013 and 48-53% in CalNex of secondary formation of formic acid remains unexplained. More work on formic acid formation pathways is needed to reduce the uncertainties in the sources and budget of formic

  9. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.

    PubMed

    Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng

    2016-03-01

    Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.

  10. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization.

    PubMed

    Hojabri, Leila; Kong, Xiaohua; Narine, Suresh S

    2009-04-13

    A new linear saturated terminal diisocyanate was synthesized from oleic acid via Curtius rearrangement, and its chemical structure was identified by FTIR, (1)H and (13)C NMR, and MS. The feasibility of utilizing this new diisocyanate for the production of polyurethanes (PUs) was demonstrated by reacting it with commercial petroleum-derived polyols and canola oil-derived polyols, respectively. The physical properties of the PUs prepared from fatty acid-derived diisocyanate were compared to those prepared from the same polyols with a similar but petroleum-derived commercially available diisocyanate: 1,6-hexamethylene diisocyanate. It was found that the fatty acid-derived diisocyanate was capable of producing PUs with comparable properties within acceptable tolerances. This work is the first that establishes the production of linear saturated terminal diisocyanate derived from fatty acids and corresponding PUs mostly from lipid feedstock.

  11. Production of conjugated linoleic acid (CLA) by Bifidobacterium breve LMC520 and its compatibility with CLA-producing rumen bacteria.

    PubMed

    Park, Hui Gyu; Heo, Wan; Kim, Sang Bum; Kim, Hyun Seop; Bae, Gui Seck; Chung, Soo Hyun; Seo, Ho-Chan; Kim, Young Jun

    2011-02-09

    This study was performed to characterize the ability of an active Bifidobacterium strain to produce conjugated linoleic acid (CLA) and to test its possible utilization as a probiotic compatible to the ruminal condition. Bifidobacterium breve LMC520 can actively convert linoleic acid (LA) to cis-9,trans-11-CLA, which is a major isomer derived from microbial conversion. LMC520 showed reasonable tolerance under acidic conditions (pH 2.5 with 1% pepsin) and in the presence of oxgall (0-3%). The growth and CLA production of LMC520 were tested under ruminal conditions and compared with those of Butyrivibrio fibrisolvens A38, which is a major CLA producer in the rumen as an intermediate in the biohydrogenation (BH) process. LMC520 converted 15% of LA to CLA under ruminal conditions, which was 2 times higher activity than that of A38, and there was no decline in CLA level during prolonged incubation of 48 h. The BH activity of LMC520 was comparable to that of A38. When LMC520 was cocultured with A38, even with slight decrease of CLA due to high BH activity by A38, but the level of CLA was maintained by the high CLA-producing activity of LMC520. This comparative study shows the potential of this strain to be applied as a functional probiotic not only for humans but also for ruminants as well as to increase CLA production.

  12. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  13. Targeting 20-HETE producing enzymes in cancer – rationale, pharmacology, and clinical potential

    PubMed Central

    Alexanian, Anna; Sorokin, Andrey

    2013-01-01

    Studies demonstrate that lipid mediator 20-Hydroxyeicosatetraenoic acid (20-HETE) synthesis and signaling are associated with the growth of cancer cells in vitro and in vivo. Stable 20-HETE agonists promote the proliferation of cancer cells, whereas selective inhibitors of the 20-HETE-producing enzymes of the Cytochrome (CYP450)4A and CYP4F families can block the proliferation of glioblastoma, prostate, renal cell carcinoma, and breast cancer cell lines. A recent observation that the expression of CYP4A/4F genes was markedly elevated in thyroid, breast, colon, and ovarian cancer further highlights the significance of 20-HETE-producing enzymes in the progression of different types of human cancer. These findings provide the rationale for targeting 20-HETE-producing enzymes in human cancers and set the basis for the development of novel therapeutic strategies for anticancer treatment. PMID:23569388

  14. Targeted metabolomics of Physaria fendleri, an industrial crop producing hydroxy fatty acids.

    PubMed

    Cocuron, Jean-Christophe; Anderson, Brooke; Boyd, Alison; Alonso, Ana Paula

    2014-03-01

    Physaria fendleri (syn. Lesquerella) is a Brassicaceae producing lesquerolic acid, a highly valued hydroxy fatty acid that could be used for several industrial applications, such as cosmetics, lubricating greases, paints, plastics and biofuels. Free of toxins, Physaria oil is an attractive alternative to imported castor (Ricinus communis) oil, and is hence on the verge of commercialization. Gas chromatography-mass spectrometry analysis of fatty acid methyl esters revealed that lesquerolic acid was synthesized and accumulated in the embryos, reaching 60% (w/w) of the total fatty acids. The sequential extraction and characterization of biomass compounds revealed that Physaria embryo metabolism switched from protein to fatty acid biosynthesis between 18 and 24 days post-anthesis (DPA). In order to unravel the metabolic pathways involved in fatty acid synthesis, a targeted metabolomics study was conducted on Physaria embryos at different stages of development. For this purpose, two novel high-throughput liquid chromatography-tandem mass spectrometry methods were developed and validated to quantify sugars, sugar alcohols and amino acids. Specificity was achieved using multiple reaction monitoring, and the limits of quantification were in the pmole-fmole range. The comparative metabolomic study underlined that: (i) the majority of the metabolites accumulate in Physaria embryos between 18 and 27 DPA; (ii) the oxidative pentose phosphate pathway, glycolysis, the tricarboxilic acid cycle and the anaplerotic pathway drain a substantial amount of carbon; and (iii) ribulose-1,5-bisphosphate is present, which specifically indicates that the Calvin cycle is occurring. The importance and the relevance of these findings regarding fatty acid synthesis were discussed.

  15. Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates.

    PubMed

    Perry, Thomas D; Duckworth, Owen W; McNamara, Christopher J; Martin, Scot T; Mitchell, Ralph

    2004-06-01

    Dissolution of carbonate minerals has significant environmental effects. Microorganisms affect carbonate dissolution rates by producing extracellular metabolites, including complex polysaccharides such as alginic acid. Using a combined atomic force microscopy (AFM)/flowthrough reactor apparatus, we investigated the effects of alginic acid on calcite dissolution. Macroscopic dissolution rates, derived from the aqueous metal ion concentrations, are 10(-5.5) mol m(-2) s(-1) for 5 < pH < 12 in the absence of alginic acid compared to 10(-4.8) mol m(-2) s(-1) in its presence. The AFM images demonstrate that alginic acid preferentially attacks the obtuse steps of dissolution pits on the calcite surface. In pure water, the obtuse and acute steps retreat at similar rates, and the pits are nearly isotropic except under highly acidic conditions. In alginic acid, the acute step retreat rate is nearly unchanged in comparison to water, whereas the obtuse step retreat rate increases with decreasing pH values. As a result, the pits remain rhombohedral but propagate faster in the obtuse direction. To explain these observations, we propose that alginic acid preferentially forms dissolution active surface complexes with calcium atoms on the obtuse step, which results in anisotropic ligand-promoted dissolution.

  16. Potential prodrugs of 6-acetylmethylenepenicillanic acid (Ro 15-1903).

    PubMed

    Adam, S; Then, R; Angehrn, P

    1986-06-01

    The synthesis and biological activities of a series of non-classical penicillins are described. These compounds were synthesized by treating the pivaloyloxymethyl ester of 6-acetylmethylenepenicillanic acid (Ro 15-1903) with various nucleophiles. They were found to be less active against the beta-lactamases from Proteus vulgaris 1028, Escherichia coli 1024, Klebsiella pneumoniae NCTC 418 and E. coli RTEM than the parent compound. Nevertheless, synergy with ampicillin against whole bacterial cells producing beta-lactamases was evident, although the single compounds did not exhibit antibacterial properties. With the compounds 2a and 2b, synergistic interaction with ampicillin could also be demonstrated in mice.

  17. Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita.

    PubMed

    Kim, Tae Yoon; Jang, Ja Yeong; Jeon, Sun Jeong; Lee, Hye Won; Bae, Chang-Hwan; Yeo, Joo Hong; Lee, Hyang Burm; Kim, In Seon; Park, Hae Woong; Kim, Jin-Cheol

    2016-08-28

    The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with (1)H- and (13)C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 µg/ml and 238.3 µg/ml, respectively, at 72 h postexposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita.

  18. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    PubMed

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects.

  19. Draft Genome Sequences of Clostridium Strains Native to Colombia with the Potential To Produce Solvents

    PubMed Central

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana

    2015-01-01

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies. PMID:25999575

  20. Draft Genome Sequence of the Soil Isolate Lysinibacillus fusiformis M5, a Potential Hypoxanthine Producer

    PubMed Central

    Maróti, Gergely; Bálint, Balázs

    2016-01-01

    Lysinibacillus fusiformis strain M5 is a potential hypoxanthine producer that was isolated from clay soil. Here, we present the draft genome sequence that was annotated in order to facilitate future studies of L. fusiformis M5. PMID:27834716

  1. Draft genome sequences of clostridium strains native to Colombia with the potential to produce solvents.

    PubMed

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana; Montoya Castaño, Dolly; Riaño-Pachón, Diego Mauricio

    2015-05-21

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies.

  2. Genome Sequence of Pichia kudriavzevii M12, a Potential Producer of Bioethanol and Phytase

    PubMed Central

    Gan, Han Ming; Ling, How Lie; Rashid, Noor Aini Abdul

    2012-01-01

    A draft genome sequence of Pichia kudriavzevii M12 is presented here. The genome reveals the presence of genes encoding enzymes involved in xylose utilization and the pentose phosphate pathway for bioethanol production. Strain M12 is also a potential producer of phytases, enzymes useful in food processing and agriculture. PMID:23027839

  3. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6 g L(-1) , pH 6.2, culture medium volume 61 mL in a triangular flask with 250 ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation.

  4. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications.

  5. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  6. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  7. Incorporated Fish Oil Fatty Acids Prevent Action Potential Shortening Induced by Circulating Fish Oil Fatty Acids

    PubMed Central

    Ruijter, Hester M. Den; Verkerk, Arie O.; Coronel, Ruben

    2010-01-01

    Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy. PMID:21423389

  8. Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures.

    PubMed

    Hanning, Irene B; Nutt, J D; Ricke, Steven C

    2009-01-01

    Foodborne Salmonella spp. is a leading cause of foodborne illness in the United States each year. Traditionally, most cases of salmonellosis were thought to originate from meat and poultry products. However, an increasing number of salmonellosis outbreaks are occurring as a result of contaminated produce. Several produce items specifically have been identified in outbreaks, and the ability of Salmonella to attach or internalize into vegetables and fruits may be factors that make these produce items more likely to be sources of Salmonella. In addition, environmental factors including contaminated water sources used to irrigate and wash produce crops have been implicated in a large number of outbreaks. Salmonella is carried by both domesticated and wild animals and can contaminate freshwater by direct or indirect contact. In some cases, direct contact of produce or seeds with contaminated manure or animal wastes can lead to contaminated crops. This review examines outbreaks of Salmonella due to contaminated produce, the potential sources of Salmonella, and possible control measures to prevent contamination of produce.

  9. Improved method for producing catalytic carbon and the potential for increasing its use in commercial applications

    USGS Publications Warehouse

    Kruse, C.W.; Lizzio, A.A.; DeBarr, J.A.; Feizoulof, C.A.

    1997-01-01

    This paper describes an improved method for producing a catalytic carbon, which was first produced in the late 1960s. The new activated carbon (AC) removes and destroys organic pollutants in aqueous solutions. To determine the effects of altering the pore structure and surface chemistry of activated carbons, carbons differing in the amount of functional groups on their surfaces were prepared in three steps: (1) oxidizing AC with boiling nitric acid, (2) washing oxidized AC with water to remove the acid, and (3) heating oxidized AC to temperatures beteween 100 and 925 ??C. The surfaces of the products were characterized by determining the amount of CO2 and CO evolved during temperature-programmed desorption. Depending on the desorption temperature, these modified carbons showed enhanced adsorptive and/or catalytic properties that included (1) carbon molecular sieves for separating oxygen from nitrogen, (2) increased capacity for adsorbing sulfur dioxide, (3) stronger adsorption of p-nitrophenol from water, and (4) catalysis of dehydrochlorination reactions. A dehydrohalogenation catalyst produced by the oxidation/ desorption steps was found to be similar to one prepared in the 1960s by oxidizing AC with air at 500-700 ??C. The dehydrohalogenation catalyst produced by either the old method or the new method involves an oxidized surface that has been exposed to a 500-700 ??C temperature range. This carbon catalyst retains modified adsorptive properties of the AC from which it is produced. It can be used both to adsorb pollutants from liquid or gaseous streams and to convert them to recyclable products.

  10. Biogenic acids produced on epoxy linings installed in sewer crown and tidal zones.

    PubMed

    Valix, M; Shanmugarajah, K

    2015-09-01

    In this study the biogenic acids generated by microbes on the surface of Bisphenol A epoxy mortar coupons were investigated for up to 30 months. The epoxy coupons were installed in six sewers in three city locations, Sydney, Melbourne and Perth. Coupons were installed in both the crown and the tidal zones of the sewers to capture the effect of location within the pipe on acid production. The coupons were retrieved approximately every 6 months to provide a dynamic analysis of the biogenic acid production. Our results reveal the colonisation of epoxy mortar by the more aggressive acidophilic bacteria occurred within six months to two years of their installation in the sewer pipes. Biogenic acid generation appear to occur homogeneously from the tidal zone to the crown of the sewer pipes. The reduction in the surface pH of the epoxy lining was supported by the successive growth of microbes beginning with fungi followed be neutrophilic and heterotrophic bacteria and finally by the acidophilic bacteria and the corresponding accumulation of organic and sulphuric acids attributed to these organisms. This study also revealed the potential inhibiting effects on the microbes induced by the accumulation of metabolic products on the epoxy surface. The accumulation of organic acids and H2S coincided with the growth and metabolism inhibition of fungi and acidophilic bacteria. These results provide insights into the microbial interaction and biogenic acids production that contribute to lining degradation and corrosion of concrete in sewer pipes.

  11. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching

    USGS Publications Warehouse

    Watterson, J.R.

    1994-01-01

    Microscopic filiform morphologies in gold which are indistinguishable from forms originally interpreted as bacterial in origin were produced in the laboratory by treating amalgams made from natural and artificial gold with hot nitric acid. Textures ranging from cobblestone to deeply crenulated to nodular filiform were produced in the laboratory from all tested natural and artificial gold amalgams; analogous textures widespread in Alaskan placer gold may have a similar inorganic origin. These results indicate that morphology alone cannot be considered adequate evidence of microbial involvement in gold formation. -Author

  12. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching

    USGS Publications Warehouse

    Watterson, J.R.

    1994-01-01

    Microscopic filiform morphologies in gold which are indistinguishable from forms originally interpreted as bacterial in origin were produced in the laboratory by treating amalgams made from natural and artificial gold with hot nitric acid. Textures ranging from cobblestone to deeply crenulated to nodular filiform were produced in the laboratory from all tested natural and artificial gold amalgams; analogous textures widespread in Alaskan placer gold may have a similar inorganic origin. These results indicate that morphology alone cannot be considered adequate evidence of microbial involvement in gold formation.

  13. Evaluation of net acid generation pH as a single indicator for acid forming potential of rocks using geochemical properties.

    PubMed

    Oh, Chamteut; Ji, Sangwoo; Yim, Giljae; Cheong, Youngwook

    2017-04-01

    The main purpose of this research was to evaluate the geochemical properties of rocks for a single indicator of acid-forming potential. The indicators, such as net acid generation (NAG), NAG pH and total S, were applied to 312 rock samples of various geological characteristics. Additional indicators, such as a Modified NAG pH, paste pH and available acid neutralizing capacity (ANC), were applied to 22 selected samples. Among them, NAG pH was considered the most plausible single indicator in evaluating acid-forming potential, as it is simple to measure, widely applicable to various samples and can be used to estimate the NAG value. The acid-forming potential of 287 samples (92% of samples examined in this research) was classified as either non-acid forming (NAF) or potentially acid forming (PAF) by NAG pH, with an NAF criteria of <3.21 and PAF of >4.52. The NAG pH was also a good estimate of the risk of short-term acid release when combined with paste pH information. However, application of NAG pH to coal mine wastes, with high organic carbon contents, produced erroneous results due to the generation of organic acid during the NAG test. In this research, a Modified NAG pH was assessed as an alternative to NAG pH in such situations.

  14. Electrochemical method for producing a biodiesel mixture comprising fatty acid alkyl esters and glycerol

    DOEpatents

    Lin, YuPo J; St. Martin, Edward J

    2013-08-13

    The present invention relates to an integrated method and system for the simultaneous production of biodiesel from free fatty acids (via esterification) and from triglycerides (via transesterification) within the same reaction chamber. More specifically, one preferred embodiment of the invention relates to a method and system for the production of biodiesel using an electrodeionization stack, wherein an ion exchange resin matrix acts as a heterogeneous catalyst for simultaneous esterification and transesterification reactions between a feedstock and a lower alcohol to produce biodiesel, wherein the feedstock contains significant levels of free fatty acid. In addition, because of the use of a heterogeneous catalyst, the glycerol and biodiesel have much lower salt concentrations than raw biodiesel produced by conventional transesterification processes. The present invention makes it much easier to purify glycerol and biodiesel.

  15. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress*

    PubMed Central

    Waqas, Muhammad; Khan, Abdul Latif; Shahzad, Raheem; Ullah, Ihsan; Khan, Abdur Rahim; Lee, In-Jung

    2015-01-01

    This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. formosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%–33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures. PMID:26642184

  16. HF echoes from ionization potentially produced by high-altitude discharges

    SciTech Connect

    Roussel-Dupre, R.; Fitzgerald, T.J.; Symbalisty, E.

    1997-04-01

    In this paper the authors report on recent radar measurements taken during the month of October 1994 with the LDG HF radar in the Ivory Coast, Africa as part of the International Equatorial Electrojet Year. The purpose of this experimental effort in part was to study the effects of thunderstorms on the ionosphere. At the same time, the authors decided to carry out a set of experiments of an exploratory nature to look for echoes that could potentially arise from ionization produced in the mesosphere. The two leading candidates for producing transient ionization in the mesosphere are meteors and high-altitude discharges. Each is discussed in the context of these measurements.

  17. Streptomyces koyangensis sp. nov., a novel actinomycete that produces 4-phenyl-3-butenoic acid.

    PubMed

    Lee, Jee Yeon; Lee, Jung Yeop; Jung, Ho Won; Hwang, Byung Kook

    2005-01-01

    A 4-phenyl-3-butenoic acid-producing actinomycete, designated strain VK-A60T, was isolated from a soil sample collected from Koyang, Korea. Morphological and chemical characteristics of the strain were consistent with those of the genus Streptomyces. The cell wall of the strain contains LL-diaminopimelic acid. The predominant fatty acids are anteiso-C(15 : 0), iso-C(16 : 0) and C(16 : 0). The strain formed a distinct monophyletic line within the 16S rRNA gene sequence phylogenetic tree. Analyses of its morphological, physiological and biochemical characteristics, together with random amplified polymorphic DNA and DNA-DNA relatedness data, confirmed that strain VK-A60T represents a novel Streptomyces taxon that is distinguishable from closely related reference strains. Strain VK-A60T (=KCCM 10555T=NBRC 100598T) is proposed as the type strain of a novel species, for which the name Streptomyces koyangensis sp. nov. is proposed.

  18. Evaluation of Liquid-Liquid Extraction Process for Separating Acrylic Acid Produced From Renewable Sugars

    NASA Astrophysics Data System (ADS)

    Alvarez, M. E. T.; Moraes, E. B.; Machado, A. B.; Maciel Filho, R.; Wolf-Maciel, M. R.

    In this article, the separation and the purification of the acrylic acid produced from renewable sugars were studied using the liquid-liquid extraction process. Nonrandom two-liquids and universal quasi-chemical models and the prediction method univeral quasi-chemical functional activity coefficients were used for generating liquid-liquid equilibrium diagrams for systems made up of acrylic acid, water, and solvents (diisopropyl ether, isopropyl acetate, 2-ethyl hexanol, and methyl isobutyl ketone) and the results were compared with available liquid-liquid equilibrium experimental data. Aspen Plus (Aspen Technology, Inc., version 2004.1) software was used for equilibrium and process calculations. High concentration of acrylic acid was obtained in this article using diisopropyl ether as solvent.

  19. Evaluation of liquid-liquid extraction process for separating acrylic acid produced from renewable sugars.

    PubMed

    Alvarez, M E T; Moraes, E B; Machado, A B; Maciel Filho, R; Wolf-Maciel, M R

    2007-04-01

    In this article, the separation and the purification of the acrylic acid produced from renewable sugars were studied using the liquid-liquid extraction process. Nonrandom two-liquids and universal quasi-chemical models and the prediction method universal quasi-chemical functional activity coefficients were used for generating liquid-liquid equilibrium diagrams for systems made up of acrylic acid, water, and solvents (diisopropyl ether, isopropyl acetate, 2-ethyl hexanol, and methyl isobutyl ketone) and the results were compared with available liquid-liquid equilibrium experimental data. Aspen Plus (Aspen Technology, Inc., version 2004.1) software was used for equilibrium and process calculations. High concentration of acrylic acid was obtained in this article using diisopropyl ether as solvent.

  20. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  1. Wood ants produce a potent antimicrobial agent by applying formic acid on tree-collected resin.

    PubMed

    Brütsch, Timothée; Jaffuel, Geoffrey; Vallat, Armelle; Turlings, Ted C J; Chapuisat, Michel

    2017-04-01

    Wood ants fight pathogens by incorporating tree resin with antimicrobial properties into their nests. They also produce large quantities of formic acid in their venom gland, which they readily spray to defend or disinfect their nest. Mixing chemicals to produce powerful antibiotics is common practice in human medicine, yet evidence for the use of such "defensive cocktails" by animals remains scant. Here, we test the hypothesis that wood ants enhance the antifungal activity of tree resin by treating it with formic acid. In a series of experiments, we document that (i) tree resin had much higher inhibitory activity against the common entomopathogenic fungus Metarhizium brunneum after having been in contact with ants, while no such effect was detected for other nest materials; (ii) wood ants applied significant amounts of endogenous formic and succinic acid on resin and other nest materials; and (iii) the application of synthetic formic acid greatly increased the antifungal activity of resin, but had no such effect when applied to inert glass material. Together, these results demonstrate that wood ants obtain an effective protection against a detrimental microorganism by mixing endogenous and plant-acquired chemical defenses. In conclusion, the ability to synergistically combine antimicrobial substances of diverse origins is not restricted to humans and may play an important role in insect societies.

  2. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation.

    PubMed

    Cordente, Antonio G; Cordero-Bueso, Gustavo; Pretorius, Isak S; Curtin, Christopher D

    2013-02-01

    Acetic acid, a byproduct formed during yeast alcoholic fermentation, is the main component of volatile acidity (VA). When present in high concentrations in wine, acetic acid imparts an undesirable 'vinegary' character that results in a significant reduction in quality and sales. Previously, it has been shown that saké yeast strains resistant to the antifungal cerulenin produce significantly lower levels of VA. In this study, we used a classical mutagenesis method to isolate a series of cerulenin-resistant strains, derived from a commercial diploid wine yeast. Four of the selected strains showed a consistent low-VA production phenotype after small-scale fermentation of different white and red grape musts. Specific mutations in YAP1, a gene encoding a transcription factor required for oxidative stress tolerance, were found in three of the four low-VA strains. When integrated into the genome of a haploid wine strain, the mutated YAP1 alleles partially reproduced the low-VA production phenotype of the diploid cerulenin-resistant strains, suggesting that YAP1 might play a role in (regulating) acetic acid production during fermentation. This study offers prospects for the development of low-VA wine yeast starter strains that could assist winemakers in their effort to consistently produce wine to definable quality specifications.

  3. Biologic Potential of Calcium Phosphate Biopowders Produced via Decomposition Combustion Synthesis.

    PubMed

    Vollmer, N; King, K B; Ayers, R

    2015-07-01

    The aim of this research was to evaluate the biologic potential of calcium phosphate (CaP) biopowders produced with a novel reaction synthesis system. Decomposition combustion synthesis (DCS) is a modified combustion synthesis method capable of producing CaP powders for use in bone tissue engineering applications. During DCS, the stoichiometric ratio of reactant salt to fuel was adjusted to alter product chemistry and morphology. In vitro testing methods were utilized to determine the effects of controlling product composition on cytotoxicity, proliferation, biocompatibility and biomineralization. In vitro, human fetal osteoblasts (ATCC, CRL-11372) cultured with CaP powder displayed a flattened morphology, and uniformly encompassed the CaP particulates. Matrix vesicles containing calcium and phosphorous budded from the osteoblast cells. CaP powders produced via DCS are a source of biologically active, synthetic, bone graft substitute materials.

  4. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    SciTech Connect

    Not Available

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  5. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    PubMed

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements.

  6. Potential of the compound specific isotope analysis of individual amino acid for studying past nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Choi, Bohyung; Shin, Kyung-Hoon

    2016-04-01

    The nitrogen isotope ratio of bulk sediment has been widely used for studying nitrogen cycle in the marine environment. However, since organic nitrogen in sediment is regarded as a mixture of organic matter, it is challenging to identify its exact sources. Recently, compound specific nitrogen isotope analysis of amino acid (CSIA AAs) has been introduced as a potential tool for complement of bulk nitrogen isotope since amino acid more directly reflects information on primary producer and trophic position. However, studies on CSIA of amino acid in sediments are scarce due to the complexities of the analytical method and relatively high analytica costl. In this study, we established a method of the CSIA AAs which is more suitable for the analysis of sediments and accessed if the CSIA AAs can be used for the study of past nitrogen cycle.

  7. Polymerase chain reaction (PCR) identification of Penicillium brevicompactum, a grape contaminant and mycophenolic acid producer.

    PubMed

    Patiño, B; Medina, A; Doménech, M; González-Jaén, M T; Jiménez, M; Vázquez, C

    2007-02-01

    Penicillium brevicompactum is a ubiquitous fungal species that contaminates diverse substrates and commodities and produces an array of metabolites toxic to human and animals. The present work has obtained evidence, by liquid chromatography (LC)-ion-trap mass spectrometry, of the ability of P. brevicompactum strains isolated from grapes to produce mycophenolic acid, a potent immunosuppressor. In order to facilitate early diagnosis of this species on commodities for human and animal consumption, a rapid, sensitive and specific polymerase chain reaction (PCR) assay for P. brevicompactum was developed. The specific primers were designed based on the ITS1-5.8S-ITS2ITS (Internal Transcribed Spacers of rRNA genes) multicopy region. This method provides a useful aid to detect the presence of this fungal species in grapes and other commodities in order to prevent the toxins produced entering the food chain.

  8. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae

    PubMed Central

    Muñoz, R; Arena, M.E.; Silva, J.; González, S.N.

    2010-01-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances. PMID:24031582

  9. Series expansions for the vector potential and field components produced by a toroidal conductor

    NASA Astrophysics Data System (ADS)

    Caldwell, J.

    1985-01-01

    Alternative solutions for the vector potential and the magnetic-field components produced by a toroidal conductor of rectangular cross section are considered. Series expansions are obtained and found to agree with those obtained independently by M. W. Garrett [J. Appl. Phys. 22, 1091 (1951)]. Results are obtained for a particular coil geometry by using only a few terms from the series expansions and, by comparing with the exact results, are found to be highly accurate at points close to the coil axis.

  10. Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology

    PubMed Central

    Chambers, Cecilia R.; Patrick, Wayne M.

    2015-01-01

    With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. PMID:26494982

  11. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis.

    PubMed

    Hmar, Rothangmawi Victoria; Prasad, Shashi Bala; Jayaraman, Guhan; Ramachandran, Kadathur B

    2014-12-01

    Microbial production of hyaluronic acid (HA) is an attractive substitute for extraction of this biopolymer from animal tissues. Natural producers such as Streptococcus zooepidemicus are potential pathogens; therefore, production of HA by recombinant bacteria that are generally recognized as safe (GRAS) organisms is a viable alternative that is being extensively explored. However, plasmid-based expression systems for HA production by recombinant bacteria have the inherent disadvantage of reduced productivity because of plasmid instability. To overcome this problem, the HA synthesis genes (hasA-hasB and hasA-hasB-hasC) from has-operon of S. zooepidemicus were integrated into the chromosome of Lactococcus lactis by site-directed, double-homologous recombination developing strains VRJ2AB and VRJ3ABC. The chromosomal integration stabilized the genes and obviated the instability observed in plasmid-expressed recombinant strains. The genome-integrated strains produced higher molecular weight (3.5-4 million Dalton [MDa]) HA compared to the plasmid-expressed strains (2 MDa). High molecular weight HA was produced when the intracellular concentration of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and uridine diphosphate-glucuronic acid (UDP-GlcUA) was almost equal and hasA to hasB ratio was low. This work suggests an optimal approach to obtain high molecular weight HA in recombinant strains.

  12. Chrysotile asbestos detoxification with a combined treatment of oxalic acid and silicates producing amorphous silica and biomaterial.

    PubMed

    Valouma, Aikaterini; Verganelaki, Anastasia; Maravelaki-Kalaitzaki, Pagona; Gidarakos, Evangelos

    2016-03-15

    This study was primarily imposed by the ever increasing need for detoxification of asbestos and asbestos containing materials (ACM), with potential application onsite. The present work investigates potential detoxification of pure chrysotile (Chr) asbestos via a combined treatment of oxalic acid dihydrate (Oxac) (Η2C2Ο4·2Η2Ο) with silicates, such as tetraethoxysilane (TEOS) (SiH20C8O4) and pure water glass (WG) (potassium silicate) (K2SiO3). These reagents used in the experimental procedure, do not cause adverse effects on the environment and are cost effective. The results of FTIR, XRD, optical and scanning microscopy coupled with EDS analyses indicated that all of the applied treatments destructed the Chr structure and yielded silica of amorphous phase and the biomaterial glushinskite from the Oxac reacted with brucite [Mg(OH)2] layer. Each of the proposed formulations can be applied for the detoxification of asbestos, according to priorities related to the specific products of the recovery treatment. Therefore, Oxac acid leaching followed by the TEOS addition is preferred in cases of glushinskite recovery; TEOS treatment of asbestos with subsequent Oxac addition produced amorphous silica production; finally Oxac acid leaching followed by WG encapsulated the asbestos fibers and can be used in cases of onsite asbestos and ACM detoxification.

  13. Antiviral potential of lactic acid bacteria and their bacteriocins.

    PubMed

    Al Kassaa, I; Hober, D; Hamze, M; Chihib, N E; Drider, D

    2014-12-01

    Emerging resistance to antiviral agents is a growing public health concern worldwide as it was reported for respiratory, sexually transmitted and enteric viruses. Therefore, there is a growing demand for new, unconventional antiviral agents which may serve as an alternative to the currently used drugs. Meanwhile, published literature continues shedding the light on the potency of lactic acid bacteria (LAB) and their bacteriocins as antiviral agents. Health-promoting LAB probiotics may exert their antiviral activity by (1) direct probiotic-virus interaction; (2) production of antiviral inhibitory metabolites; and/or (3) via stimulation of the immune system. The aim of this review was to highlight the antiviral activity of LAB and substances they produce with antiviral activity.

  14. Complete genome sequence of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.

    PubMed

    Kato, Hiroaki; Shiwa, Yuh; Oshima, Kenshiro; Machii, Miki; Araya-Kojima, Tomoko; Zendo, Takeshi; Shimizu-Kadota, Mariko; Hattori, Masahira; Sonomoto, Kenji; Yoshikawa, Hirofumi

    2012-04-01

    We report the complete genome sequence of Lactococcus lactis IO-1 (= JCM7638). It is a nondairy lactic acid bacterium, produces nisin Z, ferments xylose, and produces predominantly L-lactic acid at high xylose concentrations. From ortholog analysis with other five L. lactis strains, IO-1 was identified as L. lactis subsp. lactis.

  15. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters... following prescribed conditions: (a) The additive consists of a mixture of either methyl or ethyl esters...

  16. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters... following prescribed conditions: (a) The additive consists of a mixture of either methyl or ethyl esters...

  17. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl and ethyl esters of fatty acids produced... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters... following prescribed conditions: (a) The additive consists of a mixture of either methyl or ethyl esters...

  18. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  19. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a)...

  20. The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis.

    PubMed

    de Graaf, Rob M; Ricard, Guenola; van Alen, Theo A; Duarte, Isabel; Dutilh, Bas E; Burgtorf, Carola; Kuiper, Jan W P; van der Staay, Georg W M; Tielens, Aloysius G M; Huynen, Martijn A; Hackstein, Johannes H P

    2011-08-01

    It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria.

  1. Oleic Acid: Natural variation and potential enhancement in oilseed crops.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid is a monounsaturated omega 9 fatty acid (MUFA, C18:1) which can be found in various plant lipids and animal fats. Unlike omega 3 (a-linolenic acid, C18:3) and omega 6 (linoleic acid, C18:2) fatty acids which are essential because they cannot be synthesized by humans and must be obtained f...

  2. Potential biological applications of bio-based anacardic acids and their derivatives.

    PubMed

    Hamad, Fatma B; Mubofu, Egid B

    2015-04-16

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.

  3. Potential Biological Applications of Bio-Based Anacardic Acids and Their Derivatives

    PubMed Central

    Hamad, Fatma B.; Mubofu, Egid B.

    2015-01-01

    Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30–35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported. PMID:25894225

  4. Tandem mass spectrometry of poly(methacrylic Acid) oligomers produced by negative mode electrospray ionization.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-01-01

    Dissociation of small poly(methyl acrylic acid) (PMAA) anions produced by electrospray was characterized by tandem mass spectrometry. Upon collisional activation, singly, and doubly deprotonated PMAA oligomers were shown to fragment via two major reactions, dehydration and decarboxylation. The elimination of a water molecule would occur between two consecutive acid groups in a charged-remote mechanism, giving rise to cyclic anhydrides, and was shown to proceed as many times as pairs of neutral pendant groups were available. As a result, the number of dehydration steps, together with the abundance of the fragment ions produced after the release of all water molecules, revealed the polymerization degree of the molecule in the particular case of doubly charged oligomers. For singly deprotonated molecules, the exact number of MAA units could be reached from the number of carbon dioxide molecules successively eliminated from the fully dehydrated precursor ions. In contrast to dehydration, decarboxylation reactions would proceed via a charge-induced mechanism. The proposed dissociation mechanisms are consistent with results commonly reported in thermal degradation studies of poly(acrylic acid) resins and were supported by accurate mass measurements. These fragmentation rules were successfully applied to characterize a polymeric impurity detected in the tested PMAA sample.

  5. Identification of innovative potential quality markers in rocket and melon fresh-cut produce.

    PubMed

    Cavaiuolo, Marina; Cocetta, Giacomo; Bulgari, Roberta; Spinardi, Anna; Ferrante, Antonio

    2015-12-01

    Ready-to-eat fresh cut produce are exposed to pre- and postharvest abiotic stresses during the production chain. Our work aimed to identify stress responsive genes as new molecular markers of quality that can be widely applied to leaves and fruits and easily determined at any stage of the production chain. Stress responsive genes associated with quality losses were isolated in rocket and melon fresh-cut produce and their expression levels analyzed by quantitative real time PCR (qRT-PCR) at different time points after harvest at 20 °C and 4 °C. qRT-PCR results were supported by correlation analysis with physiological and biochemical determinations evaluated at the same conditions such as chlorophyll a fluorescence indices, total, reducing sugars, sucrose, ethylene, ascorbic acid, lipid peroxidation and reactive oxygen species. In both species the putative molecular markers increased their expression soon after harvest suggesting a possible use as novel and objective quality markers of fresh-cut produces.

  6. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  7. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid

    PubMed Central

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717

  8. General form of the color potential produced by color charges of the quark

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2013-03-01

    Constant electric charge e satisfies the continuity equation ∂ μ j μ ( x) = 0 where j μ ( x) is the current density of the electron. However, the Yang-Mills color current density j μa ( x) of the quark satisfies the equation D μ [ A] j μa ( x) = 0 which is not a continuity equation (∂ μ j μa ( x) = 0) which implies that a color charge q a ( t) of the quark is not constant but it is time dependent where a = 1 ,2 , . . .8 are color indices. In this paper we derive general form of color potential produced by color charges of the quark. We find that the general form of the color potential produced by the color charges of the quark at rest is given by {\\varPhi^a}(x)=A_0^a( {t,x} )={{q^b}( {t-{r/c} )}}{r}{{[ {{exp [ {gint {drfrac{{Q( {t-frac{r/c} )-1}}{r}} } ]}}{{gint {dr{Q( {t-frac{r/c} )}}{r}} }}} ]}_{ab }} where dr integration is an indefinite integration, {Q_{ab }}( {{tau_0}} )={f^{abd }}{q^d}( {{tau_0}} ),r=| {overrightarrow{x}-overrightarrow{X}( {{tau_0}} )} |,{tau_0}=t-r/c is the retarded time, c is the speed of light, overrightarrow{X}( {{tau_0}} ) is the position of the quark at the retarded time and the repeated color indices b, d(= 1 , 2 , . . . 8) are summed. For constant color charge q a we reproduce the Coulomb-like potential {\\varPhi^a}(x)={{q^a}}/r which is consistent with the Maxwell theory where constant electric charge e produces the Coulomb potential \\varPhi (x)=e/r.

  9. Characterization of Five Fungal Endophytes Producing Cajaninstilbene Acid Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA. PMID:22102911

  10. Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods.

    PubMed

    Marcobal, Angela; de las Rivas, Blanca; Moreno-Arribas, M Victoria; Muñoz, Rosario

    2005-04-01

    In a screening of primers, we have selected three pairs of primers for a multiplex PCR assay for the simultaneous detection of lactic acid bacteria (LAB) strains, which potentially produce histamine, tyramine, and putrescine on fermented foods. These primers were based on sequences from histidine, tyrosine, and ornithine decarboxylases from LAB. Under the optimized conditions, the assay yielded a 367-bp DNA fragment from histidine decarboxylases, a 924-bp fragment from tyrosine decarboxylases, and a 1,446-bp fragment from ornithine decarboxylases. When the DNAs of several target organisms were included in the same reaction, two or three corresponding amplicons of different sizes were observed. This assay was useful for the detection of amine-producing bacteria in control collection strains and in a LAB collection. No amplification was observed with DNA from nonproducing LAB strains. This article is the first describing a multiplex PCR approach for the simultaneous detection of potentially amine-producing LAB in foods. It can be easily incorporated into the routine screening for the accurate selection of starter LAB and in food control laboratories.

  11. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system.

    PubMed

    Lee, Pyung-Cheon; Lee, Sang-Yup; Chang, Ho-Nam

    2008-07-01

    Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens was anaerobically carried out using an internal membrane filter module in order to examine the physiological response of A. succiniciproducens to a high-cell-density environment. The optimal growth of A. succiniciproducens and its enhanced succinic acid productivity were observed under CO2-rich conditions, established by adding NaHCO3 and Na2CO3, in the cell recycled system. A. succiniciproducens grew up to 6.50 g-DCW/l, the highest cell concentration obtained so far, in cell recycled cultures. The cells did not change their morphology, which is known to be easily changed in unfavorable or stress environments. The maximum productivity of succinic acid was about 3.3 g/l/h, which is 3.3 times higher than those obtained in batch cultures. These results can serve as a guide for designing highly efficient cell recycled systems for succinic acid at a commercial level.

  12. Chlorella zofingiensis as an Alternative Microalgal Producer of Astaxanthin: Biology and Industrial Potential

    PubMed Central

    Liu, Jin; Sun, Zheng; Gerken, Henri; Liu, Zheng; Jiang, Yue; Chen, Feng

    2014-01-01

    Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed. PMID:24918452

  13. Isolation of thermophilic L-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition.

    PubMed

    Tongpim, Saowanit; Meidong, Ratchanu; Poudel, Pramod; Yoshino, Satoshi; Okugawa, Yuki; Tashiro, Yukihiro; Taniguchi, Masayuki; Sakai, Kenji

    2014-03-01

    By applying non-sterile open fermentation of food waste, various thermotolerant l-lactic acid-producing bacteria were isolated and identified. The predominant bacterial isolates showing higher accumulation of l-lactic acid belong to 3 groups of Bacillus coagulans, according to their 16S rRNA gene sequence similarities. B. coagulans strains M21 and M36 produced high amounts of l-lactic acid of high optical purity and lactic acid selectivity in model kitchen refuse medium and glucose-yeast extract-peptone medium. Other thermotolerant isolates resembling to Bacillus humi, B. ruris, B. subtilis, B. niacini and B. soli were also identified. These bacteria produced low amounts of l-lactic acid of more than 99% optical purity. All isolated strains showed the highest growth rate at temperatures around 55-60°C. They showed unique responses to various oxygen supply conditions. The majority of isolates produced l-lactic acid at a low overall oxygen transfer coefficient (KLa); however, acetic acid was produced instead of l-lactic acid at a high KLa. B. coagulans M21 was the only strain that produced high, consistent, and reproducible amounts of optically pure l-lactic acid (>99% optical purity) under high and low KLa conditions in a homo-fermentative manner.

  14. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    SciTech Connect

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  15. Polyunsaturated lysophosphatidic acid as a potential asthma biomarker

    PubMed Central

    Ackerman, Steven J; Park, Gye Young; Christman, John W; Nyenhuis, Sharmilee; Berdyshev, Evgeny; Natarajan, Viswanathan

    2016-01-01

    Lysophosphatidic acid (LPA), a lipid mediator in biological fluids and tissues, is generated mainly by autotaxin that hydrolyzes lysophosphatidylcholine to LPA and choline. Total LPA levels are increased in bronchoalveolar lavage fluid from asthmatic lung, and are strongly induced following subsegmental bronchoprovocation with allergen in subjects with allergic asthma. Polyunsaturated molecular species of LPA (C22:5 and C22:6) are selectively synthesized in the airways of asthma subjects following allergen challenge and in mouse models of allergic airway inflammation, having been identified and quantified by LC/MS/MS lipidomics. This review discusses current knowledge of LPA production in asthmatic lung and the potential utility of polyunsaturated LPA molecular species as novel biomarkers in bronchoalveolar lavage fluid and exhaled breath condensate of asthma subjects. PMID:26808693

  16. Potential of lactic acid bacteria in aflatoxin risk mitigation.

    PubMed

    Ahlberg, Sara H; Joutsjoki, Vesa; Korhonen, Hannu J

    2015-08-17

    Aflatoxins (AF) are ubiquitous mycotoxins contaminating food and feed. Consumption of contaminated food and feed can cause a severe health risk to humans and animals. A novel biological method could reduce the health risks of aflatoxins through inhibiting mold growth and binding aflatoxins. Lactic acid bacteria (LAB) are commonly used in fermented food production. LAB are known to inhibit mold growth and, to some extent, to bind aflatoxins in different matrices. Reduced mold growth and aflatoxin production may be caused by competition for nutrients between bacterial cells and fungi. Most likely, binding of aflatoxins depends on environmental conditions and is strain-specific. Killed bacteria cells possess consistently better binding abilities for aflatoxin B1 (AFB1) than viable cells. Lactobacilli especially are relatively well studied and provide noticeable possibilities in binding of aflatoxin B1 and M1 in food. It seems that binding is reversible and that bound aflatoxins are released later on (Haskard et al., 2001; Peltonen et al., 2001). This literature review suggests that novel biological methods, such as lactic acid bacteria, show potential in mitigating toxic effects of aflatoxins in food and feed.

  17. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production.

  18. Distribution of chitin/chitosan-like bioflocculant-producing potential in the genus Citrobacter.

    PubMed

    Kimura, Kazuyuki; Inoue, Takuya; Kato, Dai-Ichiro; Negoro, Seiji; Ike, Michihiko; Takeo, Masahiro

    2013-11-01

    Some strains belonging to the genera Citrobacter and Enterobacter have been reported to produce chitin/chitosan-like bioflocculants (BFs) from acetate. In this study, to investigate the distribution of the BF-producing potential in the genus Citrobacter and to screen stably and highly BF-producing strains, we obtained 36 Citrobacter strains from different culture collection centers, which were distributed among seven species in the genus, and tested for the flocculating activities of their culture supernatants using a kaolin suspension method. As a result, 21 strains belonging to C. freundii (17 strains in 23 strains tested), C. braakii (two in two), C. youngae (one in one), and C. werkmanii (one in two) showed flocculating activity, but this ability was limited to cells grown on acetate. Gas chromatography/mass spectrometry (GC/MS) analysis of the hydrolysates from the BFs of five selected strains indicated that they consisted of glucosamine and/or N-acetylglucosamine, such as the chitin/chitosan-like BF (BF04) produced by Citrobacter sp. TKF04 (Fujita et al. J Biosci Bioeng 89: 40-46, 2000). Gel filtration chromatography using a high-performance liquid chromatography system revealed that the molecular weight ranges of these BFs varied, but the average sizes were all above 1.66 × 10⁶Da.

  19. Occurrence and fumonisin B2 producing potential of Aspergillus section Nigri in Brazil nuts.

    PubMed

    Ferranti, Larissa S; Correa, Benedito; Fungaro, Maria Helena P; Iamanaka, Beatriz T; Massi, Fernanda P; Phippen, Christopher B W; Frisvad, Jens C; Taniwaki, Marta H

    2017-02-01

    Bertholletia excelsa is the tree that produces Brazil nuts which have vast economic importance in the Amazon region and as an export commodity. The aim of this study was to assess the presence of Aspergillus section Nigri in Brazil nut samples at different stages of its production chain and to verify the toxigenic potential for fumonisin B2 (FB2) production of these isolates along with the presence of this mycotoxin in Brazil nut samples. The fungal infection ranged from 0 to 80% at the different stages of the harvest and processing chain and the water activity of the nuts from 0.273 to 0.994. A total of 1052 A. section Nigri strains were isolated from Brazil nuts and 200 strains were tested for their ability to produce FB2: 41 strains (20.5%) were FB2 producers with concentrations ranging from 0.09 to 37.25 mg/kg; 2 strains (1%) showed traces of FB2, less than the detection limit (0.08 mg/kg); and 157 (78.5%) were not FB2 producers. Although several samples showed high contamination by A. section Nigri, no sample was contaminated by FB2.

  20. Comparison of magnetic field and electric potential produced by frog heart muscle

    NASA Astrophysics Data System (ADS)

    Burstein, Deborah; Cohen, David

    1985-04-01

    A comparison is made here between the magnetic field and electric potential produced by a thin strip of frog heart muscle. An experimental test is made of the theory which states that the wave front of a single fiber (or parallel bundle of fibers as in this strip) can be represented, for both the magnetic field and electric potential, by the same single-current dipole. First, an experimental measurement is made of the ratio of magnetic field/electric potential produced by an actual current dipole in an electrolytic tank. Then the dipole is replaced by the muscle strip and a measurement is again made of the ratio; this is done for three muscle strips at eight different source-to-detector distances ranging from 1 to 5 cm. It is found, in all cases, that the muscle ratios are equal to those of the actual dipole to within the experimental uncertainty of ±10%. Therefore, to this extent the theory is verified for this case of a thin strip of frog heart tissue.

  1. No induction of beta-oxidation in leaves of Arabidopsis that over-produce lauric acid.

    PubMed

    Hooks, M A; Fleming, Y; Larson, T R; Graham, I A

    1999-01-01

    Leaves from transgenic Brassica napus L. plants engineered to produce lauric acid show increased levels of enzyme activities of the pathways associated with fatty acid catabolism (V.A. Eccleston and J.B. Ohlrogge, 1998, Plant Cell 10: 613-621). In order to determine if the increases in enzyme activity are mirrored by increases in the expression of genes encoding enzymes of beta-oxidation, which is the major pathway of fatty acid catabolism in plants, the medium-chain acyl-acyl carrier protein (ACP) thioesterase MCTE from California bay (Umbellularia california) was over-expressed under the control of the cauliflower mosaic virus 35S promoter in Arabidopsis thaliana (L.) Heynh. Arabidopsis was the most suitable choice for these studies since gene expression could be analyzed in a large number of independent MCTE-expressing lines using already well-characterized beta-oxidation genes. Levels of MCTE transcripts in leaves varied widely over the population of plants analyzed. Furthermore, active MCTE was produced as determined by enzymatic analysis of leaf extracts of MCTE-expressing plants. These plants incorporated laurate into triacylglycerol of seeds, but not into lipids of leaves as shown by gaschromatographic analysis of total fatty acid extracts. The expression levels of the beta-oxidation and other genes that are highly expressed during developmental stages involving rapid fatty acid degradation were measured. No significant difference in gene expression was observed among MCTE-expressing plants and transgenic and non-transgenic controls. To eliminate the possibility that post-translational mechanisms are responsible for the observed increases in enzyme activity acyl-CoA oxidase activity was also measured in leaves of MCTE-expressing plants using medium and long chain acyl-CoA substrates. No significant increases in either medium- or long-chain acyl-CoA oxidase activities were detected. We conclude that endogenous beta-oxidation is sufficient to account for the

  2. Neonatal striatal grafts prevent lethal syndrome produced by bilateral intrastriatal injection of kainic acid.

    PubMed

    Tulipan, N; Huang, S; Whetsell, W O; Allen, G S

    1986-07-02

    It is reported that unilateral grafts of neonatal striatal tissue protect the recipient from the lethal aphagia and adipsia produced by bilateral intrastriatal injection of 10 nmol of kainic acid in rats. It is shown that neither adult striatum nor neonatal tissue from other sites have the same lifesaving effect and that the salutary effect of the graft is dependent upon graft survival. Grafts from a histoincompatible donor are apparently rejected, leading to the death of the recipient. Cyclosporine inhibits rejection thereby enabling recipient survival. It is postulated that the graft exerts a neurohumoral influence that protects the striatum from the toxic effect of kainate.

  3. Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar.

    PubMed

    Castro, Cristina; Cleenwerck, Ilse; Trcek, Janja; Zuluaga, Robin; De Vos, Paul; Caro, Gloria; Aguirre, Ricardo; Putaux, Jean-Luc; Gañán, Piedad

    2013-03-01

    The phylogenetic position of a cellulose-producing acetic acid bacterium, strain ID13488, isolated from commercially available Colombian homemade fruit vinegar, was investigated. Analyses using nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rRNA gene internal transcribed spacer (ITS) sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated the micro-organism to the genus Gluconacetobacter, and more precisely to the Gluconacetobacter xylinus group. Moreover, the data suggested that the micro-organism belongs to a novel species in this genus, together with LMG 1693(T), a non-cellulose-producing strain isolated from vinegar by Kondo and previously classified as a strain of Gluconacetobacter xylinus. DNA-DNA hybridizations confirmed this finding, revealing a DNA-DNA relatedness value of 81 % between strains ID13488 and LMG 1693(T), and values <70 % between strain LMG 1693(T) and the type strains of the closest phylogenetic neighbours. Additionally, the classification of strains ID13488 and LMG 1693(T) into a single novel species was supported by amplified fragment length polymorphism (AFLP) and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains ID13488 and LMG 1693(T) could be differentiated from closely related species of the genus Gluconacetobacter by their ability to produce 2- and 5-keto-d-gluconic acid from d-glucose, their ability to produce acid from sucrose, but not from 1-propanol, and their ability to grow on 3 % ethanol in the absence of acetic acid and on ethanol, d-ribose, d-xylose, sucrose, sorbitol, d-mannitol and d-gluconate as carbon sources. The DNA G+C content of strains ID13488 and LMG 1693(T) was 58.0 and 60.7 mol%, respectively. The major ubiquinone of LMG 1693(T) was Q-10. Taken together these data indicate that strains ID13488 and LMG 1693(T) represent a novel species of the genus Gluconacetobacter for which the name Gluconacetobacter

  4. Use of sustainable chemistry to produce an acyl amino acid surfactant.

    PubMed

    Reznik, Gabriel O; Vishwanath, Prashanth; Pynn, Michelle A; Sitnik, Joy M; Todd, Jeffrey J; Wu, Jun; Jiang, Yan; Keenan, Brendan G; Castle, Andrew B; Haskell, Richard F; Smith, Temple F; Somasundaran, Ponisseril; Jarrell, Kevin A

    2010-05-01

    Surfactants find wide commercial use as foaming agents, emulsifiers, and dispersants. Currently, surfactants are produced from petroleum, or from seed oils such as palm or coconut oil. Due to concerns with CO(2) emissions and the need to protect rainforests, there is a growing necessity to manufacture these chemicals using sustainable resources In this report, we describe the engineering of a native nonribosomal peptide synthetase pathway (i.e., surfactin synthetase), to generate a Bacillus strain that synthesizes a highly water-soluble acyl amino acid surfactant, rather than the water insoluble lipopeptide surfactin. This novel product has a lower CMC and higher water solubility than myristoyl glutamate, a commercial surfactant. This surfactant is produced by fermentation of cellulosic carbohydrate as feedstock. This method of surfactant production provides an approach to sustainable manufacturing of new surfactants.

  5. Contamination of Bananas with Beauvericin and Fusaric Acid Produced by Fusarium oxysporum f. sp. cubense

    PubMed Central

    Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

    2013-01-01

    Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Methodology/Principal Findings Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. Conclusions/Signficance The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants. PMID:23922960

  6. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    PubMed

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  7. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    PubMed

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition.

  8. Draft Genome Sequence of the Thermophile Thermus filiformis ATCC 43280, Producer of Carotenoid-(Di)glucoside-Branched Fatty Acid (Di)esters and Source of Hyperthermostable Enzymes of Biotechnological Interest

    PubMed Central

    Mandelli, Fernanda; Oliveira Ramires, Brenda; Couger, Matthew Brian; Paixão, Douglas A. A.; Camilo, Cesar M.; Polikarpov, Igor; Prade, Rolf

    2015-01-01

    Here, we present the draft genome sequence of Thermus filiformis strain ATCC 43280, a thermophile bacterium capable of producing glycosylated carotenoids acylated with branched fatty acids and enzymes of biotechnological potential. PMID:25977443

  9. Draft Genome Sequence of the Thermophile Thermus filiformis ATCC 43280, Producer of Carotenoid-(Di)glucoside-Branched Fatty Acid (Di)esters and Source of Hyperthermostable Enzymes of Biotechnological Interest.

    PubMed

    Mandelli, Fernanda; Oliveira Ramires, Brenda; Couger, Matthew Brian; Paixão, Douglas A A; Camilo, Cesar M; Polikarpov, Igor; Prade, Rolf; Riaño-Pachón, Diego M; Squina, Fabio M

    2015-05-14

    Here, we present the draft genome sequence of Thermus filiformis strain ATCC 43280, a thermophile bacterium capable of producing glycosylated carotenoids acylated with branched fatty acids and enzymes of biotechnological potential.

  10. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    PubMed

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  11. Bio-electro catalytic treatment of petroleum produced water: Influence of cathode potential upliftment.

    PubMed

    Jain, Pratiksha; Srikanth, Sandipam; Kumar, Manoj; Sarma, Priyangshu M; Singh, M P; Lal, Banwari

    2016-11-01

    Treatment of petroleum produced water (PPW) was studied using bioelectrochemical system (BES) under uplifted cathode potential. The treatment efficiency in terms of COD and hydrocarbon removal was observed at 91.25% and 76.60% respectively, along with the reduction in TDS during BES operation under 400mV of cathode potential. There was also a reduction in concentration of sulfates, however, it was not significant at, since oxidative conditions are being maintained at anode. Improved oxidation of PPW at anode also resulted in good power output (-20.47mA) and also depicted improved fuel cell behaviour. The electrochemical analysis in terms of cyclic/linear sweep voltammetry also showed well correlation with the observed treatment efficiencies. The microbial dynamics of the BES after loading real field wastewater showed the dominance of species that are reported to be effective for petroleum crude oil degradation.

  12. Alcoholic beverages produced by alcoholic fermentation but not by distillation are powerful stimulants of gastric acid secretion in humans.

    PubMed Central

    Teyssen, S; Lenzing, T; González-Calero, G; Korn, A; Riepl, R L; Singer, M V

    1997-01-01

    BACKGROUND: The effect of commonly ingested alcoholic beverages on gastric acid output and release of gastrin in humans is unknown. AIM AND METHODS: In 16 healthy humans the effect of some commonly ingested alcoholic beverages produced by fermentation plus distillation (for example, whisky, cognac, calvados, armagnac, and rum) or by alcoholic fermentation (beer, wine, champagne, martini, and sherry) on gastric acid output and release of gastrin was studied. Gastric acid output was determined by the method of intragastric titration. Plasma gastrin was measured using a specific radioimmunoassay. RESULTS: None of the alcoholic beverages produced by fermentation plus distillation had any significant effect on gastric acid output and release of gastrin compared with control (isotonic glucose and distilled water). Alcoholic beverages produced only by fermentation significantly (p < 0.05) increased the gastric acid output by 57% to 95% of maximal acid output (MAO) and release of gastrin up to 5.1-fold compared with control. If beer, wine, and sherry were distilled, only their remaining parts increased gastric acid output by 53% to 76% of MAO and increased release of gastrin up to 4.3-fold compared with control. CONCLUSIONS: (1) Alcoholic beverages produced by fermentation but not by distillation are powerful stimulants of gastric acid output and release of gastrin; (2) the alcoholic beverage constituents that stimulate gastric acid output and release of gastrin are most probably produced during the process of fermentation and removed during the following process of distillation. PMID:9155575

  13. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.

    PubMed

    Zou, Xian-Guo; Hu, Jiang-Ning; Zhao, Man-Li; Zhu, Xue-Mei; Li, Hong-Yan; Liu, Xiao-Ru; Liu, Rong; Deng, Ze-Yuan

    2014-10-29

    In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.

  14. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    PubMed

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.

  15. Accumulation and perchlorate exposure potential of lettuce produced in the Lower Colorado River region.

    PubMed

    Sanchez, C A; Krieger, R I; Khandaker, N; Moore, R C; Holts, K C; Neidel, L L

    2005-06-29

    The Colorado River is contaminated with perchlorate concentrations of 1.5-8 microg/L, an anion linked to thyroid dysfunction. Over 90% of the lettuce (Lactuca sativa L.) consumed during the winter months in the United States is produced in the Lower Colorado River region. Studies were conducted in this region to survey the potential for lettuce perchlorate accumulation and estimate potential human exposure to perchlorate from lettuce. Total uptake of perchlorate in the above-ground plant of iceberg lettuce was approximately 5 g/ha. Exposure estimates ranged from 0.45 to 1.8 microg/day depending on lettuce types and trimming. For all lettuce types, hypothetical exposures were less than 4% of the reference dose recommended by the National Academy of Sciences. Results show the relative iodide uptake inhibition potential because of lettuce nitrate was 2 orders of magnitude greater than that associated with the corresponding trace levels of perchlorate. These data support the conclusion that potential perchlorate exposures from lettuce irrigated with Colorado River water are negligible relative to acute or long-term harmful amounts.

  16. Formulation of curcumin-loaded solid lipid nanoparticles produced by fatty acids coacervation technique.

    PubMed

    Chirio, Daniela; Gallarate, Marina; Peira, Elena; Battaglia, Luigi; Serpe, Loredana; Trotta, Michele

    2011-01-01

    Curcumin (CU) loaded solid lipid nanoparticles (SLNs) of fatty acids (FA) were prepared with a coacervation technique based on FA precipitation from their sodium salt micelles in the presence of polymeric non-ionic surfactants. Myristic, palmitic, stearic, and behenic acids, and different polymers with various molecular weights and hydrolysis grades were employed as lipid matrixes and stabilisers, respectively. Generally, spherical-shaped nanoparticles with mean diameters below 500 nm were obtained, and using only middle-high hydrolysis, grade-polymer SLNs with diameters lower than 300 nm were produced. CU encapsulation efficiency was in the range 28-81% and highly influenced by both FA and polymer type. Chitosan hydrochloride was added to FA SLN formulations to produce bioadhesive, positively charged nanoparticles. A CU-chitosan complex formation could be hypothesised by DSC analysis, UV-vis spectra and chitosan surface tension determination. A preliminary study on HCT-116 colon cancer cells was developed to evaluate the influence of CU-loaded FA SLNs on cell viability.

  17. Spherical Lactic Acid-producing Bacteria of Southern-grown Raw and Processed Vegetables

    PubMed Central

    Mundt, J. Orvin; Graham, Wanda F.; McCarty, I. E.

    1967-01-01

    The frequency and levels of population of the spherical lactic acid-producing bacteria were determined on raw and processed yellow summer and zucchini squash, a variety of greens, green beans, okra, southern peas, and butter and lima beans, and on fresh cucumbers and corn flowers. Six taxa occurred consistently: Leuconostoc mesenteroides, yellow-pigmented streptococci, Streptococcus faecium, Aerococcus viridans, and S. faecalis and S. faecalis var. liquefaciens. The same taxa occurred with the same order of frequency on processed, frozen vegetables, but with a marked decrease in the occurrence of S. faecalis var. liquefaciens. S. lactis, S. cremoris, S. equinus, S. bovis, and pediococci were isolated infrequently. No other member of the viridans group of the streptococci and no member of the pyogenic group was isolated. Approximately 88% of the cultures were identified. Total counts of the lactic-acid-producing bacteria rarely exceeded 105 per gram of sample, and there was a reduction by 90% during the second year of study, probably because of drought. Only one bacterial species was found on 40% of the raw and 34% of the processed vegetable samples. Two or more species or taxa were present on the remainder of 153 raw and 56 processed vegetable samples. A. viridans was present on squash, greens, okra, and southern peas, and its frequency of occurrence on vegetables suggests that plants are its natural habitat. PMID:16349739

  18. The Potential of Pigeonpea (Cajanus cajan) for Producing Important Components of Renewable Energy and Agricultural Products

    NASA Astrophysics Data System (ADS)

    Gwata, E.

    2012-04-01

    In agricultural systems, sustainable crop production is critical in meeting both environmental requirements and the limitations of drought imposed by the effects of global warming. The inputs for crop production and end use of the products should determine the choice of a crop particularly in environments prone to droughts. The objective of this paper is to highlight why a multi-purpose grain legume such as pigeonpea is an ideal crop that can be utilized for producing renewable energy. Firstly, it is highly tolerant to drought and does not require additional soil moisture after the seedling growth stage. The deep tape root extracts moisture and nutrients from deep layers of the soil concomitantly allowing for efficient nutrient recycling. The piscidic acid which is exuded from the roots enhances the solubilization of phosphorus in order to make it available for plant uptake. Secondly, the grain of pigeonpea is suitable for both human food and feedstocks. The grain is rich in oil, vitamins, minerals and protein. The grain can also be used for producing biofuel. In many countries particularly in the developing world, the stover is used as fuel wood or building (roofing) material, thus alleviating pressure on forest products. The crop is grown without the application of inorganic fertilizers as it can fix atmospheric nitrogen symbiotically in its root nodules. Pigeonpea is also ratoonable, producing two or more harvests per season. In addition, it is grown in mixed cropping systems thus optimizing land use. In these regards, pigeonpea is sustainable and environmentally friendly choice for agricultural production of food and energy balance.

  19. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  20. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  1. Identification of an antifungal metabolite produced by a potential biocontrol Actinomyces strain A01

    PubMed Central

    Lu, Cai Ge; Liu, Wei Cheng; Qiu, Ji Yan; Wang, Hui Min; Liu, Ting; De Liu, Wen

    2008-01-01

    Actinomyces strain A01 was isolated from soil of a vegetable field in the suburb of Beijing, China. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain A01 was identified as Streptomyces lydicus. In the antimicrobial spectrum test strain A01 presented a stable and strong inhibitory activity against several plant pathogenic fungi such as Fusarium oxysporum, Botrytis cinerea, Monilinia laxa, etc. However, no antibacterial activity was found. In pot experiments in greenhouse, the development of tomato gray mold was markedly suppressed by treatment with the fermentation broth of the strain A01, and the control efficacy was higher than those of Pyrimethanil and Polyoxin. A main antifungal compound (purity 99.503%) was obtained from the fermentation broth of strain A01 using column chromatography and HPLC. The chemical structural analysis with U V, IR, MS, and NMR confirmed that the compound produced by the strain A01 is natamycin, a polyene antibiotic produced by S. chattanovgensis, S. natalensis, and S. gilvosporeus, widely used as a natural biological preservative for food according to previous reports. The present study revealed a new producing strain of natamycin and its potential application as a biological control agent for fungal plant diseases. PMID:24031293

  2. Secondary economic impact of acid deposition control legislation in six coal producing states: Final report

    SciTech Connect

    Scott, M.J.; Guthrie, S.J.

    1988-12-01

    Among the difficult policy questions on the US environmental agenda is what to do about emissions to the earth's atmosphere of pollutants that may result in ''acid rain''. The Congress has considered several pieces of legislation spelling out potential approaches to the problem and setting goals for emission reduction, mostly emphasizing the control of oxides of sulfur and nitrogen. Significant policy concern is the dollar costs to the nation's economy of achieving the intended effects of the legislation and the potential impacts on economic activity---in particular, losses of both coal mining and secondary service sector employment in states and regions dependent on the mining of high sulfur coal. There are several direct economic effects of regulations such as the acid rain control legislation. One of the more obvious effects was the switching from high sulfur coal to low sulfur coal. This would result in increases in employment and coal business procurements in low sulfur coal mining regions, but also would result in lower employment and lower coal business procurements in high sulfur coal mining areas. The potential negative effects are the immediate policy concern and are the focus of this report. 15 refs., 1 fig., 17 tabs.

  3. Lysophosphatidic acid produced by hen egg white lysophospholipase D induces vascular development on extraembryonic membranes.

    PubMed

    Morishige, Junichi; Uto, Yoshihiro; Hori, Hitoshi; Satouchi, Kiyoshi; Yoshiomoto, Tanihiro; Tokumura, Akira

    2013-03-01

    Lysophosphatidic acid (lysoPtdOH), a lysophospholipid mediator, exerts diverse physiological effects, including angiogenesis, through its specific G-protein-coupled receptors. Previously, we showed that unfertilized hen egg white contains polyunsaturated fatty acid-rich lysoPtdOH and lysophospholipase D (lysoPLD). Here, we examined whether lysoPtdOH was produced by lysoPLD in the presence and absence of a hen fertilized ovum and what the physiological role of lysoPtdOH in hen egg white is. Mass spectrometry showed that fertilized hen egg white contained about 8 μM lysoPtdOH before incubation with an ovum, mainly comprised of 18:1- (12.6 %), 18:2- (37.8 %) and 20:4-molecular species (41.5 %). In an early gestation period, the lysoPtdOH was increased up to 9.6 μM, concomitant with a decrease in the level of polyunsaturated lysophosphatidylcholine (lysoPtdCho). Moreover, lysoPtdOH-degrading activities were found in egg white and the vitelline membrane, showing that these enzymes control lysoPtdOH levels in egg white. In an egg yolk angiogenesis assay, two lysoPtdOH receptor antagonists, Ki16425 and N-palmitoyl serine phosphoric acid (NASP), inhibited blood vessel formation induced by exogenously added 18:1-lysoPtdOH and its precursor lysoPtdCho on the hen yolk sac. Ki16425 and NASP also inhibited blood vessel formation in the chorioallantoic membrane (CAM). Furthermore, the relatively higher levels of LPA₁, LPA₂, LPA₄ and LPA₆ mRNA were present in the yolk sac and CAM. These results suggest that lysoPtdOH produced from lysoPtdCho by the action of lysoPLD in hen egg white is involved in the formation of blood vessel networks through several lysoPtdOH receptors on various extraembryonic membranes, including the yolk sac membrane and CAM.

  4. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt.

    PubMed

    Yu, Jin-Ju; Oh, Suk-Heung

    2010-08-01

    Two lactic acid bacteria (LAB) having ornithine-producing capacity were isolated from Korean natural sea salt. They were Gram-positive, short rod-type bacteria, and able to grow anaerobically with CO(2) production. The isolates grew well on MRS broth at 30-37 degrees C and a pH of 6.5-8.0. The optimum temperature and pH for growth are 37 degrees C and pH 7.0. The isolates fermented D-ribose, D-galactose, D-lactose, D-maltose, Dcellobiose, D-tagatose, D-trehalose, sucrose, D-melezitose, gentiobiose, D-glucose but not D-melibiose, inositol, and L-sorbose. The 16S rDNA sequences of the two isolates showed 99.5% and 99.6% homology with the Weissella koreensis S5623 16S rDNA (Access no. AY035891). They were accordingly identified and named as Weissella koreensis MS1-3 and Weissella koreensis MS1-14, and produced intracellular ornithine at levels of 72 mg/100 g cell F.W. and 105 mg/100 g cell F.W. and extracellular ornithine at levels of 4.5 mg/100 ml and 4.6 mg/100 ml medium, respectively, by culturing in MRS broth supplemented with 1% arginine. High cell growth was maintained in MRS broth with a NaCl concentration of 0-6%. These results show for the first time that Korean natural sea salts contain lactic acid bacteria Weissella koreensis strains having ornithine producing capacity.

  5. Understanding Potential Air Emissions from a Cellulosic Biorefinery Producing Renewable Diesel Blendstock.

    SciTech Connect

    Zhang, Yimin; Heath, Garvin A.; Renzaglia, Jason; Thomas, Mae

    2015-06-22

    The Energy Independence and Security Act of 2007, through the Renewable Fuel Standard (RFS), mandates increased use of biofuels, including cellulosic biofuels. The RFS is expected to spur the development of advanced biofuel technologies (e.g., new and innovative biofuel conversion pathways) as well as the construction of biorefineries (refineries that produce biofuels) using these technologies. To develop sustainable cellulosic biofuels, one of the goals of the Bioenergy Technologies Office (BETO) at the Department of Energy is to minimize air pollutants from the entire biofuel supply chain, as stated in their 2014 Multi-Year Program Plan (2014). Although biofuels in general have been found to have lower life cycle greenhouse gas (GHG) emissions compared to petroleum fuels on an energy basis, biomass feedstock production, harvesting, transportation, processing and conversion are expected to emit a wide range of other air pollutants (e.g., criteria air pollutants, hazardous air pollutants), which could affect the environmental benefits of biofuels when displacing petroleum fuels. While it is important for policy makers, air quality planners and regulators, biofuel developers, and investors to understand the potential implications on air quality from a growing biofuel industry, there is a general lack of information and knowledge about the type, fate and magnitude of potential air pollutant emissions from the production of cellulosic biofuels due to the nascent stage of this emerging industry. This analysis assesses potential air pollutant emissions from a hypothetical biorefinery, selected by BETO for further research and development, which uses a biological conversion process of sugars to hydrocarbons to produce infrastructural-compatible renewable diesel blendstock from cellulosic biomass.

  6. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    SciTech Connect

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; Stack, Andrew G.; van Duin, Adri C. T.; Logan, Bruce E.

    2014-11-03

    We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10–5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g–1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g–1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  7. Effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion.

    PubMed

    Hatzell, Marta C; Raju, Muralikrishna; Watson, Valerie J; Stack, Andrew G; van Duin, Adri C T; Logan, Bruce E

    2014-12-02

    The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10(–5)) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g(–1)) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g(–1)) had a negative rise potential (−31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to −6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  8. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    DOE PAGES

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; ...

    2014-11-03

    We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10–5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g–1) had a positive rise potential of 59 ± 4 mV in themore » LC solution, whereas the carbon with the highest concentration (0.36 mmol g–1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.« less

  9. Microcystin-producing and non-producing cyanobacterial blooms collected from the Central India harbor potentially pathogenic Vibrio cholerae.

    PubMed

    Chaturvedi, Prashant; Kumar Agrawal, Manish; Nath Bagchi, Suvendra

    2015-05-01

    On the basis of relative abundance, frequency and biovolume, the important value index ranks were assigned to individual cyanobacteria in phytoplankton samples collected from fourteen water resources of Central India. The mcyABDE genes were detected in all the blooms with Microcystis (-aeruginosa, -viridis, -panniformis, -botrys) as being the major constituent morphospecies. On the other hand, blooms composed of primarily Oscillatoria (-limosa,-agardhii, -laetevirens) along with Anabaena, Nostoc, Phormidium and Spirulina as sub-dominant forms exhibited quite a patchy distribution of one or the other mcy genes. Fifty percent of Microcystis- but none of the Oscillatoria dominant blooms produced microcystins-RR and desmethyl-RR at 0.03-0.41mgg(-1) bloom dry mass. Traces of dissolved microcystin was detected in lake water, which is well below the WHO guideline. Irrespective of cyanobacterial composition and microcystin production ability, during the study period 43-64% of the cyanobacterial bloom samples exhibited association of viable but nonculturable forms of Vibrio cholerae O1 and O139, as evident from amplification of the antigen genes. We believe that spread of endemic cholera is the major threat associated with harmful algal blooms.

  10. Potential application of a bioemulsifier-producing actinobacterium for treatment of vinasse.

    PubMed

    Colin, Verónica L; Cortes, Álvaro A Juárez; Aparicio, Juan D; Amoroso, María J

    2016-02-01

    Vinasse is a complex effluent created during production of ethyl alcohol, which can present serious pollution hazard in areas where it is discharged. A variety of technologies, many based upon recovery of the effluent via microbial pathways, are continually being evaluated in order to mitigate the pollution potential of vinasse. The present work reports on initial advances related to the effectiveness of the actinobacterium Streptomyces sp. MC1 for vinasse treatment. Alternative use of raw vinasse as a substrate for producing metabolites of biotechnological interest such as bioemulsifiers, was also evaluated. The strain was able to grow at very high vinasse concentrations (until 50% v/v) and remove over 50% of the biodegradable organic matter in a time period as short as 4 d. Potentially toxic metals such as Mn, Fe, Zn, As, and Pb were also effectively removed during bacterial growth. Decrease in the pollution potential of treated vinasse compared to raw effluent, was reflected in a significant increase in the vigour index of Lactuca sativa (letucce) used as bioremediation indicator. Finally, significant bioemulsifier production was detected when this strain was incubated in a vinasse-based culture medium. These results represent the first advances on the recovery and re-valuation of an actual effluent, by using an actinobacterium from our collection of cultures.

  11. Fatty acids profiling reveals potential candidate markers of semen quality.

    PubMed

    Zerbinati, C; Caponecchia, L; Rago, R; Leoncini, E; Bottaccioli, A G; Ciacciarelli, M; Pacelli, A; Salacone, P; Sebastianelli, A; Pastore, A; Palleschi, G; Boccia, S; Carbone, A; Iuliano, L

    2016-11-01

    Previous reports showed altered fatty acid content in subjects with altered sperm parameters compared to normozoospermic individuals. However, these studies focused on a limited number of fatty acids, included a short number of subjects and results varied widely. We conducted a case-control study involving 155 patients allocated into four groups, including normozoospermia (n = 33), oligoasthenoteratozoospermia (n = 32), asthenozoospermia (n = 25), and varicocoele (n = 44). Fatty acid profiling, including 30 species, was analyzed by a validated gas chromatography (GC) method on the whole seminal fluid sample. Multinomial logistic regression modeling was used to identify the associations between fatty acids and the four groups. Specimens from 15 normozoospermic subjects were also analyzed for fatty acids content in the seminal plasma and spermatozoa to study the distribution in the two compartments. Fatty acids lipidome varied markedly between the four groups. Multinomial logistic regression modeling revealed that high levels of palmitic acid, behenic acid, oleic acid, and docosahexaenoic acid (DHA) confer a low risk to stay out of the normozoospermic group. In the whole population, seminal fluid stearic acid was negatively correlated (r = -0.53), and DHA was positively correlated (r = 0.65) with sperm motility. Some fatty acids were preferentially accumulated in spermatozoa and the highest difference was observed for DHA, which was 6.2 times higher in spermatozoa than in seminal plasma. The results of this study highlight complete fatty acids profile in patients with different semen parameters. Given the easy-to-follow and rapid method of analysis, fatty acid profiling by GC method can be used for therapeutic purposes and to measure compliance in infertility trials using fatty acids supplements.

  12. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits.

  13. Astatine standard redox potentials and speciation in acidic medium.

    PubMed

    Champion, J; Alliot, C; Renault, E; Mokili, B M; Chérel, M; Galland, N; Montavon, G

    2010-01-14

    A combined experimental and theoretical approach is used to define astatine (At) speciation in acidic aqueous solution and to answer the two main questions raised from literature data: does At(0) exist in aqueous solution and what is the chemical form of At(+III), if it exists. The experimental approach considers that a given species is characterized by its distribution coefficient (D) experimentally determined in a biphasic system. The change in speciation arising from a change in experimental conditions is observed by a change in D value. The theoretical approach involves quasi-relativistic quantum chemistry calculations. The results show that At at the oxidation state 0 cannot exist in aqueous solution. The three oxidation states present in the range of water stability are At(-I), At(+I), and At(+III) and exist as At(-), At(+), and AtO(+), respectively, in the 1-2 pH range. The standard redox potentials of the At(+)/At(-) and AtO(+)/At(+) couples have been determined, the respective values being 0.36 +/- 0.01 and 0.74 +/- 0.01 V vs NHE.

  14. Dietary potential renal Acid load in venezuelan children.

    PubMed

    López-Sayers, Mayerling; Bernal, Jennifer; López, Michelle

    2015-05-01

    Objetivo: Determinar y analizar la carga acida potencial renal de la dieta (Potential Renal Acid Load PRAL) y el patron de alimentacion de ninos entre 1 a 6 anos aparentemente sanos. Métodos: Se seleccionaron segun conveniencia a padres de 52 ninos asistentes a una consulta de ninos sanos. La calidad de la dieta y el patron de alimentacion se evaluo mediante un recordatorio de 24 horas y un cuestionario de frecuencia de alimentos. Se calculo la ingesta de macronutrientes y grupos de alimentos, como carnes, lacteos, frutas y verduras. La ingesta de nutrientes se comparo con las recomendaciones de energia y nutrientes. El PRAL se determino segun el metodo de Remer y Manz, para determinar la carga acida de la dieta. Se aplico estadistica descriptiva y correlaciones entre el PRAL, nutrientes y grupos de alimentos. Resultados: La ingesta de proteinas, de leche y de carnes fue elevada, mientras que la ingesta de rutas y hortalizas fue baja. El PRAL fue positivo en 92% de los ninos, se asocio con mayor ingesta de energia, proteinas, grasas, carne y lacteos. La ingesta de proteinas fue > 2,5 g/kg/ dia en 46,2% de los ninos. Los grupos de alimentos con mayor desequilibrio debido a exceso fueron la carne y los productos lacteos, mientras que por deficit fue el grupo de frutas y hortalizas. Conclusión: La dieta se caracteriza por una elevada carga de acido o PRAL, lo que aumenta el riesgo de acidosis sistemica y sus consecuencias metabolicas.

  15. Skin tumorigenic potential of benzanthrone: prevention by ascorbic acid.

    PubMed

    Dwivedi, Neelam; Kumar, Sandeep; Ansari, Kausar M; Khanna, S K; Das, Mukul

    2013-09-01

    Benzanthrone (BA) exposed occupational workers have been found to exhibit toxicological manifestations in the skin, thus it is quite likely that long term exposure may lead to skin tumorigenicity. Thus, attempts were made to elucidate the tumor initiating and promoting potentials of pure (PBA) and commercial benzanthrone (CBA). Additionally, the preventive role of ascorbic acid (AsA) was also assessed. PBA showed tumor initiating activity while CBA demonstrated tumor initiating as well as promoting activities in two-stage mouse skin tumor protocol. Further, prior treatment of AsA to PBA and CBA followed by twice weekly application of 12-o-tetradecanoyl phorbal myristate acetate (TPA) resulted into delayed onset of tumor formation and similarly single application of 7,12-dimethylbenz [α] anthracene (DMBA) followed by twice weekly application of AsA and CBA showed an increase in the latency period. Thus, AsA showed a protective effect against CBA promoted skin tumor. Furthermore, the topical application of CBA significantly increased the levels of xenobiotic enzymes. The animals topically treated with AsA along with topical application of CBA, restored all the impairment observed in enzyme activities. Thus, this study suggested that AsA can be useful in preventing PBA and CBA induced skin tumorigenicity.

  16. Potential of the volatile-producing fungus Muscodor albus for control of building molds.

    PubMed

    Mercier, Julien; Jiménez, Jorge I

    2007-03-01

    The possibility of using the volatile-producing fungus Muscodor albus for biofumigation against building molds was investigated. Several species of Aspergillus and Penicillium as well as fungi belonging to nine other genera were inhibited or killed in vitro by volatiles produced by potato dextrose agar or rye grain cultures of M. albus. Trichoderma viride was the only fungus that was not inhibited by M. albus volatiles. To test biofumigation as a preventative treatment against fungal colonization of building material, dry pieces of gypsum drywall were fumigated with grain cultures of M. albus in closed boxes. After a simulated water damage and incubation under saturated humidity for 2 weeks, untreated drywall developed natural fungal populations of about 10(5)-10(6) cfu/cm2, while drywall fumigated with M. albus culture (20 g/11 L) had nondetectable fungal populations. To test for curative ability, moist pieces of drywall heavily colonized with Cladosporium cladosporioides, Aspergillus niger, or Stachybotrys chartarum were fumigated for 48 h with grain cultures of M. albus. Cladosporium cladosporioides was eliminated within 48 h, while A. niger and S. chartarum were usually more resistant. However, a longer curative fumigation of 96 h was effective in reducing A. niger or naturally occurring mold populations by about 5 log values. The production of volatile organic compounds from 20 g of rye grain culture in 11 L containers was monitored by solid-phase micro extraction and gas chromatography. Concentrations of isobutyric acid, the most abundant volatile, increased gradually in the headspace until it reached 25 microg/L (m/v) within 96 h. The second and third most abundant compounds, 2-methyl-1-butanol and isobutanol, peaked at about 10 and 5 microg/L (m/v), respectively, within the first 24 h and declined gradually afterwards.

  17. Appraisal of conjugated linoleic acid production by probiotic potential of Pediococcus spp. GS4.

    PubMed

    Dubey, Vinay; Ghosh, Asit Ranjan; Mandal, Badal Kumar

    2012-11-01

    Probiotics with ability to produce conjugated linoleic acid (CLA) is considered as an additive health benefit property for its known role in colon cancer mitigation. The conversion involves the biohydrogenation of the unsaturated fatty acid into conjugated form. Probiotic strain Pediococcus spp. GS4 was efficiently able to biohydrogenate linoleic acid (LA) into its conjugated form within 48 h of incubation. Quantum of CLA produced with a concentration of 121 μg/ml and sustained cell viability of 8.94 log cfu/ml maximally. Moreover, antibacterial effect of LA on the strain ability for biohydrogenation was examined at different concentrations and concluded to have a direct relationship between LA and amount of CLA produced. The efficiency of the strain for CLA production at different pH was also estimated and found maximum at pH 6.0 with 149 μg/ml while this ability was reduced at pH 9.0 to 63 μg/ml. Sesame oil, which is rich in the triacylglycerol form of LA, was also found to act as a substrate for CLA production by Pediococcus spp. GS4 with the aid of lipase-catalyzed triacylglycerol hydrolysis and amount of CLA produced was 31 μg/ml at 0.2 % while 150 μg/ml at 1.0 % of lipolysed oil in skim milk medium. Conjugated form was analyzed using UV scanning, RP-HPLC, and GC-MS. This study also focused on the alternative use of lipolysed sesame oil instead of costly LA for biohydrogenation and could be a potential source for the industrial production of CLA.

  18. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  19. Thermotolerant Bacillus licheniformis TY7 produces optically active l-lactic acid from kitchen refuse under open condition.

    PubMed

    Sakai, Kenji; Yamanami, Tetsuya

    2006-08-01

    A thermotolerant l-lactic-acid-producing bacterium was isolated and identified as Bacillus licheniformis TY7. TY7 shows optimum growth at pH 6.5 at 30 degrees C and normal growth up to 65 degrees C. Using nonsterile kitchen refuse at 50 degrees C, the strain produced 40 g/ll-lactic acid with 97% optical activity and 2.5 g/lxh productivity.

  20. Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins.

    PubMed

    Li, Ping; Zhou, Qingqing; Gu, Qing

    2016-09-20

    B-group vitamins play an important role in human metabolism, whose deficiencies are associated with a variety of disorders and diseases. Certain microorganisms such as Lactic acid bacteria (LAB) have been shown to have capacities for B-group vitamin production and thus could potentially replace chemically synthesized vitamins for food fortification. A potential probiotic strain named Lactobacillus plantarum LZ227, which was isolated from raw cow milk in this study, exhibits the ability to produce B-group vitamins. Complete genome sequencing of LZ227 was performed to gain insights into the genetic elements involved in B-group vitamin production. The genome of LZ227 contains a circular 3,131,750-bp chromosome, three circular plasmids and two predicted linear plasmids. LZ227 also contains gene clusters for biosynthesis of both riboflavin and folate. This genome sequence provides a basis for further elucidation of its molecular genetics and probiotic functions, and will facilitate its applications as starter cultures in food industry.

  1. Food-associated lactic acid bacteria with antimicrobial potential from traditional Mexican foods.

    PubMed

    Alvarado, C; García Almendárez, B E; Martin, S E; Regalado, C

    2006-01-01

    This work was conducted to identify indigenous LAB capable of antimicrobial activity, present in traditional Mexican-foods with potential as natural preservatives. A total of 27 artisan unlabeled Mexican products were evaluated, from which 94 LAB strains were isolated, and only 25 strains showed antimicrobial activity against at least one pathogen indicator microorganism. Most of the inhibitory activity showed by the isolated LAB strains was attributed to pH reduction by organic acids. Lactobacillus and Lactococcus strains were good acid producers, depending on the substrate, and may enhance the safety of food products. Cell free cultures of Leuconostoc mesenteroides CH210, and PT8 (from chorizo and pulque, respectively) reduced the number of viable cells of enteropathogenic E. coli in broth system. Lb. plantarum CC10 (from "madre" of vinegar) showed significant inhibitory effect against S. aureus 8943. E. faecium QPII (from panela cheese) produced a bacteriocin with wide anti-L. monocytogenes activity. Selected LAB from traditional Mexican foods showed good potential as bio-preservatives.

  2. Isolation, screening and characterization of bacteriocin-producing lactic acid bacteria isolated from traditional fermented food.

    PubMed

    El-Shafei, H A; Abd-El-Sabour, H; Ibrahim, N; Mostafa, Y A

    2000-03-01

    100 lactic acid bacterial strains isolated from traditional fermented foods (yoghurt, milk cream, sour dough and milk) were screened for bacteriocin production. Twenty six strains producing a nisin-like bacteriocin were selected. Most of these isolates gave only a narrow inhibitory spectrum, although one showed a broad inhibitory spectrum against the indicator strains tested, this strain was determined as Lactococcus lactis. The influence of several parameters on the fermentative production of nisin by Lactococcus lactis was studied. Production of nisin was optimal at 30 degrees C and in the pH range 5.5-6.3. The effect of different sulphur and nitrogen sources on Lactococcus lactis growth and nisin production was studied. Magnesium sulfate and manganese sulfate were found to be the best sulphur sources while triammonium citrate was the best inorganic nitrogen source and meat extract, peptone and yeast extract were the best organic nitrogen source for nisin production.

  3. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    SciTech Connect

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-17

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263+-0.02 g cellulose L{sup -1} for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  4. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-06-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L-1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.

  5. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum.

    PubMed

    Takeno, Seiki; Ohnishi, Junko; Komatsu, Tomoha; Masaki, Tatsuya; Sen, Kikuo; Ikeda, Masato

    2007-07-01

    Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O(2)), while no visible colonies were formed in the absence of O(2). However, in the presence of nitrate (NO3-), the organism exhibited limited growth anaerobically with production of nitrite (NO2-), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using L-lysine- and L-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.

  6. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment.

    PubMed

    Mackie, A; Boilard, S; Walsh, M E; Lake, C B

    2010-01-15

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters.

  7. Abuse and therapeutic potential of gamma-hydroxybutyric acid.

    PubMed

    Galloway, G P; Frederick-Osborne, S L; Seymour, R; Contini, S E; Smith, D E

    2000-04-01

    Gamma-hydroxbutyric acid is a compound found in mammalian brain that is structurally related to the neurotransmitters gamma-aminobutyric acid and glutamic acid. Gamma-hydroxybutyric acid effects dopaminergic systems in the brain and may be a neurotransmitter. Gamma-hydroxybutyric acid was first reported as a drug of abuse in 1990 and continues to be abused by bodybuilders, participants of "rave" dance parties, and polydrug abusers. Physical dependence can develop after prolonged, high-dose use, and overdoses have been widely reported. Its use in sexual assaults as a "date rape" drug and availability on the internet have recently emerged. Gamma-hydroxybutyric acid has established efficacy as an anesthetic agent, and preliminary evidence supports its utility in the treatment of alcohol dependence, opiate dependence, and narcolepsy.

  8. Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen.

    PubMed

    Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Basso, Sara; Deidda, Antonio; Serra, Salvatorica; Evidente, Antonio

    2014-07-01

    In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 μg/mL.

  9. Global Warming Potential and Eutrophication Potential of Biofuel Feedstock Crops Produced in Florida, Measured Under Different Scenarios

    SciTech Connect

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-15

    The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.

  10. Screening of Diatom Strains and Characterization of Cyclotella cryptica as A Potential Fucoxanthin Producer

    PubMed Central

    Guo, Bingbing; Liu, Bin; Yang, Bo; Sun, Peipei; Lu, Xue; Liu, Jin; Chen, Feng

    2016-01-01

    Fucoxanthin has been receiving ever-increasing interest due to its broad health beneficial effects. Currently, seaweeds are the predominant source of natural fucoxanthin. However, the disappointingly low fucoxanthin content has impeded their use, driving the exploration of alternative fucoxanthin producers. In the present study, thirteen diatom strains were evaluated with respect to growth and fucoxanthin production potential. Cyclotella cryptica (CCMP 333), which grew well for fucoxanthin production under both photoautotrophic and heterotrophic growth conditions, was selected for further investigation. The supply of nitrate and light individually or in combination were all found to promote growth and fucoxanthin accumulation. When transferring heterotrophic cultures to light, fucoxanthin responded differentially to light intensities and was impaired by higher light intensity with a concomitant increase in diadinoxanthin and diatoxanthin, indicative of the modulation of Diadinoxanthin Cycle to cope with the light stress. Taken together, we, for the first time, performed the screening of diatom strains for fucoxanthin production potential and investigated in detail the effect of nutritional and environmental factors on C. cryptica growth and fucoxanthin accumulation. These results provide valuable implications into future engineering of C. cryptica culture parameters for improved fucoxanthin production and C. cryptica may emerge as a promising microalgal source of fucoxanthin. PMID:27399729

  11. Antimicrobial Potential of Thiodiketopiperazine Derivatives Produced by Phoma sp., an Endophyte of Glycyrrhiza glabra Linn.

    PubMed

    Arora, Palak; Wani, Zahoor A; Nalli, Yedukondalu; Ali, Asif; Riyaz-Ul-Hassan, Syed

    2016-11-01

    During the screening of endophytes obtained from Glycyrrhiza glabra Linn., the extract from a fungal culture designated as GG1F1 showed significant antimicrobial activity. The fungus was identified as a species of the genus Phoma and was most closely related to Phoma cucurbitacearum. The chemical investigation of the GG1F1 extract led to the isolation and characterization of two thiodiketopiperazine derivatives. Both the compounds inhibited the growth of several bacterial pathogens especially that of Staphylococcus aureus and Streptococcus pyogenes, with IC50 values of less than 10 μM. The compounds strongly inhibited biofilm formation in both the pathogens. In vitro time kill kinetics showed efficient bactericidal activity of these compounds. The compounds were found to act synergistically with streptomycin while producing varying effects in combination with ciprofloxacin and ampicillin. The compounds inhibited bacterial transcription/translation in vitro, and also inhibited staphyloxanthin production in S. aureus. Although similar in structure, they differed significantly in some of their properties, particularly the effect on the expression of pathogenecity related genes in S. aureus at sub-lethal concentrations. Keeping in view the antimicrobial potential of these compounds, it would be needful to scale up the production of these compounds through fermentation technology and further explore their potential as antibiotics using in vivo models.

  12. In silico identification of potential virulence genes in 1,3-propanediol producer Klebsiella pneumonia.

    PubMed

    Gao, L R; Jiang, X; Fu, S L; Gong, H

    2014-11-10

    The pathogenic characteristics of Klebsiella pneumoniae could pose security risks for industrial applications. In this study, the existence and distribution of 2457 known virulence genes (VFs) in 9 strains of K. pneumoniae were systematically analyzed by high-throughput in silico methods. We found different numbers and types of VFs in 9 K. pneumoniae strains using database sequences. Some VFs in the database were highly homologous with the corresponding genes in K. pneumoniae genomes. Four large fragments with contiguous potential virulence genes named VF1, VF2, VF3 and VF4 were identified. VF1 and VF2 were found in all 9 sequenced strains and the 1,3-propanediol-producing strain KG1. When the VF2 fragment was knocked out in KG1, cell growth and 1,3-propanediol production in the mutant were nearly the same as in KG1. Consequently the resulting information by in silico methods is useful for identifying potential virulence genes of K. pneumoniae used for 1,3-propanediol production.

  13. Research on some factors influencing acid and exopolysaccharide produced by dairy propionibacterium strains isolated from traditional homemade Turkish cheeses.

    PubMed

    Darilmaz, Derya Onal; Gumustekin, Yesim

    2012-05-01

    In this study, a total of 32 isolated strains and 5 reference strains of dairy propionibacteria were analyzed for acid and exopolysaccharide (EPS) production in skim milk and yeast extract-lactate broth (YEL) media in order to investigate the physiological background and preservative role of acid and EPS. The effects of final culture pH and optical density on acid and EPS production were also determined. On average, all strains produced more acid and reached lower final pH values in skim milk than in YEL medium. While the correlations obtained between the acid produced by propionibacterium strains and their final culture pH in skim milk medium were significant (P < 0.01), no correlations were found between optical density, final pH, and produced acid in YEL medium. Sixteen isolated and five reference strains of propionibacteria were tested further for the ability to produce propionic and acetic acids. On average, Propionibacterium freudenreichii subsp. shermanii and P. freudenreichii subsp. freudenreichii strains produced higher amounts of propionic and acetic acids than did Propionibacterium jensenii in YEL medium. The acid produced by these strains may be used as a preservative in the food industry for replacement or reduction of the increasing use of chemical additives. The EPS production by propionibacterium strains during growth in YEL medium was 72 to 168 mg/liter, while in skim milk it was 94 to 359 mg/liter. The monomer compositions of the EPSs formed by the six selected dairy propionibacteria strains were analyzed. The EPSs may have applications as food grade additives and viscosity-stabilizing agents.

  14. Cut-off net acid generation pH in predicting acid-forming potential in mine spoils.

    PubMed

    Liao, B; Huang, L N; Ye, Z H; Lan, C Y; Shu, W S

    2007-01-01

    Acidification of mine wastes can lead to a series of environmental problems, such as acid drainage, heavy metal mobilization, and ecosystem degradation. Prediction of acid-forming potential is one of the key steps in management of sulfide-bearing mine wastes. In this paper, the acid-forming potential of 180 mine waste samples collected from 17 mine sites in China were studied using a net acid generation (NAG) method. The samples contained different contents of total sulfur (ranging from 0.6 to 200 g kg(-1)), pyritic sulfur (ranging from 0 to 100 g kg(-1)), and acid neutralization capacity (ANC, ranging from -41 to 274 kg H2SO4 t(-1)). Samples with high acid-forming potential are generally due to their high sulfur content or low acid neutralization capacity. After the samples were oxidized by H2O2, the amounts of acid generation and the final NAG pH were measured. Results indicated that the final NAG pH gave a well-defined demarcation between acid-forming and non-acid-forming materials. Samples with final NAG pH >or= 5 could be classified as non-acid-forming materials, while those with NAG pH acid-forming materials. Materials with NAG pH > 2.5, but < 5, had low risk of being acid-forming. The confirmation of cut-off NAG pH will be used as a rapid and cost-effective operational monitoring tool for the in-pit prediction of acid-forming potential of mine wastes and classification of waste types.

  15. Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models.

    PubMed

    Crowley, Sarah; Mahony, Jennifer; van Sinderen, Douwe

    2013-07-01

    A large-scale screen of some 7,000 presumptive lactic acid bacteria (LAB), isolated from animal, human, or plant origin, identified 1,149 isolates with inhibitory activity against the food-spoilage mould Penicillium expansum. In excess of 500 LAB isolates were subsequently identified to produce a broad spectrum of activity against P. expansum, Penicillium digitatum, Penicillium notatum, Penicillium roqueforti, Rhizopus stolonifer, Fusarium culmorum, Aspergillus fumigatus and Rhodotorula mucilaginosa. Partial 16S rRNA sequencing of 94 broad spectrum isolates revealed that the majority of antifungal producers were strains of Lactobacillus plantarum. The remaining population was composed of Weissella confusa and Pediococcus pentosaceous isolates. Characterization of six selected broad-spectrum antifungal LAB isolates revealed that antifungal activity is maximal at a temperature of 30 °C, a pH of 4.0 and is stable across a variety of salt concentrations. The antifungal compound(s) was shown to be neither proteinaceous nor volatile in nature. P. pentosaceous 54 was shown to have protective properties against P. expansum spoilage when applied in pear, plum and grape models, therefore representing an excellent candidate for food-related applications.

  16. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline-urea systems.

    PubMed

    Padzil, Farah Nadia Mohammad; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Kaco, Hatika; Gan, Sinyee; Ng, Peivun

    2015-06-25

    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system.

  17. Poly-γ-glutamic acid enhances the quality of recombant erythropoietin produced by CHO cells.

    PubMed

    Kim, Tae Gon; Cho, Young Chol; Chun, Bok-Hwan; Park, Sung Hyo; Lee, Hoi-Seon; Chung, Namhyun

    2014-03-04

    The effect of poly-γ-glutamic acid (γPGA), which is produced by Bacillus sp., on the production of recombinant erythropoietin (rEPO) by Chinese hamster ovary (CHO) cells in suspension culture was evaluated. The growth, viability, and productivity of recombinant CHO cells were investigated in a chemically defined medium with 50 and 500 kD γPGAs at 0.075% or with Pluronic F68. Cell growth with the two γPGAs was lower than that with Pluronic F68 but significantly higher than that without any additive (control). The effect of additives on rEPO productivity was 50 kDa γPGA > 500 kDa γPGA > Pluronic F68 > control. Using EPO-dependent F-36E cells, we found that the effect of additives on rEPO quality was 500 kDa γPGA > 50 kDa γPGA > control > Pluronic F68. γPGA has an enhancement effect on the quality of rEPO produced by CHO cells.

  18. Poly(lactic) acid fibers loaded with mesoporous silica for potential applications in the active food packaging

    NASA Astrophysics Data System (ADS)

    Cacciotti, Ilaria; Nanni, Francesca

    2016-06-01

    Multifunctional fibrous systems based on poly(lactic) acid (PLA), mesoporous silica (SiO2) and ascorbic acid (AA) were produced by means of electrospinning technique, for potential applications in the active food packaging sector, as platform for the controlled release of antioxidant and/or antimicrobial agents with the additional filtering function. The ascorbic acid was physisorbed on the surface of mesoporous silica in order to stabilize it and to extend its antioxidant action. The influence of mesoporous silica and ascorbic acid on the microstructural and mechanical properties was investigated, revealing a revelant mechanical reinforcement in the case of fibers loaded only with SiO2 and a decrement in the case of SiO2 with physisorbed ascorbic acid, due to the worse interface between the fillers and the polymeric matrix.

  19. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.

    PubMed

    Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G

    2016-05-01

    Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed.

  20. Behavioral evaluation of the neurotoxicity produced by dichloroacetic acid in rats.

    PubMed

    Moser, V C; Phillips, P M; McDaniel, K L; MacPhail, R C

    1999-01-01

    Dichloroacetic acid (DCA) is commonly found in drinking water as a by-product of chlorination disinfection. It is a known neurotoxicant in rats, dogs, and humans. We have characterized DCA neurotoxicity in rats using a neurobehavioral screening battery under varying exposure durations (acute, subchronic, and chronic) and routes of administration (oral gavage and drinking water). Studies were conducted in both weanling and adult rats, and comparisons were made between Long-Evans and Fischer-344 rats. DCA produced neuromuscular toxicity comprised of limb weakness and deficits in gait and righting reflex; altered gait and decreased hindlimb grip strength were the earliest indicators of toxicity. Other effects included mild tremors, ocular abnormalities, and a unique chest-clasping response (seen in Fischer-344 rats only). Neurotoxicity was permanent (i.e., through 2 years) following a 6-month exposure to high dose levels, whereas the effects of intermediate dose levels with exposures of 3 months or less were slowly reversible. The severity, specificity, and recovery of neurological changes were route, duration, and strain dependent. Fischer-344 rats were more sensitive than Long-Evans rats, and weanling rats may be somewhat more sensitive than adults. Oral gavage produced significantly less toxicity compared to the same intake level received in drinking water. Neurotoxicity was progressive with continued exposure, and was observed at exposure levels as low as 16 mg/kg/day (lowest dose level tested) when administered via drinking water in subchronic studies. The data from these studies characterize the neurotoxicity produced by DCA, and show it to be more pronounced, persistent, and occurring at lower exposures than has been previously reported. Further research should take into account these marked route, age, and strain differences.

  1. Acid peptidase activity released from in vitro produced porcine embryos: a candidate marker to predict developmental competence.

    PubMed

    Telugu, Bhanu Prakash V L; Spate, Lee; Prather, Randall S; Green, Jonathan A

    2009-04-01

    The ability to efficiently create high quality embryos, competent to produce normal viable offspring in vitro, facilitates diverse technological advancements in animal agriculture and assisted reproduction. Current methods for evaluation of embryos are predominantly based on morphological characteristics which are prone to potential bias of the scorer. Metabolic and genetic markers have also been explored for quality assessment, but they are cost prohibitive or require longer periods of time for evaluation. We hypothesized that secreted enzymes could provide another means of embryo quality assessment. In this report, we provide evidence that medium conditioned by porcine embryos often has proteolytic activity that operates in acidic conditions (acid peptidase activity or APA). The APA could be inhibited by pepstatin A, suggesting that the activity is derived from one or more aspartic peptidases. We also provide evidence that single embryos, incubated for as few as 24 hr, released enough APA that it was possible to measure it accurately at day 5 of culture. We also observed that such activity on day 6 could be positively correlated with advanced developmental stage and embryo quality. In addition, those embryos that were graded identically by morphological evaluations often differed in the amount of APA--with some being significantly higher than the experimental threshold value. Therefore, the APA of embryos might serve as an additional marker for evaluation of embryos.

  2. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1979-01-01

    A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.

  3. Plums (Prunus domestica L.) are a good source of yeasts producing organic acids of industrial interest from glycerol.

    PubMed

    García-Fraile, Paula; Silva, Luís R; Sánchez-Márquez, Salud; Velázquez, Encarna; Rivas, Raúl

    2013-08-15

    The production of organic acids from several yeasts isolated from mature plums on media containing glycerol as carbon source was analysed by HPLC-UV. The yeasts isolated were identified by sequencing the 5.8S internal transcribed spacer as Pichia fermentans, Wickerhamomyces anomalus and Candida oleophila. The organic acid profiles of these strains comprise acetic, citric, succinic and malic acids that qualitatively and quantitatively vary between different species as well as among strains from the same species. The production from glycerol of succinic, acetic, citric, malic and oxalic acids from C. oleophila and W. anomalus, and that of succinic, oxalic and acetic acids by P. fermentans is reported for the first time in this work, as is the production of oxalic acid from glycerol in yeasts. Our results also showed that mature fruits can be a good source of new yeasts able to metabolise glycerol, producing different organic acids with industrial and biotechnological interest.

  4. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species

    PubMed Central

    McGraw, Joseph E.; Jensen, Brittany J.; Bishop, Sydney S.; Lokken, James P.; Dorff, Kellen J.; Ripley, Michael P.; Munro, James B.

    2015-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  5. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species.

    PubMed

    Dailey, Frank E; McGraw, Joseph E; Jensen, Brittany J; Bishop, Sydney S; Lokken, James P; Dorff, Kellen J; Ripley, Michael P; Munro, James B

    2015-10-23

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains.

  6. Evidence for probiotic potential of a capsular-producing Streptococcus thermophilus CHCC 3534 strain.

    PubMed

    Khalil, Rowaida

    2009-01-01

    The purpose of this research was to evaluate the probiotic potential of an capsulated Streptococcus thermophilus CHCC 3534 strain. The strain tolerates 0.4% oxgall (bile) and was sufficiently resistant to pH as low as 2.5 for 3 hours of exposure. The strain demonstrated high adherence to human intestinal mucus, and showed unique resistance to different antibiotics. Crude extracts ofS. thermophilus CHCC 3534 contained a diffusible antimicrobial compound "bacteriocin" with a broad spectrum that inhibited the growth of closely related lactic acid bacteria and a number of food spoilage bacteria including Salmonella typhimurium and Staphylococcus aureus. The bacteriocin was heat stable, resistant to pH, inactivated by proteolytic enzymes, and resistant to a-amylase and lipase. A SDS-PAGE analysis of the partially purified bacteriocin revealed one component with a molecular weight ranging from 14.4 to 18.4 kDa. The strain may have industrial significance and represents an interesting candidate for use in biopreservation, probiotic food formulations and in the control of spoilage caused by food borne pathogens.

  7. Poly-γ-Glutamic Acid (PGA)-Producing Bacillus Species Isolated from Kinema, Indian Fermented Soybean Food

    PubMed Central

    Chettri, Rajen; Bhutia, Meera O.; Tamang, Jyoti P.

    2016-01-01

    Kinema, an ethnic fermented, non-salted and sticky soybean food is consumed in the eastern part of India. The stickiness is one of the best qualities of good kinema preferred by consumers, which is due to the production of poly-γ-glutamic acid (PGA). Average load of Bacillus in kinema was 107 cfu/g and of lactic acid bacteria was 103 cfu/g. Bacillus spp. were screened for PGA-production and isolates of lactic acid bacteria were also tested for degradation of PGA. Only Bacillus produced PGA, none of lactic acid bacteria produced PGA. PGA-producing Bacillus spp. were identified by phenotypic characterization and also by 16S rRNA gene sequencing as Bacillus subtilis, B. licheniformis and B. sonorensis. PMID:27446012

  8. Poly-γ-Glutamic Acid (PGA)-Producing Bacillus Species Isolated from Kinema, Indian Fermented Soybean Food.

    PubMed

    Chettri, Rajen; Bhutia, Meera O; Tamang, Jyoti P

    2016-01-01

    Kinema, an ethnic fermented, non-salted and sticky soybean food is consumed in the eastern part of India. The stickiness is one of the best qualities of good kinema preferred by consumers, which is due to the production of poly-γ-glutamic acid (PGA). Average load of Bacillus in kinema was 10(7) cfu/g and of lactic acid bacteria was 10(3) cfu/g. Bacillus spp. were screened for PGA-production and isolates of lactic acid bacteria were also tested for degradation of PGA. Only Bacillus produced PGA, none of lactic acid bacteria produced PGA. PGA-producing Bacillus spp. were identified by phenotypic characterization and also by 16S rRNA gene sequencing as Bacillus subtilis, B. licheniformis and B. sonorensis.

  9. Effects of produced water discharges on the colonization potential of Macrocystis pyrifera spores

    SciTech Connect

    Lewis, R.J. ); Reed, D.C. )

    1993-06-01

    Point sources of pollution (e.g. industrial outfalls) may produce ecological impacts at distant locations if pollutants affect dispersive propagules. The authors used laboratory experiments to determine how exposure to produced water (PW; aqueous fraction of petroleum production that is typically discharged into coastal waters) in the water column influences the colonization potential of giant kelp (Macrocystis pyrifera) spores on the bottom. Spores were maintained in suspension in 18 L containers and exposed to one of five concentrations of PW (0 to 10%) for varying amounts of time. Spore swimming generally decreased with increasing PW concentration and exposure duration, with the specific pattern of decrease differing between experimental trials done at different dates. The effect of exposure duration in the water column on the ability of swimming spores to attach to plastic dishes placed the bottom varied with PW concentration. Spores placed in 1 and 10% PW showed a steady decline in their ability to attach with increased exposure; lower concentrations of PW had no such effects. The proportion of spores that germinated after attachment varied tremendously with exposure duration and date of experimental trial. A low proportion of spores that settled during the first 12 h germinated, indicative of a short period of precompetency. Surprisingly, water column exposure to high concentrations of PW during the first 12 h reduced this precompetent period and greatly improved germination success. The magnitude of this enhancement, however, varied among dates. Delayed expression of PW effects were not observed in developing gametophytes; survival of individuals that successfully germinated and gamete production was not affected by previous exposure to PW as a spore.

  10. Potential of Lactobacillus curvatus LFC1 to produce slits in Cheddar cheese.

    PubMed

    Porcellato, D; Johnson, M E; Houck, K; Skeie, S B; Mills, D A; Kalanetra, K M; Steele, J L

    2015-08-01

    Defects in Cheddar cheese resulting from undesired gas production are a sporadic problem that results in significant financial losses in the cheese industry. In this study, we evaluate the potential of a facultatively heterofermentative lactobacilli, Lactobacillus curvatus LFC1, to produce slits, a gas related defect in Cheddar cheese. The addition of Lb. curvatus LFC1 to cheese milk at log 3 CFU/ml resulted in the development of small slits during the first month of ripening. Chemical analyses indicated that the LFC1 containing cheeses had less galactose and higher levels of lactate and acetate than the control cheeses. The composition the cheese microbiota was examined through a combination of two culture independent approaches, 16S rRNA marker gene sequencing and automated ribosomal intergenic spacer analysis; the results indicated that no known gas producers were present and that high levels of LFC1 was the only significant difference between the cheese microbiotas. A ripening cheese model system was utilized to examine the metabolism of LFC1 under conditions similar to those present in cheeses that exhibited the slit defect. The combined cheese and model system results indicate that when Lb. curvatus LFC1 was added to the cheese milk at log 3 CFU/ml it metabolized galactose to lactate, acetate, and CO2. For production of sufficient CO2 to result in the formation of slits there needs to be sufficient galactose and Lb. curvatus LFC1 present in the cheese matrix. To our knowledge, facultatively heterofermentative lactobacilli have not previously been demonstrated to result in gas-related cheese defects.

  11. Cellulolytic and xylanolytic potential of high β-glucosidase-producing Trichoderma from decaying biomass.

    PubMed

    Okeke, Benedict C

    2014-10-01

    Availability, cost, and efficiency of microbial enzymes for lignocellulose bioconversion are central to sustainable biomass ethanol technology. Fungi enriched from decaying biomass and surface soil mixture displayed an array of strong cellulolytic and xylanolytic activities. Strains SG2 and SG4 produced a promising array of cellulolytic and xylanolytic enzymes including β-glucosidase, usually low in cultures of Trichoderma species. Nucleotide sequence analysis of internal transcribed spacer 2 (ITS2) region of rRNA gene revealed that strains SG2 and SG4 are closely related to Trichoderma inhamatum, Trichoderma piluliferum, and Trichoderma aureoviride. Trichoderma sp. SG2 crude culture supernatant correspondingly displayed as much as 9.84 ± 1.12, 48.02 ± 2.53, and 30.10 ± 1.11 units mL(-1) of cellulase, xylanase, and β-glucosidase in 30 min assay. Ten times dilution of culture supernatant of strain SG2 revealed that total activities were about 5.34, 8.45, and 2.05 orders of magnitude higher than observed in crude culture filtrate for cellulase, xylanase, and β-glucosidase, respectively, indicating that more enzymes are present to contact with substrates in biomass saccharification. In parallel experiments, Trichoderma species SG2 and SG4 produced more β-glucosidase than the industrial strain Trichoderma reesei RUT-C30. Results indicate that strains SG2 and SG4 have potential for low cost in-house production of primary lignocellulose-hydrolyzing enzymes for production of biomass saccharides and biofuel in the field.

  12. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism.

    PubMed

    Ye, Ping; Mariniello, Barbara; Mantero, Franco; Shibata, Hirotaka; Rainey, William E

    2007-10-01

    The source of aldosterone in 30-40% of patients with primary hyperaldosteronism (PA) is unilateral aldosterone-producing adenoma (APA). The mechanisms causing elevated aldosterone production in APA are unknown. Herein, we examined the expression of G-protein-coupled receptors (GPCRs) in APA and demonstrated that when compared with normal adrenals, there is a general elevation of certain GPCR in many APA and/or ectopic expression of GPCR in others. RNA samples from normal adrenals (n = 5), APAs (n = 10), and cortisol-producing adenomas (CPAs; n = 13) were used on 15 genomic expression arrays, each of which included 223 GPCR transcripts presented in at least 1 out of 15 of the independent microarrays. The array results were confirmed using real-time RT-PCR (qPCR). Four GPCR transcripts exhibited a statistically significant increase that was greater than threefold when compared with normal adrenals, suggesting a general increase in expression when compared with normal adrenal glands. Four GPCR transcripts exhibited a > 15-fold increase of expression in one or more of the APA samples when compared with normal adrenals. qPCR analysis confirmed array data and found the receptors with the highest fold increase in APA expression to be LH receptor, serotonin receptor 4, GnRH receptor, glutamate receptor metabotropic 3, endothelin receptor type B-like protein, and ACTH receptor. There are also sporadic increased expressions of these genes in the CPAs. Together, these findings suggest a potential role of altered GPCR expression in many cases of PA and provide candidate GPCR for further study.

  13. A Novel Lactobacillus casei LP1 Producing 1,4-Dihydroxy-2-Naphthoic Acid, a Bifidogenic Growth Stimulator.

    PubMed

    Kang, Jo-Eun; Kim, Tae-Jung; Moon, Gi-Seong

    2015-03-01

    1,4-Dihydroxy-2-naphthoic acid (DHNA) is a bifidogenic growth stimulator (BGS) and could be a functional food ingredient since bifidobacteria are beneficial for human health. For that reason, lactic acid bacteria producing DHNA have been screened. A lactic acid bacterium LP1 strain isolated from a natural cheese was confirmed to produce DHNA, analyzed by a HPLC method. The strain was identified as Lactobacillus casei by 16S rRNA gene sequence analysis. The cell-free supernatant of fermented whey produced by L. casei LP1 presented the BGS activity for three bifidobacterial strains such as Bifidobacterium longum subsp. infantis KCTC 3127, Bifidobacterium bifidum KCTC 3202, and Bifidobacterium breve KCTC 3220 which were human-originated. To the best of our knowledge, a L. casei strain which can produce DHNA was firstly identified in this study.

  14. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread.

    PubMed

    Black, Brenna A; Zannini, Emanuele; Curtis, Jonathan M; Gänzle, Michael G

    2013-03-01

    Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli grown in modified De Man Rogosa Sharpe medium or sourdough were assayed for antifungal activity. Lactobacillus hammesii exhibited increased antifungal activity upon the addition of linoleic acid as a substrate. Bioassay-guided fractionation attributed the antifungal activity of L. hammesii to a monohydroxy C(18:1) fatty acid. Comparison of its antifungal activity to those of other hydroxy fatty acids revealed that the monohydroxy fraction from L. hammesii and coriolic (13-hydroxy-9,11-octadecadienoic) acid were the most active, with MICs of 0.1 to 0.7 g liter(-1). Ricinoleic (12-hydroxy-9-octadecenoic) acid was active at a MIC of 2.4 g liter(-1). L. hammesii accumulated the monohydroxy C(18:1) fatty acid in sourdough to a concentration of 0.73 ± 0.03 g liter(-1) (mean ± standard deviation). Generation of hydroxy fatty acids in sourdough also occurred through enzymatic oxidation of linoleic acid to coriolic acid. The use of 20% sourdough fermented with L. hammesii or the use of 0.15% coriolic acid in bread making increased the mold-free shelf life by 2 to 3 days or from 2 to more than 6 days, respectively. In conclusion, L. hammesii converts linoleic acid in sourdough and the resulting monohydroxy octadecenoic acid exerts antifungal activity in bread.

  15. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  16. A Review on Protocatechuic Acid and Its Pharmacological Potential

    PubMed Central

    Kakkar, Sahil; Bais, Souravh

    2014-01-01

    Flavonoids and polyphenols are heterocyclic molecules that have been associated with beneficial effects on human health, such as reducing the risk of various diseases like cancer, diabetes, and cardiovascular and brain diseases. Protocatechuic acid (PCA) is a type of widely distributed naturally occurring phenolic acid. PCA has structural similarity with gallic acid, caffeic acid, vanillic acid, and syringic acid which are well-known antioxidant compounds. More than 500 plants contain PCA as active constituents imparting various pharmacological activity and these effects are due to their antioxidant activities, along with other possible mechanisms, such as anti-inflammatory properties and interaction with several enzymes. Over the past two decades, there have been an increasing number of publications on polyphenols and flavonoids, which demonstrate the importance of understanding the chemistry behind the antioxidant activities of both natural and synthesized compounds, considering the benefits from their dietary ingestion as well as pharmacological use. This work aims to review the pharmacological effects of PCA molecules in humans and the structural aspects that contribute to these effects. PMID:25006494

  17. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    PubMed Central

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S.

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well. PMID:26500617

  18. DIFFERENTIATION AND FUNCTIONAL EXPRESSION OF POTENTIAL ANTIBODY-PRODUCING CELLS IN THE PRESENCE OF CHLORAMPHENICOL

    PubMed Central

    Schoenberg, Melvin D.; Moore, Richard D.; Weisberger, Austin S.

    1967-01-01

    Rabbits were immunized with diphtheria toxoid combined with complete Freund's adjuvant. Half of the animals were started on intramuscular injections of chloramphenicol 24 hr before the injection of the antigens. There was a general depression of protein synthesis in the immune system in the presence of chloramphenicol, but a greater effect on the synthesis of antibody than on the synthesis of proteins necessary for reproduction and maturation. In contrast to the finding of antibody in cells of the spleen and in the circulation of the control animals, those animals receiving chloramphenicol did not have measurable circulating antibody, and their spleens contained only a few cells with intracytoplasmic antibody late in the course of the experiment. Cytologically there was maturation of potential antibody-producing cells in the red pulp and nonfollicular white pulp of the spleen while the animals were receiving chloramphenicol. These cells developed more slowly, and were fewer and smaller than those of the control animals. They had numerous small, electron-opaque particles in their cytoplasm early in development. Ribosomes were synthesized, though fewer in number. The endoplasmic reticulum formed more slowly. PMID:10976231

  19. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants.

    PubMed

    Manitchotpisit, Pennapa; Bischoff, Kenneth M; Price, Neil P J; Leathers, Timothy D

    2013-05-01

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.

  20. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling.

    PubMed

    Paganelli, Alejandra; Gnazzo, Victoria; Acosta, Helena; López, Silvia L; Carrasco, Andrés E

    2010-10-18

    The broad spectrum herbicide glyphosate is widely used in agriculture worldwide. There has been ongoing controversy regarding the possible adverse effects of glyphosate on the environment and on human health. Reports of neural defects and craniofacial malformations from regions where glyphosate-based herbicides (GBH) are used led us to undertake an embryological approach to explore the effects of low doses of glyphosate in development. Xenopus laevis embryos were incubated with 1/5000 dilutions of a commercial GBH. The treated embryos were highly abnormal with marked alterations in cephalic and neural crest development and shortening of the anterior-posterior (A-P) axis. Alterations on neural crest markers were later correlated with deformities in the cranial cartilages at tadpole stages. Embryos injected with pure glyphosate showed very similar phenotypes. Moreover, GBH produced similar effects in chicken embryos, showing a gradual loss of rhombomere domains, reduction of the optic vesicles, and microcephaly. This suggests that glyphosate itself was responsible for the phenotypes observed, rather than a surfactant or other component of the commercial formulation. A reporter gene assay revealed that GBH treatment increased endogenous retinoic acid (RA) activity in Xenopus embryos and cotreatment with a RA antagonist rescued the teratogenic effects of the GBH. Therefore, we conclude that the phenotypes produced by GBH are mainly a consequence of the increase of endogenous retinoid activity. This is consistent with the decrease of Sonic hedgehog (Shh) signaling from the embryonic dorsal midline, with the inhibition of otx2 expression and with the disruption of cephalic neural crest development. The direct effect of glyphosate on early mechanisms of morphogenesis in vertebrate embryos opens concerns about the clinical findings from human offspring in populations exposed to GBH in agricultural fields.

  1. High Protein- and High Lipid-Producing Microalgae from Northern Australia as Potential Feedstock for Animal Feed and Biodiesel

    PubMed Central

    Duong, Van Thang; Ahmed, Faruq; Thomas-Hall, Skye R.; Quigley, Simon; Nowak, Ekaterina; Schenk, Peer M.

    2015-01-01

    Microalgal biomass can be used for biodiesel, feed, and food production. Collection and identification of local microalgal strains in the Northern Territory, Australia was conducted to identify strains with high protein and lipid contents as potential feedstock for animal feed and biodiesel production, respectively. A total of 36 strains were isolated from 13 samples collected from a variety of freshwater locations, such as dams, ponds, and streams and subsequently classified by 18S rDNA sequencing. All of the strains were green microalgae and predominantly belong to Chlorella sp., Scenedesmus sp., Desmodesmus sp., Chlamydomonas sp., Pseudomuriella sp., Tetraedron caudatum, Graesiella emersonii, and Mychonastes timauensis. Among the fastest growing strains, Scenedesmus sp. NT1d possessed the highest content of protein; reaching up to 33% of its dry weight. In terms of lipid production, Chlorella sp. NT8a and Scenedesmus dimorphus NT8e produced the highest triglyceride contents of 116.9 and 99.13 μg mL−1 culture, respectively, as measured by gas chromatography–mass spectroscopy of fatty acid methyl esters. These strains may present suitable candidates for biodiesel production after further optimization of culturing conditions, while their protein-rich biomass could be used for animal feed. PMID:26042215

  2. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain.

    PubMed

    Khochamit, Nalisa; Siripornadulsil, Surasak; Sukon, Peerapol; Siripornadulsil, Wilailak

    2015-01-01

    The antimicrobial activity and probiotic properties of Bacillus subtilis strain KKU213, isolated from local soil, were investigated. The cell-free supernatant (CFS) of a KKU213 culture containing crude bacteriocins exhibited inhibitory effects on Gram-positive bacteria, including Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, and Staphylococcus aureus. The antibacterial activity of the CFS precipitated with 40% ammonium sulfate (AS) remained even after treatment at 60 and 100 °C, at pH 4 and 10 and with proteolytic enzymes, detergents and heavy metals. When analyzed by SDS-PAGE and overlaid with the indicator strains B. cereus and S. aureus, the 40% AS precipitate exhibited inhibitory activity on proteins smaller than 10 kDa. However, proteins larger than 25 kDa and smaller than 10 kDa were still observed on a native protein gel. Purified subtilosin A was prepared by Amberlite XAD-16 bead extraction and HPLC and analyzed by Nano-LC-QTOF-MS. Its molecular mass was found to be 3.4 kDa, and it retained its antibacterial activity. These results are consistent with the detection of the anti-listerial subtilosin A gene of the sbo/alb cluster in the KKU213 strain, which is 100% identical to that of B. subtilis subsp. subtilis 168. In addition to stable and cyclic subtilosin A, a mixture of many extracellular antibacterial peptides was also detected in the KKU213 culture. The KKU213 strain produced extracellular amylase, cellulase, lipase and protease, is highly acid-resistant (pH 2) when cultured in inulin and promotes health and reduces infection of intestinally colonized broiler chickens. Therefore, we propose that bacteriocin-producing B. subtilis KKU213 could be used as a potential probiotic strain or protective culture.

  3. Theoretical Determination of One-Electron Oxidation Potentials for Nucleic Acid Bases.

    PubMed

    Psciuk, Brian T; Lord, Richard L; Munk, Barbara H; Schlegel, H Bernhard

    2012-12-11

    The oxidation potentials for N-methyl substituted nucleic acid bases guanine, adenine, cytosine, thymine, uracil, xanthine, and 8-oxoguanine were computed using B3LYP and CBS-QB3 with the SMD solvation model. Acid-base and tautomeric equilibria present in aqueous solution were accounted for by combining standard redox potentials with calculated pKa and tautomerization energies to produce an ensemble averaged pH dependent potential. Gas phase free energies were computed using B3LYP/aug-cc-pVTZ//B3LYP/6-31+G(d,p) and CBS-QB3. Solvation free energies were computed at the SMD/B3LYP/6-31+G(d,p) level of theory. Compared to experimental results, calculations with the CBS-QB3 level of theory have a mean absolute error (MAE) of ca. 1 kcal/mol for the gas phase proton affinity/gas phase basicity and an MAE of ca. 0.04 eV for the adiabatic/vertical ionization potentials. The B3LYP calculations have a MAE of ∼2 kcal/mol for the proton affinity/gas phase basicity data but systematically underestimated ionization potentials by 0.14-0.21 eV. Solvent cavities for charged solute species were rescaled uniformly by fitting computed pKa data to experimentally measured pKa values. After solvent cavity scaling, the MAEs for computed pKa's compared to experimental results are 0.7 for B3LYP and 0.9 for CBS-QB3. In acetonitrile, the computed E°(XH(+•)/XH) redox potentials are systematically lower than experimentally measured potentials by 0.21 V for CBS-QB3 and 0.33 V for B3LYP. However, the redox potentials relative to adenine are in very good agreement with experimental results, with MAEs of 0.10 V for CBS-QB3 and 0.07 V for B3LYP. In aqueous solution, B3LYP and CBS-QB3 have MAEs of 0.21 and 0.19 V for E7(X(•),H(+)/XH). Replacing the methyl substituent with ribose changes the calculated E7 potentials by 0.1-0.2 V. The calculated difference between the guanine and adenine oxidation potentials is too large compared to experimental results, but the calculated difference between

  4. Membrane-integrated fermentation system for improving the optical purity of D-lactic acid produced during continuous fermentation.

    PubMed

    Sawai, Hideki; Na, Kyungsu; Sasaki, Nanami; Mimitsuka, Takashi; Minegishi, Shin-ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2011-01-01

    This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.

  5. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    PubMed

    Pethybridge, Heidi R; Parrish, Christopher C; Morrongiello, John; Young, Jock W; Farley, Jessica H; Gunasekera, Rasanthi M; Nichols, Peter D

    2015-01-01

    Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  6. The safety assessment of Pythium irregulare as a producer of biomass and eicosapentaenoic acid for use in dietary supplements and food ingredients.

    PubMed

    Wu, Lei; Roe, Charles L; Wen, Zhiyou

    2013-09-01

    Polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6, n-3), eicosapentaenoic acid (EPA, 20:5, n-3), and arachidonic acid (ARA, 20:4 n-6), have multiple beneficial effects on human health and can be used as an important ingredient in dietary supplements, food, feed and pharmaceuticals. A variety of microorganisms has been used for commercial production of these fatty acids. The microorganisms in the Pythium family, particularly Pythium irregulare, are potential EPA producers. The aim of this work is to provide a safety assessment of P. irregulare so that the EPA derived from this species can be potentially used in various commercial applications. The genus Pythium has been widely recognized as a plant pathogen by infecting roots and colonizing the vascular tissues of various plants such as soybeans, corn and various vegetables. However, the majority of the Pythium species (including P. irregulare) have not been reported to infect mammals including humans. The only species among the Pythium family that infects mammals is P. insidiosum. There also have been no reports showing P. irregulare to contain mycotoxins or cause potentially allergenic responses in humans. Based on the safety assessment, we conclude that P. irregulare can be considered a safe source of biomass and EPA-containing oil for use as ingredients in dietary supplements, food, feed and pharmaceuticals.

  7. Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats.

    PubMed

    Ossenkopp, Klaus-Peter; Foley, Kelly A; Gibson, James; Fudge, Melissa A; Kavaliers, Martin; Cain, Donald P; Macfabe, Derrick F

    2012-02-01

    Propionic acid, an enteric bacterial fermentation product, has received recent attention in regards to satiety and obesity in humans. The possibility that propionic acid might produce internal aversive cues was investigated in two experiments using conditioned taste avoidance and place avoidance procedures to index the potential aversive nature of systemic treatment with propionic acid in male rats. Experiment 1 examined the effect of systemic treatment with propionic acid (500 mg/kg), LiCl (95 mg/kg) or vehicle (all corrected to pH 7.5) on the formation of conditioned taste avoidance using a lickometer procedure. On 3 acquisition days three groups of rats were injected with propionic acid, LiCl or vehicle, following 30 min access to 0.3M sucrose solution. Both the Propionic acid group and the LiCl group evidenced a conditioned taste avoidance by the end of the acquisition period. During a drug free extinction phase the Propionic acid group showed extinction of the taste avoidance whereas the LiCl group did not. Experiment 2 involved place preference conditioning with propionic acid treatment associated with one novel context and vehicle with a different novel context on 6 conditioning trials for each type of injection. Place avoidance was assessed on two drug free extinction trials. Multi-variable assessment of the unconditioned (Acquisition Trials) and conditioned effects (Extinction Trials) of propionic acid on locomotor activity was quantified as was chamber choice time on the extinction trials. Propionic acid induced a significant place avoidance and significantly reduced locomotor activity on some acquisition trials. During the extinction trials rats exhibited enhanced locomotor activity levels in the propionic acid associated chamber, likely due to the conditioned aversive nature of this chamber.

  8. Draft genome sequence of the sponge-associated strain Bacillus atrophaeus C89, a potential producer of marine drugs.

    PubMed

    Liu, Fang; Sun, Wei; Su, Fei; Zhou, Kang; Li, Zhiyong

    2012-08-01

    Bacillus atrophaeus C89, isolated from the marine sponge Dysidea avara, is a potential producer of bioactive compounds, such as neobacillamide A and bacillamide C. Here, we present a 4.2-Mb assembly of its genome. The nonribosomal peptide synthetases (NRPSs) make it possible to produce the bioactive compounds.

  9. Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function.

    PubMed

    Jakob, Frank; Pfaff, Andre; Novoa-Carballal, Ramon; Rübsam, Heinrich; Becker, Thomas; Vogel, Rudi F

    2013-02-15

    Some strains of acetic acid bacteria (Gluconobacter frateurii TMW 2.767, Gluconobacter cerinus DSM 9533T, Neoasaia chiangmaiensis NBRC 101099, Kozakia baliensis DSM 14400) produce high amounts of fructans, which can be exploited in food applications as previously demonstrated empirically for dough systems. In order to get insight into the structure and functionality of these polymers, we investigated the fructans isolated from these strains with respect to their linkage types and molecular weights/shapes using NMR spectroscopy and AF4-MALS-RI. Each fructan was identified as levan. The isolated levan fractions were highly similar according to their basic linearity and linkage types, but differed significantly in terms of their individual molecular weight distributions. In aqueous solutions the size of levan molecules present in all isolated levans continuously increased with their molecular weight and they tended to adopt a more compact molecular shape. Our data suggest that the increasing molecular weight of a levan particle enforces intramolecular interactions to reach the structural compactness of a microgel with hydrocolloid properties.

  10. Phosphatidic Acid Produced by Phospholipase D Promotes RNA Replication of a Plant RNA Virus

    PubMed Central

    Hyodo, Kiwamu; Taniguchi, Takako; Manabe, Yuki; Kaido, Masanori; Mise, Kazuyuki; Sugawara, Tatsuya; Taniguchi, Hisaaki; Okuno, Tetsuro

    2015-01-01

    Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate. PMID:26020241

  11. Antimicrobial Peptides Targeting Gram-negative Pathogens, Produced and Delivered by Lactic Acid Bacteria

    PubMed Central

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J.; Kaznessis, Yiannis N.

    2014-01-01

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella. In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis. Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter nisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host’s viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations. PMID:23808914

  12. Monosilicic acid potential in phytoremediation of the contaminated areas.

    PubMed

    Ji, Xionghui; Liu, Saihua; Huang, Juan; Bocharnikova, Elena; Matichenkov, Vladimir

    2016-08-01

    The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas.

  13. Potential anticancer activity of lichen secondary metabolite physodic acid.

    PubMed

    Cardile, V; Graziano, A C E; Avola, R; Piovano, M; Russo, A

    2017-02-01

    Secondary metabolites present in lichens, which comprise aliphatic, cycloaliphatic, aromatic and terpenic compounds, are unique with respect to those of higher plants and show interesting biological and pharmacological activities. However, only a few of these compounds, have been assessed for their effectiveness against various in vitro cancer models. In the present study, we investigated the cytotoxicity of three lichen secondary metabolites (atranorin, gyrophoric acid and physodic acid) on A375 melanoma cancer cell line. The tested compounds arise from different lichen species collected in different areas of Continental and Antarctic Chile. The obtained results confirm the major efficiency of depsidones. In fact, depsides atranorin and gyrophoric acid, showed a lower activity inhibiting the melanoma cancer cells only at more high concentrations. Whereas the depsidone physodic acid, showed a dose-response relationship in the range of 6.25-50 μM concentrations in A375 cells, activating an apoptotic process, that probably involves the reduction of Hsp70 expression. Although the molecular mechanism, by which apoptosis is induced by physodic acid remains unclear, and of course further studies are needed, the results here reported confirm the promising biological properties of depsidone compounds, and may offer a further impulse to the development of analogues with more powerful efficiency against melanoma cells.

  14. Preactivated hyaluronic acid: A potential mucoadhesive polymer for vaginal delivery.

    PubMed

    Nowak, Jessika; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-01-15

    The objective of this study was to develop mucoadhesive polymeric excipients for vaginal drug delivery systems. Hyaluronic acid was thiolated and subsequently preactivated with 6-mercaptonicotinamide (HA-CYS-MNA) to enhance stability and mucoadhesive properties on vaginal mucosa. After determination of the thiol group content, disintegration studies and in vitro mucoadhesion studies (rotating cylinder and tensile) were performed. Furthermore, swelling behavior and cytotoxicity studies were performed in comparison with corresponding polymers. Both, disintegration and in vitro mucoadhesive studies revealed that modifying HA-CYS with MNA resulted in higher stability (3.6-fold prolonged disintegration time compared to unmodified hyaluronic acid) and prolonged mucoadhesion time. MTT assay and LDH revealed no toxicity for the polymeric excipients and safe for their use. Disintegration and swelling results conducted more pronounced stability of the preactivated thiomers compared to corresponding unmodified ones. According to these results preactivated hyaluronic acid might be a useful tool for vaginal delivery systems.

  15. Water administration of medium-chain fatty acid caprylic acid produced variable efficacy against cecal Campylobacter jejuni concentrations in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter is one of the most common causes of foodborne illness, and poultry is considered a primary source of Campylobacter infections. Caprylic acid, an eight-carbon fatty acid, has been shown in previous studies to reduce enteric cecal Campylobacter concentrations in poultry when administere...

  16. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment.

    PubMed

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta; Ercolini, Danilo

    2015-11-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality.

  17. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment

    PubMed Central

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta

    2015-01-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality. PMID:26341209

  18. Quantity, composition and water contamination potential of ash produced under different wildfire severities.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Otero, Xosé L; Chafer, Chris J

    2015-10-01

    Wildfires frequently threaten water quality through the transfer of eroded ash and soil into rivers and reservoirs. The ability to anticipate risks for water resources from wildfires is fundamental for implementing effective fire preparedness plans and post-fire mitigation measures. Here we present a new approach that allows quantifying the amount and characteristics of ash generated under different wildfire severities and its respective water contamination potential. This approach is applied to a wildfire in an Australian dry sclerophyll eucalypt forest, but can be adapted for use in other environments. The Balmoral fire of October 2013 affected 12,694 ha of Sydney's forested water supply catchment. It produced substantial ash loads that increased with fire severity, with 6, 16 and 34 Mg ha(-1) found in areas affected by low, high and extreme fire severity, respectively. Ash bulk density was also positively related to fire severity. The increase with fire severity in the total load and bulk density of the ash generated is mainly attributed to a combination of associated increases in (i) total amount of fuel affected by fire and (ii) contribution of charred mineral soil to the ash layer. Total concentrations of pollutants and nutrients in ash were mostly unrelated to fire severity and relatively low compared to values reported for wildfire ash in other environments (e.g. 4.0-7.3mg As kg(-1); 2.3-4.1 B mg kg(-1); 136-154 P mg kg(-1)). Solubility of the elements analysed was also low, less than 10% of the total concentration for all elements except for B (6-14%) and Na (30-50%). This could be related to a partial loss of soluble components by leaching and/or wind erosion before the ash sampling (10 weeks after the fire and before major ash mobilisation by water erosion). Even with their relatively low concentrations of potential pollutants, the substantial total ash loads found here represent a water contamination risk if transported into the hydrological network

  19. Invertebrate pathogenicity and toxin-producing potential of strains of Bacillus thuringiensis endemic to Antarctica.

    PubMed

    Prabhakar, A; Bishop, A H

    2011-06-01

    Several strains of Bacillus thuringiensis were previously isolated from soil in Antarctica and appeared to have physiological adaptations to this cold, nutrient-poor environment. In spite of this they could produce abnormally large, parasporal crystals under laboratory conditions. Here, they have been further characterised for toxin genes and invertebrate pathogenicity. All of the strains were positive in PCR assays for the cry1Aa and cry2 genes. This was confirmed by sequence analysis and the parasporal crystals of all strains contained polypeptides of about 130kDa. This potential for lepidopteran toxicity was borne out in bioassays of purified δ-endotoxins against larvae of Pieris brassicae: the LD(50) values of B2408 (288μg) were comparable to that of the reference strain, HD-12 (201μg). There was no activity against the nematode Caenorhabditis elegans in spite of the fact that all strains appeared to possess the cry6 gene. PCR screening for genes encoding other nematode-toxic classes of toxins (Cry5, 4 and 21) was negative. B. thuringiensis has never previously been shown to be toxic to Collembola (springtails) but the purified δ-endotoxins of one of the Antarctic strains showed some activity against Folsomia candida and Seira domestica (224μg and 238μg, respectively). It seems unlikely that the level of toxicity demonstrated against springtails would support a pathogenic life-style in nature. All of the strains were positive for genes encoding Bacillus cereus-type enterotoxins. In the absence of higher insects and mammals the ecological value of retaining the toxic capability demonstrated here is uncertain.

  20. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1981-01-01

    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  1. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  2. Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7.

    PubMed

    Liu, Jin-Feng; Yang, Juan; Yang, Shi-Zhong; Ye, Ru-Qiang; Mu, Bo-Zhong

    2012-04-01

    Surfactin produced by Bacillus subtilis has different variants, which are affected by the composition of substrate available. To demonstrate the effects of amino acids on surfactin variants, B. subtilis TD7 was cultivated under the same conditions but with different amino acids supplied in media, respectively, and the type as well as the proportion of surfactin variants produced was analyzed with electrospray ionization mass spectrometry and gas chromatography-mass spectrometry. The result shows that the addition of different amino acids significantly influences the proportion of surfactin variants with different fatty acids. When Arg, Gln, or Val was added to the culture medium of B. subtilis TD7, the proportion of produced surfactin variants with even β-hydroxy fatty acids significantly increased, while the addition of Cys, His, Ile, Leu, Met, Ser, or Thr enhanced the proportion of surfactin variants with odd β-hydroxy fatty acids markedly. This result may be of some reference value in enhancing the production of specific surfactin variants as well as in the research on the relationship between culture media and the corresponding products of a certain bacterium.

  3. Change in haloacetic acid formation potential during UV and UV/H2O2 treatment of model organic compounds.

    PubMed

    Sakai, Hiroshi; Autin, Olivier; Parsons, Simon

    2013-07-01

    Haloacetic acids (HAAs) are disinfection by-products produced by the chlorination of organic matter, including amino acids. Advanced oxidation processes are expected to be effective for the destruction of HAA precursors; however, recent studies have reported the possible failure of these processes to reduce HAA formation potential. This study examined HAA formation potential during the course of UV or UV/H2O2 treatment of three organic compounds: leucine, serine, and resorcinol. HAA formation potential decreased in the treatment of resorcinol, while the potential increased slightly in the treatment of serine and greatly increased for leucine. The chemical structure required for HAA formation was assumed to be produced during the course of UV/H2O2 treatment of leucine and serine. Also, H abstraction from the δ carbon was assumed to result from the initial degradation of leucine by the hydroxyl radical during the UV/H2O2 treatment. The hydroxyl radical may have further reacted with leucine moiety to shorten its carbon chain. This would have produced a chemical structure capable of forming HAA, thus increasing HAA formation potential.

  4. Fates of acid-resistant and non-acid-resistant Shiga toxin-producing Escherichia coli strains in ruminant digestive contents in the absence and presence of probiotics.

    PubMed

    Chaucheyras-Durand, Frédérique; Faqir, Fahima; Ameilbonne, Aurélie; Rozand, Christine; Martin, Christine

    2010-02-01

    Healthy ruminants are the main reservoir of Shiga toxin-producing Escherichia coli (STEC). During their transit through the ruminant gastrointestinal tract, STEC encounters a number of acidic environments. As all STEC strains are not equally resistant to acidic conditions, the purpose of this study was to investigate whether acid resistance confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. We found that acid-resistant STEC survived at higher rates during prolonged incubation in rumen fluid than acid-sensitive STEC and that they resisted the highly acidic conditions of the abomasum fluid, whereas acid-sensitive strains were killed. However, transit through the rumen contents allowed acid-sensitive strains to survive in the abomasum fluid at levels similar to those of acid-resistant STEC. The acid resistance status of the strains had little influence on STEC growth in jejunal and cecal contents. Supplementation with the probiotic Saccharomyces cerevisiae CNCM I-1077 or Lactobacillus acidophilus BT-1386 led to killing of all of the strains tested during prolonged incubation in the rumen contents, but it did not have any influence in the other digestive compartments. In addition, S. cerevisiae did not limit the induction of acid resistance in the rumen fluid. Our results indicate that the rumen compartment could be a relevant target for intervention strategies that could both limit STEC survival and eliminate induction of acid resistance mechanisms in order to decrease the number of viable STEC cells reaching the hindgut and thus STEC shedding and food contamination.

  5. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites

    SciTech Connect

    Young, R.F.; Cheng, S.M.; Fedorak, P.M.

    2006-01-15

    Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2'-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2'-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2'-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B{sub 12}, and it degraded 2,2'-dithiodibenzoic acid in pure culture when the medium was supplemented with this vitamin. Isolate RM6 also degraded 2,2'-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2'-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2'-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.

  6. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants.

    PubMed

    Wu, Guohai; Truksa, Martin; Datla, Nagamani; Vrinten, Patricia; Bauer, Joerg; Zank, Thorsten; Cirpus, Petra; Heinz, Ernst; Qiu, Xiao

    2005-08-01

    Very long chain polyunsaturated fatty acids (VLCPUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are valuable commodities that provide important human health benefits. We report the transgenic production of significant amounts of AA and EPA in Brassica juncea seeds via a stepwise metabolic engineering strategy. Using a series of transformations with increasing numbers of transgenes, we demonstrate the incremental production of VLCPUFAs, achieving AA levels of up to 25% and EPA levels of up to 15% of total seed fatty acids. Both fatty acids were almost exclusively found in triacylglycerols, with AA located preferentially at sn-2 and sn-3 positions and EPA distributed almost equally at all three positions. Moreover, we reconstituted the DHA biosynthetic pathway in plant seeds, demonstrating the practical feasibility of large-scale production of this important omega-3 fatty acid in oilseed crops.

  7. Acid hydrolysis of crude tannins from infructescence of Platycarya strobilacea Sieb. et Zucc to produce ellagic acid.

    PubMed

    Zhang, Liangliang; Wang, Yongmei; Xu, Man

    2014-01-01

    The infructescence of Platycarya strobilacea Sieb. et Zucc is a well-known traditional medicine in China, Japan and Korea. The infructescence of P. strobilacea Sieb. et Zucc is a rich source of ellagitannins that are composed of ellagic acid (EA) and gallic acid, linked to a sugar moiety. The aim of this study was to prepare EA by acid hydrolysis of crude tannins from the infructescence of P. strobilacea Sieb. et Zucc, and establish a new technological processing method for EA. The natural antioxidant EA was prepared by using the water extraction of infructescence of P. strobilacea Sieb. et Zucc, evaporation, condensation, acid hydrolysis and prepared by the process of crystallisation. The yield percentage of EA from crude EA was more than 20% and the purity of the product was more than 98%, as identified by using HPLC. The structure was identified on the basis of spectroscopic analysis and comparison with authentic compound.

  8. Gelation properties of spent duck meat surimi-like material produced using acid-alkaline solubilization methods.

    PubMed

    Nurkhoeriyati, T; Huda, N; Ahmad, R

    2011-01-01

    The gelation properties of spent duck meat surimi-like material produced using acid solubilization (ACS) or alkaline solubilization (ALS) were studied and compared with conventionally processed (CON) surimi-like material. The ACS process yielded the highest protein recovery (P < 0.05). The ALS process generated the highest lipid reduction, and the CON process yielded the lowest reduction (P < 0.05). Surimi-like material produced by the CON process had the highest gel strength, salt extractable protein (SEP), and water holding capacity (WHC), followed by materials produced via the ALS and ACS processes and untreated duck meat (P < 0.05). The material produced by the CON process also had the highest cohesiveness, hardness, and gumminess values and the lowest springiness value. Material produced by the ACS and ALS processes had higher whiteness values than untreated duck meat gels and gels produced by the CON method (P < 0.05). Surimi-like material produced using the ACS and CON processes had significantly higher myoglobin removal (P < 0.05) than that produced by the ALS method and untreated duck meat. Among all surimi-like materials, the highest Ca(2+)-ATPase activity was found in conventionally produced gels (P < 0.05). This suggests that protein oxidation was induced by acid-alkaline solubilization. The gels produced by ALS had a significantly lower (P < 0.05) total SH content than the other samples. This result showed that the acid-alkaline solubilization clearly improved gelation and color properties of spent duck and possibly applied for other high fat raw material.

  9. In vitro potentiation of carbapenems with ME1071, a novel metallo-beta-lactamase inhibitor, against metallo-beta-lactamase- producing Pseudomonas aeruginosa clinical isolates.

    PubMed

    Ishii, Yoshikazu; Eto, Maki; Mano, Yoko; Tateda, Kazuhiro; Yamaguchi, Keizo

    2010-09-01

    ME1071, a maleic acid derivative, is a novel specific inhibitor for metallo-beta-lactamases (MBL). In this study, the potentiation of ME1071 in combination with several beta-lactams was evaluated using MBL-producing Pseudomonas aeruginosa isolates. The rates of susceptibility of MBL producers to carbapenems (imipenem, biapenem, and doripenem) and ceftazidime were increased by 8 to 27% in the presence of 32 microg/ml of ME1071. The corresponding resistance rates were decreased by 13 to 46%, respectively. On the other hand, ME1071 showed weaker or no potentiation with non-MBL producers. The K(i) value of ME1071 for IMP-1 was 0.4 microM, significantly lower than the K(m) values of carbapenems for the IMP-1 enzyme. On the other hand, the K(i) value of ME1071 for VIM-2 was 120 microM, higher than the K(m) values of carbapenems for the VIM-2 enzyme. Results of this study indicate that ME1071 can potentiate the activity of ceftazidime and carbapenems against MBL-producing strains of P. aeruginosa.

  10. Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha.

    PubMed

    Wang, Yuanpeng; Chen, Ronghui; Cai, JiYuan; Liu, Zhenggui; Zheng, Yanmei; Wang, Haitao; Li, Qingbiao; He, Ning

    2013-01-01

    Levulinic acid (LA) can be cost-effectively produced from a vast array of renewable carbohydrate-containing biomaterials. LA could facilitate the commercialization of the polymer poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and PHBV-based products as carbon substrates. Therefore, this paper focused on the production of PHBV by Ralstonia eutropha with LA for hydroxyvalerate (HV) production, which plays an important role in enhancing the thermal properties of PHBV. Accordingly, the HV content of PHBV varied from 0-40.9% at different concentrations of LA. Stimulation of cell growth and PHBV accumulation were observed when 2-6 g L(-1) LA was supplied to the culture. The optimal nitrogen sources were determined to be 0.5 g L(-1) ammonium chloride and 2 g L(-1) casein peptone. It was determined that the optimal pH for cell growth and PHBV accumulation was 7.0. When the cultivation was performed in large scale (2 L fermenter) with a low DO concentration of 30% and a pH of 7.0, a high maximum dry cell weight of 15.53 g L(-1) with a PHBV concentration of 12.61 g L(-1) (53.9% HV), up to 81.2% of the dry cell weight, was obtained. The melting point of PHBV found to be decreased as the fraction of HV present in the polymer increased, which resulted in an improvement in the ductility and flexibility of the polymer. The results of this study will improve the understanding of the PHBV accumulation and production by R. eutropha and will be valuable for the industrial production of biosynthesized polymers.

  11. Identification of Bacillus species occurring in Kantong, an acid fermented seed condiment produced in Ghana.

    PubMed

    Kpikpi, Elmer Nayra; Thorsen, Line; Glover, Richard; Dzogbefia, Victoria Pearl; Jespersen, Lene

    2014-06-16

    Kantong is a condiment produced in Ghana by the spontaneous fermentation of kapok tree (Ceiba pentandra) seeds with cassava flour as an additive. Fermentation is over a 48h period followed by a drying and a kneading process. Although lactic acid bacteria (LAB) have previously been identified other micro-organisms may also be involved in the fermentation process. In this study we examined the occurrence of aerobic endospore-forming bacteria (AEB) in raw materials, during fermentation and in the final product at 2 production sites in Northern Ghana. Total aerobic mesophilic bacterial counts increased from 5.4±0.1log10CFU/g in the raw materials to 8.9±0.1log10CFU/g in the final products, with the AEB accounting for between 23% and 80% of the total aerobic mesophilic (TAM) counts. A total of 196 AEB were identified at a species/subspecies level by the use of phenotypic tests and genotypic methods including M13-PCR typing, 16S rRNA and gyrA gene sequencing. Bacillus subtilis subsp. subtilis (63% of the AEB), Bacillus safensis (26% of the AEB) and Bacillus amyloliquefaciens subsp. plantarum/Bacillus methylotrophicus (9% of the AEB) were the predominant Bacillus species during fermentation and in the final products. B. amyloliquefaciens/B. methylotrophicus originated from cassava flour, B. safensis from seeds and cassava flour, while the origin of B. subtilis was less clear. Brevibacillus agri and Peanibacillus spp. occurred sporadically. Further investigations are required to elucidate the role of AEB occurring in high numbers, in the fermentation of Kantong.

  12. Molecular and Therapeutic Potential and Toxicity of Valproic Acid

    PubMed Central

    Chateauvieux, Sébastien; Morceau, Franck; Dicato, Mario; Diederich, Marc

    2010-01-01

    Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Antiepileptic properties have been attributed to inhibition of Gamma Amino Butyrate (GABA) transaminobutyrate and of ion channels. VPA was recently classified among the Histone Deacetylase Inhibitors, acting directly at the level of gene transcription by inhibiting histone deacetylation and making transcription sites more accessible. VPA is a widely used drug, particularly for children suffering from epilepsy. Due to the increasing number of clinical trials involving VPA, and interesting results obtained, this molecule will be implicated in an increasing number of therapies. However side effects of VPA are substantially described in the literature whereas they are poorly discussed in articles focusing on its therapeutic use. This paper aims to give an overview of the different clinical-trials involving VPA and its side effects encountered during treatment as well as its molecular properties. PMID:20798865

  13. Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats.

    PubMed

    Guyot, M C; Palfi, S; Stutzmann, J M; Mazière, M; Hantraye, P; Brouillet, E

    1997-11-01

    The putative neuroprotective effect of riluzole was investigated in a rat model of progressive striatal neurodegeneration induced by prolonged treatment (three weeks, intraperitoneal) with 3-nitropropionic acid, an irreversible inhibitor of succinate dehydrogenase. Quantitative analysis of motor behaviour indicated a significant protective effect (60%) of riluzole (8 mg/kg/day) on 3-nitropropionic acid-induced motor deficits as assessed using two independent motor tests. Furthermore, quantitative analysis of 3-nitropropionic acid-induced lesions indicated a significant 84% decrease in the volume of striatal damage produced by 3-nitropropionic acid, the neuroprotective effect apparently being more pronounced in the posterior striatum and pallidum. In addition, it was checked that this neuroprotective effect of riluzole against systemic 3-nitropropionic acid did not result from a decreased bioavailability of the neurotoxin or a direct action of riluzole on 3-nitropropionic acid-induced inhibition of succinate dehydrogenase. We found that riluzole significantly decreased by 48% the size of striatal lesions produced by stereotaxic intrastriatal injection of malonate, a reversible succinate dehydrogenase inhibitor. Furthermore, the inhibition of cortical and striatal succinate dehydrogenase activity induced by systemic 3-nitropropionic acid was left unchanged by riluzole administration. The present results, consistent with a beneficial effect of riluzole in amyotrophic lateral sclerosis, suggest that this compound may be useful in the treatment of chronic neurodegenerative diseases.

  14. A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process.

    PubMed

    Shin, Chang-Hoon; Kim, Ju-Yup; Kim, Jun-Young; Kim, Hyun-Sang; Lee, Hyang-Sook; Mohapatra, Debasish; Ahn, Jae-Woo; Ahn, Jong-Gwan; Bae, Wookeun

    2009-03-15

    Recovery of acetic acid (HAc) from the waste etching solution discharged from silicon wafer manufacturing process has been attempted by using solvent extraction process. For this purpose 2-ethylhexyl alcohol (EHA) was used as organic solvent. In the pre-treatment stage >99% silicon and hydrofluoric acid was removed from the solution by precipitation. The synthesized product, Na(2)SiF(6) having 98.2% purity was considered of commercial grade having good market value. The waste solution containing 279 g/L acetic acid, 513 g/L nitric acid, 0.9 g/L hydrofluoric acid and 0.030 g/L silicon was used for solvent extraction study. From the batch test results equilibrium conditions for HAc recovery were optimized and found to be 4 stages of extraction at an organic:aqueous (O:A) ratio of 3, 4 stages of scrubbing and 4 stages of stripping at an O:A ratio of 1. Deionized water (DW) was used as stripping agent to elute HAc from organic phase. In the whole batch process 96.3% acetic acid recovery was achieved. Continuous operations were successfully conducted for 100 h using a mixer-settler to examine the feasibility of the extraction system for its possible commercial application. Finally, a complete process flowsheet with material balance for the separation and recovery of HAc has been proposed.

  15. ORAL AND INTRAVENOUSLY ADMINISTERED AMINO ACIDS PRODUCE SIMILAR EFFECTS ON MUSCLE PROTEIN SYNTHESIS IN THE ELDERLY

    PubMed Central

    Rasmussen, B.B.; Wolfe, R.R.; Volpi, E.

    2011-01-01

    BACKGROUND Muscle protein synthesis is stimulated in the elderly when amino acid availability is increased. OBJECTIVE To determine which mode of delivery of amino acids (intravenous vs. oral ingestion) is more effective in stimulating the rate of muscle protein synthesis in elderly subjects. DESIGN Fourteen elderly subjects were assigned to one of two groups. Following insertion of femoral arterial and venous catheters, subjects were infused with a primed, continuous infusion of L-[ring-2H5] phenylalanine. Blood samples and muscle biopsies were obtained to measure muscle protein fractional synthesis rate (FSR) with the precursor-product model, phenylalanine kinetics across the leg with the three-pool model, and whole body phenylalanine kinetics. Protein metabolism parameters were measured in the basal period, and during the administration of oral amino acids (n=8) or a similar amount of intravenous amino acids (n=6). RESULTS Enteral and parenteral amino acid administration increased amino acid arterial concentrations and delivery to the leg to a similar extent in both groups. Muscle protein synthesis as measured by both FSR, and the three-pool model, increased during amino acid administration (P < 0.05 vs. basal) in both groups with no differences between groups. Whole body proteolysis did not change with the oral amino acids whereas it increased slightly during parenteral amino acid administration. CONCLUSIONS Increased amino acid availability stimulates the rate of muscle protein synthesis independent of the route of administration (enteral vs. parenteral). PMID:12459885

  16. In vitro evaluation of the probiotic potential of bacteriocin producer Lactobacillus sakei 1.

    PubMed

    Gomes, Bruna C; Rodrigues, Marina R; Winkelströter, Lizziane K; Nomizo, Auro; de Martinis, Elaine C P

    2012-06-01

    Lactobacillus sakei 1 is a food isolate that produces a heat-stable antimicrobial peptide (sakacin 1, a class IIa bacteriocin) inhibitory to the opportunistic pathogen Listeria monocytogenes. Bacterial isolates with antimicrobial activity may be useful for food biopreservation and also for developing probiotics. To evaluate the probiotic potential of L. sakei 1, it was tested for (i) in vitro gastric resistance (with synthetic gastric juice adjusted to pH 2.0, 2.5, or 3.0); (ii) survival and bacteriocin production in the presence of bile salts and commercial prebiotics (inulin and oligofructose); (iii) adhesion to Caco-2 cells; and (iv) effect on the adhesion of L. monocytogenes to Caco-2 cells and invasion of these cells by the organism. The results showed that L. sakei 1 survival in gastric environment varied according to pH, with the maximum survival achieved at pH 3.0, despite a 4-log reduction of the population after 3 h. Regarding the bile salt tolerance and influence of prebiotics, it was observed that L. sakei 1 survival rates were similar (P > 0.05) for all de Man Rogosa Sharpe (MRS) broth formulations when tests were done after 4 h of incubation. However, after incubation for 24 h, the survival of L. sakei 1 in MRS broth was reduced by 1.8 log (P < 0.001), when glucose was replaced by either inulin or oligofructose (without Oxgall). L. sakei 1 was unable to deconjugate bile salts, and there was a significant decrease (1.4 log) of the L. sakei 1 population in regular MRS broth plus Oxgall (P < 0.05). In spite of this, tolerance levels of L. sakei 1 to bile salts were similar in regular MRS broth and in MRS broth with oligofructose. Lower bacteriocin production was observed in MRS broth when inulin (3,200 AU/ml) or oligofructose (2,400 AU/ml) was used instead of glucose (6,400 AU/ml). L. sakei 1 adhered to Caco-2 cells, and its cell-free pH-neutralized supernatant containing sakacin 1 led to a significant reduction of in vitro listerial invasion of human

  17. Δ12-Fatty Acid Desaturase from Candida parapsilosis Is a Multifunctional Desaturase Producing a Range of Polyunsaturated and Hydroxylated Fatty Acids

    PubMed Central

    Buček, Aleš; Matoušková, Petra; Sychrová, Hana; Pichová, Iva; Hrušková-Heidingsfeldová, Olga

    2014-01-01

    Numerous Δ12-, Δ15- and multifunctional membrane fatty acid desaturases (FADs) have been identified in fungi, revealing great variability in the enzymatic specificities of FADs involved in biosynthesis of polyunsaturated fatty acids (PUFAs). Here, we report gene isolation and characterization of novel Δ12/Δ15- and Δ15-FADs named CpFad2 and CpFad3, respectively, from the opportunistic pathogenic yeast Candida parapsilosis. Overexpression of CpFad3 in Saccharomyces cerevisiae strains supplemented with linoleic acid (Δ9,Δ12-18:2) and hexadecadienoic acid (Δ9,Δ12-16:2) leads to accumulation of Δ15-PUFAs, i.e., α-linolenic acid (Δ9,Δ12,Δ15-18:3) and hexadecatrienoic acid with an unusual terminal double bond (Δ9,Δ12,Δ15-16:3). CpFad2 produces a range of Δ12- and Δ15-PUFAs. The major products of CpFad2 are linoleic and hexadecadienoic acid (Δ9,Δ12-16:2), accompanied by α-linolenic acid and hexadecatrienoic acid (Δ9,Δ12,Δ15-16:3). Using GC/MS analysis of trimethylsilyl derivatives, we identified ricinoleic acid (12-hydroxy-9-octadecenoic acid) as an additional product of CpFad2. These results demonstrate that CpFAD2 is a multifunctional FAD and indicate that detailed analysis of fatty acid derivatives might uncover a range of enzymatic selectivities in other Δ12-FADs from budding yeasts (Ascomycota: Saccharomycotina). PMID:24681902

  18. Galantamine potentiates the protective effect of rofecoxib and caffeic acid against intrahippocampal Kainic acid-induced cognitive dysfunction in rat.

    PubMed

    Kumar, Anil; Prakash, Atish; Pahwa, Deeksha

    2011-05-30

    Role of neuroinflammatory mediators particularly cyclooxygenase (COX), lipoxygenase (LOX), have been well suggested in the pathophysiology of neurodegenerative disorders. Rofecoxib is a selective cyclooxygenase 2 enzymes belongs to non-steroidal anti-inflammatory drug, commonly called as coxibs. Whereas, caffeic acid (3,4-dihydroxycinnamic acid) is one of the natural phenolic compounds and reported to inhibit 5-lipoxygenase (5-LOX) activity as one of mechanisms. Present study has been designed to investigate the effects of rofecoxib, caffeic acid and its potentiation by galantamine against intrahippocampal kainic acid-induced cognitive impairment, oxidative damage and mitochondrial respiratory enzyme alterations in rats. Kainic acid (KA) was administrated in the hippocampus region of rat brain. Various behavioral (locomotor activity and memory performances were assessed by using actophotometer and Morris water maze respectively) followed by oxidative stress, mitochondrial enzyme complex were assessed. Intrahippocampal administration of KA significantly impaired locomotor activity, memory performance, mitochondrial enzyme complexes and caused oxidative stress as compared to sham treatment. Rofecoxib (5 and 10mg/kg), caffeic acid (5 and 10mg/kg), Gal (2.5 and 5mg/kg) treatment for 14 days significantly improved locomotor activity, memory retention and oxidative defense (as evidenced by decrease lipid peroxidation, nitrite, increased superoxide dismutase activity and redox ratio) in hippocampus. Besides, alterations in the levels of mitochondrial enzymes and acetylcholine esterase enzyme were significantly restored by rofecoxib and caffeic acid as compared to control. Further, combination of rofecoxib (5mg/kg) with caffeic acid (5mg/kg) and lower dose of gal (2.5mg/kg) with rofecoxib (5mg/kg) treatments significantly potentiated their protective effect which was significant as compared to their effect per se. The results of the present study suggest that galantamine

  19. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology.

  20. Morphological examination of highly porous polylactic acid/Bioglass(®) scaffolds produced via nonsolvent induced phase separation.

    PubMed

    Rezabeigi, Ehsan; Wood-Adams, Paula M; Drew, Robin A L

    2016-09-19

    In this study, we produce highly porous (up to ∼91%) composite scaffolds of polylactic acid (PLA) containing 2 wt % sol-gel-derived 45S5 Bioglass(®) particles via nonsolvent induced phase separation at -23°C with no sacrificial phases involved. Before the incorporation of the bioglass with PLA, the particles are surface modified with a silane coupling agent which effectively diminishes agglomeration between them leading to a better dispersion of bioactive particles throughout the scaffold. Interestingly, the incorporation route (via solvent dichloromethane or nonsolvent hexane) of the surface modified particles in the foaming process has the greatest impact on porosity, crystallinity, and morphology of the scaffolds. The composite scaffolds with a morphology consisting of both mesopores and large macropores, which is potentially beneficial for bone regeneration applications, are examined further. SEM images show that the surface modified bioglass particles take-up a unique configuration within the mesoporous structure of these scaffolds ensuring that the particles are well interlocked but not completely covered by PLA such that they can be in contact with physiological fluids. The results of preliminary in vitro tests confirm that this PLA/bioglass configuration promotes the interaction of the bioactive phase with physiological fluids. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  1. Hydrophobicity and haemolytic potential of oxo derivatives of cholic, deoxycholic and chenodeoxycholic acids.

    PubMed

    Posa, Mihalj; Kuhajda, Ksenija

    2010-06-01

    The objective of this work was to study the effect of structure of bile acids on their membranolytic potential and extent of overlapping of the information about the membranolytic potential of bile acids and their physico-chemical parameters, namely: retention index R(M0) (as a measure of bile acid hydrophobicity, reversed-phase thin-layer chromatography (RPTLC)), lecithin solubilisation (measure of the interaction of bile acids with phospholipids) and critical micellar concentration (CMC). It was found that bile acid concentrations at 100% lysis of erythrocyte membranes is described best by their CMC values, whereas at 50% lysis the parameter used is lecithin solubilisation. This indicates that different mixed micelles are formed in the membrane lysis at lower and higher concentrations of bile acids. Replacement of the hydroxyl (OH) group in the bile acid molecule with an oxo group yields derivatives with lowered hydrophobicity, power of lecithin solubilisation, tendency for self-aggregation as well as the membranolytic activity.

  2. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Ogawa, Jun; Kawada, Teruo

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism.

  3. Influence of metal ions and pH on the hydraulic properties of potential acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Le, T. M. H.; Collins, R. N.; Waite, T. D.

    2008-07-01

    SummaryAcid sulfate soils (ASS) cover extensive areas of east Australian coastal floodplains. Upon oxidation, these hydromorphic pyritic sediments produce large quantities of sulfuric acid. In addition, due to their geographic location, these soils may also come in contact with high ionic strength estuarine tidal waters. As a result, there is typically a large variation in acidity (pH) and cation concentrations in soil porewaters and adjacent aquatic systems (e.g., agricultural field drains, rivers, estuaries, etc.). Acid sulfate soils, especially from the unoxidized gelatinous deeper layers, contain a relatively high proportion of montmorillonite, which is wellknown for its shrink-swell properties. Variations in cation concentrations, including H3O+, can influence montmorillonite platelet interactions and may, thus, also significantly affect the hydraulic conductivity of materials containing this clay. In this paper we report on the effect of four common cations, at reasonable environmental concentrations, on the hydraulic properties of potential (unoxidized) acid sulfate soil materials. The natural system was simplified by examining individually the effects of each cation (H+, Ca2+, Fe2+ and Na+) on a soil-water suspension in a filtration cell unit. Moisture ratio, hydraulic conductivity and the consolidation coefficient of the deposited filter cakes were calculated using material coordinates theory. The results indicate that the hydraulic conductivity of potential acid sulfate soils increases at low pH and with cation concentration. Although an increase in the charge of amphoteric edge groups on montmorillonite clays may result in some aggregation between individual clay platelets, we conclude that the extent of these changes are unlikely to cause significant increases in the transportation of acidity (and contaminants) through potential acid sulfate soils as the hydraulic conductivity of these materials remain low (<10-9 m/s) at pH and ionic conditions normally

  4. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this research was to examine relative transcriptional expression of acid resistance (AR) genes, rpoS, gadA and adiA, in O157:H7 and non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes after adaptation to pineapple juice (PJ) and subsequently to determine survival with e...

  5. Genome Sequence of Lactobacillus curieae CCTCC M 2011381T, a Novel Producer of Gamma-aminobutyric Acid

    PubMed Central

    Wang, Ying; Wang, Yu; Lang, Chong; Wei, Dongzhi; Xu, Ping

    2015-01-01

    Lactobacillus curieae CCTCC M 2011381T is a novel species of the genus Lactobacillus and a gamma-aminobutyric acid producer that was isolated from stinky tofu brine. Here, we present a 2.19-Mb assembly of its genome, which may provide further insights into the molecular mechanisms underlying its beneficial properties. PMID:26021929

  6. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  7. Hops (Humulus lupulus) ß-acid as an inhibitor of caprine rumen hyper-ammonia-producing bacteria in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial plant secondary metabolites increase rumen efficiency and decrease waste products (i.e. ammonia, methane) in some cases. A promising source of bioactive secondary metabolites is the hops plant (Humulus lupulus L.), which produces '-acid, a suite of structurally similar, potent antibact...

  8. Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4.

    PubMed

    Han, Sung-Hyuk; Lee, Jung-Eun; Park, Kyungmoon; Park, Yong-Cheol

    2013-01-25

    2,3-Butanediol (2,3-BDO) is a value-added chemical with great potential for the industrial production of synthetic rubber, plastic and solvent. For microbial production of 2,3-BDO, in this study, Klebsiella oxytoca NBRF4 was constructed by chemical mutation and screening against NaBr, NaBrO(3) and fluoroacetate. Among metabolic enzymes involved in the production of lactate, acetate and 2,3-BDO, K. oxytoca NBRF4 possessed 1.2 times lower specific activities of lactate dehydrogenase and phosphotransacetylase, and 22% higher specific acetoin reductase activity than the K. oxytoca ATCC43863 control strain. A series of batch fermentations in a defined medium and application of a statistical tool of response surface method led to the determination of optimal culture conditions: 10% dissolved oxygen level, pH 4.3 and 38°C. The actual results of batch fermentation at the optimal conditions using 44 g/L glucose were coincident with the predetermined values: 14.4 g/L 2,3-BDO concentration, 0.32 g/g yield. To increase 2,3-BDO titer, fed-batch fermentation of K. oxytoca NBRF4 was performed by an intermittent feeding of 800 g/L glucose to control its concentration around 5-20 g/L in the culture broth. Finally, 34.2g/L 2,3-BDO concentration and 0.35 g/g yield were obtained without organic acid production in 70 hours of the fed-batch culture, which were 2.4 and 1.2 times higher than those of the batch fermentation using 44 g/L glucose.

  9. Potential for amino acids supplementation during inflammatory bowel diseases.

    PubMed

    Coëffier, Moïse; Marion-Letellier, Rachel; Déchelotte, Pierre

    2010-03-01

    The pathophysiology of inflammatory bowel diseases (IBDs) is multifactorial and involves interactions of gut luminal content with mucosal barrier and especially immune cells. Malnutrition is a frequent issue during IBD flares, especially in Crohn's disease (CD) patients, and nutritional support is frequently used to treat malnutrition but also in an attempt to modulate intestinal inflammation. The use of oral or enteral nutrition intervention in IBDs may be effective, alone or in combination with drugs, to achieve and maintain remission. However, standard diets are less effective than new-generation biotherapies and could be improved by supplementation with specific immunomodulatory amino acids. Experimental studies evaluating glutamine, the preferential substrate for enterocytes, are promising. Some clinical studies with oral glutamine in CD are until now disappointing, but new formulations and targeting could enhance glutamine efficacy at the site of mucosal lesions. The role of arginine, involved in nitric oxide and polyamines synthesis, still remains debated. However, the effects of these amino acids in IBD have been poorly documented in humans. Other candidates like glycine, cysteine, histidine, or taurine should also be evaluated in the future.

  10. ACID-BASE ACCOUNT EFFECTIVENESS FOR DETERMINATION OF MINE WASTE POTENTIAL ACIDITY. (R825549C048)

    EPA Science Inventory

    The oxidation of sulfide minerals in mine waste is a widespread source of resource degradation, often resulting in the generation of acidic water and mobilization of heavy metals. The quantity of acid forming minerals present in mine waste, dominantly as pyrite (FeS2

  11. Newly isolated lactic acid bacteria with probiotic features for potential application in food industry.

    PubMed

    Divya, Jayakumar Beena; Varsha, Kontham Kulangara; Nampoothiri, Kesavan Madhavan

    2012-07-01

    Five newly isolated lactic acid bacteria were identified as Weissella cibaria, Enterococcus faecium, and three different strains of Lactobacillus plantarum by 16S rRNA sequencing. Essential probiotic requirements of these isolates such as tolerance to phenol, low pH, high sodium chloride, and bile salt concentration were checked. Efficiency in adherence to mucin and hydrophobicity of the bacterial cell were also evaluated by in vitro studies. Antimicrobial activities against some pathogens were tried, and the sensitivity of these strains against 25 different antibiotics was also checked. Further studies revealed Weissella and Enterococcus as substantial producers of folic acid. Folate is involved as a cofactor in many metabolic reactions, and it has to be an essential component in the human diet. The folate level in the fermented samples was determined by microbiological assay using Lactobacillus casei NCIM 2364 as indicator strain. The three strains of L. plantarum showed significant inhibitory activity against various fungi that commonly contaminate food stuffs indicating their potential as a biopreservative of food material.

  12. M2-like macrophage polarization in high lactic acid-producing head and neck cancer.

    PubMed

    Ohashi, Toshimitsu; Aoki, Mitsuhiro; Tomita, Hiroyuki; Akazawa, Takashi; Sato, Katsuya; Kuze, Bunya; Mizuta, Keisuke; Hara, Akira; Nagaoka, Hitoshi; Inoue, Norimitsu; Ito, Yatsuji

    2017-04-01

    Reprogramming of glucose metabolism in tumor cells is referred to as the Warburg effect and results in increased lactic acid secretion into the tumor microenvironment. We have previously shown that lactic acid has important roles as a proinflammatory and immunosuppressive mediator and promotes tumor progression. In this study, we examined the relationship between the lactic acid concentration and expression of lactate dehydrogenase-A (LDHA) and glucose transporter-1 (GLUT1), which are related to the Warburg effect, in human head and neck squamous cell carcinoma (HNSCC). Tumors expressing lower levels of LDHA and GLUT1 had a higher concentration of lactic acid than those with higher LDHA and GLUT1 expression. Lactic acid also suppressed the expression of LDHA and GLUT1 in vitro. We previously reported that lactic acid enhances expression of a M2 macrophage marker, arginase I (ARG1), in murine macrophages. Therefore, we investigated the relationship between the lactic acid concentration and polarization of M2 macrophages in HNSCC by measuring the expression of M2 macrophage markers, colony stimulating factor 1 receptor (CSF1R) and CD163, normalized using a pan-macrophage marker, CD68. Tumors with lower levels of CD68 showed a higher concentration of lactic acid, while those with higher levels of CSF1R showed a significantly higher concentration of lactic acid. A similar tendency was observed for CD163. These results suggest that tumor-secreted lactic acid is linked to the reduction of macrophages in tumors and promotes induction of M2-like macrophage polarization in human HNSCC. This article is protected by copyright. All rights reserved.

  13. Synthesis of medium chain length fatty acid ethyl esters in engineered Escherichia coli using endogenously produced medium chain fatty acids.

    PubMed

    Fan, Liping; Liu, Junfeng; Nie, Kaili; Liu, Luo; Wang, Fang; Tan, Tianwei; Deng, Li

    2013-07-10

    Microbial biosynthesis of fatty acid-derived biofuels from renewable carbon sources has attracted significant attention in recent years. Free fatty acids (FFAs) can be used as precursors for the production of micro-diesel. The expression of codon optimized two plants (Umbellularia californica and Cinnamomum camphora) medium-chain acyl-acyl carrier protein (ACP) thioesterase genes (ucFatB and ccFatB) in Escherichia coli resulted in a very high level of extractable medium-chain-specific hydrolytic activity and caused large accumulation of medium-chain free fatty acids. By heterologous co-expression of acyl-coenzyme A:diacylglycerol acyltransferase from Acinetobacter baylyi ADP1, specific plant thioesterases in E. coli, with supplementation of exogenous ethanol, resulted in drastic changes in fatty acid ethyl esters (FAEEs) composition ranging from 12:0 to 18:1. Through an optimized microbial shake-flask fermentation of two modified E. coli strains, yielded FFAs and FAEEs in the concentration of approximately 500 mg L(-1)/250 mg L(-1) and 2.01 mg g(-1)/1.99 mg g(-1), respectively. The optimal ethanol level for FAEEs yield in the two recombinant strains was reached at the 3% ethanol concentration, which was about 5.4-fold and 1.93-fold higher than that of 1% ethanol concentration.

  14. Potential application of a glucose-transport-deficient mutant of Schizosaccharomyces pombe for removing gluconic acid from grape must.

    PubMed

    Peinado, Rafael A; Moreno, Juan J; Medina, Manuel; Mauricio, Juan C

    2005-02-23

    Musts from rotten grapes typically contain high levels of gluconic acid, which can raise severe problems in winemaking processes. In this work, the ability of the glucose-transport-deficient mutant YGS-5 of Schizosaccharomyces pombe to completely or partly remove gluconic acid from a synthetic glucose-containing medium and the potential use of this yeast strain for the same purpose in musts and wines were examined. Surprisingly, the S. pombe YGS-5 strain successfully removed 93% of the initial gluconic acid (2.5 gL(-1)) and 80% of the initial malic acid (1.0 gL(-1)) within 30 h after inoculation. Also, the yeast strain produced no volatile compounds other than those obtained in fermentations conducted with the wine yeast Saccharomyces cerevisiae. S. pombe YGS-5 could thus be used to remove gluconic acid present in musts from rotten grapes. On the basis of these results, various ways of using S. pombe YGS-5 to treat musts containing gluconic acid in order to solve the problems due to the high gluconic acid concentrations in botrytized grape must are proposed.

  15. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers

    PubMed Central

    Pethybridge, Heidi R.; Parrish, Christopher C.; Morrongiello, John; Young, Jock W.; Farley, Jessica H.; Gunasekera, Rasanthi M.; Nichols, Peter D.

    2015-01-01

    Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems. PMID:26135308

  16. Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation

    PubMed Central

    Viegas, Cristina A.; Rosa, M. Fernanda; Sá-Correia, Isabel; Novais, Júlio M.

    1989-01-01

    The inhibition of growth by octanoic or decanoic acids, two subproducts of ethanolic fermentation, was evaluated in Saccharomyces cerevisiae and Kluyveromyces marxianus in association with ethanol, the main product of fermentation. In both strains, octanoic and decanoic acids, at concentrations up to 16 and 8 mg/liter, respectively, decreased the maximum specific growth rate and the biomass yield at 30°C as an exponential function of the fatty acid concentration and increased the duration of growth latency. These toxic effects increased with a decrease in pH in the range of 5.4 to 3.0, indicating that the undissociated form is the toxic molecule. Decanoic acid was more toxic than octanoic acid. The concentrations of octanoic and decanoic acids were determined during the ethanolic fermentation (30°C) of two laboratory media (mineral and complex) by S. cerevisiae and of Jerusalem artichoke juice by K. marxianus. Based on the concentrations detected (0.7 to 23 mg/liter) and the kinetics of growth inhibition, the presence of octanoic and decanoic acids cannot be ignored in the evaluation of the overall inhibition of ethanolic fermentation. PMID:16347826

  17. The acid solvent experimental studies on gelatin producing by utilizing snapper fishes scales waste (Lutjanus camphecanus sp.)

    NASA Astrophysics Data System (ADS)

    Faradiella, Hanandyta; Ningsih, Putri Dewi Fatwa; Triastuti, Warlinda Eka

    2017-03-01

    Had done research processing scales red snapper (Lutjanjus campechanus sp.) into gelatin by process of maseration a solution of citric acid, acetate acid, hydrochloric acid, and phosphoric acid an then continued with hydrolysis process. Concentration of solvent used 5% (% v/v) for 3 and 6 days. Gelatin produces then were analyzed fourier transform infrared spectroscopy (FTIR), proximate analysis include yield and the water content, analysis of physical-chemist properties include analysis viscosity and pH, organoleptic test (color, texture, odor). Analyst ftir results showed the presence of a cluster functions 0-H, C-H, C=0, N-H and C-C aromatis similar to those of spectra that are found on commercial gelatin. Gelatin best results obtained maseration on with phosphoricacid 5% viscosity of gelatin 3,91 cP, the water content 2,569%, pH 6,98 and yield 11,7448%.

  18. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation.

    PubMed

    Casas-Godoy, Leticia; Arrizon, Javier; Arrieta-Baez, Daniel; Plou, Francisco J; Sandoval, Georgina

    2016-08-01

    Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions.

  19. Enterobacter sp. LU1 as a novel succinic acid producer - co-utilization of glycerol and lactose.

    PubMed

    Podleśny, Marcin; Jarocki, Piotr; Wyrostek, Jakub; Czernecki, Tomasz; Kucharska, Jagoda; Nowak, Anna; Targoński, Zdzisław

    2017-03-01

    Succinic acid is an important C4-building chemical platform for many applications. A novel succinic acid-producing bacterial strain was isolated from goat rumen. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the genus Enterobacter. This is the first report of a wild bacterial strain from the genus Enterobacter that is capable of efficient succinic acid production. Co-fermentation of glycerol and lactose significantly improved glycerol utilization under anaerobic conditions, debottlenecking the utilization pathway of this valuable biodiesel waste product. Succinic acid production reached 35 g l(-1) when Enterobacter sp. LU1 was cultured in medium containing 50 g l(-1) of glycerol and 25 g l(-1) of lactose as carbon sources.

  20. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    PubMed

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization.

  1. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source.

    PubMed

    McQuaid, N; Zamyadi, A; Prévost, M; Bird, D F; Dorner, S

    2011-02-01

    The source water of a drinking water treatment plant prone to blooms, dominated by potential microcystin-producing cyanobacteria, was monitored for two seasons in 2007-2008. In the 2008 season, the median value for potential microcystin-producing cyanobacterial biovolume was 87% of the total phytoplankton biovolume in the untreated water of the plant. Depth profiles taken above the plant's intake identified three sampling days at high risk for the contamination of the plant's raw water with potentially toxic cyanobacteria. Chlorophyceae and Bacillariophyceae caused false positive values to be generated by the phycocyanin probe when cyanobacteria represented a small fraction of the total phytoplanktonic biovolume present. However, there was little interference with the phycocyanin probe readings by other algal species when potential microcystin-producing cyanobacteria dominated the phytoplankton of the plant's untreated water. A two-tiered method for source water monitoring, using in vivo phycocyanin fluorescence, is proposed based on (1) a significant relationship between in vivo phycocyanin fluorescence and cyanobacterial biovolume and (2) the calculated maximum potential microcystin concentration produced by dominant Microcystis sp. biovolume. This method monitors locally-generated threshold values for cyanobacterial biovolume and microcystin concentrations using in vivo phycocyanin fluorescence.

  2. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    SciTech Connect

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  3. Evaluation of mutagenic, recombinogenic and carcinogenic potential of (+)-usnic acid in somatic cells of Drosophila melanogaster.

    PubMed

    Machado, Nayane Moreira; de Rezende, Alexandre Azenha Alves; Nepomuceno, Júlio César; Tavares, Denise Crispim; Cunha, Wilson Roberto; Spanó, Mário Antônio

    2016-10-01

    The main of this study was to evaluate the mutagenic and carcinogenic potential of (+) - usnic acid (UA), using Somatic Mutation and Recombination Test (SMART) and the test for detecting epithelial tumor clones (wts) in Drosophila melanogaster. Larvae from 72 ± 4 h from Drosophila were fed with UA (5.0, 10.0 or 20.0 mM); urethane (10.0 mM) (positive control); and solvent (Milli-Q water, 1% Tween-80 and 3% ethanol) (negative control). ST cross produced increase in total mutant spots in the individuals treated with 5.0, 10.0 or 20.0 mM of UA. HB cross produced spot frequencies in the concentration of 5.0 mM that were higher than the frequency for the same concentration in the ST cross. In the highest concentrations the result was negative, which means that the difference observed can be attributed, in part, to the high levels of P450, suggesting that increasing the metabolic capacity maximized the toxic effect of these doses. In the evaluation of carcinogenesis using the wts test, the results obtained for the same concentrations of UA show a positive result for the presence of tumors when compared to the negative control. We conclude that UA has recombinogenic, mutagenic and carcinogenic effects on somatic cells in D. melanogaster.

  4. Evaluation of a diverse set of potential P1 carboxylic acid bioisosteres in hepatitis C virus NS3 protease inhibitors.

    PubMed

    Rönn, Robert; Gossas, Thomas; Sabnis, Yogesh A; Daoud, Hanna; Kerblom, Eva; Danielson, U Helena; Sandström, Anja

    2007-06-15

    There is an urgent need for more efficient therapies for people infected with hepatitis C virus (HCV). HCV NS3 protease inhibitors have shown proof-of-concept in clinical trials, which make the virally encoded NS3 protease an attractive drug target. Product-based NS3 protease inhibitors comprising a P1 C-terminal carboxylic acid have shown to be effective and we were interested in finding alternatives to this crucial carboxylic acid group. Thus, a series of diverse P1 functional groups with different acidity and with possibilities to form a similar, or an even more powerful, hydrogen bond network as compared to the carboxylic acid were synthesized and incorporated into potential inhibitors of the NS3 protease. Biochemical evaluation of the inhibitors was performed in both enzyme and cell-based assays. Several non-acidic C-terminal groups, such as amides and hydrazides, were evaluated but failed to produce inhibitors more potent than the corresponding carboxylic acid inhibitor. The tetrazole moiety, although of similar acidity to a carboxylic acid, provided an inhibitor with mediocre potencies in both assays. However, the acyl cyanamide and the acyl sulfinamide groups rendered compounds with low nanomolar inhibitory potencies and were more potent than the corresponding carboxylic acid inhibitor in the enzymatic assay. Additionally, results from a pH-study suggest that the P(1) C-terminal of the inhibitors comprising a carboxylic acid, an acyl sulfonamide or an acyl cyanamide group binds in a similar mode in the active site of the NS3 protease.

  5. Potential for Producing Hydrogen from Key Renewable Resources in the United States

    SciTech Connect

    Milbrandt, A.; Mann, M.

    2006-02-01

    This study estimates the potential for hydrogen production from key renewable resources (onshore wind, solar photovoltaic, and biomass) by county in the United States. It includes maps that allow the reader to easily visualize the results.

  6. UVB radiation as a potential selective factor favoring microcystin producing bloom forming Cyanobacteria.

    PubMed

    Ding, Yi; Song, Lirong; Sedmak, Bojan

    2013-01-01

    Due to the stratospheric ozone depletion, several organisms will become exposed to increased biologically active UVB (280-320 nm) radiation, not only at polar but also at temperate and tropical latitudes. Bloom forming cyanobacteria are exposed to UVB radiation on a mass scale, particularly during the surface bloom and scum formation that can persist for long periods of time. All buoyant species of cyanobacteria are at least periodically exposed to higher irradiation during their vertical migration to the surface that usually occurs several times a day. The aim of this study is to assess the influence on cyanobacteria of UVB radiation at realistic environmental intensities. The effects of two UVB intensities of 0.5 and 0.99 W/m(2) in up to 0.5 cm water depth were studied in vitro on Microcystis aeruginosa strains, two microcystin producing and one non-producing. After UVB exposure their ability to proliferate was estimated by cell counting, while cell fitness and integrity were evaluated using light microscopy, autofluorescence and immunofluorescence. Gene damage was assessed by TUNEL assay and SYBR Green staining of the nucleoide area. We conclude that UVB exposure causes damage to the genetic material, cytoskeletal elements, higher sedimentation rates and consequent cell death. In contrast to microcystin producers (PCC7806 and FACHB905), the microcystin non-producing strain PCC7005 is more susceptible to the deleterious effects of radiation, with weak recovery ability. The ecological relevance of the results is discussed using data from eleven years' continuous UVB radiation measurements within the area of Ljubljana city (Slovenia, Central Europe). Our results suggest that increased solar radiation in temperate latitudes can have its strongest effect during cyanobacterial bloom formation in spring and early summer. UVB radiation in this period may significantly influence strain composition of cyanobacterial blooms in favor of microcystin producers.

  7. UVB Radiation as a Potential Selective Factor Favoring Microcystin Producing Bloom Forming Cyanobacteria

    PubMed Central

    Ding, Yi; Song, Lirong; Sedmak, Bojan

    2013-01-01

    Due to the stratospheric ozone depletion, several organisms will become exposed to increased biologically active UVB (280–320 nm) radiation, not only at polar but also at temperate and tropical latitudes. Bloom forming cyanobacteria are exposed to UVB radiation on a mass scale, particularly during the surface bloom and scum formation that can persist for long periods of time. All buoyant species of cyanobacteria are at least periodically exposed to higher irradiation during their vertical migration to the surface that usually occurs several times a day. The aim of this study is to assess the influence on cyanobacteria of UVB radiation at realistic environmental intensities. The effects of two UVB intensities of 0.5 and 0.99 W/m2 in up to 0.5 cm water depth were studied in vitro on Microcystis aeruginosa strains, two microcystin producing and one non-producing. After UVB exposure their ability to proliferate was estimated by cell counting, while cell fitness and integrity were evaluated using light microscopy, autofluorescence and immunofluorescence. Gene damage was assessed by TUNEL assay and SYBR Green staining of the nucleoide area. We conclude that UVB exposure causes damage to the genetic material, cytoskeletal elements, higher sedimentation rates and consequent cell death. In contrast to microcystin producers (PCC7806 and FACHB905), the microcystin non-producing strain PCC7005 is more susceptible to the deleterious effects of radiation, with weak recovery ability. The ecological relevance of the results is discussed using data from eleven years’ continuous UVB radiation measurements within the area of Ljubljana city (Slovenia, Central Europe). Our results suggest that increased solar radiation in temperate latitudes can have its strongest effect during cyanobacterial bloom formation in spring and early summer. UVB radiation in this period may significantly influence strain composition of cyanobacterial blooms in favor of microcystin producers. PMID

  8. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    PubMed

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  9. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  10. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  11. Characterization of fatty acid-producing wastewater microbial communities using next generation sequencing technologies

    EPA Science Inventory

    While wastewater represents a viable source of bacterial biodiesel production, very little is known on the composition of these microbial communities. We studied the taxonomic diversity and succession of microbial communities in bioreactors accumulating fatty acids using 454-pyro...

  12. In vitro Characterization of Bacteriocin Produced by Lactic Acid Bacteria Isolated from Nem Chua, a Traditional Vietnamese Fermented Pork.

    PubMed

    Pilasombut, Komkhae; Rumjuankiat, Kittaporn; Ngamyeesoon, Nualphan; Duy, Le Nguyen Doan

    2015-01-01

    The aim of this study was to screen and In vitro characterize the properties of bacteriocin produced by lactic acid bacteria isolated from Vietnamese fermented pork (Nem chua). One hundred and fifty LAB were isolated from ten samples of Nem chua and screened for bacteriocin-producing lactic acid bacteria. Antimicrobial activity of bacteriocin was carried out by spot on lawn method against both gram positive and gram negative bacteria. One isolate, assigned as KL-1, produced bacteriocin and showed inhibitory activity against Lactobacillus sakei, Leuconostoc mesenteroides and Enterococcus faecalis. To characterize the bacteriocin-producing strain, optimum temperature, incubation period for maximum bacteriocin production and identification of bacteriocin-producing strain were determined. It was found that the optimum cultivation temperature of the strain to produce the maximum bacteriocin activity (12,800 AU/mL) was obtained at 30℃. Meanwhile, bacteriocin production at 6,400 AU/mL was found when culturing the strain at 37℃ and 42℃. The isolate KL-1 was identified as L. plantarum. Antimicrobial activity of cell-free supernatant was completely inhibited by proteolytic enzyme of trypsin, alpha-chymotrypsin and proteinase K. Bacteriocin activity was stable at high temperature up to 100℃ for 10 min and at 4℃ storage for 2 d. However, the longer heating at 100℃ and 4℃ storage, its activity was reduced.

  13. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid

    PubMed Central

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  14. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    PubMed

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae; Kim, Jin-Cheol

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease.

  15. Relative catalytic efficiency of ldhL- and ldhD-encoded products is crucial for optical purity of lactic acid produced by lactobacillus strains.

    PubMed

    Zheng, Zhaojuan; Sheng, Binbin; Ma, Cuiqing; Zhang, Haiwei; Gao, Chao; Su, Fei; Xu, Ping

    2012-05-01

    NAD-dependent l- and d-lactate dehydrogenases coexist in Lactobacillus genomes and may convert pyruvic acid into l-lactic acid and d-lactic acid, respectively. Our findings suggest that the relative catalytic efficiencies of ldhL- and ldhD-encoded products are crucial for the optical purity of lactic acid produced by Lactobacillus strains.

  16. Espresso coffees, caffeine and chlorogenic acid intake: potential health implications.

    PubMed

    Crozier, Thomas W M; Stalmach, Angelique; Lean, Michael E J; Crozier, Alan

    2012-01-01

    HPLC analysis of 20 commercial espresso coffees revealed 6-fold differences in caffeine levels, a 17-fold range of caffeoylquinic acid contents, and 4-fold differences in the caffeoylquinic acid : caffeine ratio. These variations reflect differences in batch-to-batch bean composition, possible blending of arabica with robusta beans, as well as roasting and grinding procedures, but the predominant factor is likely to be the amount of beans used in the coffee-making/barista processes. The most caffeine in a single espresso was 322 mg and a further three contained >200 mg, exceeding the 200 mg day(-1) upper limit recommended during pregnancy by the UK Food Standards Agency. This snap-shot of high-street expresso coffees suggests the published assumption that a cup of strong coffee contains 50 mg caffeine may be misleading. Consumers at risk of toxicity, including pregnant women, children and those with liver disease, may unknowingly ingest excessive caffeine from a single cup of espresso coffee. As many coffee houses prepare larger volume coffees, such as Latte and Cappuccino, by dilution of a single or double shot of expresso, further study on these products is warranted. New data are needed to provide informative labelling, with attention to bean variety, preparation, and barista methods.

  17. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream-flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid-forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Streamwater pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by calcium, magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southeast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site.

  18. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Stream water pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southwast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site. 10 references, 2 tables.

  19. Effects of vine water status on dimethyl sulfur potential, ammonium, and amino acid contents in Grenache Noir grapes (Vitis vinifera).

    PubMed

    De Royer Dupré, N; Schneider, R; Payan, J C; Salançon, E; Razungles, A

    2014-04-02

    We studied the effect of vine water status on the dimethyl sulfur potential (DMSP), ammonium, and amino acid contents of the berry during the maturation of Grenache Noir grapes. Water deficit increased the accumulation of amino acids in berries and favored yeast assimilable amino nitrogen. Similarly, ammonium content was higher in berries from vines subjected to moderate water deficit. DMSP content followed the same trend as yeast assimilable amino acid content, with higher concentrations observed in the berries of vines subjected to water deficit. The high DMSP and yeast assimilable nitrogen contents of musts from vines subjected to water deficit resulted in a better preservation of DMSP during winemaking. The wines produced from these musts had a higher DMSP level and would therefore probably have a higher aroma shelf life, because the DMSP determines the rate of release of dimethyl sulfur during wine storage, and this compound enhances fruity notes.

  20. Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids.

    PubMed

    Skerratt, Jennifer H; Bowman, John P; Nichols, Peter D

    2002-11-01

    Two polyunsaturated fatty acid (PUFA) producing strains (ACEM 6 and ACEM 9(T)) isolated from a temperate, humic-rich river estuary in Tasmania, Australia, were found to be members of the genus Shewanella. These strains were able to utilize humic compounds (tannic acid) and derivatives (2,6-anthraquinone disulfonate) as sole carbon sources and as electron acceptors for anaerobic respiration. The major fatty acids were typical of the genus Shewanella; however, PUFAs mostly made up of eicosapentaenoic acid were produced at high levels (10.2-23.6% of total fatty acids) and at relatively high incubation temperatures (10.2% at 24 degrees C). Sequence analysis indicated that ACEM 6 and ACEM 9(T) had identical 16S rDNA sequences and were most closely related to Shewanella japonica (sequence similarity 97.1%). DNA hybridization and phenotypic characteristics confirmed that the isolates constituted a novel species of the genus Shewanella, which is designated Shewanella olleyana sp. nov. (type strain ACEM 9(T) = ACAM 644(T) = LMG 21437(T)).

  1. Synthesis of amino Derivatives of Dithio Acids as Potential Radiation Protective Agents

    DTIC Science & Technology

    1984-08-01

    ation Management S SI ____ K> AD Synthesis of Amino Derivatives of Dithio Acids as Potential Radiation Protective Agents * 0 Annual Report "TIi: o DTIC...Sftcuntiy Clatuftcatio") Synthesis of Amino Derivatives of Dithio Acids as PotentitI- Radiation Protective Agents 12l PERISONAL. Ak.TI4OR(S) * William...methyl- picoline derivatives was accomplished. Use of N-mthyl-2,6-dimethylpyridine also allowed the synthesis of a bis(dithioacetic acid) function not

  2. Bio-products produced by marine yeasts and their potential applications.

    PubMed

    Chi, Zhe; Liu, Guang-Lei; Lu, Yi; Jiang, Hong; Chi, Zhen-Ming

    2016-02-01

    It has been well documented that the yeasts isolated from different marine environments are so versatile that they can produce various fine chemicals, enzymes, bioactive substances, single cell protein and nanoparticles. Many genes related to the biosynthesis and regulation of these functional biomolecules have been cloned, expressed and characterized. All these functional biomolecules have a variety of applications in industries of food, chemical, agricultural, biofuel, cosmetics and pharmacy. In this review, a summary will be given about these functional biomolecules and their producers of the marine yeasts as well as some related genes in order to draw an outline about necessity for further exploitation of marine yeasts and their bio-products for industrial applications.

  3. Targeting Prolyl Endopeptidase with Valproic Acid as a Potential Modulator of Neutrophilic Inflammation

    PubMed Central

    Abdul Roda, Mojtaba; Sadik, Mariam; Gaggar, Amit; Hardison, Matthew T.; Jablonsky, Michael J.; Braber, Saskia; Blalock, James Edwin; Redegeld, Frank A.; Folkerts, Gert; Jackson, Patricia L.

    2014-01-01

    A novel neutrophil chemoattractant derived from collagen, proline-glycine-proline (PGP), has been recently characterized in chronic obstructive pulmonary disease (COPD). This peptide is derived via the proteolytic activity of matrix metalloproteases (MMP's)-8/9 and PE, enzymes produced by neutrophils and present in COPD serum and sputum. Valproic acid (VPA) is an inhibitor of PE and could possibly have an effect on the severity of chronic inflammation. Here the interaction site of VPA to PE and the resulting effect on the secondary structure of PE is investigated. Also, the potential inhibition of PGP-generation by VPA was examined in vitro and in vivo to improve our understanding of the biological role of VPA. UV- visible, fluorescence spectroscopy, CD and NMR were used to determine kinetic information and structural interactions between VPA and PE. In vitro, PGP generation was significantly inhibited by VPA. In vivo, VPA significantly reduced cigarette-smoke induced neutrophil influx. Investigating the molecular interaction between VPA and PE showed that VPA modified the secondary structure of PE, making substrate binding at the catalytic side of PE impossible. Revealing the molecular interaction VPA to PE may lead to a better understanding of the involvement of PE and PGP in inflammatory conditions. In addition, the model of VPA interaction with PE suggests that PE inhibitors have a great potential to serve as therapeutics in inflammatory disorders. PMID:24835793

  4. Lactic acid bacteria--20 years exploring their potential as live vectors for mucosal vaccination.

    PubMed

    Wyszyńska, Agnieszka; Kobierecka, Patrycja; Bardowski, Jacek; Jagusztyn-Krynicka, Elżbieta Katarzyna

    2015-04-01

    Lactic acid bacteria (LAB) are a diverse group of Gram-positive, nonsporulating, low G + C content bacteria. Many of them have been given generally regarded as safe status. Over the past two decades, intensive genetic and molecular research carried out on LAB, mainly Lactococcus lactis and some species of the Lactobacillus genus, has revealed new, potential biomedical LAB applications, including the use of LAB as adjuvants, immunostimulators, or therapeutic drug delivery systems, or as factories to produce therapeutic molecules. LAB enable immunization via the mucosal route, which increases effectiveness against pathogens that use the mucosa as the major route of entry into the human body. In this review, we concentrate on the encouraging application of Lactococcus and Lactobacillus genera for the development of live mucosal vaccines. First, we present the progress that has recently been made in the field of developing tools for LAB genetic manipulations, which has resulted in the successful expression of many bacterial, parasitic, and viral antigens in LAB strains. Next, we discuss the factors influencing the efficacy of the constructed vaccine prototypes that have been tested in various animal models. Apart from the research focused on an application of live LABs as carriers of foreign antigens, a lot of work has been recently done on the potential usage of nonliving, nonrecombinant L. lactis designated as Gram-positive enhancer matrix (GEM), as a delivery system for mucosal vaccination. The advantages and disadvantages of both strategies are also presented.

  5. Tapping the Molecular Potential of Microalgae to Produce Biomass (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Sayre, Richard [LANL

    2016-07-12

    Richard Sayre, from Los Alamos National Laboratory, presents a talk titled "Tapping the Molecular Potential of Microalgae to Produce Biomass" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  6. Genomic features of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid.

    PubMed

    Shimizu-Kadota, Mariko; Kato, Hiroaki; Shiwa, Yuh; Oshima, Kenshiro; Machii, Miki; Araya-Kojima, Tomoko; Zendo, Takeshi; Hattori, Masahira; Sonomoto, Kenji; Yoshikawa, Hirofumi

    2013-01-01

    Lactococcus lactis IO-1 (JCM7638) produces L-lactic acid predominantly when grown at high xylose concentrations, and its utilization is highly desired in the green plastics industry. Therefore it is worthwhile studying its genomic traits. In this study, we focused on (i) genes of possible horizontal transfer derivation (prophages, the nisin-sucrose transposon, and several restriction-modification systems), and (ii) genes for the synthetic pathways of amino acids and vitamins in the IO-1 genome. In view of the results of this analysis, we consider their meanings in strain IO-1.

  7. Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana.

    PubMed

    d'Ippolito, Giuliana; Dipasquale, Laura; Fontana, Angelo

    2014-09-01

    The heterotrophic bacterium Thermotoga neapolitana produces hydrogen by fermentation of sugars. Under capnophilic (carbon dioxide requiring) conditions, the process is preferentially associated with the production of lactic acid, which, as shown herein, is synthesized by reductive carboxylation of acetyl coenzyme A. The enzymatic coupling is dependent on the carbon dioxide stimulated activity of heterotetrameric pyruvate:ferredoxin oxidoreductase. Under the same culture conditions, T. neapolitana also operates the unfavorable synthesis of lactic acid from an exogenous acetate supply. This process, which requires carbon dioxide (or carbonate) and an unknown electron donor, allows for the conversion of carbon dioxide into added-value chemicals without biomass deconstruction.

  8. Fluoxetine potentiation of omega-3 fatty acid antidepressant effect: evaluating pharmacokinetic and brain fatty acid-related aspects in rodents.

    PubMed

    Laino, Carlos Horacio; Garcia, Pilar; Podestá, María Fernanda; Höcht, Christian; Slobodianik, Nora; Reinés, Analía

    2014-10-01

    We previously reported that combined fluoxetine administration at antidepressant doses renders additive antidepressant effects, whereas non-antidepressant doses potentiate the omega-3 fatty acid antidepressant effect. In the present study, we aimed to evaluate putative pharmacokinetic and brain omega-3 fatty acid-related aspects for fluoxetine potentiation of omega-3 fatty acid antidepressant effect in rats. Coadministration of omega-3 fatty acids with a non-antidepressant dose of fluoxetine (1 mg/kg day) failed to affect both brain fluoxetine concentration and norfluoxetine plasma concentration profile. Fluoxetine plasma concentrations remained below the sensitivity limit of the detection method. Either antidepressant (10 mg/kg day) or non-antidepressant (1 mg/kg day) doses of fluoxetine in combination with omega-3 fatty acids increased hippocampal docosapentaenoic acid (DPA, 22:5 omega-3) levels. Although individual treatments had no effects on DPA concentration, DPA increase was higher when omega-3 were combined with the non-antidepressant dose of fluoxetine. Chronic DPA administration exerted antidepressant-like effects in the forced swimming test while increasing hippocampal docosahexaenoic (22:6 omega-3) and DPA levels. Our results suggest no pharmacokinetic interaction and reveal specific hippocampal DPA changes after fluoxetine and omega-3 combined treatments in our experimental conditions. The DPA role in the synergistic effect of fluoxetine and omega-3 combined treatments will be for sure the focus of future studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3316-3325, 2014.

  9. A meteorological potential forecast model for acid rain in Fujian Province, China.

    PubMed

    Cai, Yi Yong; Lin, Chang Cheng; Liu, Jing Xiong; Wu, De Hui; Lian, Dong Ying; Chen, Bin Bin

    2010-05-01

    Based on the acid rain and concurrent meteorological observational data during the past 10 years in Fujian Province, China, the dependence of distribution characteristics of acid rain on season, rain rate, weather pattern and dominant airflow in four regions of Fujian Province is analyzed. On the annual average, the acid rain frequency is the highest (above 40%) in the southern and mid-eastern regions, and the lowest (16.2%) in the western region. The acid rain occurs most frequently in spring and winter, and least frequent in summer. The acid rain frequency in general increases with the increase of precipitation. It also depend on the direction of dominant airflows at 850 hPa. In the mid-eastern region, more than 40% acid rains appear when the dominant wind directions are NW, W, SW, S and SE. In the southern region, high acid rain occurrence happens when the dominant wind directions are NW, W, SW and S. In the northern region, 41.8% acid rains occur when the southwesterly is pronounced. In the western region, the southwesterly is associated with a 17% acid rain rate. The examination of meteorological sounding conditions over Fuzhou, Xiamen and Shaowu cities shows that the acid rain frequency increases with increased inversion thickness. Based on the results above, a meteorological potential forecast model for acid rain is established and tested in 2007. The result is encouraging. The model provides an objective basis for the development of acid rain forecasting operation in the province.

  10. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  11. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations.

    PubMed

    Rantsiou, Kalliopi; Dolci, Paola; Giacosa, Simone; Torchio, Fabrizio; Tofalo, Rosanna; Torriani, Sandra; Suzzi, Giovanna; Rolle, Luca; Cocolin, Luca

    2012-03-01

    In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.

  12. Insect pests and yield potential of vegetable soybean (Endamame) produced in Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of replicated field experiments was conducted with vegetable soybean (edamame), Glycine max (L.) Merrill, to assess the impacts of cultivars, planting dates, and insecticidal controls on insect pest abundance, crop damage and yield potential. The velvetbean caterpillar, Anticarsia gemmatali...

  13. Vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration applied at the nasion.

    PubMed

    Todd, Neil P M; McLean, Aisha; Paillard, Aurore; Kluk, Karolina; Colebatch, James G

    2014-12-01

    We report the results of a study to record vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration (IA). In a sample of 12 healthy participants, evoked potentials recorded by 70 channel electroencephalography were obtained by IA stimulation at the nasion and compared with evoked potentials from the same stimulus applied to the forefingers. The nasion stimulation gave rise to a series of positive and negative deflections in the latency range of 26-72 ms, which were dependent on the polarity of the applied IA. In contrast, evoked potentials from the fingers were characterised by a single N50/P50 deflection at about 50 ms and were polarity invariant. Source analysis confirmed that the finger evoked potentials were somatosensory in origin, i.e. were somatosensory evoked potentials, and suggested that the nasion evoked potentials plausibly included vestibular midline and frontal sources, as well as contributions from the eyes, and thus were likely VsEPs. These results show considerable promise as a new method for assessment of the central vestibular system by means of VsEPs produced by IA applied to the head.

  14. Evaluation of a novel antimicrobial solution and its potential for control E. coli O157:H7, non-O157:H7 shiga toxin-producing E. coli, Salmononella spp., and Listeria monocytogenes on beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to evaluate the efficacy of a novel antimicrobial solution made with chitosan, lauric arginate ester, and organic acids on Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and non-O157 shiga toxin-producing E. coli cocktails and to test its potential to b...

  15. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    PubMed

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli.

  16. Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH).

    PubMed

    Rodrigues, Rita de Cássia L B; Rocha, George J M; Rodrigues, Durval; Filho, Hélcio J I; Felipe, Maria das Graças A; Pessoa, Adalberto

    2010-02-01

    Sugarcane bagasse was pretreated with diluted sulfuric acid to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH). Experiments were conducted in laboratory and semi-pilot reactors to optimize the xylose recovery and to reduce the generation of sugar degradation products, as furfural and 5-hydroxymethylfurfural (HMF). The hydrolysis scale-up procedure was based on the H-Factor, that combines temperature and residence time and employs the Arrhenius equation to model the sulfuric acid concentration (100 mg(acid)/g(dm)) and activation energy (109 kJ/mol). This procedure allowed the mathematical estimation of the results through simulation of the conditions prevailing in the reactors with different designs. The SBHH obtained from different reactors but under the same H-Factor of 5.45+/-0.15 reached similar xylose yield (approximately 74%) and low concentration of sugar degradation products, as furfural (0.082 g/L) and HMF (0.0071 g/L). Also, the highest lignin degradation products (phenolic compounds) were rho-coumarilic acid (0.15 g/L) followed by ferulic acid (0.12 g/L) and gallic acid (0.035 g/L). The highest concentration of ions referred to S (3433.6 mg/L), Fe (554.4 mg/L), K (103.9 mg/L). The H-Factor could be used without dramatically altering the xylose and HMF/furfural levels. Therefore, we could assume that H-Factor was directly useful in the scale-up of the hemicellulosic hydrolysate production.

  17. A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism.

    PubMed

    Hazelwood, Lucie A; Tai, Siew Leng; Boer, Viktor M; de Winde, Johannes H; Pronk, Jack T; Daran, Jean Marc

    2006-09-01

    Saccharomyces cerevisiae can use a broad range of compounds as sole nitrogen source. Many amino acids, such as leucine, tyrosine, phenylalanine and methionine, are utilized through the Ehrlich pathway. The fusel acids and alcohols produced from this pathway, along with their derived esters, are important contributors to beer and wine flavor. It is unknown how these compounds are exported from the cell. Analysis of nitrogen-source-dependent transcript profiles via microarray analysis of glucose-limited, aerobic chemostat cultures revealed a common upregulation of PDR12 in cultures grown with leucine, methionine or phenylalanine as sole nitrogen source. PDR12 encodes an ABC transporter involved in weak-organic-acid resistance, which has hitherto been studied in the context of resistance to exogenous organic acids. The hypothesis that PDR12 is involved in export of natural products of amino acid catabolism was evaluated by analyzing the phenotype of null mutants in PDR12 or in WAR1, its positive transcriptional regulator. The hypersensitivity of the pdr12Delta and war1Delta strains for some of these compounds indicates that Pdr12p is involved in export of the fusel acids, but not the fusel alcohols derived from leucine, isoleucine, valine, phenylalanine and tryptophan.

  18. Chronic administration of malonic acid produces selective neural degeneration and transient changes in calbindin immunoreactivity in rat striatum.

    PubMed

    Bazzett, T J; Falik, R C; Becker, J B; Albin, R L

    1995-08-01

    Adult rats received chronic dialytic delivery devices that exposed the striatum to a 100 mM, 400 mM, or 4 M solution of the reversible succinate dehydrogenase inhibitor malonic acid (MA). Three weeks of exposure to 100 or 400 mM MA produced no significant reduction in striatal cytochrome oxidase staining, whereas striata chronically exposed to 1 and 4 M MA showed a significant and dose-related reduction in cytochrome oxidase staining. In striata exposed to 1 M MA, analysis of regions radial to the necrotic core revealed significant reduction of nissl cell staining with relative sparing of NADPH-diaphorase-containing neurons. Although 100 and 400 mM MA failed to produce lesions, both of these concentrations significantly decreased the number of striatal calbindin (CALB) immunoreactive perikarya. The reduction in CALB immunoreactivity was partly reversed in animals allowed to survive 4 weeks after cessation of exposure to 400 mM MA. These results indicate that, like striatal lesions produced by quinolinic acid, lesions produced by chronic exposure to MA possess a Huntington's disease-like pattern of selective neurodegeneration. In addition, exposure to subthreshold MA concentrations (100 and 400 mM) produce widespread transient changes in striatal CALB that may be associated with a premorbid state of neuronal dysfunction.

  19. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity.

  20. Bacteriocin-Producing Lactic Acid Bacteria Isolated from Traditional Fermented Food

    PubMed Central

    Kormin, Salasiah; Rusul, Gulam; Radu, Son; Ling, Foo Hooi

    2001-01-01

    Lactic Acid Bacteria (LAB) isolated from several traditional fermented foods such as “tempeh”, “tempoyak” and “tapai” were screened for the production of bacteriocin. One strain isolated from “tempeh” gives an inhibitory activity against several LAB. The strain was later identified as Lactobacillus plantarum BS2. Study shows that the inhibitory activity was not caused by hydrogen peroxide, organic acids or bacteriophage. The bacteriocin production was maximum after 10 hours of incubation with an activity of 200 AU/ml. The bacteriocin was found to be sensitive towards trypsin, α-chymotrypsin, β-chymotrypsin, α-amylase and lysozyme. PMID:22973159

  1. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  2. Inhibition of GABA uptake potentiates the conductance increase produced by GABA-mimetic compounds on single neurones in isolated olfactory cortex slices of the guinea-pig.

    PubMed

    Brown, D A; Scholfield, C N

    1984-09-01

    Membrane potential and input conductance were recorded in single neurones in slices of guinea-pig olfactory cortex in vitro. gamma-Aminobutyric acid (GABA) and GABA-mimetic compounds were applied by bath-perfusion. Potency was measured as the concentration required to double the input conductance. The potency of GABA was increased (i.e. the equi-effective concentrations were reduced) by 15.5 +/- 2.3 times (mean +/- s.e. mean) on reducing external [Na+] from 144 to 20 mmol l-1, by replacement with Mg2+. Corresponding potency changes for other agonists were + 10.8 +/- 2.5 for 3-aminopropanesulphonic acid (3-APS); 3.25 +/- 1.06 for isoguvacine and 2.43 +/- 0.69 for muscimol. Nipecotic acid (0.5 mM) produced the following increases in potency: GABA 2.68 +/- 0.02; 3-aminopropanesulphonic acid, 3.11 +/- 0.07; isoguvacine, 1.92 +/- 0.34; muscimol, 2.24 +/- 0.17. The concentration of GABA in the bathing fluid necessary to double input conductance increased with increasing depth of the recording site from the cut surface. The apparent potency fell 10 times for each 60 micron depth increment up to 150 micron. The recording depth also affected the apparent potency of muscimol and 3-APS but to a lesser extent. Reduction of external [Na+] reduced the depth-dependence of both GABA and 3-APS potency. No clear change in the duration of the recurrent inhibitory postsynaptic conductance could be detected in the presence of 0.5 mmol l-1 nipecotic acid. 6 It is suggested that agonist uptake by a Na+-dependent, nipecotic acid-sensitive mechanism severely attenuates the responses of olfactory neurones to exogenous GABA and to its analogues 3-APS, muscimol and isoguvacine, but has little immediate influence on the duration of the GABA-mediated inhibitory postsynaptic conductance.

  3. Potential formation in a collisionless plasma produced in an open magnetic field in presence of volume negative ion source

    SciTech Connect

    Phukan, Ananya Goswami, K. S.; Bhuyan, P. J.

    2014-08-15

    The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (λ{sub D})

  4. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation

    PubMed Central

    Chojnacka, Aleksandra; Szczęsny, Paweł; Błaszczyk, Mieczysław K.; Zielenkiewicz, Urszula; Detman, Anna; Salamon, Agnieszka; Sikora, Anna

    2015-01-01

    Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic

  5. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.

    PubMed

    Valliappan, Karuppiah; Sun, Wei; Li, Zhiyong

    2014-09-01

    Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.

  6. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439.

    PubMed

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B; Melançon, Charles E

    2016-02-19

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development.

  7. Development of an Unnatural Amino Acid Incorporation System in the Actinobacterial Natural Product Producer Streptomyces venezuelae ATCC 15439

    PubMed Central

    He, Jingxuan; Van Treeck, Briana; Nguyen, Han B.; Melançon, Charles E.

    2016-01-01

    Many Actinobacteria, most notably Streptomyces, produce structurally diverse bioactive natural products, including ribosomally synthesized peptides, by multistep enzymatic pathways. The use of site-specific genetic incorporation of unnatural amino acids to investigate and manipulate the functions of natural product biosynthetic enzymes, enzyme complexes, and ribosomally-derived peptides in these organisms would have important implications for drug discovery and development efforts. Here, we have designed, constructed, and optimized unnatural amino acid systems capable of incorporating p-iodo-l-phenylalanine and p-azido-l-phenylalanine site-specifically into proteins in the model natural product producer Streptomyces venezuelae ATCC 15439. We observed notable differences in the fidelity and efficiency of these systems between S. venezuelae and previously used hosts. Our findings serve as a foundation for using an expanded genetic code in Streptomyces to address questions related to natural product biosynthesis and mechanism of action that are relevant to drug discovery and development. PMID:26562751

  8. Integration of succinic acid and ethanol production with potential application in a corn or barley biorefinery.

    PubMed

    Nghiem, Nhuan P; Hicks, Kevin B; Johnston, David B

    2010-11-01

    Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH(4)OH, and Na(2)CO(3). The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or barley as feedstock was examined. The carbon dioxide gas from the ethanol fermentor was sparged directly into the liquid media in the succinic acid fermentor without any pretreatment. Without the CO(2) supplement, the highest succinic acid yield was observed with Na(2)CO(3), followed by NH(4)OH, and lowest with the other two bases. When the CO(2) produced in the ethanol fermentation was sparged into the media in the succinic acid fermentor, no improvement of succinic acid yield was observed with Na(2)CO(3). However, several-fold increases in succinic acid yield were observed with the other bases, with NH(4)OH giving the highest yield increase. The yield of succinic acid with CO(2) supplement from the ethanol fermentor when NH(4)OH was used for pH control was equal to that obtained when Na(2)CO(3) was used, with or without CO(2) supplementation. The benefit of sparging CO(2) from ethanol fermentation on the yield of succinic acid demonstrated the feasibility of integration of succinic acid fermentation with ethanol fermentation in a biorefinery for production of fuels and industrial chemicals.

  9. Techno-economic analysis of an improved process for producing saturated branched-chain fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils provide a source of environmentally desirable lubricants, but they are not widely utilized because of their poor oxidative stability. Branched-chain fatty acid isomers are desirable products because they have excellent thermostabilities and lubricities when compared to the parent veg...

  10. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic hydrolysis was performed for extracting protein to prepare umami taste amino acids from defatted tomato seed meal (DTSM) which is a by-product of tomato processing. Papain was used as an enzyme for the hydrolysis of DTSM. The particle size distribution of DTSM, protein concentration and fr...

  11. Dietary omega-3 and omega-6 fatty acids compete in producing tissue compositions and tissue responses.

    PubMed

    Lands, Bill

    2014-11-01

    Serious food-related health disorders may be prevented by recognizing the molecular processes that connect the dietary intake of vitamin-like fatty acids to tissue accumulation of precursors of potent hormone-like compounds that cause harmful tissue responses. Conversion of dietary 18-carbon omega-3 and omega-6 polyunsaturated fatty acids to tissue 20- and 22-carbon highly unsaturated fatty acids (HUFAs) is catalyzed by promiscuous enzymes that allow different types of fatty acid to compete among each other for accumulation in tissue HUFA. As a result, food choices strongly influence the types of accumulated tissue HUFA. However, the conversion of tissue HUFA to active hormones and their receptor-mediated actions occurs with discriminating enzymes and receptors that give more intense responses for the omega-6 and omega-3 hormones. Undesired chronic health disorders, which are made worse by excessive omega-6 hormone actions, can be prevented by eating more omega-3 fats, less omega-6 fats, and fewer calories per meal.

  12. Exploring the Genome of a Butyric Acid Producer, Clostridium butyricum INCQS635

    PubMed Central

    Leite, Fernanda Gomes; Tschoeke, Diogo Antonio; Miranda, Milene; Pereira, Nei; Valle, Rogério; Thompson, Cristiane C.

    2014-01-01

    The draft genome sequence of Clostridium butyricum INCQS635 was obtained by means of ion sequencing. The genome provides further insight into the genetic repertoire involved with metabolic pathways related to the fermentation of different compounds and organic solvents synthesis (i.e., butyric acid) with biofuel applications. PMID:25414496

  13. Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aspergillus niger ferulic acid esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interactio...

  14. Short chain fatty acid production and glucose responses by methane producers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fermentation by gut microbiota has been linked to physiologic responses in the host. Methanogenic gut bacteria may remove more carbon from indigestible food matrices especially poorly digested carbohydrates. We sought to assess the effects of methane production on short chain fatty acid (SCFA) con...

  15. Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids.

    PubMed

    Sanden, Monica; Stubhaug, Ingunn; Berntssen, Marc H G; Lie, Øyvind; Torstensen, Bente E

    2011-12-14

    The objective of the present study was to investigate the effects of replacing high levels of marine ingredients with vegetable raw materials and with emphasis on lipid metabolism and net production of long-chain polyunsaturated ω-3 fatty acids (EPA + DHA). Atlantic salmon were fed three different replacement vegetable diets and one control marine diet before sensory attributes, β-oxidation capacity, and fatty acid productive value (FAPV) of ingested fatty acids (FAs) were evaluated. Fish fed the high replacement diet had a net production of 0.8 g of DHA and a FAPV of 142%. Fish fed the marine diet had a net loss of DHA. The present work shows that Atlantic salmon can be a net producer of marine DHA when dietary fish oil is replaced by vegetable oil with minor effects on sensory attributes and lipid metabolism.

  16. Antimicrobial Property of Lauric Acid Against Propionibacterium acnes: Its Therapeutic Potential for Inflammatory Acne Vulgaris

    PubMed Central

    Nakatsuji, Teruaki; Kao, Mandy C.; Fang, Jia-You; Zouboulis, Christos C.; Zhang, Liangfang; Gallo, Richard L.; Huang, Chun-Ming

    2009-01-01

    The strong bactericidal properties of lauric acid (C12:0), a middle chain-free fatty acid commonly found in natural products, have been shown in a number of studies. However, it has not been demonstrated whether lauric acid can be used for acne treatment as a natural antibiotic against Propionibacterium acnes (P. acnes), which promotes follicular inflammation (inflammatory acne). This study evaluated the antimicrobial property of lauric acid against P. acnes both in vitro and in vivo. Incubation of the skin bacteria P. acnes, Staphylococcus aureus (S. aureus), and Staphylococcus epidermidis (S. epidermidis) with lauric acid yielded minimal inhibitory concentration (MIC) values against the bacterial growth over 15 times lower than those of benzoyl peroxide (BPO). The lower MIC values of lauric acid indicate stronger antimicrobial properties than that of BPO. The detected values of half maximal effective concentration (EC50) of lauric acid on P. acnes, S. aureus, and S. epidermidis growth indicate that P. acnes is the most sensitive to lauric acid among these bacteria. In addition, lauric acid did not induce cytotoxicity to human sebocytes. Notably, both intradermal injection and epicutaneous application of lauric acid effectively decreased the number of P. acnes colonized with mouse ears, thereby relieving P. acnes-induced ear swelling and granulomatous inflammation. The obtained data highlight the potential of using lauric acid as an alternative treatment for antibiotic therapy of acne vulgaris. PMID:19387482

  17. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium.

    PubMed

    Slapšak, Nina; Cleenwerck, Ilse; De Vos, Paul; Trček, Janja

    2013-02-01

    Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529(T) and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Trček and Teuber [34] revealed the same but unique restriction profiles for LMG 1529(T) and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA-DNA hybridizations confirmed their novel species identity by 73% DNA-DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529(T) and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)(5)-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529(T) and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529(T) and SKU 1109 is C(18:1ω7c) (60.2-64.8%). The DNA G+C content of LMG 1529(T) and SKU 1109 is 62.5 and 63.3mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529(T) (=NBRC 14815(T)=NCIMB 8752(T)).

  18. Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential.

    PubMed

    Angelozzi, Marco; Miotto, Martina; Penolazzi, Letizia; Mazzitelli, Stefania; Keane, Timothy; Badylak, Stephen F; Piva, Roberta; Nastruzzi, Claudio

    2015-11-01

    A novel approach to produce artificial bone composites (microfibers) with distinctive features mimicking natural tissue was investigated. Currently proposed inorganic materials (e.g. apatite matrixes) lack self-assembly and thereby limit interactions between cells and the material. The present work investigates the feasibility of creating "bio-inspired materials" specifically designed to overcome certain limitations inherent to current biomaterials. We examined the dimensions, morphology, and constitutive features of a composite hydrogel which combined an alginate based microfiber with a gelatin solution or a particulate form of urinary bladder matrix (UBM). The effectiveness of the composite microfibers to induce and modulate osteoblastic differentiation in three-dimensional (3D) scaffolds without altering the viability and morphological characteristics of the cells was investigated. The present study describes a novel alginate microfiber production method with the use of microfluidics. The microfluidic procedure allowed for precise tuning of microfibers which resulted in enhanced viability and function of embedded cells.

  19. Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1.

    PubMed

    Wang, Hui; Laughinghouse, Haywood D; Anderson, Matthew A; Chen, Feng; Willliams, Ernest; Place, Allen R; Zmora, Odi; Zohar, Yonathan; Zheng, Tianling; Hill, Russell T

    2012-03-01

    Increasing petroleum costs and climate change have resulted in microalgae receiving attention as potential biofuel producers. Little information is available on the diversity and functions of bacterial communities associated with biofuel-producing algae. A potential biofuel-producing microalgal strain, Nannochloropsis oceanica IMET1, was grown in Permian groundwater. Changes in the bacterial community structure at three temperatures were monitored by two culture-independent methods, and culturable bacteria were characterized. After 9 days of incubation, N. oceanica IMET1 began to aggregate and precipitate in cultures grown at 30°C, whereas cells remained uniformly distributed at 15°C and 25°C. The bacterial communities in cultures at 30°C changed markedly. Some bacteria isolated only at 30°C were tested for their potential for aggregating microalgae. A novel bacterium designated HW001 showed a remarkable ability to aggregate N. oceanica IMET1, causing microalgal cells to aggregate after 3 days of incubation, while the total lipid content of the microalgal cells was not affected. Direct interaction of HW001 and N. oceanica is necessary for aggregation. HW001 can also aggregate the microalgae N. oceanica CT-1, Tetraselmis suecica, and T. chuii as well as the cyanobacterium Synechococcus WH8007. 16S rRNA gene sequence comparisons indicated the great novelty of this strain, which exhibited only 89% sequence similarity with any previously cultured bacteria. Specific primers targeted to HW001 revealed that the strain originated from the Permian groundwater. This study of the bacterial communities associated with potential biofuel-producing microalgae addresses a little-investigated area of microalgal biofuel research and provides a novel approach to harvest biofuel-producing microalgae by using the novel bacterium strain HW001.

  20. Novel Bacterial Isolate from Permian Groundwater, Capable of Aggregating Potential Biofuel-Producing Microalga Nannochloropsis oceanica IMET1

    PubMed Central

    Wang, Hui; Laughinghouse, Haywood D.; Anderson, Matthew A.; Chen, Feng; Willliams, Ernest; Place, Allen R.; Zmora, Odi; Zohar, Yonathan

    2012-01-01

    Increasing petroleum costs and climate change have resulted in microalgae receiving attention as potential biofuel producers. Little information is available on the diversity and functions of bacterial communities associated with biofuel-producing algae. A potential biofuel-producing microalgal strain, Nannochloropsis oceanica IMET1, was grown in Permian groundwater. Changes in the bacterial community structure at three temperatures were monitored by two culture-independent methods, and culturable bacteria were characterized. After 9 days of incubation, N. oceanica IMET1 began to aggregate and precipitate in cultures grown at 30°C, whereas cells remained uniformly distributed at 15°C and 25°C. The bacterial communities in cultures at 30°C changed markedly. Some bacteria isolated only at 30°C were tested for their potential for aggregating microalgae. A novel bacterium designated HW001 showed a remarkable ability to aggregate N. oceanica IMET1, causing microalgal cells to aggregate after 3 days of incubation, while the total lipid content of the microalgal cells was not affected. Direct interaction of HW001 and N. oceanica is necessary for aggregation. HW001 can also aggregate the microalgae N. oceanica CT-1, Tetraselmis suecica, and T. chuii as well as the cyanobacterium Synechococcus WH8007. 16S rRNA gene sequence comparisons indicated the great novelty of this strain, which exhibited only 89% sequence similarity with any previously cultured bacteria. Specific primers targeted to HW001 revealed that the strain originated from the Permian groundwater. This study of the bacterial communities associated with potential biofuel-producing microalgae addresses a little-investigated area of microalgal biofuel research and provides a novel approach to harvest biofuel-producing microalgae by using the novel bacterium strain HW001. PMID:22194289

  1. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  2. Alternethanoxins A and B, polycyclic ethanones produced by Alternaria sonchi , potential mycoherbicides for Sonchus arvensis biocontrol.

    PubMed

    Evidente, Antonio; Punzo, Biancavaleria; Andolfi, Anna; Berestetskiy, Alexander; Motta, Andrea

    2009-08-12

    Alternaria sonchi is a fungal pathogen isolated from Sonchus arvensis and proposed as a biocontrol agent of this noxious perennial weed. Different phytotoxic metabolites were isolated from solid culture of the fungus. Two new polycyclic ethanones, named alternethanoxins A and B, were characterized using essentially spectroscopic and chemical methods. Tested by leaf disk-puncture assay on the fungal host plant and a number of nonhost plants, alternethanoxins A and B were shown to be phytotoxic, whereas they did not possess antimicrobial activity tested at 100 microg/disk. Hence, alternethanoxins A and B have potential as nonselective natural herbicides. Some structure-activity relationship observations were also made.

  3. [Visual evoked potentials produced by monocular flash stimuli in the cerebral cortex of the rabbit. I. Typography].

    PubMed

    Pérez-Cobo, J C; Ruiz-Beramendi, M; Pérez-Arroyo, M

    1990-12-01

    The visually evoked potentials in the hemisphere contralateral to the stimulated eye in rabbit, can be described topographically as follows. While a positive wave (P1) begins forming in the anterior zones and in the V I binocular zone, the N0 wave, at times very large, is produced in a more occipital zone, which corresponds to the visual streak. Immediately afterwards, the positivity, P1, practically invades the whole of the hemisphere. After this, the N1 wave which is produced in the most posterior parts of the V I, begins forming. The whole phenomenon comes to an end when the P2 wave is generated in the most occipital zones.

  4. Differentiation between stoichiometric and anticatalytic antioxidant properties of benzoic acid analogues: a structure/redox potential relationship study.

    PubMed

    Franck, Thierry; Mouithys-Mickalad, Ange; Robert, Thierry; Ghitti, Gianangelo; Deby-Dupont, Ginette; Neven, Philippe; Serteyn, Didier

    2013-11-25

    We investigated the antioxidant activities of some phenolic acid derivatives on a cell free system and on cellular and enzymatic models involved in inflammation. The stoichiometric antioxidant activities of phenolic acid derivatives were studied by measuring their capacity to scavenge the radical cation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS(+)) and reactive oxygen species (ROS) produced by stimulated neutrophils. The anticatalytic antioxidant capacity of the molecules was evaluated on the activity of myeloperoxidase (MPO), an oxidant enzyme present in and released by the primary granules of neutrophils. The ROS produced by PMA-stimulated neutrophils were measured by lucigenin-enhanced chemiluminescence (CL) and the potential interaction of the molecules with MPO was investigated without interferences due to medium by Specific Immuno-Extraction Followed by Enzyme Detection (SIEFED). The antioxidant activities of the phenolic compounds were correlated to their redox potentials measured by differential pulse voltammetry (DPV), and discussed in relation to their molecular structure. The ability of the phenolic molecules to scavenge ABTS radicals and ROS derived from neutrophils was inversely correlated to their increased redox potential. The number of hydroxyl groups (three) and their position (catechol) were essential for their efficacy as stoichiometric antioxidants or scavengers. On MPO activity, the inhibitory capacity of the molecules was not really correlated with their redox potential. Likewise, for the inhibition of MPO activity the number of OH groups and mainly the elongation of the carboxylic group were essential, probably by facilitating the interaction with the active site or the structure of the enzyme. The redox potential measurement, combined with ABTS and CL techniques, seems to be a good technique to select stoichiometric antioxidants but not anticatalytic ones, as seen for MPO, what rather involves a direct interaction with

  5. Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons.

    PubMed

    Klauson, Deniss; Budarnaja, Olga; Beltran, Ignacio Castellanos; Krichevskaya, Marina; Preis, Sergei

    2014-01-01

    Photocatalytic water splitting for hydrogen and oxygen production requires sacrificial electron donors, for example, organic compounds. Titanium dioxide catalysts doped with platinum, cobalt, tungsten, copper and iron were experimentally tested for the production of hydrogen, oxygen and low molecular weight hydrocarbons from aqueous solutions of humic substances (HS). Platinum-doped catalyst showed the best results in hydrogen generation, also producing methane, ethene and ethane, whereas the best oxygen production was exhibited by P25, followed by copper--and cobalt-containing photocatalysts. Iron-containing photocatalyst produced carbon monoxide as a major product. HS undergoing anoxic photocatalytic degradation produce hydrogen with minor hydrocarbons, and/or oxygen. It appears that better hydrogen yield is achieved when direct HS splitting takes place, as opposed to HS acting as electron donors for water splitting.

  6. Heavy Metal Contamination in Rice-Producing Soils of Hunan Province, China and Potential Health Risks.

    PubMed

    Zeng, Fanfu; Wei, Wei; Li, Mansha; Huang, Ruixue; Yang, Fei; Duan, Yanying

    2015-12-08

    We studied Cd, Cr, As, Ni, Mn, Pb, and Hg in three agricultural areas of Hunan province and determined the potential non-carcinogenic and carcinogenic risks for residents. Soil and brown rice samples from Shimen, Fenghuang, and Xiangtan counties were analyzed by atomic absorption spectroscopy. Soil levels of Cd and Hg were greatest, followed by As and Ni. The mean concentrations of heavy metals in brown rice were Cd 0.325, Cr 0.109, As 0.344, Ni 0.610, Mn 9.03, Pb 0.023, and Hg 0.071 mg/kg, respectively. Cd and Hg had greater transfer ability from soil to rice than the other elements. Daily intake of heavy metals through brown rice consumption were estimated to be Cd 2.30, Cr 0.775, As 2.45, Ni 4.32, Pb 0.162, Mn 64.6 and Hg 0.503 µg/(kg·day), respectively. Cd, Hg and As Hazard Quotient values were greater than 1 and Cd, Cr, As and Ni Cancer Risk values were all greater than 10(-4). The total non-carcinogenic risk factor was 14.6 and the total carcinogenic risk factor was 0.0423. Long-term exposure to heavy metals through brown rice consumption poses both potential non-carcinogenic and carcinogenic health risks to the local residents.

  7. Heavy Metal Contamination in Rice-Producing Soils of Hunan Province, China and Potential Health Risks

    PubMed Central

    Zeng, Fanfu; Wei, Wei; Li, Mansha; Huang, Ruixue; Yang, Fei; Duan, Yanying

    2015-01-01

    We studied Cd, Cr, As, Ni, Mn, Pb, and Hg in three agricultural areas of Hunan province and determined the potential non-carcinogenic and carcinogenic risks for residents. Soil and brown rice samples from Shimen, Fenghuang, and Xiangtan counties were analyzed by atomic absorption spectroscopy. Soil levels of Cd and Hg were greatest, followed by As and Ni. The mean concentrations of heavy metals in brown rice were Cd 0.325, Cr 0.109, As 0.344, Ni 0.610, Mn 9.03, Pb 0.023, and Hg 0.071 mg/kg, respectively. Cd and Hg had greater transfer ability from soil to rice than the other elements. Daily intake of heavy metals through brown rice consumption were estimated to be Cd 2.30, Cr 0.775, As 2.45, Ni 4.32, Pb 0.162, Mn 64.6 and Hg 0.503 µg/(kg·day), respectively. Cd, Hg and As Hazard Quotient values were greater than 1 and Cd, Cr, As and Ni Cancer Risk values were all greater than 10−4. The total non-carcinogenic risk factor was 14.6 and the total carcinogenic risk factor was 0.0423. Long-term exposure to heavy metals through brown rice consumption poses both potential non-carcinogenic and carcinogenic health risks to the local residents. PMID:26670240

  8. Estimating exploration potential in mature producing area, northwest shelf of Delaware Basin, New Mexico

    SciTech Connect

    Kumar, N.

    1985-11-01

    The case history presented here describes an investigation of the Northwest shelf of the Delaware basin carried out in 1979 for estimating the potential of finding new reserves and a follow-up study to measure predictions against results. A total of 191 new-field wildcats had been drilled during 1974-1979 in the study area. An analysis of target zones and success ratios showed that the best chances of drilling a successful test were in the San Andres (Permian) and Silurian-Devonian. However, cumulative frequency plots of existing fields in these two intervals showed that the chance of finding a field larger than 1 million bbl (159,000 m/sup 3/) in either of these zones was relatively low. As a result of the 1979 analysis, three prospective areas representing 8% of the total study area were high graded, or rated as having a higher potential than other parts of the study area. The 1980-1983 drilling results show that the original high-graded areas contain 52% of the 21 successful San Andres tests and the only discovery in the Silurian-Devonian. However, as predicted by the analysis, all of these discoveries appear to be small. 12 figures, 2 tables.

  9. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC.

    PubMed

    Gezginc, Y; Topcal, F; Comertpay, S; Akyol, I

    2015-03-01

    The present study was conducted to evaluate the lactic acid- and acetaldehyde-producing abilities of lactic acid bacterial species isolated from traditionally manufactured Turkish yogurts using HPLC. The lactic acid bacterial species purified from the yogurts were the 2 most widely used species in industrial yogurt production: Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria have the ability to ferment hexose sugars homofermentatively to generate lactic acid and some carbonyl compounds, such as acetaldehyde through pyruvate metabolism. The levels of the compounds produced during fermentation influence the texture and the flavor of the yogurt and are themselves influenced by the chemical composition of the milk, processing conditions, and the metabolic activity of the starter culture. In the study, morphological, biochemical, and molecular characteristics were employed to identify the bacteria obtained from homemade yogurts produced in different regions of Turkey. A collection of 91 Strep. thermophilus and 35 L. bulgaricus strains were investigated for their lactic acid- and acetaldehyde-formation capabilities in various media such as cow milk, LM17 agar, and aerobic-anaerobic SM17 agar or de Man, Rogosa, and Sharpe agar. The amounts of the metabolites generated by each strain in all conditions were quantified by HPLC. The levels were found to vary depending on the species, the strain, and the growth conditions used. Whereas lactic acid production ranged between 0 and 77.9 mg/kg for Strep. thermophilus strains, it ranged from 0 to 103.5 mg/kg for L. bulgaricus. Correspondingly, the ability to generate acetaldehyde ranged from 0 to 105.9 mg/kg in Strep. thermophilus and from 0 to 126.9 mg/kg in L. bulgaricus. Our study constitutes the first attempt to determine characteristics of the wild strains isolated from traditional Turkish yogurts, and the approach presented here, which reveals the differences in metabolite production abilities of the

  10. Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid.

    PubMed

    Perveen, Zakia; Ando, Hitomi; Ueno, Akio; Ito, Yukiya; Yamamoto, Yusuke; Yamada, Yohko; Takagi, Tomoko; Kaneko, Takako; Kogame, Kazuhiro; Okuyama, Hidetoshi

    2006-02-01

    A thraustochytrid-like microorganism (strain 12B) was isolated from the mangrove area of Okinawa, Japan. On the basis of its ectoplasmic net structure and biflagellate zoospores we determined strain 12B to be a novel member of the phylum Labyrinthulomycota in the kingdom Protoctista. When grown on glucose/seawater at 28 degrees C, it had a lipid content of 58% with docosahexaenoic acid (DHA; 22:6 n-3) at 43% of the total fatty acids. It had a growth rate of 0.38 h(-1). The DHA production rate of 2.8 +/- 0.7 g l(-1) day(-1) is the highest value reported for any microorganism.

  11. Sources of ions producing acidic rain and visibility impairment at Grand Canyon, Arizona

    SciTech Connect

    Sisler, J.F.; Malm, W.C.; Gebbart, K.A. )

    1988-01-01

    Effective management of visibility or wet acidic deposition in selected receptor areas requires an understanding of which chemical/aerosol species are responsible for the effect, the sources of these chemical/aerosol species and the relationships between how changes in emissions of chemical precursors result in changes in chemical/aerosol species at receptor sites. This paper addresses the first two issues at Grand Canyon, Arizona. At Grand Canyon National Park, Arizona, the National Acid Deposition Program/National Trends Network (NADP/NTN) monitoring site has been collocated with the Nation Park Service (NPS) aerosol monitoring site. The monitors were operated simultaneously for nearly three years, allowing a direct comparison between the causes and sources of wet deposition and the causes and sources of fine particulate matter.

  12. Measurement uncertainty of ester number, acid number and patchouli alcohol of patchouli oil produced in Yogyakarta

    NASA Astrophysics Data System (ADS)

    Istiningrum, Reni Banowati; Saepuloh, Azis; Jannah, Wirdatul; Aji, Didit Waskito

    2017-03-01

    Yogyakarta is one of patchouli oil distillation center in Indonesia. The quality of patchouli oil greatly affect its market price. Therefore, testing quality of patchouli oil parameters is an important concern, one through determination of the measurement uncertainty. This study will determine the measurement uncertainty of ester number, acid number and content of patchouli alcohol through a bottom up approach. Source contributor to measurement uncertainty of ester number is a mass of the sample, a blank and sample titration volume, the molar mass of KOH, HCl normality, and replication. While the source contributor of the measurement uncertainty of acid number is the mass of the sample, the sample titration volume, the relative mass and normality of KOH, and repetition. Determination of patchouli alcohol by Gas Chromatography considers the sources of measurement uncertainty only from repeatability because reference materials are not available.

  13. Use of Vine-Trimming Wastes as Carrier for Amycolatopsis sp. to Produce Vanillin, Vanillyl Alcohol, and Vanillic Acid.

    PubMed

    Castañón-Rodríguez, Juan Francisco; Pérez-Rodríguez, Noelia; de Souza Oliveira, Ricardo Pinheiro; Aguilar-Uscanga, María Guadalupe; Domínguez, José Manuel

    2016-10-01

    Raw vine-trimming wastes or the solid residues obtained after different fractionation treatments were evaluated for their suitability as Amycolatopsis sp. immobilization carriers during the bioconversion of ferulic acid into valuable phenolic compounds such as vanillin, vanillyl alcohol, and vanillic acid, the main flavor components of vanilla pods. Previously, physical-chemical characteristics of the materials were determined by quantitative acid hydrolysis and water absorption index (WAI), and microbiological characteristics by calculating the cell retention in the carrier (λ). Additionally, micrographics of carrier surface were obtained by field emission-scanning electron microscopy to study the influence of morphological changes during pretreatments in the adhesion of cells immobilized. The results point out that in spite of showing the lowest WAI and intermediate λ, raw material was the most appropriated substrate to conduct the bioconversion, achieving up to 262.9 mg/L phenolic compounds after 24 h, corresponding to 42.9 mg/L vanillin, 115.6 mg/L vanillyl alcohol, and 104.4 mg/L vanillic acid. The results showed the potential of this process to be applied for biotechnological production of vanillin from ferulic acid solutions; however, further studies must be carried out to increase vanillin yield. Additionally, the liquors obtained after treatment of vine-trimming wastes could be assayed to replace synthetic ferulic acid.

  14. Correlation of hydrolytic degradation with structure for copolyesters produced from glycolic and adipic acids.

    PubMed

    Simitzis, J; Triantou, D; Soulis, S; Triantou, K; Simitzis, Ch; Zoumpoulakis, L

    2010-04-01

    Copolyesters based on glycolic acid (G) combined with adipic acid (A) and ethylene glycol (E) were synthesized in different percentage of molar ratios (A: 100-50% and G: 100%) and their hydrolytic degradation was studied and correlated with their structures. According to the DSC, the production of polyesters leads to the formation of copolyesters and not to mixtures of homopolyesters. The crystallites in the copolyesters mainly consist of continuous sequences of ethylene adipate structural units. The hydrolytic degradation of the polyesters was followed by their weight loss during hydrolysis and by the FTIR spectra of the initial polyesters compared with that of the degraded polyesters at equilibrium. The region between 1142 and 800 cm(-1) can be utilized to evaluate the extent of degradation of polyesters after their hydrolysis. The absorption bands at 1142, 1077 and 850 cm(-1) due to the amorphous region decrease after hydrolysis, whereas those at 972, 901 and 806 cm(-1) due to the crystalline region increase. The experimental data of the hydrolytic degradation were fitted with exponential rise to maximum type functions using two-parameter model, which describes very well mainly the initial part of the degradation, and four-parameter model (containing two exponential terms), which is appropriate for fitting the hydrolytic degradation on the entire time period (including the equilibrium). Furthermore, the kinetics of the hydrolytic degradation of the polyesters for the initial time period based on both models results to similar values of the rate constant, k. The synthesized copolyesters of glycolic acid combined with adipic acid and ethylene glycol are soluble in many common organic solvents opposite to PGA, leading to modified biodegradable polyesters and therefore they can be easily processed.

  15. Identification of Cereulide-Producing Bacillus cereus by Nucleic Acid Chromatography and Reverse Transcription Real-Time PCR.

    PubMed

    Ueda, Shigeko; Yamaguchi, Manami; Eguchi, Kayoko; Iwase, Miki

    2016-01-01

    RNA extracts were analyzed with a nucleic acid sequence-based amplification (NASBA) - nucleic acid chromatography and a reverse transcription-quantitative PCR assay (RT-qPCR) based on the TaqMan probe for identification of cereulide-producing Bacillus cereus. All 100 emetic B. cereus strains were found to give positive results, but 50 diarrheal B. cereus strains and other bacterial species showed negative results in the NASBA-chromatography. That is, the assay could selectively identify the emetic strains among B. cereus strains. Also, the B. cereus contents of more than 10(7) cfu/ml were required for the identification of the cereulide-producing strains in this assay. In qRT-PCR assays, all 100 emetic type strains of B. cereus produced 10(2) - 10(4) copy numbers per ng of the RNA preparation, and the strains produced 10(4) copies including ones which had the high vacuolation activities of HEp-2 cells.

  16. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway.

    PubMed

    Yan, Jinyong; Yan, Yunjun; Madzak, Catherine; Han, Bingnan

    2017-02-01

    Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.

  17. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice.

    PubMed

    LeBlanc, Jean Guy; del Carmen, Silvina; Miyoshi, Anderson; Azevedo, Vasco; Sesma, Fernando; Langella, Philippe; Bermúdez-Humarán, Luis G; Watterlot, Laurie; Perdigon, Gabriela; de Moreno de LeBlanc, Alejandra

    2011-02-10

    Reactive oxygen species are involved in various aspects of intestinal inflammation and tumor development. Decreasing their levels using antioxidant enzymes, such as catalase (CAT) or superoxide dismutase (SOD) could therefore be useful in the prevention of certain diseases. Lactic acid bacteria (LAB) are ideal candidates to deliver these enzymes in the gut. In this study, the anti-inflammatory effects of CAT or SOD producing LAB were evaluated using a trinitrobenzenesulfonic acid (TNBS) induced Crohn's disease murine model. Engineered Lactobacillus casei BL23 strains producing either CAT or SOD, or the native strain were given to mice before and after intrarectal administration of TNBS. Animal survival, live weight, intestinal morphology and histology, enzymatic activities, microbial translocation to the liver and cytokines released in the intestinal fluid were evaluated. The mice that received CAT or SOD-producing LAB showed a faster recovery of initial weight loss, increased enzymatic activities in the gut and lesser extent of intestinal inflammation compared to animals that received the wild-type strain or those that did not receive bacterial supplementation. Our findings suggest that genetically engineered LAB that produce antioxidant enzymes could be used to prevent or decrease the severity of certain intestinal pathologies.

  18. A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Imatoukene, Nabila; Verbeke, Jonathan; Beopoulos, Athanasios; Idrissi Taghki, Abdelghani; Thomasset, Brigitte; Sarde, Claude-Olivier; Nonus, Maurice; Nicaud, Jean-Marc

    2017-03-29

    Conjugated linoleic acids (CLAs) have been found to have beneficial effects on human health when used as dietary supplements. However, their availability is limited because pure, chemistry-based production is expensive, and biology-based fermentation methods can only create small quantities. In an effort to enhance microbial production of CLAs, four genetically modified strains of the oleaginous yeast Yarrowia lipolytica were generated. These mutants presented various genetic modifications, including the elimination of β-oxidation (pox1-6∆), the inability to store lipids as triglycerides (dga1∆ dga2∆ are1∆ lro1∆), and the overexpression of the Y. lipolytica ∆12-desaturase gene (YlFAD2) under the control of the constitutive pTEF promoter. All strains received two copies of the pTEF-oPAI or pPOX-oPAI expression cassettes; PAI encodes linoleic acid isomerase in Propionibacterium acnes. The strains were cultured in neosynthesis or bioconversion medium in flasks or a bioreactor. The strain combining the three modifications mentioned above showed the best results: when it was grown in neosynthesis medium in a flask, CLAs represented 6.5% of total fatty acids and in bioconversion medium in a bioreactor, and CLA content reached 302 mg/L. In a previous study, a CLA degradation rate of 117 mg/L/h was observed in bioconversion medium. Here, by eliminating β-oxidation, we achieved a much lower rate of 1.8 mg/L/h.

  19. Human platelets produce 14,15-oxido-5,8,11-eicosatrienoic acid from phosphatidylinositol

    SciTech Connect

    Ballou, L.R.; Lam, B.K.; Wong, P.Y.K.; Cheung, W.Y.

    1987-05-01

    Human platelets contain a soluble enzyme or enzyme system which catalyzes the formation of a compound more polar than arachidonate from 2-arachidonyl-sn-phosphatidylinositol (PtdIns). The C-value and mass spectrum of the compound appears similar to the reported values of 14,15-oxido-5,8,11-eicosatrienoic acid (EET). 2-Arachidonyl-sn-phosphatidylcholine, 2-arachidonyl-sn-phosphatidylethanolamine and arachidonic acid were not substrates for EET production. The reaction was Ca/sup 2 +/-dependent and insensitive to aspirin, mepacrin and indomethacin. EET formation was greatly reduced under nitrogen or carbon monoxide, however, exposure to atmospheric air rapidly restored EET production to a rate comparable to that under air. Further, neither NADPH nor cyanide affected EET formation, suggesting that a cytochrome P-450 system was not involved. Intact platelets prelabeled with (/sup 14/C)arachidonic acid generated at least 0.5 nmole of EET/10/sup 9/ platelets in response to thrombin; other agonists such as collagen, epinephrine, ADP or ionophore A23187 were not effective. Collectively, these data suggest that human platelets possess an enzyme system which appears to catalyze epoxidation of the arachidonyl moiety of PtdIns and its subsequent hydrolysis to yield EET.

  20. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.

  1. Potential exposure and risk of fluoride intakes from tea drinks produced in Taiwan.

    PubMed

    Lung, Shih-Chun Candice; Cheng, Hui-Wen; Fu, Chi Betsy

    2008-03-01

    Tea is the second most commonly consumed drink in the world. Excess fluoride intakes from tea drinks may cause health effects. This work assesses infusible fluoride levels in popular tea sold in Taiwan and evaluates potential exposure factors. Lungjing, pouchong, tienguanyin, oolong, pureh, and black tea specimens were purchased from different counties in Taiwan. Fluoride levels were evaluated in one complete cycle of tea making as well as at different calcium carbonate contents in water, with glass or porcelain teapots, and with/without adding sugar. Oolong tea leaves in each manufacturing step were also analyzed for infusible fluoride. Potential fluoride intakes and risks are estimated based on a national survey. Among six kinds of tea, black tea had the highest fluoride concentrations (8.64+/-2.96 mg/l), whereas pureh (1.97+/-2.70 mg/l) had the lowest levels. Higher percentages of infusible fluoride can be rinsed away from tea leaves curved lengthways compared to those curved end-to-end in the first 2.5 min. The use of glass or porcelain teapots and calcium carbonate content (up to 400 mg/l) in water would not affect infusible fluoride levels, whereas adding sugar increased the infusible fluoride in the first few minutes. In addition, it was found that the critical step during the manufacturing process affecting the percentage of infusible fluoride was ball rolling rather than fermentation. Furthermore, intakes of high amounts (> or =5 l/week) of certain tea may result in excess risks of dental or skeletal fluorosis. Tea lovers could be exposed to excess fluoride and may be at risk of fluorosis.

  2. Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ.

    PubMed

    Zhan, Jingjing; Hong, Yu; Hu, Hongying

    2016-07-28

    Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/ 25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

  3. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract.

    PubMed

    DeAlba-Montero, I; Guajardo-Pacheco, Jesús; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene; Loredo-Becerra, G M; Martínez-Castañón, Gabriel-Alejandro; Ruiz, Facundo; Compeán Jasso, M E

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.

  4. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    PubMed Central

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  5. Lipid Classes, Fatty Acid Composition, and Glycerolipid Molecular Species of the Red Alga Gracilaria vermiculophylla, a Prostaglandin-Producing Seaweed.

    PubMed

    Honda, Masaki; Ishimaru, Takashi; Itabashi, Yutaka

    2016-01-01

    The red alga Gracilaria vermiculophylla is a well-known producer of prostaglandins, such as PGE2 and PGF2α. In this study, the characteristics of glycerolipids as substrates of prostaglandin production were clarified, and the lipid classes, fatty acid composition, and glycerolipid molecular species were investigated in detail. The major lipid classes were monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), as well as phosphatidylcholine (PC), which accounted for 43.0% of the total lipid profile. Arachidonic acid (20:4n-6), a prostaglandin precursor, and palmitic acid (16:0) were the predominant fatty acids in the total lipid profile. The 20:4n-6 content was significantly high in MGDG and PC (more than 60%), and the 16:0 content was significantly high in DGDG and SQDG (more than 50%). Chiral-phase high-performance liquid chromatography determined that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (56.5%) and PC (40.0%), and 20:4n-6/16:0 for DGDG (75.4%) and SQDG (58.4%). Thus, it was considered that the glycerolipid molecular species containing one or two 20:4n-6 were the major substrates for prostaglandin production in G. vermiculophylla.

  6. Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids.

    PubMed

    Shen, Dongsheng; Yin, Jun; Yu, Xiaoqin; Wang, Meizhen; Long, Yuyang; Shentu, Jiali; Chen, Ting

    2017-03-01

    In this study, tofu and egg white, representing typical protein-rich substrates in food waste based on vegetable and animal protein, respectively, were investigated for producing volatile fatty acids (VFAs) by acidogenic fermentation. VFA production, composition, conversion pathways and microbial communities in acidogenesis from tofu and egg white with and without hydrothermal (HT) pretreatment were compared. The results showed HT pretreatment could improve the VFA production of tofu but not for egg white. The optimum VFA yields were 0.46g/gVS (tofu with HT) and 0.26g/gVS (egg white without HT), respectively. Tofu could directly produce VFAs through the Stickland reaction, while egg white was converted to lactate and VFAs simultaneously. About 30-40% of total protein remained in all groups after fermentation. Up to 50% of the unconverted soluble protein in the HT groups was protease. More lactate-producing bacteria, mainly Leuconostoc and Lactobacillus, were present during egg white fermentation.

  7. Prevention of Histamine Formation in Cheese by Bacteriocin-Producing Lactic Acid Bacteria

    PubMed Central

    Joosten, H.; Nunez, M.

    1996-01-01

    The susceptibility of 13 amine-forming lactobacilli to several bacteriocins was investigated by an agar diffusion assay. All strains were susceptible to nisin and to five bacteriocins of enterococcal origin. Pediocin PA-1, bavaricin A, lactococcin A, and a bacteriocin from Enterococcus faecalis 1061 did not show inhibitory activity. Two bacteriocin-producing enterococci and a nisin-producing Lactococcus lactis strain were employed as starters in separate cheese-making experiments. Outgrowth of histamine producer Lactobacillus buchneri St2A, which was added to the milk at levels of up to 190 CFU/ml, was almost completely inhibited. No histamine formation was detected in the cheeses made with bacteriocin-producing starters. In the control cheese without bacteriocin, St2A reached levels of 1.1 x 10(sup8) CFU/g, and 200 mg of histamine per kg was found after 4 months of ripening. To our knowledge, this is the first report of bacteriocin-mediated inhibition of histamine formation in foods. PMID:16535285

  8. Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability.

    PubMed

    Thavarajah, Pushparajah; Thavarajah, Dil; Vandenberg, Albert

    2009-10-14

    Phytic acid is an antinutrient present mainly in seeds of grain crops such as legumes and cereals. It has the potential to bind mineral micronutrients in food and reduce their bioavailability. This study analyzed the phytic acid concentration in seeds of 19 lentil ( Lens culinaris L.) genotypes grown at two locations for two years in Saskatchewan, Canada. The objectives of this study were to determine (1) the levels of phytic acid in commercial lentil genotypes and (2) the impact of postharvest processing and (3) the effect of boiling on the stability of phytic aid in selected lentil genotypes. The phytic acid was analyzed by high-performance anion exchange separation followed by conductivity detection. The Saskatchewan-grown lentils were naturally low in phytic acid (phytic acid = 2.5-4.4 mg g(-1); phytic acid phosphorus = 0.7-1.2 mg g(-1)), with concentrations lower than those reported for low phytic acid mutants of corn, wheat, common bean, and soybean. Decortication prior to cooking further reduced total phytic acid by >50%. As lowering phytic acid intake can lead to increased mineral bioavailability, dietary inclusion of Canadian lentils may have significant benefits in regions with widespread micronutrient malnutrition.

  9. Peptide from Sea Anemone Metridium senile Affects Transient Receptor Potential Ankyrin-repeat 1 (TRPA1) Function and Produces Analgesic Effect.

    PubMed

    Logashina, Yulia A; Mosharova, Irina V; Korolkova, Yulia V; Shelukhina, Irina V; Dyachenko, Igor A; Palikov, Victor A; Palikova, Yulia A; Murashev, Arkadii N; Kozlov, Sergey A; Stensvåg, Klara; Andreev, Yaroslav A

    2017-02-17

    The transient receptor potential ankyrin-repeat 1 (TRPA1) is an important player in pain and inflammatory pathways. It is a promising target for novel drug development for the treatment of a number of pathological states. A novel peptide producing a significant potentiating effect on allyl isothiocyanate- and diclofenac-induced currents of TRPA1 was isolated from the venom of sea anemone Metridium senile. It is a 35-amino acid peptide cross-linked by two disulfide bridges named τ-AnmTX Ms 9a-1 (short name Ms 9a-1) according to a structure similar to other sea anemone peptides belonging to structural group 9a. The structures of the two genes encoding the different precursor proteins of Ms 9a-1 were determined. Peptide Ms 9a-1 acted as a positive modulator of TRPA1 in vitro but did not cause pain or thermal hyperalgesia when injected into the hind paw of mice. Intravenous injection of Ms 9a-1 (0.3 mg/kg) produced a significant decrease in the nociceptive and inflammatory response to allyl isothiocyanate (the agonist of TRPA1) and reversed CFA (Complete Freund's Adjuvant)-induced inflammation and thermal hyperalgesia. Taken together these data support the hypothesis that Ms 9a-1 potentiates the response of TRPA1 to endogenous agonists followed by persistent functional loss of TRPA1-expressing neurons. We can conclude that TRPA1 potentiating may be useful as a therapeutic approach as Ms 9a-1 produces significant analgesic and anti-inflammatory effects in mice models of pain.

  10. pH-Dependent Reduction Potentials and Proton-Coupled Electron Transfer Mechanisms in Hydrogen-Producing Nickel Molecular Electrocatalysts

    SciTech Connect

    Horvath, Samantha; Fernandez, Laura; Appel, Aaron M.; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based Ph Bz 2 2 P N electrocatalysts, which are comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands, have been shown to effectively catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the NiII/I reduction potential on pH, suggesting a proton-coupled electron transfer (PCET) reaction. In the proposed mechanism, the catalytic cycle begins with a PCET process involving electrochemical electron transfer to the nickel center and intermolecular proton transfer from an acid to the pendant amine ligand. This paper presents quantum mechanical calculations of this PCET process to examine the thermodynamics of the sequential mechanisms, in which either the electron or the proton transfers first (ET–PT and PT–ET, respectively), and the concerted mechanism (EPT). The favored mechanism depends on a balance among many factors, including the acid strength, association free energy for the acid–catalyst complex, PT free energy barrier, and ET reduction potential. The ET reduction potential is less negative after PT, favoring the PT–ET mechanism, and the association free energy is less positive after reduction, favoring the ET–PT mechanism. The calculations, along with analysis of the experimental data, indicate that the sequential ET–PT mechanism is favored for weak acids because of the substantial decrease in the association free energy after reduction. For strong acids, however, the PT–ET mechanism may be favored because the association free energy is somewhat smaller and PT is more thermodynamically favorable. The concerted mechanism could also occur, particularly for intermediate acid strengths. In the context of the entire catalytic cycle for H2 production, the initial PCET process involving intermolecular PT has a more negative reduction potential than the subsequent PCET process involving intramolecular PT. As a result, the second PCET should

  11. Value-added potential of expeller-pressed canola oil refining: characterization of sinapic acid derivatives and tocopherols from byproducts.

    PubMed

    Chen, Yougui; Thiyam-Hollander, Usha; Barthet, Veronique J; Aachary, Ayyappan A

    2014-10-08

    Valuable phenolic antioxidants are lost during oil refining, but evaluation of their occurrence in refining byproducts is lacking. Rapeseed and canola oil are both rich sources of sinapic acid derivatives and tocopherols. The retention and loss of sinapic acid derivatives and tocopherols in commercially produced expeller-pressed canola oils subjected to various refining steps and the respective byproducts were investigated. Loss of canolol (3) and tocopherols were observed during bleaching (84.9%) and deodorization (37.6%), respectively. Sinapic acid (2) (42.9 μg/g), sinapine (1) (199 μg/g), and canolol (344 μg/g) were found in the refining byproducts, namely, soap stock, spent bleaching clay, and wash water, for the first time. Tocopherols (3.75 mg/g) and other nonidentified phenolic compounds (2.7 mg sinapic acid equivalent/g) were found in deodistillates, a byproduct of deodorization. DPPH radical scavenging confirmed the antioxidant potential of the byproducts. This study confirms the value-added potential of byproducts of refining as sources of endogenous phenolics.

  12. Monthly and seasonal occurrences of potential flash flood-producing rains determined from Manually Digitized Radar data

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1980-01-01

    An analysis is conducted of a small 4-year climatological data base of Manually Digitized Radar (MDR) data to infer the monthly and seasonal distributions of the relative frequency of occurrence of potential flash flood-producing rains over the Central and Eastern U.S. Some possible meteorological mechanisms for producing potential flash flooding rains are discussed in terms of the relative maxima and minima in the monthly and seasonal frequency distributions over the MDR network. Frequencies were found to be generally higher in more southern locations and lower farther north in all months and seasons. However, most locations experienced an annual cycle in the frequency of occurrence with maxima in summer and minima in winter. In given seasons and months, local areas of maximum and minimum occurrences may be related to quasi-stationary meteorological processes that trigger and organize intense convection over a common area.

  13. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus

    PubMed Central

    Esper, Renata H.; Gonçalez, Edlayne; Marques, Marcia O. M.; Felicio, Roberto C.; Felicio, Joana D.

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 105 spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans. PMID:24926289

  14. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus.

    PubMed

    Esper, Renata H; Gonçalez, Edlayne; Marques, Marcia O M; Felicio, Roberto C; Felicio, Joana D

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 10(5) spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans.

  15. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential.

    PubMed

    Prasanna, Lakshmi; Eijsink, Vincent G H; Meadow, Richard; Gåseidnes, Sigrid

    2013-02-01

    A novel strain exhibiting entomopathogenic and chitinolytic activity was isolated from mangrove marsh soil in India. The isolate was identified as Brevibacillus laterosporus by phenotypic characterization and 16S rRNA sequencing and designated Lak1210. When grown in the presence of colloidal chitin as the sole carbon source, the isolate produced extracellular chitinases. Chitinase activity was inhibited by allosamidin indicating that the enzymes belong to the family 18 chitinases. The chitinases were purified by ammonium sulfate precipitation followed by chitin affinity chromatography yielding chitinases and chitinase fragments with 90, 75, 70, 55, 45, and 25 kDa masses. Mass spectrometric analyses of tryptic fragments showed that these fragments belong to two distinct chitinases that are almost identical to two putative chitinases, a 89.6-kDa four-domain chitodextrinase and a 69.4-kDa two-domain enzyme called ChiA1, that are encoded on the recently sequenced genome of B. laterosporus LMG15441. The chitinase mixture showed two pH optima, at 6.0 and 8.0, and an optimum temperature of 70 °C. The enzymes exhibited antifungal activity against the phytopathogenic fungus Fusarium equiseti. Insect toxicity bioassays with larvae of diamondback moths (Plutella xylostella), showed that addition of chitinases reduced the time to reach 50 % mortality upon infection with non-induced B. laterosporus from 3.3 to 2.1 days. This study provides evidence for the presence of inducible, extracellular chitinolytic enzymes in B. laterosporus that contribute to the strain's antifungal activity and insecticidal activity.

  16. The potential of comparative genomic hybridization as a tool in the differential diagnosis of matrix-producing bone lesions.

    PubMed

    Gebert, Carsten; Brinkschmidt, Christian; Bielack, Stefan; Bernhardt, Thomas; Jürgens, Heribert; Böcker, Werner; Winkelmann, Winfried; Bürger, Horst; Gosheger, Georg

    2006-07-01

    Matrix-producing bone lesions consist of a wide variety of benign and malignant conditions. With respect to morphology, an overlap exists between benign and malignant bone tumors that causes difficulties in the final determination of the tumor. This study was conducted to show the potential of comparative genomic hybridization as a tool in the differential diagnosis of matrix-producing bone lesions. Thirty benign bone tumors were evaluated by conventional comparative genomic hybridization. To test its diagnostic reliability, 5 additional cases were analyzed, all with differential diagnostic difficulties related to morphology and radiology. All were ultimately diagnosed as malignant sarcomas, and unbalanced alterations were detected. In contrast benign tumors or tumor-like lesions did not reveal any chromosomal alterations. Comparative genomic hybridization is a useful adjunct in the complicated differential diagnostic algorithms of matrix-producing bone tumors.

  17. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    PubMed

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded.

  18. Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.).

    PubMed

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz

    2012-05-09

    Phenolic acids profile and antioxidant activity of six diverse varieties of spelt are reported. Antioxidant activity was assessed using eight methods based on different mechanism of action. Phenolic acids composition of spelt differed significantly between varieties and ranged from 506.6 to 1257.4 μg/g DW. Ferulic and sinapinic acids were the predominant phenolic acids found in spelt. Total ferulic acid content ranged from 144.2 to 691.5 μg/g DW. All analyzed spelt varieties possessed high antioxidant potential. In spite of the fact that bound phenolic acids possessed higher antioxidant activities, analysis of antioxidant potential and their relationship with phenolic acid content showed that free phenolics were more effective. Eight antioxidant methods were integrated to obtain a total antioxidant capacity index that may be used for comparison of total antioxidant capacity of spelt varieties. Total antioxidant potential of spelt cultivars were ordered as follows: Ceralio > Spelt INZ ≈ Ostro > Oberkulmer Rotkorn > Schwabenspelz > Schwabenkorn.

  19. Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells

    PubMed Central

    Labeeuw, Leen; Khey, Joleen; Bramucci, Anna R.; Atwal, Harjot; de la Mata, A. Paulina; Harynuk, James; Case, Rebecca J.

    2016-01-01

    Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host. PMID:27375567

  20. Suitability of a cytotoxicity assay for detection of potentially harmful compounds produced by freshwater bloom-forming algae.

    PubMed

    Sorichetti, Ryan J; McLaughlin, Jace T; Creed, Irena F; Trick, Charles G

    2014-01-01

    Detecting harmful bioactive compounds produced by bloom-forming pelagic algae is important to assess potential risks to public health. We investigated the application of a cell-based bioassay: the rainbow trout gill-w1 cytotoxicity assay (RCA) that detects changes in cell metabolism. The RCA was used to evaluate the cytotoxic effects of (1) six natural freshwater lake samples from cyanobacteria-rich lakes in central Ontario, Canada; (2) analytical standards of toxins and noxious compounds likely to be produced by the algal communities in these lakes; and (3) complex mixtures of compounds produced by cyanobacterial and chrysophyte cultures. RCA provided a measure of lake water toxicity that could not be reproduced using toxin or noxious compound standards. RCA was not sensitive to toxins and only sensitive to noxious compounds at concentrations higher than reported environmental averages (EC50≥10(3)nM). Cultured algae produced bioactive compounds that had recognizable dose dependent and toxic effects as indicated by RCA. Toxicity of these bioactive compounds depended on taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more toxic than exponential phase), location (intracellular more toxic than extracellular) and iron status (cells in high-iron treatment more toxic than cells in low-iron treatment). The RCA provides a new avenue of exploration and potential for the detection of natural lake algal toxic and noxious compounds.

  1. Potential damage of GM crops to the country image of the producing country.

    PubMed

    Knight, John G; Clark, Allyson; Mather, Damien W

    2013-01-01

    Frequently heard within New Zealand are arguments that release of genetically modified organisms (GMOs) into the environment will harm the "clean green" image of the country, and therefore do irreparable harm to export markets for food products and also to the New Zealand tourism industry. But where is the evidence? To investigate the likelihood of harmful effects on New Zealand's clean green image in relation to food exports, we have previously used face-to-face interviews with gatekeepers in the food distribution channel in five countries in Europe, in China, and in India. To investigate potential impacts on the New Zealand tourism sector, we have surveyed first-time visitors to New Zealand at Auckland International Airport soon after arrival. We conclude that it is highly unlikely that introduction of GM plants into New Zealand would have any long-term deleterious effect on perceptions in overseas markets of food products sourced from New Zealand. Furthermore it is highly unlikely that New Zealand's image as a tourist destination would suffer if GM plants were introduced.

  2. Integrin Dynamics Produce a Delayed Stage of Long-Term Potentiation and Memory Consolidation

    PubMed Central

    Babayan, Alex H.; Kramár, Enikö A.; Barrett, Ruth M.; Jafari, Matiar; Häettig, Jakob; Chen, Lulu Y.; Rex, Christopher S.; Lauterborn, Julie C.; Wood, Marcelo A.; Gall, Christine M.

    2012-01-01

    Memory consolidation theory posits that newly acquired information passes through a series of stabilization steps before being firmly encoded. We report here that in rat and mouse, hippocampus cell adhesion receptors belonging to the β1-integrin family exhibit dynamic properties in adult synapses and that these contribute importantly to a previously unidentified stage of consolidation. Quantitative dual immunofluorescence microscopy showed that induction of long-term potentiation (LTP) by theta burst stimulation (TBS) activates β1 integrins, and integrin-signaling kinases, at spine synapses in adult hippocampal slices. Neutralizing antisera selective for β1 integrins blocked these effects. TBS-induced integrin activation was brief (<7 min) and followed by an ∼45 min period during which the adhesion receptors did not respond to a second application of TBS. Brefeldin A, which blocks integrin trafficking to the plasma membrane, prevented the delayed recovery of integrin responses to TBS. β1 integrin-neutralizing antisera erased LTP when applied during, but not after, the return of integrin responsivity. Similarly, infusions of anti-β1 into rostral mouse hippocampus blocked formation of long-term, object location memory when started 20 min after learning but not 40 min later. The finding that β1 integrin neutralization was effective in the same time window for slice and behavioral experiments strongly suggests that integrin recovery triggers a temporally discrete, previously undetected second stage of consolidation for both LTP and memory. PMID:22973009

  3. In situ decarboxylation of acetic and formic acids in aqueous inclusions as a possible way to produce excess CH4

    NASA Astrophysics Data System (ADS)

    Ong, Anthony; Pironon, Jacques; Robert, Pascal; Dubessy, Jean; Caumon, Marie-Camille; Randi, Aurélien; Chailan, Olivier; Girard, Jean-Pierre

    2013-04-01

    that methane may be produced from dissolved acetic acid in natural aqueous inclusions in specific situations, possibly inducing errors in the thermodynamic interpretation.

  4. Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate

    PubMed Central

    2011-01-01

    Hydrophobicity is a very important surface property and there is a growing interest in the production and characterization of superhydrophobic surfaces. Accordingly, it was recently shown how to obtain a superhydrophobic surface using a simple and cost-effective method on a polymer named poly(L-lactic acid) (PLLA). To evaluate the ability of such material as a substrate for bacterial colonization, this work assessed the capability of different bacteria to colonize a biomimetic rough superhydrophobic (SH) PLLA surface and also a smooth hydrophobic (H) one. The interaction between these surfaces and bacteria with different morphologies and cell walls was studied using one strain of Staphylococcus aureus and one of Pseudomonas aeruginosa. Results showed that both bacterial strains colonized the surfaces tested, although significantly higher numbers of S. aureus cells were found on SH surfaces comparing to H ones. Moreover, scanning electron microscopy images showed an extracellular matrix produced by P. aeruginosa on SH PLLA surfaces, indicating that this bacterium is able to form a biofilm on such substratum. Bacterial removal through lotus leaf effect was also tested, being more efficient on H coupons than on SH PLLA ones. Overall, the results showed that SH PLLA surfaces can be used as a substrate for bacterial colonization and, thus, have an exceptional potential for biotechnology applications. PMID:22018163

  5. Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity.

    PubMed

    Maharaj, K; Bradfield, M F A; Nicol, W

    2014-09-01

    Continuous anaerobic fermentations were performed in a biofilm reactor packed with Poraver® beads. Dilution rates (D) varied between 0.054 and 0.72 h(-1), and D-glucose and CO2 gas were used as carbon substrates. Steady-state conditions were shown to be repeatable and independent of the operational history. Production stability was achieved over periods exceeding 80 h at values of D below 0.32 h(-1). In these situations, steady-state variation (expressed as fluctuations in NaOH neutralisation flow rates) exhibited a standard deviation of less than 5 % while no indication of biofilm deactivation was detected. The total biomass amount was found to be independent of the dilution rate with an average dry concentration of 23.8 ± 2.9 g L(-1) obtained for all runs. This suggests that the attachment area controls the extent of biofilm accumulation. Specific succinic acid (SA) productivities, based on the total biomass amount, exhibited a substantial decrease with decreasing D. An SA volumetric productivity of 10.8 g L(-1) h(-1) was obtained at D = 0.7 h(-1)-the highest value reported to date in Actinobacillus succinogenes fermentations. SA yields on glucose increased with decreasing D, with a yield of 0.90 ± 0.01 g g(-1) obtained at a D of 0.054 h(-1). Production of formic acid approached zero with decreasing D, while the succinic to acetic acid ratio increased with decreasing D, resulting in an increasing SA yield on glucose.

  6. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc.

  7. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  8. Occurrence of indole-3-acetic Acid-producing bacteria on pear trees and their association with fruit russet.

    PubMed

    Lindow, S E; Desurmont, C; Elkins, R; McGourty, G; Clark, E; Brandl, M T

    1998-11-01

    ABSTRACT A relatively high percentage of epiphytic bacteria on pear leaf and fruit surfaces had the ability to produce indole-3-acetic acid (IAA) in culture media supplemented with tryptophan. While over 50% of the strains produced at least small amounts of IAA in culture, about 25% of the strains exhibited high IAA production as evidenced by both colorimetric and high-performance liquid chromatography analysis of culture supernatants. A majority of the strains that produced high amounts of IAA were identified as Erwinia herbicola (Pantoea agglomerans), while some strains of Pseudomonas syringae, Pseudomonas viridiflava, Pseudomonas fluorescens, Pseudomonas putida, and Rahnella aquaticus that produced high amounts of IAA also were found on pear. Fruit russeting was significantly increased in 39 out of 46 trials over an 8-year period in which IAA-producing bacteria were applied to trees compared with control trees. A linear relationship was observed between fruit russet severity and the logarithm of the population size of different IAA-producing bacteria on trees in the 30 days after inoculation, when normalized for the amount of IAA produced by each strain in culture. On average, the severity of fruit russet was only about 77% that on control trees when trees were treated at the time of bloom with Pseudomonas fluorescens strain A506, which does not produce IAA. Both total bacterial populations on pear in the 30-day period following full bloom and fruit russet severity varied greatly from year to year and in different commercial orchards over a 10-year period. There was a strong linear correlation between the logarithm of total bacterial population sizes and fruit russet severity.

  9. A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi

    PubMed Central

    2011-01-01

    Background Many secondary metabolites produced by filamentous fungi have potent biological activities, to which the producer organism must be resistant. An example of pharmaceutical interest is mycophenolic acid (MPA), an immunosuppressant molecule produced by several Penicillium species. The target of MPA is inosine-5'-monophosphate dehydrogenase (IMPDH), which catalyses the rate limiting step in the synthesis of guanine nucleotides. The recent discovery of the MPA biosynthetic gene cluster from Penicillium brevicompactum revealed an extra copy of the IMPDH-encoding gene (mpaF) embedded within the cluster. This finding suggests that the key component of MPA self resistance is likely based on the IMPDH encoded by mpaF. Results In accordance with our hypothesis, heterologous expression of mpaF dramatically increased MPA resistance in a model fungus, Aspergillus nidulans, which does not produce MPA. The growth of an A. nidulans strain expressing mpaF was only marginally affected by MPA at concentrations as high as 200 μg/ml. To further substantiate the role of mpaF in MPA resistance, we searched for mpaF orthologs in six MPA producer/non-producer strains from Penicillium subgenus Penicillium. All six strains were found to hold two copies of IMPDH. A cladistic analysis based on the corresponding cDNA sequences revealed a novel group constituting mpaF homologs. Interestingly, a conserved tyrosine residue in the original class of IMPDHs is replaced by a phenylalanine residue in the new IMPDH class. Conclusions We identified a novel variant of the IMPDH-encoding gene in six different strains from Penicillium subgenus Penicillium. The novel IMPDH variant from MPA producer P. brevicompactum was shown to confer a high degree of MPA