Science.gov

Sample records for acid production based

  1. Acid and base degraded products of ketorolac.

    PubMed

    Salaris, Margherita; Nieddu, Maria; Rubattu, Nicola; Testa, Cecilia; Luongo, Elvira; Rimoli, Maria Grazia; Boatto, Gianpiero

    2010-06-05

    The stability of ketorolac tromethamine was investigated in acid (0.5M HCl) and alkaline conditions (0.5M NaOH), using the same procedure reported by Devarajan et al. [2]. The acid and base degradation products were identified by liquid chromatography-mass spectrometry (LC-MS).

  2. Ionic liquid supported acid/base-catalyzed production of biodiesel.

    PubMed

    Lapis, Alexandre A M; de Oliveira, Luciane F; Neto, Brenno A D; Dupont, Jairton

    2008-01-01

    The transesterification (alcoholysis) reaction was successfully applied to synthesize biodiesel from vegetable oils using imidazolium-based ionic liquids under multiphase acidic and basic conditions. Under basic conditions, the combination of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMINTf2), alcohols, and K2CO3 (40 mol %) results in the production of biodiesel from soybean oil in high yields (>98%) and purity. H2SO4 immobilized in BMINTf2 efficiently promotes the transesterification reaction of soybean oil and various primary and secondary alcohols. In this multiphase process the acid is almost completely retained in the ionic liquid phase, while the biodiesel forms a separate phase. The recovered ionic liquid containing the acid could be reused at least six times without any significant loss in the biodiesel yield or selectivity. In both catalytic processes (acid and base), the reactions proceed as typical multiphasic systems in which the formed biodiesel accumulates as the upper phase and the glycerol by-product is selectively captured by the alcohol-ionic liquid-acid/base phase. Classical ionic liquids such as 1-n-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate are not stable under these acidic or basic conditions and decompose.

  3. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.

  4. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  5. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  6. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation.

  7. Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids.

    PubMed

    Chen, Shih-Yuan; Lao-Ubol, Supranee; Mochizuki, Takehisa; Abe, Yohko; Toba, Makoto; Yoshimura, Yuji

    2014-04-01

    Sulfonic acid-functionalized platelet SBA-15 mesoporous silica with an acid capacity of 2.44mmol H(+) g-cat(-1) (shortly termed 15SA-SBA-15-p) was one-pot synthesized by co-condensation method. When applied as solid acid catalyst in synthesis of Jatropha biodiesel fuel (BDF), the 15SA-SBA-15-p catalyst showed higher activity and resistances to water and free fatty acid (FFA) than commercial sulfonic resins of Amberlyst-15 and SAC-13. For the continuous Jatropha BDF production, a steady 75-78wt% of fatty acid methyl ester (FAME) content was obtained over 15SA-SBA-15-p catalyst at 150°C for 75h, whereas the Amberlyst-15 and SAC-13 catalysts were quickly deactivated due to the decomposition of thermally unstable framework and serious leaching of sulfonic acids. More importantly, the quality, stability and cold flow characteristic of Jatropha BDF synthesized by 15SA-SBA-15-p catalyst were better than those synthesized by Amberlyst-15 and SAC-13 catalysts, making the blending with petro-diesel an easy task.

  8. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  9. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.

    PubMed

    Mi, Le; Qin, Dandan; Cheng, Jie; Wang, Dan; Li, Sha; Wei, Xuetuan

    2017-03-01

    Two engineered Escherichia coli strains, DQ101 (MG1655 fadD (-))/pDQTES and DQ101 (MG1655 fadD (-))/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD (-))-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD (-))/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD (-))/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.

  10. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    PubMed Central

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  11. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.

    PubMed

    Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin

    2009-08-10

    A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.

  12. Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications

    PubMed Central

    Wang, Zhifeng; Liu, Jiangyun; Qin, Chunling; Yu, Hui; Xia, Xingchuan; Wang, Chaoyang; Zhang, Yanshan; Hu, Qingfeng; Zhao, Weimin

    2015-01-01

    Dealloying, a famous ancient etching technique, was used to produce nanoporous metals decades ago. With the development of dealloying techniques and theories, various interesting dealloying products including nanoporous metals/alloys, metal oxides and composites, which exhibit excellent catalytic, optical and sensing performance, have been developed in recent years. As a result, the research on dealloying products is of great importance for developing new materials with superior physical and chemical properties. In this paper, typical dealloying products from Cu-based metallic glasses after dealloying in hydrofluoric acid and hydrochloric acid solutions are summarized. Several potential application fields of these dealloying products are discussed. A promising application of nanoporous Cu (NPC) and NPC-contained composites related to the energy storage field is introduced. It is expected that more promising dealloying products could be developed for practical energy storage applications. PMID:28347030

  13. Pretreatment of spent sulphite liquor via ultrafiltration and nanofiltration for bio-based succinic acid production.

    PubMed

    Pateraki, Chrysanthi; Ladakis, Dimitrios; Stragier, Lutgart; Verstraete, Willy; Kookos, Ioannis; Papanikolaou, Seraphim; Koutinas, Apostolis

    2016-09-10

    Ultrafiltration and nanofiltration of spent sulphite liquor (SSL) has been employed to evaluate the simultaneous production of lignosulphonates and bio-based succinic acid using the bacterial strains Actinobacillus succinogenes and Basfia succiniciproducens. Ultrafiltration with membranes of 10, 5 and 3kDa molecular weight cut-off results in significant losses of lignosulphonates (26-50%) in the permeate stream, while nanofiltration using membrane with 500Da molecular weight cut-off results in high retention yields of lignosulphonates (95.6%) in the retentate stream. Fed-batch bioreactor cultures using permeates from ultrafiltrated SSL resulted in similar succinic acid concentration (27.5g/L) and productivity (0.4g/L/h) by both strains. When permeates from nanofiltrated SSL were used, the strain B. succiniciproducens showed the highest succinic acid concentration (33.8g/L), yield (0.58g per g of consumed sugars) and productivity (0.48g/L/h). The nanofiltration of 1t of thick spent sulphite liquor could lead to the production of 306.3kg of lignosulphonates and 52.7kg of succinic acid, whereas the ultrafiltration of 1t of thick spent sulphite liquor using a 3kDa membrane could result in the production of 237kg of lignosulphonates and 71.8kg of succinic acid when B. succiniproducens is used in both cases.

  14. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  15. A microalgae residue based carbon solid acid catalyst for biodiesel production.

    PubMed

    Fu, Xiaobo; Li, Dianhong; Chen, Jie; Zhang, Yuanming; Huang, Weiya; Zhu, Yi; Yang, Jun; Zhang, Chengwu

    2013-10-01

    Biodiesel production from microalgae is recognized as one of the best solutions to deal with the energy crisis issues. However, after the oil extraction from the microalgae, the microalgae residue was generally discarded or burned. Here a novel carbon-based solid acid catalyst derived from microalgae residue by in situ hydrothermal partially carbonization were synthesized. The obtained catalyst was characterized and subjected to both the esterification of oleic acid and transesterification of triglyceride to produce biodiesel. The catalyst showed high catalytic activity and can be regenerated while its activity can be well maintained after five cycles.

  16. Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis.

    PubMed

    Cho, Dae Haeng; Shin, Soo-Jeong; Bae, Yangwon; Park, Chulhwan; Kim, Yong Hwan

    2011-03-01

    The feasibility of ethanol production from the construction and demolition (C&D) wood waste acid hydrolysates was investigated. The chemical compositions of the classified C&D wood waste were analyzed. Concentrated sulfuric acid hydrolysis was used to obtain the saccharide hydrolysates and the inhibitors in the hydrolysates were also analyzed. The C&D wood waste composed of lumber, plywood, particleboard, and medium density fiberboard (MDF) had polysaccharide (cellulose, xylan, and glucomannan) fractions of 60.7-67.9%. The sugar composition (glucose, xylose, and mannose) of the C&D wood wastes varied according to the type of wood. The additives used in the wood processing did not appear to be released into the saccharide solution under acid hydrolysis. Although some fermentation inhibitors were detected in the hydrolysates, they did not affect the ethanol production by Pichia stipitis. The hexose sugar-based ethanol yield and ethanol yield efficiency were 0.42-0.46 g ethanol/g substrate and 84.7-90.7%, respectively. Therefore, the C&D wood wastes dumped in landfill sites could be used as a raw material feedstock for the production of bioethanol.

  17. Production of shikimic acid.

    PubMed

    Ghosh, Saptarshi; Chisti, Yusuf; Banerjee, Uttam C

    2012-01-01

    Shikimic acid is a key intermediate for the synthesis of the antiviral drug oseltamivir (Tamiflu®). Shikimic acid can be produced via chemical synthesis, microbial fermentation and extraction from certain plants. An alternative production route is via biotransformation of the more readily available quinic acid. Much of the current supply of shikimic acid is sourced from the seeds of Chinese star anise (Illicium verum). Supply from star anise seeds has experienced difficulties and is susceptible to vagaries of weather. Star anise tree takes around six-years from planting to bear fruit, but remains productive for long. Extraction and purification from seeds are expensive. Production via fermentation is increasing. Other production methods are too expensive, or insufficiently developed. In the future, production in recombinant microorganisms via fermentation may become established as the preferred route. Methods for producing shikimic acid are reviewed.

  18. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  19. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  20. A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria.

    PubMed

    Lu, Xuefeng

    2010-01-01

    Biofuels are expected to play a key role in the development of a sustainable, economical and environmentally safe source of energy. Microbes offer great potential for applications in technology based biofuel production. Three fundamental questions need to be addressed in order for the development of microbial synthesis of biofuels to be successful. Firstly, what energy resource platform could be used to make biofuels. Secondly, what type of biofuel is the ideal fuel molecule that should be targeted. Finally, what microbial system could be used to transform energy resources into the targeted biofuel molecules. In this perspective, the potential of using photosynthetic microbes (cyanobacteria in particular) in the solar energy driven conversion of carbon dioxide to fatty acid-based biofuels is explored.

  1. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  2. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.

    PubMed

    Meiswinkel, Tobias M; Rittmann, Doris; Lindner, Steffen N; Wendisch, Volker F

    2013-10-01

    Corynebacterium glutamicum possesses genes for glycerol kinase and glycerol-3-phosphate dehydrogenase that were shown to support slow growth with glycerol only when overexpressed from a plasmid. Pure glycerol and crude glycerol from biodiesel factories were tested for growth of recombinant strains expressing glpF, glpK and glpD from Escherichia coli. Some, but not all crude glycerol lots served as good carbon sources. Although the inhibitory compound(s) present in these crude glycerol lots remained unknown, the addition of substoichiometric glucose concentrations (below 10% by weight) enabled the utilization of some of the inhibitory crude glycerol lots. Besides growth, production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine as well as of the diamine putrescine based on crude glycerol qualities from biodiesel factories was demonstrated.

  3. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  4. Acid-base and catalytic properties of the products of oxidative thermolysis of double complex compounds

    NASA Astrophysics Data System (ADS)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.; Ivanov, Yu. V.

    2016-01-01

    Acid-base properties of the products of thermal decomposition of [M(A)6] x; [M1(L)6] y (where M is Co, Cr, Cu, Ni; M1 is Fe, Cr, Co; A is NH3, 1/2 en, 1/2 pn, CO(NH2)2; and L is CN, 1/2C2O4) binary complexes in air and their catalytic properties in the oxidation reaction of ethanol with atmospheric oxygen are studied. It is found that these thermolysis products are mixed oxides of the central atoms of complexes characterized by pH values of the zero charge point in the region of 4-9, OH-group sorption limits from 1 × 10-4 to 4.5 × 10-4 g-eq/g, OH-group surface concentrations of 10-50 nm-2 in 0.1 M NaCl solutions, and S sp from 3 to 95 m2/g. Their catalytic activity is estimated from the apparent rate constant of the conversion of ethanol in CO2. The values of constants are (1-6.5) × 10-5 s-1, depending on the gas flow rate and the S sp value.

  5. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGES

    Laurens, L. M. L.; Nagle, N.; Davis, R.; ...

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  6. Simultaneous production of nisin and lactic acid from cheese whey: optimization of fermentation conditions through statistically based experimental designs.

    PubMed

    Liu, Chuanbin; Liu, Yan; Liao, Wei; Wen, Zhiyou; Chen, Shulin

    2004-01-01

    A biorefinery process that utilizes cheese whey as substrate to simultaneously produce nisin, a natural food preservative, and lactic acid, a raw material for biopolymer production, was studied. The conditions for nisin biosynthesis and lactic acid coproduction by Lactococcus lactis subsp. lactis (ATCC 11454) in a whey-based medium were optimized using statistically based experimental designs. A Plackett-Burman design was applied to screen seven parameters for significant factors for the production of nisin and lactic acid. Nutrient supplements, including yeast extract, MgSO4, and KH2PO4, were found to be the significant factors affecting nisin and lactic acid formation. As a follow-up, a central-composite design was applied to optimize these factors. Second-order polynomial models were developed to quantify the relationship between nisin and lactic acid production and the variables. The optimal values of these variables were also determined. Finally, a verification experiment was performed to confirm the optimal values that were predicted by the models. The experimented results agreed well with the model prediction, giving a similar production of 19.3 g/L of lactic acid and 92.9 mg/L of nisin.

  7. Production of Antilisterial Bacteriocins from Lactic Acid Bacteria in Dairy-Based Media: A Comparative Study.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2015-12-01

    One hundred and eight strains of lactic acid bacteria (LAB) were screened for bacteriocin production by the modified deferred antagonism and agar well diffusion methods. When the modified deferred antagonism method was employed, 82 LAB strains showed inhibitory action against Listeria monocytogenes v7 ½a, whereas 26 LAB strains expressed no inhibition. Only 12 LAB strains exhibited inhibitory activity when the agar well diffusion method was used, 11 of which had been previously recognized as bacteriocin production positive (Bac(+)). Lactobacillus viridescens NRRL B-1951 was determined, for the first time, to produce an inhibitory compound with a proteinaceous nature. The inhibitory activity was observed in the presence of lipase, α-chymotrypsin, and trypsin, but no inhibition zone could be detected in the presence of proteinase K, indicating the proteinaceous nature of the inhibitory compound. The inhibitory compound was active against Lact. sake ATCC 15521 and Lact. plantarum NCDO 995. Bacteriocin production by the Bac(+) LAB strains was assessed in Lactobacillus MRS Broth as well as in dairy-based media such as nonfat milk, demineralized whey powder, and cheddar cheese whey supplemented with complex nutrient sources that are rich in nitrogen. Lact. sake ATCC 15521 and L. monocytogenes CWD 1002, CWD 1092, CWD 1157, CWD 1198, and v7 ½a were used as indicators. The inhibitory activities of the bacteriocins varied depending on the indicator strains and the growth media used. The LAB indicator strains were found to be more sensitive to inhibition by bacteriocins when compared to the listerial indicator strains. Among the listerial indicators, L. monocytogenes CWD 1002 and CWD 1198 were the most sensitive strains to the bacteriocins investigated in this study. Media composition had a significant influence on bacteriocin production and activity. When compared to demineralized whey powder medium and cheddar cheese whey medium supplemented with whey protein concentrate

  8. Bio-oil based biorefinery strategy for the production of succinic acid

    PubMed Central

    2013-01-01

    Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107

  9. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator.

    PubMed

    Liu, Di; Xiao, Yi; Evans, Bradley S; Zhang, Fuzhong

    2015-02-20

    Engineering metabolic biosynthetic pathways has enabled the microbial production of many useful chemicals. However, pathway productivities and yields are often limited by metabolic imbalances. Synthetic regulatory circuits have been shown to be able to balance engineered pathways, improving titers and productivities. Here we developed a negative feedback regulatory circuit based on a malonyl-CoA-based sensor-actuator. Malonyl-CoA is biosynthesized from acetyl-CoA by the acetyl-CoA carboxylase, which is the rate-limiting step for fatty acid biosynthesis. Overexpression of acetyl-CoA carboxylase improves fatty acid production, but slows down cell growth. We have devised a malonyl-CoA sensor-actuator that controls gene expression levels based on intracellular malonyl-CoA concentrations. This sensor-actuator is used to construct a negative feedback circuit to regulate the expression of acetyl-CoA carboxylase. The negative feedback circuit is able to up-regulate acetyl-CoA carboxylase expression when the malonyl-CoA concentration is low and down-regulate acetyl-CoA carboxylase expression when excess amounts of malonyl-CoA have accumulated. We show that the regulatory circuit effectively alleviates the toxicity associated with acetyl-CoA carboxylase overexpression. When used to regulate the fatty acid pathway, the feedback circuit increases fatty acid titer and productivity by 34% and 33%, respectively.

  10. CHARACTERIZATION OF ARSENOSUGARS AND ASSOCIATED DEGRADATION PRODUCTS FOLLOWING AN AGGRESSIVE ACID/BASE EXTRACTION PROCEDURE

    EPA Science Inventory

    The speciation of arsenic in seafood products is important for the determination of an improved toxicity based relative source (water vs. diet) contribution estimate. The two major sources of arsenic are drinking water and seafood ingestion. Drinking water contains predominatel...

  11. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.

    PubMed

    Zhang, Junhua; Li, Junke; Tang, Yanjun; Lin, Lu; Long, Minnan

    2015-10-05

    Recently, the production and utilization of 2,5-furandicarboxylic acid (FDCA) have become a hot research topic in catalyst field and polyester industry for its special chemical structure and a wide range of raw material source. FDCA is a potential replacement for the terephthalic acid monomer used in the production of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which opens up a new pathway for obtaining biomass-based polyester to replace or partially replace petroleum based polyester. Here, we mainly reviewed the catalytic pathway for the synthesis of FDCA derived from lignocellulosic biomass or from the related downstream products, such as glucose, 5-hydroxymethylfurfural (HMF). Moreover, the utilization of oxidation catalysts, the reaction mechanism, the existing limitations and unsolved challenges were also elaborated in detail. Therefore, we hope this mini review provides a helpful overview and insight to readers in this exciting research area.

  12. Monitoring of acid-base status of workers at a methyl methacrylate and polymethyl methacrylate production plant in Bulgaria.

    PubMed

    Prakova, Gospodinka R

    2003-01-01

    This study was carried out on 104 workers at three work operations and a control (nonproduction) area, within a methyl methacrylate (MMA)/polymethyl methacrylate (PMMA) production facility in Bulgaria. Airborne monitoring was conducted over a 10-year period for MMA and the reactant chemicals methanol and acetone cyanhydrine at the MMA operation, and MMA was monitored at the PMMA operation. Acid-base status of the workers was evaluated using traditional criteria (pH, pCO(2), pO(2), and HCO(3) in plasma). Data from retrospective monitoring of air levels of the chemicals were compared with the acid-base status of workers at the plant. In some cases air concentrations exceeded the threshold limit value, with the highest percentage of overexposure occurring with airborne MMA in the PMMA production operation. Acid-base disruption indicated by reductions in plasma pH and HCO(3) was found for all groups except the control population. The highest percentage reduction was associated with PMMA production workers. Additionally, respiratory acidosis, indicated by increased pCO(2), was noted in the MMA production and maintenance groups, implying that the response to MMA exposure may involve both the metabolic and respiratory acidosis component. This study was unique in that the combined exposure to MMA and the precursor chemical (methanol) were shown to produce the same effects in workers. It is suggested that when combined exposure occurs, disruption of acid-base status may occur. Enforcement of PPM requirements for coveralls and gloves should prevent skin contamination. Additionally, improvement of equipment in MMA and PMMA production areas is recommended: (1) automation of some manual operations; (2) use of respiratory protection during equipment cleaning; and (3) installation of local ventilation when applicable.

  13. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats.

    PubMed

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2015-01-01

    The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat.

  14. Effect of Feeding Palm Oil By-Products Based Diets on Muscle Fatty Acid Composition in Goats

    PubMed Central

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2015-01-01

    The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat. PMID:25789610

  15. [Effect of polymer material thermal destruction products on external respiration and acid-base status of blood].

    PubMed

    Tavolzhanova, T I; Rozova, K V

    2004-01-01

    In experiments on white laboratory rats the influence of fluor-, cyan- and sulfur-containing gaseous products, formed under thermodestruction of synthetic materials in normal and high environmental temperature on external respiration and some parameters of acid-base blood values was investigated. It was shown, that external respiration, due to considerable it depression, could not compensate neither hypoxic state, accompanied by hypoxemia, nor hypercapnia and acidosis, developed under the influence of toxic agents both in normal environmental temperature and in hyperthermia.

  16. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After

  17. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae.

    PubMed

    Wang, Guanyi; Huang, Di; Li, Yong; Wen, Jianping; Jia, Xiaoqiang

    2015-03-01

    In this work, wheat bran (WB) was utilized as feedstock to synthesize fumaric acid by Rhizopus oryzae. Firstly, the pretreatment process of WB by dilute sulfuric acid hydrolysis undertaken at 100°C for 30min offered the best performance for fumaric acid production. Subsequently, through optimizing the seed culture medium, a suitable morphology (0.55mm pellets diameter) of R. oryzae was obtained. Furthermore, a metabolic-based approach was developed to profile the differences of intracellular metabolites concentration of R. oryzae between xylose (the abundant sugar in wheat bran hydrolysate (WBH)) and glucose metabolism. The xylitol, sedoheptulose 7-phosphate, ribulose 5-phosphate, glucose 6-phosphate, proline and serine were responsible for fumaric acid biosynthesis limitation in xylose fermentation. Consequently, regulation strategies were proposed, leading to a 149% increase in titer (up to 15.4g/L). Finally, by combinatorial regulation strategies the highest production was 20.2g/L from WBH, 477% higher than that of initial medium.

  18. Catalytic biodiesel production mediated by amino acid-based protic salts.

    PubMed

    Li, Jingbo; Guo, Zheng

    2017-02-06

    Hetero-/homo-geneous acid catalysts are effective catalysts for biodiesel produced from oils containing high free fatty acids. The protic salts synthesized from natural amino acids were examined for their catalytic activity and efficiency for esterification of oleic acid after structural identification and characterization. The melting points of the protic salts were measured. In the esterification reaction of oleic acid with methanol, [Asp][NO3] performed the best, correlating to its higher Hammett acidity. The optimal reaction conditions for esterification of oleic acid to achieve 97% biodiesel yield were: temperature 70 °C, catalyst 10% (w/w, on oleic acid basis), methanol to oleic acid ratio 7.5:1, and 5 h. [Asp][NO3] could be a generally good catalyst for esterification of oleic acid with alcohols with chain length up to 6. The biodiesel yield of 93.86% was obtained from palm fatty acid distillate, implying potential industrial application of the catalyst. Kinetic study indicated that the reaction followed a pseudo-first order reaction, with activation energy and pre-exponential of 57.36 kJ/mol and 44.24×105 min-1. In conclusion, the aspartic acid derived protic salt is a promising, operational simply, sustainable, renewable, and possible biodegradable catalyst for converting high content of free fatty acids into biodiesel.

  19. Production of cyclopiazonic acid by Penicillium commune isolated from dry-cured ham on a meat extract-based substrate.

    PubMed

    Sosa, María J; Córdoba, Juan J; Díaz, Carmen; Rodríguez, Mar; Bermúdez, Elena; Asensio, Miguel A; Núñez, Félix

    2002-06-01

    Penicillium commune, a mold frequently found on dry-cured meat products, is able to synthesize the mycotoxin cyclopiazonic acid (CPA). To evaluate the hazard due to CPA on such foods, the ability of P. commune to grow and produce CPA at water activities (a(w)) in the range of 0.99 to 0.90 with a meat extract-based medium from 12 to 30 degrees C was determined. CPA was quantified by high-pressure liquid chromatography and mass spectrometry. P. commune was able to grow at every a(w) and temperature tested. The optimal environmental conditions for growth were 20 to 25 degrees C, at 0.97 to 0.96 a(w), but the highest amount of CPA was produced at 30 degrees C, 0.96 a(w). No direct correlation between growth rate and CPA production was assessed. Temperature seems to be the most important factor influencing CPA production. However, there was an interaction between temperature and a(w) that significantly (P < 0.001) affected growth and CPA production. An a(w) of 0.90 had a marked effect, depressing growth and CPA production. Meat extract-based medium proved to be an appropriate substrate for CPA biosynthesis by P. commune under a wide range of conditions.

  20. Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery.

    PubMed

    de Vasconcelos, Solange Maria; Santos, Andrelina Maria Pinheiro; Rocha, George Jackson Moraes; Souto-Maior, Ana Maria

    2013-05-01

    The influence of time (8-24 min), temperature (144-186 °C) and phosphoric acid concentration (0.05-0.20%, w/v) on the pretreatment of sugarcane bagasse in a 20 L batch rotary reactor was investigated. The efficiency of the pretreatment was verified by chemical characterization of the solid fraction of the pretreated bagasse and the conversion of cellulose to glucose by enzymatic hydrolysis. Models representing the percentage of cellulose, hemicelluloses, lignin, solubilized hemicellulose and the enzymatic conversion of cellulose to glucose were predictive and significant. Phosphoric acid concentration of 0.20% at temperature of 186 °C, during 8 and 24 min, was shown to be very effective in solubilizing hemicellulose from sugarcane bagasse, reaching solubilization of 96% and 98%, respectively. Relatively low amounts of inhibitors were produced, and the phosphoric acid remaining in the hemicellulosic hydrolysate is at adequate levels for supplying phosphorous requirement during subsequent fermentation.

  1. Particle size distribution of hydrocyanic acid in gari, a cassava-based product.

    PubMed

    Maduagwu, E N; Fafunso, M

    1980-12-01

    A reciprocal relationship was observed between the cyanide content of gari and particle size. Hydrocyanic acid (HCN) content was positively correlated (r = 0.62) with sugar content but the correlation with starch content was poor (r = 0.33). From both the nutritional and toxicological standpoints, it would appear that larger particles size in gari is beneficial.

  2. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments.

    PubMed

    Yang, Xue; Liu, Xiang; Chen, Si; Liu, Guangmin; Wu, Shuyan; Wan, Chunli

    2016-01-01

    Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18-3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.

  3. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments

    PubMed Central

    Yang, Xue; Liu, Xiang; Chen, Si; Wu, Shuyan

    2016-01-01

    Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences. PMID:28096735

  4. Novel method based on chromogenic media for discrimination and selective enumeration of lactic acid bacteria in fermented milk products.

    PubMed

    Galat, Anna; Dufresne, Jérôme; Combrisson, Jérôme; Thépaut, Jérôme; Boumghar-Bourtchai, Leyla; Boyer, Mickaël; Fourmestraux, Candice

    2016-05-01

    Microbial analyses of fermented milk products require selective methods to discriminate between close species simultaneously present in high amounts. A culture-based method combining novel chromogenic agar media and appropriate incubation conditions was developed to enumerate lactic acid bacteria (LAB) strains in fermented milk. M1 agar, containing two chromogenic substrates, allowed selective enumeration of Lactobacillus rhamnosus, two strains of Lactobacillus paracasei subsp. paracasei and Streptococcus salivarius subsp. thermophilus based on differential β-galactosidase and β-glucosidase activities. Depending on the presence of some or all of the above strains, M1 agar was supplemented with L-rhamnose or vancomycin and incubations were carried out at 37 °C or 44 °C to increase selectivity. A second agar medium, M2, containing one chromogenic substrates was used to selectively enumerate β-galactosidase producing Lactobacillus delbrueckii subsp. bulgaricus at 47 °C. By contrast with the usual culture media, the chromogenic method allowed unambiguous enumeration of each species, including discrimination between the two L. paracasei, up to 10(9) CFU/g of fermented milk. In addition, the relevance of the method was approved by enumerating reference ATCC strains in pure cultures and fermented milk product. The method could also be used for enumerations on non-Danone commercial fermented milk products containing strains different from those used in this study, showing versatility of the method. To our knowledge, this is the first description of a chromogenic culture method applied to selective enumeration of LAB.

  5. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  6. Organic Acid Production by Basidiomycetes

    PubMed Central

    Takao, Shoichi

    1965-01-01

    Sixty-seven strains belonging to 47 species of Basidiomycetes were examined for their acid-producing abilities in glucose media, in both the presence and absence of CaCO3, in stationary and shake cultures. Some strains were found to produce large quantities of oxalic acid. The oxalic acid-producing strains could be separated into two groups. Strains of one group (mostly brown-rot fungi) were able to produce oxalic acid, regardless of whether CaCO3 was present in the medium. Strains of the other group (mostly white-rot fungi) were characterized by their ability to produce oxalic acid only when CaCO3 was added to the medium. With the latter group, shake-culturing was generally more effective than stationary culturing in respect to acid production. In the CaCO3-containing media, Schizophyllum commune, Merulius tremellosus, and Porodisculus pendulus were found to produce substantial amounts of L-malic acid as a main metabolic product, along with small quantities of oxalic and other acids in shake cultures. Especially, S. commune and M. tremellosus may be employed as malic acid-producing species. PMID:5867653

  7. Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    The organo-Lewis acids are novel triarylboranes which are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.

  8. Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    The organo-Lewis acids are novel triarylboranes which are are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.

  9. The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans

    PubMed Central

    Adeva-Andany, María M.; Carneiro-Freire, Natalia; Donapetry-García, Cristóbal; Rañal-Muíño, Eva; López-Pereiro, Yosua

    2014-01-01

    Human plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions. In addition, the ionic product for water has to be constant. Therefore, the plasma concentration of hydrogen ions depends on the plasma ionic composition. Variations in the concentration of plasma ions that alter the relative proportion of anions and cations predictably lead to a change in the plasma concentration of hydrogen ions by driving adaptive adjustments in water ionization that allow plasma electroneutrality while maintaining constant the ionic product for water. The accumulation of plasma anions out of proportion of cations induces an electrical imbalance compensated by a fall of hydroxide ions that brings about a rise in hydrogen ions (acidosis). By contrast, the deficiency of chloride relative to sodium generates plasma alkalosis by increasing hydroxide ions. The adjustment of plasma bicarbonate concentration to these changes is an important compensatory mechanism that protects plasma pH from severe deviations. PMID:24877130

  10. Determination of whey protein content in bovine milk-based infant formula finished products using amino acids calculation method: AOAC First Action 2012.08.

    PubMed

    Feng, Ping; Baugh, Steve

    2013-01-01

    A method for the calculation of the whey protein fraction was developed for milk-based infant formula products based upon amino acid ratio calculated from asparaginelaspartic acid, alanine, proline, and phenylalanine amino acid data. Historical and literature amino acid data were combined to establish the reference amino acid values used in the validation study. This method has been evaluated for accuracy versus label claim for 12 products, with results from 90 to 107.5% of label claim and an overall average of 98.7%. Repeatability and intermediate precision were determined over 4 different days. Repeatability results were 4.75, 2.06, 4.18, and 2.44% RSD, respectively, with an overall intermediate precision of 3.68% RSD. Since the amino acid profile of infant formula finished products depends on the amino acid profile of ingredients used, the applicability of the method needs to be confirmed for specific types of infant formula, for which data will be gathered. Additional reference material data are being gathered for better estimation of milk and whey reference values, which are based on being normalized to total amino acid content, during the two year AOAC INTERNATIONAL Official Methods of Analysis method approval process.

  11. Evaluation of an integrated biorefinery based on fractionation of spent sulphite liquor for the production of an antioxidant-rich extract, lignosulphonates and succinic acid.

    PubMed

    Alexandri, Maria; Papapostolou, Harris; Komaitis, Michael; Stragier, Lutgart; Verstraete, Willy; Danezis, Georgios P; Georgiou, Constantinos A; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2016-08-01

    Spent sulphite liquor (SSL) has been used for the production of lignosulphonates (LS), antioxidants and bio-based succinic acid. Solvent extraction of SSL with isopropanol led to the separation of approximately 80% of the total LS content, whereas the fermentations carried out using the pretreated SSL with isopropanol led to the production of around 19g/L of succinic acid by both Actinobacillus succinogenes and Basfia succiniciproducens. Fractionation of SSL via nanofiltration to separate the LS and solvent extraction using ethyl acetate to separate the phenolic compounds produced a detoxified sugar-rich stream that led to the production of 39g/L of succinic acid by B. succiniciproducens. This fractionation scheme resulted also in the production of 32.4g LS and 1.15g phenolic-rich extract per 100g of SSL. Both pretreatment schemes removed significant quantities of metals and heavy metals. This novel biorefinery concept could be integrated in acidic sulphite pulping mills.

  12. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  13. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets.

    PubMed

    van Gastelen, S; Antunes-Fernandes, E C; Hettinga, K A; Klop, G; Alferink, S J J; Hendriks, W H; Dijkstra, J

    2015-03-01

    The objective of this study was to determine the effects of replacing grass silage (GS) with corn silage (CS) in dairy cow diets on enteric methane (CH4) production, rumen volatile fatty acid concentrations, and milk fatty acid (FA) composition. A completely randomized block design experiment was conducted with 32 multiparous lactating Holstein-Friesian cows. Four dietary treatments were used, all having a roughage-to-concentrate ratio of 80:20 based on dry matter (DM). The roughage consisted of either 100% GS, 67% GS and 33% CS, 33% GS and 67% CS, or 100% CS (all DM basis). Feed intake was restricted (95% of ad libitum DM intake) to avoid confounding effects of DM intake on CH4 production. Nutrient intake, apparent digestibility, milk production and composition, nitrogen (N) and energy balance, and CH4 production were measured during a 5-d period in climate respiration chambers after adaptation to the diet for 12 d. Increasing CS proportion linearly decreased neutral detergent fiber and crude protein intake and linearly increased starch intake. Milk production and milk fat content (on average 23.4 kg/d and 4.68%, respectively) were not affected by increasing CS inclusion, whereas milk protein content increased quadratically. Rumen variables were unaffected by increasing CS inclusion, except the molar proportion of butyrate, which increased linearly. Methane production (expressed as grams per day, grams per kilogram of fat- and protein-corrected milk, and as a percent of gross energy intake) decreased quadratically with increasing CS inclusion, and decreased linearly when expressed as grams of CH4 per kilogram of DM intake. In comparison with 100% GS, CH4 production was 11 and 8% reduced for the 100% CS diet when expressed per unit of DM intake and per unit fat- and protein-corrected milk, respectively. Nitrogen efficiency increased linearly with increased inclusion of CS. The concentration of trans C18:1 FA, C18:1 cis-12, and total CLA increased quadratically, and

  14. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in murrah buffaloes

    NASA Astrophysics Data System (ADS)

    Aarif, Ovais; Aggarwal, Anjali

    2016-03-01

    This study aimed to evaluate the impact of evaporative cooling during late gestation on physiological responses, blood gas and acid base balance and subsequent milk production of Murrah buffaloes. To investigate this study sixteen healthy pregnant dry Murrah buffaloes (second to fourth parity) at sixty days prepartum were selected in the months of May to June and divided into two groups of eight animals each. One group of buffaloes (Cooled/CL) was managed under fan and mist cooling system during dry period. Group second buffaloes (Noncooled/NCL) remained as control without provision of cooling during dry period. The physiological responses viz. Rectal temperature (RT), Respiratory rate (RR) and Pulse rate were significantly ( P < 0.05) lower in group 2, with the provision of cooling. Skin surface temperature at thorax was significantly lower in cooled group relative to noncooled group. Blood pH and pO2 were significantly ( P < 0.05) higher in heat stressed group as compared to the cooled group. pCO2, TCO2, HCO3, SBC, base excess in extracellular fluid (BEecf), base excess in blood (BEb), PCV and Hb were significantly ( P < 0.05) higher in cooled group as compared to noncooled group. DMI was significantly ( P < 0.05) higher in cooled relative to noncooled animals. Milk yield, FCM, fat yield, lactose yield and total solid yield was significantly higher ( P < 0.05) in cooled group of Murrah buffaloes.

  15. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in murrah buffaloes.

    PubMed

    Aarif, Ovais; Aggarwal, Anjali

    2016-03-01

    This study aimed to evaluate the impact of evaporative cooling during late gestation on physiological responses, blood gas and acid base balance and subsequent milk production of Murrah buffaloes. To investigate this study sixteen healthy pregnant dry Murrah buffaloes (second to fourth parity) at sixty days prepartum were selected in the months of May to June and divided into two groups of eight animals each. One group of buffaloes (Cooled/CL) was managed under fan and mist cooling system during dry period. Group second buffaloes (Noncooled/NCL) remained as control without provision of cooling during dry period. The physiological responses viz. Rectal temperature (RT), Respiratory rate (RR) and Pulse rate were significantly (P < 0.05) lower in group 2, with the provision of cooling. Skin surface temperature at thorax was significantly lower in cooled group relative to noncooled group. Blood pH and pO2 were significantly (P < 0.05) higher in heat stressed group as compared to the cooled group. pCO2, TCO2, HCO3, SBC, base excess in extracellular fluid (BEecf), base excess in blood (BEb), PCV and Hb were significantly (P < 0.05) higher in cooled group as compared to noncooled group. DMI was significantly (P < 0.05) higher in cooled relative to noncooled animals. Milk yield, FCM, fat yield, lactose yield and total solid yield was significantly higher (P < 0.05) in cooled group of Murrah buffaloes.

  16. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  17. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  18. Oleogels, A Promising Structured Oils For Decreasing Saturated Fatty Acid Concentrations: Production and Food-Based Applications.

    PubMed

    PehlivanoĞlu, Halime; Demirci, Mehmet; Toker, Omer Said; Konar, Nevzat; Karasu, Salih; Sagdic, Osman

    2016-11-10

    Oils and fats are widely used in the food formulations in order to improve nutritional and some quality characteristics of food products. Solid fats produced from oils by hydrogenization, interesterification and fractionation processes are widely used in different foodstuffs for these aims. In recent years, consumer awareness of relation between diet and health has increased which can cause worry about solid fat including products in terms of their high saturated fatty acid and trans fatty acid contents. Therefore, different attempts have been carried out to find alternative ways to produce solid fat with low saturated fatty acid content. One of the promising way is using oleogels, structuring oils with oleogelators. In this review, history, raw materials and production methods of the oleogels and their functions in oleogel quality were mentioned. Moreover, studies related with oleogel usage in different products were summarized and positive and negative aspects of oleogel were also mentioned. Considering the results of the related studies, it can be concluded that oleogels can be used in the formulation of bakery products, breakfast spreads, margarines, chocolates and chocolate-derived products and some of the meat products.

  19. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.

    PubMed

    Zhao, Zijian; Xie, Xiaona; Wang, Zhi; Tao, Yanchun; Niu, Xuedun; Huang, Xuri; Liu, Li; Li, Zhengqiang

    2016-06-01

    Lactic acid bacteria immobilization methods have been widely used for lactic acid production. Until now, the most common immobilization matrix used is calcium alginate. However, Ca-alginate gel disintegrated during lactic acid fermentation. To overcome this deficiency, we developed an immobilization method in which Lactobacillus rhamnosus cells were successfully encapsulated into an ordered mesoporous silica-based material under mild conditions with a high immobilization efficiency of 78.77% by using elemental analysis. We also optimized the cultivation conditions of the immobilized L. rhamnosus and obtained a high glucose conversion yield of 92.4%. Furthermore, L. rhamnosus encapsulated in mesoporous silica-based material exhibited operational stability during repeated fermentation processes and no decrease in lactic acid production up to 8 repeated batches.

  20. Toward Sustainable Amino Acid Production.

    PubMed

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    2016-11-22

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  1. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  2. Enhanced L-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis.

    PubMed

    Tian, Xiwei; Wang, Yonghong; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-03-01

    This study investigated cell physiological and metabolic responses of Lactobacillus paracasei to osmotic stresses. Both cellular fatty acid composition and metabolite profiling were responded by increasing unsaturated and epoxy-fatty acid proportions, as well as accumulating some specific intracellular metabolites. Simultaneously, metabolite profiling was adopted to rationally and systematically discover potential osmoprotectants. Consequently, exogenous addition of proline or aspartate was validated to be a feasible and efficacious approach to improve cell growth under hyperosmotic stress in shake flasks. Particularly, with 5-L cultivation system, L-lactic acid concentration increased from 108 to 150 g/L during the following 16-h fermentation in 2 g/L proline addition group, while it only increased from 110 to 140 g/L in no proline addition group. Moreover, glucose consumption rate with proline addition reached 3.49 g/L/h during this phase, 35.8 % higher than that with no proline addition. However, extreme high osmotic pressure would significantly limit the osmoprotection of proline, and the osmolality threshold for L. paracasei was approximately 3600 mOsm/kg. It was suggested that proline principally played a role as a compatible solute accumulated in the cell for hyperosmotic preservation. The strategies of exploiting osmotic protectant with metabolite profiling and enhancing L-lactic acid production by osmoprotectant addition would be potential to provide a new insight for other microorganisms and organic acids production.

  3. Acid preservation systems for food products

    SciTech Connect

    Tiberio, J. E.; Cirigiano, M. C.

    1984-10-16

    Fumaric acid is used in combination with critical amounts of acetic acid to preserve acid containing food products from microbiological spoilage in the absence of or at reduced levels of chemical preservative.

  4. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis.

    PubMed

    Harding, K G; Dennis, J S; von Blottnitz, H; Harrison, S T L

    2007-05-31

    Polymers based on olefins have wide commercial applicability. However, they are made from non-renewable resources and are characterised by difficulty in disposal where recycle and re-use is not feasible. Poly-beta-hydroxybutyric acid (PHB) provides one example of a polymer made from renewable resources. Before motivating its widespread use, the advantages of a renewable polymer must be weighed against the environmental aspects of its production. Previous studies relating the environmental impacts of petroleum-based and bio-plastics have centred on the impact categories of global warming and fossil fuel depletion. Cradle-to-grave studies report equivalent or reduced global warming impacts, in comparison to equivalent polyolefin processes. This stems from a perceived CO(2) neutral status of the renewable resource. Indeed, no previous work has reported the results of a life cycle assessment (LCA) giving the environmental impacts in all major categories. This study investigates a cradle-to-gate LCA of PHB production taking into account net CO(2) generation and all major impact categories. It compares the findings with similar studies of polypropylene (PP) and polyethylene (PE). It is found that, in all of the life cycle categories, PHB is superior to PP. Energy requirements are slightly lower than previously observed and significantly lower than those for polyolefin production. PE impacts are lower than PHB values in acidification and eutrophication.

  5. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose.

    PubMed

    Pan, Xinrong; Liu, Huanhuan; Liu, Jiao; Wang, Cheng; Wen, Jianping

    2016-12-01

    In order to relieve the toxicity of furfural on Rhizopus oryzae fermentation, the molecular mechanism of R. oryzae responding to furfural stress for fumaric acid-production was investigated by omics-based approaches. In metabolomics analysis, 29 metabolites including amino acid, sugars, polyols and fatty acids showed significant changes for maintaining the basic cell metabolism at the cost of lowering fumaric acid production. To further uncover the survival mechanism, lipidomics was carried out, revealing that phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and polyunsaturated acyl chains might be closely correlated with R. oryzae's adapting to furfural stress. Based on the above omics analysis, lecithin, inositol and soybean oil were exogenously supplemented separately with an optimized concentration in the presence of furfural, which increased fumaric acid titer from 5.78g/L to 10.03g/L, 10.05g/L and 12.13g/L (increased by 73.5%, 73.8% and 110%, respectively). These findings provide a methodological guidance for hemicellulose-fumaric acid development.

  6. Kinetic modeling of free fatty acid production in Escherichia coli based on continuous cultivation of a plasmid free strain.

    PubMed

    Youngquist, J Tyler; Lennen, Rebecca M; Ranatunga, Don R; Bothfeld, William H; Marner, Wesley D; Pfleger, Brian F

    2012-06-01

    The microbial production of free fatty acids (FFAs) and reduced derivatives is an attractive process for the renewable production of diesel fuels. Toward this goal, a plasmid-free strain of Escherichia coli was engineered to produce FFAs by integrating three copies of a thioesterase gene from Umbellularia californica (BTE) under the control of an inducible promoter onto the chromosome. In batch culture, the resulting strain produced identical titers to a previously reported strain that expressed the thioesterase from a plasmid. The growth rate, glucose consumption rate, and FFA production rate of this strain were studied in continuous cultivation under carbon limitation. The highest yield of FFA on glucose was observed at a dilution rate of 0.05 h(-1) with the highest specific productivity observed at a dilution rate of 0.2 h(-1). The observed yields under the lowest dilution rate were 15% higher than that observed in batch cultures. An increase in both productivity and yield (≈ 40%) was observed when the composition of the nutrients was altered to shift the culture toward non-carbon limitation. A deterministic model of the production strain has been proposed and indicates that maintenance requirements for this strain are significantly higher than wild-type E. coli.

  7. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  8. Mixed Acid-Base Disorders, Hydroelectrolyte Imbalance and Lactate Production in Hypercapnic Respiratory Failure: The Role of Noninvasive Ventilation

    PubMed Central

    Terzano, Claudio; Di Stefano, Fabio; Conti, Vittoria; Di Nicola, Marta; Paone, Gregorino; Petroianni, Angelo; Ricci, Alberto

    2012-01-01

    Background Hypercapnic Chronic Obstructive Pulmonary Disease (COPD) exacerbation in patients with comorbidities and multidrug therapy is complicated by mixed acid-base, hydro-electrolyte and lactate disorders. Aim of this study was to determine the relationships of these disorders with the requirement for and duration of noninvasive ventilation (NIV) when treating hypercapnic respiratory failure. Methods Sixty-seven consecutive patients who were hospitalized for hypercapnic COPD exacerbation had their clinical condition, respiratory function, blood chemistry, arterial blood gases, blood lactate and volemic state assessed. Heart and respiratory rates, pH, PaO2 and PaCO2 and blood lactate were checked at the 1st, 2nd, 6th and 24th hours after starting NIV. Results Nine patients were transferred to the intensive care unit. NIV was performed in 11/17 (64.7%) mixed respiratory acidosis–metabolic alkalosis, 10/36 (27.8%) respiratory acidosis and 3/5 (60%) mixed respiratory-metabolic acidosis patients (p = 0.026), with durations of 45.1±9.8, 36.2±8.9 and 53.3±4.1 hours, respectively (p = 0.016). The duration of ventilation was associated with higher blood lactate (p<0.001), lower pH (p = 0.016), lower serum sodium (p = 0.014) and lower chloride (p = 0.038). Hyponatremia without hypervolemic hypochloremia occurred in 11 respiratory acidosis patients. Hypovolemic hyponatremia with hypochloremia and hypokalemia occurred in 10 mixed respiratory acidosis–metabolic alkalosis patients, and euvolemic hypochloremia occurred in the other 7 patients with this mixed acid-base disorder. Conclusions Mixed acid-base and lactate disorders during hypercapnic COPD exacerbations predict the need for and longer duration of NIV. The combination of mixed acid-base disorders and hydro-electrolyte disturbances should be further investigated. PMID:22539963

  9. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  10. Microbial production of amino acids in Japan.

    PubMed

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  11. Production of carboxylic acid and salt co-products

    SciTech Connect

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  12. [Progress in microbial production of succinic acid].

    PubMed

    Liu, Rongming; Liang, Liya; Wu, Mingke; Jiang, Min

    2013-10-01

    Succinic acid is one of the key intermediates in the tricarboxylic acid cycle (TCA)and has huge potentials in biopolymer, food, medicine applications. This article reviews recent research progress in the production of succinic acid by microbial fermentation, including discovery and screening of the succinic-acid-producing microbes, the progress of genetic engineering strategy and metabolic engineering technology for construction of succinic acid-producing strains, and fermentation process control and optimization. Finally, we discussed the limitation of current progress and proposed the future research needs for microbial production of succinic acid.

  13. Acidic organic compounds in beverage, food, and feed production.

    PubMed

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  14. Inhibitory Effect of Oleic Acid on Octanoylated Ghrelin Production.

    PubMed

    Oiso, Shigeru; Nobe, Miyuki; Iwasaki, Syuhei; Nii, Wakana; Goto, Natsumi; Seki, Yukari; Nakajima, Kensuke; Nakamura, Kazuo; Kariyazono, Hiroko

    2015-01-01

    Ghrelin is a growth hormone-releasing peptide that also displays orexigenic activity. Since serine-3 acylation with octanoylate (octanoylation) is essential for the orexigenic activity of ghrelin, suppression of octanoylation could lead to amelioration or prevention of obesity. To enable the exploration of inhibitors of octanoylated ghrelin production, we developed a cell-based assay system using AGS-GHRL8 cells, in which octanoylated ghrelin concentration increases in the presence of octanoic acid. Using this assay system, we investigated whether fatty acids contained in foods or oils, such as acetic acid, stearic acid, oleic acid, linoleic acid, and α-linolenic acid, have inhibitory effects on octanoylated ghrelin production. Acetic acid did not suppress the increase in octanoylated ghrelin production in AGS-GHRL8 cells, which was induced by the addition of octanoic acid. However, stearic acid, oleic acid, linoleic acid, and α-linolenic acid significantly suppressed octanoylated ghrelin production, with the effect of oleic acid being the strongest. Additionally, oleic acid decreased the serum concentration of octanoylated ghrelin in mice. The serum concentration of des-acyl ghrelin (without acyl modification) was also decreased, but the decrease was smaller than that of octanoylated ghrelin. Decreased octanoylated ghrelin production likely resulted from post-translational ghrelin processing, as there were no significant differences in gene expression in the stomach between oleic acid-treated mice and controls. These results suggest that oleic acid is a potential inhibitor of octanoylated ghrelin production and that our assay system is a valuable tool for screening compounds with suppressive effects on octanoylated ghrelin production.

  15. Construction of efficient Streptococcus zooepidemicus strains for hyaluoronic acid production based on identification of key genes involved in sucrose metabolism.

    PubMed

    Zhang, Xuzhen; Wang, Man; Li, Tuanjie; Fu, Lixia; Cao, Wei; Liu, Hao

    2016-12-01

    Biosynthesis of polysaccharide hyaluoronic acid (HA) by Streptococcus zooepidemicus is a carbon-intensive process. The carbon flux and factor(s) restricting HA yield were not well understood. Here, we investigated the function of genes involved in sucrose metabolism and identified targets limiting HA yield, which were exploited to construct efficient S. zooepidemicus strains for HA production. The sucrose uptake was addressed by deletion of scrA and scrB, which encodes sucrose-PTS permease and sucrose-6-phosphate hydrolase, respectively. We found that scrB was essential for the growth of S. zooepidemicus and HA biosynthesis, and accumulation of sucrose-6-phosphate was toxic. ΔscrB could not grow in THY-sucrose medium, while ΔscrA and ΔscrAΔscrB showed negligible growth defects. Overexpression of scrA significantly reduced biomass and HA production, while overexpression of scrB resulted in 26% increase of biomass and 30% increase of HA yield. We revealed that fructose-6-phosphate for HA biosynthesis mainly originates from glucose-6-phosphate. Deletion of scrK, a gene encoding hexokinase, led to 11% reduction of biomass and 12% decrease of HA yield, while deletion of hasE, a gene encoding phosphoglucoisomerase, resulted in the abolishment of HA biosynthesis and a significantly slow growth. We found that HA biosynthesis could be improved by directing carbon flux to fructose-6-phosphate. Deletion of fruA encoding the EII of fructose-PTS and fruK encoding phosphofructokinase showed no apparent effect on cell growth, but resulted in 22 and 27% increase of HA yield, respectively. Finally, a strain with 55% increase of HA was constructed by overexpression of scrB in ΔfruK. These results provide a solid foundation for further metabolic engineering of S. zooepidemicus for highly efficient HA production.

  16. [Stewart's acid-base approach].

    PubMed

    Funk, Georg-Christian

    2007-01-01

    In addition to paCO(2), Stewart's acid base model takes into account the influence of albumin, inorganic phosphate, electrolytes and lactate on acid-base equilibrium. It allows a comprehensive and quantitative analysis of acid-base disorders. Particularly simultaneous and mixed metabolic acid-base disorders, which are common in critically ill patients, can be assessed. Stewart's approach is therefore a valuable tool in addition to the customary acid-base approach based on bicarbonate or base excess. However, some chemical aspects of Stewart's approach remain controversial.

  17. Toward biotechnological production of adipic acid and precursors from biorenewables.

    PubMed

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid.

  18. In situ FTIR spectroscopic assessment of methylbutynol catalytic conversion products in relation to the surface acid-base properties of systematically modified aluminas

    NASA Astrophysics Data System (ADS)

    Mekhemer, Gamal A. H.; Zaki, Mohamed I.

    2016-10-01

    The present investigation was designed to assess the credibility of methylbutynol (MBOH) as an infrared (IR) reactive probe molecule for surface acid-base properties of metal oxides. Accordingly, pure alumina was systematically modified with varied amounts (0.5-10 wt.%) of K+ or SO42 - additives. Then, the influence of nature and amount of the additive on the following alumina properties were examined: (i) bulk composition and structure by X-ray powder diffractometry and ex-situ IR spectroscopy, (ii) surface area and net charge by N2 sorptiometry and pH-metry, respectively, and (iii) nature and strength of exposed surface acid sites by in-situ IR spectroscopy of adsorbed pyridine at ambient and higher temperatures. Results obtained were correlated with IR-identified product distribution of MBOH catalytic decomposition/conversion at 200 °C. It is thereby concluded that MBOH is superior to conventional IR inactive probe molecules in gauging sensitively the prevailing acid or base character, availability of base sites, relative population of Bronsted to Lewis acid sites, and strength and reactivity of the sites exposed on metal oxide surfaces. Hence, all that is needed to get this information is to handle IR spectra taken from the gas phase, a task that is experimentally much more accessible than taking spectra from adsorbed species of irreactive probe molecules.

  19. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  20. Survey of the fatty acid composition of retail milk differing in label claims based on production management practices.

    PubMed

    O'Donnell, A M; Spatny, K P; Vicini, J L; Bauman, D E

    2010-05-01

    Consumers are becoming increasingly health conscious, and food product choices have expanded. Choices in the dairy case include fluid milk labeled according to production management practices. Such labeling practices may be misunderstood and perceived by consumers to reflect differences in the quality or nutritional content of milk. Our objective was to investigate nutritional differences in specialty labeled milk, specifically to compare the fatty acid (FA) composition of conventional milk with milk labeled as recombinant bST (rbST)-free or organic. The retail milk samples (n=292) obtained from the 48 contiguous states of the United States represented the consumer supply of pasteurized, homogenized milk of 3 milk types: conventionally produced milk with no specialty labeling, milk labeled rbST-free, and milk labeled organic. We found no statistical differences in the FA composition of conventional and rbST-free milk; however, these 2 groups were statistically different from organic milk for several FA. When measuring FA as a percentage of total FA, organic milk was higher in saturated FA (65.9 vs. 62.8%) and lower in monounsaturated FA (26.8 vs. 29.7%) and polyunsaturated FA (4.3 vs. 4.8%) compared with the average of conventional and rbST-free retail milk samples. Likewise, among bioactive FA compared as a percentage of total FA, organic milk was slightly lower in trans 18:1 FA (2.8 vs. 3.1%) and higher in n-3 FA (0.82 vs. 0.50%) and conjugated linoleic acid (0.70 vs. 0.57%). From a public health perspective, the direction for some of these differences would be considered desirable and for others would be considered undesirable; however, without exception, the magnitudes of the differences in milk FA composition among milk label types were minor and of no physiological importance when considering public health or dietary recommendations. Overall, when data from our analysis of FA composition of conventional milk and milk labeled rbST-free or organic were combined

  1. Responses of milk production to the intravenous infusion of amino acids in dairy cows given diets of grass silage and cereal-based supplements.

    PubMed

    Kim, C H; Choung, J J; Chamberlain, D G

    2001-10-01

    Three experiments were carried out to examine responses of milk production to the intravenous infusion of amino acids in dairy cows given diets of grass silage and supplements based on barley, with or without added soyabean meal and ranging in crude protein content from 16 to 19% in dry matter. Particular attention was given to histidine, administered alone or in combination with methionine, lysine and tryptophan. Responses of milk protein secretion to infusion of histidine were seen only when the diet contained a supplement of barley alone. When soyabean meal was included, there were no responses of milk production to infusion of any of the infused amino acids. Calculations suggested that, although histidine remained first-limiting when soya was included in the diet, any response to infusion of histidine was blocked by the rapidly emerging deficiency of another amino acid, probably leucine. The results confirm that, for diets based on grass silage and supplements of cereal only, histidine is first-limiting such that increases of milk protein secretion can be obtained in response to infusion of histidine alone. In assessing the practical significance of this finding, it should be remembered that greater responses in the yield of milk protein can probably be obtained by substituting 1 kg of soyabean meal for 1 kg of cereal, which is likely to be an easier and cheaper option.

  2. Lactic acid bacteria production from whey.

    PubMed

    Mondragón-Parada, María Elena; Nájera-Martínez, Minerva; Juárez-Ramírez, Cleotilde; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Cristiani-Urbina, Eliseo

    2006-09-01

    The main purpose of this work was to isolate and characterize lactic acid bacteria (LAB) strains to be used for biomass production using a whey-based medium supplemented with an ammonium salt and with very low levels of yeast extract (0.25 g/L). Five strains of LAB were isolated from naturally soured milk after enrichment in whey-based medium. One bacterial isolate, designated MNM2, exhibited a remarkable capability to utilize whey lactose and give a high biomass yield on lactose. This strain was identified as Lactobacillus casei by its 16S rDNA sequence. A kinetic study of cell growth, lactose consumption, and titratable acidity production of this bacterial strain was performed in a bioreactor. The biomass yield on lactose, the percentage of lactose consumption, and the maximum increase in cell mass obtained in the bioreactor were 0.165 g of biomass/g of lactose, 100%, and 2.0 g/L, respectively, which were 1.44, 1.11, and 2.35 times higher than those found in flask cultures. The results suggest that it is possible to produce LAB biomass from a whey-based medium supplemented with minimal amounts of yeast extract.

  3. Development and validation of an HPLC-DAD method for simultaneous determination of cocaine, benzoic acid, benzoylecgonine and the main adulterants found in products based on cocaine.

    PubMed

    Floriani, Gisele; Gasparetto, João Cleverson; Pontarolo, Roberto; Gonçalves, Alan Guilherme

    2014-02-01

    Here, an HPLC-DAD method was developed and validated for simultaneous determination of cocaine, two cocaine degradation products (benzoylecgonine and benzoic acid), and the main adulterants found in products based on cocaine (caffeine, lidocaine, phenacetin, benzocaine and diltiazem). The new method was developed and validated using an XBridge C18 4.6mm×250mm, 5μm particle size column maintained at 60°C. The mobile phase consisted of a gradient of acetonitrile and ammonium formate 0.05M - pH 3.1, eluted at 1.0mL/min. The volume of injection was 10μL and the DAD detector was set at 274nm. Method validation assays demonstrated suitable sensitivity, selectivity, linearity, precision and accuracy. For selectivity assay, a MS detection system could be directly adapted to the method without the need of any change in the chromatographic conditions. The robustness study indicated that the flow rate, temperature and pH of the mobile phase are critical parameters and should not be changed considering the conditions herein determined. The new method was then successfully applied for determining cocaine, benzoylecgonine, benzoic acid, caffeine, lidocaine, phenacetin, benzocaine and diltiazem in 115 samples, seized in Brazil (2007-2012), which consisted of cocaine paste, cocaine base and salt cocaine samples. This study revealed cocaine contents that ranged from undetectable to 97.2%, with 97 samples presenting at least one of the degradation products or adulterants here evaluated. All of the studied degradation products and adulterants were observed among the seized samples, justifying the application of the method, which can be used as a screening and quantification tool in forensic analysis.

  4. Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review

    PubMed Central

    Hegazy, Mohamed-Elamir F.; Mohamed, Tarik A.; ElShamy, Abdelsamed I.; Mohamed, Abou-El-Hamd H.; Mahalel, Usama A.; Reda, Eman H.; Shaheen, Alaa M.; Tawfik, Wafaa A.; Shahat, Abdelaaty A.; Shams, Khalid A.; Abdel-Azim, Nahla S.; Hammouda, Fayza M.

    2014-01-01

    Natural products are structurally and biologically interesting metabolites, but they have been isolated in minute amounts. The syntheses of such natural products help in obtaining them in bulk amounts. The recognition of microbial biotransformation as important manufacturing tool has increased in chemical and pharmaceutical industries. In recent years, microbial transformation is increasing significantly from limited interest into highly active area in green chemistry including preparation of pharmaceutical products. This is the first review published on the usage of microbial biocatalysts for some natural product classes and natural product drugs. PMID:25685541

  5. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester... identified generically as carboxylic acid, substituted alkylstannylene ester, reaction products...

  6. Substrate specificity of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum: toward a bio-based production of adipic acid.

    PubMed

    Parthasarathy, Anutthaman; Pierik, Antonio J; Kahnt, Jörg; Zelder, Oskar; Buckel, Wolfgang

    2011-05-03

    Expression of six genes from two glutamate fermenting clostridia converted Escherichia coli into a producer of glutaconate from 2-oxoglutarate of the general metabolism (Djurdjevic, I. et al. 2010, Appl. Environ. Microbiol.77, 320-322). The present work examines whether this pathway can also be used to reduce 2-oxoadipate to (R)-2-hydroxyadipic acid and dehydrate its CoA thioester to 2-hexenedioic acid, an unsaturated precursor of the biotechnologically valuable adipic acid (hexanedioic acid). 2-Hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum, the key enzyme of this pathway and a potential radical enzyme, catalyzes the reversible dehydration of (R)-2-hydroxyglutaryl-CoA to (E)-glutaconyl-CoA. Using a spectrophotometric assay and mass spectrometry, it was found that (R)-2-hydroxyadipoyl-CoA, oxalocrotonyl-CoA, muconyl-CoA, and butynedioyl-CoA, but not 3-methylglutaconyl-CoA, served as alternative substrates. Hydration of butynedioyl-CoA most likely led to 2-oxosuccinyl-CoA, which spontaneously hydrolyzed to oxaloacetate and CoASH. The dehydratase is not specific for the CoA-moiety because (R)-2-hydroxyglutaryl-thioesters of N-acetylcysteamine and pantetheine served as almost equal substrates. Whereas the related 2-hydroxyisocaproyl-CoA dehydratase generated the stable and inhibitory 2,4-pentadienoyl-CoA radical, the analogous allylic ketyl radical could not be detected with muconyl-CoA and 2-hydroxyglutaryl-CoA dehydratase. With the exception of (R)-2-hydroxyglutaryl-CoA, all mono-CoA-thioesters of dicarboxylates used in this study were synthesized with glutaconate CoA-transferase from Acidaminococcus fermentans. The now possible conversion of (R)-2-hydroxyadipate via (R)-2-hydroxyadipoyl-CoA and 2-hexenedioyl-CoA to 2-hexenedioate paves the road for a bio-based production of adipic acid.

  7. Acid hydrolysis of sugarcane bagasse for lactic acid production.

    PubMed

    Laopaiboon, Pattana; Thani, Arthit; Leelavatcharamas, Vichean; Laopaiboon, Lakkana

    2010-02-01

    In order to use sugarcane bagasse as a substrate for lactic acid production, optimum conditions for acid hydrolysis of the bagasse were investigated. After lignin extraction, the conditions were varied in terms of hydrochloric (HCl) or sulfuric (H(2)SO(4)) concentration (0.5-5%, v/v), reaction time (1-5h) and incubation temperature (90-120 degrees C). The maximum catalytic efficiency (E) was 10.85 under the conditions of 0.5% of HCl at 100 degrees C for 5h, which the main components (in gl(-1)) in the hydrolysate were glucose, 1.50; xylose, 22.59; arabinose, 1.29; acetic acid, 0.15 and furfural, 1.19. To increase yield of lactic acid production from the hydrolysate by Lactococcus lactis IO-1, the hydrolysate was detoxified through amberlite and supplemented with 7 g l(-1) of xylose and 7 g l(-1) of yeast extract. The main products (in gl(-1)) of the fermentation were lactic acid, 10.85; acetic acid, 7.87; formic acid, 6.04 and ethanol, 5.24.

  8. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  9. A brief dataset on the model-based evaluation of the growth performance of Bacillus coagulans and l-lactic acid production in a lignin-supplemented medium.

    PubMed

    Glaser, Robert; Venus, Joachim

    2017-04-01

    The data presented in this article are related to the research article entitled "Model-based characterization of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium (R. Glaser and J. Venus, 2016) [1]". This data survey provides the information on characterization of three Bacillus coagulans strains. Information on cofermentation of lignocellulose-related sugars in lignin-containing media is given. Basic characterization data are supported by optical-density high-throughput screening and parameter adjustment to logistic growth models. Lab scale fermentation procedures are examined by model adjustment of a Monod kinetics-based growth model. Lignin consumption is analyzed using the data on decolorization of a lignin-supplemented minimal medium.

  10. Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies.

    PubMed

    Lenihan, Jacob R; Tsuruta, Hiroko; Diola, Don; Renninger, Neil S; Regentin, Rika

    2008-01-01

    Artemisinin-based combination therapies (ACTs) are currently unaffordable for many of the people who need them most. A major cost component of ACTs is the plant-derived artemisinin. A fermentation process for a precursor to artemisinin might provide a viable second source to stabilize the artemisinin supply and therefore reduce price. The heterologous production of artemisinic acid, an artemisinin precursor, by Saccharomyces cerevisiae was improved 25-fold from a 100 mg/L flask process to a 2.5 g/L process in bioreactors. A defined medium fed-batch process with galactose as the carbon source and inducer was developed, with titers of 1.3 g/L. In this strain ERG9 was controlled with promoter Pmet3 so that methionine repressed the sterol biosynthesis pathway and increased precursor availability for artemisinic acid biosynthesis. Addition of methionine to the process increased artemisinic acid titers to 1.8 g/L. A dissolved oxygen-stat algorithm was developed, which simultaneously controlled the agitation and feed pump. This improved process control and increased titers to 2.5 g/L.

  11. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    PubMed

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  12. Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity.

    PubMed

    Andersson, Christian; Helmerius, Jonas; Hodge, David; Berglund, Kris A; Rova, Ulrika

    2009-01-01

    The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L(-1) h(-1) is important if production of succinic acid from renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3), and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L(-1), was obtained with Na2CO3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of approximately 40 g L(-1). Volumetric productivities remained at 2.5 g L(-1) h(-1) for up to 10 h longer when K- or Na-bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity.

  13. Combined Dilute Acid and Solvent Based Pretreatment of Agricultural Wastes for Efficient Lignocellulosic Fractionation and Biofuels Production

    SciTech Connect

    Brodeur, G.; Ramakrishnan, S.; Wilson, C.; Telotte, J.; Collier, J.; Stickel, J.

    2013-01-01

    A true biorefinery for processing lignocellulosic biomass should achieve maximum utilization of all major constituents (cellulose, hemicellulose, & lignin) within the feedstock. In this work a combined pretreatment process of dilute acid (DA) and N-methyl morpholine N-oxide (NMMO) is described that allows for both fractionation and subsequent complete hydrolysis of the feedstocks (corn stover and sugarcane bagasse). During this multi-step processing, the dilute acid pretreatment solubilizes the majority (>90%) of the hemicellulosic fraction, while the NMMO treatment yields a cellulosic fraction that is completely digestible within 48 hours at low enzyme loadings. With both the cellulosic and hemicellulosic fractions being converted into separate, dissolved sugar fractions, the remaining portion is nearly pure lignin. When used independently, DA and NMMO pretreatments are only able to achieve ~80% and ~45% cellulosic conversion, respectively. Mass balance calculations along with experimental results are used to illustrate the feasibility of separation and recycling of NMMO.

  14. Production of organic acids from kitchen wastes.

    PubMed

    Loh, C W; Fakhru'l-Razi, A; Hassan, M A; Karim, M I

    1999-01-01

    This study involves the production of short-chain organic acids from kitchen wastes as intermediates for the production of biodegradable plastics. Flasks, without mixing were used for the anaerobic conversion of the organic fraction of kitchen wastes into short-chain organic acids. The influence of pH, temperature and addition of sludge cake on the rate of organic acids production and yield were evaluated. Fermentations were carried out in an incubator at different temperatures controlled at 30 degrees C. 40 degrees C, 50 degrees C, 60 degrees C and uncontrolled at room temperature. The pH was also varied at pH 5, 6, 7, and uncontrolled pH. 1.0 M phosphate buffer was used for pH control, and 1.0 M HCl and 1.0 M NaOH were added when necessary. Sludge cake addition enhanced the rate of maximum acids production from 4 days to 1 day. The organic acids produced were maximum at pH 7 and 50 degrees C i.e., 39.84 g/l on the fourth day of fermentation with a yield of 0.87 g/g soluble COD consumed, and 0.84 g/g TVS. The main organic acid produced was lactic acid (65-85%), with small amounts of acetic (10-30%), propionic (5-10%), and butyric (5-20%) acids. The results of this study showed that kitchen wastes could be fermented to high concentration of organic acids, which could be used as substrates for the production of biodegradable plastics.

  15. Whole body acid-base modeling revisited.

    PubMed

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis.

  16. Process, optimized acidizing reduce production facility upsets

    SciTech Connect

    Ali, S.A.; Hill, D.G.; McConnell, S.B.; Johnson, M.R.

    1997-02-10

    The filtration/absorption process, coupled with optimum treatments, prevent facility upsets that increase the time and resources required for bringing a well back on-line following an acid stimulation. Surface active agents, required in acidizing to improve well productivity, can form oil/water emulsions and cause unacceptable oil and grease levels during acid flowback. But recent offshore experiences after acidizing show that operators can achieve oil and grease discharge limits without facility upsets. To minimize oil and grease, the additives need to be optimized by adding a mutual breakout solvent (MBS). MBS has the dual function of being a mutual solvent and a sludge and emulsion control additive. The paper discusses acidizing problems, acid additives, handling options, and a case history of the Main Pass A field.

  17. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  18. Metabolic engineering of biocatalysts for carboxylic acids production

    PubMed Central

    Liu, Ping; Jarboe, Laura R.

    2012-01-01

    Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering, like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on Saccharomyces cerevisiae and Escherichia coli, as well as the strategies to improve tolerance towards these chemicals. PMID:24688671

  19. High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling.

    PubMed

    Liu, Gang; Sun, Jiaoe; Zhang, Jian; Tu, Yi; Bao, Jie

    2015-12-01

    Technological potentials of l-lactic acid production from corn stover feedstock were investigated by experimental and techno-economic studies. An optimal performance with 104.5 g/L in l-lactic acid titer and 71.5% in overall yield from cellulose in corn stover to l-lactic acid using an engineered Pediococcus acidilactici strain were obtained by overcoming several technical barriers. A rigorous Aspen plus model for l-lactic acid production starting from dry dilute acid pretreated and biodetoxified corn stover was developed. The techno-economic analysis shows that the minimum l-lactic acid selling price (MLSP) was $0.523 per kg, which was close to that of the commercial l-lactic acid produced from starch feedstock, and 24% less expensive than that of ethanol from corn stover, even though the xylose utilization was not considered. The study provided a prototype of industrial application and an evaluation model for high titer l-lactic acid production from lignocellulose feedstock.

  20. Biotechnological Production of Organic Acids from Renewable Resources.

    PubMed

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  1. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-based adipose tissue engineering applications.

    PubMed

    Korurer, Esra; Kenar, Halime; Doger, Emek; Karaoz, Erdal

    2014-07-01

    Standard approaches to soft-tissue reconstruction include autologous adipose tissue transplantation, but most of the transferred adipose tissue is generally reabsorbed in a short time. To overcome this problem, long lasting implantable hydrogel materials that can support tissue regeneration must be produced. The purpose of this study was to evaluate the suitability of composite 3D natural origin scaffolds for reconstructive surgery applications through in vitro tests. The Young's modulus of the glutaraldehyde crosslinked hyaluronic acid/gelatin (HA/G) plasma gels, composed of human platelet-poor plasma, gelatin and human umbilical cord hyaluronic acid, was determined as 3.5 kPa, close to that of soft tissues. The composite HA/G plasma gels had higher porosity than plain plasma gels (72.5% vs. 63.86%). Human adipose tissue derived stem cells (AD-MSCs) were isolated from human lipoaspirates and characterized with flow cytometry, and osteogenic and adipogenic differentiation. Cell proliferation assay of AD-MSCs on the HA/G plasma gels revealed the nontoxic nature of these constructs. Adipogenic differentiation was distinctly better on HA/G plasma gels than on plain plasma gels. The results showed that the HA/G plasma gel with its suitable pore size, mechanical properties and excellent cell growth and adipogenesis supporting properties can serve as a useful scaffold for adipose tissue engineering applications.

  2. Folic Acid Production by Engineered Ashbya gossypii.

    PubMed

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-10-28

    Folic acid (vitamin B9) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported.

  3. Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production.

    PubMed

    Liu, Ying; Lv, Chunwei; Xu, Qing; Li, Shuang; Huang, He; Ouyang, Pingkai

    2015-02-01

    Ensuring a suitable pH in the culture broth is a major problem in microorganism-assisted industrial fermentation of organic acids. To address this issue, we investigated the physiological changes in Rhizopus oryzae at different extracellular pH levels and attempted to solve the issue of cell shortage under low pH conditions. We compared various parameters, such as membrane fatty acids' composition, intracellular pH, and adenosine triphosphate (ATP) concentration. It was found that the shortage of intracellular ATP might be the main reason for the low rate of fumaric acid production by R. oryzae under low pH conditions. When 1 g/l citrate was added to the culture medium at pH 3.0, the intracellular ATP concentration increased from 0.4 to 0.7 µmol/mg, and the fumaric acid titer was enhanced by 63% compared with the control (pH 3.0 without citrate addition). The final fumaric acid concentration at pH 3.0 reached 21.9 g/l after 96 h of fermentation. This strategy is simple and feasible for industrial fumaric acid production under low pH conditions.

  4. Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities of the Products.

    PubMed

    Miszczyk, Patrycja; Wieczorek, Dorota; Gałęzowska, Joanna; Dziuk, Błażej; Wietrzyk, Joanna; Chmielewska, Ewa

    2017-02-08

    The reaction of diethyl phosphite with triethyl orthoformate and a primary amine followed by hydrolysis is presented, and the reaction was suitable for the preparation of (aminomethylene)bisphosphonates. 3-Amino-1,2,4-triazole was chosen as an interesting substrate for this reaction because it possesses multiple groups that can serve as the amino component in the reaction-namely, the side-chain and triazole amines. This substrate readily forms 1,2,4-triazolyl-3-yl-aminomethylenebisphosphonic acid (compound 1) as a major product, along with N-ethylated bisphosphonates as side products. The in vitro antiproliferative effects of the synthesized aminomethylenebisphosphonic acids against J774E macrophages were determined. These compounds exhibit similar activity to zoledronic acid and higher activity than incadronic acid.

  5. Oral hygiene products and acidic medicines.

    PubMed

    Hellwig, E; Lussi, A

    2006-01-01

    Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds, favors the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Xerostomia or oral dryness can occur as a consequence of medication such as tranquilizers, anti-histamines, anti-emetics and anti-parkinsonian medicaments or of salivary gland dysfunction e.g. due to radiotherapy of the oral cavity and the head and neck region. Above all, these patients should be aware of the potential demineralization effects of oral hygiene products with low pH and high titratable acids. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder as well chewing hydrochloric acids tablets for treatment of stomach disorders can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers, patients and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acids.

  6. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    PubMed

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries.

  7. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  8. Triacetic acid lactone production from Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  9. Production of amino acids by yogurt bacteria.

    PubMed

    Beshkova, D M; Simova, E D; Frengova, G I; Simov, Z I; Adilov, E F

    1998-01-01

    The dynamics of free amino acid production by the selected strains Streptococcus thermophilus 13a and Lactobacillus bulgaricus 2-11 were studied in pure and mixed cultivations during yogurt starter culture manufacture. L. bulgaricus 2-11 showed the highest activity for producing free amino acids with high individual concentrations over the first hour of growth (50% of the total amount). By the end of milk's full coagulation (4.5 h), 70% of the total amount of amino acids was released. S. thermophilus 13a showed poor proteolytic properties and consumed up to 70% of the free amino acids produced by L. bulgaricus 2-11 in the process of coagulation of milk with the mixed culture.

  10. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T.; Yomano, Lorraine; Grabar, Tammy B.; Moore, Jonathan C.

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  11. Materials and methods for efficient lactic acid production

    SciTech Connect

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  12. Biotechnological production and application of ganoderic acids.

    PubMed

    Xu, Jun-Wei; Zhao, Wei; Zhong, Jian-Jiang

    2010-06-01

    Ganoderic acids (GAs), a kind of highly oxygenated lanostane-type triterpenoids, are important bioactive constituents of the famous medicinal mushroom Ganoderma lucidum. They have received wide attention in recent years due to extraordinarily pharmacological functions. Submerged fermentation of G. lucidum is viewed as a promising technology for production of GAs, and substantial efforts have been devoted to process development for enhancing GA production in the last decade. This article reviews recent publication about fermentative production of GAs and their potential applications, especially the progresses toward manipulation of fermentation conditions and bioprocessing strategies are summarized. The biosynthetic pathway of GAs is also outlined.

  13. Production of L-malic acid with fixation of HCO3(-) by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method.

    PubMed

    Zheng, Haitao; Ohno, Yoko; Nakamori, Toshihiko; Suye, Shin-Ichiro

    2009-01-01

    Malic enzyme prepared and purified from Brevundimonas diminuta IFO13182 catalyzed the decarboxylation reaction of malate to pyruvate and CO2 using NAD+ as the coenzyme, and the reverse reaction was used in the present study for L-malic acid production with fixation of HCO3(-) as a model compound for carbon source. The L-malic acid production was based on electrochemical regeneration of NADH on a carbon plate electrode modified by layer-by-layer adsorption of polymer-bound mediator (Alginic acid bound viologen derivative, Alg-V), polymer-bound coenzyme (Alginic acid bound NAD+, Alg-NAD+), and lipoamide dehydrogenase (LipDH). Electrochemical reduction of immobilized NAD+ catalyzed by LipDH in a multilayer film was achieved, and the L-malic acid production with HCO3(-) fixation system with layer-by-layer immobilization of Alg-V/LipDH/Alg-NAD+/malic enzyme multilayer film on the electrode gave an L-malic acid production of nearly 11.9 mmol and an HCO3(-) fixation rate of nearly 47.4% in a buffer containing only KHCO3 and pyruvic acid potassium salt, using a cation exchange membrane. The total turnover number of NADH within 48 h was about 19,000, which suggests that efficient NADH regeneration and fast electron transfer were achieved within the multilayer film, and that the modified electrode is a potential method for the fixation of HCO3(-) without addition of free coenzyme.

  14. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  15. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  16. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  17. A new effective process for production of curdlan oligosaccharides based on alkali-neutralization treatment and acid hydrolysis of curdlan particles in water suspension.

    PubMed

    Li, Jing; Zhu, Li; Zheng, Zhi-Yong; Zhan, Xiao-Bei; Lin, Chi-Chung; Zong, Yu; Li, Wei-Jiang

    2013-10-01

    Biologically active β-1,3-oligosaccharides with rapidly growing biomedical applications are produced from hydrolysis of curdlan polysaccharide. The water-insoluble curdlan impedes its hydrolysis efficiency which is enhanced by our newly developed alkali-neutralization treatment process to increase the stability of curdlan suspension to more than 20 days, while the untreated control settled within 5 min. A putative double-layer structure model comprising of a compact core and a hydrated outer layer was proposed to describe the treated curdlan particles based on sedimentation and scanning electron microscopy observation. This model was verified by single- and two-step acid hydrolysis, indicative of the reduced susceptibility to hydrolysis when close to the compact core. Electrospray ionization-mass spectrometry, thin-layer chromatography analyses, and effective HPLC procedure led to the development of improved process to produce purified individual β-1,3-oligosaccharides with degrees of polymerization from 2 to 10 and potential for biomedical applications from curdlan hydrolyzate. Our new curdlan oligosaccharide production process offers an even better alternative to the previously published processes.

  18. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE PAGES

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; ...

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  19. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  20. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  1. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  2. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  3. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  4. [Studies on arachidonic acid production by Mortierella].

    PubMed

    Bao, S; Zhu, F; Lin, W; Yao, R

    1997-10-01

    The effects of the incubation temperature, initial pH of the medium, carbon source and nitrogen source on the production of arachidonic acid by Mortierella sp. M10 were studied. Thought orthogonal experiments, the optimum culture medium was obtained (g/L): glucose, 100; yeast extract, 10; KNO3, 4.0; KH2PO4, 2.0; CaCl2.2H2O, 0.1; MgSO4.7H2O, 0.5; FeCl3.6H2O, 0.015; ZnSO4.7H2O, 0.0075; CuSO4.5H2O, 0.0005. Under the optimum culture conditions, the dry cell weight and arachidonic acid was 33.51 g/L and 0.827 g/L, respectively. The flask culture process was analysed.

  5. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    SciTech Connect

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; Dien, Bruce S.; Kurtzman, Cletus P.; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARS Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.

  6. Exposure to sulfuric acid in zinc production.

    PubMed

    Bråtveit, Magne; Haaland, Inger Margrethe; Moen, Bente E; Målsnes, Agnar

    2004-03-01

    This study characterized workers' exposure to sulfuric acid in two cell houses of a zinc production plant. We also aimed at estimating previous exposure to sulfuric acid by simulating the process conditions from before 1975 to produce exposure data for an epidemiological study on cancer in this industry. Further, we compared different sampling methods for aerosols in the cell houses. Personal sampling with a 37 mm Millipore cassette showed that the geometric means of the exposure levels for the workers in the two cell houses were 0.07 mg/m3 (range 0.01-0.48 mg/m3) and 0.04 mg/m3 (range 0.01-0.15 mg/m3). Norway's newly revised limit value of 0.1 mg/m3 was exceeded in 39.0 and 12.9% of the samples in the two cell houses. After the foam layer was removed from the electrolyte surface to simulate the production process from before 1975, the concentration of sulfuric acid increased from 0.11 to 6.04 mg/m3 in stationary measurement by the Millipore sampler. Stationary sampling showed that the Millipore sampler and the inhalable fraction of the Respicon impactor underestimated the sulfuric acid concentration by factors of 1.5 and 2.1 compared with the Institute of Occupational Medicine (IOM) sampler. Sampling with the Respicon impactor showed that the respirable, tracheobronchial and extrathoracic fractions constituted 3.0, 18.7 and 71.7% of the inhalable sulfuric acid aerosol, respectively. Today's exposure levels are lower than those reported to be associated with an increased prevalence of laryngeal cancer in other industries, but the levels prior to 1975 seem to have been much higher. By mass, most of the inhalable aerosol was in the size fractions considered to be highly relevant for the effects of sulfuric acid on the respiratory system. The risk of cancer among the cell house workers should be investigated in an epidemiological study.

  7. Towards large scale fermentative production of succinic acid.

    PubMed

    Jansen, Mickel L A; van Gulik, Walter M

    2014-12-01

    Fermentative production of succinic acid (SA) from renewable carbohydrate feed-stocks can have the economic and sustainability potential to replace petroleum-based production in the future, not only for existing markets, but also new larger volume markets. To accomplish this, extensive efforts have been undertaken in the field of strain construction and metabolic engineering to optimize SA production in the last decade. However, relatively little effort has been put into fermentation process development. The choice for a specific host organism determines to a large extent the process configuration, which in turn influences the environmental impact of the overall process. In the last five years, considerable progress has been achieved towards commercialization of fermentative production of SA. Several companies have demonstrated their confidence about the economic feasibility of fermentative SA production by transferring their processes from pilot to production scale.

  8. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  9. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  10. Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production.

    PubMed

    Zhou, Xu; Xu, Jiele; Wang, Ziyu; Cheng, Jay J; Li, Ruyu; Qu, Rongda

    2012-01-01

    Conventional Alamo switchgrass and its transgenic counterparts with reduced/modified lignin were subjected to dilute sulfuric acid pretreatment for improved sugar production. At 150 °C, the effects of acid concentration (0.75%, 1%, 1.25%) and residence time (5, 10, 20, 30 min) on sugar productions in pretreatment and enzymatic hydrolysis were investigated, with the optimal pretreatment conditions determined for each switchgrass genotype based on total sugar yield and the amounts of sugar degradation products generated during the pretreatment. The results show that genetic engineering, although did not cause an appreciable lignin reduction, resulted in a substantial increase in the ratio of acid soluble lignin:acid insoluble lignin, which led to considerably increased sugar productions in both pretreatment and enzymatic hydrolysis. At an elevated threshold concentration of combined 5-hydroxyfuranmethal and furfural (2.0 g/L), the overall carbohydrate conversions of conventional switchgrass and its transgenic counterparts, 10/9-40 and 11/5-47, reached 75.9%, 82.6%, and 82.2%, respectively.

  11. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  12. Natural products as potential anticonvulsants: caffeoylquinic acids.

    PubMed

    Kim, Hyo Geun; Oh, Myung Sook

    2012-03-01

    Current anticonvulsant therapies are generally directed at symptomatic treatment by suppressing excitability within the brain. Consequently, they have adverse effects such as cognitive impairment, dependence, and abuse. The need for more effective and less toxic anticonvulsants has generated renewed interest in natural products for the treatment of convulsions. Caffeoylquinic acids (CQs) are naturally occurring phenolic acids that are distributed widely in plants. There has been increasing interest in the biological activities of CQs in diseases of the central nervous system. In this issue, Nugroho et al. give evidence for the anticonvulsive effect of a CQ-rich extract from Aster glehni Franchet et Sckmidt. They optimized the extract solvent conditions, resulting in high levels of CQs and peroxynitrite-scavenging activity. Then, they investigated the sedative and anticonvulsive effects in pentobarbital- and pentylenetetrazole-induced models in mice. The CQ-rich extract significantly inhibited tonic convulsions as assessed by onset time, tonic extent, and mortality. They suggested that the CQ-rich extract from A. glehni has potential for treating convulsions. This report provides preclinical data which may be used for the development of anticonvulsants from natural products.

  13. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues.

  14. Effect of temperature and hydraulic retention time on volatile fatty acid production based on bacterial community structure in anaerobic acidogenesis using swine wastewater.

    PubMed

    Kim, Woong; Shin, Seung Gu; Lim, Juntaek; Hwang, Seokhwan

    2013-06-01

    To investigate the effect of hydraulic retention time (HRT) and temperature (T) on bacterial community structure and volatile fatty acids (VFAs) production of an acidogenic process, and VFA production and changes in the bacterial community in three identical automated anaerobic continuously-stirred tank reactors were analyzed using response surface analysis (RSA) and nonmetric multidimensional scaling (NMDS). For RSA, 11 trials were conducted to find the combination of T and HRT under which VFA production was greatest; VFA production was affected more by HRT than by T. To identify the bacterial community structure in each trial, DNA from each experimental point of the RSA was analyzed using denaturating gradient gel electrophoresis (DGGE), and eight bacteria species were detected. NMDS was conducted on band intensities obtained using DGGE, and bacterial community structure was affected more by T than by HRT. Taken together, these results suggest that VFA production during acidogenesis was more dependent on the physicochemical properties of acidogens, such as their specific growth rate or contact time with of substrates, than on changes in the microbial community.

  15. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  16. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius

    PubMed Central

    2014-01-01

    Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants. PMID:25401063

  17. Microbial Production of Amino Acid-Related Compounds.

    PubMed

    Wendisch, Volker F

    2016-11-22

    Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.

  18. [Metabolic engineering of wild acid-resistant yeast for L-lactic acid production].

    PubMed

    Zhang, Qin; Zhang, Liang; Ding, Zhongyang; Wang, Zhengxiang; Shi, Guiyang

    2011-07-01

    In order to obtain a yeast strain able to produce L-lactic acid under the condition of low pH and high lactate content, one wild acid-resistant yeast strain isolated from natural samples, was found to be able to grow well in YEPD medium (20 g/L glucose, 20 g/L tryptone, 10 g/L yeast extract, adjusted pH 2.5 with lactic acid) without consuming lactic acid. Based on further molecular biological tests, the strain was identified as Candida magnolia. Then, the gene ldhA, encoding a lactate dehydrogenase from Rhizopus oryzae, was cloned into a yeast shuttle vector containing G418 resistance gene. The resultant plasmid pYX212-kanMX-ldhA was introduced into C. magnolia by electroporation method. Subsequently, a recombinant L-lactic acid producing yeast C. magnolia-2 was obtained. The optimum pH of the recombinant yeast is 3.5 for lactic acid production. Moreover, the recombinant strain could grow well and produce lactic acid at pH 2.5. This recombinant yeast strain could be useful for producing L-lactic acid.

  19. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  20. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented.

  1. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  2. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  3. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  4. Food Products Made With Glycomacropeptide, a Low Phenylalanine Whey Protein, Provide a New Alternative to Amino Acid-Based Medical Foods for Nutrition Management of Phenylketonuria

    PubMed Central

    Van Calcar, Sandra C.; Ney, Denise M.

    2012-01-01

    Phenylketonuria (PKU), an inborn error in phenylalanine (phe) metabolism, requires lifelong nutrition management with a low-phe diet, which includes a phe-free amino acid-based medical formula to provide the majority of an individual’s protein needs. Compliance with this diet is often difficult for older children, adolescents and adults with PKU. The whey protein glycomacropeptide (GMP) is ideally suited for the PKU diet since it is naturally low in phe. Nutritionally complete, acceptable medical foods and beverages can be made with GMP to increase the variety of protein sources for the PKU diet. As an intact protein, GMP improves protein utilization and increases satiety compared with amino acids. Thus, GMP provides a new, more physiologic source of low-phe dietary protein for those with PKU. PMID:22818728

  5. Effects of Dietary Potential Acid Production Value on Productivity in Dairy Cows

    PubMed Central

    Kim, E. T.; Lee, S. S.; Kim, H. J.; Song, J. Y.; Kim, C.-H.; Ha, Jong K.

    2012-01-01

    This study was conducted to estimate the potential acid production value (PAPV) of major diets and to determine the relationship between dietary PAPV and dairy production traits. Estimation of PAPV of major cattle feeds was based on an in vitro technique, which determined the degree of Ca dissociation from CaCO3. Data on feeds and production traits were collected on 744 multiparous lactating Holstein dairy cows from five different farms. Grains had high PAPV with variable protein sources and by-products. High PAPV feedstuffs had a higher total gas production and lower pH compared to those with low PAPV. Dietary PAPV had a positive correlation with intake of dry matter, NDF, ADF, milk yield and milk solid production but a negative correlation with milk protein and milk fat concentration. Current results indicate that dietary PAPV can be utilized in predicting dairy production traits. PMID:25049610

  6. Stimulatory effect of phytin on acid production by Lactobacillus casei.

    PubMed

    Nakashima, A

    1997-06-01

    The stimulatory effect of phytin added to skim milk on acid production of Lactobacillus casei was examined. Phytin stimulated acid production of L. casei fairly well. The stimulatory effect of phytin on acid production was not shown when phytin was treated with Dowex 50 (H+) and neutralized by NaOH solution. The incinerated product of phytin maintained almost equal stimulatory effect on acid production as that before processing. The addition of Mn2+ in the amount contained in a reagent phytin augmented the stimulatory effect on acid production markedly. The further addition of Fe3+, Ca2+, Mg2+ and PO4(3-) in amounts corresponding to their contents in the preparation of phytin as well as Mn2+ increased the effect slightly. The four preparations of phytin contained 0.045-0.20% of Mn, and the greater the Mn content was, the greater the potentiation of acid production.

  7. Lactide Synthesis and Chirality Control for Polylactic acid Production.

    PubMed

    Van Wouwe, Pieter; Dusselier, Michiel; Vanleeuw, Evelien; Sels, Bert

    2016-05-10

    Polylactic acid (PLA) is a very promising biodegradable, renewable, and biocompatible polymer. Aside from its production, its application field is also increasing, with use not only in commodity applications but also as durables and in biomedicine. In the current PLA production scheme, the most expensive part is not the polymerization itself but obtaining the building blocks lactic acid (LA) and lactide, the actual cyclic monomer for polymerization. Although the synthesis of LA and the polymerization have been studied systematically, reports of lactide synthesis are scarce. Most lactide synthesis methods are described in patent literature, and current energy-intensive, aselective industrial processes are based on archaic scientific literature. This Review, therefore, highlights new methods with a technical comparison and description of the different approaches. Water-removal methodologies are compared, as this is a crucial factor in PLA production. Apart from the synthesis of lactide, this Review also emphasizes the use of chemically produced racemic lactic acid (esters) as a starting point in the PLA production scheme. Stereochemically tailored PLA can be produced according to such a strategy, giving access to various polymer properties.

  8. Current advances in biological production of propionic acid.

    PubMed

    Eş, Ismail; Khaneghah, Amin Mousavi; Hashemi, Seyed Mohammad Bagher; Koubaa, Mohamed

    2017-02-01

    Propionic acid and its derivatives are considered "Generally Recognized As Safe" food additives and are generally used as an anti-microbial and anti-inflammatory agent, herbicide, and artificial flavor in diverse industrial applications. It is produced via biological pathways using Propionibacterium and some anaerobic bacteria. However, its commercial chemical synthesis from the petroleum-based feedstock is the conventional production process bit results in some environmental issues. Novel biological approaches using microorganisms and renewable biomass have attracted considerable recent attention due to economic advantages as well as great adaptation with the green technology. This review provides a comprehensive overview of important biotechnological aspects of propionic acid production using recent technologies such as employment of co-culture, genetic and metabolic engineering, immobilization technique and efficient bioreactor systems.

  9. Metabolic engineering of Escherichia coli for the production of fumaric acid.

    PubMed

    Song, Chan Woo; Kim, Dong In; Choi, Sol; Jang, Jae Won; Lee, Sang Yup

    2013-07-01

    Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, the iclR gene was deleted to redirect the carbon flux through the glyoxylate shunt. In addition, the fumA, fumB, and fumC genes were also deleted to enhance fumaric acid formation. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. Based on in silico flux response analysis, this base strain was further engineered by plasmid-based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), from the strong tac promoter, which resulted in the production of 4.09 g/L of fumaric acid. Additionally, the arcA and ptsG genes were deleted to reinforce the oxidative TCA cycle flux, and the aspA gene was deleted to block the conversion of fumaric acid into L-aspartic acid. Since it is desirable to avoid the use of inducer, the lacI gene was also deleted. To increase glucose uptake rate and fumaric acid productivity, the native promoter of the galP gene was replaced with the strong trc promoter. Fed-batch culture of the final strain CWF812 allowed production of 28.2 g/L fumaric acid in 63 h with the overall yield and productivity of 0.389 g fumaric acid/g glucose and 0.448 g/L/h, respectively. This study demonstrates the possibility for the efficient production of fumaric acid by metabolically engineered E. coli.

  10. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    PubMed Central

    Vuković, Rosemary; Likić, Saša; Jelaska, Sibila

    2015-01-01

    Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326

  11. Recent advances in amino acid production by microbial cells.

    PubMed

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  12. Nucleic acid based fluorescent sensor for mercury detection

    DOEpatents

    Lu, Yi; Liu, Juewen

    2013-02-05

    A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.

  13. A new polysialic acid production process based on dual-stage pH control and fed-batch fermentation for higher yield and resulting high molecular weight product.

    PubMed

    Zheng, Zhi-Yong; Wang, Shun-Zhi; Li, Guo-Shun; Zhan, Xiao-Bei; Lin, Chi-Chung; Wu, Jian-Rong; Zhu, Li

    2013-03-01

    To determine the factors influencing the resulting molecular weight of polysialic acid (PSA), batch fermentations by using Escherichia coli were conducted. It was found that temperature and pH were significant factors affecting the PSA production and its resulting molecular weight. When pH was set at 6.4, temperature of 37 °C was suitable for cell growth and PSA production while 33 °C facilitated production of higher molecular weight of PSA. pH 6.4 was favorable for PSA production while pH 7.4 was good for higher molecular weight of PSA at 37 °C. Intramolecular self-cleavage of PSA might lead to relatively low molecular weight under mild acidic condition. Our data suggest that the PSA molecular weight is significantly affected by the pH condition rather than the temperature. It is concluded that the resulting PSA molecular weight not only depends on fermentation conditions but also relates to cell growth rate and PSA production rate. Higher PSA molecular weight was made when its production rate was faster than degradation rate. A novel two-stage pH control fermentation process for production of high molecular weight PSA was developed. At the first stage, pH was set at 6.4 to encourage cell growth and PSA production, whereas pH was set at 7.4 at the second stage to promote the formation of higher molecular weight PSA. PSA yield up to 5.65 g/L and its resulting molecular weight of 260 kDa was attained, the highest level ever reported.

  14. A Strategy Combining Higher Energy C-Trap Dissociation with Neutral Loss- and Product Ion-Based MS(n) Acquisition for Global Profiling and Structure Annotation of Fatty Acids Conjugates.

    PubMed

    Bi, Qi-Rui; Hou, Jin-Jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-Hong; Dai, Zhuo; Yan, Bing-Peng; Wang, Jian-Wei; Shi, Xiao-Jian; Wu, Wan-Ying; Guo, De-An

    2017-03-01

    Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MS(n) (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MS(n) acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB. Graphical Abstract ᅟ.

  15. A Strategy Combining Higher Energy C-Trap Dissociation with Neutral Loss- and Product Ion-Based MSn Acquisition for Global Profiling and Structure Annotation of Fatty Acids Conjugates

    NASA Astrophysics Data System (ADS)

    Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an

    2017-03-01

    Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.

  16. A Strategy Combining Higher Energy C-Trap Dissociation with Neutral Loss- and Product Ion-Based MSn Acquisition for Global Profiling and Structure Annotation of Fatty Acids Conjugates

    NASA Astrophysics Data System (ADS)

    Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an

    2016-12-01

    Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.

  17. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  18. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  19. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  20. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  1. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  2. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  3. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  4. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle...

  5. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.).

    PubMed

    Kortner, Trond M; Björkhem, Ingemar; Krasnov, Aleksei; Timmerhaus, Gerrit; Krogdahl, Åshild

    2014-06-28

    Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish.

  6. Chicoric acid: chemistry, distribution, and production

    PubMed Central

    Lee, Jungmin; Scagel, Carolyn F.

    2013-01-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed. PMID:24790967

  7. Chicoric acid: chemistry, distribution, and production

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Scagel, Carolyn

    2013-12-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  8. Chicoric acid: chemistry, distribution, and production.

    PubMed

    Lee, Jungmin; Scagel, Carolyn F

    2013-01-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  9. Method for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.

    2016-08-30

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  10. Methods for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  11. Analysis of peroxytrifluoroacetic acid oxidation products from Victorian brown coal

    SciTech Connect

    Verheyen, T.V.; Johns, R.B.

    1983-08-01

    A method is described for the detailed quantitative structural identification of the components present in the oxidation product mixtures of a highly aliphatic brown coal. The results showed them to be predominantly long chain diols, hydroxy acids, dicarboxylic acids and short chain polycarboxylic acids.

  12. Electrochemical monitoring of citric acid production by Aspergillus niger.

    PubMed

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E; Ciosek, Patrycja; Wróblewski, Wojciech

    2014-05-01

    Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.

  13. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.

  14. New uses of bioglycerin: production of arachidonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filamentous fungi of the genus Mortierella are known to produce arachidonic acid from glucose and M. alpina is currently used in industrial scale production of arachidonic acid in Japan. In anticipation of a large excess of co-product bioglycerin from the national biodiesel program, we would like ...

  15. [Hydrocyanic acid content in cerals and cereal products].

    PubMed

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  16. Microbial production of lactic acid: the latest development.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2016-12-01

    Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid.

  17. A Concise Synthesis of Berkelic Acid Inspired by Combining the Natural Products Spicifernin and Pulvilloric Acid

    PubMed Central

    Bender, Christopher F.; Yoshimoto, Francis K.; Paradise, Christopher L.; De Brabander, Jef K.

    2009-01-01

    We describe a concise synthesis of the structurally novel fungal extremophile metabolite berkelic acid – an effort leading to an unambiguous assignment of C22 stereochemistry. Our synthetic approach was inspired by the recognition that berkelic acid displays structural characteristics reminiscent of two other fungal metabolites, spicifernin and pulvilloric acid. Based on this notion, we executed a synthesis that features a Ag-catalyzed cascade dearomatization-cycloisomerization-cycloaddition sequence to couple two natural product inspired fragments. Notably, a spicifernin-like synthon was prepared with defined C22 stereochemistry in seven steps and three purifications (24–28% overall yield). A potentially useful anti-selective conjugate propargylation reaction was developed to introduce the vicinal stereodiad. An enantioconvergent synthesis of the other coupling partner, the aromatic precursor to pulvilloric acid methyl ester, was achieved in eight steps and 48% overall yield. The total synthesis of berkelic acid and its C22 epimer was thus completed in 10 steps longest linear sequence and 11–27% overall yield. PMID:19722648

  18. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    PubMed

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine).

  19. Production of extracellular fatty acid using engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL) produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain p

  20. By-products of electrochemical synthesis of suberic acid

    SciTech Connect

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.; Antonenko, N.S.; Grudtsyn, Yu.D.

    1988-05-10

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  1. Metabolic engineering as a tool for enhanced lactic acid production.

    PubMed

    Upadhyaya, Bikram P; DeVeaux, Linda C; Christopher, Lew P

    2014-12-01

    Metabolic engineering is a powerful biotechnological tool that finds, among others, increased use in constructing microbial strains for higher lactic acid productivity, lower costs and reduced pollution. Engineering the metabolic pathways has concentrated on improving the lactic acid fermentation parameters, enhancing the acid tolerance of production organisms and their abilities to utilize a broad range of substrates, including fermentable biomass-derived sugars. Recent efforts have focused on metabolic engineering of lactic acid bacteria as they produce high yields and have a small genome size that facilitates their genetic manipulation. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating lactic acid producing organisms developed to address and overcome major challenges in the lactic acid production process.

  2. Microbial production of itaconic acid: developing a stable platform for high product concentrations.

    PubMed

    Kuenz, Anja; Gallenmüller, Yvonne; Willke, Thomas; Vorlop, Klaus-Dieter

    2012-12-01

    Biotechnologically produced itaconic acid (IA) is a promising organic acid with a wide range of applications and the potential to open up new application fields in the area of polymer chemistry, pharmacy, and agriculture. In this study, a systematic process optimization was performed with an own isolated strain of Aspergillus terreus and transferred from a 250-mL to a 15-L scale. An IA concentration of 86.2 g/L was achieved within 7 days with an overall productivity of 0.51 g/(L h), a maximum productivity of 1.2 g/(L h), and a yield of 86 mol%. A cultivation of other well-known A. terreus strains with the developed process showed no significant differences. Based on this, a process is developed providing a high final IA concentration independent of the used strain combined with high reproducibility.

  3. Heterologous production of caffeic acid from tyrosine in Escherichia coli.

    PubMed

    Rodrigues, J L; Araújo, R G; Prather, K L J; Kluskens, L D; Rodrigues, L R

    2015-04-01

    Caffeic acid is a plant secondary metabolite and its biological synthesis has attracted increased attention due to its beneficial effects on human health. In this study, Escherichia coli was engineered for the production of caffeic acid using tyrosine as the initial precursor of the pathway. The pathway design included tyrosine ammonia lyase (TAL) from Rhodotorula glutinis to convert tyrosine to p-coumaric acid and 4-coumarate 3-hydroxylase (C3H) from Saccharothrix espanaensis or cytochrome P450 CYP199A2 from Rhodopseudomonas palustris to convert p-coumaric acid to caffeic acid. The genes were codon-optimized and different combinations of plasmids were used to improve the titer of caffeic acid. TAL was able to efficiently convert 3mM of tyrosine to p-coumaric acid with the highest production obtained being 2.62mM (472mg/L). CYP199A2 exhibited higher catalytic activity towards p-coumaric acid than C3H. The highest caffeic acid production obtained using TAL and CYP199A2 and TAL and C3H was 1.56mM (280mg/L) and 1mM (180mg/L), respectively. This is the first study that shows caffeic acid production using CYP199A2 and tyrosine as the initial precursor. This study suggests the possibility of further producing more complex plant secondary metabolites like flavonoids and curcuminoids.

  4. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  5. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  6. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  7. Students' Alternate Conceptions on Acids and Bases

    ERIC Educational Resources Information Center

    Pan, Hanqing; Henriques, Laura

    2015-01-01

    Knowing what students bring to the classroom can and should influence how we teach them. This study is a review of the literature associated with secondary and postsecondary students' ideas about acids and bases. It was found that there are six types of alternate ideas about acids and bases that students hold. These are: macroscopic properties of…

  8. The Kidney and Acid-Base Regulation

    ERIC Educational Resources Information Center

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  9. Citric acid: emerging applications of key biotechnology industrial product.

    PubMed

    Ciriminna, Rosaria; Meneguzzo, Francesco; Delisi, Riccardo; Pagliaro, Mario

    2017-01-01

    Owing to new biotechnological production units mostly located in China, global supply of citric acid in the course of the last two decades rose from less than 0.5 to more than 2 million tonnes becoming the single largest chemical obtained via biomass fermentation and the most widely employed organic acid. Critically reviewing selected research achievements and production trends, we identify the reasons for which this polycarboxylic acid will become a key chemical in the emerging bioeconomy.Graphical abstractPalermo's Fabbrica Chimica Italiana Goldenberg today. In 1930 it was Europe's largest citric acid plant (photo courtesy of Aldo Ferrande).

  10. Malic acid production from thin stillage by Aspergillus species.

    PubMed

    West, Thomas P

    2011-12-01

    The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l(-1). Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l(-1). The highest malic acid yield (0.8 g g(-1)) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains.

  11. Recovery of acetic acid from pre-hydrolysis liquor of hardwood kraft-based dissolving pulp production process by reactive extraction with triisooctylamine.

    PubMed

    Yang, G; Jahan, M Sarwar; Ahsan, Laboni; Zheng, Linqiang; Ni, Yonghao

    2013-06-01

    Acetic acid was one of the main compositions of the pre-hydrolysis liquor (PHL), which was recovered by reactive extraction with triisooctylamine (TIOA) diluted with decanol. Dilution of TIOA played an important role in extracting acetic acid from the PHL. The recovery of acetic acid from the PHL by TIOA was increased from 10.34% to 66.60% with the dilution of TIOA to 20% by decanol at the HAc to TIOA molar ratio of 1, consequently, the equilibrium distribution coefficient KD increased. The effects of time, temperature and pH on the extraction process were also studied. The extraction process was very fast. The acetic acid extraction decreased from 65.13% to 57.34% with the rise of temperature to 50°C from 20°C. A higher pH increased the dissociation of acetic acid, as a result, decreased acetic acid extraction. The hemicelluloses in the PHL were unaffected on the extraction process of acetic acid.

  12. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger.

    PubMed

    Li, An; Pfelzer, Nina; Zuijderwijk, Robbert; Brickwedde, Anja; van Zeijl, Cora; Punt, Peter

    2013-05-01

    Aspergillus niger has an extraordinary potential to produce organic acids as proven by its application in industrial citric acid production. Previously, it was shown that expression of the cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus converted A. niger into an itaconic acid producer (Li et al., Fungal Genet Bio 48: 602-611, 2011). After some initial steps in production optimization in the previous research (Li et al., BMC biotechnol 12: 57, 2012), this research aims at modifying host strains and fermentation conditions to further improve itaconic acid production. Expression of two previously identified A. terreus genes encoding putative organic acid transporters (mttA, mfsA) increased itaconic acid production in an A. niger cis-aconitate decarboxylase expressing strain. Surprisingly, the production did not increase further when both transporters were expressed together. Meanwhile, oxalic acid was accumulated as a by-product in the culture of mfsA transformants. In order to further increase itaconic acid production and eliminate by-product formation, the non-acidifying strain D15#26 and the oxaloacetate acetylhydrolase (oahA) deletion strain AB 1.13 ∆oahA #76 have been analyzed for itaconic acid production. Whereas cadA expression in AB 1.13 ∆oahA #76 resulted in higher itaconic acid production than strain CAD 10.1, this was not the case in strain D15#26. As expected, oxalic acid production was eliminated in both strains. In a further attempt to increase itaconic acid levels, an improved basal citric acid-producing strain, N201, was used for cadA expression. A selected transformant (N201CAD) produced more itaconic acid than strain CAD 10.1, derived from A. niger strain AB1.13. Subsequently, we have focused on the influence of dissolved oxygen (D.O.) on itaconic acid production. Interestingly, reduced D.O. levels (10-25 %) increased itaconic acid production using strain N201 CAD. Similar results were obtained in strain AB 1.13 CAD + HBD2

  13. Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L.

    PubMed

    Ferreira, Jorge F S

    2007-03-07

    Artemisia annua became a valuable agricultural crop after the World Health Organization recommended artemisinin as a component of ACT (artemisinin-combination based therapies) for malaria in 2001. A cloned, greenhouse-grown, A. annua (Artemis) subjected to an acidic soil and macronutrient deficit was evaluated for artemisinin production. Lack of lime (L) and macronutrients (N, P, and K) reduced leaf biomass accumulation. When L was provided (pH 5.1), the highest average leaf biomass was achieved with the "complete" (+N, +P, +K, and +L) treatment (70.3 g/plant), and the least biomass was achieved with the untreated (-N, -P, -K, and -L) treatment (6.18 g/plant). The nutrient least required for biomass accumulation per plant (g) was K (49.0 g), followed by P (36.5 g) and N (14.3 g). The artemisinin concentration (g/100 g) was significantly higher (75.5%) in -K plants when compared to plants under the complete treatment (1.62 vs 0.93%). Although the artemisinin total yield (g/plant) was 21% higher in -K plants, it was not significantly different from plants under the complete treatment (0.80 vs 0.66 g/plant). There were no marked treatment effects for concentration (g/100 g) or yield (g/plant) of both dihydroartemisinic acid and artemisinic acid, although higher levels were achieved in plants under the complete or -K treatments. There was a positive and significant correlation between artemisinin and both artemisinic acid and dihydroartemisin acid, in g/100 g and g/plant. This is the first report where potassium deficiency significantly increases the concentration (g/100 g) of artemisinin. Thus, under a mild potassium deficiency, A. annua farmers could achieve similar gains in artemisinin/ha, while saving on potassium fertilization, increasing the profitability of artemisinin production.

  14. Organization and development of zebra finch HVC and paraHVC based on expression of zRalDH, an enzyme associated with retinoic acid production

    PubMed Central

    Olson, Christopher R.; Rodrigues, Paulo Vianney; Jeong, Jin Kwon; Prahl, Daniel J.; Mello, Claudio V.

    2010-01-01

    The zRalDH gene encodes an aldehyde dehydrogenase associated with the conversion of retinaldehyde (the main vitamin A metabolite) into retinoic acid and its expression is highly enriched in the song control system of adult zebra finches (T. gutatta). Within song control nucleus HVC, zRalDH is specifically expressed in the neurons that project to area X of the striatum. It is also expressed in paraHVC, commonly considered a medial extension of HVC that is closely associated with auditory areas in the caudomedial telencephalon. Here we used in situ hybridization to generate a detailed analysis of HVC and paraHVC based on expression of zRalDH for adult zebra finches of both sexes and for males during the song learning period. We demonstrate that the distribution of zRalDH-positive cells can be used for accurate assessments of HVC and paraHVC in adult and juvenile males. We describe marked developmental changes in the numbers of zRalDH-expressing cells in HVC and paraHVC, reaching a peak at day 50 post-hatch, an effect potentially due to dynamic changes in the population of X-projecting cells in HVC. We also show that zRalDH-expressing cells in adult females, although much less numerous than in males, have a surprisingly broad distribution along the medial-to-lateral extent of HVC but are lacking where paraHVC is found in adult males. Our study thus contributes to our understanding of the nuclear organization of the song system and the dynamics of its developmental changes during the song learning period. PMID:21120932

  15. Kojic Acid Production from Agro-Industrial By-Products Using Fungi

    PubMed Central

    El-Kady, Ismael A.; Zohri, Abdel Naser A.; Hamed, Shimaa R.

    2014-01-01

    A total of 278 different isolates of filamentous fungi were screened using synthetic medium for respective ability to produce kojic acid. Nineteen, six, and five isolates proved to be low, moderate, and high kojic acid producers, respectively. Levels of kojic acid produced were generally increased when shaking cultivation was used rather than those obtained using static cultivation. A trial for the utilization of 15 agro-industrial wastes or by-products for kojic acid production by the five selected higher kojic acid producer isolates was made. The best by-product medium recorded was molasses for kojic acid. A. flavus numbers 7 and 24 were able to grow and produce kojic acid on only 12 out of 15 wastes or by-products media. The best medium used for kojic acid production by A. flavus number 7 was rice fragments followed by molasses, while the best medium used for kojic acid production by A. flavus number 24 was the molasses followed by orange, pea, and rice fragments. An attempt for production of kojic acid using a 1.5 L laboratory fermentor has been made. Aspergillus flavus number 7 was used and grown on molasses medium; maximum level (53.5 g/L) of kojic acid was obtained after eight days of incubation. PMID:24778881

  16. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    PubMed

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.

  17. Industrial production of amino acids by coryneform bacteria.

    PubMed

    Hermann, Thomas

    2003-09-04

    In the 1950s Corynebacterium glutamicum was found to be a very efficient producer of L-glutamic acid. Since this time biotechnological processes with bacteria of the species Corynebacterium developed to be among the most important in terms of tonnage and economical value. L-Glutamic acid and L-lysine are bulk products nowadays. L-Valine, L-isoleucine, L-threonine, L-aspartic acid and L-alanine are among other amino acids produced by Corynebacteria. Applications range from feed to food and pharmaceutical products. The growing market for amino acids produced with Corynebacteria led to significant improvements in bioprocess and downstream technology as well as in molecular biology. During the last decade big efforts were made to increase the productivity and to decrease the production costs. This review gives an overview of the world market for amino acids produced by Corynebacteria. Significant improvements in bioprocess technology, i.e. repeated fed batch or continuous production are summarised. Bioprocess technology itself was improved furthermore by application of more sophisticated feeding and automatisation strategies. Even though several amino acids developed towards commodities in the last decade, side aspects of the production process like sterility or detection of contaminants still have increasing relevance. Finally one focus of this review is on recent developments in downstream technology.

  18. Photolysis of Cyclopiazonic Acid to Fluorescent Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA), which is produced by certain species of Aspergillus and Penicillium, can co-occur with aflatoxins under certain conditions. A large proportion of A. flavus strains can produce CPA and it has been found as a natural contaminant in cheeses, corn, rice, peanuts, millet and fe...

  19. Photolysis of Cyclopiazonic Acid to Fluorescent Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA) is a mycotoxin produced by some of the same species of fungi that produce the more widely known aflatoxins. As a consequence it has been found previously that CPA and the aflatoxins may co-occur in commodities under certain conditions. CPA, which is a substituted indole, h...

  20. Chicoric acid: chemistry, distribution, and production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 60 genera have been found to contain chicoric...

  1. Relationship between morphology and itaconic acid production by Aspergillus terreus.

    PubMed

    Gao, Qian; Liu, Jie; Liu, Liming

    2014-02-28

    The morphology of filamentous fungi closely correlates with the productivity in submerged culture. Using itaconic acid (IA) production by Aspergillus terreus as a research model, the quantitative relationship between the growth form of A. terreus and IA production was investigated. IA fermentation was scaled up from shake flasks to a 7 L stirred tank bioreactor based on the quantitative relationship. Our results demonstrated the following: (1) Three morphologies of A. terreus were formed by changing the inoculum level and shape of the flask. (2) Investigation of the effects of the three morphologies on broth rheology and IA production revealed the higher yield of IA on dry cell weight (DCW, IA/DCW) and yield of glucose on DCW (consumed glucose/DCW) were achieved during clump growth of A. terreus. (3) By varying the KH2PO4 concentration and culture temperature, the relationships between clump diameter and IA production were established, demonstrating that the yield of IA on DCW (R(2) = 0.9809) and yield of glucose on DCW (R(2) = 0.9421) were closely correlated with clump diameter. The optimum clump diameter range for higher IA production was 0.40-0.50 mm. (4) When the clump diameter was controlled at 0.45 mm by manipulating the mechanical stress in a 7 L fermentor, the yield of IA on DCW and yield of glucose on DCW were increased by 25.1% and 16.3%, respectively. The results presented in this study provide a potential approach for further enhancement of metabolite production by filamentous fungi.

  2. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  3. Integration of succinic acid and ethanol production within a corn or barley biorefinery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH4OH, and Na2CO3. The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or ...

  4. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    PubMed

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  5. A new approach to microbial production of gallic acid

    PubMed Central

    Bajpai, Bhakti; Patil, Shridhar

    2008-01-01

    In a new approach to microbial gallic acid production by Aspergillus fischeri MTCC 150, 40gL−1 of tannic acid was added in two installments during the bioconversion phase of the process (25gL−1 and 15gL−1 at 32 and 44h respectively). The optimum parameters for the bioconversion phase were found to be temperature: 35°C, pH: slightly acidic (3.3–3.5), aeration: nil and agitation: 250 rpm. A maximum of 71.4% conversion was obtained after 71h fermentation with 83.3% product recovery. The yield was 7.35 g of gallic acid per g of biomass accumulated and the fermenter productivity was 0.56 g of gallic acid produced per liter of medium per hour. PMID:24031294

  6. Iron-catalyzed hydrogen production from formic acid.

    PubMed

    Boddien, Albert; Loges, Björn; Gärtner, Felix; Torborg, Christian; Fumino, Koichi; Junge, Henrik; Ludwig, Ralf; Beller, Matthias

    2010-07-07

    Hydrogen represents a clean energy source, which can be efficiently used in fuel cells generating electricity with water as the only byproduct. However, hydrogen generation from renewables under mild conditions and efficient hydrogen storage in a safe and reversible manner constitute important challenges. In this respect formic acid (HCO(2)H) represents a convenient hydrogen storage material, because it is one of the major products from biomass and can undergo selective decomposition to hydrogen and carbon dioxide in the presence of suitable catalysts. Here, the first light-driven iron-based catalytic system for hydrogen generation from formic acid is reported. By application of a catalyst formed in situ from inexpensive Fe(3)(CO)(12), 2,2':6'2''-terpyridine or 1,10-phenanthroline, and triphenylphosphine, hydrogen generation is possible under visible light irradiation and ambient temperature. Depending on the kind of N-ligands significant catalyst turnover numbers (>100) and turnover frequencies (up to 200 h(-1)) are observed, which are the highest known to date for nonprecious metal catalyzed hydrogen generation from formic acid. NMR, IR studies, and DFT calculations of iron complexes, which are formed under reaction conditions, confirm that PPh(3) plays an active role in the catalytic cycle and that N-ligands enhance the stability of the system. It is shown that the reaction mechanism includes iron hydride species which are generated exclusively under irradiation with visible light.

  7. The role of surface oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism and product selectivity on Pd-based catalysts in acid media.

    PubMed

    Rahul, R; Singh, R K; Bera, B; Devivaraprasad, R; Neergat, M

    2015-06-21

    Oxygen reduction reaction (ORR) is investigated on bulk PdO-based catalysts (oxides of Pd and Pd3Co) in oxygen-saturated 0.1 M HClO4 to establish the role of surface oxides and adsorbed hydrogen in the activity and product selectivity (H2O/H2O2). The initial voltammetric features suggest that the oxides are inactive toward ORR. The evolution of the ORR voltammograms and potential-dependent H2O2 generation features on the PdO catalyst suggest gradual and parallel in situ reduction of the bulk PdO phase below ∼0.4 V in the hydrogen underpotential deposition (Hupd) region; the reduction of the bulk PdO catalyst is confirmed from the X-ray photoelectron spectra (XPS) and X-ray diffraction (XRD) patterns. The potential-dependent H2O2 generation features originate due to the presence of surface oxides and adsorbed hydrogen; this is further confirmed using halide ions (Cl(-) and Br(-)) and peroxide as the external impurities.

  8. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation.

  9. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  10. Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production.

    PubMed

    Kishino, Shigenobu; Ogawa, Jun; Yokozeki, Kenzo; Shimizu, Sakayu

    2009-08-01

    Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11-18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, alpha-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], gamma-linolenic acid (cis-6,cis-9,cis-12-18:3), columbinic acid (trans-5,cis-9,cis-12-18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from alpha-linolenic acid, which were identified as cis-9,trans-11,cis-15-18:3, trans-9,trans-11,cis-15-18:3, and trans-10,cis-15-18:2. Four major fatty acids were produced from gamma-linolenic acid, which were identified as cis-6,cis-9,trans-11-18:3, cis-6,trans-9,trans-11-18:3, cis-6,trans-10-18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from alpha-linolenic acid and gamma-linolenic acid.

  11. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  12. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  13. Genetic Engineering of Rhizopus for Enhancing Lactic Acid Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  14. Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage.

    PubMed

    Takeuchi, Michiki; Kishino, Shigenobu; Park, Si-Bum; Kitamura, Nahoko; Watanabe, Hiroko; Saika, Azusa; Hibi, Makoto; Yokozeki, Kenzo; Ogawa, Jun

    2016-06-27

    The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.

  15. D-amino acid oxidase: its potential in the production of 7-aminocephalosporanic acid.

    PubMed

    Mujawar, S K

    1999-01-01

    D-Amino acid oxidase (DAAO) used in the preparation of alpha-keto acids, in the determination of D-amino acids and in the resolution of racemic mixture of amino acids is produced by a wide range of microorganisms. In the recent past this enzyme is being recognized for its potential in the commercial production of 7-aminocephalosporanic acid (7-ACA), a starting material for various semisynthetic cephalosporins. Though this enzyme is widespread among microorganisms, very few microbial species have been explored for the production of 7-ACA; this is because cephalosporin C is quantitatively deaminated by limited microbial DAAOs. Comparison of physico-chemical properties of enzyme preparations indicate wide variations, however in general DAAOs are specific for D-configuration of amino acids. Both immobilized enzyme and cell preparations are developed for its various applications. The advantages of DAAO in the production of 7-ACA are discussed.

  16. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  17. Metabolic engineering strategies to bio-adipic acid production.

    PubMed

    Kruyer, Nicholas S; Peralta-Yahya, Pamela

    2017-03-30

    Adipic acid is the most industrially important dicarboxylic acid as it is a key monomer in the synthesis of nylon. Today, adipic acid is obtained via a chemical process that relies on petrochemical precursors and releases large quantities of greenhouse gases. In the last two years, significant progress has been made in engineering microbes for the production of adipic acid and its immediate precursors, muconic acid and glucaric acid. Not only have the microbial substrates expanded beyond glucose and glycerol to include lignin monomers and hemicellulose components, but the number of microbial chassis now goes further than Escherichia coli and Saccharomyces cerevisiae to include microbes proficient in aromatic degradation, cellulose secretion and degradation of multiple carbon sources. Here, we review the metabolic engineering and nascent protein engineering strategies undertaken in each of these chassis to convert different feedstocks to adipic, muconic and glucaric acid. We also highlight near term prospects and challenges for each of the metabolic routes discussed.

  18. Detection of melamine and cyanuric acid in vegetable protein products used in food production.

    PubMed

    Levinson, Lawrence R; Gilbride, Kimberley A

    2011-05-01

    The multitude of food recalls in 2007 clearly demonstrated that total nitrogen-content (ΣN) determination by means of near-infrared spectroscopy (NIRS) and Kjeldahl-based measurements can be deceived, and should no longer be regarded as a complete quality assurance program for nutritive-protein evaluations. Furthermore, contemporary Canadian-employed analytical tools are precariously limited in their ability to effectively assure a product where there is no a priori knowledge of the environmental toxin(s) involved. In light of these challenges, this study explored a number of analytical techniques used to assess and furthermore assure the quality of vegetable protein products (VPPs). Using liquid chromatography with tandem mass spectrometry (LC/MS/MS) technologies, a combination of VPP-based samples was analyzed for the presence of nitrogen-bearing environmental toxicants. Of the 52 samples tested, involving an assortment of matrices, melamine and cyanuric acid were positively identified (>1 ng/mL) in 22 and 17 samples, respectively. Subsequent high pressure liquid chromatography with ultraviolet/visible (HPLC-UV) amino acid profiling further confirmed the adulteration of those materials contaminated with melamine and melamine-related compounds. Based on the evidence presented herein, LC/MS/MS in combination with HPLC-UV provides for a reliable food safety detection system as applied to VPPs. Moreover, HPLC-UV is indispensable as a stand-alone 1st level of screening to assess the integrity of a VPP or any nutritive protein-based sample.

  19. Bacterial production of free fatty acids from freshwater macroalgal cellulose.

    PubMed

    Hoover, Spencer W; Marner, Wesley D; Brownson, Amy K; Lennen, Rebecca M; Wittkopp, Tyler M; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E; Chaston, Sheena D; McMahon, Katherine D; Pfleger, Brian F

    2011-07-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing microorganisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (∼90 μg/mL FFA) cultures grown on rich Luria-Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds.

  20. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    PubMed Central

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M.; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E.; Chaston, Sheena D.; McMahon, Katherine D.

    2013-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing micro-organisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl–acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (~90 μg/mL FFA) cultures grown on rich Luria–Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds. PMID:21643704

  1. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution

    SciTech Connect

    Mincher, Bruce J.; Schmitt, Nicholas C.; Schuetz, Brian K.; Shehee, Thomas C.; Hobbs, David T.

    2015-03-11

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. Furthermore, the utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.

  2. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution

    DOE PAGES

    Mincher, Bruce J.; Schmitt, Nicholas C.; Schuetz, Brian K.; ...

    2015-03-11

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent hasmore » not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. Furthermore, the utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.« less

  3. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution.

    SciTech Connect

    Bruce J. Mincher; Nicholas C. Schmitt

    2015-03-01

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. The utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.

  4. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  5. Solid Acid Based Fuel Cells

    DTIC Science & Technology

    2007-11-02

    superprotonic solid acids with elements such as P, As, Si and Ge, which have greater affinities to oxygen , we anticipate that the reduction reaction will be...bulk material consisted of an apatite phase (hexagonal symmetry) of variable composition, LixLa10-x(SiO4)6O3-x, with excess lithium residing in the...in Tables 1 and 2, indicate that this compound is a rather conventional apatite with fixed stoichiometry, LiLa9(SiO4)6O2 (x = 1). Such a result is

  6. Biotechnological production of enantiomerically pure d-lactic acid.

    PubMed

    Klotz, Silvia; Kaufmann, Norman; Kuenz, Anja; Prüße, Ulf

    2016-11-01

    The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

  7. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  8. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  9. Succinic acid production with Actinobacillus succinogenes ZT-130 in the presence of succinic acid.

    PubMed

    Corona-Gonzalez, Rosa Isela; Bories, Andre; González-Alvarez, Víctor; Snell-Castro, Raul; Toriz-González, Guillermo; Pelayo-Ortiz, Carlos

    2010-01-01

    Glucose fermentation with Actinobacillus succinogenes was carried out at different initial concentrations of succinic acid (SA(0)) to determine its effect on growth and on the production of succinic acid itself. The specific rates of biomass production, succinic, formic and acetic acids decreased with SA(0) (0-40 g/l). The partially dissociated form of succinic acid had a higher effect on cell growth and production of succinic acid as compared to the non-dissociated forms of the acids, a fact that has not been reported until now. Cell growth fitted the Jerusalimski model, and the Aiba-Shoda model was suitable for quantification of the inhibition for the production of succinic acid. The growth inhibition constants K(is) and K(ip) and their summatory were consistent with the experimental values obtained, i.e., 22 g/l for the produced acids and 38 g/l for total acids that were the limits at which the biomass formation ceased.

  10. Integration of succinic acid and ethanol production with potential application in a corn or barley biorefinery.

    PubMed

    Nghiem, Nhuan P; Hicks, Kevin B; Johnston, David B

    2010-11-01

    Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH(4)OH, and Na(2)CO(3). The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or barley as feedstock was examined. The carbon dioxide gas from the ethanol fermentor was sparged directly into the liquid media in the succinic acid fermentor without any pretreatment. Without the CO(2) supplement, the highest succinic acid yield was observed with Na(2)CO(3), followed by NH(4)OH, and lowest with the other two bases. When the CO(2) produced in the ethanol fermentation was sparged into the media in the succinic acid fermentor, no improvement of succinic acid yield was observed with Na(2)CO(3). However, several-fold increases in succinic acid yield were observed with the other bases, with NH(4)OH giving the highest yield increase. The yield of succinic acid with CO(2) supplement from the ethanol fermentor when NH(4)OH was used for pH control was equal to that obtained when Na(2)CO(3) was used, with or without CO(2) supplementation. The benefit of sparging CO(2) from ethanol fermentation on the yield of succinic acid demonstrated the feasibility of integration of succinic acid fermentation with ethanol fermentation in a biorefinery for production of fuels and industrial chemicals.

  11. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Devi, P Uma; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond.

  12. Acid production by oral strains of Candida albicans and lactobacilli.

    PubMed

    Klinke, T; Kneist, S; de Soet, J J; Kuhlisch, E; Mauersberger, S; Forster, A; Klimm, W

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed, pure resting-cell suspensions were obtained by culturing a total of 28 oral isolates comprising the species C. albicans, Lactobacillus rhamnosus, Lactobacillus paracasei paracasei, Lactobacillus paracasei tolerans and Lactobacillus delbrueckii lactis. Acid production from glucose was determined at a constant pH of 7.0, 5.5, 5.0 and 4.0 by repeated titrations with NaOH in an automated pH-stat system. Acid formation rates of yeast and lactobacilli proved to be similar at both neutral and low pH, while in a moderately acidic environment C. albicans produced less acid than the lactobacilli. Ion chromatographic analysis of the cell-free medium after titration revealed pyruvate to be the predominant organic acid anion secreted by C. albicans. The proportion of organic acids to overall acid production by the yeast was below 10% at neutral conditions, in contrast to 42-66% at pH 4.0. Compared to lactobacilli, yeast required a concentration of glucose that was about 50 times higher to allow acid production at half the maximum speed. Considering the clinical data in the literature about the frequency and proportions of microorganisms present in early childhood caries lesions, the contribution of oral lactobacilli as well as C. albicans to overall microbial acid formation appears to be important.

  13. Production of Gluconic Acid by Some Local Fungi

    PubMed Central

    Shindia, A. A.; El-Esawy, A. E.; Sheriff, Y. M. M. M.

    2006-01-01

    Forty-one fungal species belonging to 15 fungal genera isolated from Egyptian soil and sugar cane waste samples were tested for their capacity of producing acidity and gluconic acid. For the tests, the fungi were grown on glucose substrate and culture filtrates were examined using paper chromatography analysis. Most of the tested fungi have a relative wide potentiality for total acid production in their filtrates. Nearly 51% of them showed their ability of producing gluconic acid. Aspergillus niger was distinguishable from other species by its capacity to produce substantial amounts of gluconic acid when it was cultivated on a selective medium. The optimized cultural conditions for gluconic acid yields were using submerged culture at 30℃ at initial pH 6.0 for 7 days of incubation. Among the various concentrations of substrate used, glucose (14%, w/v) was found to be the most suitable carbon source for maximal gluconic acid during fermentation. Maximum values of fungal biomass (10.02 g/l) and gluconic acid (58.46 g/l) were obtained when the fungus was grown with 1% peptone as sole nitrogen source. Influence of the concentration of some inorganic salts as well as the rate of aeration on the gluconic acid and biomass production is also described. PMID:24039465

  14. Utilization of by-products derived from bioethanol production process for cost-effective production of lactic acid.

    PubMed

    Moon, Se-Kwon; Wee, Young-Jung; Choi, Gi-Wook

    2014-10-01

    The by-products of bioethanol production such as thin stillage (TS) and condensed distillers solubles (CDS) were used as a potential nitrogen source for economical production of lactic acid. The effect of those by-products and their concentrations on lactic acid fermentation were investigated using Lactobacillus paracasei CHB2121. Approximately, 6.7 g/L of yeast extract at a carbon source to nitrogen source ratio of 15 was required to produce 90 g/L of lactic acid in the medium containing 100 g/L of glucose. Batch fermentation of TS medium resulted in 90 g/L of lactic acid after 48 h, and the medium containing 10 % CDS resulted in 95 g/L of lactic acid after 44 h. Therefore, TS and CDS could be considered as potential alternative fermentation medium for the economical production of lactic acid. Furthermore, lactic acid fermentation was performed using only cassava and CDS for commercial production of lactic acid. The volumetric productivity of lactic acid [2.94 g/(L·h)] was 37 % higher than the productivity obtained from the medium with glucose and CDS.

  15. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  16. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    PubMed

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  17. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    PubMed

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H2SO4) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light.

  18. Linolenic acid prevents early and advanced glycation end-products (AGEs) modification of albumin.

    PubMed

    Prasanna, Govindarajan; Saraswathi, N T

    2017-02-01

    In this study, we report the protective effects of linolenic acid towards the formation of early (HbA1c) and advanced glycation end-products (AGEs) based on fluorescence, circular dichroism, confocal microscopy and molecular interaction studies. Linolenic acid was found to be a potent inhibitor of AGEs formed by both glucose and fructose. The HbA1c (early glycation product) level was found to be reduced to 7.4% when compared to glycated control (8.4%). Similarly, linolenic acid also inhibited the methylglyoxal mediated AGEs formation. Circular dichroism spectroscopy studies suggested that the protective effect of linolenic acid for the helical structure of albumin. The molecular interaction studies showed that linolenic acid interacts with arginine residues of albumin with high affinity. Results suggested linolenic acid to be a potent antiglycation compound and also it could be a better lead compound for AGE inhibition.

  19. [Environmental factors affecting the succinic acid production by Actinobacillus succinogenes CGMCC 1593].

    PubMed

    Zheng, Pu; Zhou, Wei; Ni, Ye; Jiang, Min; Wei, Ping; Sun, Zhihao

    2008-06-01

    Actinobacillus succinogenes is a promising candidate for the production of bio-based succinic acid. Previously, we isolated a succinic acid-producing strain Actinobacillus succinogenes CGMCC 1593 from bovine rumen. In this paper, the influence of the environmental factors such as gas phase, pH, ORP, on succinic acid production by A. succinogenes CGMCC 1593 was studied. The results showed that CO2 was the optimum gas phase for anaerobic fermentation ofA. succinogenes CGMCC 1593 as well as one of the substrate for the succinic acid synthesis. Using MgCO3 as a pH regulator, the pH was maintained within 7.1-6.2 during the anaerobic fermentation for the cell growth and acid production of A. succinogenes CGMCC 1593. Our results showed that low initial ORP was disadvantageous for the growth of A. succinogenes CGMCC 1593 and an ORP of -270 mV was demonstrated to be beneficial to the succinic acid production. By adding Na2S.9H2O to decrease ORP to -270 mV at the end of exponential growth phase in batch culture of A. succinogenes CGMCC 1593, the succinic acid concentration reached 37 g/L and the yield of succinic acid was 129% at 48 h. This work might provide valuable information for further optimization of succinic acid fermentation by A. succinogenes CGMCC 1593.

  20. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  1. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols.

    PubMed

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo

    2011-02-01

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now.

  2. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical.

    PubMed

    Saha, Badal C

    2017-02-01

    Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (>80 g L(-1)) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (>200 g L(-1)). This review summarizes the latest progress on enhancing the yield and productivity of IA production. IA biosynthesis involves the decarboxylation of the TCA cycle intermediate cis-aconitate through the action of cis-aconitate decarboxylase (CAD) enzyme encoded by the CadA gene in A. terreus. A number of recombinant microorganisms have been developed in an effort to overproduce it. IA is used as a monomer for production of superabsorbent polymer, resins, plastics, paints, and synthetic fibers. Its applications as a platform chemical are highlighted. It has a strong potential to replace petroleum-based methylacrylic acid in industry which will create a huge market for IA.

  3. Vine Trimming Shoots as Substrate for Ferulic Acid Esterases Production.

    PubMed

    Pérez-Rodríguez, N; Outeiriño, D; Torrado Agrasar, A; Domínguez, J M

    2017-02-01

    Ferulic acid esterases (FAE) possess a large variety of biotechnological applications mainly based on their ability to release ferulic acid from lignocellulosic matrixes. The use of vine trimming shoots (VTS), an agricultural waste, as substrate for the generation of this kind of esterases represents an attractive alternative to change the consideration of VTS from residue to resource. Furthermore, xylanase, cellobiase, and cellulase activities were quantified. Six microorganisms were screened for FAE production by solid-state fermentation, and the effects of the additional supplementation and substrate size were also tested. Finally, the process was scaled-up to a horizontal bioreactor where the influence of aeration in enzymatic activities was evaluated. Thus, the optimal FAE activity (0.44 U/g dry VTS) was attained by Aspergillus terreus CECT 2808, in non-additional supplementation media, using the larger particles size of substrate (≤ 5 mm) and at a flow rate of 0.7 L/min.

  4. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production.

  5. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae.

    PubMed

    Ishida, Nobuhiro; Suzuki, Tomiko; Tokuhiro, Kenro; Nagamori, Eiji; Onishi, Toru; Saitoh, Satoshi; Kitamoto, Katsuhiko; Takahashi, Haruo

    2006-02-01

    Poly D-lactic acid is an important polymer because it improves the thermostability of poly L-lactic acid by the stereo complex formation. We constructed a metabolically engineered Saccharomyces cerevisiae that produces D-lactic acid efficiently. In this recombinant, the coding region of pyruvate decarboxylase 1 (PDC1) was completely deleted, and two copies of the D-lactate dehydrogenase (D-LDH) gene from Leuconostoc mesenteroides subsp. mesenteroides strain NBRC3426 were introduced into the genome. The D-lactate production reached 61.5 g/l, the amount of glucose being transformed into D-lactic acid being 61.2% under neutralizing conditions. Additionally, the yield of free D-lactic acid was also shown to be 53.0% under non-neutralizing conditions. It was confirmed that D-lactic acid of extremely high optical purity of 99.9% or higher. Our finding obtained the possibility of a new approach for pure d-lactic acid production without a neutralizing process compared with other techniques involving lactic acid bacteria and transgenic Escherichia coli.

  6. HF acid blends based on formation conditions eliminate precipitation problems

    SciTech Connect

    Gdanski, R.; Shuchart, C.

    1997-03-01

    Formulating HCl-HF acid blends based on the mineralogy and temperature of a formation can increase the success of hydrofluoric acid (HF) treatments. Sodium and potassium in the structures of formation minerals can cause precipitation and matrix plugging problems during acidizing. Slight modifications of the acid blend used in the treatment can help eliminate fluosilicate precipitation. Researchers recently conducted tests to determine how acid blends react in different formations under varying temperatures. The results of the tests indicate that the minimum HCl:HF ratio in an acid blend is 6-to-1, and the optimum ratio is 9-to-1. Regular mud acid (12% HCl-3% HF) has been used successfully for years to enhance production in sandstone formations. By the 1980s, operators began to vary the concentration of HF and HCl acids to solve excessive sanding problems in sandstone. The paper discusses treatment problems, formation characteristics, alumino-silicate scaling, research results, brine compatibility, optimum treatment, and acid volume guidelines.

  7. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  8. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    PubMed

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness.

  9. Molecular products from the thermal degradation of glutamic acid.

    PubMed

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry

    2013-08-14

    The thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported. Accordingly, the principal products for pyrolysis in order of decreasing abundance were succinimide, pyrrole, acetonitrile, and 2-pyrrolidone. For oxidative pyrolysis, the main products were succinimide, propiolactone, ethanol, and hydrogen cyanide. Whereas benzene, toluene, and a few low molecular weight hydrocarbons (propene, propane, 1-butene, and 2-butene) were detected during pyrolysis, no polycyclic aromatic hydrocarbons (PAHs) were detected. Oxidative pyrolysis yielded low molecular weight hydrocarbon products in trace amounts. The mechanistic channels describing the formation of the major product succinimide have been explored. The detection of succinimide (major product) and maleimide (minor product) from the thermal decomposition of glutamic acid has been reported for the first time in this study. Toxicological implications of some reaction products (HCN, acetonitrile, and acyrolnitrile), which are believed to form during heat treatment of food, tobacco burning, and drug processing, have been discussed in relation to the thermal degradation of glutamic acid.

  10. Poly(lactic acid)-Mass production, processing, industrial applications, and end of life.

    PubMed

    Castro-Aguirre, E; Iñiguez-Franco, F; Samsudin, H; Fang, X; Auras, R

    2016-12-15

    Global awareness of material sustainability has increased the demand for bio-based polymers like poly(lactic acid) (PLA), which are seen as a desirable alternative to fossil-based polymers because they have less environmental impact. PLA is an aliphatic polyester, primarily produced by industrial polycondensation of lactic acid and/or ring-opening polymerization of lactide. Melt processing is the main technique used for mass production of PLA products for the medical, textile, plasticulture, and packaging industries. To fulfill additional desirable product properties and extend product use, PLA has been blended with other resins or compounded with different fillers such as fibers, and micro- and nanoparticles. This paper presents a review of the current status of PLA mass production, processing techniques and current applications, and also covers the methods to tailor PLA properties, the main PLA degradation reactions, PLA products' end-of-life scenarios and the environmental footprint of this unique polymer.

  11. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    PubMed

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery.

  12. Beneficial Effect of Acetic Acid on the Xylose Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus.

    PubMed

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2014-09-01

    In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l(-1) acetic acid, the optimal xylose concentration for BC production was 20 g l(-1). In the medium containing 20 g l(-1) xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l(-1)) was obtained in the medium containing 20 g l(-1) xylose and 3 g l(-1) acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l(-1)) in the medium only containing 20 g l(-1) xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.

  13. Means for reducing oxalic acid to a product

    SciTech Connect

    Morduchowitz, A.; Sammells, A.F.

    1988-12-06

    This patent describes an apparatus for reducing oxalic acid to a product comprising: a cell including a separator for separating the cell into two chambers, a catholyte chamber and an anolyte chamber, each chamber having an inlet and an outlet; a porous anode arranged within the anolyte section in a manner so that an electrolyte entering through the inlet of the anolyte section will pass through the anode and exit through the outlet of the anolyte section; means for providing an electrolyte to the inlet of the anolyte chamber in a manner so that it will exit through the outlet of the anolyte chamber; means for providing a mixture of oxalic acid and an electrolyte to the inlet of the catholyte chamber; porous cathode means located in the catholyte chamber for reducing the oxalic acid in the oxalic acid-electrolyte mixture to the product within the cathode means when a d.c. voltage provided across the anode and the cathode means, the product exiting the cell by way of the catholyte chamber's outlet; and means for providing a d.c. voltage across the cathode means and the anode so as to cooperate in the reduction of the oxalic acid; and in which the cathode means includes a porous cathode having discrete sites of platinum and mercury as catalysts and the product is ethylene glycol.

  14. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Xi, Yong-lan; Dai, Wen-yu; Xu, Rong; Zhang, Jiu-hua; Chen, Ke-quan; Jiang, Min; Wei, Ping; Ouyang, Ping-kai

    2013-11-01

    Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively.

  15. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now.

  16. l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste.

    PubMed

    Bernardo, Marcela Piassi; Coelho, Luciana Fontes; Sass, Daiane Cristina; Contiero, Jonas

    2016-01-01

    Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.

  17. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  18. Enrichment of By-Product Materials from Steel Pickling Acid Regeneration Plants (TRP 9942)

    SciTech Connect

    Lu Swan, Delta Ferrites LLC

    2009-09-30

    A new process for manufacturing an enriched, iron-based product (strontium hexaferrite) in existing steel pickling acid regeneration facilities was evaluated. Process enhancements and equipment additions were made to an existing acid regeneration plant to develop and demonstrate (via pilot scale testing and partial-capacity production trials) the viability of a patented method to produce strontium-based compounds that, when mixed with steel pickling acid and roasted, would result in a strontium hexaferrite powder precursor which could then be subjected to further heat treatment in an atmosphere that promotes rapid, relatively low-temperature formation of discrete strontium hexaferrite magnetic domains yielding an enriched iron-based product, strontium hexaferrite, that can be used in manufacturing hard ferrite magnets.

  19. An elementary derivation of the hard/soft-acid/base principle.

    PubMed

    Ayers, Paul W

    2005-04-08

    The hard/soft-acid/base (HSAB) principle indicates that hard acids prefer binding to hard bases (often forming bonds with substantial ionic character) while soft acids prefer binding to soft bases (often forming bonds with substantial covalent character). Though the HSAB principle is a foundational concept of the modern theory of acids and bases, the theoretical underpinnings of the HSAB principle remain murky. This paper examines the exchange reaction, wherein two molecules, one the product of reacting a hard acid and a soft base and the other the product of reacting a soft acid with a hard base, exchange substituents to form the preferred hard-hard and soft-soft product. A simple derivation shows that this reaction is exothermic, proving the validity of the HSAB principle. The analysis leads to the simple and conceptually appealing conclusion that the HSAB principle is a driven by simple electron transfer effects.

  20. Multicriteria optimization of gluconic acid production using net flow.

    PubMed

    Halsall-Whitney, H; Taylor, D; Thibault, J

    2003-03-01

    The biochemical process industry is often confronted with the challenge of making decisions in an atmosphere of multiple and conflicting objectives. Recent innovations in the field of operations research and systems science have yielded rigorous multicriteria optimization techniques that can be successfully applied to the field of biochemical engineering. These techniques incorporate the expert's experience into the optimization routine and provide valuable information about the zone of possible solutions. This paper presents a multicriteria optimization strategy that generates a Pareto domain, given a set of conflicting objective criteria, and determines the optimal operating region for the production of gluconic acid using the net flow method (NFM). The objective criteria include maximizing the productivity and concentration of gluconic acid, while minimizing the residual substrate. Three optimization strategies are considered. The first two strategies identify the optimal operating region for the process inputs. The results yielded an acceptable compromise between productivity, gluconic acid concentration and residual substrate concentration. Fixing the process inputs representing the batch time, initial substrate concentration and initial biomass equal to their optimal values, the remaining simulations were used to study the sensitivity of the optimum operating region to changes in the oxygen mass transfer coefficient, K(L) a, by utilizing a multi-level K(L) a strategy. The results show that controlling K(L) a during the reaction reduced the production of biomass, which in turn resulted in increased productivity and concentration of gluconic acid above that of a fixed K(L) a.

  1. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate.

  2. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic)....

  3. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic)....

  4. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276.

    PubMed

    Furlan, Valcenir Júnior Mendes; Maus, Victor; Batista, Irineu; Bandarra, Narcisa Maria

    2017-01-20

    The high costs and environmental concerns associated with using marine resources as sources of oils rich in polyunsaturated fatty acids have prompted searches for alternative sources of such oils. Some microorganisms, among them members of the genus Aurantiochytrium, can synthesize large amounts of these biocompounds. However, various parameters that affect the polyunsaturated fatty acids production of these organisms, such as the carbon and nitrogen sources supplied during their cultivation, require further elucidation. The objective of this investigation was to study the effect of different concentrations of carbon and total nitrogen on the production of polyunsaturated fatty acids, particularly docosahexaenoic acid, by Aurantiochytrium sp. ATCC PRA-276. We performed batch system experiments using an initial glucose concentration of 30g/L and three different concentrations of total nitrogen, including 3.0, 0.44, and 0.22g/L, and fed-batch system experiments in which 0.14g/L of glucose and 0.0014g/L of total nitrogen were supplied hourly. To assess the effects of these different treatments, we determined the biomass, glucose, total nitrogen and polyunsaturated fatty acids concentration. The maximum cell concentration (23.9g/L) was obtained after 96h of cultivation in the batch system using initial concentrations of 0.22g/L total nitrogen and 30g/L glucose. Under these conditions, we observed the highest level of polyunsaturated fatty acids production (3.6g/L), with docosahexaenoic acid and docosapentaenoic acid ω6 concentrations reaching 2.54 and 0.80g/L, respectively.

  5. Volatile fatty acids production from marine macroalgae by anaerobic fermentation.

    PubMed

    Pham, Thi Nhan; Nam, Woo Joong; Jeon, Young Joong; Yoon, Hyon Hee

    2012-11-01

    Volatile fatty acids (VFAs) were produced from the marine macroalgae, Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinite by anaerobic fermentation using a microbial community derived from a municipal wastewater treatment plant. Methanogen inhibitor (iodoform), pH control, substrate concentration, and alkaline and thermal pretreatments affected VFA productivity. Acetic, propionic, and butyric acids were the main products. A maximum VFA concentration of 15.2g/L was obtained from 50 g/L of L. japonica in three days at 35°C and pH 6.5-7.0. Pretreatment with 0.5 N NaOH improved VFA productivity by 56% compared to control. The result shows the applicability of marine macroalgae as biomass feedstock for the production of VFAs which can be converted to mixed alcohol fuels.

  6. Amino acid profile of milk-based infant formulas.

    PubMed

    Viadel, B; Alegriá, A; Farré, R; Abellán, P; Romero, F

    2000-09-01

    The protein content and amino acid profile of three milk-based infant formulas, two of which were powdered (adapted and follow-on) and the third liquid, were determined to check their compliance with the EU directive and to evaluate whether or not they fulfil an infant's nutritional needs. To obtain the amino acid profile proteins were subjected to acid hydrolysis, prior to which the sulfur-containing amino acids were oxidized with performic acid. The amino acids were derivatized with phenylisothiocyanate (PITC) and then determined by ion-pair reverse phase high performance liquid chromatography (HPLC) In the case of tryptophan a basic hydrolysis was applied and there was no need of derivatization. The protein contents of the analysed formulas were in the ranges established by the EU directive for these products and the amino acid contents were in the ranges reported by other authors for these types of formulas. In all cases the tryptophan content determined the value of the chemical score, which was always lower than 80% of the reference protein but in the ranges reported by other authors. The analysed adapted infant formula provides amino acids in amounts higher than the established nutritional requirements.

  7. In vitro digestion testing of lipid-based delivery systems: calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products.

    PubMed

    Devraj, Ravi; Williams, Hywel D; Warren, Dallas B; Mullertz, Anette; Porter, Christopher J H; Pouton, Colin W

    2013-01-30

    In vitro digestion testing is of practical importance to predict the fate of drugs administered in lipid-based delivery systems. Calcium ions are often added to digestion media to increase the extent of digestion of long-chain triglycerides (LCTs), but the effects they have on phase behaviour of the products of digestion, and consequent drug solubilization, are not well understood. This study investigates the effect of calcium and bile salt concentrations on the rate and extent of in vitro digestion of soybean oil, as well as the solubilizing capacity of the digestion products for two poorly water-soluble drugs, fenofibrate and danazol. In the presence of higher concentrations of calcium ions, the solubilization capacities of the digests were reduced for both drugs. This effect is attributed to the formation of insoluble calcium soaps, visible as precipitates during the digestions. This reduces the availability of liberated fatty acids to form mixed micelles and vesicles, thereby reducing drug solubilization. The use of high calcium concentrations does indeed force in vitro digestion of LCTs but may overestimate the extent of drug precipitation that occurs within the intestinal lumen.

  8. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA).

    PubMed

    Brinton, Eliot A; Mason, R Preston

    2017-01-31

    The omega-3 fatty acid eicosapentaenoic acid (EPA) has multiple actions potentially conferring cardiovascular benefit, including lowering serum triglyceride (TG) and non-high-density lipoprotein cholesterol (non-HDL-C) levels and potentially reducing key steps in atherogenesis. Dietary supplements are a common source of omega-3 fatty acids in the US, but virtually all contain docosahexaenoic acid (DHA) in addition to EPA, and lipid effects differ between DHA and EPA. Contrary to popular belief, no over-the-counter omega-3 products are available in the US, only prescription products and dietary supplements. Among the US prescription omega-3 products, only one contains EPA exclusively (Vascepa); another closely related prescription omega-3 product also contains highly purified EPA, but is approved only in Japan and is provided in different capsule sizes. These high-purity EPA products do not raise low-density lipoprotein cholesterol (LDL-C) levels, even in patients with TG levels >500 mg/dL, in contrast to the increase in LDL-C levels with prescription omega-3 products that also contain DHA. The Japanese prescription EPA product was shown to significantly reduce major coronary events in hypercholesterolemic patients when added to statin therapy in the Japan EPA Lipid Intervention Study (JELIS). The effects of Vascepa on cardiovascular outcomes are being investigated in statin-treated patients with high TG levels in the Reduction of Cardiovascular Events With EPA-Intervention Trial (REDUCE-IT).

  9. Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii.

    PubMed

    Wang, Zhongqiang; Yang, Shang-Tian

    2013-06-01

    Propionibacterium freudenreichii subsp. shermanii can ferment glucose and glycerol to propionic acid with acetic and succinic acids as two by-products. Propionic acid production from glucose was relatively fast (0.19 g/Lh) but gave low product yield (~0.39 g/g) and selectivity (P/A: ~2.6; P/S: ~4.8). In contrast, glycerol with a more reduced state gave a high propionic acid yield (~0.65 g/g) and selectivity (P/A: ~31; P/S: ~11) but low productivity (0.11 g/L h). On the other hand, co-fermentation of glycerol and glucose at an appropriate mass ratio gave both a high yield (0.54-0.65 g/g) and productivity (0.18-0.23 g/L h) with high product selectivity (P/A: ~14; P/S: ~10). The carbon flux distributions in the co-fermentation as affected by the ratio of glycerol/glucose were investigated. Finally, co-fermentation with cassava bagasse hydrolysate and crude glycerol in a fibrous-bed bioreactor was demonstrated, providing an efficient way for economic production of bio-based propionic acid.

  10. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  11. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  12. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113.

    PubMed

    Jiang, Min; Dai, Wenyu; Xi, Yonglan; Wu, Mingke; Kong, Xiangping; Ma, Jiangfeng; Zhang, Min; Chen, Kequan; Wei, Ping

    2014-02-01

    In this study, sucrose, a reproducible disaccharide extracted from plants, was used as the carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. During serum bottle fermentation, the succinic acid concentration reached 57.1g/L with a yield of 71.5%. Further analysis of the sucrose utilization pathways revealed that sucrose was transported and utilized via a sucrose phosphotransferase system, sucrose-6-phosphate hydrolase, and a fructose PTS. Compared to glucose utilization in single pathway, more pathways of A. succinogenes NJ113 are dependent on sucrose utilization. By changing the control strategy in a fed-batch culture to alleviate sucrose inhibition, 60.5g/L of succinic acid was accumulated with a yield of 82.9%, and the productivity increased by 35.2%, reaching 2.16g/L/h. Thus utilization of sucrose has considerable potential economics and environmental meaning.

  13. Efficient production of free fatty acids from soybean meal carbohydrates.

    PubMed

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids.

  14. [Recovery of Staphylococcus aureus after acid injury in milk products].

    PubMed

    Assis, E M; De Carvalho, E P; Asquieri, E R; Robbs, P G

    1994-01-01

    The growth behavior of Staphylococcus aureus in fresh Cheese (Minas and Muzzarella) during their shelf-life was studied. The possible injury of this microorganism caused by the increasing acidity was also investigated. Raw milk was inoculated with 10(6) cells/ml (S. aureus FRIA-100) and the cheese production was performed according to normal procedures. Minas and muzzarella cheese were stored at 7 degrees C for 40 and 60 days, respectively. At 2-3 days intervals, the following analysis were performed: acidity, pH, S. aureus counting using agar Baird Parker by the traditional methods and by the method recommended by the American Public Health Association to evaluate the reparation of injured cells. We had a secure indication of the presence of injured S. aureus when acidity was in the range of 0.7 to 0.8% expressed in lactic acid and when the cycle was 1.3 log higher than the traditional one.

  15. Lactic acid production from xylose by the fungus Rhizopus oryzae.

    PubMed

    Maas, Ronald H W; Bakker, Robert R; Eggink, Gerrit; Weusthuis, Ruud A

    2006-10-01

    Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure L(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g(-1). By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l(-1) showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l(-1)) and glucose (19.2 g l(-1)) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l(-1) h(-1) and 0.5 g xylose l(-1) h(-1). This resulted mainly into the product lactic acid (6.8 g l(-1)) and ethanol (5.7 g l(-1)).

  16. XML-based product information processing method for product design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen Yu

    2012-01-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  17. XML-based product information processing method for product design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen Yu

    2011-12-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  18. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production.

  19. Alternative respiration and fumaric acid production of Rhizopus oryzae.

    PubMed

    Gu, Shuai; Xu, Qing; Huang, He; Li, Shuang

    2014-06-01

    Under the conditions of fumaric acid fermentation, Rhizopus oryzae ME-F14 possessed at least two respiratory systems. The respiration of mycelia was partially inhibited by the cytochrome respiration inhibitor antimycin A or the alternative respiration inhibitor salicylhydroxamic acid and was completely inhibited in the presence of both antimycin A and salicylhydroxamic acid. During fumaric acid fermentation process, the activity of alternative respiration had a great correlation with fumaric acid productivity; both of them reached peak at the same time. The alternative oxidase gene, which encoded the mitochondrial alternative oxidase responsible for alternative respiration in R. oryzae ME-F14, was cloned and characterized in Escherichia coli. The activity of alternative respiration, the alternative oxidase gene transcription level, as well as the fumaric acid titer were measured under different carbon sources and different carbon-nitrogen ratios. The activity of alternative respiration was found to be comparable to the transcription level of the alternative oxidase gene and the fumaric acid titer. These results indicated that the activity of the alternative oxidase was regulated at the transcription stage under the conditions tested for R. oryzae ME-F14.

  20. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  1. Jigsaw Cooperative Learning: Acid-Base Theories

    ERIC Educational Resources Information Center

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  2. Separation of Acids, Bases, and Neutral Compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Megumi; Mah, Helen M.; Sgarbi, Paulo W. M.; Lall, Manjinder S.; Ly, Tai Wei; Browne, Lois M.

    2003-01-01

    Separation of Acids, Bases, and Neutral Compounds requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime plug-in, version compatible with your OS and browser (available from MDL); and Flash player, version 5 or higher (available from Macromedia).

  3. Glucose-stimulated acrolein production from unsaturated fatty acids.

    PubMed

    Medina-Navarro, R; Duran-Reyes, G; Diaz-Flores, M; Hicks, J J; Kumate, J

    2004-02-01

    Glucose auto-oxidation may be a significant source of reactive oxygen species (ROS), and also be important in the lipid peroxidation process, accompanied by the release of toxic reactive products. We wanted to demonstrate that acrolein can be formed directly and actively from free fatty acids in a hyperglycemic environment. A suspension of linoleic and arachidonic acids (2.5 mM) was exposed to different glucose concentrations (5, 10 and 15 mmol/L) in vitro. The samples were extracted with organic solvents, partitioned, followed at 255-267 nm, and analysed using capillary electrophoresis and mass spectroscopy. The total release of aldehydes significantly (P < 0.01) increased from 1.0 to 5.1, 8.3 and 13.1 micromol/L after 6 hours of incubation, proportional to glucose concentrations. It was possible to verify a correlate hydroperoxide formation as well. Among the lipid peroxidation products, acrolein (5% of total) and its condensing product, 4-hydroxy-hexenal, were identified. From the results presented here, it was possible to demonstrate the production of acrolein, probably as a fatty acid product, due to free radicals generated from the glucose auto-oxidation process. The results led us to propose that acrolein, which is one of the most toxic aldehydes, is produced during hyperglycemic states, and may lead to tissue injury, as one of the initial problems to be linked to high levels of glucose in vivo.

  4. Microbial production of hyaluronic acid: current state, challenges, and perspectives

    PubMed Central

    2011-01-01

    Hyaluronic acid (HA) is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid with a molecular weight up to 6 million Daltons. With excellent viscoelasticity, high moisture retention capacity, and high biocompatibility, HA finds a wide-range of applications in medicine, cosmetics, and nutraceuticals. Traditionally HA was extracted from rooster combs, and now it is mainly produced via streptococcal fermentation. Recently the production of HA via recombinant systems has received increasing interest due to the avoidance of potential toxins. This work summarizes the research history and current commercial market of HA, and then deeply analyzes the current state of microbial production of HA by Streptococcus zooepidemicus and recombinant systems, and finally discusses the challenges facing microbial HA production and proposes several research outlines to meet the challenges. PMID:22088095

  5. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens.

    PubMed

    Salvachúa, Davinia; Smith, Holly; St John, Peter C; Mohagheghi, Ali; Peterson, Darren J; Black, Brenna A; Dowe, Nancy; Beckham, Gregg T

    2016-08-01

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60g/L reached up to 30g/L, with metabolic yields of 0.69g/g, and an overall productivity of 0.43g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.

  6. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens

    SciTech Connect

    Salvachúa, Davinia; Smith, Holly; St. John, Peter C.; Mohagheghi, Ali; Peterson, Darren J.; Black, Brenna A.; Dowe, Nancy; Beckham, Gregg T.

    2016-05-09

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60 g/L reached up to 30 g/L, with metabolic yields of 0.69 g/g, and an overall productivity of 0.43 g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.

  7. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens

    DOE PAGES

    Salvachúa, Davinia; Smith, Holly; St. John, Peter C.; ...

    2016-05-09

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60 g/L reached up tomore » 30 g/L, with metabolic yields of 0.69 g/g, and an overall productivity of 0.43 g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.« less

  8. Dilute sulfuric acid pretreatment of sunflower stalks for sugar production.

    PubMed

    Ruiz, Encarnación; Romero, Inmaculada; Moya, Manuel; Cara, Cristóbal; Vidal, Juan D; Castro, Eulogio

    2013-07-01

    In this work the pretreatment of sunflower stalks by dilute sulfuric acid is studied. Pretreatment temperature and the concentration of acid solution were selected as operation variables and modified according to a central rotatable composite experimental design. Based on previous studies pretreatment time was kept constant (5 min) while the variation range for temperature and acid concentration was centered at 175°C and 1.25% (w/v) respectively. Following pretreatment the insoluble solids were separated by filtration and further submitted to enzymatic hydrolysis, while liquid fractions were analyzed for sugars and inhibitors. Response surface methodology was applied to analyze results based on the combined severity of pretreatment experiments. Optimized results show that up to 33 g of glucose and xylose per 100g raw material (65% of the glucose and xylose present in the raw material) may be available for fermentation after pretreatment at 167°C and 1.3% sulfuric acid concentration.

  9. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  10. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.

  11. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.

  12. Microbial products trigger amino acid exudation from plant roots.

    PubMed

    Phillips, Donald A; Fox, Tama C; King, Maria D; Bhuvaneswari, T V; Teuber, Larry R

    2004-09-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 microm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 microm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from (15)N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant.

  13. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  14. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  15. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  16. Linear Titration Curves of Acids and Bases.

    PubMed

    Joseph, N R

    1959-05-29

    The Henderson-Hasselbalch equation, by a simple transformation, becomes pH - pK = pA - pB, where pA and pB are the negative logarithms of acid and base concentrations. Sigmoid titration curves then reduce to straight lines; titration curves of polyelectrolytes, to families of straight lines. The method is applied to the titration of the dipeptide glycyl aminotricarballylic acid, with four titrable groups. Results are expressed as Cartesian and d'Ocagne nomograms. The latter is of a general form applicable to polyelectrolytes of any degree of complexity.

  17. Production of Fumaric Acid in 20-Liter Fermentors

    PubMed Central

    Rhodes, R. A.; Lagoda, A. A.; Misenheimer, T. J.; Smith, M. L.; Anderson, R. F.; Jackson, R. W.

    1962-01-01

    The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO3 to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose. PMID:16349614

  18. Production of Fumaric Acid in 20-Liter Fermentors.

    PubMed

    Rhodes, R A; Lagoda, A A; Misenheimer, T J; Smith, M L; Anderson, R F; Jackson, R W

    1962-01-01

    The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO(3) to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose.

  19. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  20. Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid.

    PubMed

    Wu, Chun-Hua; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Paek, Kee-Yoeup

    2007-08-01

    Adventitious roots of Echinacea purpurea were cultured in airlift bioreactors (20 l, 500 l balloon-type, bubble bioreactors and 1,000 l drum-type bubble bioreactor) using Murashige and Skoog (MS) medium with 2 mg indole butyric acid l(-1) and 50 g sucrose l(-1) for the production of chichoric acid, chlorogenic acid and caftaric acid. In the 20 l bioreactor (containing 14 l MS medium) a maximum yield of 11 g dry biomass l(-1) was achieved after 60 days. However, the amount of total phenolics (57 mg g(-1) DW), flavonoids (34 mg g(-1) DW) and caffeic acid derivatives (38 mg g(-1) DW) were highest after 50 days. Based on these studies, pilot-scale cultures were established and 3.6 kg and 5.1 kg dry biomass were achieved in the 500 l and 1,000 l bioreactors, respectively. The accumulation of 5 mg chlorogenic acid g(-1) DW, 22 mg chichoric acid g(-1) DW and 4 mg caftaric acids g(-1) DW were achieved with adventitious roots grown in 1,000 l bioreactors.

  1. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  2. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  3. Technology and economic assessment of lactic acid production and uses

    SciTech Connect

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  4. Lactic acid bacteria as a cell factory for riboflavin production

    PubMed Central

    Thakur, Kiran; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  5. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii.

    PubMed

    Guan, Ningzi; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2016-06-01

    Propionic acid (PA) and its salts are widely used in the food, pharmaceutical, and chemical industries. Microbial production of PA by propionibacteria is a typical product-inhibited process, and acid resistance is crucial in the improvement of PA titers and productivity. We previously identified two key acid resistance elements-the arginine deaminase and glutamate decarboxylase systems-that protect propionibacteria against PA stress by maintaining intracellular pH homeostasis. In this study, we attempted to improve the acid resistance and PA production of Propionibacterium jensenii ATCC 4868 by engineering these elements. Specifically, five genes (arcA, arcC, gadB, gdh, and ybaS) encoding components of the arginine deaminase and glutamate decarboxylase systems were overexpressed in P. jensenii. The activities of the five enzymes in the engineered strains were 26.7-489.0% higher than those in wild-type P. jensenii. The growth rates of the engineered strains decreased, whereas specific PA production increased significantly compared with those of the wild-type strain. Among the overexpressed genes, gadB (encoding glutamate decarboxylase) increased PA resistance and yield most effectively; the PA resistance of P. jensenii-gadB was more than 10-fold higher than that of the wild-type strain, and the production titer, yield, and conversion ratio of PA reached 10.81 g/L, 5.92 g/g cells, and 0.56 g/g glycerol, representing increases of 22.0%, 23.8%, and 21.7%, respectively. We also investigated the effects of introducing these acid resistance elements on the transcript levels of related enzymes. The results showed that the expression of genes in the engineered pathways affected the expression of the other genes. Additionally, the intracellular pools of amino acids were altered as different genes were overexpressed, which may further contribute to the enhanced PA production. This study provides an effective strategy for improving PA production in propionibacteria; this

  6. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.

    PubMed

    Yan, Bo; Tao, Li-Zhi; Liang, Yu; Xu, Bo-Qing

    2014-06-01

    Gas-phase dehydration of lactic acid (LA) to acrylic acid (AA) was investigated over alkali-exchanged β zeolite (M(x)Na(1-x)β, M=Li(+), K(+), Rb(+), or Cs(+)) of different exchange degrees (x). The reaction was conducted under varying conditions to understand the catalyst selectivity for AA production and trends of byproduct formation. The nature and exchange degree of M(+) were found to be critical for the acid-base properties and catalytic performance of the exchanged zeolite. K(x)Na(1-x)β of x=0.94 appeared to be the best performing catalyst whereas Li(x)Na(1-x)β and Naβ were the poorest in terms of AA selectivity and yield. The AA yield as high as 61 mol % (selectivity: 64 mol %) could be obtained under optimized reaction conditions for up to 8 h over the best performing K0.94Na0.06β. The acid and base properties of the catalysts were probed, respectively by temperature-programmed desorption (TPD) of adsorbed NH3 and CO2, and were related to the electrostatic potentials of the alkali ions in the zeolite, which provided a basis for the discussion of the acid-base catalysis for sustainable AA formation from LA.

  7. Carboxylic acid production from brewer's spent grain via mixed culture fermentation.

    PubMed

    Liang, Shaobo; Wan, Caixia

    2015-04-01

    This study aimed at investigating carboxylic acid production from brewer's spent grain (BSG) via mixed culture fermentation. The results showed that the distribution of fermentation products was significantly affected by pH conditions and the addition of electron donors. Lactic acid was the dominant component under acidic and alkaline conditions while volatile fatty acids (VFAs) became dominant under the neutral condition. Furthermore, the neutral condition favored the chain elongation of carboxylic acids, especially with ethanol as the electron donor. Ethanol addition enhanced valeric acid and caproic acid production by 44% and 167%, respectively. Lactic acid addition also had positive effects on VFAs production under the neutral condition but limited to C2-C4 products. As a result, propionic acid and butyric acid production was increased by 109% and 152%, respectively. These findings provide substantial evidence for regulating carboxylic acid production during mixed culture fermentation of BSG by controlling pH and adding electron donors.

  8. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    PubMed

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  9. [Nutrition, acid-base metabolism, cation-anion difference and total base balance in humans].

    PubMed

    Mioni, R; Sala, P; Mioni, G

    2008-01-01

    The relationship between dietary intake and acid-base metabolism has been investigated in the past by means of the inorganic cation-anion difference (C(+)(nm)-A(-)(nm)) method based on dietary ash-acidity titration after the oxidative combustion of food samples. Besides the inorganic components of TA (A(-)(nm)-C(+)(nm)), which are under renal control, there are also metabolizable components (A(-)(nm)-C(+)(nm)) of TA, which are under the control of the intermediate metabolism. The whole body base balance, NBb(W), is obtained only by the application of C(+)(nm)-A(-)(nm) to food, feces and urine, while the metabolizable component (A(-)(nm)-C(+)(nm)) is disregarded. A novel method has been subsequently suggested to calculate the net balance of fixed acid, made up by the difference between the input of net endogenous acid production: NEAP = SO(4)(2-)+A(-)(m)-(C(+)(nm)-A(-)(nm)), and the output of net acid excretion: NAE = TA + NH(4)(+) - HCO(3)(-). This approach has been criticized because 1) it includes metabolizable acids, whose production cannot be measured independently; 2) the specific control of metabolizable acid and base has been incorrectly attributed to the kidney; 3) the inclusion of A-m in the balance input generates an acid overload; 4) the object of measurement in making up a balance has to be the same, a condition not fulfilled as NEAP is different from NAE. Lastly, by rearranging the net balance of the acid equation, the balance of nonmetabolizable acid equation is obtained. Therefore, any discrepancy between these two equations is due to the inaccuracy in the urine measurement of metabolizable cations and/or anions.

  10. Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins.

    PubMed

    Crolla, A; Kennedy, K J

    2004-05-13

    This study reports on the effects of fermentor agitation and fed-batch mode of operation on citric acid production from Candida lipolytica using n-paraffin as the carbon source. An optimum range of agitation speeds in the 800-1000 rpm range corresponding to Reynolds numbers of 50000-63000 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Application of multiple fed-batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. The three-cycle fed-batch system increased overall citric acid yields to 0.8-1.0 g citricacid/g n-paraffin, approximately a 100% improvement in product yield from those observed in the single cycle fed-batch system and a 200% improvement over normal batch operation. The three-cycle fed-batch mode of operation also increased the final citric acid concentration to 42 g/l from about 12 and 6g/l for single fed-batch cycle and normal batch modes of operation, respectively. Increased citric acid concentrations in three-cycle fed-batch mode was achieved at longer fermentation times.

  11. A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions.

    PubMed

    Isar, Jasmine; Agarwal, Lata; Saran, Saurabh; Saxena, Rajendra Kumar

    2006-09-01

    The most influential parameters for succinic acid production obtained through one at a time method were sucrose, tryptone, magnesium carbonate, inoculum size and incubation period. These resulted in the production of 7.0 g L(-1) of succinic acid in 60 h from Escherichia coli W3110 under anaerobic conditions. Based on these results, a statistical method, face centered central composite design (FCCCD) falling under response surface method (RSM) was employed for further enhancing the succinic acid production and to monitor the interactive effect of these parameters, which resulted in a twofold increase in yield (14.3 g L(-1) in 48 h). The analysis of variance (ANOVA) showed the adequacy of the model and the verification experiments confirmed its validity. On subsequent scale-up in a 10-L bioreactor using conditions optimized through RSM, 24.2 g L(-1) of succinic acid was obtained in 30 h. This clearly indicated that the model stood valid even on large-scale. Thus, the statistical optimization strategy led to a 3.5-fold increase in the yield of succinic acid. This is the first report on the use of FCCCD to improve succinic acid production from E. coli.

  12. Polymerization of amino acids containing nucleotide bases

    NASA Technical Reports Server (NTRS)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  13. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  14. Interaction of Glyphosate and Pelargonic acid in Ready-To-Use Weed Control Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-based, ready-to-use weed control products often contain pelargonic acid (PA) in addition to glyphosate. However it remains unclear what benefit (if any) this combination provides. Greenhouse experiments using longstalked phyllanthus, large crabgrass, prostrate spurge and yellow nutsedge...

  15. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  16. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  17. Determination of the Acid-Base Dissociation Constant of Acid-Degradable Hexamethylenetetramine by Capillary Zone Electrophoresis.

    PubMed

    Takayanagi, Toshio; Shimakami, Natsumi; Kurashina, Masashi; Mizuguchi, Hitoshi; Yabutani, Tomoki

    2016-01-01

    The acid-base equilibrium of hexamethylenetetramine (hexamine) was analyzed with its effective electrophoretic mobility by capillary zone electrophoresis. Although hexamine is degradable in a weakly acidic aqueous solution, and the degraded products of ammonia and formaldehyde can be formed, the effective electrophoretic mobility of hexamine was measured in the pH range between 2.8 and 6.9. An acid-base dissociation equilibrium of the protonated hexamine was analyzed based on the mobility change, and an acid dissociation constant of pKa = 4.93 ± 0.01 (mean ± standard error, ionic strength: 0.020 mol dm(-3)) was determined. The monoprotic acid-base equilibrium of hexamine was confirmed through comparisons of its electrophoretic mobility with the N-ethylquinolinium ion and with the monocationic N-ethyl derivative of hexamine, as well as a slope analysis of the dissociation equilibrium.

  18. Control of product selectivity using solid acids for the catalytic addition of phenol to hydroxy fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acid catalyzed reactions of hydroxy fatty acids, such as ricinoleic and lesquerolic, in the presence of phenolics can lead to four products or product groups. These include simple dehydration to dienoic acids, cyclization to epoxides, Friedel-Crafts alkylations of the double bonds, or ether for...

  19. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae.

  20. Acetate induced enhancement of photocatalytic hydrogen peroxide production from oxalic acid and dioxygen.

    PubMed

    Yamada, Yusuke; Nomura, Akifumi; Miyahigashi, Takamitsu; Ohkubo, Kei; Fukuzumi, Shunichi

    2013-05-09

    The addition of acetate ion to an O2-saturated mixed solution of acetonitrile and water containing oxalic acid as a reductant and 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA) as a photocatalyst dramatically enhanced the turnover number of hydrogen peroxide (H2O2) production. In this photocatalytic H2O2 production, a base is required to facilitate deprotonation of oxalic acid forming oxalate dianion, which acts as an actual electron donor, whereas a Brønsted acid is also necessary to protonate O2(•-) for production of H2O2 by disproportionation. The addition of acetate ion to a reaction solution facilitates both the deprotonation of oxalic acid and the protonation of O2(•-) owing to a pH buffer effect. The quantum yield of the photocatalytic H2O2 production under photoirradiation (λ = 334 nm) of an O2-saturated acetonitrile-water mixed solution containing acetate ion, oxalic acid and QuPh(+)-NA was determined to be as high as 0.34, which is more than double the quantum yield obtained by using oxalate salt as an electron donor without acetate ion (0.14). In addition, the turnover number of QuPh(+)-NA reached more than 340. The reaction mechanism and the effect of solvent composition on the photocatalytic H2O2 production were scrutinized by using nanosecond laser flash photolysis.

  1. Spectral characterization of acid weathering products on Martian basaltic glass

    NASA Astrophysics Data System (ADS)

    Yant, Marcella; Rogers, A. Deanne; Nekvasil, Hanna; Zhao, Yu-Yan Sara; Bristow, Tom

    2016-03-01

    For the first time, direct infrared spectral analyses of glasses with Martian compositions, altered under controlled conditions, are presented in order to assess surface weathering and regolith development on Mars. Basaltic glasses of Irvine and Backstay composition were synthesized and altered using H2SO4-HCl acid solutions (pH 0-4). Scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, Raman, and infrared spectral measurements were acquired for each reaction product. Infrared spectra were also acquired from previously synthesized and altered glasses with Pathfinder-measured compositions. Acid alteration on particles in the most acidic solutions (pH ≤ 1) yielded sulfate-dominated visible near infrared (VNIR) and thermal infrared (TIR) spectra with some silica influence. Spectral differences between alteration products from each starting material were present, reflecting strong sensitivity to changes in mineral assemblage. In the TIR, alteration features were preserved after reworking and consolidation. In the VNIR, hydrated sulfate features were present along with strong negative spectral slopes. Although such signatures are found in a few isolated locations on Mars with high-resolution spectrometers, much of the Martian surface lacks these characteristics, suggesting the following: acid alteration occurred at pH ≥ 2; small amounts of sulfates were reworked with unaltered material; there is a prevalence of intermediate-to-high silica glass in Martian starting materials (more resistant to acid alteration); primary or added sulfur were lacking; alteration features are obscured by dust; and/or large-scale, pervasive, acid sulfate weathering of the Martian surface did not occur. These results highlight the need to better understand the spectral properties of altered Martian surface material in order to enhance the interpretation of remote spectra for altered terrains.

  2. Microbiological Production of Gibberellic Acid in Glucose Media1

    PubMed Central

    Sanchez-Marroquin, A.

    1963-01-01

    Gibberellic acid production from various substrates was studied in 43 strains of Fusarium, among which F. moniliforme strain IOC-3326 was selected as the best producer. Experiments were carried out in shaker flasks and pilot plant fermentors. The results indicate that the best substrate for gibberellic acid production with this strain is composed of the following: glucose, 20 g; corn steep liquor, 25 g; ammonium nitrate, 2.6 g; monopotassium phosphate, 0.5 g; potassium sulfate, 0.2 g; and water, 1000 ml. Glucose, ammonium nitrate, and corn steep liquor were found to be critical. With this medium, maximal yields of 1196 mg per liter in shaker flasks and 997 mg per liter in fermentors were produced. PMID:14075053

  3. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  4. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    PubMed Central

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  5. A new product with formic acid for Varroa jacobsoni Oud. control in Argentina. I. Efficacy.

    PubMed

    Eguaras, M; Del Hoyo, M; Palacio, M A; Ruffinengo, S; Bedascarrasbure, E L

    2001-02-01

    An organic product based on formic acid in a gel matrix was evaluated for use in Varroa control under autumnal climatic conditions in Argentina. Twenty colonies each received two gel packets with formic acid in two applications and numbers of falling mites were registered. After this treatment colonies received two other acaricides in order to compare efficacy. Average final efficacy in colonies treated with the organic product was 92% with a low variability. The gel matrix kept an adequate formic acid concentration inside the colonies with only two applications. This product is, therefore, a good alternative for Varroa control because it is organic, easy to use and presents a low variability in final efficacy between colonies. No queen, brood, or adult honeybee mortality was registered.

  6. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production

    PubMed Central

    Gajewski, Jan; Pavlovic, Renata; Fischer, Manuel; Boles, Eckhard; Grininger, Martin

    2017-01-01

    Fatty acids (FAs) are considered strategically important platform compounds that can be accessed by sustainable microbial approaches. Here we report the reprogramming of chain-length control of Saccharomyces cerevisiae fatty acid synthase (FAS). Aiming for short-chain FAs (SCFAs) producing baker's yeast, we perform a highly rational and minimally invasive protein engineering approach that leaves the molecular mechanisms of FASs unchanged. Finally, we identify five mutations that can turn baker's yeast into a SCFA producing system. Without any further pathway engineering, we achieve yields in extracellular concentrations of SCFAs, mainly hexanoic acid (C6-FA) and octanoic acid (C8-FA), of 464 mg l−1 in total. Furthermore, we succeed in the specific production of C6- or C8-FA in extracellular concentrations of 72 and 245 mg l−1, respectively. The presented technology is applicable far beyond baker's yeast, and can be plugged into essentially all currently available FA overproducing microorganisms. PMID:28281527

  7. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  8. Oxygen requirements for growth and citric acid production of Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Shishkanova, Nadezda V; Morgunov, Igor G; Finogenova, Tatyana V

    2003-04-01

    During continuous cultivation of Yarrowia lipolytica N 1, oxygen requirements for growth and citric acid synthesis were found to depend on the iron concentration in the medium. A coupled effect of oxygen and iron concentrations on the functioning of the mitochondrial electron transport chain in Y. lipolytica N 1 was established. Based on the results obtained in continuous culture, conditions for citric acid production in a batch culture of Y. lipolytica N 1 were proposed. At relatively low pO(2) value and a high iron concentration, citric acid accumulation was as high as 120 g l(-1); the specific rate of citric acid synthesis reached 120 mg citric acid (g cells h)(-1). The mass yield coefficient was 0.87 and the energy yield coefficient was 0.31.

  9. Acid-base metabolism: implications for kidney stones formation.

    PubMed

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ <--> NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  10. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies.

  11. Production of fumaric acid from L-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8.

    PubMed

    Liu, Yanhui; Song, Jianing; Tan, Tianwei; Liu, Luo

    2015-03-01

    Currently, fumaric acid is produced by catalytic isomerization of maleic acid in aqueous solutions at low pH. Being petroleum based, requiring catalyst, and producing vast amounts of by-products and wastewater, the production of fumaric acid from renewable resources by a "green" process is increasingly attractive. In an aqueous solution, the reaction equilibrium constant of the fumarase-mediated conversion of L-malic acid to fumaric acid is 1:4.2 (fumaric acid to L-malic acid). To shift the reaction equilibrium to fumaric acid, solvent engineering was carried out by varying hydrophilic solvents and their concentrations. Generally, organic solvents may denature fumarase. Therefore, fumarase from Thermus thermophilus was employed to overcome this problem. Ethylene glycol was found more suitable than other solvents. This fumarase was shown to be more stable in 50% than in 70% ethylene glycol. Therefore, a preparation was carried out in 50% ethylene glycol. Under this condition, 54.7% conversion was observed using fumarase for transforming 1 mmol L-malic acid. After precipitation by adapting the pH, and washing to remove residual solvent and substrate, 27% total yield was obtained with 99% purity. The results demonstrated that the alternative green route to produce bio-based fumaric acid via L-malic acid is feasible and viable.

  12. Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock.

    PubMed

    Wang, Dan; Wu, Hui; Thakker, Chandresh; Beyersdorf, Jared; Bennett, George N; San, Ka-Yiu

    2015-01-01

    To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl-ACP carrier protein thioesterase and (3R)-hydroxyacyl-ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals.

  13. Production of ascorbic acid releasing biomaterials for pelvic floor repair

    PubMed Central

    Mangır, Naşide; Bullock, Anthony J.; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    Objective An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Materials and methods Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2 weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. Results No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. Conclusion This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Statement of significance Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better

  14. Anti-Atherosclerotic Actions of Azelaic acid, an End Product of Linoleic Acid Peroxidation, in Mice

    PubMed Central

    Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath

    2009-01-01

    Background Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr−/−) mice. Methods and results LDLr−/− mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After four months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). Conclusions The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body’s defense against oxidative damage. PMID:19880116

  15. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  16. Investigating Students' Reasoning about Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  17. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts.

    PubMed

    Palmqvist, E; Grage, H; Meinander, N Q; Hahn-Hägerdal, B

    1999-04-05

    The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (YEtOH) of Saccharomyces cerevisiae, bakers' yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2(3)-full factorial design with 3 centrepoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers' yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural (2 g L-1) and the lignin derived compound p-hydroxybenzoic acid (2 g L-1) did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data (the p-values of curvatures were 0.048 for NJ 23 and 0.091 for bakers' yeast). Based on the results from the 2(3)-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate (mu), biomass yield (Yx), volumetric ethanol productivity (QEtOH), and YEtOH. Bakers' yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates. The inoculum size was reduced in the extended experiment to reduce any increase in inhibitor tolerance that might be due to a large cell inoculum. By dividing the experiment in blocks containing fermentations performed with the same inoculum preparation on the same day, much of the anticipated systematic variation between the experiments was separated from the experimental error. The results of the fitted model can be summarised as follows: mu was decreased by furfural (0-3 g L-1). Furfural and acetic acid (0-10 g L-1) also interacted negatively on mu. Furfural concentrations up to 2 g L-1 stimulated Yx in the absence of acetic acid whereas higher

  18. Production of propionic acid from whey permeate by sequential fermentation, ultrafiltration, and cell recycling.

    PubMed

    Colomban, A; Roger, L; Boyaval, P

    1993-11-05

    This article deals with the production by fermentation of a mycostatic and aromatic food additive based on propionic acid. Membrane bioreactors have been used from laboratory scale up to pilot and industrial production plants. Due to the high cell densities achieved by the sequential recycling mode of operation, a mixed acids solution was rapidly produced from whey permeate. The sterile fermented broth obtained was subsequently concentrated at different levels by evaporation and spray drying according to the projected use. Concentrated Propionibacterium cells (200 g x L(-1) DW) were obtained from the process by periodic bleeds and could be used to good effect as cheese starters, silage preservatives, or probiotics. Propionic acid concentrations from 30 to 40 g x L(-1) were easily achieved with no residual lactose. The highest volumetric productivity was 1.6 g x L(-1) x h(-1) for total acid and 1.2 g x L(-1) x h(-1) for propionic acid with a specific productivity of 0.035 h(-1).

  19. Determination of the Thermal Decomposition Products of Terephthalic Acid by Using Curie-Point Pyrolyzer

    NASA Astrophysics Data System (ADS)

    Begüm Elmas Kimyonok, A.; Ulutürk, Mehmet

    2016-04-01

    The thermal decomposition behavior of terephthalic acid (TA) was investigated by thermogravimetry/differential thermal analysis (TG/DTA) and Curie-point pyrolysis. TG/DTA analysis showed that TA is sublimed at 276°C prior to decomposition. Pyrolysis studies were carried out at various temperatures ranging from 160 to 764°C. Decomposition products were analyzed and their structures were determined by gas chromatography-mass spectrometry (GC-MS). A total of 11 degradation products were identified at 764°C, whereas no peak was observed below 445°C. Benzene, benzoic acid, and 1,1‧-biphenyl were identified as the major decomposition products, and other degradation products such as toluene, benzophenone, diphenylmethane, styrene, benzaldehyde, phenol, 9H-fluorene, and 9-phenyl 9H-fluorene were also detected. A pyrolysis mechanism was proposed based on the findings.

  20. Low acid hydrothermal fractionation of Giant Miscanthus for production of xylose-rich hydrolysate and furfural.

    PubMed

    Kim, Tae Hyun; Ryu, Hyun Jin; Oh, Kyeong Keun

    2016-10-01

    Low acid hydrothermal (LAH) fractionation was developed for the effective recovery of hemicellulosic sugar (mainly xylose) from Miscanthus sacchariflorus Goedae-Uksae 1 (M. GU-1). The xylose yield was maximized at 74.75% when the M. GU-1 was fractionated at 180°C and 0.3wt.% of sulfuric acid for 10min. At this condition, the hemicellulose (mainly xylan) degradation was 86.41%. The difference between xylan degradation and xylose recovery yield, i.e., xylan loss, was 11.66%, as indicated by the formation of decomposed products. The furfural, the value added biochemical product, was also obtained by 0.42g/L at this condition, which was 53.82% of furfural production yield based on the xylan loss. After then, the furfural production continued to increase to a maximum concentration of 1.87g/L, at which point the xylan loss corresponded to 25.87%.

  1. Production of Fatty Acid-derived valuable chemicals in synthetic microbes.

    PubMed

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  2. Consolidated Bioprocessing for Butyric Acid Production from Rice Straw with Undefined Mixed Culture

    PubMed Central

    Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng

    2016-01-01

    Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L· d). In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41 and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes. PMID:27822203

  3. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  4. Consolidated Bioprocessing for Butyric Acid Production from Rice Straw with Undefined Mixed Culture.

    PubMed

    Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng

    2016-01-01

    Lignocellulosic biomass is a renewable source with great potential for biofuels and bioproducts. However, the cost of cellulolytic enzymes limits the utilization of the low-cost bioresource. This study aimed to develop a consolidated bioprocessing without the need of supplementary cellulase for butyric acid production from lignocellulosic biomass. A stirred-tank reactor with a working volume of 21 L was constructed and operated in batch and semi-continuous fermentation modes with a cellulolytic butyrate-producing microbial community. The semi-continuous fermentation with intermittent discharging of the culture broth and replenishment with fresh medium achieved the highest butyric acid productivity of 2.69 g/(L· d). In semi-continuous operation mode, the butyric acid and total carboxylic acid concentrations of 16.2 and 28.9 g/L, respectively, were achieved. Over the 21-day fermentation period, their cumulative yields reached 1189 and 2048 g, respectively, corresponding to 41 and 74% of the maximum theoretical yields based on the amount of NaOH pretreated rice straw fed in. This study demonstrated that an undefined mixed culture-based consolidated bioprocessing for butyric acid production can completely eliminate the cost of supplementary cellulolytic enzymes.

  5. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    PubMed

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%.

  6. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  7. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  8. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl amino substituted triazine...

  9. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl amino substituted triazine...

  10. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino substituted triazine...

  11. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine...

  12. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl amino substituted triazine...

  13. An Introductory Laboratory Exercise for Acids and Bases.

    ERIC Educational Resources Information Center

    Miller, Richard; Silberman, Robert

    1986-01-01

    Discusses an acid-base neutralization exercise requiring groups of students to determine: (1) combinations of solutions giving neutralization; (2) grouping solutions as acids or bases; and (3) ranking groups in order of concentration. (JM)

  14. The Bronsted-Lowery Acid-Base Concept.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1988-01-01

    Gives the background history of the simultaneous discovery of acid-base relationships by Johannes Bronsted and Thomas Lowry. Provides a brief biographical sketch of each. Discusses their concept of acids and bases in some detail. (CW)

  15. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  16. Maximization of volatile fatty acids production from alginate in acidogenesis.

    PubMed

    Pham, Hong Duc; Seon, Jiyun; Lee, Seong Chan; Song, Minkyung; Woo, Hee-Chul

    2013-11-01

    In this study, the response surface methodology (RSM) was applied to determine the optimum fermentative condition of alginate with the respect to the simultaneous effects of alginate concentration and initial pH to maximize the production of total volatile fatty acids (TVFAs) and alcohols. The results showed that the alginate fermentation was significantly affected by initial pH than by alginate concentration and there was no interaction between the two variables. The optimum condition was 6.2g alginate/L and initial pH 7.6 with a maximum TVFAs yield of 37.1%. Acetic acids were the main constituents of the TVFAs mixtures (i.e., 71.9-95.5%), while alcohols (i.e., ethanol, butanol, and propanol) were not detected.

  17. Coronavirus phylogeny based on triplets of nucleic acids bases

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Liu, Yanshu; Li, Renfa; Zhu, Wen

    2006-04-01

    We considered the fully overlapping triplets of nucleotide bases and proposed a 2D graphical representation of protein sequences consisting of 20 amino acids and a stop code. Based on this 2D graphical representation, we outlined a new approach to analyze the phylogenetic relationships of coronaviruses by constructing a covariance matrix. The evolutionary distances are obtained through measuring the differences among the two-dimensional curves.

  18. Continuous cultivation of photosynthetic bacteria for fatty acids production.

    PubMed

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon; Kang, Seoktae; Kim, Mi-Sun

    2013-11-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations. At hydraulic retention time (HRT) 4d, cell concentration continuously increased from 0.97 g dcw/L to 2.05 g dcw/L as lactate concentration increased from 30 mM to 60mM. At 70 mM, however, cell concentration fluctuated with incomplete substrate degradation. By installing a membrane unit to CFSTR, a stable performance was observed under much higher substrate loading (lactate 100mM and HRT 1.5d). A maximum cell concentration of 16.2g dcw/L, cell productivity of 1.9 g dcw/L/d, and FA productivity of 665 mg FA/L/d were attained, and these values were comparable with those achieved using microalgae. The FA content of R. sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7).

  19. Engineering a Cyanobacterial Cell Factory for Production of Lactic Acid

    PubMed Central

    Angermayr, S. Andreas; Paszota, Michal

    2012-01-01

    Metabolic engineering of microorganisms has become a versatile tool to facilitate production of bulk chemicals, fuels, etc. Accordingly, CO2 has been exploited via cyanobacterial metabolism as a sustainable carbon source of biofuel and bioplastic precursors. Here we extended these observations by showing that integration of an ldh gene from Bacillus subtilis (encoding an l-lactate dehydrogenase) into the genome of Synechocystis sp. strain PCC6803 leads to l-lactic acid production, a phenotype which is shown to be stable for prolonged batch culturing. Coexpression of a heterologous soluble transhydrogenase leads to an even higher lactate production rate and yield (lactic acid accumulating up to a several-millimolar concentration in the extracellular medium) than those for the single ldh mutant. The expression of a transhydrogenase alone, however, appears to be harmful to the cells, and a mutant carrying such a gene is rapidly outcompeted by a revertant(s) with a wild-type growth phenotype. Furthermore, our results indicate that the introduction of a lactate dehydrogenase rescues this phenotype by preventing the reversion. PMID:22865063

  20. Engineering a cyanobacterial cell factory for production of lactic acid.

    PubMed

    Angermayr, S Andreas; Paszota, Michal; Hellingwerf, Klaas J

    2012-10-01

    Metabolic engineering of microorganisms has become a versatile tool to facilitate production of bulk chemicals, fuels, etc. Accordingly, CO(2) has been exploited via cyanobacterial metabolism as a sustainable carbon source of biofuel and bioplastic precursors. Here we extended these observations by showing that integration of an ldh gene from Bacillus subtilis (encoding an l-lactate dehydrogenase) into the genome of Synechocystis sp. strain PCC6803 leads to l-lactic acid production, a phenotype which is shown to be stable for prolonged batch culturing. Coexpression of a heterologous soluble transhydrogenase leads to an even higher lactate production rate and yield (lactic acid accumulating up to a several-millimolar concentration in the extracellular medium) than those for the single ldh mutant. The expression of a transhydrogenase alone, however, appears to be harmful to the cells, and a mutant carrying such a gene is rapidly outcompeted by a revertant(s) with a wild-type growth phenotype. Furthermore, our results indicate that the introduction of a lactate dehydrogenase rescues this phenotype by preventing the reversion.

  1. Exporters for Production of Amino Acids and Other Small Molecules.

    PubMed

    Eggeling, Lothar

    2016-11-11

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  2. Putrescine production from different amino acid precursors by lactic acid bacteria from wine and cider.

    PubMed

    Costantini, Antonella; Pietroniro, Roberta; Doria, Francesca; Pessione, Enrica; Garcia-Moruno, Emilia

    2013-07-01

    The aim of this work was to study the production of biogenic amines and particularly putrescine in lactic acid bacteria (LAB) related to wine and cider. We applied an analytical protocol that involves the use of PCR and TLC techniques to determine the production of putrescine from different precursors. Moreover, we also studied the ability of the Lactobacillus and Pediococcus tested to produce histamine and tyramine. The results showed that the majority of the Lactobacillus brevis analyzed harbour both AgDI and tdc genes and are tyramine and putrescine producers. Conversely, among the other LAB tested, only one Lactobacillus hilgardii and one Pediococcus pentosaceus produced putrescine. The AgDI gene was also detected in two other LAB (Lactobacillus mali and Pediococcus parvulus), but no putrescine production was observed. Finally, hdc gene and histamine production were found in strains (L. hilgardii 5211, isolated from wine, and Lactobacillus casei 18, isolated from cider) that were not putrescine producers.

  3. Buffered flue gas scrubbing system using adipic acid by-product stream

    SciTech Connect

    Lester, J.H. Jr.; Danly, D.E.

    1983-12-27

    A by-product stream from the production of adipic acid from cyclohexane, containing glutaric acid, succinic acid and adipic acid, is employed as a buffer in lime or limestone flue gas scrubbing for the removal of sulfur dioxide from combustion gases.

  4. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  5. Bipolar Membranes for Acid Base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  6. Enhanced volatile fatty acid production from excess sludge by combined free nitrous acid and rhamnolipid treatment.

    PubMed

    Wu, Qing-Lian; Guo, Wan-Qian; Bao, Xian; Zheng, He-Shan; Yin, Ren-Li; Feng, Xiao-Chi; Luo, Hai-Chao; Ren, Nan-Qi

    2017-01-01

    VFA production from excess sludge (ES) was greatly enhanced by a low-cost and high-efficient treatment: 0.67mg/L free nitrous acid (FNA) pretreatment combined with 0.04g/g TSS rhamnolipid (RL) addition (FNA+RL), which significantly shortened fermentation time to 3days and increased VFA production to 352.26mgCOD/g VSS (5.42 times higher than raw ES). Propionic and acetic acids were the two leading components (71.86% of the total VFA). Mechanism investigation manifested FNA+RL improved the biodegradability of ES, achieved positive synergetic effect on solubilization, hydrolysis and acidification efficiencies, and inhibited methanation. Microbial community distribution further explained the above phenomena. The bacteria related to polysaccharides/protein utilization and VFA generation, including Clostridium, Megasphaera and Proteiniborus, were mainly observed in FNA+RL, whereas gas-forming bacteria Anaerolineae and acid-consuming bacteria Proteobacteria were assuredly suppressed. Besides, Propionibacterineae associated with propionic acid generation was exclusively enriched in sole RL and FNA+RL.

  7. Radical-derived oxidation products of 5-aminosalicylic acid and N-acetyl-5-aminosalicylic acid.

    PubMed

    Fischer, C; Klotz, U

    1994-11-04

    5-Aminosalicylic acid is an agent effective in the treatment of chronic inflammatory bowel diseases. Its ability to scavenge radicals is considered to be a major factor responsible for its therapeutic efficacy. In this study oxidation products of aminosalicylates with hydroxyl radicals were produced. The compounds that could be discovered by gas chromatographic-mass spectrometric analysis originate from a 1,4-benzoquinone monoimine intermediate which subsequently undergoes multiple reactions such as hydrolysis, reductive 1,4-Michael addition, reoxidation and decarboxylation. Some of these products could represent metabolites formed under in vivo conditions and thus provide a tool for screening biological material from subjects under different clinical conditions.

  8. Photocurable bioadhesive based on lactic acid.

    PubMed

    Marques, D S; Santos, J M C; Ferreira, P; Correia, T R; Correia, I J; Gil, M H; Baptista, C M S G

    2016-01-01

    Novel photocurable and low molecular weight oligomers based on l-lactic acid with proven interest to be used as bioadhesive were successfully manufactured. Preparation of lactic acid oligomers with methacrylic end functionalizations was carried out in the absence of catalyst or solvents by self-esterification in two reaction steps: telechelic lactic acid oligomerization with OH end groups and further functionalization with methacrylic anhydride. The final adhesive composition was achieved by the addition of a reported biocompatible photoinitiator (Irgacure® 2959). Preliminary in vitro biodegradability was investigated by hydrolytic degradation in PBS (pH=7.4) at 37 °C. The adhesion performance was evaluated using glued aminated substrates (gelatine pieces) subjected to pull-to-break test. Surface energy measured by contact angles is lower than the reported values of the skin and blood. The absence of cytoxicity was evaluated using human fibroblasts. A notable antimicrobial behaviour was observed using two bacterial models (Staphylococcus aureus and Escherichia coli). The cured material exhibited a strong thrombogenic character when placed in contact with blood, which can be predicted as a haemostatic effect for bleeding control. This novel material was subjected to an extensive characterization showing great potential for bioadhesive or other biomedical applications where biodegradable and biocompatible photocurable materials are required.

  9. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    SciTech Connect

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting; Hebert, Vincent R.; Zhang, Jinwen; Wolcott, Michael P.; Quintero, Melissa; Ramasamy, Karthikeyan K.; Chen, Xiaowen; Zhang, Xiao

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  10. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    SciTech Connect

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting; Hebert, Vincent R.; Zhang, Jinwen; Wolcott, Michael P.; Quintero, Melissa; Ramasamy, Karthikeyan K.; Chen, Xiaowen; Zhang, Xiao

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  11. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  12. Milk and acid-base balance: proposed hypothesis versus scientific evidence.

    PubMed

    Fenton, Tanis R; Lyon, Andrew W

    2011-10-01

    Recently the lay press has claimed a hypothetical association among dairy product consumption, generation of dietary acid, and harm to human health. This theoretical association is based on the idea that the protein and phosphate in milk and dairy products make them acid-producing foods, which cause our bodies to become acidified, promoting diseases of modern civilization. Some authors have suggested that dairy products are not helpful and perhaps detrimental to bone health because higher osteoporotic fracture incidence is observed in countries with higher dairy product consumption. However, scientific evidence does not support any of these claims. Milk and dairy products neither produce acid upon metabolism nor cause metabolic acidosis, and systemic pH is not influenced by diet. Observations of higher dairy product intake in countries with prevalent osteoporosis do not hold when urban environments are compared, likely due to physical labor in rural locations. Milk and other dairy products continue to be a good source of dietary protein and other nutrients. Key teaching points: Measurement of an acidic pH urine does not reflect metabolic acidosis or an adverse health condition. The modern diet, and dairy product consumption, does not make the body acidic. Alkaline diets alter urine pH but do not change systemic pH. Net acid excretion is not an important influence of calcium metabolism. Milk is not acid producing. Dietary phosphate does not have a negative impact on calcium metabolism, which is contrary to the acid-ash hypothesis.

  13. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.

    PubMed

    Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-04-01

    Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol.

  14. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.

    PubMed

    Pérez-García, Fernando; Max Risse, Joe; Friehs, Karl; Wendisch, Volker F

    2017-02-07

    Corynebacterium glutamicum is used for the million-ton scale production of amino acids and has recently been engineered for production of the cyclic non-proteinogenic amino acid L-pipecolic acid (L-PA). In this synthetic pathway L-lysine was converted to L-PA by oxidative deamination, dehydration and reduction by L-lysine 6-dehydrogenase (deaminating) from Silicibacter pomeroyi and pyrroline 5-carboxylate reductase from C. glutamicum. However, production of L-PA occurred as by-product of L-lysine production only. Here, the author show that abolishing L-lysine export by the respective gene deletion resulted in production of L-PA as major product without concomitant lysine production while the specific growth rate was reduced due to accumulation of high intracellular lysine concentrations. Increasing expression of the genes encoding L-lysine 6-dehydrogenase and pyrroline 5-carboxylate reductase in C. glutamicum strain PIPE4 increased the L-PA titer to 3.9 g L(-1) , and allowed faster growth and, thus, a higher volumetric productivity of 0.08 ± 0.00 g L(-1) h(-1) respectively. Secondly, expression of heterologous genes for utilization of glycerol, xylose, glucosamine, and starch in strain PIPE4 enabled L-PA production from these alternative carbon sources. Third, in a glucose/sucrose-based fed-batch fermentation with C. glutamicum PIPE4 L-PA was produced to a titer of 14.4 g L(-1) with a volumetric productivity of 0.21 g L(-1) h(-1) and an overall yield of 0.20 g g(-1) .

  15. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  16. A clinical approach to acid-base conundrums.

    PubMed

    Garrubba, Carl; Truscott, Judy

    2016-04-01

    Acid-base disorders can provide essential clues to underlying patient conditions. This article provides a simple, practical approach to identifying simple acid-base disorders and their compensatory mechanisms. Using this stepwise approach, clinicians can quickly identify and appropriately treat acid-base disorders.

  17. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  18. The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Allayarov, Ramil K; Lunina, Julia N; Morgunov, Igor G

    2016-04-01

    The effect of oxalic and itaconic acids, the inhibitors of the isocitrate lyase, on the production of isocitric acid by the wild strain Yarrowia lipolytica VKM Y-2373 grown in the medium containing rapeseed oil was studied. In the presence of oxalic and itaconic acids, strain Y. lipolytica accumulated in the medium isocitric acid (70.0 and 82.7 g/L, respectively) and citric acid (23.0 and 18.4 g/L, respectively). In control experiment, when the inhibitors were not added to the medium, the strain accumulated isocitric and citric acids at concentrations of 62.0 and 28.0 g/L, respectively. Thus, the use of the oxalic and itaconic acids as additives to the medium is a simple and convenient method of isocitric acid production with a minimum content of citric acid.

  19. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  20. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  1. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  2. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  3. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction products with... Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... generically as fatty acid, reaction products with alkanolamine (PMN P-03-461) is subject to reporting...

  4. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  5. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  6. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  7. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  8. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  9. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction products with... Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... generically as fatty acid, reaction products with alkanolamine (PMN P-03-461) is subject to reporting...

  10. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  11. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  12. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  13. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  14. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... boric acid production subcategory. 415.280 Section 415.280 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric...

  15. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  16. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1.

    PubMed

    Maneerat, Suppasil; Nitoda, Teruhiko; Kanzaki, Hiroshi; Kawai, Fusako

    2005-06-01

    Strain SM1 was isolated as a biosurfactant-producing microorganism from seawater and presumptively identified as Myroides sp., based on morphology, biochemical characteristics and 16S rDNA sequence. The strain produced surface-active compounds in marine broth, which were purified, using emulsification activity for n-hexadecane as an indicator. The purified compounds were identified by thin-layer chromatography, (1)H- and (13)C-NMR spectra and fast atom bombardment mass spectrometry as cholic acid, deoxycholic acid and their glycine conjugates. Type strains of the genus Myroides, M. odoratus JCM7458 and M. odoramitimus JCM7460, also produced these compounds. Myroides sp. strain SM1 possessed a biosynthetic route to cholic acid from cholesterol. Thus, bile acids were found as new products of prokaryotic cells, genus Myroides.

  17. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    PubMed

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.

  18. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae.

    PubMed

    Leavitt, John M; Wagner, James M; Tu, Cuong Chi; Tong, Alice; Liu, Yanyi; Alper, Hal S

    2017-03-10

    Muconic acid is a valuable platform chemical with potential applications in the production of polymers such as nylon and polyethylene terephthalate (PET). The conjugate base, muconate, was previously biosynthesized in the bacterial host Escherichia coli. Significant pathway engineering led to the first reported instance of rationally engineered production of muconic acid in the yeast Saccharomyces cerevisiae. To further increase muconic acid production in this host, we employed an adaptive laboratory evolution (ALE) strategy to complement rational metabolic engineering. To this end, we adapted a biosensor module that responds to the endogenous aromatic amino acid (AAA) as a surrogate for pathway flux. Following two rounds of ALE coupled with an anti-metabolite feeding strategy, we isolate strains with improved AAA pathway flux. Next, we demonstrate that this increased flux can be redirected into the composite muconic acid pathway with a 3-fold increase in the total titer of the composite pathway compared to our previously engineered strain. Finally, we complement a truncation of the penta-functional ARO1 protein and overexpress an endogenous aromatic decarboxylase to establish a final strain capable of producing 0.5 g/L muconic acid in shake flasks and 2.1 g/L in a fed-batch bioreactor with a yield of 12.9 mg muconic acid/g glucose at the rate of 9.0 mg/hour. This value represents the highest titer of muconic acid reported to date in S. cerevisiae, in addition to the highest reported titer of a shikimate pathway derivative in this host.

  19. Oleic acid-based gemini surfactants with carboxylic acid headgroups.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Matsuda, Wataru; Takamatsu, Yuichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Anionic gemini surfactants with carboxylic acid headgroups have been synthesized from oleic acid. The hydrocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via an ester bond, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via disuccinyl units. The surfactants exhibit pH-dependent protonation-deprotonation behavior in aqueous solutions. In alkaline solutions (pH 9 in the presence of 10 mmol dm(-3) NaCl as the background electrolyte), the surfactants can lower the surface tension as well as form molecular assemblies, even in the region of low surfactant concentrations. Under acidic (pH 3) or neutral (pH 6-7) conditions, the surfactants are intrinsically insoluble in aqueous media and form a monolayer at the air/water interface. In this study, we have investigated physicochemical properties such as the function of the hydrocarbon chain length by means of static surface tension, pyrene fluorescence, dynamic light scattering, surface pressure-area isotherms, and infrared external reflection measurements.

  20. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid.

    PubMed

    Gonugunta, Vijay K; Srivastava, Nupur; Puli, Mallikarjuna R; Raghavendra, Agepati S

    2008-11-01

    Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component.

  1. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.

  2. Genetic engineering of Candida utilis yeast for efficient production of L-lactic acid.

    PubMed

    Ikushima, Shigehito; Fujii, Toshio; Kobayashi, Osamu; Yoshida, Satoshi; Yoshida, Aruto

    2009-08-01

    Polylactic acid is receiving increasing attention as a renewable alternative for conventional petroleum-based plastics. In the present study, we constructed a metabolically-engineered Candida utilis strain that produces L-lactic acid with the highest efficiency yet reported in yeasts. Initially, the gene encoding pyruvate decarboxylase (CuPDC1) was identified, followed by four CuPDC1 disruption events in order to obtain a null mutant that produced little ethanol (a by-product of L-lactic acid). Two copies of the L-lactate dehydrogenase (L-LDH) gene derived from Bos taurus under the control of the CuPDC1 promoter were then integrated into the genome of the CuPdc1-null deletant. The resulting strain produced 103.3 g/l of L-lactic acid from 108.7 g/l of glucose in 33 h, representing a 95.1% conversion. The maximum production rate of L-lactic acid was 4.9 g/l/h. The optical purity of the L-lactic acid was found to be more than 99.9% e.e.

  3. Euscaphic acid, a new hypoglycemic natural product from Folium Eriobotryae.

    PubMed

    Chen, Jian; Li, Wei-Lin; Wu, Ju-Lan; Ren, Bing-Ru; Zhang, Han-Qing

    2008-10-01

    Folium Eriobotryae has been used as a medicinal plant for a long time, and it is known to have many physiological actions such as anti-inflammatory, anti-tussive, expectorant and anti-diabetic. We have reported that the 70% ethanol extract of Folium Eriobotryae exerted a significant hypoglycemic effect to alloxan-diabetic mice. In this study, we isolated euscaphic acid, a natural product from Folium Eriobotryae, and investigated its hypoglycemic effect in normoglycemic and alloxan-diabetic mice. All effects had been compared with those of gliclazide. The plasma glucose levels were significantly lowered in normoglycemic mice treated with euscaphic acid compared to mice treated with 0.5% CMC-Na solution only. Moreover, the dosage of 50 mg/kg exerted a significant (P < 0.05) hypoglycemic effect in alloxan-diabetic mice after orally administration. The research proved that euscaphic acid is one of the active hypoglycemic constituents in Folium Eriobotryae, but the details of the mechanism need to be investigated further.

  4. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  5. Occurrence and role of lactic acid bacteria in seafood products.

    PubMed

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  6. 3-Amino-4-hydroxybenzoic acid production from sweet sorghum juice by recombinant Corynebacterium glutamicum.

    PubMed

    Kawaguchi, Hideo; Sasaki, Kengo; Uematsu, Kouji; Tsuge, Yota; Teramura, Hiroshi; Okai, Naoko; Nakamura-Tsuruta, Sachiko; Katsuyama, Yohei; Sugai, Yoshinori; Ohnishi, Yasuo; Hirano, Ko; Sazuka, Takashi; Ogino, Chiaki; Kondo, Akihiko

    2015-12-01

    The production of the bioplastic precursor 3-amino-4-hydroxybenzoic acid (3,4-AHBA) from sweet sorghum juice, which contains amino acids and the fermentable sugars sucrose, glucose and fructose, was assessed to address the limitations of producing bio-based chemicals from renewable feedstocks. Recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI derived from Streptomyces griseus produced 3,4-AHBA from the sweet sorghum juice of cultivar SIL-05 at a final concentration (1.0 g l(-1)) that was 5-fold higher than that from pure sucrose. Fractionation of sweet sorghum juice by nanofiltration (NF) membrane separation (molecular weight cut-off 150) revealed that the NF-concentrated fraction, which contained the highest concentrations of amino acids, increased 3,4-AHBA production, whereas the NF-filtrated fraction inhibited 3,4-AHBA biosynthesis. Amino acid supplementation experiments revealed that leucine specifically enhanced 3,4-AHBA production by strain KT01. Taken together, these results suggest that sweet sorghum juice is a potentially suitable feedstock for 3,4-AHBA production by recombinant C. glutamicum.

  7. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  8. Identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2005-02-08

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  9. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse.

  10. Polarity based fractionation of fulvic acids.

    PubMed

    Li, Aimin; Hu, Jundong; Li, Wenhui; Zhang, Wei; Wang, Xuejun

    2009-11-01

    Fulvic acids from the soil of Peking University (PF) and a Nordic river (NF) were separated into well defined sub-fractions using sequential elution techniques based on eluent polarity. The chemical properties of the fractions including: PF1 and NF1 (eluted by 0.01 M HCl), PF2 and NF2 (eluted by 0.01 M HCl+20% methanol), PF3 and NF3 (eluted by 0.01 M HCl+40% methanol), and PF4 and NF4 (eluted by 100% methanol), were characterized using UV-Visible spectroscopy, elemental analysis and (13)C NMR. The results showed that the UV absorptions of the elution peaks at 280 nm (A280) increased from PF2 to PF4 and NF2 to NF4. No elution peaks were observed for PF1 and NF1. The carbon contents increased from 43.34% to 51.90% and 43.06% to 53.26% while the oxygen contents decreased from 46.39% to 36.76% and 49.76% to 40.03% for PF1-PF4 and NF1-NF4, respectively. As a polarity indicator, the (O+N)/C ratio for PF1-PF4 and NF1-NF4 decreased from 0.88 to 0.62 and 0.89 to 0.58, respectively. The aromatic carbon content increased from PF1 to PF4 and NF1 to NF4, suggesting an increase of the hydrophobicity of these fractions. The polarity was positively related to the ratio of UV absorption at 250 nm and 365 nm (E2/E3), and negatively related to the aromaticity. A high positive relationship between the aromaticity and E2/E3 of fulvic acid fractions was also obtained. The use of an eluent with a decreasing polarity allowed to providing simpler fractions of soil and aquatic fulvic acids.

  11. Wheat flour based propionic acid fermentation: an economic approach.

    PubMed

    Kagliwal, Lalit D; Survase, Shrikant A; Singhal, Rekha S; Granström, Tom

    2013-02-01

    A process for the fermentative production of propionic acid from whole wheat flour using starch and gluten as nutrients is presented. Hydrolysis of wheat flour starch using amylases was optimized. A batch fermentation of hydrolysate supplemented with various nitrogen sources using Propionibacterium acidipropionici NRRL B 3569 was performed. The maximum production of 48.61, 9.40, and 11.06 g of propionic acid, acetic acid and succinic acid, respectively, was found with wheat flour hydrolysate equivalent to 90 g/l glucose and supplemented with 15 g/l yeast extract. Further, replacement of yeast extract with wheat gluten hydrolysate showed utilization of gluten hydrolysate without compromising the yields and also improving the economics of the process. The process so developed could be useful for production of animal feed from whole wheat with in situ production of preservatives, and also suggest utilization of sprouted or germinated wheat for the production of organic acids.

  12. Production of fermented chestnut purees by lactic acid bacteria.

    PubMed

    Blaiotta, G; Di Capua, M; Coppola, R; Aponte, M

    2012-09-03

    The objective of this study was to develop a new chestnut-based puree, in order to seasonally adjust the offer and use the surplus of undersized production, providing, at the same time, a response to the growing demand for healthy and environmentally friendly products. Broken dried chestnuts have been employed to prepare purees to be fermented with six different strains of Lactobacillus (Lb.) rhamnosus and Lactobacillus casei. The fermented purees were characterized by a technological and sensorial point of view, while the employed strains were tested for their probiotic potential. Conventional in vitro tests have indicated the six lactobacilli strains as promising probiotic candidates; moreover, being the strains able to grow and to survive in chestnut puree at a population level higher than 8 log₁₀ CFU/mL along 40 days of storage at 4 °C, the bases for the production of a new food, lactose-free and with reduced fat content, have been laid.

  13. Production of (R)-3-hydroxybutyric acid by Arxula adeninivorans.

    PubMed

    Biernacki, Mateusz; Riechen, Jan; Hähnel, Urs; Roick, Thomas; Baronian, Kim; Bode, Rüdiger; Kunze, Gotthard

    2017-12-01

    (R)-3-hydroxybutyric acid can be used in industrial and health applications. The synthesis pathway comprises two enzymes, β-ketothiolase and acetoacetyl-CoA reductase which convert cytoplasmic acetyl-CoA to (R)-3-hydroxybutyric acid [(R)-3-HB] which is released into the culture medium. In the present study we used the non-conventional yeast, Arxula adeninivorans, for the synthesis enantiopure (R)-3-HB. To establish optimal production, we investigated three different endogenous yeast thiolases (Akat1p, Akat2p, Akat4p) and three bacterial thiolases (atoBp, thlp, phaAp) in combination with an enantiospecific reductase (phaBp) from Cupriavidus necator H16 and endogenous yeast reductases (Atpk2p, Afox2p). We found that Arxula is able to release (R)-3-HB used an existing secretion system negating the need to engineer membrane transport. Overexpression of thl and phaB genes in organisms cultured in a shaking flask resulted in 4.84 g L(-1) (R)-3-HB, at a rate of 0.023 g L(-1) h(-1) over 214 h. Fed-batch culturing with glucose as a carbon source did not improve the yield, but a similar level was reached with a shorter incubation period [3.78 g L(-1) of (R)-3-HB at 89 h] and the rate of production was doubled to 0.043 g L(-1) h(-1) which is higher than any levels in yeast reported to date. The secreted (R)-3-HB was 99.9% pure. This is the first evidence of enantiopure (R)-3-HB synthesis using yeast as a production host and glucose as a carbon source.

  14. Isolation of novel microalgae from acid mine drainage and its potential application for biodiesel production.

    PubMed

    Yun, Hyun-Shik; Lee, Hongkyun; Park, Young-Tae; Ji, Min-Kyu; Kabra, Akhil N; Jeon, Chung; Jeon, Byong-Hun; Choi, Jaeyoung

    2014-08-01

    Microalgae were selected and isolated from acid mine drainage in order to find microalgae species which could be cultivated in low pH condition. In the present investigation, 30 microalgae were isolated from ten locations of acid mine drainage in South Korea. Four microalgae were selected based on their growth rate, morphology, and identified as strains of KGE1, KGE3, KGE4, and KGE7. The dry biomass of microalgae species ranged between 1 and 2 g L(-1) after 21 days of cultivation. The growth kinetics of microalgae was well described by logistic growth model. Among these, KGE7 has the highest biomass production (2.05 ± 0.35 g L(-1)), lipid productivity (0.82 ± 0.14 g L(-1)), and C16-C18 fatty acid contents (97.6 %). These results suggest that Scenedesmus sp. KGE 7 can be utilized for biodiesel production based on its high biomass and lipid productivity.

  15. Magnetic properties, acid neutralization capacity, and net acid production of rocks in the Animas River Watershed Silverton, Colorado

    USGS Publications Warehouse

    McCafferty, Anne E.; Yager, Douglas B.; Horton, Radley M.; Diehl, Sharon F.

    2006-01-01

    Federal land managers along with local stakeholders in the Upper Animas River watershed near Silverton, Colorado are actively designing and implementing mine waste remediation projects to mitigate the effects of acid mine drainage from several abandoned hard rock metal mines and mills. Local source rocks with high acid neutralization capacity (ANC) within the watershed are of interest to land managers for use in these remediation projects. A suite of representative samples was collected from propylitic to weakly sericitic-altered volcanic and plutonic rocks exposed in outcrops throughout the watershed. Acid-base accounting laboratory methods coupled with mineralogic and geochemical characterization provide insight into lithologies that have a range of ANC and net acid production (NAP). Petrophysical lab determinations of magnetic susceptibility converted to estimates for percent magnetite show correlation with the environmental properties of ANC and NAP for many of the lithologies. A goal of our study is to interpret watershed-scale airborne magnetic data for regional mapping of rocks that have varying degrees of ANC and NAP. Results of our preliminary work are presented here.

  16. High Production of 3-Hydroxypropionic Acid in Klebsiella pneumoniae by Systematic Optimization of Glycerol Metabolism

    PubMed Central

    Li, Ying; Wang, Xi; Ge, Xizhen; Tian, Pingfang

    2016-01-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical proposed by the United States Department of Energy. 3-HP can be converted to a series of bulk chemicals. Biological production of 3-HP has made great progress in recent years. However, low yield of 3-HP restricts its commercialization. In this study, systematic optimization was conducted towards high-yield production of 3-HP in Klebsiella pneumoniae. We first investigated appropriate promoters for the key enzyme (aldehyde dehydrogenase, ALDH) in 3-HP biosynthesis, and found that IPTG-inducible tac promoter enabled overexpression of an endogenous ALDH (PuuC) in K. pneumoniae. We optimized the metabolic flux and found that blocking the synthesis of lactic acid and acetic acid significantly increased the production of 3-HP. Additionally, fermentation conditions were optimized and scaled-up cultivation were investigated. The highest 3-HP titer was observed at 83.8 g/L with a high conversion ratio of 54% on substrate glycerol. Furthermore, a flux distribution model of glycerol metabolism in K. pneumoniae was proposed based on in silico analysis. To our knowledge, this is the highest 3-HP production in K. pneumoniae. This work has significantly advanced biological production of 3-HP from renewable carbon sources. PMID:27230116

  17. Tetanus toxin production is triggered by the transition from amino acid consumption to peptides.

    PubMed

    Licona-Cassani, Cuauhtemoc; Steen, Jennifer A; Zaragoza, Nicolas E; Moonen, Glenn; Moutafis, George; Hodson, Mark P; Power, John; Nielsen, Lars K; Marcellin, Esteban

    2016-10-01

    Bacteria produce some of the most potent biomolecules known, of which many cause serious diseases such as tetanus. For prevention, billions of people and countless animals are immunised with the highly effective vaccine, industrially produced by large-scale fermentation. However, toxin production is often hampered by low yields and batch-to-batch variability. Improved productivity has been constrained by a lack of understanding of the molecular mechanisms controlling toxin production. Here we have developed a reproducible experimental framework for screening phenotypic determinants in Clostridium tetani under a process that mimics an industrial setting. We show that amino acid depletion induces production of the tetanus toxin. Using time-course transcriptomics and extracellular metabolomics to generate a 'fermentation atlas' that ascribe growth behaviour, nutrient consumption and gene expression to the fermentation phases, we found a subset of preferred amino acids. Exponential growth is characterised by the consumption of those amino acids followed by a slower exponential growth phase where peptides are consumed, and toxin is produced. The results aim at assisting in fermentation medium design towards the improvement of vaccine production yields and reproducibility. In conclusion, our work not only provides deep fermentation dynamics but represents the foundation for bioprocess design based on C. tetani physiological behaviour under industrial settings.

  18. Quantitative TOF-SIMS analysis of oligomeric degradation products at the surface of biodegradable poly(alpha-hydroxy acid)s.

    PubMed

    Lee, Joo-Woon; Gardella, Joseph A

    2002-09-01

    This paper reports the development of a new method for quantification of the hydrolytic surface degradation kinetics of biodegradable poly(alpha-hydroxy acid)s using time-of-flight secondary ion mass spectrometry (TOF-SIMS). We report results from static SIMS spectra of a series of poly(alpha-hydroxy acid)s including poly(glycolic acid), poly(L-lactic acid), and random poly(D,L-lactic acid-co-glycolic acid) hydrolyzed in various buffer systems. The distribution of the most intense peak intensities of ions generated in high mass range of the spectrum reflects the intact degradation products (oligomeric hydrolysis products) of each biodegradable polymer. First, a detailed analysis of the oligomeric ions is given based on rearrangement of the intact hydrolysis products. The pattern of ions can distinguish both degradation-generated intact oligomers and their fragment ion peaks with a variety of combinations of each repeat unit. Then, the integration and summation of the area of all ion peaks with the same number of repeat units is proposed as a measurement that provides a more accurate MW average than the typically used method which counts only the most intense peak. The multiple ion summation method described in this paper would be practical in the improvement of quantitative TOF-SIMS studies as a better data reduction method, especially in the surface degradation kinetics of biodegradable polymers.

  19. A PCR assay for detection of acetic acid-tolerant lactic acid bacteria in acidic food products.

    PubMed

    Nakano, Shigeru; Matsumura, Atsushi; Yamada, Toshihiro

    2004-03-01

    A PCR assay for the detection of acetic acid-tolerant lactic acid bacteria in the genera of Lactobacillus and Pediococcus was developed in this study. Primers targeting the bacterial 16S rRNA gene were newly designed and used in this PCR assay. To determine the specificity of the assay, 56 different bacterial strains (of 33 genera), 2 fungi, 3 animals, and 4 plants were tested. Results were positive for most tested bacterial members of 16S rRNA gene-based phylogenetic groups (classified in the Lactobacillus casei and Pediococcus group), including Lactobacillus fructivorans, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus plantarum, and Lactobacillus paracasei. For all other bacterial strains and eukaryote tested, results were negative. Bacterial DNA for PCR was prepared with a simple procedure with the use of Chelex 100 resin from culture after growth in deMan Rogosa Sharpe broth (pH 6.0). To test this PCR assay for the monitoring of the acetic acid-tolerant lactic acid bacteria, L. fructivorans was inoculated into several acidic food as an indicator. Before the PCR, the inoculation of 10 to 50 CFU of bacteria per g of food was followed by a 28-h enrichment culture step, and the PCR assay allowed the detection of bacterial cells. Including the enrichment culture step, the entire PCR detection process can be completed within 30 h.

  20. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species.

  1. Metabolic Engineering of Escherichia coli for Production of Mixed-Acid Fermentation End Products

    PubMed Central

    Förster, Andreas H.; Gescher, Johannes

    2014-01-01

    Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of E. coli toward cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate, and succinate are presented. PMID:25152889

  2. A statistical approach to study the interactive effects of process parameters on succinic acid production from Bacteroides fragilis.

    PubMed

    Isar, Jasmine; Agarwal, Lata; Saran, Saurabh; Kaushik, Rekha; Saxena, Rajendra Kumar

    2007-04-01

    A statistical approach response surface methodology (RSM) was used to study the production of succinic acid from Bacteroides fragilis. The most influential parameters for succinic acid production obtained through one-at-a-time method were glucose, tryptone, sodium carbonate, inoculum size and incubation period. These resulted in the production of 5.4gL(-1) of succinic acid in 48h from B. fragilis under anaerobic conditions. Based on these results, a statistical method, face-centered central composite design (FCCCD) falling under RSM was employed for further enhancing the succinic acid production and to monitor the interactive effect of these parameters, which resulted in a more than 2-fold increase in yield (12.5gL(-1) in 24h). The analysis of variance (ANOVA) showed the adequacy of the model and the verification experiments confirmed its validity. On subsequent scale-up in a 10-L bioreactor using conditions optimized through RSM, 20.0gL(-1) of succinic acid was obtained in 24h. This clearly indicated that the model stood valid even on large scale. Thus, the statistical optimization strategy led to an approximately 4-fold increase in the yield of succinic acid. This is the first report on the use of FCCCD to improve succinic acid production from B. fragilis. The present study provides useful information about the regulation of succinic acid synthesis through manipulation of various physiochemical parameters.

  3. The physiological assessment of acid-base balance.

    PubMed

    Howorth, P J

    1975-04-01

    Acid-base terminology including the sue of SI units is reviewed. The historical reasons why nomograms have been particularly used in acid-base work are discussed. The theoretical basis of the Henderson-Hasselbalch equation is considered. It is emphasized that the solubility of CO2 in plasma and the apparent first dissociation constant of carbonic acid are not chemical constants when applied to media of uncertain and varying composition such as blood plasma. The use of the Henderson-Hasselbalch equation in making hypothermia corrections for PCO2 is discussed. The Astrup system for the in vitro determination of blood gases and derived parameters is described and the theoretical weakness of the base excess concept stressed. A more clinically-oriented approach to the assessment of acid-base problems is presented. Measurement of blood [H+] and PCO2 are considered to be primary data which should be recorded on a chart with in vivo CO2-titration lines (see below). Clinical information and results of other laboratory investigations such as plasma bicarbonate, PO2,P50 are then to be considered together with the primary data. In order to interpret this combined information it is essential to take into account the known ventilatory response to metabolic acidosis and alkalosis, and the renal response to respiratory acidosis and alkalosis. The use is recommended of a chart showing the whole-body CO2-titration points obtained when patients with different initial levels of non-respiratory [H+] are ventilated. A number of examples are given of the use of this [H+] and PCO2 in vivo chart in the interpretation of acid-base data. The aetiology, prognosis and treatment of metabolic alkalosis is briefly reviewed. Treatment with intravenous acid is recommended for established cases. Attention is drawn to the possibility of iatrogenic production of metabolic alkalosis. Caution is expressed over the use of intravenous alkali in all but the severest cases of metabolic acidosis. The role of

  4. Fatty acid alkyl esters: perspectives for production of alternative biofuels.

    PubMed

    Röttig, Annika; Wenning, Leonie; Bröker, Daniel; Steinbüchel, Alexander

    2010-02-01

    The global economy heads for a severe energy crisis: whereas the energy demand is going to rise, easily accessible sources of crude oil are expected to be depleted in only 10-20 years. Since a serious decline of oil supply and an associated collapse of the economy might be reality very soon, alternative energies and also biofuels that replace fossil fuels must be established. In addition, these alternatives should not further impair the environment and climate. About 90% of the biofuel market is currently captured by bioethanol and biodiesel. Biodiesel is composed of fatty acid alkyl esters (FAAE) and can be synthesized by chemical, enzymatic, or in vivo catalysis mainly from renewable resources. Biodiesel is already established as it is compatible with the existing fuel infrastructure, non-toxic, and has superior combustion characteristics than fossil diesel; and in 2008, the global production was 12.2 million tons. The biotechnological production of FAAE from low cost and abundant feedstocks like biomass will enable an appreciable substitution of petroleum diesel. To overcome high costs for immobilized enzymes, the in vivo synthesis of FAAE using bacteria represents a promising approach. This article points to the potential of different FAAE as alternative biofuels, e.g., by comparing their fuel properties. In addition to conventional production processes, this review presents natural and genetically engineered biological systems capable of in vivo FAAE synthesis.

  5. Biohydrogenation of Linoleic Acid by Lactic Acid Bacteria for the Production of Functional Cultured Dairy Products: A Review

    PubMed Central

    Kuhl, Gabriela Christina; De Dea Lindner, Juliano

    2016-01-01

    Conjugated linoleic acid (CLA) isomers have attracted significant attention due to their important physiological properties, which have been observed in humans. Many lactic acid bacteria (LAB) demonstrate the ability to produce CLA isomers (C18:2 cis-9, trans-11 and C18:2 trans-10, cis-12) from the linoleic acid (LA) present in milk or in synthetic media. CLA isomers can be synthesized in vitro by LAB using vegetable oils rich in LA. The aim of this review is to present an update on the studies that have been conducted on the production of CLA isomers from LA mainly by LAB and of the factors that influence this conversion (source and concentration of LA and fermentation conditions). In addition, this review presents the relationship between the consumption of CLA isomers and their health benefits in humans such as anti-atherosclerosis and anti-carcinogenic effects. There is considerable variation between the studies concerning the beneficial effects of CLA in animal models, which have not been reflected in human studies. This can be attributed to the differences in the doses of CLA isomers used and to the different sources of CLA. Furthermore, the regulatory and scientific information classifying the physiological properties of CLA, which serve as support for the claims of its potential as a functional ingredient, are presented. More research is needed to determine whether CLA production by LAB can be enhanced and to determine the optimal requirements for these microbial cultures. Furthermore, safety and efficacy of CLA consumption have to be investigated in the future. PMID:28231108

  6. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    PubMed

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  7. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.

    PubMed

    Liu, Ying; Xu, Qing; Lv, Chunwei; Yan, Caixia; Li, Shuang; Jiang, Ling; Huang, He; Ouyang, Pingkai

    2015-12-01

    Ensuring a suitable pH is a major problem in industrial organic acid fermentation. To circumvent this problem, we used a metabolic profiling approach to analyze metabolite changes in Rhizopus oryzae under different pH conditions. A correlation between fumaric acid production and intracellular metabolic characteristics of R. oryzae was revealed by principal component analysis. The results showed that to help cell survival in the presence of low pH, R. oryzae altered amino acid and fatty acid metabolism and promoted sugar or sugar alcohol synthesis, corresponding with a suppressing of energy metabolism, phenylalanine, and tyrosine synthesis and finally resulting in the low performance of fumaric acid production. Based on this observation, 1 % linoleic acid was added to the culture medium in pH 3.0 to decrease the carbon demand for cell survival, and the fumaric acid titer was enhanced by 39.7 % compared with the control (pH 3.0 without linoleic acid addition), reaching 18.3 g/L after 84 h of fermentation. These findings provide new insights into the mechanism by which R. oryzae responds to acidic stress and would be helpful for the development of efficient strategies for fumaric acid production at low pH.

  8. Economic valuation of acid deposition induced changes in the productivity of commercial forests

    SciTech Connect

    Callaway, J.M. Jr.

    1984-02-01

    Several recent studies have reported localized decreases in the growth of several commercially important forest species in the northeast United States. These observed reductions in basal area growth may be related to increases in acid deposition and other man-made pollutants over the last two or three decades. If this is the case, then increases in region-wide levels of acid deposition may have effects on the biomass content and age-species composition of the regional timber inventory. These physical changes can influence regional stumpage prices and harvest levels through changes in the marginal cost of harvesting timber as a product and through changes in the opportunity cost of holding timber as an asset. Resultant changes in the profits earned by timber owners and the buyers of stumpage can be used to attach monetary value to the effects of acid deposition on the timber resource base. The objective of this study is to develop a capability to value acid deposition-induced changes in the productivity of commercial timberland in the northeast United States. Simulations will be conducted to determine the effects of acid deposition-induced changes in species growth rates on the profits earned by timber owners and buyers in relevant stumpage markets. The sensitivity of these results to different rates of return to private owners, alternative management practices, and to the levels of exogenous variables which influence the demand for stumpage will be assessed. 8 references.

  9. Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources.

    PubMed

    Joshi, V D; Sreekantiah, K R; Manjrekar, S P

    1996-01-01

    A process for production of gluconic acid from glucose by a Micrococcus sp. is described. More than 400 bacterial cultures isolated from local soil were tested for gluconic acid production. Three isolates, were selected on basis of their ability to produce gluconic acid and high titrable acidity. These were identified as Micrococcus sp. and were named M 27, M 54 and M 81. Nutritional and other parameters for maximum production of gluconic acid by the selected isolates were optimised. It was found that Micrococcus sp. isolate M 27 gave highest yield of 8.19 g gluconic acid from 9 g glucose utilised giving 91% conversion effeciency.

  10. Origin of haloacetic acids in milk and dairy products.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2016-04-01

    Haloacetic acids (HAAs) are formed during the process of water disinfection. Therefore their presence in foods can be correlated with the addition of or contact with treated water. To determine the origin of HAAs in milk and dairy products, firstly a chromatographic method was developed for their determination. The sample treatment involves deproteination of milk followed by derivatization/extraction of the HAAs in the supernatant. About 20% of the foods analyzed contained two HAAs - which in no case exceeded 2 μg L(-1), that can be ascribed to contamination from sanitizers usually employed in the dairy industry. The process of boiling tap water (containing HAAs) for the preparation of powdered infant formula did not remove them; therefore it would be advisable to prepare this type of milk with mineral water (free of HAAs). In addition, it is possible to establish if the milk has been adulterated with treated water through the determination of HAAs.

  11. Processing of wastes from lead/acid battery production

    NASA Astrophysics Data System (ADS)

    Polivianny, I. R.; Rusin, A. I.; Lata, V. A.; Khegay, L. D.; Nourjigitov, S. T.

    Experience in the recovery of scrap and wastes from lead/acid battery production suggests that an electrothermal method has good prospects. This process is characterized by a high degree of lead and antimony (approx 98%) extraction, by effective gas cleaning and dust collection, and by full dust returning to the furnace. The electrothermal method is also distinguished by the high reliability of electric furnaces, the useability of any type of secondary lead battery scrap and wastes, and the possibility of process mechanization and control. In this paper, a description is given of the main technical and economical factors of soda-reduction smelting in an electric furnace, a technological scheme for wastes recovery, and the charge composition and features of the process.

  12. Decomposition products of glycidyl esters of fatty acids by heating.

    PubMed

    Kimura, Wataru; Endo, Yasushi

    2017-03-01

    In this study, decomposition products of glycidyl palmitate (GP) of fatty acids heated at high temperature such as deep frying were investigated. When GP and tripalmitin (TP) were heated at 180 and 200 °C, they were decreased with heating time. The weight of GP was less than that of TP, although both GP and TP were converted to polar compounds after heating. The decomposition rate of GP was higher than TP. Both GP and TP produced considerable amounts of hydrocarbons and aldehydes during heating. Aldehydes produced from GP and TP included saturated aldehydes with carbon chain length of 3-10, while hydrocarbons consisted of carbon chain length of 8-15. It was observed that major hydrocarbons produced from GP during heating were pentadecane. Moreover, the level of carbon dioxide (CO2) released from GP was higher than that of TP. It was suggested that fatty acids in GE might be susceptible to decarboxylation. From these results, GP might be quickly decomposed to hydrocarbons, aldehydes and CO2 besides polar compounds by heating, in comparison with TP.

  13. Production of oxalic acid by some fungi infected tubers.

    PubMed

    Faboya, O; Ikotun, T; Fatoki, O S

    1983-01-01

    Oxalic acid (as oxalate) was detected in four tubers commonly used for food in Nigeria-Dioscorea rotundata (White yam), Solanum tuberosum (Irish potato), Ipomoea batatas (Sweet potato), and Manihot esculenta (cassava). Whereas healthy I. batata had the highest oxalic acid content, healthy M. esculenta contained the lowest. When all tubers were artifically inoculated with four fungi-Penicillium oxalicum CURIE and THOM, Aspergillus niger VAN TIEGH, A. flavus and A. tamarii KITA, there was an increase in oxalate content/g of tuber tissue. The greatest amount of oxalate was produced by P. oxalicum in D. rotundata tuber. Consistently higher amounts of oxalate were produced by the four fungi in infected sweet potato tuber than in any other tuber and consistently lower amounts of oxalate were produced by the four fungi in Irish potato tuber. Differences in the carbohydrate type present in the tubers and in the biosynthesis pathway are thought to be responsible for variation in the production of oxalate in the different tubers by the four fungi used.

  14. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.

    PubMed

    Goswami, Debajyoti; Sen, Ramkrishna; Basu, Jayanta Kumar; De, Sirshendu

    2010-01-01

    In this study, ricinoleic acid was produced on surfactant enhanced castor oil hydrolysis using Candida rugosa lipase. The most effective surfactant was Span 80. Employing fractional factorial design, the most suitable temperature and surfactant concentration were found to be 31 degrees C and 0.257% (w/w in buffer) respectively whereas pH, enzyme concentration, buffer concentration and agitation were identified as the most significant independent variables. A 2(4) full factorial central composite design was applied and the optimal conditions were found to be pH 7.0, enzyme concentration 7.42 mg/g oil, buffer concentration 0.20 g/g oil and agitation 1400 rpm with the maximum response of 76% in 4 h. The most important variable was pH, whereas enzyme and buffer concentrations also showed pronounced effect on response. This is the first report on the application of response surface methodology for optimizing surfactant enhanced ricinoleic acid production using C. rugosa lipase.

  15. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.

    PubMed

    Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian

    2017-01-01

    Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid.

  16. Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide

    DOEpatents

    Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.

    2001-01-01

    A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.

  17. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum

    PubMed Central

    2013-01-01

    Background The soil bacterium Corynebacterium glutamicum, best known for its glutamate producing ability, is suitable as a producer of a variety of bioproducts. Glutamate is the precursor of the amino acid proline. Proline biosynthesis typically involves three enzymes and a spontaneous cyclisation reaction. Alternatively, proline can be synthesised from ornithine, an intermediate of arginine biosynthesis. The direct conversion of ornithine to proline is catalysed by ornithine cyclodeaminase. An ornithine overproducing platform strain with deletions of argR and argF (ORN1) has been employed for production of derived compounds such as putrescine. By heterologous expression of ocd this platform strain can be engineered further for proline production. Results Plasmid-based expression of ocd encoding the putative ornithine cyclodeaminase of C. glutamicum did not result in detectable proline accumulation in the culture medium. However, plasmid-based expression of ocd from Pseudomonas putida resulted in proline production with yields up to 0.31 ± 0.01 g proline/g glucose. Overexpression of the gene encoding a feedback-alleviated N-acetylglutamate kinase further increased proline production to 0.36 ± 0.01 g/g. In addition, feedback-alleviation of N-acetylglutamate kinase entailed growth-coupled production of proline and reduced the accumulation of by-products in the culture medium. Conclusions The product spectrum of the platform strain C. glutamicum ORN1 was expanded to include the amino acid L-proline. Upon further development of the ornithine overproducing platform strain, industrial production of amino acids of the glutamate family and derived bioproducts such as diamines might become within reach. PMID:23806148

  18. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  19. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  20. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  1. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  2. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  3. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  4. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  5. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  6. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  7. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the...

  8. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the...

  9. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the...

  10. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the...

  11. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  12. Microalgae-based biorefinery--from biofuels to natural products.

    PubMed

    Yen, Hong-Wei; Hu, I-Chen; Chen, Chun-Yen; Ho, Shih-Hsin; Lee, Duu-Jong; Chang, Jo-Shu

    2013-05-01

    The potential for biodiesel production from microalgal lipids and for CO2 mitigation due to photoautotrophic growth of microalgae have recently been recognized. Microalgae biomass also has other valuable components, including carbohydrates, long chain fatty acids, pigments and proteins. The microalgae-based carbohydrates consist mainly of cellulose and starch without lignin; thus they can be ready carbon source for the fermentation industry. Some microalgae can produce long chain fatty acids (such as DHA and EPA) as valuable health food supplements. In addition, microalgal pigments and proteins have considerable potential for many medical applications. This review article presents comprehensive information on the current state of these commercial applications, as well as the utilization and characteristics of the microalgal components, in addition to the key factors and challenges that should be addressed during the production of these materials, and thus provides a useful report that can aid the development of an efficient microalgae-based biorefinery process.

  13. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  14. Continuous Isosorbide Production From Sorbitol Using Solid Acid Catalysis

    SciTech Connect

    Williamson, R.; Holladay,J.; Jaffe, M.; Brunelle, D.

    2006-09-29

    This is a final report for a project funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board was the principal contracting entity for the grant. The Iowa Corn Promotion Board subcontracted with General Electric, Pacific Northwest National Lab and New Jersey Institute of Technology to conduct research in this project. The Iowa Corn Promotion Board and General Electric provided cost share for the project. The purpose of this diverse collaboration was to integrate both the conversion and the polymer applications into one project and increase the likelihood of success. This project has led to additional collaborations among other polymer companies. The goals of the project were to develop a renewable route to isosorbide for commercialization that is economically competitive with all existing production technologies and to develop new applications for isosorbide in various products such as polymers and materials. Under this program a novel process for the production of isosorbide was developed and evaluated. The novel process converts corn based sorbitol into isosorbide using a solid catalyst with integrated water removal and product recovery. In addition the work under this program has identified several novel products based on isosorbide chemistries. These market applications include: epoxy resins, UV stabilizers, plasticizers and polyesters. These market applications have commercial interest within the current polymer industry. This report contains an overview summary of the accomplishments. Six inventions and four patent applications have been written as a result of this project. Additional data will be published in the patent applications. The data developed at New Jersey Institute of Technology was presented at two technical conferences held in June of 2006. Several companies have made inquiries about using this material in their products.

  15. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    PubMed

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen.

  16. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638.

    PubMed

    Sachan, Ashish; Ghosh, Shashwati; Sen, Sukanta Kumar; Mitra, Adinpunya

    2006-08-01

    In a culture medium of Streptomyces caeruleus MTCC 6638 grown with p-coumaric acid (5 mM) as the sole source of carbon, co-production of caffeic acid and p-hydroxybenzoic acid was observed. Both caffeic acid and p-hydroxybenzoic acid are important phenolic compounds with pharmaceutical importance. These biotransformed products were identified by high-performance liquid chromatography and electrospray ionization mass spectrometry. Obtained data suggest that p-coumaric acid was possibly utilized by two different routes, resulting in the formation of a hydroxycinnamate and a hydroxybenzoate compound. However, higher concentration of p-coumaric acid (10 mM) favoured caffeic acid formation. Addition of 5 mM p-coumaric acid into S. caeruleus cultures pre-grown on minimal medium with 1.0 g/l glucose resulted in the production of 65 mg/l caffeic acid. Furthermore, S. caeruleus cells were able to produce the maximum amount of caffeic acid when pre-grown on nutrient broth for 16 h. Under this condition, the addition of 5 mM p-coumaric acid was sufficient for the S. caeruleus culture to produce 150 mg/l caffeic acid, with a molar yield of 16.6% after 96 h of incubation.

  17. Effect of surfactants on production of oxygenated unsaturated fatty acids by Bacillus megaterium ALA2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus megaterium ALA2 produces many oxygenated unsaturated fatty acids from linoleic acid. Its major product, 12,13,17-trihydroxy-9(Z)-octadecenoic acid (12,13,17-THOA) inhibits the growth of some plant pathogenic fungi. Because hydrophobic fatty acids need to be evenly dispersed in culture for...

  18. Effect of Surfactants on Production of Oxygenated Unsaturated Fatty Acids by Bacillus megaterium ALA2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus megaterium ALA2 (NRRL B-21660) produces many oxygenated unsaturated fatty acids from linoleic acid. Its major product, 12,13,17-trihydroxy-9(Z)-octadecenoic acid (12,13,17-THOA), inhibits the growth of some plant pathogenic fungi. Because hydrophobic fatty acids need to be evenly disperse...

  19. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo- prope...

  20. OCCURRENCE AND TOXICITY OF IODO-ACID DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo...

  1. Acid hydrolysis of sweet potato for ethanol production

    SciTech Connect

    Kim, K.; Hamdy, M.K.

    1985-01-01

    Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, and hydrolysis time. Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110/sup 0/C. Degraded 8% SPS (1N HCl, 97/sup 0/C for 20 min or 110/sup 0/C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).

  2. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water.

  3. Thermochemical comparisons of homogeneous and heterogeneous acids and bases. 1. Sulfonic acid solutions and resins as prototype Broensted acids

    SciTech Connect

    Arnett, E.M.; Haaksma, R.A.; Chawla, B.; Healy, M.H.

    1986-08-06

    Heats of ionization by thermometric titration for a series of bases (or acids) can be used to compare solid acids (or bases) with liquid analogues bearing the same functionalities in homogeneous solutions. The method is demonstrated for Broensted acids by reacting a series of substituted nitrogen bases with solutions of p-toluenesulfonic acid (PTSA) in acetonitrile and with suspensions of the microporous polymeric arylsulfonic acid resin-Dowex 50W-X8 in the same solvent. Under well-controlled anhydrous conditions there is a good correlation (r = 0.992) between the heats of reaction of the bases with the homogeneous and heterogeneous acid systems, but the homogeneous system gives a more exothermic interaction by 3-4 kcal mol/sup -1/ for a series of 29 substituted pyrimidines, anilines, and some other amines. This difference may be attributed to homohydrogen bonding interactions between excess acid and sulfonate anion sites which are more restricted geometrically in the resin than in solution. Other factors which affect the enthalpy change for the acid-base interaction are the acid/base ratio, the water content of the sulfonic acid, the solvent, and the resin structure (e.g., microporous vs. macroporous). Steric hindrance in the base does not differentiate solid from homogeneous acid. In addition to the use of titration calorimetry, heats of immersion are reported for the Dowex-arylsulfonic acid resins and the Nafion-perfluorinated sulfonic acid resin in a series of basic liquids. The results are compared with each other and with those from a previous study of several varieties of coal.

  4. Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization.

    PubMed

    Bhattacharyya, Saurav; Chakraborty, Sudip; Datta, Siddhartha; Drioli, Enrico; Bhattacharjee, Chiranjib

    2013-01-01

    Potato peel is a waste biomass which can be a source of raw material for biofuel production. This biomass contains a sufficient amount of total reducing sugar (TRS), which can be extracted and further treated with microbial pathways to produce bioethanol. The extraction of TRS from potato peels by hydrolysis in dilute sulphuric acid was investigated at different acid concentrations (0.50%, 0.75% and 1% w/v) and sonication was carried out to improve the extent of sugar extraction after hydrolysis. Response surface methodology based on central composite design was used to verify the experimental data and later applied for the optimization of the main important reaction variables including amplitude (60%, 80% and 100%), cycle (0.6, 0.8 and 1.0) and treatment time (5, 10 and 15 min) for the responses of TRS extraction by acid hydrolysis and later compared with the experimental data.

  5. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis.

    PubMed

    Binh, Tran Thi Thanh; Ju, Wan-Taek; Jung, Woo-Jin; Park, Ro-Dong

    2014-01-01

    An isolate from kimchi, identified as Lactobacillus brevis, accumulated γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in the culture medium. Optimal culture conditions for growth of L. brevis and production of GABA were 6 % (w/v) l-glutamic acid, 4 % (w/v) maltose, 2 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) CaCl2, 2 g Tween 80/l, and 0.02 mM pyridoxal 5′-phosphate at initial pH 5.25 and 37 °C. GABA reached 44.4 g/l after 72 h cultivation with a conversion rate 99.7 %, based on the amount (6 %) of l-glutamic acid added. GABA was purified using ion exchange column chromatography with 70 % recovery and 97 % purity.

  6. Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting.

    PubMed

    Kosugi, Akihiko; Tanaka, Ryohei; Magara, Kengo; Murata, Yoshinori; Arai, Takamitsu; Sulaiman, Othman; Hashim, Rokiah; Hamid, Zubaidah Aimi Abdul; Yahya, Mohd Khairul Azri; Yusof, Mohd Nor Mohd; Ibrahim, Wan Asma; Mori, Yutaka

    2010-09-01

    Old oil palm trunks that had been felled for replanting were found to contain large quantities of high glucose content sap. Notably, the sap in the inner part of the trunk accounted for more than 80% of the whole trunk weight. The glucose concentration of the sap from the inner part was 85.2g/L and decreased towards the outer part. Other sugars found in relatively low concentrations were sucrose, fructose, galactose, xylose, and rhamnose. In addition, oil palm sap was found to be rich in various kinds of amino acids, organic acids, minerals and vitamins. Based on these findings, we fermented the sap to produce ethanol using the sake brewing yeast strain, Saccharomyces cerevisiae Kyokai no.7. Ethanol was produced from the sap without the addition of nutrients, at a comparable rate and yield to the reference fermentation on YPD medium with glucose as a carbon source. Likewise, we produced lactic acid, a promising material for bio-plastics, poly-lactate, from the sap using the homolactic acid bacterium Lactobacillus lactis ATCC19435. We confirmed that sugars contained in the sap were readily converted to lactic acid with almost the same efficiency as the reference fermentation on MSR medium with glucose as a substrate. These results indicate that oil palm trunks felled for replanting are a significant resource for the production of fuel ethanol and lactic acid in palm oil-producing countries such as Malaysia and Indonesia.

  7. Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis.

    PubMed

    Ju, Wan-Taek; Song, Yong-Su; Jung, Woo-Jin; Park, Ro-Dong

    2014-11-01

    Application of poly-gamma-glutamic acid (γ-PGA), an unusual macromolecular anionic polypeptide, is limited due to the high cost associated with its low productivity. Screening bacterial strains to find a more efficient producer is one approach to overcome this limitation. Strain MJ80 was isolated as a γ-PGA producer among 1,500 bacterial colonies obtained from soil samples. It was identified as Bacillus subtilis, based on the biochemical and morphological properties and 16S rDNA gene sequencing. It produced γ-PGA from both glutamic acid and soybean powder, identifying it as a facultative glutamic acid-metabolizing bacterium. After optimization of its culture conditions, B. subtilis MJ80 showed γ-PGA productivity of 75.5 and 68.7 g/l in 3 and 300 l jar fermenters for 3 days cultivation, respectively, the highest productivity reported to date, suggesting MJ80 to be a promising strain for γ-PGA production.

  8. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  9. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes.

    PubMed

    Ju, Kou-San; Gao, Jiangtao; Doroghazi, James R; Wang, Kwo-Kwang A; Thibodeaux, Christopher J; Li, Steven; Metzger, Emily; Fudala, John; Su, Joleen; Zhang, Jun Kai; Lee, Jaeheon; Cioni, Joel P; Evans, Bradley S; Hirota, Ryuichi; Labeda, David P; van der Donk, Wilfred A; Metcalf, William W

    2015-09-29

    Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.

  10. Enzymatic production of bioactive docosahexaenoic acid phenolic ester.

    PubMed

    Roby, Mohamed H; Allouche, Ahmad; Dahdou, Layal; De Castro, Vanessa C; da Silva, Paulo H Alves; Targino, Brenda N; Huguet, Marion; Paris, Cédric; Chrétien, Françoise; Guéant, Rosa-Maria; Desobry, Stéphane; Oster, Thierry; Humeau, Catherine

    2015-03-15

    Docosahexaenoic acid (DHA) is increasingly considered for its health benefits. However, its use as functional food ingredient is still limited by its instability. In this work, we developed an efficient and solvent-free bioprocess for the synthesis of a phenolic ester of DHA. A fed-batch process catalyzed by Candida antarctica lipase B was optimised, leading to the production of 440 g/L vanillyl ester (DHA-VE). Structural characterisation of the purified product indicated acylation of the primary OH group of vanillyl alcohol. DHA-VE exhibited a high radical scavenging activity in acellular systems. In vivo experiments showed increased DHA levels in erythrocytes and brain tissues of mice fed DHA-VE-supplemented diet. Moreover, in vitro neuroprotective properties of DHA-VE were demonstrated in rat primary neurons exposed to amyloid-β oligomers. In conclusion, DHA-VE synergized the main beneficial effects of two common natural biomolecules and therefore appears a promising functional ingredient for food applications.

  11. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    PubMed

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus.

  12. Nutrition, acid-base status and growth in early childhood.

    PubMed

    Kalhoff, H; Manz, F

    2001-10-01

    associated with impaired growth. Activation of secondary homeostatic mechanisms (extracellular volume contraction, depletion of disposable net base pools) might be important for impaired growth. Production of new formulas for reduced renal NAE could be an effective general preventive measure to reduce the clinical importance of one component of mixed acid-base disorders in early childhood.

  13. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    NASA Astrophysics Data System (ADS)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  14. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals.

    PubMed

    Tashiro, Yohei; Rodriguez, Gabriel M; Atsumi, Shota

    2015-03-01

    Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

  15. Flue gas desulfurization by-products additions to acid soil: alfalfa productivity and environmental quality.

    PubMed

    Chen, L; Dick, W A; Nelson, S

    2001-01-01

    Flue gas desulfurization (FGD) by-products are created when coal is burned and SO2 is removed from the flue gases. These FGD by-products are often alkaline and contain many plant nutrients. Land application of FGD by-products is encouraged but little information is available related to plant responses and environmental impacts concerning such use. Agricultural lime (ag-lime) and several new types of FGD by-products which contain either vermiculite or perlite were applied at 0, 0.5, 1.0, and 2.0 times the soil's lime requirement (LR) rate to an acidic soil (Wooster silt loam). The highest FGD by-products application rate was equivalent to 75.2 Mg ha(-1). Growth of alfalfa (Medicago sativa L.) was significantly increased compared to the untreated control in the second year after treatment with yields for the 1 x LR rate of FGD approximately 7-8 times greater compared to the untreated control and 30% greater than for the commercial ag-lime. Concentrations of Mo in alfalfa were significantly increased by FGD by-products application, compared to the untreated control, while compared to the ag-lime treatment, concentrations of B increased and Ba decreased. No soil contamination problems were observed, even at the 2xLR rate, indicating these materials can be safely applied to agricultural soils.

  16. Chemistry of natural fuel: Use of wastes of synthetic fatty acid production for obtaining water-bitumen emulsions

    SciTech Connect

    Syroezhko, A.M.; Antipova, E.I.; Paukku, A.N.

    1995-12-10

    The possibility of producing water-emulsion waterproofing mastic and waterproofing coating based on bitumen, rubber crumb, and bottoms from production of synthetic fatty acids was studied. The physicochemical properties (softening point, ductility, sorptive properties, and friability) of the waterproofing coating based on a water-emulsion mastic were measured.

  17. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  18. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions.

    PubMed

    Chen, She; Bobe, Gerd; Zimmerman, Shelly; Hammond, Earl G; Luhman, Cindie M; Boylston, Terri D; Freeman, Albert E; Beitz, Donald C

    2004-06-02

    Dairy products from milk of cows fed diets rich in polyunsaturated fatty acids have a more health-promoting fatty acid composition and are softer but often have oxidized flavors. Dairy products made from cow's milk that has more- or less-unsaturated fatty acid compositions were tested for differences in texture and flavor from those made from bulk-tank milk. The milk was manufactured into butter, vanilla ice cream, yogurt, Provolone cheese, and Cheddar cheese. The products were analyzed for fatty acid composition, physical properties, and flavor. Milk of cows with a more monounsaturated fatty acid composition yielded products with a more monounsaturated fatty acid composition that were softer and had a satisfactory flavor. Thus, selection of cows for milk fatty acid composition can be used to produce dairy products that are probably more healthful and have a softer texture.

  19. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  20. Novel products from starch based feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been progress in the utilization of starch as a partial replacement for petroleum based plastics, but it remains a poor direct substitute for plastics, and a moderate one for composites. Our research focuses on using polymers produced from direct fermentation such as poly(lactic acid) or m...

  1. Efficient solid acid catalyst containing Lewis and Brønsted Acid sites for the production of furfurals.

    PubMed

    Mazzotta, Michael G; Gupta, Dinesh; Saha, Basudeb; Patra, Astam K; Bhaumik, Asim; Abu-Omar, Mahdi M

    2014-08-01

    Self-assembled nanoparticulates of porous sulfonated carbonaceous TiO2 material that contain Brønsted and Lewis acidic sites were prepared by a one-pot synthesis method. The material was characterized by XRD, FTIR spectroscopy, NH3 temperature-programmed desorption, pyridine FTIR spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, N2 -sorption, atomic absorbance spectroscopy, and inductively coupled plasma optical emission spectroscopy. The carbonaceous heterogeneous catalyst (Glu-TsOH-Ti) with a Brønsted-to-Lewis acid density ratio of 1.2 and more accessible acid sites was effective to produce 5-hydroxymethylfurfural and furfural from biomass-derived mono- and disaccharides and xylose in a biphasic solvent that comprised water and biorenewable methyltetrahydrofuran. The catalyst was recycled in four consecutive cycles with a total loss of only 3 % activity. Thus, Glu-TsOH-Ti, which contains isomerization and dehydration catalytic sites and is based on a cheap and biorenewable carbon support, is a sustainable catalyst for the production of furfurals, platform chemicals for biofuels and chemicals.

  2. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  3. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    PubMed

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast.

  4. Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation.

    PubMed

    Baker, Paul R S; Schopfer, Francisco J; Sweeney, Scott; Freeman, Bruce A

    2004-08-10

    Nitric oxide (*NO) and its reactive metabolites mediate the oxidation, nitration, and nitrosation of DNA bases, amino acids, and lipids. Here, we report the structural characterization and quantitation of two allylic nitro derivatives of linoleic acid (LNO(2)), present as both free and esterified species in human red cell membranes and plasma lipids. The LNO(2) isomers 10-nitro-9-cis, 12-cis-octadecadienoic acid and 12-nitro-9-cis, 12-cis-octadecadienoic acid were synthesized and compared with red cell and plasma LNO(2) species based on chromatographic elution and mass spectral properties. Collision-induced dissociation fragmentation patterns from synthetic LNO(2) isomers were identical to those of the two most prevalent LNO(2) positional isomers found in red cells and plasma. By using [(13)C]LNO(2) as an internal standard, red cell free and esterified LNO(2) content was 50 +/- 17 and 249 +/- 104 nM, respectively. The free and esterified LNO(2) content of plasma was 79 +/- 35 and 550 +/- 275 nM, respectively. Nitrated fatty acids, thus, represent the single largest pool of bioactive oxides of nitrogen in the vasculature, with a net LNO(2) concentration of 477 +/- 128 nM, excluding buffy coat cells. These observations affirm that basal oxidative and nitrating conditions occur in healthy humans to an extent that is sufficient to induce abundant membrane and lipoprotein-fatty acid nitration. Given that LNO(2) is capable of mediating cGMP and non-cGMP-dependent signaling reactions, fatty acid nitration products are species representing the convergence of ()NO and oxygenated lipid cell-signaling pathways.

  5. Ligation with nucleic acid sequence-based amplification.

    PubMed

    Ong, Carmichael; Tai, Warren; Sarma, Aartik; Opal, Steven M; Artenstein, Andrew W; Tripathi, Anubhav

    2012-01-01

    This work presents a novel method for detecting nucleic acid targets using a ligation step along with an isothermal, exponential amplification step. We use an engineered ssDNA with two variable regions on the ends, allowing us to design the probe for optimal reaction kinetics and primer binding. This two-part probe is ligated by T4 DNA Ligase only when both parts bind adjacently to the target. The assay demonstrates that the expected 72-nt RNA product appears only when the synthetic target, T4 ligase, and both probe fragments are present during the ligation step. An extraneous 38-nt RNA product also appears due to linear amplification of unligated probe (P3), but its presence does not cause a false-positive result. In addition, 40 mmol/L KCl in the final amplification mix was found to be optimal. It was also found that increasing P5 in excess of P3 helped with ligation and reduced the extraneous 38-nt RNA product. The assay was also tested with a single nucleotide polymorphism target, changing one base at the ligation site. The assay was able to yield a negative signal despite only a single-base change. Finally, using P3 and P5 with longer binding sites results in increased overall sensitivity of the reaction, showing that increasing ligation efficiency can improve the assay overall. We believe that this method can be used effectively for a number of diagnostic assays.

  6. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids

    PubMed Central

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  7. Weak vs Strong Acids and Bases: The Football Analogy

    NASA Astrophysics Data System (ADS)

    Silverstein, Todd P.

    2000-07-01

    An important topic in any introductory chemistry course is that of acids and bases. Students generally have no trouble learning the Brønsted-Lowry definition of an acid as a proton donor and a base as a proton acceptor. Problems often arise, however, when chemistry teachers attempt to explain the difference between weak and strong acids, and between weak and strong bases. For acids in aqueous solution, discussing complete in contrast to partial ionization works well for those with a strong grasp of the equilibrium concept, but for many students it does not seem to do the trick. Partial ionization may not evoke much in the mind of a "visual learner". Accordingly, I have developed a football analogy for acids and bases in which acids are compared to quarterbacks, whose job is to get rid of the ball (H+). A strong acid, like an excellent quarterback, delivers the ball effectively; a weak acid, like a poor quarterback, is often left holding the ball. Furthermore, bases may be likened to wide receivers, whose job is to catch and hold onto the ball (H+). A strong base, like an excellent wide receiver, holds onto the ball; a weak base, like a poor receiver, often drops the ball. The concept of throwing and catching a ball is easy to visualize and the analogy to acids and bases can help even students unfamiliar with the mores of the gridiron to comprehend the mores of aqueous protons.

  8. Gibberellic acid production by free and immobilized cells in different culture systems.

    PubMed

    Durán-Páramo, Enrique; Molina-Jiménez, Héctor; Brito-Arias, Marco A; Robles-Martínez, Fabián

    2004-01-01

    Gibberellic acid production was studied in different fermentation systems. Free and immobilized cells of Gibberella fujikuroi cultures in shake-flask, stirred and fixed-bed reactors were evaluated for the production of gibberellic acid (GA3). Gibberellic acid production with free cells cultured in a stirred reactor reached 0.206 g/L and a yield of 0.078 g of GA3/g biomass.

  9. Production of 14-oxo-cis-11-eicosenoic acid from lesquerolic acid by genetically variable Sphingobacterium multivorum strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to explore the extent of microbial conversion of lesquerolic acid (LQA; 14-hydroxy-cis-11-eicosenoic acid) by whole cell catalysis and to identify the newly converted product. Among 17 environmental isolates selected from compost amended with soybean oil and unsatura...

  10. Novel Cyclotron-Based Radiometal Production

    SciTech Connect

    DeGrado, Timothy R.

    2013-10-31

    Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volume to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started.

  11. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

  12. Determination of acidity constants of acid-base indicators by second-derivative spectrophotometry

    NASA Astrophysics Data System (ADS)

    Kara, Derya; Alkan, Mahir

    2000-12-01

    A method for calculation of acid-base dissociation constants of monoprotic weak organic acids whose acid and base species have overlapping spectra from absorptiometric and pH measurements is described. It has been shown that the second-derivative spectrophotometry can effectively be used for determining the dissociation constants, when dissociation constants obtained for methyl orange and bromothymol blue were compared with the values given in the literature.

  13. Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products.

    PubMed

    Capozzi, Vittorio; Russo, Pasquale; Dueñas, María Teresa; López, Paloma; Spano, Giuseppe

    2012-12-01

    Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed.

  14. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  15. Production and partial characterization of uric acid degrading enzyme from new source Saccharopolyspora sp. PNR11.

    PubMed

    Khucharoenphaisan, K; Sinma, K

    2011-02-01

    The strain PNR11 was isolated from gut of termite during the screening for uric acid degrading actinomyces. This strain was able to produce an intracellular uricase when cultured in fermentation medium containing uric acid as nitrogen source. Base on its morphological characters and 16S rDNA sequence analysis, this strain belong to the genus Saccharopolyspora. This is the first report ofuricase produced from the genus Saccharopolyspora. The aim of this study was to investigate the effects of different factors on uricase production by new source of Saccharopolyspora. Saccharopolyspora sp. PNR11 was cultured in production medium in order to determine the best cultivation period. The result showed that the time period required for maximum enzyme production was 24 h on a rotary shaker operating at 180 rpm. Optimized composition of the production medium consisted of 1% yeast extract, 1% maltose, 0.1% K2HPO4, 0.05% MgSO4 7H2O, 0.05% NaCl and 1% uric acid. The optimum pH and temperature for uricase production in the optimized medium were pH 7.0 and 30 degrees C, respectively. When the strain was cultured at optimized condition, the uricase activity reached to 216 mU mL(-1) in confidential level of 95%. The crude enzyme had an optimum temperature of uricase was 37 degrees C and it was stable up to 30 degrees C at pH 8.5. The optimum pH ofuricase was 8.5 and was stable in range of pH 7.0-10.0 at 4 degrees C. This strain might be considered as a candidate source for uricase production in the further studies. Present finding could be fulfill the information ofuricase produce from actinomycetes.

  16. Fact Sheet - Phosphate Fertilizer Production Plants and Phosphoric Acid Manufacturing Plants NESHAP

    EPA Pesticide Factsheets

    Fact sheet summarizing National Emission Standards for Hazardous Air Pollutants (NESHAP) for Phosphate Fertilizer Production Plants and Phosphoric Acid Manufacturing Plants (40 CFR 63 Subparts AA and BB).

  17. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  18. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  19. Chip-based sequencing nucleic acids

    DOEpatents

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  20. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.