Science.gov

Sample records for acid production capacity

  1. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species.

    PubMed

    Selma, María V; Beltrán, David; García-Villalba, Rocío; Espín, Juan C; Tomás-Barberán, Francisco A

    2014-08-01

    Ellagitannin and ellagic acid metabolism to urolithins in the gut shows a large human interindividual variability and this has been associated with differences in the colon microbiota. In the present study we describe the isolation of one urolithin-producing strain from the human faeces of a healthy volunteer and the ellagic acid transformation to different urolithin metabolites by two species of intestinal bacteria. The isolate belongs to a new species described as Gordonibacter urolithinfaciens, sp. nov. The type strain of the Gordonibacter genus, Gordonibacter pamelaeae DSM 19378(T), was also demonstrated to produce urolithins. Both human intestinal bacteria grew similarly in the presence and absence of ellagic acid at 30 μM concentration. Ellagic acid catabolism and urolithin formation occurred during the stationary phase of the growth of the bacteria under anaerobic conditions. The HPLC-MS analyses showed the sequential production of pentahydroxy-urolithin (urolithin M-5), tetrahydroxy-urolithin (urolithin M-6) and trihydroxy-urolithin (urolithin C), while dihydroxy-urolithins (urolithin A and isourolithin A), and monohydroxy-urolithin (urolithin B) were not produced in pure cultures. Consequently, either other bacteria from the gut or the physiological conditions found in vivo are necessary for completing metabolism until the final urolithins (dihydroxy and monohydroxy urolithins) are produced. This is the first time that the urolithin production capacity of pure strains has been demonstrated. The identification of the urolithin-producing bacteria is a relevant outcome as urolithin implication in health (cardiovascular protection, anti-inflammatory and anticarcinogenic properties) has been supported by different bioassays and urolithins can be used in the development of functional foods and nutraceuticals. This study represents an initial work that opens interesting possibilities of describing enzymatic activities involved in urolithin production that can

  2. Screening lactic acid bacteria with high yielding-acid capacity from pickled tea for their potential uses of inoculating to ferment tea products.

    PubMed

    Xiao, Ping; Huang, Youyi; Yang, Wenpeng; Zhang, Bowei; Quan, Xiaoxia

    2015-10-01

    For there were very short of excellent strains inoculated to ferment tea products, the lactic acid bacteria from pickled tea were isolated, characterized and identified, and the acid production capacity of part better strains was determined. There are only 22 strains isolated from pickled tea, and 2 of them were yeast, and 8 strains selected from the other 20 strains all were identified as Lactobacillus plantarum. A1, L2 and L5 of L. plantarum with a high acid production capacity were screened out and could obviously shorten the fermentation time of pickled tea by the verification, which suggests that they have a potential use of inoculating to ferment tea products. It was the first report on screening lactic acid bacteria with high yielding-acid capacity from pickled tea, which will bring benefits to fermenting tea products by artificial inoculation. PMID:26396422

  3. Magnetic properties, acid neutralization capacity, and net acid production of rocks in the Animas River Watershed Silverton, Colorado

    USGS Publications Warehouse

    McCafferty, Anne E.; Yager, Douglas B.; Horton, Radley M.; Diehl, Sharon F.

    2006-01-01

    Federal land managers along with local stakeholders in the Upper Animas River watershed near Silverton, Colorado are actively designing and implementing mine waste remediation projects to mitigate the effects of acid mine drainage from several abandoned hard rock metal mines and mills. Local source rocks with high acid neutralization capacity (ANC) within the watershed are of interest to land managers for use in these remediation projects. A suite of representative samples was collected from propylitic to weakly sericitic-altered volcanic and plutonic rocks exposed in outcrops throughout the watershed. Acid-base accounting laboratory methods coupled with mineralogic and geochemical characterization provide insight into lithologies that have a range of ANC and net acid production (NAP). Petrophysical lab determinations of magnetic susceptibility converted to estimates for percent magnetite show correlation with the environmental properties of ANC and NAP for many of the lithologies. A goal of our study is to interpret watershed-scale airborne magnetic data for regional mapping of rocks that have varying degrees of ANC and NAP. Results of our preliminary work are presented here.

  4. Net Acid Production, Acid Neutralizing Capacity, and Associated Mineralogical and Geochemical Characteristics of Animas River Watershed Igneous Rocks Near Silverton, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Choate, LaDonna; Stanton, Mark R.

    2008-01-01

    This report presents results from laboratory and field studies involving the net acid production (NAP), acid neutralizing capacity (ANC), and magnetic mineralogy of 27 samples collected in altered volcanic terrain in the upper Animas River watershed near Silverton, Colo., during the summer of 2005. Sampling focused mainly on the volumetrically important, Tertiary-age volcanic and plutonic rocks that host base- and precious-metal mineralization in the study area. These rocks were analyzed to determine their potential for neutralization of acid-rock drainage. Rocks in the study area have been subjected to a regional propylitic alteration event, which introduced calcite, chlorite (clinochlore), and epidote that have varying amounts and rates of acid neutralizing capacity (ANC). Locally, hydrothermal alteration has consumed any ANC and introduced minerals, mainly pyrite, that have a high net acid production (NAP). Laboratory studies included hydrogen pyroxide (H2O2) acid digestion and subsequent sodium hydroxide (NaOH) titration to determine NAP, and sulfuric acid (H2SO4) acid titration experiments to determine ANC. In addition to these environmental rock-property determinations, mineralogical, chemical, and petrographic characteristics of each sample were determined through semiquantitative X-ray diffractometry (Rietveld method), optical mineralogy, wavelength dispersive X-ray fluorescence, total carbon-carbonate, and inductively coupled plasma?mass spectrometric analysis. An ANC ranking was assigned to rock samples based on calculated ANC quantity in kilograms/ton (kg/t) calcium carbonate equivalent and ratios of ANC to NAP. Results show that talus near the southeast Silverton caldera margin, composed of andesite clasts of the Burns Member of the Silverton Volcanics, has the highest ANC (>100 kg/t calcium carbonate equivalent) with little to no NAP. The other units found to have moderate to high ANC include (a) andesite lavas and volcaniclastic rocks of the San Juan

  5. Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia).

    PubMed

    Fracassetti, Daniela; Costa, Carlos; Moulay, Leila; Tomás-Barberán, Francisco A

    2013-08-15

    The aims of this study were the evaluation of polyphenols and vitamin C content, and antioxidant capacity of dehydrated pulp powder and the dried flour obtained from the skin and seeds residue remaining after pulp preparation from camu-camu (Myrciaria dudia). Fifty-three different phenolics were characterised by HPLC-DAD-ESI-MS-MS and UPLC-HR-QTOF-MS-MS. The phenolic content of camu-camu flour was higher than that of the pulp powder (4007.95 mg/100 g vs. 48.54 mg/100 g). In both products the flavonol myricetin and conjugates, ellagic acid and conjugates and ellagitannins were detected. Cyanidin 3-glucoside, and quercetin and its glycosides were only found in the pulp powder, while proanthocyanidins were only present in the flour (3.5 g/100 g, mean degree of polymerisation 3). The vitamin C content was lower in pulp powder (3.5%) than in the flour (9.1%). The radical-scavenging capacity of both powders was determined by the DPPH, ABTS and ORAC assays, and was higher for camu-camu flour as could be expected for its higher phenolics and vitamin C content. Comparative analyses with fresh camu-camu berries indicate that some transformations occur during processing. Analysis of fresh berries showed that ellagic acid derivatives and ellagitannins were mainly present in the seeds, while proanthocyanidins were present both in the seeds and skin. PMID:23561148

  6. Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia).

    PubMed

    Fracassetti, Daniela; Costa, Carlos; Moulay, Leila; Tomás-Barberán, Francisco A

    2013-08-15

    The aims of this study were the evaluation of polyphenols and vitamin C content, and antioxidant capacity of dehydrated pulp powder and the dried flour obtained from the skin and seeds residue remaining after pulp preparation from camu-camu (Myrciaria dudia). Fifty-three different phenolics were characterised by HPLC-DAD-ESI-MS-MS and UPLC-HR-QTOF-MS-MS. The phenolic content of camu-camu flour was higher than that of the pulp powder (4007.95 mg/100 g vs. 48.54 mg/100 g). In both products the flavonol myricetin and conjugates, ellagic acid and conjugates and ellagitannins were detected. Cyanidin 3-glucoside, and quercetin and its glycosides were only found in the pulp powder, while proanthocyanidins were only present in the flour (3.5 g/100 g, mean degree of polymerisation 3). The vitamin C content was lower in pulp powder (3.5%) than in the flour (9.1%). The radical-scavenging capacity of both powders was determined by the DPPH, ABTS and ORAC assays, and was higher for camu-camu flour as could be expected for its higher phenolics and vitamin C content. Comparative analyses with fresh camu-camu berries indicate that some transformations occur during processing. Analysis of fresh berries showed that ellagic acid derivatives and ellagitannins were mainly present in the seeds, while proanthocyanidins were present both in the seeds and skin.

  7. Iran outlines oil productive capacity

    SciTech Connect

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  8. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  9. Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2013-01-01

    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals. PMID:23884129

  10. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  11. Pdvsa plans to hike productive capacity

    SciTech Connect

    Not Available

    1992-01-13

    This paper reports that Venezuela's state oil company plans to jump its productive capacity by 117,000 b/d to 2.92 million b/d this year. Petroleos de Venezuela also projects sizable increases for oil and gas reserves and plans record spending in 1992. Meantime, Pdvsa is sounding a warning again about the Venezuelan government's excessive tax take amid debate within the company about spending priorities.

  12. Comparison of bee products based on assays of antioxidant capacities

    PubMed Central

    Nakajima, Yoshimi; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Mishima, Satoshi; Hara, Hideaki

    2009-01-01

    Background Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen. Methods The hydrogen peroxide (H2O2)-, superoxide anion (O2·-)-, and hydroxyl radical (HO·)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF). Results The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C. Conclusion On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects. PMID:19243635

  13. Refiners boost crude capacity; Petrochemical production up

    SciTech Connect

    Corbett, R.A.

    1988-03-21

    Continuing demand strength in refined products and petrochemical markets caused refiners to boost crude-charging capacity slightly again last year, and petrochemical producers to increase production worldwide. Product demand strength is, in large part, due to stable product prices resulting from a stabilization of crude oil prices. Crude prices strengthened somewhat in 1987. That, coupled with fierce product competition, unfortunately drove refining margins negative in many regions of the U.S. during the last half of 1987. But with continued strong demand for gasoline, and an increased demand for higher octane gasoline, margins could turn positive by 1989 and remain so for a few years. U.S. refiners also had to have facilities in place to meet the final requirements of the U.S. Environmental Protection Agency's lead phase-down rules on Jan. 1, 1988. In petrochemicals, plastics demand dept basic petrochemical plants at good utilization levels worldwide. U.S. production of basics such as ethylene and propylene showed solid increases. Many of the derivatives of the basic petrochemical products also showed good production gains. Increased petrochemical production and high plant utilization rates didn't spur plant construction projects, however. Worldwide petrochemical plant projects declined slightly from 1986 figures.

  14. Cytokine production capacity in depression and anxiety

    PubMed Central

    Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W

    2016-01-01

    Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18–65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: IL-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health factors may

  15. In vitro digestion testing of lipid-based delivery systems: calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products.

    PubMed

    Devraj, Ravi; Williams, Hywel D; Warren, Dallas B; Mullertz, Anette; Porter, Christopher J H; Pouton, Colin W

    2013-01-30

    In vitro digestion testing is of practical importance to predict the fate of drugs administered in lipid-based delivery systems. Calcium ions are often added to digestion media to increase the extent of digestion of long-chain triglycerides (LCTs), but the effects they have on phase behaviour of the products of digestion, and consequent drug solubilization, are not well understood. This study investigates the effect of calcium and bile salt concentrations on the rate and extent of in vitro digestion of soybean oil, as well as the solubilizing capacity of the digestion products for two poorly water-soluble drugs, fenofibrate and danazol. In the presence of higher concentrations of calcium ions, the solubilization capacities of the digests were reduced for both drugs. This effect is attributed to the formation of insoluble calcium soaps, visible as precipitates during the digestions. This reduces the availability of liberated fatty acids to form mixed micelles and vesicles, thereby reducing drug solubilization. The use of high calcium concentrations does indeed force in vitro digestion of LCTs but may overestimate the extent of drug precipitation that occurs within the intestinal lumen.

  16. Citric acid production patent review.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G; Kamzolova, Svetlana V; Finogenova, Tatiana V

    2008-01-01

    Current Review article summarizes the developments in citric acid production technologies in East and West last 100 years. Citric acid is commercially produced by large scale fermentation mostly using selected fungal or yeast strains in aerobe bioreactors and still remains one of the runners in industrial production of biotechnological bulk metabolites obtained by microbial fermentation since about 100 years, reflecting the historical development of modern biotechnology and fermentation process technology in East and West. Citric acid fermentation was first found as a fungal product in cultures of Penicillium glaucum on sugar medium by Wehmer in 1893. Citric acid is an important multifunctional organic acid with a broad range of versatile uses in household and industrial applications that has been produced industrially since the beginning of 20(th) century. There is a great worldwide demand for citric acid consumption due to its low toxicity, mainly being used as acidulant in pharmaceutical and food industries. Global citric acid production has reached 1.4 million tones, increasing annually at 3.5-4.0% in demand and consumption. Citric acid production by fungal submerged fermentation is still dominating, however new perspectives like solid-state processes or continuous yeast processes can be attractive for producers to stand in today's strong competition in industry. Further perspectives aiming in the improvement of citric acid production are the improvement of citric acid producing strains by classical and modern mutagenesis and selection as well as downstream processes. Many inexpensive by-products and residues of the agro-industry (e.g. molasses, glycerin etc.) can be economically utilized as substrates in the production of citric acid, especially in solid-state fermentation, enormously reducing production costs and minimizing environmental problems. Alternatively, continuous processes utilizing yeasts which reach 200-250 g/l citric acid can stand in today

  17. Heat Capacity Changes Associated with Nucleic Acid Folding

    PubMed Central

    Mikulecky, Peter J.; Feig, Andrew L.

    2008-01-01

    Whereas heat capacity changes (ΔCPs) associated with folding transitions are commonplace in the literature of protein folding, they have long been considered a minor energetic contributor in nucleic acid folding. Recent advances in the understanding of nucleic acid folding and improved technology for measuring the energetics of folding transitions have allowed a greater experimental window for measuring these effects. We present in this review a survey of current literature that confronts the issue of ΔCPs associated with nucleic acid folding transitions. This work helps to gather the molecular insights that can be gleaned from analysis of ΔCPs and points toward the challenges that will need to be overcome if the energetic contribution of ΔCP terms are to be put to use in improving free energy calculations for nucleic acid structure prediction. PMID:16429398

  18. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  19. Antioxidant capacity and phenolic acids of virgin coconut oil.

    PubMed

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  20. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  1. Saudi production capacity climbing to 10 million b/d

    SciTech Connect

    Not Available

    1994-07-11

    Saudi Arabia this year is completing its expansion of production capacity and developing recent discoveries to enhance export flexibility. The 3 million b/d capacity expansion to 10 million b/d, announced in 1989, is on target for completion by year end 1994. Most of the effort involves restoration of mothballed production equipment and installation of several gas-oil separation plants (GOSPs) in existing fields. But Saudi Arabian Oil Co. (Saudi Aramco) also this year will start up production of extra-light oil from a new field in the central part of the kingdom. Start-up of Hawtah area production demonstrates success of an oil search Aramco began after receiving exclusive exploration rights to nearly all of Saudi Arabia's prospective area in 1986. From new fields and traditional producing areas, therefore, Saudi Arabia has the potential to expand production capacity beyond 10 million b/d. The paper describes the development of the extra capacity.

  2. Microbial production of lactic acid.

    PubMed

    Eiteman, Mark A; Ramalingam, Subramanian

    2015-05-01

    Lactic acid is an important commodity chemical having a wide range of applications. Microbial production effectively competes with chemical synthesis methods because biochemical synthesis permits the generation of either one of the two enantiomers with high optical purity at high yield and titer, a result which is particularly beneficial for the production of poly(lactic acid) polymers having specific properties. The commercial viability of microbial lactic acid production relies on utilization of inexpensive carbon substrates derived from agricultural or waste resources. Therefore, optimal lactic acid formation requires an understanding and engineering of both the competing pathways involved in carbohydrate metabolism, as well as pathways leading to potential by-products which both affect product yield. Recent research leverages those biochemical pathways, while researchers also continue to seek strains with improved tolerance and ability to perform under desirable industrial conditions, for example, of pH and temperature.

  3. Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties.

    PubMed

    Szydłowska-Czerniak, Aleksandra; Trokowski, Konrad; Karlovits, György; Szłyk, Edward

    2010-07-14

    Three different analytical methods: ferric-reducing antioxidant power (FRAP), 2,2'-diphenyl-1-picrylhydrazyl (DPPH), and oxygen radical absorbance capacity (ORAC) were used for determination of antioxidant capacity of seven rapeseed varieties. Antioxidant capacity and levels of the total phenolic content, individual phenolic acids, fatty acid composition, and the selected physicochemical properties of the studied rapeseed cultivars were determined. Mean ORAC values for methanolic extracts of rapeseeds (4092-12989 mmol of Trolox/100 g) were significantly higher than FRAP and DPPH values (6218-7641 and 6238-7645 mumol of Trolox/100 g, respectively). Although FRAP and DPPH results were lower than ORAC values for all studied rapeseed varieties, there are linear and significant correlations between these three analytical methods (correlation coefficients ranged between 0.9124 and 0.9930, p < 0.005). Also, total phenolic compounds in rapeseeds correlated with antioxidant capacity (correlation coefficients ranged between 0.8708 and 0.9516, p < 0.01). Total phenolic acids determined by HPLC varied from 20.3 mg to 40.7 mg per 100 g of rapeseed flour, and the main phenolic acid is sinapic acid (17.4-36.4 mg/100 g). Fatty acid composition (SAFA = 7.2-8.6%, MUFA = 58.5-68.0%, PUFA = 24.7-33.9%) and the absence of trans-fatty acids indicate that the studied rapeseed varieties can be a source of unsaturated fatty acids and have a positive impact on human health.

  4. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    PubMed

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable. PMID:26490900

  5. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  6. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  7. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  8. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China

    NASA Astrophysics Data System (ADS)

    Ren, Lihong; Wang, Wei; Wang, Qingyue; Yang, XiaoYang; Tang, Dagang

    2011-12-01

    The acidity of about 2000 particulate matter samples from aircraft and ground-based monitoring is analyzed by the method similar to soil acidity determination. The ground-based samples were collected at about 50 urban or background sites in northern and southern China. Moreover, the acidic buffering capacity of those samples is also analyzed by the method of micro acid-base titration. Results indicate that the acidity level is lower in most northern areas than those in the south, and the acidic buffering capacity showed inverse tendency, correspondingly. This is the most important reason why the pollution of acidic-precipitation is much more serious in Southern China than that in Northern China. The acidity increases and the acidic buffering capacity drops with the decreasing of the particle sizes, indicating that fine particle is the main influencing factor of the acidification. The ionic results show that Ca salt is the main alkaline substance in particulate matter, whereas the acidification of particulate matter is due to the SO 2 and NO x emitted from the fossil fuel burning. And among of them, coal burning is the main contributor of SO 2, however the contribution of NO x that emitted from fuel burning of motor vehicles has increased in recent years. By comparison of the experimental results during the past 20 years, it can be concluded that the acid precipitation of particulate matter has not been well controlled, and it even shows an increasing tendency in China lately. The acid precipitation of particulate matter has begun to frequently attack in part of the northern areas. Multiple regression analysis indicates that coefficient value of the ions is the lowest at the urban sites and the highest at the regional sites, whereas the aircraft measurement results are intermediate between those two kinds of sites.

  9. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  10. Estimation of gross primary production capacity from global satellite observations

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Thanyapraneedkul, Juthasinee; Furumi, Shinobu; Soyama, Noriko; Daigo, Motomasa

    2012-10-01

    To estimate gross primary production (GPP), the process of photosynthesis was considered as two separate phases: capacity and reduction. The reduction phase is influenced by environmental conditions such as soil moisture and weather conditions such as vapor pressure differences. For a particular leaf, photosynthetic capacity mainly depends on the amount of chlorophyll and the RuBisCO enzyme. The chlorophyll content can be estimated by the color of the leaf, and leaf color can be detected by optical sensors. We used the chlorophyll content of leaves to estimate the level of GPP. A previously developed framework for GPP capacity estimation employs a chlorophyll index. The index is based on the linear relationship between the chlorophyll content of a leaf and the maximum photosynthesis at PAR =2000 (μmolm -2s-1) on a light-response curve under low stress conditions. As a first step, this study examined the global distribution of the index and found that regions with high chlorophyll index values in winter corresponded to tropical rainforest areas. The seasonal changes in the chlorophyll index differed from those shown by the normalized difference vegetation index. Next, the capacity of GPP was estimated from the light-response curve using the index. Most regions exhibited a higher GPP capacity than that estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, except in areas of tropical rainforest, where the GPP capacity and the MODIS GPP estimates were almost identical.

  11. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    PubMed

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production.

  12. On the optimal production capacity for influenza vaccine.

    PubMed

    Forslid, Rikard; Herzing, Mathias

    2015-06-01

    This paper analyzes the profit maximizing capacity choice of a monopolistic vaccine producer facing the uncertain event of a pandemic in a homogenous population of forward-looking individuals. For any capacity level, the monopolist solves the intertemporal price discrimination problem within the dynamic setting generated by the standard mathematical epidemiological model of infectious diseases. Even though consumers are assumed to be identical, the monopolist will be able to exploit the ex post heterogeneity between infected and susceptible individuals by raising the price of vaccine in response to the increasing hazard rate. The monopolist thus bases its investment decision on the expected profits from the optimal price path given the infection dynamics. It is shown that the monopolist will always choose to invest in a lower production capacity than the social planner. Through numerical simulation, it is demonstrated how the loss to society of having a monopoly producer decreases with the speed of infection transmission. Moreover, it is illustrated how the monopolist's optimal vaccination rate increases as its discount rate rises for cost parameters based on Swedish data. However, the effect of the firm discount rate on its investment decision is sensitive to assumptions regarding the cost of production capacity.

  13. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  14. Acid preservation systems for food products

    SciTech Connect

    Tiberio, J. E.; Cirigiano, M. C.

    1984-10-16

    Fumaric acid is used in combination with critical amounts of acetic acid to preserve acid containing food products from microbiological spoilage in the absence of or at reduced levels of chemical preservative.

  15. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and

  16. Bile acids are "homeotrophic" sensors of the functional hepatic capacity and regulate adaptive growth during liver regeneration.

    PubMed

    Geier, Andreas; Trautwein, Christian

    2007-01-01

    Liver mass depends on one or more unidentified humoral signals that drive regeneration when liver functional capacity is diminished. Bile acids are important liver products, and their levels are tightly regulated. Here, we identify a role for nuclear receptor-dependent bile acid signaling in normal liver regeneration. Elevated bile acid levels accelerate regeneration, and decreased levels inhibit liver regrowth, as does the absence of the primary nuclear bile acid receptor FXR. We propose that FXR activation by increased bile acid flux is a signal of decreased functional capacity of the liver. FXR, and possibly other nuclear receptors, may promote homeostasis not only by regulating expression of appropriate metabolic target genes but also by driving homeotrophic liver growth.

  17. Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.

    PubMed

    Shiklomanov, Alexey N; Levia, Delphis F

    2014-10-01

    Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species.

  18. Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.

    PubMed

    Shiklomanov, Alexey N; Levia, Delphis F

    2014-10-01

    Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species. PMID:25005886

  19. Alluvial diamond resource potential and production capacity assessment of Guinea

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Van Bockstael, Mark; Diaby, Mamadou; Cissé, Kabinet; Diallo, Thierno Amadou; Sano, Mahmoud

    2012-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that export shipments of rough diamonds were free of conflict concerns. Outcomes of the meeting were formally supported later in December of 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. The goal of this study was to estimate the alluvial diamond resource endowment and the current production capacity of the alluvial diamond mining sector of Guinea. A modified volume and grade methodology was used to estimate the remaining diamond reserves within Guinea's diamondiferous regions, while the diamond-production capacity of these zones was estimated by inputting the number of artisanal miners, the number of days artisans work per year, and the average grade of the deposits into a formulaic expression. Guinea's resource potential was estimated to be approximately 40 million carats, while the production capacity was estimated to lie within a range of 480,000 to 720,000 carats per year. While preliminary results have been produced by integrating historical documents, five fieldwork campaigns, and remote sensing and GIS analysis, significant data gaps remain. The artisanal mining sector is dynamic and is affected by a variety of internal and external factors. Estimates of the number of artisans and deposit variables, such as grade, vary from site to site and from zone to zone. This report has been developed on the basis of the most detailed information available at this time. However, continued fieldwork and evaluation of artisanally mined deposits would increase the accuracy of the results.

  20. Stimulation of monokine production by lipoteichoic acids.

    PubMed Central

    Bhakdi, S; Klonisch, T; Nuber, P; Fischer, W

    1991-01-01

    Lipoteichoic acids (LTAs) isolated from bacterial species, including Staphylococcus aureus, Streptococcus pyogenes A, Enterococcus faecalis, Streptococcus pneumoniae, and Listeria monocytogenes, were tested for their ability to stimulate the production of interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha in cultured human monocytes. LTAs from S. aureus and S. pneumoniae failed to induce monokine production when applied in the concentration range of 0.05 to 5.0 micrograms/ml. However, LTAs from several enterococcal species (0.5 to 5 micrograms/ml) induced the release of all three monokines at levels similar to those observed after lipopolysaccharide stimulation. The kinetics of IL-1 beta and tumor necrosis factor alpha release elicited by LTAs closely resembled those observed following lipopolysaccharide application. Cytokine production occurred in the presence of both fetal calf serum and autologous human serum. Hence, it was not dependent on complement activation and could not be suppressed by naturally occurring human antibodies. Deacylation caused the total loss of monocyte stimulatory capacity. Deacylated LTAs were unable to prevent monocyte activation by intact LTAs, so primary binding of these molecules probably does not involve a simple interaction of a membrane receptor with the hydrophilic portion of the molecule. The results identify some species of LTAs as inducers of monokine production in human monocytes. PMID:1937822

  1. Production of gluconic Acid by some local fungi.

    PubMed

    Shindia, A A; El-Sherbeny, G A; El-Esawy, A E; Sheriff, Y M M M

    2006-03-01

    Forty-one fungal species belonging to 15 fungal genera isolated from Egyptian soil and sugar cane waste samples were tested for their capacity of producing acidity and gluconic acid. For the tests, the fungi were grown on glucose substrate and culture filtrates were examined using paper chromatography analysis. Most of the tested fungi have a relative wide potentiality for total acid production in their filtrates. Nearly 51% of them showed their ability of producing gluconic acid. Aspergillus niger was distinguishable from other species by its capacity to produce substantial amounts of gluconic acid when it was cultivated on a selective medium. The optimized cultural conditions for gluconic acid yields were using submerged culture at 30℃ at initial pH 6.0 for 7 days of incubation. Among the various concentrations of substrate used, glucose (14%, w/v) was found to be the most suitable carbon source for maximal gluconic acid during fermentation. Maximum values of fungal biomass (10.02 g/l) and gluconic acid (58.46 g/l) were obtained when the fungus was grown with 1% peptone as sole nitrogen source. Influence of the concentration of some inorganic salts as well as the rate of aeration on the gluconic acid and biomass production is also described.

  2. Production of Gluconic Acid by Some Local Fungi

    PubMed Central

    Shindia, A. A.; El-Esawy, A. E.; Sheriff, Y. M. M. M.

    2006-01-01

    Forty-one fungal species belonging to 15 fungal genera isolated from Egyptian soil and sugar cane waste samples were tested for their capacity of producing acidity and gluconic acid. For the tests, the fungi were grown on glucose substrate and culture filtrates were examined using paper chromatography analysis. Most of the tested fungi have a relative wide potentiality for total acid production in their filtrates. Nearly 51% of them showed their ability of producing gluconic acid. Aspergillus niger was distinguishable from other species by its capacity to produce substantial amounts of gluconic acid when it was cultivated on a selective medium. The optimized cultural conditions for gluconic acid yields were using submerged culture at 30℃ at initial pH 6.0 for 7 days of incubation. Among the various concentrations of substrate used, glucose (14%, w/v) was found to be the most suitable carbon source for maximal gluconic acid during fermentation. Maximum values of fungal biomass (10.02 g/l) and gluconic acid (58.46 g/l) were obtained when the fungus was grown with 1% peptone as sole nitrogen source. Influence of the concentration of some inorganic salts as well as the rate of aeration on the gluconic acid and biomass production is also described. PMID:24039465

  3. Phenolic content and antioxidant capacity in algal food products.

    PubMed

    Machu, Ludmila; Misurcova, Ladislava; Ambrozova, Jarmila Vavra; Orsavova, Jana; Mlcek, Jiri; Sochor, Jiri; Jurikova, Tunde

    2015-01-01

    The study objective was to investigate total phenolic content using Folin-Ciocalteu's method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida) and red (Porphyra tenera, Palmaria palmata) seaweed, green freshwater algae (Chlorella pyrenoidosa), and cyanobacteria (Spirulina platensis). HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g-1 GAE; 7.53 µmol AA·g-1, respectively). A linear relationship existed between ACW and phenolic contents (r = 0.99). Some algal products seem to be promising functional foods rich in polyphenols. PMID:25587787

  4. Production of carboxylic acid and salt co-products

    SciTech Connect

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  5. New Claus and FCC catalyst production capacity on line

    SciTech Connect

    Not Available

    1983-07-01

    Two new, major catalyst manufacturing plants have recently gone into commercial operation in the U.S. In Louisiana, Aluminum Co. of America (Alcoa) last month put an activated alumina plant in production at Vidalia, La., on the Mississippi River near Natchez, Miss. Activated alumina after processing serves as, among other things, the catalyst in Claus sulfur recovery plants. In Georgia, Katalistiks International Inc. put its fluid catalytic cracking catalyst plant on stream in June, with an expected output of 60,000/80,000 tons/year of FFC catalyst. Alcoa says its Vidalia plant will have the capacity to make 20 million lb/year of either Claus catalyst or adsorbants, catalyst substrates, or combinations of such products. Management says it hopes to develop the catalyst plant's processing flexibility to make products for special and new applications. For the moment, the Vidalia plant will not make zeolites for fluid catalytic catalyst manufacturing though it has that capability. However, production of combinations of mixtures of alumina and zeolites is planned.

  6. A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products.

    PubMed

    Szydłowska-Czerniak, Aleksandra; Tułodziecka, Agnieszka; Szłyk, Edward

    2012-08-21

    A novel silver nanoparticle-based (AgNP) method and two modified procedures, ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH), were used for determination of antioxidant capacities of the ethanolic, methanolic, methanolic-aqueous (1 : 1 v/v) and aqueous extracts of rapeseed and its products. The AgNP method based on the electron-transfer reaction between silver ions and antioxidants in an optimized ammonium buffer medium (pH = 8.4) and determination of silver nanoparticle formation has been elaborated. The novel AgNP method was validated using sinapic acid, gallic acid, caffeic acid, ascorbic acid and quercetin as standard antioxidant solutions in concentration ranges of 0.03-0.21 µmol mL(-1), 0.02-0.20 µmol mL(-1), 0.01-0.18 µmol mL(-1), 0.03-0.30 µmol mL(-1) and 0.001-0.009 µmol mL(-1). The calculated detection (DL = 0.01, 0.02, 0.009, 0.02 and 0.0004 µmol mL(-1) for sinapic, gallic, caffeic, ascorbic acids and quercetin, respectively) and quantification limits (QL = 0.04, 0.06, 0.03, 0.08 and 0.001 µmol mL(-1) for sinapic, gallic, caffeic, ascorbic acids and quercetin, respectively) confirm linearity concentration ranges for determination of antioxidant capacity by AgNP assay. The average antioxidant capacities of the studied rapeseed samples ranged between 14.7 and 126.2 µmol sinapic acid per gram for the proposed AgNP method, 7.4-112.7 µmol sinapic acid per gram for the FRAP method and 39.1-339.8 µmol sinapic acid per gram for DPPH assay. The methanol-water mixture (1:1 v/v) was the most efficient solvent for extraction of antioxidants from the studied rapeseed samples. There are significant, positive correlations between the novel AgNP and the modified FRAP, DPPH and FC methods for all extracts of the studied rapeseed samples (r = 0.7564-0.8516, p < 0.001). Satisfactory values of precision (RSD = 1.2-4.4%) and accuracy (recovery = 95.6-104.6%, except methanolic extracts) demonstrate the benefit of the proposed

  7. Improvement of Stand Jig Sealer and Its Increased Production Capacity

    NASA Astrophysics Data System (ADS)

    Soebandrija, K. E. N.; Astuti, S. W. D.

    2014-03-01

    This paper has the objective to prove that improvement of Stand Jig Sealer can lead to the cycle time target as part of Improvement efforts and its Productivity. Prior researches through prior journals both classics journal such as Quesnay (1766) and Solow (1957) and updated journal such as Reikard (2011) researches, are mentioned and elaborated. Precisely, the research is narrowed down and specified into automotive industry and eventually the software related of SPSS and Structural Equation Modeling ( SEM ). The analysis and its method are conducted through the calculation working time. The mentioned calculation are reinforced with the hypothesis test using SPSS Version 19 and involve parameters of production efficiency, productivity calculation, and the calculation of financial investments. The results obtained are augmented achievement of cycle time target ≤ 80 seconds posterior to improvement stand jig sealer. The result from calculation of SPSS-19 version comprise the following aspects: the one-sided hypothesis test is rejection of Ho:μ≥80 seconds, the correlation rs=0.84, regression y = 0.159+0.642x, validity R table = 0.4438, reliability value of Cronbach's alpha = 0.885>0.70, independence (Chi Square) Asymp. Sig=0.028<0.05, 95% efficiency, increase productivity 11%, financial analysis (NPV 2,340,596>0, PI 2.04>1, IRR 45.56%>i=12.68%, PP=1.86). The Mentioned calculation results support the hypothesis and ultimately align with the objective of this paper to prove that improvement of Stand Jig Sealer and its relation toward the cycle time target. Precisely, the improvement of production capacity of PT. Astra Daihatsu Motor.

  8. Development of pandemic influenza vaccine production capacity in Viet Nam.

    PubMed

    Hoa, L K; Hiep, L V; Be, L V

    2011-07-01

    The Institute of Vaccines and Medical Biologicals (IVAC), a state-owned vaccine manufacturer, initiated research into avian influenza vaccines in the early 1990 s in response to the threat of a highly pathogenic avian influenza pandemic. Successful results from laboratory studies on A(H5N1) influenza virus attracted seed funds and led to participation in the WHO technology transfer project to enhance influenza vaccine production in developing countries. IVAC's goal is to produce 500,000 doses of inactivated monovalent whole-virion influenza vaccine per year by 2012, and progressively increase capacity to more than 1 million doses to protect essential populations in Viet Nam in the event of an influenza pandemic. The WHO seed grants, supplemented by other international partner support, enabled IVAC to build in a very short time an influenza vaccine manufacturing plant under Good Manufacturing Practice and relevant biosafety standards, a waste treatment system and a dedicated chicken farm for high-quality eggs. Much of the equipment and instrumentation required for vaccine production has been installed and tested for functional operation. Staff have been trained on site and at specialized courses which provided comprehensive manuals on egg-based manufacturing processes and biosafety. Following process validation, clinical trials will start in 2011 and the first domestic influenza vaccine doses are expected in 2012.

  9. Structural transitions in polycytidylic acid: proton buffer capacity data.

    PubMed

    Zarudnaya, Margarita I; Samijlenko, Svitlana P; Potyahaylo, Andriy L; Hovorun, Dmytro M

    2002-01-01

    The pH-dependences of proton buffer capacity of poly(C) were computed on the basis of the literature data. In these curves there were observed four peaks: two narrow and two wide ones. The first narrow peak reflects the process of cooperative formation of double helices, which is induced by protonation of the N3 atom of nucleotide bases. The first wide peak is assigned to noncooperative process of poly(C) double helices protonation at the N3 nitrogen atom. It is proposed that the second wide peak corresponds to noncooperative protonation of the neutral cytosine bases at the oxygen atom. This reaction causes cooperative dissociation of the poly(C) double helices. The second narrow peak reflects the dissociation process. PMID:11991140

  10. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  11. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    PubMed

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  12. Re-evaluation of ABTS*+ Assay for Total Antioxidant Capacity of Natural Products.

    PubMed

    Dong, Jian-Wei; Cai, Le; Xing, Yun; Yu, Jing; Ding, Zhong-Tao

    2015-12-01

    2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS*+) is a stable free radical frequently used for estimating the total antioxidant capacity (TAC) of natural products. The existing methods for ABTS*+ radical-scavenging activity assays are diverse in pre-diluting solvents and reaction time, which lead to errors in the TAC estimations. To develop an effective and universal method for estimating the ABTS*+ capacity accurately and reasonably, five pre-dilution solvents [methanol, ethanol, phosphate buffer (Na2HPO4-NaH2PO4, 200 mM, pH = 7.4), PBS buffer (Na2HPO4-NaH2PO4- NaCl, 200 mM, pH = 7.4), and distilled water] and different reaction times were investigated in ABTS*+ assays of five typical antioxidants. The results showed that the solvent effects were very significant. When using different pre-diluting solvents, different detection wavelengths should be selected. ABTS*+ assay could be measured within 2-10 min to obtain a rough result, which was mostly 6 min in the literature. However, full and accurate evaluation of antioxidant reactivity rather than capacity requires recording ABTS*+ loss continuously during the whole reaction period. The present study makes a recommendation for estimating the ABTS*+ capacity accurately and reasonably. PMID:26882692

  13. Re-evaluation of ABTS*+ Assay for Total Antioxidant Capacity of Natural Products.

    PubMed

    Dong, Jian-Wei; Cai, Le; Xing, Yun; Yu, Jing; Ding, Zhong-Tao

    2015-12-01

    2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (ABTS*+) is a stable free radical frequently used for estimating the total antioxidant capacity (TAC) of natural products. The existing methods for ABTS*+ radical-scavenging activity assays are diverse in pre-diluting solvents and reaction time, which lead to errors in the TAC estimations. To develop an effective and universal method for estimating the ABTS*+ capacity accurately and reasonably, five pre-dilution solvents [methanol, ethanol, phosphate buffer (Na2HPO4-NaH2PO4, 200 mM, pH = 7.4), PBS buffer (Na2HPO4-NaH2PO4- NaCl, 200 mM, pH = 7.4), and distilled water] and different reaction times were investigated in ABTS*+ assays of five typical antioxidants. The results showed that the solvent effects were very significant. When using different pre-diluting solvents, different detection wavelengths should be selected. ABTS*+ assay could be measured within 2-10 min to obtain a rough result, which was mostly 6 min in the literature. However, full and accurate evaluation of antioxidant reactivity rather than capacity requires recording ABTS*+ loss continuously during the whole reaction period. The present study makes a recommendation for estimating the ABTS*+ capacity accurately and reasonably.

  14. Gluconic acid production by Penicillium puberulum.

    PubMed

    Elnaghy, M A; Megalla, S E

    1975-01-01

    Twenty-five Penicillium species isolated from Egyptian soil were examined for their ability to produce gluconic acid in surface culture. Of the eight species capable of producing gluconic acid, Penicillium puberulum gave the maximum yield (91% gluconic acid from glucose after 7 days of fermentation with 3% CaCO3). Peptone was the best nitrogen source for acid fermentation and glucose was superior to sucrose. Addition of low concentrations of KH2PO4 and MgSO4 - 7 H2O stimulated acid production. An initial pH of 6.1 was most favourable for acid accumulation and addition of CaCO3 was necessary for maximum acid production.

  15. Tricarboxylic-acid-cycle intermediates and cycle endurance capacity.

    PubMed

    Brown, Amy C; Macrae, Holden S H; Turner, Nathan S

    2004-12-01

    The purpose of this study was to determine whether ingestion of a multinutrient supplement containing 3 tricarboxylic-acid-cycle intermediates (TCAIs; pyridoxine-alpha-ketoglutarate, malate, and succinate) and other substances potentially supporting the TCA cycle (such as aspartate and glutamate) would improve cyclists' time to exhaustion during a submaximal endurance-exercise test (approximately 70 % to 75 % VO2peak) and rate of recovery. Seven well-trained male cyclists (VO2max 67.4 2.1 mL x kg(-1) x in(-1), 28.6 +/- 2.4 y) participated in a randomized, double-blind crossover study for 7 wk. Each took either the treatment or a placebo 30 min before and after their normal training sessions for 3 wk and before submaximal exercise tests. There were no significant differences between the TCAI group (KI) and placebo group (P) in time to exhaustion during cycling (KI = 105 +/- 18, P = 113 +/- 11 min); respiratory-exchange ratio at 20-min intervals; blood lactate and plasma glucose before, after, and at 30-min intervals during exercise; perceived exertion at 20-min intervals during exercise; or time to fatigue after the 30-min recovery (KI = 16.1 +/- 3.2, P = 15 +/- 2 min). Taking a dietary sport supplement containing several TCAIs and supporting substances for 3 wk does not improve cycling performance at 75 % VO2peak or speed recovery from previously fatiguing exercise.

  16. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  17. Transgenic production of arachidonic acid in oilseeds.

    PubMed

    Petrie, James R; Shrestha, Pushkar; Belide, Srinivas; Mansour, Maged P; Liu, Qing; Horne, James; Nichols, Peter D; Singh, Surinder P

    2012-02-01

    We describe a transgenic microalgal Δ9-elongase pathway transformed in both Brassica napus and Arabidopsis thaliana seed resulting in the production of arachidonic acid (ARA). This pathway is noteworthy for both the production of ARA in seed tissue and the low levels of intermediate C20 fatty acids that accumulate. We also demonstrate that the arachidonic acid is naturally enriched at the sn2 position in triacylglycerol. This is the first report of ARA production by the Δ9-elongase pathway in an oilseed.

  18. Determination of optimal lot size and production rate for multi-production channels with limited capacity

    NASA Astrophysics Data System (ADS)

    Huang, Yeu-Shiang; Wang, Ruei-Pei; Ho, Jyh-Wen

    2015-07-01

    Due to the constantly changing business environment, producers often have to deal with customers by adopting different procurement policies. That is, manufacturers confront not only predictable and regular orders, but also unpredictable and irregular orders. In this study, from the perspective of upstream manufacturers, both regular and irregular orders are considered in coping with the situation in which an uncertain demand is faced by the manufacturer, and a capacity confirming mechanism is used to examine such demand. If the demand is less than or equal to the capacity of the ordinary production channel, the general supply channel is utilised to fully account for the manufacturing process, but if the demand is greater than the capacity of the ordinary production channel, the contingency production channel would be activated along with the ordinary channel to satisfy the upcoming high demand. Besides, the reproductive property of the probability distribution is employed to represent the order quantity of the two types of demand. Accordingly, the optimal production rates and lot sizes for both channels are derived to provide managers with insights for further production planning.

  19. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester... identified generically as carboxylic acid, substituted alkylstannylene ester, reaction products...

  20. Coffee component 3-caffeoylquinic acid increases antioxidant capacity but not polyphenol content in experimental cerebral infarction.

    PubMed

    Ruiz-Crespo, Silvia; Trejo-Gabriel-Galan, Jose M; Cavia-Saiz, Monica; Muñiz, Pilar

    2012-05-01

    Although coffee has antioxidant capacity, it is not known which of its bioactive compounds is responsible for it, nor has it been analyzed in experimental cerebral infarction. We studied the effect one of its compounds, 3-caffeoylquinic acid (3-CQA), at doses of 4, 25 and 100 μg on plasma antioxidant capacity and plasma polyphenol content, measuring the differences before and after inducing a cerebral infarction in an experimental rat model. We compared them with 3-caffeoylquinic-free controls. The increase in total antioxidant capacity was only higher than in controls in 3-CQA treated animals with the highest dose. This increase in antioxidant capacity was not due to an increase in polyphenols. No differences between the experimental and control group were found regarding polyphenol content and cerebral infarction volume. In conclusion, this increase in antioxidant capacity in the group that received the highest dose of 3-CQA was not able to reduce experimental cerebral infarction.

  1. Total alkalinity versus buffer value (capacity) as a sensitivity indicator for fresh waters receiving acid rain

    SciTech Connect

    Faust, S.D.

    1983-09-01

    The frequently stated idea that total alkalinity is a measure of the buffer capacity of a natural water is refuted. Total alkalinity is a measure of the acid neutralizing capacity, equivalents/liter, of a water. In natural waters, the carbonate system provides most of this neutralizing capacity. In as much as the pH values of natural fresh waters lie below 8.3, the total alkalinity is, for all intents and purposes, the total bicarbonate content. Any contributions of carbonate and hydroxide to total alkalinity are nil. The buffer capacity or buffer value is the relation between the increment of a strong base, or strong acid, that causes a one unit change in the pH value. The values of total alkalinity and pH, considered individually cannot give an accurate assessment of the impact of acid deposition on a natural water. Rather it is necessary to combine the pH and alkalinity values into the beta concept in order to assess accurately and to calculate the capacity of a natural water to resist the impact of acid deposition. An analytical determination of total alkalinity is given with an application of the beta value. 17 references, 2 figures, 4 tables.

  2. Influence of phosphate ions on buffer capacity of soil humic acids

    NASA Astrophysics Data System (ADS)

    Boguta, P.; Sokołowska, Z.

    2012-02-01

    The object of this study was to determine change of natural buffer capacity of humic acids by strong buffering agents, which were phosphate ions. Studies were carried out on the humic acids extracted from peat soils. Additional information was obtained by determination of water holding capacity, density, ash and pH for peats and optical parameter Q4/6 for humic acids. Humic acid suspensions exhibited the highest buffer properties at low pH and reached maximum at pH ~ 4. Phosphates possessed buffer properties in the pH range from 4.5 to 8.0. The maximum of buffering was at pH~6.8 and increased proportionally with an increase in the concentration of phosphate ions. The study indicated that the presence of phosphate ions may strongly change natural buffer capacity of humic acids by shifting buffering maximum toward higher pH values. Significant correlations were found for the degree of the secondary transformation with both the buffer capacity and the titrant volume used during titration.

  3. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market.

    PubMed

    Trandafir, Ion; Nour, Violeta; Ionica, Mira Elena

    2013-03-01

    In the present study a simple and highly sensitive RP-HPLC method has been established for simultaneous determination of chlorogenic acid, caffeic acid, vanillic acid and caffeine in coffee samples. The method has been applied to eight different coffees available on the Romanian market which were previously analysed concerning the total polyphenols content and antioxidant capacity. Reduction of the DPPH radical was used to determine the antioxidant capacity of the coffee extracts while the total polyphenols content was determined by spectrophotometry (Folin Ciocalteu's method). The total polyphenols content ranged from 1.98 g GAE/100 g to 4.19 g GAE/100 g while the caffeine content ranged from 1.89 g/100 g to 3.05 g/100 g. A large variability was observed in chlorogenic acid content of the investigated coffee samples which ranged between 0.6 and 2.32 g/100 g.

  4. Alluvial diamond resource potential and production capacity assessment of Mali

    USGS Publications Warehouse

    Chirico, Peter G.; Barthelemy, Francis; Kone, Fatiaga

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. Over 70 countries were included as members of the KPCS at the end of 2007. To prevent trade in "conflict diamonds" while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was (1) to assess the naturally occurring endowment of diamonds in Mali (potential resources) based on geological evidence, previous studies, and recent field data and (2) to assess the diamond-production capacity and measure the intensity of mining activity. Several possible methods can be used to estimate the potential diamond resource. However, because there is generally a lack of sufficient and consistent data recording all diamond mining in Mali and because time to conduct fieldwork and accessibility to the diamond mining areas are limited, four different methodologies were used: the cylindrical calculation of the primary kimberlitic deposits, the surface area methodology, the volume and grade approach, and the content per kilometer approach. Approximately 700,000 carats are estimated to be in the alluvial deposits of the Kenieba region, with 540,000 carats calculated to lie within the concentration grade deposits. Additionally, 580,000 carats are estimated to have

  5. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  6. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    SciTech Connect

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  7. Stream chemistry in the eastern United States, 2, Current sources of acidity in acidic and low acid-neutralizing capacity streams

    NASA Astrophysics Data System (ADS)

    Herlihy, Alan T.; Kaufmann, Philip R.; Mitch, Mark E.

    1991-04-01

    We examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid-neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small (<30 km2) forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  8. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity.

    PubMed

    Klopotek, Yvonne; Otto, Konrad; Böhm, Volker

    2005-07-13

    Strawberries were processed to juice, nectar, wine, and puree. For investigation of the antioxidant capacity as well as the contents of ascorbic acid, total phenolics and total anthocyanins, samples were taken after different stages of production to determine the effects of processing. The content of vitamin C was measured spectrophotometrically. The total phenolic content was analyzed by using the Folin-Ciocalteu method, and the amount of total anthocyanins was determined by using the pH-differential method. Two different methods-the trolox equivalent antioxidant capacity assay and the ferric reducing antioxidant power test-were used to determine the hydrophilic antioxidant capacity. This study showed the decrease of all investigated parameters within processing strawberries to different products. The content of ascorbic acid decreased with production time and processing steps, especially during heat treatment. The investigations on total phenolics in strawberry products proved fining to be a mild method to clarify berry juices and wines without removing high amounts of total phenolics. Fermentation did not lead to heavy losses of total phenolics, probably due to polymerization and condensation of monomer phenolics such as anthocyanins. Total anthocyanins and the hydrophilic antioxidant capacity decreased while using high temperatures. Anthocyanins also decreased considerably during the processing of wines, mainly caused by fermentation and pasteurization.

  9. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity.

    PubMed

    Klopotek, Yvonne; Otto, Konrad; Böhm, Volker

    2005-07-13

    Strawberries were processed to juice, nectar, wine, and puree. For investigation of the antioxidant capacity as well as the contents of ascorbic acid, total phenolics and total anthocyanins, samples were taken after different stages of production to determine the effects of processing. The content of vitamin C was measured spectrophotometrically. The total phenolic content was analyzed by using the Folin-Ciocalteu method, and the amount of total anthocyanins was determined by using the pH-differential method. Two different methods-the trolox equivalent antioxidant capacity assay and the ferric reducing antioxidant power test-were used to determine the hydrophilic antioxidant capacity. This study showed the decrease of all investigated parameters within processing strawberries to different products. The content of ascorbic acid decreased with production time and processing steps, especially during heat treatment. The investigations on total phenolics in strawberry products proved fining to be a mild method to clarify berry juices and wines without removing high amounts of total phenolics. Fermentation did not lead to heavy losses of total phenolics, probably due to polymerization and condensation of monomer phenolics such as anthocyanins. Total anthocyanins and the hydrophilic antioxidant capacity decreased while using high temperatures. Anthocyanins also decreased considerably during the processing of wines, mainly caused by fermentation and pasteurization. PMID:15998127

  10. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria.

    PubMed

    Chicco, Adam J; Le, Catherine H; Schlater, Amber; Nguyen, Alex; Kaye, Spencer; Beals, Joseph W; Scalzo, Rebecca L; Bell, Christopher; Gnaiger, Erich; Costa, Daniel P; Crocker, Daniel E; Kanatous, Shane B

    2014-08-15

    Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near-freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile and adult seals, and compared with fibers from adult human vastus lateralis. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared with humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory 'leak' compared with humans and seal pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment. PMID:24902742

  11. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria.

    PubMed

    Chicco, Adam J; Le, Catherine H; Schlater, Amber; Nguyen, Alex; Kaye, Spencer; Beals, Joseph W; Scalzo, Rebecca L; Bell, Christopher; Gnaiger, Erich; Costa, Daniel P; Crocker, Daniel E; Kanatous, Shane B

    2014-08-15

    Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near-freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile and adult seals, and compared with fibers from adult human vastus lateralis. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared with humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory 'leak' compared with humans and seal pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment.

  12. Phenolic acids and antioxidant capacity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants and analyzed for individual phenolic acids by high performance liquid chromatography coupled with diode array and/or mass spectrometry and for antioxidant capacity...

  13. Selection for uterine capacity improves lifetime productivity of sows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection for 11 generations for uterine capacity (UC) increased litter size in gilts by 1.6 more fully formed pigs at birth compared to an unselected control line (CO) despite averaging 1 less ova shed. Our objective was to quantify line-by-parity interactions and characterize litter performance tr...

  14. Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and Brockmann bodies.

    PubMed

    Librán-Pérez, Marta; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2013-01-01

    In a previous study, we provided evidence for the presence in hypothalamus and Brockmann bodies (BB) of rainbow trout Oncorhynchus mykiss of sensing systems responding to changes in levels of oleic acid (long-chain fatty acid, LCFA) or octanoic acid (medium-chain fatty acid, MCFA). Since those effects could be attributed to an indirect effect, in the present study, we evaluated in vitro if hypothalamus and BB respond to changes in FA in a way similar to that observed in vivo. In a first set of experiments, we evaluated in hypothalamus and BB exposed to increased oleic acic or octanoic acid concentrations changes in parameters related to FA metabolism, FA transport, nuclear receptors and transcription factors, reactive oxygen species (ROS) effectors, components of the KATP channel, and (in hypothalamus) neuropeptides related to food intake. In a second set of experiments, we evaluated in hypothalamus the response of those parameters to oleic acid or octanoic acid in the presence of inhibitors of fatty acid sensing components. The responses observed in vitro in hypothalamus are comparable to those previously observed in vivo and specific inhibitors counteracted in many cases the effects of FA. These results support the capacity of rainbow trout hypothalamus to directly sense changes in MCFA or LCFA levels. In BB increased concentrations of oleic acid or octanoic acid induced changes that in general were comparable to those observed in hypothalamus supporting direct FA sensing in this tissue. However, those changes were not coincident with those observed in vivo allowing us to suggest that the FA sensing capacity of BB previously characterized in vivo is influenced by other neuroendocrine systems.

  15. Exposure or release of ferulic acid from wheat aleurone: impact on its antioxidant capacity.

    PubMed

    Rosa, Natalia N; Dufour, Claire; Lullien-Pellerin, Valérie; Micard, Valérie

    2013-12-01

    The relationship between the aleurone cell integrity and the exposure or release of bioavailable ferulic acid (FA) with the antioxidant capacity of aleurone in in vitro and under simulated gastric conditions was explored. The antioxidant capacity of aleurone was increased by around 2-fold when its median particle size was reduced to under 50 μm. The opening of aleurone cells increased the physical exposure of FA bound to the insoluble polysaccharides, which seemed to be responsible of the increased antioxidant capacity. Synergistic combination of xylanase and feruloyl esterase was found to be the most efficient enzymatic treatment releasing up to 86% of total FA in bioaccessible forms. This enzymatic treatment significantly enhanced the radical scavenging activity of aleurone by up to 4-fold, which overlapped the overall antioxidant potential estimated from the total content of FA in aleurone. The improvement in the antioxidant capacity of aleurone was also observed in the simulated gastric digestion by inhibition of lipid oxidation.

  16. Radical scavenging capacity of methanolic Phillyrea latifolia L. extract: anthocyanin and phenolic acids composition of fruits.

    PubMed

    Ayranci, Erol; Erkan, Naciye

    2013-01-01

    Radical scavenging capacity of a crude methanolic extract from the fruits of Phillyrea latifolia L., commonly known as green olive tree or mock privet, was investigated with reference to anthocyanin standards, as flavonoids, and phenolic acid standards, as phenylpropanoids. Characterization with high performance liquid chromatography-diode array detection (HPLC-DAD) indicated the presence of keracyanin, kuromanin, cyanidin, ferulic acid, caffeic acid and rosmarinic acid at amounts of 289.1, 90.4, 191.4, 225.2, 221.2 and 190.1 mg/100 g fresh weight (FW) of fruits, respectively. Chlorogenic and p-coumaric acids were found to exist in lower amounts. Trolox equivalent antioxidant capacity (TEAC) and IC(50) values of the plant extract were found to be 1.8 mM Trolox equivalents (TE)/g FW of fruits and 69.4 µg/mL, respectively, indicating the close radical scavenging activity of the extract to those of keracyanin and p-coumaric acid. The crude methanolic P. latifolia L. fruit extract was seen to be fairly potent in radical scavenging. Total phenolic content (TPC) of the plant extract was found to be 1652.9 mg gallic acid equivalent (GAE)/100 g FW of fruits. PMID:23364751

  17. AMINO ACIDS AND HEMOGLOBIN PRODUCTION IN ANEMIA

    PubMed Central

    Whipple, G. H.; Robscheit-Robbins, F. S.

    1940-01-01

    Certain individual amino acids when given to standard anemic dogs cause an increase in new hemoglobin production. Occasional negative experiments are recorded. Glycine, glutamic acid, aspartic acid, cystine, histidine, phenylalanine, and proline when given in 1 gm. doses daily for 2 weeks, increase hemoglobin output on the average 23 to 25 gm. above the control level. This reaction amounts to 25 to 30 per cent of the new hemoglobin produced by the feeding of 300 gm. liver daily for 2 weeks—a standard liver test. Alanine, valine, isoleucine, and arginine in the same dosage increase the hemoglobin output on the average 13 to 17 gm. per 2 weeks over the control level. Leucine, methionine, lysine, tryptophane, and tyrosine fall in a middle group with hemoglobin output of about 20 gm. Isovaleric acid, β-hydroxybutyric acid, glutaric acid, and asparagine have shown positive effects and the butyrate is unusually potent for hemoglobin production (Table 2). The isomeric and dl-synthetic forms of the amino acids are as effectively utilized in this reaction as are the natural forms. PMID:19870982

  18. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  19. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  20. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity

    PubMed Central

    GOVEA-SALAS, MAYELA; RIVAS-ESTILLA, ANA MARIA; RODRÍGUEZ-HERRERA, RAUL; LOZANO-SEPÚLVEDA, SONIA A.; AGUILAR-GONZALEZ, CRISTOBAL N.; ZUGASTI-CRUZ, ALEJANDRO; SALAS-VILLALOBOS, TANYA B.; MORLETT-CHÁVEZ, JESUS ANTONIO

    2016-01-01

    Gallic acid (GA) is a natural phenolic compound that possesses various biological effects, including antioxidant, anti-inflammatory, antibiotic, anticancer, antiviral and cardiovascular protection activities. In addition, numerous studies have reported that antioxidants possess antiviral activities. Hepatitis C virus (HCV) is one of the most important causes of chronic liver diseases worldwide, but until recently, only a small number of antiviral agents had been developed against HCV. Therefore, the present study investigated whether GA exhibits an anti-HCV activity. The effects of GA on HCV expression were examined using a subgenomic HCV replicon cell culture system that expressed HCV nonstructural proteins (NSs). In addition, GA cytotoxicity was evaluated at concentrations between 100–600 mg/ml using an MTT assay. Huh-7 replicon cells were incubated with 300 mg/ml GA for different times, and the HCV-RNA and protein levels were measured by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Pyrrolidine dithiocarbamate (PDTC) was used as an antioxidant control and reactive oxygen species (ROS) production was measured during the exposure. The results indicated that GA did not produce a statistically significant cytotoxicity in parental and HCV replicon cells. Furthermore, GA downregulated the expression levels of NS5A-HCV protein (~55%) and HCV-RNA (~50%) in a time-dependent manner compared with the levels in untreated cells. Notably, GA treatment decreased ROS production at the early time points of exposure in cells expressing HCV proteins. Similar results were obtained upon PDTC exposure. These findings suggest that the antioxidant capacity of GA may be involved in the downregulation of HCV replication in hepatoma cells. PMID:26893656

  1. Buffer capacities of fresh water lakes sensitive to acid rain deposition

    SciTech Connect

    Faust, S.D.; McIntosh, A.

    1983-01-01

    The Van Slyke definition of buffer capacity, the increment of a strong base or strong acid that causes an incremental change in the pH value of water, is better than total alkalinity for defining a water's resistance to acid rain. This Van Slyke value, designated by beta, shows a peak at pH 6.3 for the bicarbonate-carbonate pair, indicating that the effect of acid rain on the pH and alkalinity of natural waters is not deleterious until this peak is traversed. A beta value of zero indicates a dead water with no capacity to neutralize acid. The beta values, pH and total alkalinity of lakes, reservoirs, and streams in New Jersey are given. Data clearly show that pH and alkalinity alone cannot determine buffer capacity. For example: Fairview Lake (pH of 5.5 and alkalinity of 10.2 mg per liter) has a beta value 11 times that of Clyde Potts Reservoir (pH of 7.3, alkalinity of 8.1 mg per liter). 3 references, 1 figure, 1 table.

  2. Biotechnological production of gluconic acid: future implications.

    PubMed

    Singh, Om V; Kumar, Raj

    2007-06-01

    Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20-8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.

  3. [Progress in biotechnological production of pyruvic acid].

    PubMed

    Liu, Li-Ming; Li, Yin; Du, Guo-Cheng; Chen, Jian

    2002-11-01

    Pyruvate, an important organic acid, is widely used in the industries of pharmaceuticals, chemicals, agrochemicals, food additives and so on. Compared with the chemical method, biotechnological production of pyruvic acid is an alternative approach because of the low cost and high product quality. In this article, biosynthesis of pyruvate, including direct fermentative production and resting cell method as well as enzymatic method, was discussed. Furthermore, a comparison of these different methods was proposed. Since, a multi-vitamin auxotrophic strain of Torulopsis glabrata is the most competitive strain for industrial production of pyruvate, emphasis was therefore placed on the development of strains screening and fermentation optimization. Finally, some suggestions were put forward to improve the research in this field in the near future.

  4. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum).

    PubMed

    Carvalho, Sofia D; Schwieterman, Michael L; Abrahan, Carolina E; Colquhoun, Thomas A; Folta, Kevin M

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv "Ceasar") grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production.

  5. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum)

    PubMed Central

    Carvalho, Sofia D.; Schwieterman, Michael L.; Abrahan, Carolina E.; Colquhoun, Thomas A.; Folta, Kevin M.

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv “Ceasar”) grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production. PMID:27635127

  6. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum)

    PubMed Central

    Carvalho, Sofia D.; Schwieterman, Michael L.; Abrahan, Carolina E.; Colquhoun, Thomas A.; Folta, Kevin M.

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv “Ceasar”) grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production.

  7. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum).

    PubMed

    Carvalho, Sofia D; Schwieterman, Michael L; Abrahan, Carolina E; Colquhoun, Thomas A; Folta, Kevin M

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv "Ceasar") grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production. PMID:27635127

  8. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  9. Triacetic acid lactone production from Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  10. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.

    PubMed

    Martín-Lara, M A; Pagnanelli, F; Mainelli, S; Calero, M; Toro, L

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP>HPOP>OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na(+) in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper. PMID:18242836

  11. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.

    PubMed

    Martín-Lara, M A; Pagnanelli, F; Mainelli, S; Calero, M; Toro, L

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP>HPOP>OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na(+) in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper.

  12. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing capacity streams

    SciTech Connect

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E. )

    1991-04-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probably sources of current acidity in acidic and low acid-neutralizing capacity (ANC) streams in the eastern US. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small (<30 km{sup 2}) forested watersheds in the Mid-Atlantic Highlands (an estimated 1,950 km of stream length) and in the Mid-Atlantic Coastal Plain (1,250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1,180 km of acidic stream length, and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4,590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4,380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  13. Acid phosphatase production by recombinant Arxula adeninivorans.

    PubMed

    Minocha, Neha; Kaur, Parvinder; Satyanarayana, T; Kunze, G

    2007-08-01

    Acid phosphatase production by recombinant Arxula adeninivorans was carried out in submerged fermentation. Using the Plackett-Burman design, three fermentation variables (pH, sucrose concentration, and peptone concentration) were identified to significantly affect acid phosphatase and biomass production, and these were optimized using response surface methodology of central composite design. The highest enzyme yields were attained in the medium with 3.9% sucrose and 1.6% peptone at pH 3.8. Because of optimization, 3.86- and 4.19-fold enhancement in enzyme production was achieved in shake flasks (17,054 U g(-1) DYB) and laboratory fermenter (18,465 U g(-1) DYB), respectively. PMID:17541580

  14. Development and validation of a cholate binding capacity method for DMP 504, a bile acid sequestrant.

    PubMed

    Schreiber, M A; Moyer, K L; Mueller, B J; Ramos, M A; Green, J S; White, L; Hedgepeth, W; Juliano, K; Scull, J R; Hovsepian, P K

    2001-06-01

    DMP 504, a highly cross-linked insoluble polymer, is a bile acid sequestrant developed by the DuPont Pharmaceuticals Company for serum cholesterol reduction. Since DMP 504 is insoluble, it was necessary to develop unique specific analytical methods to measure and control the quality of different lots of the drug. Since the mechanism of action of DMP 504 is believed to be by sequestration of bile acids, the in-vitro binding capacity of the polymer for cholic acid was chosen as a surrogate of in-vivo performance and used to assess potency of the compound. In this method, individual aliquots of DMP 504 at three different levels were incubated with a cholate solution of known concentration. The residual cholate solution was filtered and analyzed by a reversed-phase HPLC method using refractive index detection. When the bound cholate was plotted versus the mass of DMP 504, the resulting curve was linear. The slope of this curve is the cholate binding capacity of DMP 504. This method has been shown to be precise and robust. Precision of the method was shown to have an RSD of 2.0% with injection precision of 0.4% and stability of cholate solutions up to 73 h. It is also a unique binding capacity method due to its multi-point determination, and it has been shown to be a suitable quality control method for ensuring lot-to-lot consistency of drug substance.

  15. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  16. Human capacity for explosive force production: neural and contractile determinants.

    PubMed

    Folland, J P; Buckthorpe, M W; Hannah, R

    2014-12-01

    This study assessed the integrative neural and contractile determinants of human knee extension explosive force production. Forty untrained participants performed voluntary and involuntary (supramaximally evoked twitches and octets - eight pulses at 300 Hz that elicit the maximum possible rate of force development) explosive isometric contractions of the knee extensors. Explosive force (F0-150 ms) and sequential rate of force development (RFD, 50-ms epochs) were measured. Surface electromyography (EMG) amplitude was recorded (superficial quadriceps and hamstrings, 50-ms epochs) and normalized (quadriceps to Mmax, hamstrings to EMGmax). Maximum voluntary force (MVF) was also assessed. Multiple linear regressions assessed the significant neural and contractile determinants of absolute and relative (%MVF) explosive force and sequential RFD. Explosive force production exhibited substantial interindividual variability, particularly during the early phase of contraction [F50, 13-fold (absolute); 7.5-fold (relative)]. Multiple regression explained 59-93% (absolute) and 35-60% (relative) of the variance in explosive force production. The primary determinants of explosive force changed during the contraction (F0-50, quadriceps EMG and Twitch F; RFD50-100, Octet RFD0-50; F100-150, MVF). In conclusion, explosive force production was largely explained by predictor neural and contractile variables, but the specific determinants changed during the phase of contraction.

  17. Soft wheat and flour products methods review: solvent retention capacity equation correction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article discusses the results of a significant change to calculations made within AACCI Approved methods 56-10 and 56-11, the Alkaline Water Retention Capacity (AWRC) test and the Solvent Retention Capacity (SRC) test. The AACCI Soft Wheat and Flour Products Technical Committee reviewed propos...

  18. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    SciTech Connect

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.

  19. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGES

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  20. Modulation of FadR binding capacity for acyl-CoA fatty acids through structure-guided mutagenesis.

    PubMed

    Bacik, John-Paul; Yeager, Chris M; Twary, Scott N; Martí-Arbona, Ricardo

    2015-10-01

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is thus of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl-CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology. PMID:26385696

  1. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  2. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  3. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  4. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  5. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  6. Improvement of pro-oxidant capacity of protocatechuic acid by esterification.

    PubMed

    Zeraik, Maria Luiza; Petrônio, Maicon S; Coelho, Dyovani; Regasini, Luis Octavio; Silva, Dulce H S; da Fonseca, Luiz Marcos; Machado, Sergio A S; Bolzani, Vanderlan S; Ximenes, Valdecir F

    2014-01-01

    Pro-oxidant effects of phenolic compounds are usually correlated to the one-electron redox potential of the phenoxyl radicals. Here we demonstrated that, besides their oxidizability, hydrophobicity can also be a decisive factor. We found that esterification of protocatechuic acid (P0) provoked a profound influence in its pro-oxidant capacity. The esters bearing alkyl chains containing two (P2), four (P4) and seven (P7) carbons, but not the acid precursor (P0), were able to exacerbate the oxidation of trolox, α-tocopherol and rifampicin. This effect was also dependent on the catechol moiety, since neither gallic acid nor butyl gallate showed any pro-oxidant effects. A comparison was also made with apocynin, which is well-characterized regarding its pro-oxidant properties. P7 was more efficient than apocynin regarding co-oxidation of trolox. However, P7 was not able to co-oxidize glutathione and NADH, which are targets of the apocynin radical. A correlation was found between pro-oxidant capacity and the stability of the radicals, as suggested by the intensity of the peak current in the differential pulse voltammetry experiments. In conclusion, taking into account that hydroquinone and related moieties are frequently found in biomolecules and quinone-based chemotherapeutics, our demonstration that esters of protocatechuic acid are specific and potent co-catalysts in their oxidations may be very relevant as a pathway to exacerbate redox cycling reactions, which are usually involved in their biological and pharmacological mechanisms of action.

  7. Corn starch granules with enhanced load-carrying capacity via citric acid treatment.

    PubMed

    Kim, Jong-Yea; Huber, Kerry C

    2013-01-01

    This research investigated conditions by which maize starch granule porosity and load-carrying capacity (LCC) might be enhanced via treatment with varying citric acid concentrations (0.5-1.5 M), temperatures (40-60 °C), and lengths of treatment (1-8 h). At the lowest temperatures (40 and 50 °C), citric acid treatment induced minimal physicochemical changes to granules. In contrast, both aqueous and oil LCCs of starches treated at 60 °C (0.5 M citric acid, 2 h) were almost doubled (15.69 and 14.48 mL/10 g starch, respectively), recovering 92% of the granular starch after treatment. Such treatment increased starch hydration capacity (0.97-1.91) and reduced gelatinization enthalpy (10.6-7.4 J/g). More severe treatment conditions adversely impacted aqueous LCC (due to excessive granule swelling), but improved oil absorption. The basis for LCC enhancement by citric acid treatment was ascribed to leaching of starch material from granules and partial disruption of the granule crystalline structure, as opposed to starch hydrolysis or chemical substitution.

  8. Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids.

    PubMed

    Chen, Shih-Yuan; Lao-Ubol, Supranee; Mochizuki, Takehisa; Abe, Yohko; Toba, Makoto; Yoshimura, Yuji

    2014-04-01

    Sulfonic acid-functionalized platelet SBA-15 mesoporous silica with an acid capacity of 2.44mmol H(+) g-cat(-1) (shortly termed 15SA-SBA-15-p) was one-pot synthesized by co-condensation method. When applied as solid acid catalyst in synthesis of Jatropha biodiesel fuel (BDF), the 15SA-SBA-15-p catalyst showed higher activity and resistances to water and free fatty acid (FFA) than commercial sulfonic resins of Amberlyst-15 and SAC-13. For the continuous Jatropha BDF production, a steady 75-78wt% of fatty acid methyl ester (FAME) content was obtained over 15SA-SBA-15-p catalyst at 150°C for 75h, whereas the Amberlyst-15 and SAC-13 catalysts were quickly deactivated due to the decomposition of thermally unstable framework and serious leaching of sulfonic acids. More importantly, the quality, stability and cold flow characteristic of Jatropha BDF synthesized by 15SA-SBA-15-p catalyst were better than those synthesized by Amberlyst-15 and SAC-13 catalysts, making the blending with petro-diesel an easy task.

  9. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  10. Lipopeptide surfactants: Production, recovery and pore forming capacity.

    PubMed

    Inès, Mnif; Dhouha, Ghribi

    2015-09-01

    Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi and yeast. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin and fengycin of Bacillus subtilis are among the most studied lipopeptides. This review will present the main factors encountering lipopeptides production along with the techniques developed for their extraction and purification. Moreover, we will discuss their ability to form pores and destabilize biological membrane permitting their use as antimicrobial, hemolytic and antitumor agents. These open great potential applications in biomediacal, pharmaceutic and agriculture fields.

  11. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    PubMed

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. PMID:27185346

  12. Chronic intake of proanthocyanidins and docosahexaenoic acid improves skeletal muscle oxidative capacity in diet-obese rats.

    PubMed

    Casanova, Ester; Baselga-Escudero, Laura; Ribas-Latre, Aleix; Cedó, Lídia; Arola-Arnal, Anna; Pinent, Montserrat; Bladé, Cinta; Arola, Lluís; Salvadó, M Josepa

    2014-10-01

    Obesity has become a worldwide epidemic. The cafeteria diet (CD) induces obesity and oxidative-stress-associated insulin resistance. Polyunsaturated fatty acids and polyphenols are dietary compounds that are intensively studied as products that can reduce the health complications related to obesity. We evaluate the effects of 21 days of supplementation with grape seed proanthocyanidins extract (GSPE), docosahexaenoic-rich oil (DHA-OR) or both compounds (GSPE+DHA-OR) on skeletal muscle metabolism in diet-obese rats. The supplementation with different treatments did not reduce body weight, although all groups used more fat as fuel, particularly when both products were coadministered; muscle β-oxidation was activated, the mitochondrial functionality and oxidative capacity were higher, and fatty acid uptake gene expressions were up-regulated. In addition to these outcomes shared by all treatments, GSPE reduced insulin resistance and improved muscle status. Both treatments increased 5'-AMP-activated protein kinase (AMPK) phosphorylation, which was consistent with higher plasma adiponectin levels. Moreover, AMPK activation by DHA-OR was also correlated with an up-regulation of peroxisome proliferator-activated receptor alpha (Pparα). GSPE+DHA-OR, in addition to activating AMPK and enhancing fatty acid oxidation, increased the muscle gene expression of uncoupling protein 2 (Ucp2). In conclusion, GSPE+DHA-OR induced modifications that improved muscle status and could counterbalance the deleterious effects of obesity, and such modifications are mediated, at least in part, through the AMPK signaling pathway.

  13. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  14. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk.

    PubMed

    Lozano, Blanca; Castellote, Ana Isabel; Montes, Rosa; López-Sabater, M Carmen

    2014-09-01

    Although freezing is the most common method used to preserve human milk, nutritional and immunological components may be lost during storage. Freeze-drying could increase the shelf life of human milk, while preserving its original characteristics. Seventy-two samples of freeze-dried human milk were stored for different periods of time, up to a maximum of 3 months, at 4 °C or 40 °C. Vitamin C, tocopherols, antioxidant capacity, and fatty acids composition were analyzed. A new HILIC-UHPLC method improving vitamin C determination was also validated. Ascorbic acid and total vitamin C concentrations significantly decreased at both temperatures, while antioxidant capacity only decreased at 40 °C. Fatty acids composition and both γ-tocopherol and δ-tocopherol contents remained unaltered. The stability after storage of freeze-dried milk was higher than that reported for frozen or fresh milk indicating that freeze-drying is a promising option to improve the preservation of human milk in banks. PMID:24840090

  15. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk.

    PubMed

    Lozano, Blanca; Castellote, Ana Isabel; Montes, Rosa; López-Sabater, M Carmen

    2014-09-01

    Although freezing is the most common method used to preserve human milk, nutritional and immunological components may be lost during storage. Freeze-drying could increase the shelf life of human milk, while preserving its original characteristics. Seventy-two samples of freeze-dried human milk were stored for different periods of time, up to a maximum of 3 months, at 4 °C or 40 °C. Vitamin C, tocopherols, antioxidant capacity, and fatty acids composition were analyzed. A new HILIC-UHPLC method improving vitamin C determination was also validated. Ascorbic acid and total vitamin C concentrations significantly decreased at both temperatures, while antioxidant capacity only decreased at 40 °C. Fatty acids composition and both γ-tocopherol and δ-tocopherol contents remained unaltered. The stability after storage of freeze-dried milk was higher than that reported for frozen or fresh milk indicating that freeze-drying is a promising option to improve the preservation of human milk in banks.

  16. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  17. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  18. Uranyl ion uptake capacity of poly (N-isopropylacrylamide/maleic acid) copolymeric hydrogels prepared by gamma rays

    NASA Astrophysics Data System (ADS)

    Kam, Erol; Taşdelen, Betul; Osmanlioglu, A. Erdal

    2012-06-01

    The effect of gel composition, absorbed dose and pH of the solution on the uranyl ion uptake capacity of N-isopropylacrylamide/maleic acid copolymeric hydrogels containing 0-3 mol% of maleic acid at 48 kGy have been investigated. Uranyl uptake capacity of hydrogels are found to increase from 18.5 to 94.8 mg [UO22+]/g dry gel as the mole % of maleic acid content in the gel structure increased from 0 to 3. The percent swelling, equilibrium swelling and diffusion coefficient values have been evaluated for poly(N-isopropylacrylamide/maleic acid) hydrogels at 500 ppm of uranyl nitrate solution.

  19. Chapter A6. Section 6.6. Alkalinity and Acid Neutralizing Capacity

    USGS Publications Warehouse

    Rounds, Stewart A.; Wilde, Franceska D.

    2002-01-01

    Alkalinity (determined on a filtered sample) and Acid Neutralizing Capacity (ANC) (determined on a whole-water sample) are measures of the ability of a water sample to neutralize strong acid. Alkalinity and ANC provide information on the suitability of water for uses such as irrigation, determining the efficiency of wastewater processes, determining the presence of contamination by anthropogenic wastes, and maintaining ecosystem health. In addition, alkalinity is used to gain insights on the chemical evolution of an aqueous system. This section of the National Field Manual (NFM) describes the USGS field protocols for alkalinity/ANC determination using either the inflection-point or Gran function plot methods, including calculation of carbonate species, and provides guidance on equipment selection.

  20. Electric utility capacity expansion and energy production models for energy policy analysis

    SciTech Connect

    Aronson, E.; Edenburn, M.

    1997-08-01

    This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

  1. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey.

    PubMed

    Berber, Adnan; Zengin, Gokhan; Aktumsek, Abdurrahman; Sanda, Murad Aydin; Uysal, Tuna

    2014-03-01

    Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials). The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20 degrees C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g) was higher than that of mixed materials (13.79mgGAE/g). The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (microg/mL) (amount required to inhibit DPPH radical formation by 50%). The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061 microg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5). Fruit extract exhibited strong ferric reducing

  2. Exposure to sulfuric acid in zinc production.

    PubMed

    Bråtveit, Magne; Haaland, Inger Margrethe; Moen, Bente E; Målsnes, Agnar

    2004-03-01

    This study characterized workers' exposure to sulfuric acid in two cell houses of a zinc production plant. We also aimed at estimating previous exposure to sulfuric acid by simulating the process conditions from before 1975 to produce exposure data for an epidemiological study on cancer in this industry. Further, we compared different sampling methods for aerosols in the cell houses. Personal sampling with a 37 mm Millipore cassette showed that the geometric means of the exposure levels for the workers in the two cell houses were 0.07 mg/m3 (range 0.01-0.48 mg/m3) and 0.04 mg/m3 (range 0.01-0.15 mg/m3). Norway's newly revised limit value of 0.1 mg/m3 was exceeded in 39.0 and 12.9% of the samples in the two cell houses. After the foam layer was removed from the electrolyte surface to simulate the production process from before 1975, the concentration of sulfuric acid increased from 0.11 to 6.04 mg/m3 in stationary measurement by the Millipore sampler. Stationary sampling showed that the Millipore sampler and the inhalable fraction of the Respicon impactor underestimated the sulfuric acid concentration by factors of 1.5 and 2.1 compared with the Institute of Occupational Medicine (IOM) sampler. Sampling with the Respicon impactor showed that the respirable, tracheobronchial and extrathoracic fractions constituted 3.0, 18.7 and 71.7% of the inhalable sulfuric acid aerosol, respectively. Today's exposure levels are lower than those reported to be associated with an increased prevalence of laryngeal cancer in other industries, but the levels prior to 1975 seem to have been much higher. By mass, most of the inhalable aerosol was in the size fractions considered to be highly relevant for the effects of sulfuric acid on the respiratory system. The risk of cancer among the cell house workers should be investigated in an epidemiological study.

  3. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production.

    PubMed

    Kylmä, A K; Granström, T; Leisola, M

    2004-02-01

    We studied the growth characteristics and oxidative capacities of Acetobacter aceti IFO 3281 in batch and chemostat cultures. In batch culture, glycerol was the best growth substrate and growth on ethanol occurred only after 6 days delay, although ethanol was rapidly oxidized to acetic acid. In continuous culture, both glycerol and ethanol were good growth substrates with similar characteristics. Resting cells in a bioreactor oxidized ribitol to L-ribulose with a maximal specific rate of 1.2 g g(-1) h(-1)). The oxidation of ribitol was inhibited by ethanol but not by glycerol. Biomass yield (Y(SX); C-mmol/C-mmol) on ethanol and glycerol was low (0.21 and 0.17, respectively). In the presence of ribitol the yield was somewhat higher (0.25) with ethanol but lower (0.13) with glycerol, with respectively lower and higher CO(2) production. In chemostat cultures the oxidation rate of ribitol was unaffected by ethanol or glycerol. Cell-free extract oxidized ethanol very slowly but not ribitol; the oxidative activity was located in the cell membrane fraction. Enzymatic activities of some key metabolic enzymes were determined from steady-state chemostat with ethanol, glycerol, or ethanol/glycerol mixture as a growth limiting substrate. Based on the measured enzyme activities, metabolic pathways are proposed for ethanol and glycerol metabolism.

  4. North American fertilizer capacity data

    SciTech Connect

    Not Available

    1991-01-01

    This listing of producers and their fertilizer production capacities was compiled in January 1991 with the cooperation of the US and Canadian fertilizer industry. Capacity is only an indicator of supply. Nameplate capacity differs from planned production levels or actual production because plants often operate above or below design capacity. Unless reported otherwise, plant capacities are based on 340 days per year of operation. No adjustment is made for partial year operation. Numerical data for the production of ammonia, ammonium nitrate, nitrogen solutions, urea, phosphate rock, phosphoric acid and ammonium phosphates is included.

  5. Dietary fatty acid composition changes mitochondrial phospholipids and oxidative capacities in rainbow trout red muscle.

    PubMed

    Guderley, H; Kraffe, E; Bureau, W; Bureau, D P

    2008-03-01

    Dietary conditioning of juvenile trout changed the acyl chain composition of mitochondrial phospholipids and the oxidative capacities of muscle mitochondria. Trout were fed three diets differing only in fatty acid (FA) composition. The highly unsaturated 22:6 n-3 (DHA) accounted for 0.4, 14, and 30% of fatty acids in Diets 1, 2 and 3. After 10 weeks of growth, the dietary groups differed markedly in FA composition of mitochondrial phospholipids, with significant dietary effects for virtually all FA. Mean mitochondrial DHA levels were 19, 40 and 33% in trout fed Diets 1, 2 and 3. Mitochondrial oxidative capacities changed with diet, while mitochondrial concentrations of cytochromes and of the adenylate nucleotide translocase (nmol mg(1) protein) did not. Mitochondria from fish fed Diet 1 had higher non-phosphorylating (state 4) rates at 5 degrees C than those fed other diets. When phosphorylating (state 3) rates differed between dietary groups, rates at 5 and 15 degrees C were higher for fish fed the more unsaturated diets. Stepwise multiple regressions indicated that FA composition could explain much (42-70%) of the variability of state 4 rates, particularly at 5 degrees C. At 15 degrees C, FA composition explained 16-42% of the variability of states 3 and 4 rates. Similar conclusions were obtained for the complete data set (trout fed diets 1, 2 and 3) and for the data from trout achieving similar growth rates (e.g. those fed Diets 1 and 2). Neither general characteristics of membrane FA, such as % saturates, unsaturation index, n-3, n-6 or n-3/n-6 nor levels of abundant unsaturated FA such as DHA or 18:1(n-9 + n-7), were systematically correlated with mitochondrial capacities even though they differed considerably between trout fed the different diets. Relatively minor FA (20:5n-3, 20:0, 18:2n-6, 18:3n-3, 18:0 and 15:0) showed better correlations with mitochondrial oxidative capacities. This supports the concept that acyl chain composition modulates mitochondrial

  6. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.

    PubMed

    Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-04-01

    Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol. PMID:20180114

  7. Penicillic acid production in submerged culture.

    PubMed

    Lindenfelser, L A; Ciegler, A

    1977-11-01

    Twenty known penicillic acid (PA)-producing Aspergillus and Penicillium cultures were grown under various conditions in shaken flasks to determine the highest yielding strains and their requirements for maximum toxin production. Abilities of the cultures to utilize eight different carbon sources in Raulin-Thom medium for mycotoxin synthesis were determined at four different incubation temperatures: 15, 20, 25, and 28 degrees C. Of the 20 cultures, P. cyclopium NRRL 1888 was superior, yielding up to 4 mg of PG per ml, with mannitol as the carbon source and 25 degrees C as the incubation temperature. Fifteen of the cultures elaborated lesser amounts of PA, whereas four strains yielded none under the test conditions. Whey from the manufacture of cottage cheese by the cultured process was also a satisfactory medium for PA production. In whey medium, yields up to 3 mg/ml were obtained with P. cyclopium NRRL 1888.

  8. Estimating the Capacity of Gross Primary Production from Global Observation Satellite

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Soyama, Noriko; Thanyaparaneedkul, Juthasinee; Furumi, Shinobu; Daigo, Motomasa

    2012-07-01

    Estimation of Gross Primary Production with high accuracy is important for understanding the carbon cycle. For estimating gross primary production, photosynthesis process was considers into two parts. One is the capacity and another is the reduction which is influenced by environmental conditions such as weather conditions of vapor pressure difference and soil moisture. The capacity estimation part is reported in this conference. For a leaf, it is well known photosynthesis capacity is mainly depend on amount of chlorophyll and enzyme. Chlorophyll contents reflect the color of a leaf. Since we focus on the chlorophyll contents for estimating the capacity of the gross primary production. It was reported by J. Thanyapraneedkul (2012) that vegetation index of the ratio of green band and near infrared was linear relationship with chlorophyll contents of a leaf, and was a linear relationship with the maximum photosynthesis at light saturation of light response curve with less stress conditions using flux data. The index is suitable for global observing satellite, because the spectral bands are available. Using the index and empirical relationship developed by J. Thanyapraneedkul, the light response curve with less stress can be estimated from the vegetation index. In this study, firstly, the global distribution of the index was studied. The regions of high index value in winter time were correspond to tropical rainforest. Next, the capacity of gross primary production was estimated using the light response curve using the index. The GPP capacity of the almost all regions was higher than MODIS GPP. For the tropical rain forest regions, the GPP capacity value was similar with MODIS GPP product.

  9. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    PubMed Central

    2012-01-01

    Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine. PMID:22691230

  10. Alternative fermentation pathway of cinnamic acid production via phenyllactic acid.

    PubMed

    Masuo, Shunsuke; Kobayashi, Yuta; Oinuma, Ken-Ichi; Takaya, Naoki

    2016-10-01

    Cinnamic acid (CA) is the chemical basis for bulk production of flavoring reagents and chemical intermediates, and it can be fermented from biomass. Phenylalanine ammonia lyase (PAL) has been used exclusively in the bacterial fermentation of sugar biomass in which the fermentation intermediate phenylalanine is deaminated to CA. Here, we designed an alternative metabolic pathway for fermenting glucose to CA. An Escherichia coli strain that generates phenylalanine in this pathway also produces Wickerhamia fluorescens phenylpyruvate reductase and ferments glucose to D-phenyllactate (D-PhLA) (Fujita et al. Appl Microbiol Biotechnol 97: 8887-8894, 2013). Thereafter, phenyllactate dehydratase encoded by fldABCI genes in Clostridium sporogenes converts the resulting D-PhLA into CA. The phenyllactate dehydratase expressed by fldABCI in the D-PhLA-producing bacterium fermented glucose to CA, but D-PhLA fermentation and phenyllactate dehydration were aerobic and anaerobic processes, respectively, which disrupted high-yield CA fermentation in single batch cultures. We overcame this disruption by sequentially culturing the two strains under aerobic and anaerobic conditions. We optimized the incubation periods of the respective aeration steps to produce 1.7 g/L CA from glucose, which exceeded the yield from PAL-dependent glucose fermentation to CA 11-fold. This process is a novel, efficient alternative to conventional PAL-dependent CA production.

  11. Lactic acid bacteria production from whey.

    PubMed

    Mondragón-Parada, María Elena; Nájera-Martínez, Minerva; Juárez-Ramírez, Cleotilde; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Cristiani-Urbina, Eliseo

    2006-09-01

    The main purpose of this work was to isolate and characterize lactic acid bacteria (LAB) strains to be used for biomass production using a whey-based medium supplemented with an ammonium salt and with very low levels of yeast extract (0.25 g/L). Five strains of LAB were isolated from naturally soured milk after enrichment in whey-based medium. One bacterial isolate, designated MNM2, exhibited a remarkable capability to utilize whey lactose and give a high biomass yield on lactose. This strain was identified as Lactobacillus casei by its 16S rDNA sequence. A kinetic study of cell growth, lactose consumption, and titratable acidity production of this bacterial strain was performed in a bioreactor. The biomass yield on lactose, the percentage of lactose consumption, and the maximum increase in cell mass obtained in the bioreactor were 0.165 g of biomass/g of lactose, 100%, and 2.0 g/L, respectively, which were 1.44, 1.11, and 2.35 times higher than those found in flask cultures. The results suggest that it is possible to produce LAB biomass from a whey-based medium supplemented with minimal amounts of yeast extract.

  12. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. PMID:25797103

  13. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels.

  14. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  15. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  16. Periodical capacity setting methods for make-to-order multi-machine production systems

    PubMed Central

    Altendorfer, Klaus; Hübl, Alexander; Jodlbauer, Herbert

    2014-01-01

    The paper presents different periodical capacity setting methods for make-to-order, multi-machine production systems with stochastic customer required lead times and stochastic processing times to improve service level and tardiness. These methods are developed as decision support when capacity flexibility exists, such as, a certain range of possible working hours a week for example. The methods differ in the amount of information used whereby all are based on the cumulated capacity demand at each machine. In a simulation study the methods’ impact on service level and tardiness is compared to a constant provided capacity for a single and a multi-machine setting. It is shown that the tested capacity setting methods can lead to an increase in service level and a decrease in average tardiness in comparison to a constant provided capacity. The methods using information on processing time and customer required lead time distribution perform best. The results found in this paper can help practitioners to make efficient use of their flexible capacity. PMID:27226649

  17. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  18. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  19. Sedimentation of sulfuric acid in acid tars from current production

    SciTech Connect

    Denisova, T.L.; Frolov, A.F.; Aminov, A.N.; Novosel'tsev, S.P.

    1987-09-01

    Acid tars obtained in treating T-750, KhF-12, and I-8A oils were investigated for purposes of recovering sulfuric acid and asphalt binders from the compositions and of determining the effects of storage time on the recovery. The consumption and sedimentation levels of sulfuric acid during storage for different periods and at different temperatures were assessed. The characteristics of an asphalt binder obtained by neutralizing acid tar with a paste consisting of asphalts from deasphalting operations and slaked lime, followed by oxidation of the mixture with atmospheric air, were determined. The sulfuric acid recovered in the settling process could be burned in order to purify it of organic contaminants.

  20. Seasonal variations in acid-neutralizing capacity in 13 northeast United States headwater streams

    NASA Astrophysics Data System (ADS)

    Dewalle, David R.; Davies, Trevor D.

    1997-04-01

    Variations in acid-neutralizing capacity (ANC) in 13 streams in the Adirondack, Catskill, and Northern Appalachian Plateau regions of the northeast United States were related to discharge, time of year, and seasonal variations in cation and anion concentrations using periodic regression analysis, ANC varied significantly with both discharge and time of year in 12 streams. Generation of ANC seasonal variations, being dependent upon the precise timing and magnitude of seasonal variations in cation and anion concentrations, was unique to each stream. Greatest seasonal ANC variations occurred in streams where seasonal variations in major anion and cation concentrations were completely out of phase. Maximum errors that could occur because of extrapolation of ANC data from one time of year to another were equal to or greater than maximum errors due to extrapolation of ANC from one discharge to another.

  1. Production of hydroxycitric acid by microorganisms.

    PubMed

    Hida, Hiroyuki; Yamada, Takashi; Yamada, Yasuhiro

    2005-08-01

    Hydroxycitric acid (HCA) is a major acid component of the tropical plants Garcinia cambogia and Hibiscus subdariffa. (2S,3S)-HCA from G. cambogia was shown to be a potent inhibitor of ATP citrate lyase (EC4.1.3.8), which catalyzes the extramitochondrial cleavage of citrate to oxaloacetate and acetyl-CoA. (2S,3R)-HCA from H. subdariffa inhibits alpha-amylase and alpha-glucosidase, leading to reduction of carbohydrate metabolism. The availability of HCA is limited by the restricted habitat of the plants as well as the difficulty of stereoselective organic synthesis. Hence, we screened microorganisms producing HCA to find an alternative source of optically pure bulk HCA. Two strains, Streptomyces sp. U121 and Bacillus megaterium G45C, were screened by HPLC analysis. Particular metabolites were purified from their culture broths and compared with authentic HCA from plants. NMR studies indicated that the products are identical to Hibiscus-type HCA. This is the first report showing isolation of microorganisms producing HCA. PMID:16116285

  2. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. PMID:23624242

  3. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    SciTech Connect

    1996-02-09

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included.

  4. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment.

    PubMed

    Elkashef, Sara M; Allison, Simon J; Sadiq, Maria; Basheer, Haneen A; Ribeiro Morais, Goreti; Loadman, Paul M; Pors, Klaus; Falconer, Robert A

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  5. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment

    PubMed Central

    Elkashef, Sara M.; Allison, Simon J.; Sadiq, Maria; Basheer, Haneen A.; Ribeiro Morais, Goreti; Loadman, Paul M.; Pors, Klaus; Falconer, Robert A.

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  6. U.S. Ethanol Industry Production Capacity Outlook: Update of 2001 Survey Results

    SciTech Connect

    MaDonald, Tom; Yowell, Gary; McCormack, Mike

    2002-07-18

    California Energy Commission staff conducted a survey of the U.S. ethanol industry between May and August 2001. This survey was designed to develop a complete and accurate inventory of the country’s existing and planned ethanol production capacity during the period California is looking to increase its use of ethanol as a substitute for the gasoline additive MTBE.

  7. Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity

    SciTech Connect

    Hadder, G.R.; Chin, S.M.

    1994-02-01

    Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

  8. North American fertilizer capacity data

    SciTech Connect

    Not Available

    1993-02-01

    This listing of fertilizer producers and their production capacities was compiled in February 1993 with the cooperation of the US and Canadian fertilizer industry. TVA does not guarantee the completeness or accuracy of the information. Capacity is only an indicator of supply. Nameplate capacity differs from planned production levels or actual production because plants often operate above or below design capacity. Unless reported otherwise, plant capacities are based on 340 days per year of operation. No adjustment is made for partial year operation. Information is given on the following types of fertilizers: ammonia, ammonium nitrate, nitrogen solutions, urea, ammonium sulfate, phosphate rock, wet-process phosphoric acid, ammonium phosphates, concentrated superphosphates, potash, nitric acid, superphosphoric acid, upgraded phosphoric acids, normal superphosphate, elemental phosphorus, potassium sulfate, and sulfate of potash/magnesia.

  9. Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives.

    PubMed

    Yoshimoto, Makoto; Kurata-Azuma, Rie; Fujii, Makoto; Hou, De-Xing; Ikeda, Kohji; Yoshidome, Tomohisa; Osako, Miho

    2005-09-01

    The effect of a koji (Aspergillus awamori mut.) extract on the caffeoylquinic acid derivatives purified from sweetpotato (Ipomoea batatas L.) leaves was examined to develop the mass production of caffeic acid. A koji extract hydrolyzed the caffeoylquinic acid derivatives, chlorogenic acid, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid and 3,4,5-tri-O-caffeoylquinic acid, to caffeic acid. Furthermore, the koji extract also converted the major polyphenolic components from sweetpotato, burdock (Arctium lappa L.), and mugwort (Artemisia indica var. maximowiczii) leaves to caffeic acid. These results suggest that the production of caffeic acid from plant resources containing caffeoylquinic acid derivatives is possible.

  10. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.

    PubMed

    Lee, Jinsuk J; Crook, Nathan; Sun, Jie; Alper, Hal S

    2016-01-01

    Polylactic acid (PLA) is an important renewable polymer, but current processes for producing its precursor, lactic acid, suffer from process inefficiencies related to the use of bacterial hosts. Therefore, improving the capacity of Saccharomyces cerevisiae to produce lactic acid is a promising approach to improve industrial production of lactic acid. As one such improvement required, the lactic acid tolerance of yeast must be significantly increased. To enable improved tolerance, we employed an RNAi-mediated genome-wide expression knockdown approach as a means to rapidly identify potential genetic targets. In this approach, several gene knockdown targets were identified which confer increased acid tolerance to S. cerevisiae BY4741, of which knockdown of the ribosome-associated chaperone SSB1 conferred the highest increase (52%). This target was then transferred into a lactic acid-overproducing strain of S. cerevisiae CEN.PK in the form of a knockout and the resulting strain demonstrated up to 33% increased cell growth, 58% increased glucose consumption, and 60% increased L-lactic acid production. As SSB1 contains a close functional homolog SSB2 in yeast, this result was counterintuitive and may point to as-yet-undefined functional differences between SSB1 and SSB2 related to lactic acid production. The final strain produced over 50 g/L of lactic acid in under 60 h of fermentation.

  11. KINEMATIC VARIABLES AND BLOOD ACID-BASE STATUS IN THE ANALYSIS OF COLLEGIATE SWIMMERS’ ANAEROBIC CAPACITY

    PubMed Central

    Bielec, G.; Makar, P.; Laskowski, R.

    2013-01-01

    Short duration repeated maximal efforts are often used in swimming training to improve lactate tolerance, which gives swimmers the ability to maintain a high work rate for a longer period of time. The aim of the study was to examine the kinematics of swimming and its relation to the changes in blood acid-base status and potassium level. Seven collegiate swimmers, with at least 6 years of training experience, volunteered to participate in the study. The test consisted of 8 x 25 m front crawl performed with maximum effort. The rest period between repetitions was set to five seconds. Blood samples were taken from the fingertip at rest, after warm-up and in the 3rd minute after completion of the test. The swimming was recorded with a video recorder, for later analysis of time, velocity and technique (stroke index). Based on the swimming velocity results, the obtained curve can be divided into rapid decrease of velocity and relatively stable velocities. The breaking point of repetition in swimming velocity was assumed as the swimming velocity threshold and it was highly correlated with the decrease of the blood acid-base status (pH r=0.82, BE r=0.87, HCO3 - r=0.76; p<0.05 in all cases). There was no correlation between stroke index or fatigue index and blood acid-base status. Analysis of the swimming speed in the 8 x 25 m test seems to be helpful in evaluation of lactate tolerance (anaerobic capacity) in collegiate swimmers. PMID:24744491

  12. Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum.

    PubMed

    Noro, N; Sugano, Y; Shoda, M

    2004-04-01

    Acetobacter xylinum BPR2001 produces water-insoluble bacterial cellulose (BC). Using a pH sensor for the accurate control of pH, which is one of the most critical factors for efficient BC production, is difficult especially in a baffled shake-flask and an airlift reactor. The buffering capacity of corn steep liquor (CSL) was estimated by measuring beta (buffering capacity) values in advance and was used to maintain the pH within the optimal range during the production of BC. When CSL was added to either a shake-flask, a stirred-tank reactor or an airlift reactor, BC production was almost the same as that in cultivations where pH was controlled manually or by a pH sensor. PMID:14564490

  13. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    PubMed

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  14. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  15. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  16. Microbial granulation for lactic acid production.

    PubMed

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively.

  17. Microbial production of organic acids: expanding the markets.

    PubMed

    Sauer, Michael; Porro, Danilo; Mattanovich, Diethard; Branduardi, Paola

    2008-02-01

    Microbial production of organic acids is a promising approach for obtaining building-block chemicals from renewable carbon sources. Although some acids have been produced for some time and in-depth knowledge of these microbial production processes has been gained, further microbial production processes seem to be feasible, but large-scale production has not yet been possible. Citric, lactic and succinic acid production exemplify three processes in different stages of industrial development. Although the questions being addressed by current research on these processes are diverging, a comparison is helpful for understanding microbial organic acid production in general. In this article, through analysis of the current advances in production of these acids, we present guidelines for future developments in this fast-moving field. PMID:18191255

  18. Establishment of pandemic influenza vaccine production capacity at Bio Farma, Indonesia.

    PubMed

    Suhardono, Mahendra; Ugiyadi, Dori; Nurnaeni, Ida; Emelia, Imelda

    2011-07-01

    In Indonesia, avian influenza A(H5N1) virus started to spread in humans in June 2005, with an alarming case-fatality rate of more than 80%. Considering that global influenza vaccine production capacity would barely have covered 10% of the world's pandemic vaccine needs, and that countries with no production facilities or prearranged contracts would be without access to a vaccine, the Government of Indonesia embarked on a programme to increase its readiness for a future influenza pandemic. This included the domestic production of influenza vaccine, which was entrusted to Bio Farma. This health security strategy consists of developing trivalent influenza vaccine production capacity in order to be able to convert immediately to monovalent production of up to 20 million pandemic doses for the Indonesian market upon receipt of the seed strain from the World Health Organization (WHO). For this purpose, a dedicated production facility is being constructed within the Bio Farma premises in Bandung. As an initial stage of influenza vaccine development, imported seasonal influenza bulk has been formulated and filled in the Bio Farma facility. Following three consecutive batches and successful clinical trials, the product was licensed by the Indonesian National Regulatory Authority and distributed commercially for the Hajj programme in 2009. With continued support from its technology transfer partners, Bio Farma is now advancing with the development of upstream processes to produce its own bulk for seasonal and pandemic use.

  19. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays.

    PubMed

    López-Alarcón, Camilo; Denicola, Ana

    2013-02-01

    Oxidative stress is associated with several pathologies like cardiovascular, neurodegenerative, cancer and even aging. It has been suggested that a diet rich in antioxidants would be beneficial to human health and a lot of interest is focused on the determination of antioxidant capacity of natural products. Different chemical methods have been developed including the popular ORAC that evaluates the potential of a sample as inhibitor of a target molecule oxidation. Chemical-based methods are useful for screening, they are low cost, high-throughput and yield an index value (expressed as equivalents of Trolox) that allows comparing and ordering different products. More recently, nanoparticles-based assays have been developed to sense the antioxidant power of natural products. However, the antioxidant capacity indexes obtained by chemical assays cannot extrapolate the performance of the sample in vivo. Considering that antioxidant action is not limited to scavenging free radicals but includes upregulation of antioxidant and detoxifying enzymes, modulation of redox cell signaling and gene expression, it is necessary to move to cellular assays in order to evaluate the potential antioxidant activity of a compound or extract. Animal models and human studies are more appropriate but also more expensive and time-consuming, making the cell culture assays very attractive as intermediate testing methods. Cellular antioxidant activity (CAA) assays, activation of redox transcription factors, inhibition of oxidases or activation of antioxidant enzymes are reviewed and compared with the classical in vitro chemical-based assays for evaluation of antioxidant capacity of natural products.

  20. Chicoric acid: chemistry, distribution, and production

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Scagel, Carolyn

    2013-12-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  1. Chicoric acid: chemistry, distribution, and production

    PubMed Central

    Lee, Jungmin; Scagel, Carolyn F.

    2013-01-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed. PMID:24790967

  2. A practical application of Driscoll's equation for predicting the acid-neutralizing capacity in acidic natural waters equilibria with the mineral phase gibbsite.

    PubMed

    Bi, S P; An, S Q; Liu, F

    2001-05-01

    A practical application of Driscoll's equation for predicting the acid-neutralizing capacity (ANC) in acidic waters equilibria with the mineral phase gibbsite is reported in this paper. Theoretical predication values of ANC are compared with the experimental data obtained from different literatures. The effect of aluminum (Al) on the value of ANC is investigated. It indicates that Al plays an important role in regulating the buffering effects in acidic natural waters. Failure to consider Al in acidic waters may bias assessment results in certain situations so as to overestimate the ANC values in response to increase in atmospheric deposition.

  3. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet

    PubMed Central

    Mellery, Julie; Geay, Florian; Tocher, Douglas R.; Kestemont, Patrick; Debier, Cathy; Rollin, Xavier; Larondelle, Yvan

    2016-01-01

    Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account. PMID:27736913

  4. Improved oxides for production of lead/acid battery plates

    NASA Astrophysics Data System (ADS)

    Boden, D. P.

    For many years, the plates of lead/acid batteries have been produced from leady oxide, a mixture of finely divided lead (`free-lead') and lead monoxide. Although this material is generally satisfactory, it suffers from the disadvantages that it is variable in composition and requires complicated and lengthy processing after pasting to remove the residual free-lead. Plates made from leady oxide also require cycling before they achieve their full performance, and this can result in either depressed initial capacity or additional processing cost. There is a growing trend towards the use of pure lead monoxide ( β-PbO) for the production of positive plates. This material is particularly valuable in valve-regulated batteries where cell-to-cell uniformity is essential for proper control of battery performance. It also reduces processing cost since it does not require time-consuming curing to remove free-lead. Red lead (Pb 3O 4) is also being more widely used in industrial batteries since it reduces formation time, and improves initial and high-rate performance. The methods of production of leady oxide, β-PbO and red lead are briefly reviewed and the characteristics of battery-grade materials are described. Particular emphasis is placed on optimum particle-size distribution, and how this can affect the battery performance. The benefits in processing and performance are described together with information on how pure litharge and red lead are used in battery plates.

  5. North American fertilizer capacity data

    SciTech Connect

    Not Available

    1991-12-01

    This listing of producers and their fertilizer production capacities was compiled in October 1991 with the cooperation of the US and Canadian fertilizer industries. Yearly production and forecasts are given for 1987 through 1997. Fertilizers reported on include: ammonium sulfate, nitric acid, wet-process superphosphoric acid, normal superphosphate, elemental phosphorus, potassium sulfate, and sulfate of potash/magnesia.

  6. Methods for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  7. Method for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.

    2016-08-30

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  8. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production

    PubMed Central

    2013-01-01

    Background The bacterium Escherichia coli can be grown employing various carbohydrates as sole carbon and energy source. Among them, glucose affords the highest growth rate. This sugar is nowadays widely employed as raw material in industrial fermentations. When E. coli grows in a medium containing non-limiting concentrations of glucose, a metabolic imbalance occurs whose main consequence is acetate secretion. The production of this toxic organic acid reduces strain productivity and viability. Solutions to this problem include reducing glucose concentration by substrate feeding strategies or the generation of mutant strains with impaired glucose import capacity. In this work, a collection of E. coli strains with inactive genes encoding proteins involved in glucose transport where generated to determine the effects of reduced glucose import capacity on growth rate, biomass yield, acetate and production of an experimental plasmid DNA vaccine (pHN). Results A group of 15 isogenic derivatives of E. coli W3110 were generated with single and multiple deletions of genes encoding glucose, mannose, beta-glucoside, maltose and N-acetylglucosamine components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), as well as the galactose symporter and the Mgl galactose/glucose ABC transporter. These strains were characterized by growing them in mineral salts medium supplemented with 2.5 g/L glucose. Maximum specific rates of glucose consumption (qs) spanning from 1.33 to 0.32 g/g h were displayed by the group of mutants and W3110, which resulted in specific growth rates ranging from 0.65-0.18 h-1. Acetate accumulation was reduced or abolished in cultures with all mutant strains. W3110 and five selected mutant derivatives were transformed with pHN. A 3.2-fold increase in pHN yield on biomass was observed in cultures of a mutant strain with deletion of genes encoding the glucose and mannose PTS components, as well as Mgl. Conclusions The group of E. coli mutants

  9. Acidic organic compounds in beverage, food, and feed production.

    PubMed

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  10. Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid.

    PubMed

    Chong, Nyuk-Min; Chang, Hung-Wei

    2009-02-01

    The purpose of this research was to pursuit the quantification of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid (2,4-D) by detecting and quantifying a prominent 2,4-D degradation encoding plasmid. Batch reactor acclimation, de-acclimation, and re-acclimation tests were conducted during which periods the courses of 2,4-D dissipation and plasmid evolution were quantitatively measured. Pure cultures of bacterial strains were detected to give rise to a plasmid approximately the size of 90 kb after acclimation. The 90 kb plasmid content of Arthrobacter sp. increased when degradation occurred after acclimation, with a rate that corresponded closely to the degradation rate. During de-acclimation, plasmid content declined exponentially at a half-life of approximately 3.5 days. Re-acclimation saw a renewed induction of plasmid, but substrate consumption limited the rise of plasmid to a level much lower than after the first acclimation. This research recommends a method for measuring the microbial degradation capability for a xenobiotic.

  11. Estimating the carbon sequestration capacity of shale formations using methane production rates.

    PubMed

    Tao, Zhiyuan; Clarens, Andres

    2013-10-01

    Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces. Here, a computational method is proposed for estimating the CO2 sequestration capacity of a fractured shale formation and it is applied to the Marcellus shale in the eastern United States. The model is based on historical and projected CH4 production along with published data and models for CH4/CO2 sorption equilibria and kinetics. The results suggest that the Marcellus shale alone could store between 10.4 and 18.4 Gt of CO2 between now and 2030, which represents more than 50% of total U.S. CO2 emissions from stationary sources over the same period. Other shale formations with comparable pressure-temperature conditions, such as Haynesville and Barnett, could provide significant additional storage capacity. The mass transfer kinetic results indicate that injection of CO2 would proceed several times faster than production of CH4. Additional considerations not included in this model could either reinforce (e.g., leveraging of existing extraction and monitoring infrastructure) or undermine (e.g., leakage or seismicity potential) this approach, but the sequestration capacity estimated here supports continued exploration into this pathway for producing carbon neutral energy.

  12. Impact of the diet on net endogenous acid production and acid-base balance.

    PubMed

    Poupin, Nathalie; Calvez, Juliane; Lassale, Camille; Chesneau, Caroline; Tomé, Daniel

    2012-06-01

    Net acid production, which is composed of volatile acids (15,000 mEq/day) and metabolic acids (70-100 mEq/day) is relatively small compared to whole-body H⁺ turnover (150,000 mEq/day). Metabolic acids are ingested from the diet or produced as intermediary or end products of endogenous metabolism. The three commonly reported sources of net acid production are the metabolism of sulphur amino acids, the metabolism or ingestion of organic acids, and the metabolism of phosphate esters or dietary phosphoproteins. Net base production occurs mainly as a result of absorption of organic anions from the diet. To maintain acid-base balance, ingested and endogenously produced acids are neutralized within the body by buffer systems or eliminated from the body through the respiratory (excretion of volatile acid in the form of CO₂) and urinary (excretion of fixed acids and remaining H⁺) pathways. Because of the many reactions involved in the acid-base balance, the direct determination of acid production is complex and is usually estimated through direct or indirect measurements of acid excretion. However, indirect approaches, which assess the acid-forming potential of the ingested diet based on its composition, do not take all the acid-producing reactions into account. Direct measurements therefore seem more reliable. Nevertheless, acid excretion does not truly provide information on the way acidity is dealt with in the plasma and this measurement should be interpreted with caution when assessing acid-base imbalance.

  13. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  14. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.

  15. Toward biotechnological production of adipic acid and precursors from biorenewables.

    PubMed

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. PMID:22824738

  16. Biomass and organic acids in sandstone of a weathering building: Production by bacterial and fungal isolates.

    PubMed

    Palmer, R J; Siebert, J; Hirsch, P

    1991-12-01

    Ten fungal and nine bacterial strains were isolated from a weathering sandstone building. Their growth, organic acid production, and acidification capacity were assessed in culture under nutritional conditions similar to those in situ. Biomass (10-50 nmol phospholipid-PO4g(-1)) within the rock was small compared to soils. The isolated organisms were able to produce high amounts of those acids found in the sandstone, but acid production did not cause a drastic reduction in culture pH. It is suggested that the importance of acidification in microbial degradation of sandstone has been overestimated and that, under in situ pH and nutritional conditions, cation chelation by microbially produced organic acid anions may be more relevant to the weathering process.

  17. Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells.

    PubMed

    Tigges, Marcel; Fussenegger, Martin

    2006-05-01

    A variety of successful transcription and translation engineering strategies implemented during the past decade have driven the specific productivity of mammalian cells to an apparent limit. Restricted post-translation competence has since been considered the major bottleneck preventing mammalian cells from fully exploiting their physiologic production capacity in a biopharmaceutical manufacturing scenario. Through ectopic expression of the human transcription factor Xbp1 (X-box-binding-protein 1), evolved to manage plasma cell differentiation and coordinate the unfolded protein response, we have specifically expanded the endoplasmic reticulum and the Golgi of transgenic Chinese hamster ovary (CHO-K1)-derived cell lines with a resulting increase in overall production capacity. Xbp-1-based engineering of secretory bottlenecks was compatible with a variety of different promoter–product gene configurations suggesting that Xbp-1 induces generic production increases in CHO-K1 cell derivatives. Secretion engineering, illustrated here by Xbp1-based reprogramming of the post-translational processing machinery, provides a first insight into mastering a major system bottleneck which impacts biopharmaceutical manufacturing of secreted protein therapeutics.

  18. The production of unusual fatty acids in transgenic plants.

    PubMed

    Napier, Johnathan A

    2007-01-01

    The ability to genetically engineer plants has facilitated the generation of oilseeds synthesizing non-native fatty acids. Two particular classes of fatty acids are considered in this review. First, so-called industrial fatty acids, which usually contain functional groups such as hydroxyl, epoxy, or acetylenic bonds, and second, very long chain polyunsaturated fatty acids normally found in fish oils and marine microorganisms. For industrial fatty acids, there has been limited progress toward obtaining high-level accumulation of these products in transgenic plants. For very long chain polyunsaturated fatty acids, although they have a much more complex biosynthesis, accumulation of some target fatty acids has been remarkably successful. In this review, we consider the probable factors responsible for these different outcomes, as well as the potential for further optimization of the transgenic production of unusual fatty acids in transgenic plants.

  19. Biotechnological routes based on lactic acid production from biomass.

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2011-01-01

    Lactic acid, the most important hydroxycarboxylic acid, is now commercially produced by the fermentation of sugars present in biomass. In addition to its use in the synthesis of biodegradable polymers, lactic acid can be regarded as a feedstock for the green chemistry of the future. Different potentially useful chemicals such as pyruvic acid, acrylic acid, 1,2-propanediol, and lactate ester can be produced from lactic acid via chemical and biotechnological routes. Here, we reviewed the current status of the production of potentially valuable chemicals from lactic acid via biotechnological routes. Although some of the reactions described in this review article are still not applicable at current stage, due to their "greener" properties, biotechnological processes for the production of lactic acid derivatives might replace the chemical routes in the future. PMID:21846500

  20. [Hydrocyanic acid content in cerals and cereal products].

    PubMed

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  1. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    PubMed

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine). PMID:24679256

  2. Effects of acid deposition on agricultural production

    SciTech Connect

    Moskowitz, P.D.; Medeiros, W.H.; Oden, N.L.; Thode, H.C. Jr.; Coveney, E.A.; Jacobson, J.S.; Rosenthal, R.E.; Evans, L.S.; Lewin, K.F.; Allen, F.L.

    1985-09-01

    A preliminary assessment, both qualitative and quantitative, was carried out on the effects of acid deposition on agriculture. An inventory was made of US crops exposed to different acid deposition levels in 1982. Most crops (valued at more than $50 billion) were exposed to annual average acid deposition levels greater than pH 4.6, but crops worth more than $220 billion were exposed to even lower pH levels. Published results of experiments on crop response to acid deposition have not identified any single crop as being consistently sensitive, and suggest that present levels of acidic precipitation in the US are not significantly affecting growth and yield of crops. Because relatively few experiments appropriate to a quantitative acid deposition assessment have been conducted, the quantitative section is necessarily based on a restricted data set. Corn, potatoes, and soybeans have been studied in experimental environments which simulate agronomic conditions and which have adequate statistical power for yield estimates; only some varieties of soybeans have demonstrated statistically significant sensitivity to acid deposition.

  3. Enrichment of By-Product Materials from Steel Pickling Acid Regeneration Plants (TRP 9942)

    SciTech Connect

    Lu Swan, Delta Ferrites LLC

    2009-09-30

    A new process for manufacturing an enriched, iron-based product (strontium hexaferrite) in existing steel pickling acid regeneration facilities was evaluated. Process enhancements and equipment additions were made to an existing acid regeneration plant to develop and demonstrate (via pilot scale testing and partial-capacity production trials) the viability of a patented method to produce strontium-based compounds that, when mixed with steel pickling acid and roasted, would result in a strontium hexaferrite powder precursor which could then be subjected to further heat treatment in an atmosphere that promotes rapid, relatively low-temperature formation of discrete strontium hexaferrite magnetic domains yielding an enriched iron-based product, strontium hexaferrite, that can be used in manufacturing hard ferrite magnets.

  4. A novel method for the determination of ascorbic acid and antioxidant capacity in Opuntia ficus indica using in vivo microdialysis.

    PubMed

    Pretti, L; Bazzu, G; Serra, P A; Nieddu, G

    2014-03-15

    A simple and rapid method was developed for in vivo simultaneous determination of ascorbic-acid and antioxidant capacity in microdialysates from cladodes of Opuntia ficus-indica (L.) Miller. The method is verified in water-stressed plants, as compared with a well-watered test controls. The microdialysis probe construction and insertion procedure was specifically developed to minimise the tissue trauma of the plant and to obtain optimal dialysis performance. Microdialysis was performed using a flow rate of 3 μL/min and the samples were analysed by HPLC coupled to electrochemical detection of ascorbic-acid and DPPH-determined antioxidant capacity. Our data indicate exponential decay of the concentrations of the analysed compounds as a function of microdialysis sampling time. Water-stressed Opuntia show decreased ascorbic acid levels and increased the others antioxidants.

  5. [Effects of Eliminating Backward Production Capacities on Reduction of Dioxin Emissions in Key Industries].

    PubMed

    Geng, Jing; Lu, Yong-long; Ren, Bing-nan; Wang, Tie-yu

    2016-03-15

    Phase-out of backward production facilities can significantly reduce the emissions of unintentional persistent organic pollutants from the industrial thermal process. An estimation of reduced dioxin emissions due to closure of backward production capacities is valuable to objectively evaluate China's efforts in and contribution to performing the Stockholm Convention on Persistent Organic Pollutants. Our group previously evaluated environmental effects of the phase-out of backward production facilities on dioxin emissions from 2006 to 2009. Based on the above study, due to the phase-out of backward production capacities from 2010 to 2013, the reductions in dioxin emissions to air from power generation sector, coke sector, and iron & steel (including ferroalloy) sector were estimated to be 86.13, 133.94 and 78.78 g · a⁻¹, respectively. Because the emission factors used in this paper are a little bit conservative, the actual reduced emissions may be greater than the estimated values. Besides the industrial sectors mentioned above, reduced dioxin emissions can also be estimated in more industrial sectors such as cement, calcium carbide, metal smelting and papermaking sectors. The paper also provided methods for the future comprehensive evaluation of dioxin reduction.

  6. [Effects of Eliminating Backward Production Capacities on Reduction of Dioxin Emissions in Key Industries].

    PubMed

    Geng, Jing; Lu, Yong-long; Ren, Bing-nan; Wang, Tie-yu

    2016-03-15

    Phase-out of backward production facilities can significantly reduce the emissions of unintentional persistent organic pollutants from the industrial thermal process. An estimation of reduced dioxin emissions due to closure of backward production capacities is valuable to objectively evaluate China's efforts in and contribution to performing the Stockholm Convention on Persistent Organic Pollutants. Our group previously evaluated environmental effects of the phase-out of backward production facilities on dioxin emissions from 2006 to 2009. Based on the above study, due to the phase-out of backward production capacities from 2010 to 2013, the reductions in dioxin emissions to air from power generation sector, coke sector, and iron & steel (including ferroalloy) sector were estimated to be 86.13, 133.94 and 78.78 g · a⁻¹, respectively. Because the emission factors used in this paper are a little bit conservative, the actual reduced emissions may be greater than the estimated values. Besides the industrial sectors mentioned above, reduced dioxin emissions can also be estimated in more industrial sectors such as cement, calcium carbide, metal smelting and papermaking sectors. The paper also provided methods for the future comprehensive evaluation of dioxin reduction. PMID:27337915

  7. Production of extracellular fatty acid using engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL) produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain p

  8. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients.

    PubMed

    Mokánszki, Attila; Molnár, Zsuzsanna; Ujfalusi, Anikó; Balogh, Erzsébet; Bazsáné, Zsuzsa Kassai; Varga, Attila; Jakab, Attila; Oláh, Éva

    2012-12-01

    Infertile men with low sperm concentration and/or less motile spermatozoa have an increased risk of producing aneuploid spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding may reduce genetic risks such as chromosomal rearrangements and numerical aberrations. Fluorescence in-situ hybridization (FISH) has been used to evaluate the presence of aneuploidies. This study examined spermatozoa of 10 oligozoospermic, 9 asthenozoospermic, 9 oligoasthenozoospermic and 17 normozoospermic men by HA binding and FISH. Mean percentage of HA-bound spermatozoa in the normozoospermic group was 81%, which was significantly higher than in the oligozoospermic (P<0.001), asthenozoospermic (P<0.001) and oligoasthenozoospermic (P<0.001) groups. Disomy of sex chromosomes (P=0.014) and chromosome 17 (P=0.0019), diploidy (P=0.03) and estimated numerical chromosome aberrations (P=0.004) were significantly higher in the oligoasthenozoospermic group compared with the other groups. There were statistically significant relationships (P<0.001) between sperm concentration and HA binding (r=0.658), between sperm concentration and estimated numerical chromosome aberrations (r=-0.668) and between HA binding and estimated numerical chromosome aberrations (r=-0.682). HA binding and aneuploidy studies of spermatozoa in individual cases allow prediction of reproductive prognosis and provision of appropriate genetic counselling. Infertile men with normal karyotypes and low sperm concentrations and/or less motile spermatozoa have significantly increased risks of producing aneuploid (diminished mature) spermatozoa. Selecting spermatozoa by hyaluronic acid (HA) binding, based on a binding between sperm receptors for zona pellucida and HA, may reduce the potential genetic risks such as chromosomal rearrangements and numerical aberrations. In the present study we examined sperm samples of 45 men with different sperm parameters by HA-binding assay and fluorescence in-situ hybridization (FISH). Mean

  9. Metabolic engineering as a tool for enhanced lactic acid production.

    PubMed

    Upadhyaya, Bikram P; DeVeaux, Linda C; Christopher, Lew P

    2014-12-01

    Metabolic engineering is a powerful biotechnological tool that finds, among others, increased use in constructing microbial strains for higher lactic acid productivity, lower costs and reduced pollution. Engineering the metabolic pathways has concentrated on improving the lactic acid fermentation parameters, enhancing the acid tolerance of production organisms and their abilities to utilize a broad range of substrates, including fermentable biomass-derived sugars. Recent efforts have focused on metabolic engineering of lactic acid bacteria as they produce high yields and have a small genome size that facilitates their genetic manipulation. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating lactic acid producing organisms developed to address and overcome major challenges in the lactic acid production process.

  10. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    PubMed

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  11. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions.

    PubMed

    Knuf, Christoph; Nookaew, Intawat; Brown, Stephen H; McCulloch, Michael; Berry, Alan; Nielsen, Jens

    2013-10-01

    Malic acid has great potential for replacing petrochemical building blocks in the future. For this application, high yields, rates, and titers are essential in order to sustain a viable biotechnological production process. Natural high-capacity malic acid producers like the malic acid producer Aspergillus flavus have so far been disqualified because of special growth requirements or the production of mycotoxins. As A. oryzae is a very close relative or even an ecotype of A. flavus, it is likely that its high malic acid production capabilities with a generally regarded as safe (GRAS) status may be combined with already existing large-scale fermentation experience. In order to verify the malic acid production potential, two wild-type strains, NRRL3485 and NRRL3488, were compared in shake flasks. As NRRL3488 showed a volumetric production rate twice as high as that of NRRL3485, this strain was selected for further investigation of the influence of two different nitrogen sources on malic acid secretion. The cultivation in lab-scale fermentors resulted in a higher final titer, 30.27 ± 1.05 g liter(-1), using peptone than the one of 22.27 ± 0.46 g liter(-1) obtained when ammonium was used. Through transcriptome analysis, a binding site similar to the one of the Saccharomyces cerevisiae yeast transcription factor Msn2/4 was identified in the upstream regions of glycolytic genes and the cytosolic malic acid production pathway from pyruvate via oxaloacetate to malate, which suggests that malic acid production is a stress response. Furthermore, the pyruvate carboxylase reaction was identified as a target for metabolic engineering, after it was confirmed to be transcriptionally regulated through the correlation of intracellular fluxes and transcriptional changes.

  12. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2011-12-20

    Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the "conventional" processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria.

  13. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). (a... generically as alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and...

  14. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). (a... generically as alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and...

  15. Malic acid production from thin stillage by Aspergillus species.

    PubMed

    West, Thomas P

    2011-12-01

    The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l(-1). Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l(-1). The highest malic acid yield (0.8 g g(-1)) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains.

  16. In-situ liquid storage capacity measurement of subsurface wastewater absorption system products.

    PubMed

    Quisenberry, Virgil; Brown, Philip; Smith, Bill; Hallahan, Dennis F

    2006-11-01

    A method is presented for measuring the in-situ liquid storage capacity of subsurface wastewater infiltration system (SWIS) products. While these products vary in composition, geometry, and porosity, they all have the same function: to provide a conduit for the flow of effluent from a septic tank to and through a trench so that infiltration into the soil can occur. A functional SWIS must also provide temporary liquid storage. Storage is necessary for periods when discharge from the septic tank exceeds the infiltration rate of the soil. Storage is also important during times when the soil in and around the trench is saturated. Many states now have regulatory requirements pertaining to storage volume, and these requirements commonly establish the traditional gravel-pipe system as the standard for minimally acceptable volume. Raliable comparisons between various alternative products and gravel have been difficult or impossible, because there has been no standard method for measuring storage volume. Some products have been evaluated under realistic field conditions; others have been evaluated under theoretical or ideal conditions. The protocol developed by the study reported here can serve as a common, accurate basis for comparisons. A 3-foot-deep trench was excavated, and the bottom was leveled. Markers (nails or rods) were attached to the products to indicate the invert and full-volume heights. The products were then enclosed in plastic, placed in a trench, and covered with soil. A 4-inch-diameter pipe extended from the product to the surface to allow metered additions of water into the products and precise determinations when the systems had been filled to capacity. Four plastic chambers, three expanded polystyrene (ESP) products, two multipipe arrangements, and a standard gravel-pipe system were evaluated. The standard gravel-pipe system held 10.2 gal/ft Three of the four plastic chambers stored from 100 to 130 percent of what the standard system held. The

  17. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    PubMed

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals. PMID:23870885

  18. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    PubMed

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals.

  19. Thermodynamic prediction of hydrogen production from mixed-acid fermentations.

    PubMed

    Forrest, Andrea K; Wales, Melinda E; Holtzapple, Mark T

    2011-10-01

    The MixAlco™ process biologically converts biomass to carboxylate salts that may be chemically converted to a wide variety of chemicals and fuels. The process utilizes lignocellulosic biomass as feedstock (e.g., municipal solid waste, sewage sludge, and agricultural residues), creating an economic basis for sustainable biofuels. This study provides a thermodynamic analysis of hydrogen yield from mixed-acid fermentations from two feedstocks: paper and bagasse. During batch fermentations, hydrogen production, acid production, and sugar digestion were analyzed to determine the energy selectivity of each system. To predict hydrogen production during continuous operation, this energy selectivity was then applied to countercurrent fermentations of the same systems. The analysis successfully predicted hydrogen production from the paper fermentation to within 11% and the bagasse fermentation to within 21% of the actual production. The analysis was able to faithfully represent hydrogen production and represents a step forward in understanding and predicting hydrogen production from mixed-acid fermentations. PMID:21875794

  20. Gluconic acid production by gad mutant of Klebsiella pneumoniae.

    PubMed

    Wang, Dexin; Wang, Chenhong; Wei, Dong; Shi, Jiping; Kim, Chul Ho; Jiang, Biao; Han, Zengsheng; Hao, Jian

    2016-08-01

    Klebsiella pneumoniae produces many economically important chemicals. Using glucose as a carbon source, the main metabolic product in K. pneumoniae is 2,3-butanediol. Gluconic acid is an intermediate of the glucose oxidation pathway. In the current study, a metabolic engineering strategy was used to develop a gluconic acid-producing K. pneumoniae strain. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. Gluconic acid accumulation by K. pneumoniae Δgad was an acid-dependent aerobic process, with accumulation observed at pH 5.5 or lower, and at higher levels of oxygen supplementation. Under all other conditions tested, 2,3-butanediol was the main metabolic product of the process. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by K. pneumoniae Δgad, and the conversion ratio of glucose to gluconic acid reached 1 g/g. The K. pneumoniae Δgad described in this study is the first genetically modified strain used for gluconic acid production, and this optimized method for gluconic acid production may have important industrial applications. Gluconic acid is an intermediate of this glucose oxidation pathway. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by the K. pneumoniae Δgad strain, and the conversion ratio of glucose to gluconic acid reached 1 g/g.

  1. Gluconic acid production by gad mutant of Klebsiella pneumoniae.

    PubMed

    Wang, Dexin; Wang, Chenhong; Wei, Dong; Shi, Jiping; Kim, Chul Ho; Jiang, Biao; Han, Zengsheng; Hao, Jian

    2016-08-01

    Klebsiella pneumoniae produces many economically important chemicals. Using glucose as a carbon source, the main metabolic product in K. pneumoniae is 2,3-butanediol. Gluconic acid is an intermediate of the glucose oxidation pathway. In the current study, a metabolic engineering strategy was used to develop a gluconic acid-producing K. pneumoniae strain. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. Gluconic acid accumulation by K. pneumoniae Δgad was an acid-dependent aerobic process, with accumulation observed at pH 5.5 or lower, and at higher levels of oxygen supplementation. Under all other conditions tested, 2,3-butanediol was the main metabolic product of the process. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by K. pneumoniae Δgad, and the conversion ratio of glucose to gluconic acid reached 1 g/g. The K. pneumoniae Δgad described in this study is the first genetically modified strain used for gluconic acid production, and this optimized method for gluconic acid production may have important industrial applications. Gluconic acid is an intermediate of this glucose oxidation pathway. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by the K. pneumoniae Δgad strain, and the conversion ratio of glucose to gluconic acid reached 1 g/g. PMID:27339313

  2. Working memory capacity and self-repair behavior in first and second language oral production.

    PubMed

    Mojavezi, Ahmad; Ahmadian, Mohammad Javad

    2014-06-01

    This study explores the relationship between working memory capacity and self-repair behavior in first (L1) and second language (L2) oral production. 40 Iranian intermediate EFL learners participated in this study. Their working memory capacity was measured via a version of listening span test. The participants performed two oral narrative tasks, one in their L2 (English) and one in their L1 (Farsi). Then, they were asked to listen to their own narrations and comment on the repairs they made in their speech. Self-repairs were analyzed and categorized taking into account the participants' stimulated recall comments. Results of the analyses pointed to positive correlations between the participants' working memory capacity and self-repairs in the L2 but not in the L1. Also, results revealed that whereas in the case of L1, the participants effectuated different-information and appropriacy repairs more than error-repairs, in the case of L2 more error-repairs were made. PMID:23709259

  3. Kojic Acid Production from Agro-Industrial By-Products Using Fungi

    PubMed Central

    El-Kady, Ismael A.; Zohri, Abdel Naser A.; Hamed, Shimaa R.

    2014-01-01

    A total of 278 different isolates of filamentous fungi were screened using synthetic medium for respective ability to produce kojic acid. Nineteen, six, and five isolates proved to be low, moderate, and high kojic acid producers, respectively. Levels of kojic acid produced were generally increased when shaking cultivation was used rather than those obtained using static cultivation. A trial for the utilization of 15 agro-industrial wastes or by-products for kojic acid production by the five selected higher kojic acid producer isolates was made. The best by-product medium recorded was molasses for kojic acid. A. flavus numbers 7 and 24 were able to grow and produce kojic acid on only 12 out of 15 wastes or by-products media. The best medium used for kojic acid production by A. flavus number 7 was rice fragments followed by molasses, while the best medium used for kojic acid production by A. flavus number 24 was the molasses followed by orange, pea, and rice fragments. An attempt for production of kojic acid using a 1.5 L laboratory fermentor has been made. Aspergillus flavus number 7 was used and grown on molasses medium; maximum level (53.5 g/L) of kojic acid was obtained after eight days of incubation. PMID:24778881

  4. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield

    PubMed Central

    Yang, Peng; Liu, Wenjing; Cheng, Xuelian; Wang, Jing; Qi, Qingsheng

    2016-01-01

    ABSTRACT 5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production. Many engineered metabolic pathways have been constructed; however, the production yields are still low. In this study, several 5-aminolevulinic acid synthases (ALASs) from different sources were evaluated and compared with respect to their ALA production capacities in an engineered Corynebacterium glutamicum CgS1 strain that can accumulate succinyl-coenzyme A (CoA). A codon-optimized ALAS from Rhodobacter capsulatus SB1003 displayed the best potential. Recombinant strain CgS1/pEC-SB produced 7.6 g/liter ALA using a mineral salt medium in a fed-batch fermentation mode. Employing two-stage fermentation, 12.46 g/liter ALA was produced within 17 h, with a productivity of 0.73 g/liter/h, in recombinant C. glutamicum. Through overexpression of the heterologous nonspecific ALA exporter RhtA from Escherichia coli, the titer was further increased to 14.7 g/liter. This indicated that strain CgS1/pEC-SB-rhtA holds attractive industrial application potential for the future. IMPORTANCE In this study, a two-stage fermentation strategy was used for production of the value-added nonprotein amino acid 5-aminolevulinic acid from glucose and glycine in a generally recognized as safe (GRAS) host, Corynebacterium glutamicum. The ALA titer represented the highest in the literature, to our knowledge. This high production capacity, combined with the potential easy downstream processes, made the recombinant strain an attractive candidate for industrial use in the future. PMID:26921424

  5. Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices.

    PubMed

    Hernández-Herrero, J A; Frutos, M J

    2015-04-15

    Model juices at pH 3.7 were prepared with different combinations of ascorbic acid, rutin (quercetin 3-rutinoside) and concentrated anthocyanin extract of plums (cv. Black Gold). The anthocyanins in the concentrated extract were cyanidin 3-glucoside and cyanidin 3-rutinoside, in a proportion of 76% and 24% respectively. The model juices were stored during 17 weeks in darkness at 20 °C. The colour stability was improved by the presence of rutin and strongly damaged by the ascorbic acid. The fortification of anthocyanin model juices with ascorbic acid originated the degradation of most of anthocyanins. However, anthocyanins improved ascorbic acid stability during storage. The copigmentation of anthocyanin and rutin showed a beneficial effect on colour stability from the 5 weeks of storage. In model juices prepared exclusively with purified plum extract a high correlation (R(2)=0.881) between anthocyanins and antioxidant capacity was found. PMID:25466051

  6. Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices.

    PubMed

    Hernández-Herrero, J A; Frutos, M J

    2015-04-15

    Model juices at pH 3.7 were prepared with different combinations of ascorbic acid, rutin (quercetin 3-rutinoside) and concentrated anthocyanin extract of plums (cv. Black Gold). The anthocyanins in the concentrated extract were cyanidin 3-glucoside and cyanidin 3-rutinoside, in a proportion of 76% and 24% respectively. The model juices were stored during 17 weeks in darkness at 20 °C. The colour stability was improved by the presence of rutin and strongly damaged by the ascorbic acid. The fortification of anthocyanin model juices with ascorbic acid originated the degradation of most of anthocyanins. However, anthocyanins improved ascorbic acid stability during storage. The copigmentation of anthocyanin and rutin showed a beneficial effect on colour stability from the 5 weeks of storage. In model juices prepared exclusively with purified plum extract a high correlation (R(2)=0.881) between anthocyanins and antioxidant capacity was found.

  7. Global exploration and production capacity for platinum-group metals from 1995 through 2015

    USGS Publications Warehouse

    Wilburn, David R.

    2012-01-01

    Platinum-group metals (PGMs) are required in a variety of commercial, industrial, and military applications for many existing and emerging technologies, yet the United States is highly dependent on foreign sources of PGMs. Information on global exploration for PGMs since 1995 has been used in this study as a basis for identifying locations where the industry has determined that exploration has provided data sufficient to warrant development of a new mine or expansion of an existing operation or where a significant increase in capacity for PGMs is anticipated by 2015. Discussions include an overview of the industry and the selected sites, factors affecting mineral supply, and circumstances leading to the development of mineral properties with the potential to affect mineral supply. Of the 52 sites or regional operations that were considered in this analysis, 16 sites were producing before 1995, 28 sites commenced production from 1995 through 2010, and 8 sites were expected to begin production from 2011 through 2015 if development plans came to fruition. The United States imports PGMs primarily from Canada, Russia, South Africa, and Zimbabwe to meet increasing demand for these materials in a variety of specialized and high-tech applications. Feed sources of PGMs are changing in South Africa and Russia, which together accounted for about 89 percent of platinum production and 82 percent of palladium production in 2009. A greater amount of South African PGM capacity is likely to come from deeper, higher cost Upper Group Reef seam 2 deposits and deposits in the Eastern Bushveld area. Future Russian PGM capacity is likely to come from ore zones with generally lower PGM content and different platinum-to-palladium ratios than the nickel-rich ore that dominated PGM supply in the 1990s. Because PGM supply from Canada and Russia is derived as a byproduct of copper and nickel mining, the PGM supply from these countries is influenced by economic, environmental, political, and

  8. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    PubMed

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  9. A new approach to microbial production of gallic acid

    PubMed Central

    Bajpai, Bhakti; Patil, Shridhar

    2008-01-01

    In a new approach to microbial gallic acid production by Aspergillus fischeri MTCC 150, 40gL−1 of tannic acid was added in two installments during the bioconversion phase of the process (25gL−1 and 15gL−1 at 32 and 44h respectively). The optimum parameters for the bioconversion phase were found to be temperature: 35°C, pH: slightly acidic (3.3–3.5), aeration: nil and agitation: 250 rpm. A maximum of 71.4% conversion was obtained after 71h fermentation with 83.3% product recovery. The yield was 7.35 g of gallic acid per g of biomass accumulated and the fermenter productivity was 0.56 g of gallic acid produced per liter of medium per hour. PMID:24031294

  10. Effects of feeding omega-3-fatty acids on fatty acid composition and quality of bovine sperm and on antioxidative capacity of bovine seminal plasma.

    PubMed

    Gürler, Hakan; Calisici, Oguz; Calisici, Duygu; Bollwein, Heinrich

    2015-09-01

    The aim of the present study was to examine the effects of feeding alpha-linolenic (ALA) acid on fatty acid composition and quality of bovine sperm and on antioxidative capacity of seminal plasma. Nine bulls (ALA bulls) were fed with 800 g rumen-resistant linseed oil with a content of 50% linolenic acid and eight bulls with 400 g palmitic acid (PA bulls). Sperm quality was evaluated for plasma membrane and acrosome intact sperm (PMAI), the amount of membrane lipid peroxidation (LPO), and the percentage of sperm with a high DNA fragmentation index (DFI). Fatty acid content of sperm was determined using gas chromatography. Total antioxidant capacity, glutathione peroxidase, and superoxide dismutase activity were determined in seminal plasma. Feeding ALA increased (P < 0.05) the docosahexaenoic acid (DHA) content in bulls whereas in PA bulls did not change. PMAI increased after cryopreservation in ALA bulls as well as in PA bulls during the experiment period (P < 0.005). LPO of sperm directly after thawing did not change during the study period in ALA group, but decreased in PA group (P < 0.006). After 3h of incubation LPO increased in the ALA group (P < 0.02), while LPO did not differ between phases within groups. In conclusion, feeding of neither saturated nor polyunsaturated fatty acids affect the antioxidant levels in seminal plasma. Both saturated as well as polyunsaturated fatty acids had positive effects on quality of cryopreserved bovine sperm, although the content of docosahexaenoic acid in sperm membranes increased only in ALA bulls.

  11. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production

    SciTech Connect

    Franz, A.; Burgstaller, W.; Schinner, F. )

    1991-03-01

    In the presence of insoluble metal oxides (industrial filter dust, zinc oxide, synthetic mixture of metal oxides), Penicillium simplicissimum developed the ability to excrete considerable amounts of citric acid (>100 mM). Parallel with the increase of citric acid concentration in the culture broth, zinc was solubilized from zinc oxide. The adsorption of filter dust onto the mycelium (the pellets formed were less than 1 mm in diameter) was required for not only the citric acid excretion but also the leaching of zinc. When the filter dust was replaced with a synthetic mixture of metal oxides or with zinc oxide in combination with trace elements, levels of adsorption and citric acid production were observed to be similar to those in experiments where industrial filter dust was used. The two most important properties of the filter dust were its heavy-metal content and its buffering capacity. These properties were simulated by adding heavy metals in soluble form (as chlorides, sulfates, or nitrates) or soluble buffers to the medium. Both heavy metals and buffers were not able to induce a citric acid efflux. As with citric acid production by Aspergillus niger, the addition of manganese lowered citric acid excretion (by 40% with metal oxide-induced citric acid efflux and by 100% with urea-induced citric acid efflux). Copper antagonized the effect of manganese. The mechanism for the bulk of citric acid excretion by P. simplicissimum, however, seemed to be different from that described for citric acid accumulation by A. niger. Because of the inefficiency of metals in solubilized form and of soluble buffers to induce a strong citric acid efflux, adsorption of an insoluble metal compound (zinc oxide) turned out to be essential.

  12. Pressurized water extraction of β-glucan enriched fractions with bile acids-binding capacities obtained from edible mushrooms.

    PubMed

    Palanisamy, Marimuthu; Aldars-García, Laila; Gil-Ramírez, Alicia; Ruiz-Rodríguez, Alejandro; Marín, Francisco R; Reglero, Guillermo; Soler-Rivas, Cristina

    2014-01-01

    A pressurized water extraction (PWE) method was developed in order to extract β-glucans with bile acids-binding capacities from cultivated mushrooms (Agaricus bisporus, Lentinula edodes, and Pleurotus ostreatus) to be used as supplements to design novel foods with hypocholesterolemic properties. Extraction yields were higher in individual than sequential extractions being the optimal extraction parameters: 200°C, 5 cycles of 5 min each at 10.3 MPa. The crude polysaccharide (PSC) fractions, isolated from the PWE extracts contained mainly β-glucans (including chitooligosaccharides deriving from chitin hydrolysis), α-glucans, and other PSCs (hetero-/proteo-glucans) depending on the extraction temperature and mushroom strain considered. The observed bile acids-binding capacities of some extracts were similar to a β-glucan enriched fraction obtained from cereals. PMID:24399760

  13. Effects of Cultivar, Fruit Number and Reflected Photosynthetically Active Radiation on Fragaria × ananassa Productivity and Fruit Ellagic Acid and Ascorbic Acid Concentrations

    PubMed Central

    ATKINSON, C. J.; DODDS, P. A. A.; FORD, Y. Y.; LE MIÈRE, J.; TAYLOR, J. M.; BLAKE, P. S.; PAUL, N.

    2006-01-01

    • Background and Aims A number of strawberry varieties were surveyed for their total ellagic acid concentration, and attempts were made to determine if ellagic acid and ascorbic acid concentrations of two strawberry cultivars could be increased by polythene reflective mulches. • Methods After adjusting crop yields and cultivation using polythene mulches with two different PAR reflective capacities, field- and polytunnel-grown strawberries were analysed for ellagic acid and ascorbic acid concentrations by HPLC. Comparative measurements of yield and fruit quality were determined along with plant developmental changes. • Key Results Ellagic acid concentration varied widely with strawberry cultivar (60–341 µg g−1 frozen weight), as did the ratio of conjugated ellagic acid : free ellagic acid. Also, there was significant year-to-year variation in total ellagic acid concentration with some cultivars. Mulches with different reflective capacities impacted on strawberry production; highly reflective mulches significantly increased growth and yield, the latter due to increases in fruit size and number. • Conclusions Highly reflective mulches significantly increased total concentrations of ellagic acid and ascorbic acid relative to control in fruit of different cultivars. The potential of agronomic practices to enhance the concentration and amounts of these important dietary bioactive compounds is discussed. PMID:16423867

  14. Production of eicosapentaenoic acid by marine bacteria.

    PubMed

    Yazawa, K; Araki, K; Okazaki, N; Watanabe, K; Ishikawa, C; Inoue, A; Numao, N; Kondo, K

    1988-01-01

    About 5,000 strains of marine microorganisms were screened for eicosapentaenoic acid (EPA)-producing ability, which was detected in 88 of them. All of the latter were found to be obligate aerobic, Gram-negative, motile, short rod-shaped bacteria. One strain, designated as SCRC-8132, showed a doubling time of 30 min at 25 degrees C and produced 20 mg/liter (4 mg/g dry cells) when cultured in a P-Y-M-Glucose medium for 18 h. The EPA to total fatty acids ratio was 24%. The strain produced 26 mg EPA/liter (15 mg/g dry cells) when cultured at 4 degrees C for 5 days, the EPA ratio being increased to 40%. PMID:2834356

  15. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC

    SciTech Connect

    Pyda, Marek {nmn}; Wunderlich, Bernhard {nmn}

    2005-11-01

    A study of the glass transition of an amorphous and a semicrystalline poly(lactic acid) (PLA) is performed with adiabatic calorimetry, differential scanning calorimetry (DSC), and temperature-modulated DSC (TMDSC). The reversing, total, and nonreversing apparent heat capacities of samples with different contents of L- and D-lactic acid and with various thermal histories were evaluated. Different modes of TMDSC analyses of amorphous and semicrystalline PLA were compared to the total heat capacity from standard DSC. The enthalpy relaxation and the cold crystallization in the glass transition region are largely irreversible. The melting is largely irreversible, but a 100% reversing fraction is observed at low temperatures from 375 to 420 K, which becomes small inside the major melting peak at about 440 K. From the TMDSC of amorphous PLA, the combined information on endothermic and exothermic enthalpy relaxation and glass transition were deconvoluted into the reversing and nonreversing components. The glass transition temperature from the reversing heat capacity and the enthalpy relaxation peaks from the nonreversing component shift to higher temperature for increasingly annealed PLA. The relaxation times for aging decrease on cooling until the glass transition is reached and then increase. This behavior is linked to cooperativity. All quantitative thermal analyses are based on the heat capacity of the solid and liquid, evaluated earlier with the advanced thermal analysis system (ATHAS).

  16. Production of cyclopiazonic acid by Aspergillus tamarii Kita.

    PubMed Central

    Dorner, J W

    1983-01-01

    Production of the mycotoxin cyclopiazonic acid by Aspergillus tamarii Kita is reported for the first time. Examination of 23 isolates of the fungus showed that 22 produced the toxin under the culture conditions utilized. PMID:6660879

  17. Biotechnological production of muconic acid: current status and future prospects.

    PubMed

    Xie, Neng-Zhong; Liang, Hong; Huang, Ri-Bo; Xu, Ping

    2014-01-01

    Muconic acid (MA), a high value-added bio-product with reactive dicarboxylic groups and conjugated double bonds, has garnered increasing interest owing to its potential applications in the manufacture of new functional resins, bio-plastics, food additives, agrochemicals, and pharmaceuticals. At the very least, MA can be used to produce commercially important bulk chemicals such as adipic acid, terephthalic acid and trimellitic acid. Recently, great progress has been made in the development of biotechnological routes for MA production. This present review provides a comprehensive and systematic overview of recent advances and challenges in biotechnological production of MA. Various biological methods are summarized and compared, and their constraints and possible solutions are also described. Finally, the future prospects are discussed with respect to the current state, challenges, and trends in this field, and the guidelines to develop high-performance microbial cell factories are also proposed for the MA production by systems metabolic engineering. PMID:24751381

  18. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  19. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  20. Municipal solid waste compost application improves productivity, polyphenol content, and antioxidant capacity of Mesembryanthemum edule.

    PubMed

    Lakhdar, Abdelbasset; Falleh, Hanen; Ouni, Youssef; Oueslati, Samia; Debez, Ahmed; Ksouri, Riadh; Abdelly, Chedly

    2011-07-15

    Organic wastes were successfully used as soil amendment to improve agrosystems productivity. Yet, the effectiveness of this practice to enhance plant antioxidant capacities has received little attention. Here, we assess the effect of municipal solid waste (MSW) compost (at 40 t ha(-1)) on growth, polyphenol contents and antioxidant activities of Mesembryanthemum edule. MSW compost application significantly increased the soil contents of carbon, nitrogen, calcium, phosphorus and potassium. This was associated with higher nutrient (N, P, and K) uptake, which likely led to the significant improvement of the plant biomass and relative growth rate (RGR) (+93% on average) as compared to the control. In the same way, the fertilizing effect of the added organic matter significantly enhanced the antioxidant potential M. edule, assessed by radical scavenging activity, iron reducing power and β-carotene bleaching capacity. This was associated with significantly higher antioxidant contents, mainly total phenols and flavonoids. Heavy metal (Pb, Cd, Cu, and Zn) concentrations were slightly increased upon compost application, but remained lower than phytotoxic values. Overall, our results point out that short-term MSW compost application at 40 t ha(-1) is efficient in enhancing the productivity together with the antioxidant potentiality of M. edule without any adverse environmental impact. PMID:21605936

  1. Improve large area uniformity and production capacity of laser interference lithography with beam flattening device

    NASA Astrophysics Data System (ADS)

    Yang, Yin-Kuang; Wu, Yu-Xiang; Lin, Te-Hsun; Yu, Chun-Wen; Fu, Chien-Chung

    2016-03-01

    Laser interference lithography (LIL) is a maskless lithography technique with many advantages such as simple optical design, inexpensive, infinite depth of focus, and large area patterning with single exposure. However, the intensity of normal laser beam is Gaussian distribution. In order to obtain large area uniform structure, we have to expand the laser beam much bigger than the wafer and use only the center part of the beam. Resulting in wasting lots of energy and the production capacity decrease. In this study, we designed a beam shaping device which consists of two parallel fused silicon optical window with different coating on both side. Two optical window form an air thin film. When the expanded laser beam pass through the device, the beam will experience many refraction and reflection between two optical window and interference with each other. The transmittance of laser beam will depend on the incident angle. The output intensity distribution will change from Gaussian distribution to a flat top distribution. In our experiment, we combined the beam shaping device with a Lloyd's mirror LIL system. Experiment results indicated that the LIL system with beam shaping device can obtain large area uniform pattern. And compare with the traditional Lloyd's mirror LIL system, the exposure time is shorten up to 4.5 times. In conclusion, this study design a beam flattening device for LIL system. The flat top beam can improve the large area uniformity and the production capacity of LIL. Making LIL more suitable for industry application.

  2. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.

    PubMed

    Tolonen, Emma-Tuulia; Sarpola, Arja; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2014-12-01

    The aim of this research was to investigate whether by-products from quicklime manufacturing could be used instead of commercial quicklime (CaO) or hydrated lime (Ca(OH)2), which are traditionally used as neutralization chemicals in acid mine drainage treatment. Four by-products were studied and the results were compared with quicklime and hydrated lime. The studied by-products were partly burnt lime stored outdoors, partly burnt lime stored in a silo, kiln dust and a mixture of partly burnt lime stored outdoors and dolomite. Present application options for these by-products are limited and they are largely considered waste. Chemical precipitation experiments were performed with the jar test. All the studied by-products removed over 99% of Al, As, Cd, Co, Cu, Fe, Mn, Ni, Zn and approximately 60% of sulphate from acid mine drainage. However, the neutralization capacity of the by-products and thus the amount of by-product needed as well as the amount of sludge produced varied. The results indicated that two out of the four studied by-products could be used as an alternative to quicklime or hydrated lime for acid mine drainage treatment. PMID:25193795

  3. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  4. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions

    SciTech Connect

    Blum, U.

    1998-04-01

    Reversible sorption of phenolic acids by soils may provide some protection to phenolic acids from microbial degradation. In the absence of microbes, reversible sorption 35 days after addition of 0.5--3 {micro}mol/g of ferulic acid or p-coumaric acid was 8--14% in Cecil A{sub p} horizon and 31--38% in Cecil B{sub t} horizon soil materials. The reversibly sorbed/solution ratios (r/s) for ferulic acid or p-coumaric acid ranged from 0.12 to 0.25 in A{sub p} and 0.65 to 0.85 in B{sub t} horizon soil materials. When microbes were introduced, the r/s ratio for both the A{sub p} and B{sub t} horizon soil materials increased over time up to 5 and 2, respectively, thereby indicating a more rapid utilization of solution phenolic acids over reversibly sorbed phenolic acids. The increase in r/s ratio and the overall microbial utilization of ferulic acid and/or p-coumaric acid were much more rapid in A{sub p} than in B{sub t} horizon soil materials. Reversible sorption, however, provided protection of phenolic acids from microbial utilization for only very short periods of time. Differential soil fixation, microbial production of benzoic acids (e.g., vanillic acid and p-hydroxybenzoic acid) from cinnamic acids (e.g., ferulic acid and p-coumaric acid, respectively), and the subsequent differential utilization of cinnamic and benzoic acids by soil microbes indicated that these processes can substantially influence the magnitude and duration of the phytotoxicity of individual phenolic acids.

  5. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.

    PubMed

    Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Mohan, S Venkata

    2015-04-01

    Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition.

  6. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  7. Influence of thermal treatment on color, enzyme activities, and antioxidant capacity of innovative pastelike parsley products.

    PubMed

    Kaiser, Andrea; Brinkmann, Maike; Carle, Reinhold; Kammerer, Dietmar R

    2012-03-28

    Conventional spice powders are often characterized by low sensory quality and high microbial loads. Furthermore, genuine enzymes are only inhibited but not entirely inactivated upon drying, so that they may regain their activity upon rehydration of dried foods. To overcome these problems, initial heating was applied in the present study as the first process step for the production of innovative pastelike parsley products. For this purpose, fresh parsley was blanched (80, 90, and 100 °C for 1-10 min) and subsequently comminuted to form a paste. Alternatively, mincing was carried out prior to heat treatment. Regardless of temperature, the color of the latter product did not show any change after heating for 1 min. With progressing exposure time the green color turned to olive hues due to marked pheophytin formation. Inactivation of genuine peroxidase (POD) and polyphenol oxidase (PPO) was achieved at all temperature-time regimes applied. In contrast, the parsley products obtained after immediate water-blanching were characterized by brighter green colors and enhanced pigment retention. With the exception of the variants water-blanched at 80 °C, POD and PPO were completely inactivated at any of the thermal treatments. Furthermore, in water-blanched samples, antioxidant capacities as determined by the TEAC and FRAP assays were even enhanced compared to unheated parsley, whereas a decrease of phenolic contents could not be prevented. Consequently, the innovative process presented in this study allows the production of novel herb and spice products characterized by improved sensory quality as compared to conventional spice products.

  8. Mutagenicity and genotoxicity of sorbic acid-amine reaction products.

    PubMed

    Ferrand, C; Marc, F; Fritsch, P; Cassand, P; de Saint Blanquat, G

    2000-11-01

    Sorbic acid (E200) and its salts (potassium and calcium sorbate: E202 and E203) are allowed for use as preservatives in numerous processed foods. Sorbic acid had a conjugated system of double bonds which makes it susceptible to nucleophilic attack, sometimes giving mutagenic products. Under conditions typical of food processing (50-80 degrees C), we analysed the cyclic derivatives resulting from a double addition reaction between sorbic acid and various amines. Mutagenesis studies, involving Ames' test and genotoxicity studies with HeLa cells and plasmid DNA, showed that none of the products studied presented either mutagenic or genotoxic activities.

  9. Solid substrate fermentation of cassava fibrous residue for production of alpha-amylase, lactic acid and ethanol.

    PubMed

    Ray, Ramesh C; Mohapatra, Sabita; Panda, Shrutirupa; Kar, Shaktimay

    2008-01-01

    There is serious concern about the disposal of solid residues left after large scale extraction of starch from cassava. Owing to the high starch content (55-65% on dry weight basis) and organic matter of these wastes, an attempt has been made to utilize it for the production of three bioproducts, i.e. alpha-amylase, lactic acid and ethanol in solid substrate fermentation by incubating the solid residue at different moisture holding capacity (40-80%) and incubation period (12- 60 hr for alpha-amylase, 24-144 hr for ethanol and 2-10 days for lactic acid). The highest product yield was obtained at 60% moisture holding capacity of the residue and period of incubation varied from 36 hr (alpha-amylase), 120 hr (ethanol) to 6 days (lactic acid). This study showed that the solid residues from cassava starch factories could serve as a low-cost substrate for bioproducts production.

  10. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  11. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  12. Metabolic engineering of biocatalysts for carboxylic acids production

    PubMed Central

    Liu, Ping; Jarboe, Laura R.

    2012-01-01

    Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering, like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on Saccharomyces cerevisiae and Escherichia coli, as well as the strategies to improve tolerance towards these chemicals. PMID:24688671

  13. A Comparative Overview of Prescription Omega-3 Fatty Acid Products

    PubMed Central

    Ito, Matthew K.

    2015-01-01

    An estimated 25% of adults in the United States have elevated triglyceride (TG) levels. This is of particular concern given the evidence for a causal role of TG in the pathway of cardiovascular (CV) disease. Approved prescription omega-3 fatty acid products (RxOM3FAs) contain the long-chain fatty acids docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) and are effective options for the treatment of high TG levels. RxOM3FAs that contain both EPA and DHA include omega-3-acid ethyl esters (ethyl esters of EPA and DHA; brand and generic products) and omega-3-carboxylic acids (free fatty acids primarily composed of EPA and DHA), while the RxOM3FA icosapent ethyl (the ethyl ester of EPA) contains EPA only. All RxOM3FA products produce substantial TG reduction and other beneficial effects on atherogenic lipid and inflammation-related parameters, blood pressure, and heart rate variability, but products that contain DHA may raise low-density lipoprotein-cholesterol (LDL-C). This commentary provides an overview of hypertriglyceridemia while summarizing the pharmacology, efficacy, and safety of prescription RxOM3FAs. PMID:26681905

  14. Acid production by oral strains of Candida albicans and lactobacilli.

    PubMed

    Klinke, T; Kneist, S; de Soet, J J; Kuhlisch, E; Mauersberger, S; Forster, A; Klimm, W

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed, pure resting-cell suspensions were obtained by culturing a total of 28 oral isolates comprising the species C. albicans, Lactobacillus rhamnosus, Lactobacillus paracasei paracasei, Lactobacillus paracasei tolerans and Lactobacillus delbrueckii lactis. Acid production from glucose was determined at a constant pH of 7.0, 5.5, 5.0 and 4.0 by repeated titrations with NaOH in an automated pH-stat system. Acid formation rates of yeast and lactobacilli proved to be similar at both neutral and low pH, while in a moderately acidic environment C. albicans produced less acid than the lactobacilli. Ion chromatographic analysis of the cell-free medium after titration revealed pyruvate to be the predominant organic acid anion secreted by C. albicans. The proportion of organic acids to overall acid production by the yeast was below 10% at neutral conditions, in contrast to 42-66% at pH 4.0. Compared to lactobacilli, yeast required a concentration of glucose that was about 50 times higher to allow acid production at half the maximum speed. Considering the clinical data in the literature about the frequency and proportions of microorganisms present in early childhood caries lesions, the contribution of oral lactobacilli as well as C. albicans to overall microbial acid formation appears to be important. PMID:19246906

  15. Acid production by oral strains of Candida albicans and lactobacilli.

    PubMed

    Klinke, T; Kneist, S; de Soet, J J; Kuhlisch, E; Mauersberger, S; Forster, A; Klimm, W

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed, pure resting-cell suspensions were obtained by culturing a total of 28 oral isolates comprising the species C. albicans, Lactobacillus rhamnosus, Lactobacillus paracasei paracasei, Lactobacillus paracasei tolerans and Lactobacillus delbrueckii lactis. Acid production from glucose was determined at a constant pH of 7.0, 5.5, 5.0 and 4.0 by repeated titrations with NaOH in an automated pH-stat system. Acid formation rates of yeast and lactobacilli proved to be similar at both neutral and low pH, while in a moderately acidic environment C. albicans produced less acid than the lactobacilli. Ion chromatographic analysis of the cell-free medium after titration revealed pyruvate to be the predominant organic acid anion secreted by C. albicans. The proportion of organic acids to overall acid production by the yeast was below 10% at neutral conditions, in contrast to 42-66% at pH 4.0. Compared to lactobacilli, yeast required a concentration of glucose that was about 50 times higher to allow acid production at half the maximum speed. Considering the clinical data in the literature about the frequency and proportions of microorganisms present in early childhood caries lesions, the contribution of oral lactobacilli as well as C. albicans to overall microbial acid formation appears to be important.

  16. Aluminum: A neurotoxic product of acid rain

    SciTech Connect

    Martin, R.B.

    1994-07-01

    Two separate but converging concerns have resulted in an upsurge in research on aluminum ion in the past 15 years. Acid rain releases Al(III) from soils into fresh waters, where it is for the first time accessible to living organisms. Though long considered benign, Al(III) has recently been found to cause bone and neurological disorders, while its role in Alzheimer`s disease remains uncertain. The greater availability of Al(III), coupled with its demonstrated harmful effects, challenges chemists to describe its chemistry and biochemistry. Many interactions of Al(III) have been described, but several questions remain unsolved. A great deal of work not within the scope of this Account is described in several edited volumes. (This Account uses Al(III) as a generic term for the 3+ ion when a specific form is not indicated). 96 refs., 2 figs., 2 tabs.

  17. Automatic flow system for sequential determination of ABTS*+ scavenging capacity and Folin-Ciocalteu index: a comparative study in food products.

    PubMed

    Magalhães, Luís M; Segundo, Marcela A; Reis, Salette; Lima, José L F C; Tóth, Ildikó V; Rangel, António O S S

    2007-06-01

    In the present work, an automatic flow procedure for the sequential spectrophotometric determination of Folin-Ciocalteu reducing capacity (FC assay) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS*+) scavenging capacity expressed as the trolox equivalent (TEAC assay) is proposed for a comparative study of antioxidant properties in food products. Exploiting the flexibility of flow management associated to the computer control offered by multisyringe flow injection analysis, both methodologies were carried out in the same manifold using gallic acid and trolox as standard compounds. The proposed system configuration allowed the performance of each method separately or in tandem, providing 24 determinations per hour, which accounts for its application in routine analysis. The present methodology was applied to a large number of beverages (n=72), namely red and white wines, herbal and tea infusions, juices and beers. The results obtained showed that FC reducing capacity and TEAC values of red wines were significantly different from those obtained for the other beverages, while tea infusions provided significantly higher TEAC values when compared to white wines, herbal infusions, juices and beers. A good correlation was found between TEAC and FC reducing capacity (R>0.9) for red wines, herbal and tea infusions, and beers. For these beverages, similar slope values were found (106-140 mg L(-1) of gallic acid per mM of Trolox), except for beers that showed a higher response for FC assay. These results provided evidence that the correlation between these assays vary according to the type of sample, reinforcing the idea that more than one method should be used for evaluation of antioxidant capacity.

  18. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  19. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  20. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  1. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  2. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  3. NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY

    EPA Science Inventory

    Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane p...

  4. Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products.

    PubMed

    Diaz, Maria; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martin, M Cruz; Alvarez, Miguel A

    2016-01-01

    Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria-both spoilage and pathogenic. However, the capacity of biogenic amine (BA)-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products. Strains of all the tested species - except for L. vaginalis-were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms. PMID:27242675

  5. Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products

    PubMed Central

    Diaz, Maria; Ladero, Victor; del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martin, M. Cruz; Alvarez, Miguel A.

    2016-01-01

    Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria—both spoilage and pathogenic. However, the capacity of biogenic amine (BA)-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products. Strains of all the tested species - except for L. vaginalis—were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms. PMID:27242675

  6. A vectorial capacity product to monitor changing malaria transmission potential in epidemic regions of Africa

    USGS Publications Warehouse

    Ceccato, Pietro; Vancutsem, Christelle; Klaver, Robert; Rowland, James; Connor, Stephen J.

    2012-01-01

    Rainfall and temperature are two of the major factors triggering malaria epidemics in warm semi-arid (desert-fringe) and high altitude (highland-fringe) epidemic risk areas. The ability of the mosquitoes to transmit Plasmodium spp. is dependent upon a series of biological features generally referred to as vectorial capacity. In this study, the vectorial capacity model (VCAP) was expanded to include the influence of rainfall and temperature variables on malaria transmission potential. Data from two remote sensing products were used to monitor rainfall and temperature and were integrated into the VCAP model. The expanded model was tested in Eritrea and Madagascar to check the viability of the approach. The analysis of VCAP in relation to rainfall, temperature and malaria incidence data in these regions shows that the expanded VCAP correctly tracks the risk of malaria both in regions where rainfall is the limiting factor and in regions where temperature is the limiting factor. The VCAP maps are currently offered as an experimental resource for testing within Malaria Early Warning applications in epidemic prone regions of sub-Saharan Africa. User feedback is currently being collected in preparation for further evaluation and refinement of the VCAP model.

  7. Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products.

    PubMed

    Diaz, Maria; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martin, M Cruz; Alvarez, Miguel A

    2016-01-01

    Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria-both spoilage and pathogenic. However, the capacity of biogenic amine (BA)-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products. Strains of all the tested species - except for L. vaginalis-were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.

  8. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering.

    PubMed

    Shao, Yafang; Xu, Feifei; Sun, Xiao; Bao, Jinsong; Beta, Trust

    2014-01-15

    This study investigated differences in total phenolic content (TPC), antioxidant capacity, and phenolic acids in free, conjugated and bound fractions of white (unpolished), red and black rice at 1-, 2-, and 3-weeks of grain development after flowering and at maturity. Unlike the TPC (mg/100g) of white rice (14.6-33.4) and red rice (66.8-422.2) which was significantly higher at 1-week than at later stages, the TPC of black rice (56.5-82.0) was highest at maturity. The antioxidant capacity measured by DPPH radical scavenging and ORAC methods generally followed a similar trend as TPC. Only black rice had detectable anthocyanins (26.5-174.7mg/100g). Cyanidin-3-glucoside (C3G) and peonidin-3-glucoside (P3G) were the main anthocyanins in black rice showing significantly higher levels at 2- and 3-weeks than at 1-week development and at maturity. At all stages, the phenolic acids existed mainly in the bound form as detected by HPLC and confirmed by LC-MS/MS. Black rice (20.1-31.7mg/100g) had higher total bound phenolic acids than white rice and red rice (7.0-11.8mg/100g). Protocatechuic acid was detected in red rice and black rice with relatively high levels at 1-week development (1.41mg/100g) and at maturity (4.48mg/100g), respectively. Vanillic acid (2.4-5.4mg/100g) was detected only in black rice where it peaked at maturity. p-Coumaric acid (<3.5mg/100g) did not differ significantly at most stages with somewhat high levels at 1-week for red and black rice. Ferulic acid (4.0-17.9mg/100g), the most abundant bound phenolic acid, had an inconsistent trend with higher levels being observed in black rice where it peaked at maturity. Isoferulic acid levels (0.8-1.6mg/100g) were generally low with slightly elevated values being observed at maturity. Overall black rice had higher total bound phenolic acids than white and red rice while white rice at all stages of development after flowering.

  9. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  10. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage.

    PubMed

    Sheng, Jiangyun; Baldeck, Jeremiah D; Nguyen, Phuong T M; Quivey, Robert G; Marquis, Robert E

    2010-07-01

    Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. L-Malic acid was rapidly fermented to L-lactic acid and CO(2) by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses.

  11. Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial myocardium via PPARγ activation?

    PubMed

    Anderson, Ethan J; Thayne, Kathleen A; Harris, Mitchel; Shaikh, Saame Raza; Darden, Timothy M; Lark, Daniel S; Williams, John Mark; Chitwood, W Randolph; Kypson, Alan P; Rodriguez, Evelio

    2014-09-10

    Abstract Studies in experimental models suggest that n-3 polyunsaturated fatty acids (PUFAs) improve metabolic and anti-inflammatory/antioxidant capacity of the heart, although the mechanisms are unclear and translational evidence is lacking. In this study, patients ingested a moderately high dose of n-3 PUFAs (3.4 g/day eicosapentaenoic (EPA) and doxosahexaenoic acid (DHA) ethyl-esters) for a period of 2-3 weeks before having elective cardiac surgery. Blood was obtained before treatment and at the time of surgery, and myocardial tissue from the right atrium was also dissected during surgery. Blood EPA levels increased and myocardial tissue EPA and DHA levels were significantly higher in n-3 PUFA-treated patients compared with untreated, standard-of-care control patients. Interestingly, n-3 PUFA patients had greater nuclear transactivation of peroxisome proliferator-activated receptor-γ (PPARγ), fatty acid metabolic gene expression, and enhanced mitochondrial respiration supported by palmitoyl-carnitine in the atrial myocardium, despite no difference in mitochondrial content. Myocardial tissue from n-3 PUFA patients also displayed greater expression and activity of key antioxidant/anti-inflammatory enzymes. These findings lead to our hypothesis that PPARγ activation is a mechanism by which fish oil n-3 PUFAs enhance mitochondrial fatty acid oxidation and antioxidant capacity in human atrial myocardium, and that this preoperative therapeutic regimen may be optimal for mitigating oxidative/inflammatory stress associated with cardiac surgery.

  12. Do Fish Oil Omega-3 Fatty Acids Enhance Antioxidant Capacity and Mitochondrial Fatty Acid Oxidation in Human Atrial Myocardium via PPARγ Activation?

    PubMed Central

    Thayne, Kathleen A.; Harris, Mitchel; Shaikh, Saame Raza; Darden, Timothy M.; Lark, Daniel S.; Williams, John Mark; Chitwood, W. Randolph; Kypson, Alan P.; Rodriguez, Evelio

    2014-01-01

    Abstract Studies in experimental models suggest that n-3 polyunsaturated fatty acids (PUFAs) improve metabolic and anti-inflammatory/antioxidant capacity of the heart, although the mechanisms are unclear and translational evidence is lacking. In this study, patients ingested a moderately high dose of n-3 PUFAs (3.4 g/day eicosapentaenoic (EPA) and doxosahexaenoic acid (DHA) ethyl-esters) for a period of 2–3 weeks before having elective cardiac surgery. Blood was obtained before treatment and at the time of surgery, and myocardial tissue from the right atrium was also dissected during surgery. Blood EPA levels increased and myocardial tissue EPA and DHA levels were significantly higher in n-3 PUFA-treated patients compared with untreated, standard-of-care control patients. Interestingly, n-3 PUFA patients had greater nuclear transactivation of peroxisome proliferator-activated receptor-γ (PPARγ), fatty acid metabolic gene expression, and enhanced mitochondrial respiration supported by palmitoyl-carnitine in the atrial myocardium, despite no difference in mitochondrial content. Myocardial tissue from n-3 PUFA patients also displayed greater expression and activity of key antioxidant/anti-inflammatory enzymes. These findings lead to our hypothesis that PPARγ activation is a mechanism by which fish oil n-3 PUFAs enhance mitochondrial fatty acid oxidation and antioxidant capacity in human atrial myocardium, and that this preoperative therapeutic regimen may be optimal for mitigating oxidative/inflammatory stress associated with cardiac surgery. Antioxid. Redox Signal. 21, 1156–1163. PMID:24597798

  13. Global exploration and production capacity for platinum-group metals from 1995 through 2015

    USGS Publications Warehouse

    Wilburn, David R.

    2012-01-01

    Platinum-group metals (PGMs) are required in a variety of commercial, industrial, and military applications for many existing and emerging technologies, yet the United States is highly dependent on foreign sources of PGMs. Information on global exploration for PGMs since 1995 has been used in this study as a basis for identifying locations where the industry has determined that exploration has provided data sufficient to warrant development of a new mine or expansion of an existing operation or where a significant increase in capacity for PGMs is anticipated by 2015. Discussions include an overview of the industry and the selected sites, factors affecting mineral supply, and circumstances leading to the development of mineral properties with the potential to affect mineral supply. Of the 52 sites or regional operations that were considered in this analysis, 16 sites were producing before 1995, 28 sites commenced production from 1995 through 2010, and 8 sites were expected to begin production from 2011 through 2015 if development plans came to fruition. The United States imports PGMs primarily from Canada, Russia, South Africa, and Zimbabwe to meet increasing demand for these materials in a variety of specialized and high-tech applications. Feed sources of PGMs are changing in South Africa and Russia, which together accounted for about 89 percent of platinum production and 82 percent of palladium production in 2009. A greater amount of South African PGM capacity is likely to come from deeper, higher cost Upper Group Reef seam 2 deposits and deposits in the Eastern Bushveld area. Future Russian PGM capacity is likely to come from ore zones with generally lower PGM content and different platinum-to-palladium ratios than the nickel-rich ore that dominated PGM supply in the 1990s. Because PGM supply from Canada and Russia is derived as a byproduct of copper and nickel mining, the PGM supply from these countries is influenced by economic, environmental, political, and

  14. Lactic acid bacteria as a cell factory for riboflavin production.

    PubMed

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production.

  15. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    PubMed

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates.

  16. Development of a process for high capacity-arc heater production of silicon

    NASA Technical Reports Server (NTRS)

    Reed, W. H.; Meyer, T. N.; Fey, M. G.; Harvey, F. J.; Arcella, F. G.

    1978-01-01

    The realization of low cost, electric power from large-area silicon, photovoltaic arrays will depend on the development of new methods for large capacity production of solar grade (SG) silicon with a cost of less than $10 per kilogram by 1986 (established Department of Energy goal). The objective of the program is to develop a method to produce SG silicon in large quantities based on the high temperature-sodium reduction of silicon tetrachloride (SiCl4) to yield molten silicon and the coproduct salt vapor (NaCl). Commercial ac electric arc heaters will be utilized to provide a hyper-heated mixture of argon and hydrogen which will furnish the required process energy. The reactor is designed for a nominal silicon flow rate of 45 kg/hr. Analyses and designs have been conducted to evaluate the process and complete the initial design of the experimental verification unit.

  17. Simultaneous determination of cation exchange capacity and surface area of acid activated bentonite powders by methylene blue sorption

    NASA Astrophysics Data System (ADS)

    Yener, Nilgün; Biçer, Cengiz; Önal, Müşerref; Sarıkaya, Yüksel

    2012-01-01

    To distinguish the ion exchanged and physically adsorbed methylene blue cations (MB+) on ionic surfaces, acid activated bentonite samples were used as porous adsorbents. A natural calcium bentonite (CaB) sample from Enez/Edirne, Turkey, was acid activated at 90 °C for 16 h with various HCl/CaB ratios. The irreversible exchange and physical adsorption of MB+ cations on the ionic solids have simultaneously occurred. The ion exchanged (mex) and physically adsorbed (mad) MB+ contents were obtained as the values of sorption capacity at c = 0 and the increase to a plateaus of adsorption isotherms, respectively. The mad value was taken to be monolayer adsorption capacity. Cation exchange capacity (CEC) and specific surface area (SMB) for each sample were calculated from the mex and mad values, respectively. Also, the BET specific surface areas (SBET) and pore size distribution were determined from low temperature nitrogen adsorption/desorption data. A linear correlation between the SMB and SBET values was found.

  18. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  19. Summary of the diamond resource potential and production capacity assessment of Guinea

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.

    2012-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that export shipments of rough diamonds were free of conflict concerns. Outcomes of the meeting were formally supported later in December of 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. As of August 2012, the Kimberley Process (KP) had 51 participants representing 77 countries. With the passing of the AD, the Plenary agreed that further efforts should be made to assess Guinea's diamond production capacity. In support of this objective, the U.S. Geological Survey (USGS) partnered with the Kimberley Process Working Group of Diamond Experts (WGDE) and Guinea's Ministry of Mines and Geology (MMG) to conduct a field campaign in Guinea from April 24 through May 2, 2010. The field team was composed of Mark Van Bockstael of the WGDE, Peter Chirico of the USGS, and several geologists from the MMG. The team visited diamond mining sites in western Guinea's Kindia, Forècariah, Coyah, and Tèlimèlè Prefectures, in which the Guinean government identified newly discovered deposits mined by artisans. Several mining sites within the Kissidougou Prefecture in southeastern Guinea were also visited as part of this study. Geologic and geomorphic information on the diamond deposits was collected at each site. The fieldwork conducted during this trip served as a means of acquiring critical data needed to conduct a full assessment of diamond resources and production capacity.

  20. Economical succinic acid production from cane molasses by Actinobacillus succinogenes.

    PubMed

    Liu, Yu-Peng; Zheng, Pu; Sun, Zhi-Hao; Ni, Ye; Dong, Jin-Jun; Zhu, Lei-Lei

    2008-04-01

    In this work, production of succinic acid by Actinobacillus succinogenes CGMCC1593 using cane molasses as a low cost carbon source was developed. In anaerobic bottles fermentation, succinic acid concentration of 50.6+/-0.9 g l(-1) was attained at 60 h using an optimum medium containing molasses pretreated with sulfuric acid, resulting in a succinic acid yield of 79.5+/-1.1% and sugar utilization of 97.1+/-0.6%. When batch fermentation was carried out in a 5-l stirred bioreactor with pretreated molasses, 46.4 g l(-1) of succinic acid was attained at 48 h and faster cells growth was also observed. Fed batch fermentation was performed to minimize the substrate (sugar) inhibition effect, giving 55.2 g l(-1) of succinic acid and 1.15 g l(-1)h(-1) of productivity at 48 h. The present study suggests that the inexpensive cane molasses could be utilized for the economical and efficient production of succinic acid by A. succinogenes.

  1. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources. PMID:27116971

  2. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  3. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    PubMed

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  4. The source of carbon dioxide for gastric acid production.

    PubMed

    Steer, Howard

    2009-01-01

    The source of carbon dioxide for the chemical reaction leading to the production of gastric acid is unknown. The decarboxylation of an amino acid releases carbon dioxide. Pepsinogens provide a rich source of the amino acid arginine. Both the source of carbon dioxide, arginine, and the consequence of arginine decarboxylation, agmatine, have been studied. The site of carbon dioxide production has been related to the survival of the parietal cell. An immunohistochemical study has been carried out on glycol methacrylate embedded gastric biopsies from the normal stomach of 38 adult patients. The sections have been stained using polyclonal antibody to pepsinogen II, polyclonal antibody to agmatine, and polyclonal antibody to Helicobacter pylori. Pepsinogen II and agmatine are found in the parietal cell canaliculi. This is consistent with the production of carbon dioxide from arginine in the parietal cell canaliculi. Evidence is presented for the decarboxylation of arginine derived from the activation segment of pepsinogen as the source of carbon dioxide for the production of gastric acid. The production of carbon dioxide by the decarboxylation of arginine in the parietal cell canaliculus enables the extracellular hydration of carbon dioxide at the known site of carbonic anhydrase activity. The extracellular production of acid in the canaliculus together with the presence of agmatine helps to explain why the parietal cells are not destroyed during the formation of gastric acid. Agmatine is found in the mucus secreting cells of the stomach and its role in acid protection of the stomach is discussed. Anat Rec, 2009. (c) 2008 Wiley-Liss, Inc. PMID:18951509

  5. Allocating Capacity for Export-Oriented Apparel Production in a Developing Country Using Multi-Item Newsboy Problem

    NASA Astrophysics Data System (ADS)

    Mohafiqul, Kader Md.; Narita, Hirohisa; Chen, Lian-Yi; Fujimoto, Hideo

    The purpose of this paper is to develop an efficient method to allocate capacity for export-oriented production of apparels using multi-item newsboy problem in developing countries. Export oriented apparel production in developing countries is fully make-to-order. In this article we describe a method that prescribes three-way solutions depending on the firm’s own capacity. Leasing out of capacity is applied when the firm’s capacity is higher than that required for production demand. In an opposite situation, the firm subcontracts or employs overtime to meet the production requirement. In case of unavailability of subcontract production the firm has to adjust its production order with available capacity. Three factors to represent the probability of leasing, overtime and subcontracting have been used in the model. This helps the decision maker to analyze favorable or worse situation planning. Some previously developed heuristics have been modified to solve the constrained problem. A numerical example illustrates the validity of the model and shows that one of the heuristics performs better than all the previous when the resource is scarcer.

  6. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... efficiency of the banking operations using that capacity. (c) Types of electronic capacity in equipment or..., records, or media (such as electronic images) developed by the bank for or during the performance of...

  7. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... efficiency of the banking operations using that capacity. (c) Types of electronic capacity in equipment or..., records, or media (such as electronic images) developed by the bank for or during the performance of...

  8. North American fertilizer capacity data

    SciTech Connect

    Not Available

    1991-12-01

    This listing of producers and their fertilizer production capacities was compiled in October 1991 with the cooperation of the US and Canadian fertilizer industry. Fertilizers production is reported or forecasted for the years 1987 through 1997. The fertilizers reported on are: ammonia, ammonium nitrate, nitrogen solutions, urea, phosphate rock, wet-process phosphoric acid, ammonium phosphates, concentrated superphosphates, and potash.

  9. Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes NCTA 418.

    PubMed

    Neijssel, O M; Tempest, D W

    1975-10-27

    2-Ketogluconic acid and, to a lesser extent, gluconic acid were found to be major products of glucose catabolism by phosphate-limited cultures of Klebsiella aerogenes NCTC 418, and together accounted for up to 46% of the glucose carbon that was metabolized. Although the concentrations of both acids increased substantially at low growth rates, their specific rates of synthesis decreased markedly, ad did the proportion of glucose converted into these products. Determination of the affinity constant, for glucose, of phosphate-limited organisms showed it ot be not significantly different from that of glucose-limited organisms (KS less than or equal to 50 muM), indicative of the phosphotransferase uptake system. And since these organisms possessed an active glucose 6-phosphate dehydrogenase, and had no detectable glucose dehydrogenase activity, it was concluded that gluconic acid and 2-keto-gluconic acid arose from their corresponding phosphorylated metabolites, and not directly from glucose.

  10. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T.; Yomano, Lorraine; Grabar, Tammy B.; Moore, Jonathan C.

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  11. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  12. Using the solvent retention capacity test when breeding wheat for diverse production environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solvent retention capacity (SRC) test is used to predict commercial baking performance of soft wheat (Triticum aestivum L.) by measuring the capacity of flour to retain each of four sol- vents—water, Na 2CO3, sucrose, and lactic acid— to assess overall absorption capacity, starch damage, pentosa...

  13. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... loss or waste, market and sell to third parties electronic capacities legitimately acquired or... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Sale of excess electronic capacity and by... BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5004 Sale of excess electronic capacity and...

  14. Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase.

    PubMed

    Noda, Shuhei; Miyazaki, Takaya; Miyoshi, Takanori; Miyake, Michiru; Okai, Naoko; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2011-05-01

    Cinnamic acid production was demonstrated using Streptomyces as a host. A gene encoding phenylalanine ammonia lyase (PAL) from Streptomyces maritimus was introduced into Streptomyces lividans, and its expression was confirmed by Western blot analysis. After 4 days cultivation using glucose as carbon source, the maximal level of cinnamic acid reached 210 mg/L. When glycerol (30 g/L) was used as carbon source, the maximal level of produced cinnamic acid reached 450 mg/L. In addition, using raw starch, xylose or xylan as carbon source, the maximal level of cinnamic acid reached 460, 300, and 130 mg/L, respectively. We demonstrated that S. lividans has great potential to produce cinnamic acid as well as other aromatic compounds.

  15. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Xi, Yong-lan; Dai, Wen-yu; Xu, Rong; Zhang, Jiu-hua; Chen, Ke-quan; Jiang, Min; Wei, Ping; Ouyang, Ping-kai

    2013-11-01

    Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively. PMID:23649828

  16. Catalytic production of conjugated fatty acids and oils.

    PubMed

    Philippaerts, An; Goossens, Steven; Jacobs, Pierre A; Sels, Bert F

    2011-06-20

    The reactive double bonds in conjugated vegetable oils are of high interest in industry. Traditionally, conjugated vegetable oils are added to paints, varnishes, and inks to improve their drying properties, while recently there is an increased interest in their use in the production of bioplastics. Besides the industrial applications, also food manufactures are interested in conjugated vegetable oils due to their various positive health effects. While the isomer type is less important for their industrial purposes, the beneficial health effects are mainly associated with the c9,t11, t10,c12 and t9,t11 CLA isomers. The production of CLA-enriched oils as additives in functional foods thus requires a high CLA isomer selectivity. Currently, CLAs are produced by conjugation of oils high in linoleic acid, for example soybean and safflower oil, using homogeneous bases. Although high CLA productivities and very high isomer selectivities are obtained, this process faces many ecological drawbacks. Moreover, CLA-enriched oils can not be produced directly with the homogeneous bases. Literature reports describe many catalytic processes to conjugate linoleic acid, linoleic acid methyl ester, and vegetable oils rich in linoleic acid: biocatalysts, for example enzymes and cells; metal catalysts, for example homogeneous metal complexes and heterogeneous catalysts; and photocatalysts. This Review discusses state-of-the-art catalytic processes in comparison with some new catalytic production routes. For each category of catalytic process, the CLA productivities and the CLA isomer selectivity are compared. Heterogeneous catalysis seems the most attractive approach for CLA production due to its easy recovery process, provided that the competing hydrogenation reaction is limited and the CLA production rate competes with the current homogeneous base catalysis. The most important criteria to obtain high CLA productivity and isomer selectivity are (1) absence of a hydrogen donor, (2

  17. Catalytic production of conjugated fatty acids and oils.

    PubMed

    Philippaerts, An; Goossens, Steven; Jacobs, Pierre A; Sels, Bert F

    2011-06-20

    The reactive double bonds in conjugated vegetable oils are of high interest in industry. Traditionally, conjugated vegetable oils are added to paints, varnishes, and inks to improve their drying properties, while recently there is an increased interest in their use in the production of bioplastics. Besides the industrial applications, also food manufactures are interested in conjugated vegetable oils due to their various positive health effects. While the isomer type is less important for their industrial purposes, the beneficial health effects are mainly associated with the c9,t11, t10,c12 and t9,t11 CLA isomers. The production of CLA-enriched oils as additives in functional foods thus requires a high CLA isomer selectivity. Currently, CLAs are produced by conjugation of oils high in linoleic acid, for example soybean and safflower oil, using homogeneous bases. Although high CLA productivities and very high isomer selectivities are obtained, this process faces many ecological drawbacks. Moreover, CLA-enriched oils can not be produced directly with the homogeneous bases. Literature reports describe many catalytic processes to conjugate linoleic acid, linoleic acid methyl ester, and vegetable oils rich in linoleic acid: biocatalysts, for example enzymes and cells; metal catalysts, for example homogeneous metal complexes and heterogeneous catalysts; and photocatalysts. This Review discusses state-of-the-art catalytic processes in comparison with some new catalytic production routes. For each category of catalytic process, the CLA productivities and the CLA isomer selectivity are compared. Heterogeneous catalysis seems the most attractive approach for CLA production due to its easy recovery process, provided that the competing hydrogenation reaction is limited and the CLA production rate competes with the current homogeneous base catalysis. The most important criteria to obtain high CLA productivity and isomer selectivity are (1) absence of a hydrogen donor, (2

  18. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    PubMed

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. PMID:26875445

  19. Alluvial diamond resource potential and production capacity assessment of the Central African Republic

    USGS Publications Warehouse

    Chirico, Peter G.; Barthelemy, Francis; Ngbokoto, Francois A.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflict concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberly Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. Over 70 countries were included as members of the KPCS at the end of 2007. To prevent trade in "conflict diamonds" while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was (1) to assess the naturally occurring endowment of diamonds in the Central African Republic (potential resources) based on geological evidence, previous studies, and recent field data and (2) to assess the diamond-production capacity and measure the intensity of mining activity. Several possible methods can be used to estimate the potential diamond resource. However, because there is generally a lack of sufficient and consistent data recording all diamond mining in the Central African Republic and because time to conduct fieldwork and accessibility to the diamond mining areas are limited, two different methodologies were used: the volume and grade approach and the content per kilometer approach. Estimates are that approximately 39,000,000 carats of alluvial diamonds remain in the eastern and western zones of the CAR combined. This amount is roughly twice the total amount of diamonds reportedly exported from the Central African Republic since 1931. Production capacity is

  20. Overview of prescription omega-3 fatty acid products for hypertriglyceridemia.

    PubMed

    Weintraub, Howard S

    2014-11-01

    Patients with elevated triglycerides (TG) may be at a higher risk for cardiovascular (CV) disease. Omega-3 fatty acids (OM3FAs), particularly the long-chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), effectively reduce TG and thus may impact CV outcomes; however, clinical data have been inconsistent. This review discusses the efficacy, safety, and key considerations of currently approved prescription OM3FA products in patients with elevated TG with or without concomitant elevations in other atherogenic parameters. Currently, 6 prescription OM3FA formulations are approved in the United States: omega-3-acid ethyl esters (Lovaza, Omtryg, and 2 generic formulations), omega-3-carboxylic acids (Epanova), which contain both EPA and DHA, and icosapent ethyl (Vascepa), which is an EPA-only formulation. All prescription OM3FA products effectively lower TG, with the magnitude of TG reduction affected by baseline TG level. Products that contain DHA can raise levels of low-density lipoprotein cholesterol, which is of particular concern in patients with atherosclerosis; Vascepa, however, does not raise these levels and therefore provides these patients with another option. Long-term outcomes trials for Vascepa (ongoing) and Epanova (planned) will help clarify the potential CV benefits in patients with persistent hypertriglyceridemia despite statin therapy.

  1. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  2. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    PubMed

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  3. Simple preparation of solid-phase microextraction fiber with cation exchange capacities using poly(butadiene-maleic acid).

    PubMed

    Zhu, Yingli; Shen, Guobin; Zhang, Feifang; Yang, Bingcheng

    2013-01-01

    A simply way was proposed to prepare solid-phase microextraction (SPME) fiber with cation-exchange functional groups by the thermally initiated radical polymerization of poly(butadiene-maleic acid) (PBMA) copolymer onto a silica capillary. The capacity of the fiber coating could be easily controlled by fabricating successive layers of PBMA. The performance of the fiber combined with ion chromatography was evaluated by choosing Mg(2+) and Ca(2+) as model analytes; ∼13 and ∼51-fold enrichment factors for Mg(2+) and Ca(2+) were obtained, respectively. PMID:24107568

  4. Recent new additives for electric vehicle lead-acid batteries for extending the cycle life and capacity

    SciTech Connect

    Kozawa, A.; Sato, A.; Fujita, K.; Brodd, D.

    1997-12-01

    An electrochemically prepared colloidal graphite was found to be an excellent additive for lead-acid batteries. The new additive extends the capacity and cycle life of new and old batteries and can regenerate old, almost dead, batteries. The colloidal graphite is stable in aqueous solution and the extremely fine particles are adsorbed mainly on the positive electrode. This additive has been given the name, {alpha}-Pholon. The amount required is very small: only 6% to 10% of volume of the {alpha}-Pholon solution (about 2% colloidal graphite in water solution). The beneficial effect of the new additive was demonstrated with motorcycle batteries and forklift batteries.

  5. Processed tart cherry products--comparative phytochemical content, in vitro antioxidant capacity and in vitro anti-inflammatory activity.

    PubMed

    Ou, Boxin; Bosak, Kristen N; Brickner, Paula R; Iezzoni, Dominic G; Seymour, E Mitchell

    2012-05-01

    Processing of fruits and vegetables affects their phytochemical and nutrient content. Tart cherries are commercially promoted to possess antioxidant and anti-inflammatory activity. However, processing affects their phytochemical content and may affect their related health benefits. The current study compares the in vitro antioxidant capacity and anti-inflammatory cyclooxygenase activity of processed tart cherry (Prunus cerasus) products-cherry juice concentrate, individually quick-frozen cherries, canned cherries, and dried cherries. Cherry products were analyzed for total anthocyanin and proanthocyanidin content and profile. On a per serving basis, total anthocyanins were highest in frozen cherries and total proanthocyanidins were highest in juice concentrate. Total phenolics were highest in juice concentrate. Juice concentrate had the highest oxygen radical absorbance capacity (ORAC) and peroxynitrite radical averting capacity (NORAC). Dried cherries had the highest hydroxyl radical averting capacity (HORAC) and superoxide radical averting capacity (SORAC). Processed tart cherry products compared very favorably to the U.S. Dept. of Agriculture-reported ORAC of other fresh and processed fruits. Inhibition of in vitro inflammatory COX-1 activity was greatest in juice concentrate. In summary, all processed tart cherry products possessed antioxidant and anti-inflammatory activity, but processing differentially affected phytochemical content and in vitro bioactivity. On a per serving basis, juice concentrate was superior to other tart cherry products. PMID:23163942

  6. Processed tart cherry products--comparative phytochemical content, in vitro antioxidant capacity and in vitro anti-inflammatory activity.

    PubMed

    Ou, Boxin; Bosak, Kristen N; Brickner, Paula R; Iezzoni, Dominic G; Seymour, E Mitchell

    2012-05-01

    Processing of fruits and vegetables affects their phytochemical and nutrient content. Tart cherries are commercially promoted to possess antioxidant and anti-inflammatory activity. However, processing affects their phytochemical content and may affect their related health benefits. The current study compares the in vitro antioxidant capacity and anti-inflammatory cyclooxygenase activity of processed tart cherry (Prunus cerasus) products-cherry juice concentrate, individually quick-frozen cherries, canned cherries, and dried cherries. Cherry products were analyzed for total anthocyanin and proanthocyanidin content and profile. On a per serving basis, total anthocyanins were highest in frozen cherries and total proanthocyanidins were highest in juice concentrate. Total phenolics were highest in juice concentrate. Juice concentrate had the highest oxygen radical absorbance capacity (ORAC) and peroxynitrite radical averting capacity (NORAC). Dried cherries had the highest hydroxyl radical averting capacity (HORAC) and superoxide radical averting capacity (SORAC). Processed tart cherry products compared very favorably to the U.S. Dept. of Agriculture-reported ORAC of other fresh and processed fruits. Inhibition of in vitro inflammatory COX-1 activity was greatest in juice concentrate. In summary, all processed tart cherry products possessed antioxidant and anti-inflammatory activity, but processing differentially affected phytochemical content and in vitro bioactivity. On a per serving basis, juice concentrate was superior to other tart cherry products.

  7. Abscisic acid related compounds and lignans in prunes (Prunus domestica L.) and their oxygen radical absorbance capacity (ORAC).

    PubMed

    Kikuzaki, Hiroe; Kayano, Shin-ichi; Fukutsuka, Naoko; Aoki, Asuka; Kasamatsu, Kumi; Yamasaki, Yuka; Mitani, Takahiko; Nakatani, Nobuji

    2004-01-28

    Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.

  8. Means for reducing oxalic acid to a product

    SciTech Connect

    Morduchowitz, A.; Sammells, A.F.

    1988-12-06

    This patent describes an apparatus for reducing oxalic acid to a product comprising: a cell including a separator for separating the cell into two chambers, a catholyte chamber and an anolyte chamber, each chamber having an inlet and an outlet; a porous anode arranged within the anolyte section in a manner so that an electrolyte entering through the inlet of the anolyte section will pass through the anode and exit through the outlet of the anolyte section; means for providing an electrolyte to the inlet of the anolyte chamber in a manner so that it will exit through the outlet of the anolyte chamber; means for providing a mixture of oxalic acid and an electrolyte to the inlet of the catholyte chamber; porous cathode means located in the catholyte chamber for reducing the oxalic acid in the oxalic acid-electrolyte mixture to the product within the cathode means when a d.c. voltage provided across the anode and the cathode means, the product exiting the cell by way of the catholyte chamber's outlet; and means for providing a d.c. voltage across the cathode means and the anode so as to cooperate in the reduction of the oxalic acid; and in which the cathode means includes a porous cathode having discrete sites of platinum and mercury as catalysts and the product is ethylene glycol.

  9. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P < 0.05), indicating the positive effects of n-3 HUFAs on the growth of sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity.

  10. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P < 0.05), indicating the positive effects of n-3 HUFAs on the growth of sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity. PMID:27079426

  11. Dual capacity for nutrient uptake in Tetrahymena. V. Utilization of amino acids and proteins.

    PubMed

    Orias, E; Rasmussen, L

    1979-04-01

    We investigated the relative contributions of phagocytosis and plasma membrane transport to the uptake of amino acids and a protein (egg albumin) in amounts which allow Tetrahymena thermophila to grow and multiply. We used a mutant capable of indefinite growth without food vacuole formation (phagocytosis) and its wild type (phagocytosis-competent) isogenic parental strain. Our results suggest that phagocytosis is not required for free amino acid uptake, most or all of which can be attributed to carrier-mediated transport systems, apparently located on the plasma membrane. In contrast, phagocytosis is required for utilization of the protein. Proteins can supply required amino acids in amounts sufficient for growth only when food vacuoles are formed. We conclude that Tetrahymena thermophila either possesses no endocytic mechanisms at the cell surface other than food vacuole formation or, if it does, these putative mechanisms are not capable of nutritionally meaningful rates of protein uptake.

  12. Multicriteria optimization of gluconic acid production using net flow.

    PubMed

    Halsall-Whitney, H; Taylor, D; Thibault, J

    2003-03-01

    The biochemical process industry is often confronted with the challenge of making decisions in an atmosphere of multiple and conflicting objectives. Recent innovations in the field of operations research and systems science have yielded rigorous multicriteria optimization techniques that can be successfully applied to the field of biochemical engineering. These techniques incorporate the expert's experience into the optimization routine and provide valuable information about the zone of possible solutions. This paper presents a multicriteria optimization strategy that generates a Pareto domain, given a set of conflicting objective criteria, and determines the optimal operating region for the production of gluconic acid using the net flow method (NFM). The objective criteria include maximizing the productivity and concentration of gluconic acid, while minimizing the residual substrate. Three optimization strategies are considered. The first two strategies identify the optimal operating region for the process inputs. The results yielded an acceptable compromise between productivity, gluconic acid concentration and residual substrate concentration. Fixing the process inputs representing the batch time, initial substrate concentration and initial biomass equal to their optimal values, the remaining simulations were used to study the sensitivity of the optimum operating region to changes in the oxygen mass transfer coefficient, K(L) a, by utilizing a multi-level K(L) a strategy. The results show that controlling K(L) a during the reaction reduced the production of biomass, which in turn resulted in increased productivity and concentration of gluconic acid above that of a fixed K(L) a.

  13. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  14. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.

  15. The effects of conjugated linoleic acid on growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles.

    PubMed

    Jiang, Wen; Nie, Shaoping; Qu, Zhe; Bi, Chongpeng; Shan, Anshan

    2014-05-01

    This study investigated the effects of dietary supplementation with conjugated linoleic acid (CLA) on the growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles (DDGS). Four hundred eighty 1-d-old broilers were randomly assigned to 4 groups, consisting of 6 replicates with 20 broilers each. Broilers were allocated 1 of 4 diets and fed for 49 d in a 2 × 2 factorial design. The dietary treatments consisted of 2 levels of DDGS (0 or 15%) and 2 levels of CLA (0 or 1%). The results of growth performance analyses showed that dietary supplementation with 1% CLA, 15% DDGS, or both in broilers had no significant effects on ADG, ADFI, and feed/gain (P > 0.05). Dietary supplementation with 15% DDGS did not significantly affect meat color values, drip loss percentage, pH value at 15 min, crude fat content, or shear force value (P > 0.05). Diets supplemented with 15% DDGS decreased the proportions of saturated fatty acids (P < 0.05) and monounsaturated fatty acids but increased the proportion of polyunsaturated fatty acids of the thigh meat (P < 0.05). Diets supplemented with 1% CLA significantly decreased the abdominal fat percentage (P < 0.05). Supplementation with 1% CLA increased the crude fat content and decreased the color (b*) value and shear force value of the breast meat (P < 0.05). Diets supplemented with 1% CLA increased the total superoxide dismutase activity of the serum, breast meat, and liver, and decreased the malondialdehyde content of the serum and breast meat (P < 0.05). Supplementation with 1% CLA decreased the proportion of monounsaturated fatty acids and increased the proportion of saturated fatty acids (P < 0.05). Accumulation of CLA in the thigh meat was significantly increased (P < 0.05) with increasing CLA level in the diet. In conclusion, dietary supplementation with 1% CLA had positive effects on meat quality, antioxidant capacity, and fatty acid

  16. Adhesion, phenotypic expression, and biosynthetic capacity of corneal keratocytes on surfaces coated with hyaluronic acid of different molecular weights.

    PubMed

    Lai, Jui-Yang; Tu, I-Hao

    2012-03-01

    In ophthalmology, hyaluronic acid (HA) is an important extracellular matrix (ECM) component and is appropriate for use in generating a microenvironment for cell cultivation. The aim of this work was to evaluate the rabbit corneal keratocyte (RCK) growth in response to HA coatings under serum-free conditions. After modification with HA of varying molecular weights (MWs: 35-1500kDa), the surfaces were characterized by atomic force microscopy and contact angle measurements, and were used for cell culture studies. Our data indicated that the substrates coated with higher negatively charged HA become rougher and are more hydrophilic, resulting in the decrease of cell adhesion and cell-matrix interaction. This early cellular event was likely responsible for the determination of keratocyte configuration. Additionally, for the growth of RCKs on dry HA coatings with surface roughness of 1.1-1.7 nm, a strong cell-cell interaction was observed, which may facilitate the formation of multicellular spheroid aggregates and maintenance of mitotically quiescent state. At each culture time point from 1 to 5 days, a better biosynthetic capacity associated with a higher prevalence of elevated ECM production was found for the cells in a spherical configuration. Irrespective of polysaccharide MW of surface coatings, the RCKs presented good viability without hypoxia-induced death. As compared with a monolayer of adherent keratocytes on tissue culture polystyrene plates and low MW HA-modified samples, the cell spheroids (76-110 μm in diameter) showed significantly higher expressions of keratocan and lumican and lower expressions of biglycan, similar to those of keratocytes in vivo. Moreover, the expression levels of corneal crystallin aldehyde dehydrogenase (7-9-fold increase) and nestin (10-16-fold increase) were greater in larger-sized spheroids, indicating higher ability to maintain cellular transparency and self-renewal potential. It is concluded that the cultured RCKs on surfaces

  17. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  18. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  19. Lipid biomarker production and preservation in acidic ecosystems: Relevance to early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Jahnke, L. L.; Parenteau, M. N.; Harris, R.; Bristow, T.; Farmer, J. D.; Des Marais, D. J.

    2013-12-01

    Compared to relatively benign carbonate buffered marine environments, terrestrial Archean and Paleoproterozoic life was forced to cope with a broader range of pH values. In particular, acidic terrestrial ecosystems arose from the oxidation of reduced species in hydrothermal settings and crustal reservoirs of metal sulfides, creating acid sulfate conditions. While oxidation of reduced species is facilitated by reactions with molecular oxygen, acidic conditions also arose in Archean hydrothermal systems before the rise of oxygen (Van Kranendonk, 2006), expanding the range of time over which acidophiles could have existed on the early Earth. Acidic terrestrial habitats would have included acidic hydrothermal springs, acid sulfate soils, and possibly lakes and streams lacking substantial buffering capacity with sources of acidity in their catchments. Although acidic hot springs are considered extreme environments on Earth, robust and diverse microbial communities thrive in these habitats. Such acidophiles are found across all three domains of life and include both phototrophic and chemotrophic members. In this presentation, we examine hopanes and sterols that are characteristic of microbial communities living in acidic hydrothermal environments. Moreover we discuss taphonomic processes governing the capture and preservation of these biosignatures in acid environments. In particular, we discuss the production and early preservation of hopanoids and sterols in the following geological/mineralogical settings: 1) rapid entombment of microbes and organic matter by predominantly fine-grained silica; 2) rapid burial of organic matter by clay-rich, silica poor sediments; 3) and the survival of organics in iron oxide and sulfate rich sediments. We discovered and isolated an acid-tolerant purple non-sulfur anoxygenic phototroph from Lassen Volcanic National Park that synthesizes 3methyl-bacteriohopanepolyols. These compounds were previously thought to be exclusively made by

  20. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus.

    PubMed

    Huang, Chao; Yang, Xiao-Yan; Xiong, Lian; Guo, Hai-Jun; Luo, Jun; Wang, Bo; Zhang, Hai-Rong; Lin, Xiao-Qing; Chen, Xin-De

    2015-02-01

    In this study, corncob acid hydrolysate was used as a substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus. After 2 weeks' static fermentation, a BC yield of 4 g/L could be obtained. Both effects of medium composition and fermentation condition on the BC production were evaluated. Most extra substrates (carbon and nitrogen sources) except mannitol, butyric acid, and levulinic acid showed no effect on the improvement of BC yield. Fermentation condition including fermentation mode, inoculation concentration, and initial pH showed certain influence on the BC yield and thus should be well controlled. The analysis by field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) showed that the BC sample had obvious nano-network structure, clear functional groups that were found in cellulose, and relatively high crystallinity and crystallinity index value. Moreover, the BC sample had great water-holding capacity. Overall, corncob acid hydrolysate could be one promising substrate for BC production. PMID:25422061

  1. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus.

    PubMed

    Huang, Chao; Yang, Xiao-Yan; Xiong, Lian; Guo, Hai-Jun; Luo, Jun; Wang, Bo; Zhang, Hai-Rong; Lin, Xiao-Qing; Chen, Xin-De

    2015-02-01

    In this study, corncob acid hydrolysate was used as a substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus. After 2 weeks' static fermentation, a BC yield of 4 g/L could be obtained. Both effects of medium composition and fermentation condition on the BC production were evaluated. Most extra substrates (carbon and nitrogen sources) except mannitol, butyric acid, and levulinic acid showed no effect on the improvement of BC yield. Fermentation condition including fermentation mode, inoculation concentration, and initial pH showed certain influence on the BC yield and thus should be well controlled. The analysis by field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) showed that the BC sample had obvious nano-network structure, clear functional groups that were found in cellulose, and relatively high crystallinity and crystallinity index value. Moreover, the BC sample had great water-holding capacity. Overall, corncob acid hydrolysate could be one promising substrate for BC production.

  2. North American fertilizer capacity data. Supplement

    SciTech Connect

    Not Available

    1991-12-01

    This listing of producers and their fertilizer production capacities was compiled in October 1991 with the cooperation of the US and Canadian fertilizer industries. Yearly production and forecasts are given for 1987 through 1997. Fertilizers reported on include: ammonium sulfate, nitric acid, wet-process superphosphoric acid, normal superphosphate, elemental phosphorus, potassium sulfate, and sulfate of potash/magnesia.

  3. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  4. Low-temperature heat capacities and standard molar enthalpy of formation of pyridine-2,6-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Wei; Di, You-Ying; Kong, Yu-Xia; Tan, Zhi-Cheng

    2010-06-01

    This paper reports that the low-temperature heat capacities of pyridine-2,6-dicarboxylic acid were measured by a precision automatic calorimeter over a temperature range from 78 K to 380 K. A polynomial equation of heat capacities as a function of temperature was fitted by the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K. The constant-volume energy of combustion of the compound was determined by means of a precision rotating-bomb combustion calorimeter. The standard molar enthalpy of combustion of the compound was derived from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound was calculated from a combination of the datum of the standard molar enthalpy of combustion of the compound with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.

  5. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  6. Apelin Treatment Increases Complete Fatty Acid Oxidation, Mitochondrial Oxidative Capacity, and Biogenesis in Muscle of Insulin-Resistant Mice

    PubMed Central

    Attané, Camille; Foussal, Camille; Le Gonidec, Sophie; Benani, Alexandre; Daviaud, Danièle; Wanecq, Estelle; Guzmán-Ruiz, Rocío; Dray, Cédric; Bezaire, Veronic; Rancoule, Chloé; Kuba, Keiji; Ruiz-Gayo, Mariano; Levade, Thierry; Penninger, Josef; Burcelin, Rémy; Pénicaud, Luc; Valet, Philippe; Castan-Laurell, Isabelle

    2012-01-01

    Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 μmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement. PMID:22210322

  7. Draft environmental impact statement siting, construction, and operation of New Production Reactor capacity. Volume 4, Appendices D-R

    SciTech Connect

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.

  8. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 1, Summary

    SciTech Connect

    Not Available

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public.

  9. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties. PMID:25748518

  10. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  11. Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy

    PubMed Central

    Brileya, Kristen A.; Camilleri, Laura B.; Zane, Grant M.; Wall, Judy D.; Fields, Matthew W.

    2014-01-01

    Sulfate-reducing bacteria (SRB) can interact syntrophically with other community members in the absence of sulfate, and interactions with hydrogen-consuming methanogens are beneficial when these archaea consume potentially inhibitory H2 produced by the SRB. A dual continuous culture approach was used to characterize population structure within a syntrophic biofilm formed by the SRB Desulfovibrio vulgaris Hildenborough and the methanogenic archaeum Methanococcus maripaludis. Under the tested conditions, monocultures of D. vulgaris formed thin, stable biofilms, but monoculture M. maripaludis did not. Microscopy of intact syntrophic biofilm confirmed that D. vulgaris formed a scaffold for the biofilm, while intermediate and steady-state images revealed that M. maripaludis joined the biofilm later, likely in response to H2 produced by the SRB. Close interactions in structured biofilm allowed efficient transfer of H2 to M. maripaludis, and H2 was only detected in cocultures with a mutant SRB that was deficient in biofilm formation (ΔpilA). M. maripaludis produced more carbohydrate (uronic acid, hexose, and pentose) as a monoculture compared to total coculture biofilm, and this suggested an altered carbon flux during syntrophy. The syntrophic biofilm was structured into ridges (∼300 × 50 μm) and models predicted lactate limitation at ∼50 μm biofilm depth. The biofilm had structure that likely facilitated mass transfer of H2 and lactate, yet maximized biomass with a more even population composition (number of each organism) when compared to the bulk-phase community. Total biomass protein was equivalent in lactate-limited and lactate-excess conditions when a biofilm was present, but in the absence of biofilm, total biomass protein was significantly reduced. The results suggest that multispecies biofilms create an environment conducive to resource sharing, resulting in increased biomass retention, or carrying capacity, for cooperative populations. PMID:25566209

  12. Acute oral administration of a tyrosine and phenylalanine-free amino acid mixture reduces exercise capacity in the heat.

    PubMed

    Tumilty, Les; Davison, Glen; Beckmann, Manfred; Thatcher, Rhys

    2013-06-01

    Acute tyrosine administration is associated with increased exercise capacity in the heat. To explore whether reduced plasma tyrosine and phenylalanine (tyrosine precursor) is associated with impaired exercise capacity in the heat, eight healthy, moderately trained male volunteers, unacclimated to exercise in the heat, performed two tests in a crossover design separated by at least 7 days. In a randomised, double-blind fashion, subjects ingested 500 mL flavoured, sugar-free water containing amino acids [(TYR-free; isoleucine 15 g, leucine 22.5 g, valine 17.5 g, lysine 17.5 g, methionine 5 g, threonine 10 g, tryptophan 2.5 g)] to lower the ratio of plasma tyrosine plus phenylalanine:amino acids competing for blood-brain barrier uptake (CAA), a key determinant of brain uptake, or a balanced mixture (BAL; TYR-free plus 12.5 g tyrosine and 12.5 g phenylalanine). One hour later, subjects cycled to exhaustion at 63 ± 5 % [Formula: see text]O2peak in 30 °C and 60 % relative humidity. Pre-exercise ratio of plasma tyrosine plus phenylalanine:ΣCAA declined 75 ± 5 % from rest in TYR-free (P < 0.001), but was unchanged in BAL (P = 0.061). Exercise time was shorter in TYR-free (59.8 ± 19.0 min vs. 66.2 ± 16.9 min in TYR-free and BAL respectively; P = 0.036). Heart rate (P = 0.298), core (P = 0.134) and skin (P = 0.384) temperature, RPE (P > 0.05) and thermal sensation (P > 0.05) were similar at exhaustion in both trials. These data indicate that acutely depleting plasma catecholamine precursors:ΣCAA is associated with reduced submaximal exercise capacity in the heat.

  13. Enhanced capacity of chitosan for transition-metal ions in sulphate-sulphuric acid solutions.

    PubMed

    Muzzarelli, R A; Rocchetti, R

    1974-11-01

    Batch measurements have shown that the collection yields of chitosan for chromium(III), iron(III), nickel, copper(II), zinc and mercury(II) from sulphuric acid solutions are higher when the solutions contain ammonium sulphate, or when chitosan conditioned in ammonium sulphate is used, particularly at pH 3.0 and 5.0. The contrary is verified for the oxy-anions vanadate, chromate and molybdate. Manganese is never collected. At pH 1.0 no collection occurs. A procedure for recycling chromatographic columns includes fixation of Cu or Ni from a sulphate solution at pH 3-5 on sulphate-conditioned chitosan, and elution with 0.1M sulphuric acid/0.1M ammonium sulphate at pH 1.0; the presence of sulphate in the eluent obviates the detrimental effect of sulphuric acid on the next cycle. Sulphate is the favoured counter-ion of the chelated cations and its action produces shorter chromatographic bands. The interaction of sulphate with chitosan is discussed in terms of crystallinity and steric distribution of the protonated amino-groups in the polymer. Data on the new diethylaminohydroxypropylcellulose are included. PMID:18961577

  14. Thermodynamic analysis of acetic acid steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Goicoechea, Saioa; Ehrich, Heike; Arias, Pedro L.; Kockmann, Norbert

    2015-04-01

    A thermodynamic analysis of hydrogen generation by acetic acid steam reforming has been carried out with respect to applications in solid oxide fuel cells. The effect of operating parameters on equilibrium composition has been examined focusing especially on hydrogen and carbon monoxide production, which are the fuels in this type of fuel cell. The temperature, steam to acetic acid ratio, and to a lesser extent pressure affect significantly the equilibrium product distribution due to their influence on steam reforming, thermal decomposition and water-gas shift reaction. The study shows that steam reforming of acetic acid with a steam to acetic acid ratio of 2 to 1 is thermodynamically feasible with hydrogen, carbon monoxide and water as the main products at the equilibrium at temperatures higher than 700 °C, and achieving CO/CO2 ratios higher than 1. Thus, it can be concluded that within the operation temperature range of solid oxide fuel cells - between 700 °C and 1000 °C - the production of a gas rich in hydrogen and carbon monoxide is promoted.

  15. Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition

    PubMed Central

    Amaretti, Alberto; Leonardi, Alan; Quartieri, Andrea; Gozzoli, Caterina; Rossi, Maddalena

    2016-01-01

    Conjugated linoleic acids (CLA) are positional and geometric isomers of linoleic acid involved in a number of health aspects. In humans, CLA production is performed by gut microbiota, including some species of potential probiotic bifidobacteria. 128 strains of 31 Bifidobacterium species were screened with a spectrophotometric assay to identify novel CLA producers. Most species were nonproducers, while producers belonged to B. breve and B. pseudocatenulatum. GC-MS revealed that CLA producer strains yielded 9cis,11trans-CLA and 9trans,11trans-CLA, without any production of other isomers. Hydroxylated forms of LA were absent in producer strains, suggesting that the myosin-cross-reactive antigen (MCRA) protein that exerts hydratase activity is not involved in LA isomerization. Moreover, both CLA producer and nonproducer species bear a MCRA homologue. The strain B. breve WC 0421 was the best CLA producer, converting LA into 68.8% 9cis,11trans-CLA and 25.1% 9trans,11trans-CLA. Production occurred mostly during the lag and the exponential phase. For the first time, production and incorporation of CLA in biomass were assessed. B. breve WC 0421 stored CLA in the form of free fatty acids, without changing the composition of the esterified fatty acids, which mainly occurred in the plasmatic membrane. PMID:27429985

  16. Evaluating risks to agricultural production from acid deposition

    SciTech Connect

    Moskowitz, P.D.; Oden, N.L.; Medeiros, W.H.; Coveney, E.A.

    1986-10-01

    Although it has been established that agricultural yields can be affected adversely by ozone and other air pollutants, the effects of existing levels of acid deposition on crops are less well understood. Evaluations of potential effects from growth chamber, greenhouse and field experiments have not identified any single crop as being consistently sensitive to acid deposition. Quantitative analysis of one crop (soybeans), which has demonstrated some sensitivity to acid deposition treatments in field settings, suggest that if current acid deposition levels are reduced by 50%, then US soybean production would increase by approximately 1%. These estimates are based on the fundamental assumption that estimated dose-response functions are homogeneous across biologic, geographic and temporal space; an assumption not supported by recently developed experimental data. As a result, confidence in this conclusion is weak.

  17. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-01

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated.

  18. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-01

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. PMID:25828707

  19. Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity.

    PubMed

    Andersson, Christian; Helmerius, Jonas; Hodge, David; Berglund, Kris A; Rova, Ulrika

    2009-01-01

    The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L(-1) h(-1) is important if production of succinic acid from renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3), and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L(-1), was obtained with Na2CO3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of approximately 40 g L(-1). Volumetric productivities remained at 2.5 g L(-1) h(-1) for up to 10 h longer when K- or Na-bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity.

  20. E-beam data compaction method for large-capacity mask ROM production

    NASA Astrophysics Data System (ADS)

    Kanemaru, Toyomi; Nakajima, Takashi; Igarashi, Tadanao; Masuda, Rika; Orita, Nobuyuki

    1991-03-01

    Mask ROMs are one of the most advanced devices commercially available today. 4 Mbit DRAMs are just coming to the market, where 32 Mbit and 64 Mbit Mask ROM products also are entering the market. The code mask of Mask ROM consists, of a random distribution of repeated cells on a constant grid, so it is difficult to use conventional e-beam data compaction techniques for the code mask level of a Mask ROM. As mask ROM capacity and their mask exposure data volumes increase, the e-beam data processing time for these devices also has increased even with enhanced computational speeds of new mainframe computers. To overcome this problem, we have adopted a new e-beam data compaction technique. With this ne technique of a data compaction, data conversion times on a mainframe computer (ACOS) are substantially shorted and data volume is reduced by as much as a factor of one hundred. Using this new data format, the data volume of a variable shaped vector scan e-beam exposure system became far smaller compared with a spot beam raster scan e-beam system.

  1. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    NASA Technical Reports Server (NTRS)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  2. Measurement of skin-fold thickness in the guinea pig. Assessment of edema-inducing capacity of cutting fluids, acids, alkalis, formalin and dimethyl sulfoxide.

    PubMed

    Wahlberg, J E

    1993-03-01

    The rabbit has been used for decades for predictive testing of skin irritancy, but in recent years, the guinea pig has been suggested as an alternative, especially for assessment of one of the components of the irritant reaction: edema (fluid accumulation). A method based on skin-fold measurements with Harpenden calipers has been developed and modified. In previous papers, experience with sodium lauryl sulphate, nonanoic acid and industrial solvents was reported. The present results concern the use of cutting fluids, buffered and unbuffered acid and alkaline solutions, formalin and dimethyl sulfoxide. This inexpensive and comparatively unsophisticated method afforded clear dose-response relationships and good discriminating power. The only exception was the acid and alkaline solutions, where no changes in skin-fold thickness were observed despite their documented irritant potential. The appearance of erythema (visual scoring) and the increase in skin-fold thickness, and their relationship, are discussed with some illustrative examples. The method described is now well standardized and is suited for predictive testing of the edema-inducing capacity of chemicals and products.

  3. Efficient production of free fatty acids from soybean meal carbohydrates.

    PubMed

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids.

  4. Aerosol Disinfection Capacity of Slightly Acidic Hypochlorous Acid Water Towards Newcastle Disease Virus in the Air: An In Vivo Experiment.

    PubMed

    Hakim, Hakimullah; Thammakarn, Chanathip; Suguro, Atsushi; Ishida, Yuki; Nakajima, Katsuhiro; Kitazawa, Minori; Takehara, Kazuaki

    2015-12-01

    Existence of bioaerosol contaminants in farms and outbreaks of some infectious organisms with the ability of transmission by air increase the need for enhancement of biosecurity, especially for the application of aerosol disinfectants. Here we selected slightly acidic hypochlorous acid water (SAHW) as a candidate and evaluated its virucidal efficacy toward a virus in the air. Three-day-old conventional chicks were challenged with 25 doses of Newcastle disease live vaccine (B1 strain) by spray with nebulizer (particle size <3 μm in diameter), while at the same time reverse osmosis water as the control and SAHW containing 50 or 100 parts per million (ppm) free available chlorine in pH 6 were sprayed on the treated chicks with other nebulizers. Exposed chicks were kept in separated cages in an isolator and observed for clinical signs. Oropharyngeal swab samples were collected from 2 to 5 days postexposure from each chick, and then the samples were titrated with primary chicken kidney cells to detect the virus. Cytopathic effects were observed, and a hemagglutination test was performed to confirm the result at 5 days postinoculation. Clinical signs (sneezing) were recorded, and the virus was isolated from the control and 50 ppm treatment groups, while no clinical signs were observed in and no virus was isolated from the 100 ppm treatment group. The virulent Newcastle disease virus (NDV) strain Sato, too, was immediately inactivated by SAHW containing 50 ppm chlorine in the aqueous phase. These data suggest that SAHW containing 100 ppm chlorine can be used for aerosol disinfection of NDV in farms. PMID:26629621

  5. Aerosol Disinfection Capacity of Slightly Acidic Hypochlorous Acid Water Towards Newcastle Disease Virus in the Air: An In Vivo Experiment.

    PubMed

    Hakim, Hakimullah; Thammakarn, Chanathip; Suguro, Atsushi; Ishida, Yuki; Nakajima, Katsuhiro; Kitazawa, Minori; Takehara, Kazuaki

    2015-12-01

    Existence of bioaerosol contaminants in farms and outbreaks of some infectious organisms with the ability of transmission by air increase the need for enhancement of biosecurity, especially for the application of aerosol disinfectants. Here we selected slightly acidic hypochlorous acid water (SAHW) as a candidate and evaluated its virucidal efficacy toward a virus in the air. Three-day-old conventional chicks were challenged with 25 doses of Newcastle disease live vaccine (B1 strain) by spray with nebulizer (particle size <3 μm in diameter), while at the same time reverse osmosis water as the control and SAHW containing 50 or 100 parts per million (ppm) free available chlorine in pH 6 were sprayed on the treated chicks with other nebulizers. Exposed chicks were kept in separated cages in an isolator and observed for clinical signs. Oropharyngeal swab samples were collected from 2 to 5 days postexposure from each chick, and then the samples were titrated with primary chicken kidney cells to detect the virus. Cytopathic effects were observed, and a hemagglutination test was performed to confirm the result at 5 days postinoculation. Clinical signs (sneezing) were recorded, and the virus was isolated from the control and 50 ppm treatment groups, while no clinical signs were observed in and no virus was isolated from the 100 ppm treatment group. The virulent Newcastle disease virus (NDV) strain Sato, too, was immediately inactivated by SAHW containing 50 ppm chlorine in the aqueous phase. These data suggest that SAHW containing 100 ppm chlorine can be used for aerosol disinfection of NDV in farms.

  6. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production.

  7. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  8. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  9. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    PubMed Central

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts. PMID:10639127

  10. Sensitivity analyses of MAGIC modelled predictions of future impacts of whole-tree harvest on soil calcium supply and stream acid neutralizing capacity.

    PubMed

    Zetterberg, Therese; Köhler, Stephan J; Löfgren, Stefan

    2014-10-01

    Forest biofuel is a main provider of energy in Sweden and the market is expected to grow even further in the future. Removal of logging residues via harvest can lead to short-term acidification but the long-term effects are largely unknown. The objectives of this study were to 1) model the long-term effect of whole-tree harvest (WTH) on soil and stream water acidity and 2) perform sensitivity analyses by varying the amounts of logging residues, calcium (Ca(2+)) concentrations in tree biomass and site productivity in nine alternate scenarios. Data from three Swedish forested catchments and the Model of Acidification of Groundwater in Catchments (MAGIC) were used to simulate changes in forest soil exchangeable Ca(2+) pools and stream water acid neutralizing capacity (ANC) at Gammtratten, Kindla and Aneboda. Large depletions in soil Ca(2+) supply and a reversal of the positive trend in stream ANC were predicted for all three sites after WTH. However, the magnitude of impact on stream ANC varied depending on site and the concentration of mobile strong acid anions. Contrary to common beliefs, the largest decrease in modelled ANC was observed at the well-buffered site Gammtratten. The effects at Kindla and Aneboda were much more limited and not large enough to offset the general recovery from acidification. Varying the tree biomass Ca(2+) concentrations exerted the largest impact on modelled outcome. Site productivity was the second most important variable whereas changing biomass amounts left on site only marginally affected the results. The outcome from the sensitivity analyses pointed in the same direction of change as in the base scenario, except for Kindla where soil Ca(2+) pools were predicted to be replenished under a given set of input data. The reliability of modelled outcome would increase by using site-specific Ca(2+) concentrations in tree biomass and field determined identification of site productivity. PMID:25046610

  11. Maternal dietary fat affects milk fatty acid profile and impacts on weight gain and thermogenic capacity of suckling rats.

    PubMed

    Priego, Teresa; Sánchez, Juana; García, Ana Paula; Palou, Andreu; Picó, Catalina

    2013-05-01

    We aimed to assess the effects of maternal supplementation with the main fat sources used in the human Western diet (olive oil, butter, margarine) on milk FA composition and on plasma FA profile of offspring, and to determine whether it may influence body-weight-gain (BWG) and adiposity of offspring during the suckling period. Wistar rats were supplemented with the different fat sources from day 14 of gestation and throughout lactation. Olive oil-supplemented dams showed the highest proportion of oleic-acid in milk, with no changes in plasma. Their offspring also showed the highest proportion of this FA in plasma, lower BWG during the suckling period, and higher levels of UCP1 in brown adipose tissue (BAT) at weaning. Margarine-supplemented dams showed the highest percentage of PUFA in milk, and a similar tendency was found in plasma of their offspring. Butter-supplemented dams displayed higher proportion of saturated FA (SFA) in milk compared to other fat-supplemented dams, but lower than controls. Control offspring also showed higher proportion of SFA in plasma and greater BWG during the suckling period than fat-supplemented groups. Significant correlations were found between the relative content of some milk FA and BWG of offspring, in particular, oleic-acid levels correlated negatively with BWG and positively with UCP1 levels. These results show that maternal dietary source of fat affects milk FA composition and circulating FA profile, as could be expected, but also BWG and thermogenic capacity of offspring during the suckling period. An effect of oleic-acid stimulating BAT thermogenic capacity of suckling pups is proposed.

  12. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains.

    PubMed

    Budhavaram, Naresh K; Fan, Zhiliang

    2009-12-01

    Production of lactic acid from paper sludge was studied using thermophilic Bacillus coagulan strains 36D1 and P4-102B. More than 80% of lactic acid yield and more than 87% of cellulose conversion were achieved using both strains without any pH control due to the buffering effect of CaCO(3) in paper sludge. The addition of CaCO(3) as the buffering reagent in rich medium increased lactic acid yield but had little effect on cellulose conversion; when lean medium was utilized, the addition of CaCO(3) had little effect on either cellulose conversion or lactic acid yield. Lowering the fermentation temperature lowered lactic acid yield but increased cellulose conversion. Semi-continuous simultaneous saccharification and co-fermentation (SSCF) using medium containing 100 g/L cellulose equivalent paper sludge without pH control was carried out in serum bottles for up to 1000 h. When rich medium was utilized, the average lactic acid concentrations in steady state for strains 36D1 and P4-102B were 92 g/L and 91.7 g/L, respectively, and lactic acid yields were 77% and 78%. The average lactic acid concentrations produced using semi-continuous SSCF with lean medium were 77.5 g/L and 77.0 g/L for strains 36D1 and P4-102B, respectively, and lactic acid yields were 72% and 75%. The productivities at steady state were 0.96 g/L/h and 0.82 g/L/h for both strains in rich medium and lean medium, respectively. Our data support that B. coagulan strains 36D1 and P4-102B are promising for converting paper sludge to lactic acid via SSCF.

  13. Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.

    PubMed

    Pappenberger, Günter; Hohmann, Hans-Peter

    2014-01-01

    L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.

  14. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens.

    PubMed

    Salvachúa, Davinia; Smith, Holly; St John, Peter C; Mohagheghi, Ali; Peterson, Darren J; Black, Brenna A; Dowe, Nancy; Beckham, Gregg T

    2016-08-01

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60g/L reached up to 30g/L, with metabolic yields of 0.69g/g, and an overall productivity of 0.43g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates. PMID:27179951

  15. Factors affecting acid neutralizing capacity in the Adirondack region of New York: a solute mass balance approach.

    PubMed

    Ito, Mari; Mitchell, Myron J; Driscoll, Charles T; Roy, Karen M

    2005-06-01

    High rates of acidic deposition in the Adirondack region of New York have accelerated acidification of soils and surface waters. Annual input-output budgets for major solutes and acid-neutralizing capacity (ANC) were estimated for 43 drainage lake-watersheds in the Adirondacks from 1998 to 2000. Sulfate was the predominant anion on an equivalent basis in both precipitation and drainage export. Calcium ion had the largest cation drainage export, followed by Mg2+. While these watersheds showed net nitrogen (N) retention, the drainage losses of SO4(2-), Cl-, base cations, and ANC exceeded their respective inputs from precipitation. Land cover (forest type and wetlands) affected the export of SO4(2-), N solutes, and dissolved organic carbon (DOC). The relationships of solute export with elevation (negative for base cations and Cl-, positive for NO3- and H+) suggest the importance of the concomitant changes of biotic and abiotic watershed characteristics associated with elevational gradients. The surface water ANC increased with the sum of base cations and was greatest in the lakes with watersheds characterized by thick deposits of glacial till. The surface water ANC was also higher in the lake-watersheds with lower DOC export. Some variation in lake ANC was associated with variability in acidic deposition. Using a classification system previously developed for Adirondack lakes on the basis primarily of surficial geology, lake-watersheds were grouped into five classes. The calculated ANC fluxes based on the major sinks and sources of ANC were comparable with measured ANC for the thick-till (I) and the medium-till lake-watersheds with low DOC (II). The calculated ANC was overestimated for the medium-till with high DOC (III) and the thin-till with high DOC (V) lake-watersheds, suggesting the importance of naturally occurring organic acids as an ANC sink, which was not included in the calculations. The lower calculated estimates than the measured ANC for the thin-till lake

  16. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... line communications services; and (7) Electronic imaging and storage. (d) A national bank may sell to... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Sale of excess electronic capacity and by... BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5004 Sale of excess electronic capacity and...

  17. Assessing commercial livestock appropriation of the productive capacity of US drylands: A remote sensing approach

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Mitchell, J. E.; Oslen, H. E.

    2008-12-01

    The "State of Nation's Ecosystems" by the Heinz Institute and the recent "Millennium Ecosystem Assessment of Drylands" concluded that the amount of desertification and the extent to which human management actions contribute to this process is unknown at national to global spatial scales. This is primarily due to lack of studies at these large spatial scales and the temporal scales (> a 15-year time series of data) necessary to separate the effects of anthropogenic practices from climate change on Drylands. Consequently, this research seeks to develop procedures for determining 1) the area of Drylands within the United States where commercial grazing livestock occur or the livestock ecological footprint and 2) the impact of the footprint on the US's productive capacity. Our approach has been to develop a pilot geodatabase of year 2002 data that includes administrative boundaries, the Moderate Resolution Infrared Spectroradiometer's (MODIS) measures of gross and net primary productivity (GPP and NPP, respectively), US Department of Agriculture's National Agricultural Statistics Service's (USDA-NASS) county-level data on cattle, sheep, and goat inventories, transportation and power consumption networks, dryland extent, and land cover/land use. Secondly, the ratio of 1-km2 gridded mean annual potential evapotranspiration (MAPET) to mean annual precipitation (MAP) data were used to define the 50-year mean dryland extent in accordance with the United Nations Convention to Combat Desertification's definition of Drylands, the aridity index (AI) ≤ 0.65. Urban features, including transportation, power consumption, and land use/land cover, were subtracted from this dryland map to further refine it. The NASS tabular data was then related to the counties boundary map thus producing a county-level livestock number map that was then intersected with the dryland extent map to yield the US livestock ecological footprint. Lastly, this footprint map was then converted to a

  18. High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater.

    PubMed

    Oyola, Yatsandra; Dai, Sheng

    2016-06-01

    Uranium is dissolved in the ocean at a uniform concentration of 3.34 ppb, which translates to approximately 4-5 billion tons of uranium. The development of adsorbents that can extract uranium from seawater has been a long term goal, but the extremely dilute uranium concentration along with the competition of other metal salts (which are at higher concentrations) has hindered the development of an economical adsorption process. Several acid monomers were co-grafted with acrylonitrile (AN) to help increase the hydrophilicity of the adsorbent to improve access to the metal adsorption sites. Grafting various acid monomers on PE fibers was found to significantly affect the uranium adsorption in simulated seawater in the following order: acrylic acid (AA) < vinyl sulfonic acid (VSA) < methacrylic acid (MAA) < itaconic acid (ITA) < vinyl phosphonic acid (VPA). Interestingly, the uranium adsorption capacity significantly increased when Mohr's salt was added with acrylic acid, most likely due to the reduction of co-polymerization of the monomers. When testing under more realistic conditions, the acid-grafted PE fiber adsorbents were exposed to natural seawater (more dilute uranium), the uranium adsorption capacity increased in the following order: MAA < AA (Mohr's salt) < VSA < ITA (Mohr's salt) < ITA < VPA, which agreed well with the simulated seawater results. Characterization of the adsorbents indicated that the increase in uranium adsorption capacity with each acid monomer was related to higher grafting of AN and therefore a higher conversion to amidoxime (AO). PMID:27145863

  19. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  20. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  1. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  2. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. PMID:27226531

  3. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.

  4. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii.

    PubMed

    Guan, Ningzi; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2016-06-01

    Propionic acid (PA) and its salts are widely used in the food, pharmaceutical, and chemical industries. Microbial production of PA by propionibacteria is a typical product-inhibited process, and acid resistance is crucial in the improvement of PA titers and productivity. We previously identified two key acid resistance elements-the arginine deaminase and glutamate decarboxylase systems-that protect propionibacteria against PA stress by maintaining intracellular pH homeostasis. In this study, we attempted to improve the acid resistance and PA production of Propionibacterium jensenii ATCC 4868 by engineering these elements. Specifically, five genes (arcA, arcC, gadB, gdh, and ybaS) encoding components of the arginine deaminase and glutamate decarboxylase systems were overexpressed in P. jensenii. The activities of the five enzymes in the engineered strains were 26.7-489.0% higher than those in wild-type P. jensenii. The growth rates of the engineered strains decreased, whereas specific PA production increased significantly compared with those of the wild-type strain. Among the overexpressed genes, gadB (encoding glutamate decarboxylase) increased PA resistance and yield most effectively; the PA resistance of P. jensenii-gadB was more than 10-fold higher than that of the wild-type strain, and the production titer, yield, and conversion ratio of PA reached 10.81 g/L, 5.92 g/g cells, and 0.56 g/g glycerol, representing increases of 22.0%, 23.8%, and 21.7%, respectively. We also investigated the effects of introducing these acid resistance elements on the transcript levels of related enzymes. The results showed that the expression of genes in the engineered pathways affected the expression of the other genes. Additionally, the intracellular pools of amino acids were altered as different genes were overexpressed, which may further contribute to the enhanced PA production. This study provides an effective strategy for improving PA production in propionibacteria; this

  5. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  6. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  7. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores.

    PubMed

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called "cryptic," often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these "cryptic" metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of "cryptic" antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against antibiotic

  8. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  9. A fluidized-bed continuous bioreactor for lactic acid production

    SciTech Connect

    Andrews, G.F.; Fonta, J.P.

    1988-05-01

    A laboratory bioreactor consists of a fluidized bed of monosized activated carbon coated with a biofilm of the homolactic fermentative organism Streptococcus thermophilus. Biofilm growth moves the carbon through the bed, and adsorption of substrate and product at the bottom and top of the bed respectively reduces their inhibitory effects on the organism. Theory shows that high reactor productivity and rapid recirculation of carbon through the bed require a biofilm thickness of 25 to 45% of the carbon particle radius on particles fed into the base of the bed. This could not be achieved in practice due to the fragility of the biofilm. Product concentration was higher than expected from measurements of product inhibition, possibly because it is the undissociated form of the acid that both inhibits metabolism and adsorbs on the activated carbon. The observed productivity of 12 gm/1 hr could be greatly increased by ph control. 13 refs., 7 figs., 2 tabs.

  10. Furfural production by 'acidic steam stripping' of lignocellulose.

    PubMed

    van Buijtenen, Jeroen; Lange, Jean-Paul; Espinosa Alonso, Leticia; Spiering, Wouter; Polmans, Rob F; Haan, Rene J

    2013-11-01

    Furfural and acetic acid are produced with approximately 60 and 90 mol % yield, respectively, upon stripping bagasse with a gaseous stream of HCl/steam and condensing the effluent to water/furfural/acetic acid. The reaction kinetics is 1(st)  order in furfural and 0.5(th)  order in HCl. A process concept with full recycling of the reaction effluents is proposed to reduce the energy demand to <10 tonsteam  tonfurfural (-1) and facilitate the product recovery through a simple liquid/liquid separation of the condensate into a water-rich and a furfural-rich phase.

  11. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  12. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum.

    PubMed

    Pérez-López, Paula; González-García, Sara; Allewaert, Céline; Verween, Annick; Murray, Patrick; Feijoo, Gumersindo; Moreira, Ma Teresa

    2014-01-01

    Polyunsaturated fatty acids (PUFAs) play an important role in human health. Due to the increased market demand, the production of PUFAs from potential alternative sources such as microalgae is receiving increased interest. The aim of this study was to perform a life cycle assessment (LCA) of the biotechnological production of eicosapentaenoic acid (EPA) from the marine diatom Phaeodactylum tricornutum, followed by the identification of avenues to improve its environmental profile. The LCA tackles two production schemes of P. tricornutum PUFAs with an EPA content of 36%: lab and pilot scales. The results at lab scale show that both the electricity requirements and the production of the extraction agent (chloroform) have significant influence on the life cycle environmental performance of microalgal EPA production. An alternative method based on hexane was proposed to replace chloroform and environmental benefits were identified. Regarding the production of EPA at pilot scale, three main environmental factors were identified: the production of the nitrogen source required for microalgae growing, the transport activities and electricity requirements. Improvement alternatives were proposed and discussed concerning: a) the use of nitrogen based fertilizers, b) the valorization of the residual algal paste as soil conditioner and, c) the anaerobic digestion of the residual algal paste for bioenergy production. Encouraging environmental benefits could be achieved if sodium nitrate was substituted by urea, calcium nitrate or ammonium nitrate, regardless the category under assessment. In contrast, minor improvement was found when valorizing the residual algal paste as mineral fertilizer, due to its overall low content in N and P. Concerning the biogas production from the anaerobic digestion, the improvement on the environmental profile was also limited due to the discrepancy between the potential energy production from the algal paste and the high electricity requirements in

  13. Lactic acid bacteria as a cell factory for riboflavin production

    PubMed Central

    Thakur, Kiran; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  14. Lactide Synthesis and Chirality Control for Polylactic acid Production.

    PubMed

    Van Wouwe, Pieter; Dusselier, Michiel; Vanleeuw, Evelien; Sels, Bert

    2016-05-10

    Polylactic acid (PLA) is a very promising biodegradable, renewable, and biocompatible polymer. Aside from its production, its application field is also increasing, with use not only in commodity applications but also as durables and in biomedicine. In the current PLA production scheme, the most expensive part is not the polymerization itself but obtaining the building blocks lactic acid (LA) and lactide, the actual cyclic monomer for polymerization. Although the synthesis of LA and the polymerization have been studied systematically, reports of lactide synthesis are scarce. Most lactide synthesis methods are described in patent literature, and current energy-intensive, aselective industrial processes are based on archaic scientific literature. This Review, therefore, highlights new methods with a technical comparison and description of the different approaches. Water-removal methodologies are compared, as this is a crucial factor in PLA production. Apart from the synthesis of lactide, this Review also emphasizes the use of chemically produced racemic lactic acid (esters) as a starting point in the PLA production scheme. Stereochemically tailored PLA can be produced according to such a strategy, giving access to various polymer properties.

  15. Technology and economic assessment of lactic acid production and uses

    SciTech Connect

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  16. Cobalt carbonate dumbbells for high-capacity lithium storage: A slight doping of ascorbic acid and an enhancement in electrochemical performances

    NASA Astrophysics Data System (ADS)

    Zhao, Shiqiang; Wei, Shanshan; Liu, Rui; Wang, Yuxi; Yu, Yue; Shen, Qiang

    2015-06-01

    Synthesis of materials with desirable nanostructures is a hot research topic owing to their enhanced performances in contrast to the bulk counterparts. Herein, dumbbell-shaped cobalt carbonate (CoCO3) nano architectures and the bulk counterpart of CoCO3 rhombohedra are prepared via a facile hydrothermal route in the presence and absence of ascorbic acid (AA), respectively. By comparison, it has been found that: the addition of AA in the hydrothermal crystallization system changes the shape of the building blocks from Co2CO3(OH)2 nanosheets to CoCO3 nanoparticles, and then further influences the final configuration of the products. When applied as anodes of lithium ion batteries, CoCO3 dumbbells deliver a 100th capacity of 1042 mAh g-1 at 200 mA g-1 and even exhibit a long-term value of 824 mAh g-1 over 500 cycles at 1000 mA g-1, which are much higher than the rhombohedral counterparts with corresponding 540 and 481 mAh g-1 respectively. The much higher capacity, better cycling stability and enhanced rate performance of CoCO3 dumbbells can be attributed to the higher specific surface area, smaller charge transport resistance and better structure stability resulting from the slight doping (∼4.6 wt%) of AA, and also relate with a novel lithium storage mechanism in CoCO3.

  17. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  18. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  19. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    NASA Astrophysics Data System (ADS)

    Barbour, Michele E.; Shellis, R. Peter

    2007-02-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.

  20. Biochar characteristics produced from food-processing products and their sorptive capacity for mercury and phenanthrene

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.

    2015-04-01

    Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.

  1. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  2. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oakacid pH range was smallest for hornbeam and oak, and largest for spruce and pine soils. This was supported by the apparent dissociation constant (pKapp) values of SOM, which were largest in soils under oak. The maximum values of Al saturation were similar between the stands. However, maximum Al bonding to SOM occurred at higher pH values in soils under pine and spruce than under oak. Therefore, at any value in the acid pH range, the SOM in pine soil has less Al complexed and more adsorbed H+ than SOM from oak soils. Such differences in Al and H bonding are not only important for pH buffering and metal solubility controls, but also for stabilization of SOM via saturation of functional groups by Al and H.

  3. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oakacid pH range was smallest for hornbeam and oak, and largest for spruce and pine soils. This was supported by the apparent dissociation constant (pKapp) values of SOM, which were largest in soils under oak. The maximum values of Al saturation were similar between the stands. However, maximum Al bonding to SOM occurred at higher pH values in soils under pine and spruce than under oak. Therefore, at any value in the acid pH range, the SOM in pine soil has less Al complexed and more adsorbed H+ than SOM from oak soils. Such differences in Al and H bonding are not only important for pH buffering and metal solubility controls, but also for stabilization of SOM via saturation of functional groups by Al and H. PMID:25596350

  4. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boric acid production subcategory. 415.280 Section 415.280 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process....

  5. Control of product selectivity using solid acids for the catalytic addition of phenol to hydroxy fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acid catalyzed reactions of hydroxy fatty acids, such as ricinoleic and lesquerolic, in the presence of phenolics can lead to four products or product groups. These include simple dehydration to dienoic acids, cyclization to epoxides, Friedel-Crafts alkylations of the double bonds, or ether for...

  6. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues. PMID:24607804

  7. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues.

  8. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., including the following: (1) Due to the characteristics of the desired equipment or facilities available in... future banking needs during the useful life of the equipment; (3) Requirements for capacity...

  9. Influence of the acid buffering capacity of different types of Technosols on the chemistry of their leachates.

    PubMed

    Yao, F X; Macías, F; Santesteban, A; Virgel, S; Blanco, F; Jiang, X; Camps Arbestain, M

    2009-01-01

    The preparation of tailor-made Technosols from wastes may be a novel and prospective option for the re-use of wastes and restoration of degraded areas. A two-month study with pilot columns was conducted to evaluate the influence of the acid buffering capacity of different Technosols on the chemistry of their leachates. The Technosols were made from mixtures of organic and inorganic wastes at a ratio of 56:44 (w/w). The organic components used were an anaerobic (AN) and an aerobic (AE) sewage sludge. The inorganic wastes used--referred to as "conditioners"--were Linz-Donowitz slag (LD) and foundry sand (FS). A mixture of the two conditioners at a ratio of 50:50 (w/w) was made to provide a third type of conditioner (LD+FS). Controls consisted of columns filled with organic waste only (either AN or AE sludges). Changes in pH, electrical conductivity, concentrations of major ions and dissolved organic carbon in the leachates were evaluated periodically. The main processes determining the pH of the systems were nitrification and leaching, but organic matter decomposition and carbonation may also have had an influence. Nitrification was strongly retarded in the AN sludge (attributed to the probable absence of nitrifiers in this waste after the AN wastewater treatment) and was impeded in those mixtures in which LD was used as a component (due to the liming effect). Final pH values ranged from 5.0 and 5.4 (in AE and AE+FS, respectively) to 11.1 (in AN+LD). The pH of the other mixtures finally ranged between 7 and 8. In formulating mixtures of wastes, their acid buffering capacity should be taken into account in addition to the nutrient contents and the limits of contaminants established by local regulations. PMID:19026435

  10. Spectral characterization of acid weathering products on Martian basaltic glass

    NASA Astrophysics Data System (ADS)

    Yant, Marcella; Rogers, A. Deanne; Nekvasil, Hanna; Zhao, Yu-Yan Sara; Bristow, Tom

    2016-03-01

    For the first time, direct infrared spectral analyses of glasses with Martian compositions, altered under controlled conditions, are presented in order to assess surface weathering and regolith development on Mars. Basaltic glasses of Irvine and Backstay composition were synthesized and altered using H2SO4-HCl acid solutions (pH 0-4). Scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, Raman, and infrared spectral measurements were acquired for each reaction product. Infrared spectra were also acquired from previously synthesized and altered glasses with Pathfinder-measured compositions. Acid alteration on particles in the most acidic solutions (pH ≤ 1) yielded sulfate-dominated visible near infrared (VNIR) and thermal infrared (TIR) spectra with some silica influence. Spectral differences between alteration products from each starting material were present, reflecting strong sensitivity to changes in mineral assemblage. In the TIR, alteration features were preserved after reworking and consolidation. In the VNIR, hydrated sulfate features were present along with strong negative spectral slopes. Although such signatures are found in a few isolated locations on Mars with high-resolution spectrometers, much of the Martian surface lacks these characteristics, suggesting the following: acid alteration occurred at pH ≥ 2; small amounts of sulfates were reworked with unaltered material; there is a prevalence of intermediate-to-high silica glass in Martian starting materials (more resistant to acid alteration); primary or added sulfur were lacking; alteration features are obscured by dust; and/or large-scale, pervasive, acid sulfate weathering of the Martian surface did not occur. These results highlight the need to better understand the spectral properties of altered Martian surface material in order to enhance the interpretation of remote spectra for altered terrains.

  11. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies.

  12. Development of an industrializable fermentation process for propionic acid production.

    PubMed

    Stowers, Chris C; Cox, Brad M; Rodriguez, Brandon A

    2014-05-01

    Propionic acid (PA) is a short-chain fatty acid with wide industrial application including uses in pharmaceuticals, herbicides, cosmetics, and food preservatives. As a three-carbon building block, PA also has potential as a precursor for high-volume commodity chemicals such as propylene. Currently, most PA is manufactured through petrochemical routes, which can be tied to increasing prices and volatility due to difficulty in demand forecasting and feedstock availability. Herein described are research advancements to develop an industrially feasible, renewable route to PA. Seventeen Propionibacterium strains were screened using glucose and sucrose as the carbon source to identify the best platform strain. Propionibacterium acidipropionici ATCC 4875 was selected as the platform strain and subsequent fermentation optimization studies were performed to maximize productivity and yield. Fermentation productivity was improved three-fold to exceed 2 g/l/h by densifying the inoculum source. Byproduct levels, particularly lactic and succinic acid, were reduced by optimizing fermentor headspace pressure and shear. Following achievement of commercially viable productivities, the lab-grade medium components were replaced with industrial counterparts to further reduce fermentation costs. A pure enzymatically treated corn mash (ECM) medium improved the apparent PA yield to 0.6 g/g (PA produced/glucose consumed), but it came at the cost of reduced productivity. Supplementation of ECM with cyanocobalamin restored productivity to near lab-grade media levels. The optimized ECM recipe achieved a productivity of 0.5 g/l/h with an apparent PA yield of 0.60 g/g corresponding to a media cost <1 USD/kg of PA. These improvements significantly narrow the gap between the fermentation and incumbent petrochemical processes, which is estimated to have a manufacturing cost of 0.82 USD/kg in 2017. PMID:24627047

  13. Enhanced Production of Docosahexaenoic Acid in Mammalian Cells

    PubMed Central

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the acumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased prodution of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  14. Continuous succinic acid production from xylose by Actinobacillus succinogenes.

    PubMed

    Bradfield, Michael F A; Nicol, Willie

    2016-02-01

    Continuous, anaerobic fermentations of D-xylose were performed by Actinobacillus succinogenes 130Z in a custom, biofilm reactor at dilution rates of 0.05, 0.10 and 0.30 h(-1). Succinic acid yields on xylose (0.55-0.68 g g(-1)), titres (10.9-29.4 g L(-1)) and productivities (1.5-3.4 g L(-1) h(-1)) were lower than those of a previous study on glucose, but product ratios (succinic acid/acetic acid = 3.0-5.0 g g(-1)) and carbohydrate consumption rates were similar. Also, mass balance closures on xylose were up to 18.2 % lower than those on glucose. A modified HPLC method revealed pyruvic acid excretion at appreciable concentrations (1.2-1.9 g L(-1)) which improved the mass balance closure by up to 16.8 %. Furthermore, redox balances based on the accounted xylose consumed and the excreted metabolites, indicated an overproduction of reducing power. The oxidative pentose phosphate pathway was shown to be a plausible source of the additional reducing power. PMID:26610345

  15. Microbial production of hyaluronic acid from agricultural resource derivatives.

    PubMed

    Pires, Aline M B; Macedo, André C; Eguchi, Silvia Y; Santana, Maria H A

    2010-08-01

    Agricultural resource derivatives (ARDs) such as hydrolysate soy protein concentrate (HSPC), whey protein concentrate (WPC), and cashew apple juice (CAJ) were studied with focus on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Supplementation of the media with corn steep liquor (CSL) was also evaluated. Synthetic medium containing glucose and yeast extract was used as control. CAJ was a promising medium for the production of HA. It produced the highest amount of HA (0.89 g L(-1)), similar to that of the control (0.86 g L(-1)). WPC and HSPC media were the most effective for the production of biomass. CSL did not influence the production of HA when HSPC and WPC were used. However, in the synthetic medium it doubled the yield of HA from glucose. The average molecular weight of HA ranged from 10(3) to 10(4)Da for the ARDs and 10(7)Da for the synthetic medium.

  16. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits. PMID:21506518

  17. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits.

  18. Linking research to global health equity: the contribution of product development partnerships to access to medicines and research capacity building.

    PubMed

    Pratt, Bridget; Loff, Bebe

    2013-11-01

    Certain product development partnerships (PDPs) recognize that to promote the reduction of global health disparities they must create access to their products and strengthen research capacity in developing countries. We evaluated the contribution of 3 PDPs--Medicines for Malaria Venture, Drugs for Neglected Diseases Initiative, and Institute for One World Health--according to Frost and Reich's access framework. We also evaluated PDPs' capacity building in low- and middle-income countries at the individual, institutional, and system levels. We found that these PDPs advance public health by ensuring their products' registration, distribution, and adoption into national treatment policies in disease-endemic countries. Nonetheless, ensuring broad, equitable access for these populations--high distribution coverage; affordability, particularly for the poor; and adoption at provider and end-user levels--remains a challenge.

  19. Production of probiotic cabbage juice by lactic acid bacteria.

    PubMed

    Yoon, Kyung Young; Woodams, Edward E; Hang, Yong D

    2006-08-01

    Research was undertaken to determine the suitability of cabbage as a raw material for production of probiotic cabbage juice by lactic acid bacteria (Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Cabbage juice was inoculated with a 24-h-old lactic culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were monitored. L. casei, L. delbrueckii, and L. plantarum grew well on cabbage juice and reached nearly 10x10(8) CFU/mL after 48 h of fermentation at 30 degrees C. L. casei, however, produced a smaller amount of titratable acidity expressed as lactic acid than L. delbrueckii or L. plantarum. After 4 weeks of cold storage at 4 degrees C, the viable cell counts of L. plantarum and L. delbrueckii were still 4.1x10(7) and 4.5x10(5) mL(-1), respectively. L. casei did not survive the low pH and high acidity conditions in fermented cabbage juice and lost cell viability completely after 2 weeks of cold storage at 4 degrees C. Fermented cabbage juice could serve as a healthy beverage for vegetarians and lactose-allergic consumers.

  20. Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids.

    PubMed

    Mandal, Santi M; Mandal, Santi; Mandal, Mahitosh; Das, Amit K; Das, Amit; Pati, Bikas R; Pati, Bikas; Ghosh, Ananta K; Ghosh, Ananta

    2009-04-01

    The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in L-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 microg ml(-1)) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium).

  1. Controlling for sugar and ascorbic acid, a mixture of flavonoids matching navel oranges significantly increases human postprandial serum antioxidant capacity.

    PubMed

    Snyder, Shannon M; Reber, Josh D; Freeman, Brenner L; Orgad, Kfir; Eggett, Dennis L; Parker, Tory L

    2011-07-01

    Fruit and vegetable consumption reduces the risk for cardiovascular disease development. The postprandial state is an important contributor to chronic disease development. Orange flavonoids may reduce postprandial oxidation. It was hypothesized that a mixture of orange flavonoids would reduce postprandial oxidation better than a single orange flavonoid or orange sugar and ascorbic acid, but not as well as orange juice, when consumed with a typical breakfast. A placebo-controlled crossover trial (16 male and female participants, 4 treatments, 4 visits) was carried out. Treatments were placebo (ascorbic acid and sugar equivalent to orange juice); placebo plus hesperidin; placebo plus hesperidin, luteolin, and naringenin (mixture; found to have synergistic antioxidant properties in vitro in previous work); and orange juice (positive control). Serum oxygen radical absorbance capacity (ORAC), total plasma phenolics (TP), and serum lipoprotein oxidation (LO) were measured after a 12-hour baseline fast and at 1, 2, and 3 hours after sample consumption. The placebo plus mixture and orange juice groups were significantly increased in ORAC and LO lag time. Data for TP were inconsistent with ORAC and LO. Contrary to previous studies attributing the protective postprandial effect to fructose and ascorbate in other fruit trials, orange phenolic compounds contribute directly to the postprandial oxidative protection of serum, despite an inconsistent change in serum TP.

  2. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

    PubMed

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  3. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes

    PubMed Central

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement. PMID:26347861

  4. Production of ascorbic acid releasing biomaterials for pelvic floor repair

    PubMed Central

    Mangır, Naşide; Bullock, Anthony J.; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    Objective An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Materials and methods Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2 weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. Results No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. Conclusion This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Statement of significance Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better

  5. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  6. In vitro bile acid-binding capacity of dietary fibre sources and their effects with bile acid on broiler chicken performance and lipid digestibility.

    PubMed

    Hemati Matin, H R; Shariatmadari, F; Karimi Torshizi, M A; Chiba, L I

    2016-06-01

    A 4 × 2 factorial experiment was conducted to study the effect of feeding diets-containing dietary fibre (DF) sources and a source of bile acid (BA) on growth performance and lipid metabolism. In addition, in vitro BA-binding capacity of fibre sources was investigated. A total of 256 one-d-old male broiler chickens (Ross 308) were assigned to DF sources [maize-soybean meal (control, C), or 30 g/kg of wheat bran (WB), barley bran (BB) or soybean hulls (SH)] and BA (with or without 1.5 g Na-deoxycholate/kg). Each treatment was replicated 4 times with 8 broiler chickens per cage. The highest in vitro BA-binding capacity was observed with BB (8.76 mg/g BB). From 0 to 21 d, with the addition of BA, the average daily feed intake (ADFI) decreased in broiler chickens fed on the C, WB or BB diets, while there was no difference with the SH diet. With added BA, the average daily gain decreased in broiler chickens fed on the C or SH diets, but it did not change in those fed on the other diets. The addition of BA decreased feed conversion ratio (FCR) in broiler chickens fed on the BB or WB diets, but it increased in those fed on the C or SH diets. Interaction results indicated that the apparent ileal digestibility of lipid increased in broiler chickens fed the C and other DF diets with BA compared to those fed the diets without BA. The addition of BA decreased the pancreas lipase activity (PLA) in broiler chickens fed on the C diet compared to those fed the C diet without BA, while no changes observed in those fed the DF diets with or without BA. No interaction was observed in total liver bile acid (TLBA). The WB, BB and SH with little Na-deoxycholate-binding capacity (<10 mg/g of DF) under in vitro conditions had particular effects with BA on the measured criteria in broiler chickens. The magnitude of improvement in digestibility of lipid with the addition of BA depends on the source of fibre used and the addition of BA in DF diets had little effect on growth

  7. Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance.

    PubMed

    Mackenzie, W

    1986-02-01

    Atkinson and colleagues recently proposed several concepts that contrast with traditional views: first, that acid-base balance is regulated chiefly by the reactions leading to urea production in the liver; second, that ammonium excretion by the kidney plays no role in acid-base homeostasis; and third, that ammonium does not stimulate ureagenesis (except indirectly). To examine these concepts, plasma ions other than bicarbonate are categorized as 1) fixed cations (Na+, K+, Ca2+, and Mg2+, symbolized M+) and anions (Cl-), 2) buffer anions (A-), 3) other anions (X-), and 4) ammonium plus charged amino groups (N+). Since electroneutrality dictates that M+ + N+ = Cl- + HCO3- + A- + X-, it follows that delta HCO3- = delta(M+ - Cl-) - delta A- - delta X- + delta N+. Therefore acid-base disturbances (changes in HCO3-) can be categorized as to how they affect bodily content and hence plasma concentration of each of these four types of ions. The stoichiometry of ureagenesis, glutamine hydrolysis, ammonium and titratable acid excretion, oxidation of neutral, acidic, and basic amino acids, and oxidation of methionine, phosphoserine, and protein are examined to see how they alter these quantities. It is concluded that 1) although ureagenesis is pH dependent and also counteracts a tendency of amino acid oxidation to cause alkalosis, this tendency is inherently limited by the hyperammonemia (delta N+) that necessarily accompanies it, 2) ammonium excretion is equivalent to hydrogen excretion in its effects on acid-base balance if, and only if, it occurs in exchange for sodium or is accompanied by chloride excretion and only when the glutamate generated by glutamine hydrolysis is oxidized.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3511732

  8. Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.-1: Buffering capacity of dissolved organic carbon in soil solutions

    USGS Publications Warehouse

    Iggy, Litaor M.; Thurman, E.M.

    1988-01-01

    Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.

  9. Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass

    SciTech Connect

    Chen, Rongfu; Lee, Y.Y.

    1997-12-31

    Lactic acid production from cellulosic biomass by cellulose and Lactobacillus delbrueckii was studied in a fermenter-extractor employing a microporous hollow fiber membrane (NIHF). This bioreactor system was operated under a fed-batch mode with continuous removal of lactic acid by an in situ extraction. A tertiary amine (Alamine 336) was used as an extractant for lactic acid. The extraction capacity of Alamine 336 is greatly enhanced by addition of alcohol. Long-chain alcohols serve well for this purpose since they are less toxic to micro-organism. Addition of kerosene, a diluent, was necessary to reduce the solvent viscosity. A solvent mixture of 20% Alamine 336,40% oleyl alcohol, and 40% kerosene was found to be most effective in the extraction of lactic acid. Progressive change of pH from an initial value of 5.0 down to 4.3 has significantly improved the overall performance of the simultaneous saccharification and extractive fermentation over that of constant pH operation. The change of pH was applied to promote cell growth in the early phase, and extraction in the latter phase. 20 refs., 10 figs., 1 tab.

  10. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.

    PubMed

    Başpinar, M Serhat; Kahraman, Erhan; Görhan, Gökhan; Demir, Ismail

    2010-01-01

    The increase of power plant capacity has led to the production of an increasing amount of fly ash that causes high environmental impact in Turkey. Some of the fly ash is utilized within the fired brick industry but high sulfate-containing fly ash creates severe problems during sintering of the fired brick. This study attempted to investigate the potential for converting high sulfate-containing fly ash into useful material for the construction industry by the addition of boric acid. The chemical and mineralogical composition of fly ash and clay were investigated. Boric acid (H(3)BO(3)) was added to fly ash-clay mixtures with up to 5 wt.%. Six different series of test samples were produced by uniaxial pressing. The samples were fired at the industrial clay-brick firing temperatures of 800, 900 and 1000 degrees C. The microstructures of the fired samples were investigated by scanning electron microscopy and some physical and mechanical properties were measured. It was concluded that the firing at conventional brick firing temperature of high sulfate fly ash without any addition of boric acid resulted in very weak strength bricks. The addition of boric acid and clay simultaneously to the high sulfate- containing fly ash brick dramatically increased the compressive strength of the samples at a firing temperature of 1000 degrees C by modifying the sintering behaviour of high sulfate fly ash.

  11. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.

    PubMed

    Başpinar, M Serhat; Kahraman, Erhan; Görhan, Gökhan; Demir, Ismail

    2010-01-01

    The increase of power plant capacity has led to the production of an increasing amount of fly ash that causes high environmental impact in Turkey. Some of the fly ash is utilized within the fired brick industry but high sulfate-containing fly ash creates severe problems during sintering of the fired brick. This study attempted to investigate the potential for converting high sulfate-containing fly ash into useful material for the construction industry by the addition of boric acid. The chemical and mineralogical composition of fly ash and clay were investigated. Boric acid (H(3)BO(3)) was added to fly ash-clay mixtures with up to 5 wt.%. Six different series of test samples were produced by uniaxial pressing. The samples were fired at the industrial clay-brick firing temperatures of 800, 900 and 1000 degrees C. The microstructures of the fired samples were investigated by scanning electron microscopy and some physical and mechanical properties were measured. It was concluded that the firing at conventional brick firing temperature of high sulfate fly ash without any addition of boric acid resulted in very weak strength bricks. The addition of boric acid and clay simultaneously to the high sulfate- containing fly ash brick dramatically increased the compressive strength of the samples at a firing temperature of 1000 degrees C by modifying the sintering behaviour of high sulfate fly ash. PMID:19423597

  12. Single-Cell Measurements of Enzyme Levels as a Predictive Tool for Cellular Fates during Organic Acid Production

    PubMed Central

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna

    2013-01-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  13. Direct fermentation route for the production of acrylic acid.

    PubMed

    Chu, Hun Su; Ahn, Jin-Ho; Yun, Jiae; Choi, In Suk; Nam, Tae-Wook; Cho, Kwang Myung

    2015-11-01

    There have been growing concerns regarding the limited fossil resources and global climate changes resulting from modern civilization. Currently, finding renewable alternatives to conventional petrochemical processes has become one of the major focus areas of the global chemical industry sector. Since over 4.2 million tons of acrylic acid (AA) is annually employed for the manufacture of various products via petrochemical processes, this chemical has been the target of efforts to replace the petrochemical route by ecofriendly processes. However, there has been limited success in developing an approach combining the biological production of 3-hydroxypropionic acid (3-HP) and its chemical conversion to AA. Here, we report the first direct fermentative route for producing 0.12 g/L of AA from glucose via 3-HP, 3-HP-CoA, and Acryloyl-CoA, leading to a strain of Escherichia coli capable of directly producing acrylic acid. This route was developed through extensive screening of key enzymes and designing a novel metabolic pathway for AA. PMID:26319589

  14. Capacity Demands of Phoneme Selection in Word Production: New Evidence from Dual-Task Experiments

    ERIC Educational Resources Information Center

    Cook, Amy E.; Meyer, Antje S.

    2008-01-01

    Three dual-task experiments investigated the capacity demands of phoneme selection in picture naming. On each trial, participants named a target picture (Task 1) and carried out a tone discrimination task (Task 2). To vary the time required for phoneme selection, the authors combined the targets with phonologically related or unrelated distractor…

  15. Managing diminished irrigation capacity with preseason irrigation and plant density for corn production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the irrigation systems today in the U.S. Central Great Plains no longer have the capacity to match peak irrigation needs during the summer and must rely on soil water reserves to buffer the crop from water stress. Considerable research was conducted on preseason irrigation in the U.S. Great ...

  16. Screening production strategies for declining irrigation capacity and predictable climate conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The declining saturated thickness of the Ogallala Aquifer beneath the Southern High Plains decreases irrigation well capacity and necessitates deficit irrigation and better precipitation use. Precipitation varies seasonally, but also in response to the El Nino–Southern Oscillation (ENSO) of sea surf...

  17. Building Capacity for Renewal and Reform: An Initial Report on Knowledge Production and Utilization in Education.

    ERIC Educational Resources Information Center

    Tucker, Marc; And Others

    This paper addresses the problem of building the capacity for continuous renewal and reform in the educational system. The authors contend that the paradigm of R&D previously used has been too narrow, and that it is based on restrictive assumptions about how to help schools solve problems. They feel that any revised concept of "the R&D system"…

  18. Linking Research to Global Health Equity: The Contribution of Product Development Partnerships to Access to Medicines and Research Capacity Building

    PubMed Central

    Loff, Bebe

    2013-01-01

    Certain product development partnerships (PDPs) recognize that to promote the reduction of global health disparities they must create access to their products and strengthen research capacity in developing countries. We evaluated the contribution of 3 PDPs—Medicines for Malaria Venture, Drugs for Neglected Diseases Initiative, and Institute for One World Health—according to Frost and Reich’s access framework. We also evaluated PDPs’ capacity building in low- and middle-income countries at the individual, institutional, and system levels. We found that these PDPs advance public health by ensuring their products’ registration, distribution, and adoption into national treatment policies in disease-endemic countries. Nonetheless, ensuring broad, equitable access for these populations—high distribution coverage; affordability, particularly for the poor; and adoption at provider and end-user levels—remains a challenge. PMID:24028246

  19. Maximization of volatile fatty acids production from alginate in acidogenesis.

    PubMed

    Pham, Hong Duc; Seon, Jiyun; Lee, Seong Chan; Song, Minkyung; Woo, Hee-Chul

    2013-11-01

    In this study, the response surface methodology (RSM) was applied to determine the optimum fermentative condition of alginate with the respect to the simultaneous effects of alginate concentration and initial pH to maximize the production of total volatile fatty acids (TVFAs) and alcohols. The results showed that the alginate fermentation was significantly affected by initial pH than by alginate concentration and there was no interaction between the two variables. The optimum condition was 6.2g alginate/L and initial pH 7.6 with a maximum TVFAs yield of 37.1%. Acetic acids were the main constituents of the TVFAs mixtures (i.e., 71.9-95.5%), while alcohols (i.e., ethanol, butanol, and propanol) were not detected.

  20. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  1. Analysis of mycolic acid cleavage products and cellular fatty acids of Mycobacterium species by capillary gas chromatography.

    PubMed

    Lambert, M A; Moss, C W; Silcox, V A; Good, R C

    1986-04-01

    After growth and experimental conditions were established, the mycolic acid cleavage products, constituent fatty acids, and alcohols of representative strains of Mycobacterium tuberculosis, M. smegmatis, M. fortuitum complex, M. kansasii, M. gordonae, and M. avium complex were determined by capillary gas chromatography. Reproducible cleavage of mycolic acid methyl esters to tetracosanoic (24:0) or hexacosanoic (26:0) acid methyl esters was achieved by heating the sample in a high-temperature muffle furnace. The major constituent fatty acids in all species were hexadecanoic (16:0) and octadecenoic (18:1 omega 9-c, oleic) acids. With the exception of M. gordonae, 10-methyloctadecanoic acid was found in all species; moreover, M. gordonae was the only species tested which contained 2-methyltetradecanoic acid. M. kansasii was characterized by the presence of 2,4-dimethyltetradecanoic acid, M. avium complex by 2-eicosanol, and M. tuberculosis by 26:0 mycolic acid cleavage product. The mycolic acid cleavage product in the other five species tested was 24:0. Although a limited number of strains and species were tested, preliminary results indicate that this gas chromatographic method can be used to characterize mycobacterial cultures by their mycolic acid cleavage products and constituent fatty acid and alcohol content. PMID:3084554

  2. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    PubMed

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages.

  3. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  4. Engineering a cyanobacterial cell factory for production of lactic acid.

    PubMed

    Angermayr, S Andreas; Paszota, Michal; Hellingwerf, Klaas J

    2012-10-01

    Metabolic engineering of microorganisms has become a versatile tool to facilitate production of bulk chemicals, fuels, etc. Accordingly, CO(2) has been exploited via cyanobacterial metabolism as a sustainable carbon source of biofuel and bioplastic precursors. Here we extended these observations by showing that integration of an ldh gene from Bacillus subtilis (encoding an l-lactate dehydrogenase) into the genome of Synechocystis sp. strain PCC6803 leads to l-lactic acid production, a phenotype which is shown to be stable for prolonged batch culturing. Coexpression of a heterologous soluble transhydrogenase leads to an even higher lactate production rate and yield (lactic acid accumulating up to a several-millimolar concentration in the extracellular medium) than those for the single ldh mutant. The expression of a transhydrogenase alone, however, appears to be harmful to the cells, and a mutant carrying such a gene is rapidly outcompeted by a revertant(s) with a wild-type growth phenotype. Furthermore, our results indicate that the introduction of a lactate dehydrogenase rescues this phenotype by preventing the reversion. PMID:22865063

  5. The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Allayarov, Ramil K; Lunina, Julia N; Morgunov, Igor G

    2016-04-01

    The effect of oxalic and itaconic acids, the inhibitors of the isocitrate lyase, on the production of isocitric acid by the wild strain Yarrowia lipolytica VKM Y-2373 grown in the medium containing rapeseed oil was studied. In the presence of oxalic and itaconic acids, strain Y. lipolytica accumulated in the medium isocitric acid (70.0 and 82.7 g/L, respectively) and citric acid (23.0 and 18.4 g/L, respectively). In control experiment, when the inhibitors were not added to the medium, the strain accumulated isocitric and citric acids at concentrations of 62.0 and 28.0 g/L, respectively. Thus, the use of the oxalic and itaconic acids as additives to the medium is a simple and convenient method of isocitric acid production with a minimum content of citric acid.

  6. Role of solid acid catalysts in bio diesel production.

    PubMed

    Shivayogimath, C B; Sunita, G; Manoj Kumar, B

    2009-07-01

    Biodiesel is gaining importance as an alternate source of attractive fuel because of depleting fossil fuel resources. It is produced by trans-esterification, in which oil or fat reacts with a monohydric alcohol in presence of a catalyst. In the present work, trans-esterification of sunflower oil with methanol is carried out by using zirconia supported isopoly and heteropoly tungstates (HPAs) as catalysts. Effects of reaction parameters, such as catalyst types and its concentration, molar ratio of sunflower oil to methanol, reaction temperature and time, have been optimized to get higher conversion of sunflower oil and the product distribution of fatty acid methyl esters (FAME) in the trans-esterfication reaction.

  7. Electrochemical monitoring of citric acid production by Aspergillus niger.

    PubMed

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E; Ciosek, Patrycja; Wróblewski, Wojciech

    2014-05-01

    Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.

  8. Increasing refiner production by using motor thermal capacity for protection and control

    SciTech Connect

    Grainger, L.G.; McDonald, M.C.

    1997-05-01

    Industrial motors are typically controlled and operated by closely monitoring the stator winding temperatures and limiting the phase currents within the motor manufacturer`s full-load ampacity rating. A different approach to motor operation and control was implemented at the Blue Ridge Lumber medium density fiberboard (MDF) plant at Whitecourt, Alta., Canada. The capacity control of the refiner is based on using the remaining thermal capacity of the motor as the primary control parameter. In this installation, a 4,000-hp totally enclosed water air cooled (TEWAC) squirrel-cage induction motor is continuously operating above the manufacturer`s rated full-load current, but is being controlled by maintaining thermal capacity at 50%. Temporary current loadings well above this are permitted for up to several minutes to accommodate variations in the wood feed stock to the refiner. This was implemented by installing a modern motor protection relay, communication with a programmable logic controller (PLC) system, and the development of operator interface displays to provide plant operators with the necessary information to monitor the motor parameters. Factors which needed to be considered were the electrical power system limitations, the motor cooling effectiveness, and mechanical limitations imposed by the refiner shaft design.

  9. 40 CFR 415.80 - Applicability; description of the hydrofluoric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrofluoric acid production subcategory. 415.80 Section 415.80 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrofluoric Acid Production Subcategory § 415.80 Applicability; description of the hydrofluoric acid production subcategory. The provisions of this subpart are applicable to discharges...

  10. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  11. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  12. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  13. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  14. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  15. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  16. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  17. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  18. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  19. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  20. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  1. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction products with... Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... generically as fatty acid, reaction products with alkanolamine (PMN P-03-461) is subject to reporting...

  2. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  3. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  4. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  5. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction products with... Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... generically as fatty acid, reaction products with alkanolamine (PMN P-03-461) is subject to reporting...

  6. Mitochondrial Physiology in the Major Arbovirus Vector Aedes aegypti: Substrate Preferences and Sexual Differences Define Respiratory Capacity and Superoxide Production

    PubMed Central

    Soares, Juliana B. R. Correa; Gaviraghi, Alessandro; Oliveira, Marcus F.

    2015-01-01

    Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step

  7. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production.

    PubMed

    Soares, Juliana B R Correa; Gaviraghi, Alessandro; Oliveira, Marcus F

    2015-01-01

    Adult females of Aedes aegypti are facultative blood sucking insects and vectors of Dengue and yellow fever viruses. Insect dispersal plays a central role in disease transmission and the extremely high energy demand posed by flight is accomplished by a very efficient oxidative phosphorylation process, which take place within flight muscle mitochondria. These organelles play a central role in energy metabolism, interconnecting nutrient oxidation to ATP synthesis, but also represent an important site of cellular superoxide production. Given the importance of mitochondria to cell physiology, and the potential contributions of this organelle for A. aegypti biology and vectorial capacity, here, we conducted a systematic assessment of mitochondrial physiology in flight muscle of young adult A. aegypti fed exclusively with sugar. This was carried out by determining the activities of mitochondrial enzymes, the substrate preferences to sustain respiration, the mitochondrial bioenergetic efficiency and capacity, in both mitochondria-enriched preparations and mechanically permeabilized flight muscle in both sexes. We also determined the substrates preferences to promote mitochondrial superoxide generation and the main sites where it is produced within this organelle. We observed that respiration in A. aegypti mitochondria was essentially driven by complex I and glycerol 3 phosphate dehydrogenase substrates, which promoted distinct mitochondrial bioenergetic capacities, but with preserved efficiencies. Respiration mediated by proline oxidation in female mitochondria was strikingly higher than in males. Mitochondrial superoxide production was essentially mediated through proline and glycerol 3 phosphate oxidation, which took place at sites other than complex I. Finally, differences in mitochondrial superoxide production among sexes were only observed in male oxidizing glycerol 3 phosphate, exhibiting higher rates than in female. Together, these data represent a significant step

  8. Metabolic modeling of fumaric acid production by Rhizopus arrhizus

    SciTech Connect

    Gangl, I.C.; Weigand, W.W.; Keller, F.A.

    1991-12-31

    A metabolic model is developed for fumaric acid production by Rhizopus arrhizus. The model describes the reaction network and the extents of reaction in terms of the concentrations of the measurable species. The proposed pathway consists of the Embden-Meyerhof pathway and two pathways to FA production, both of which require CO{sub 2} fixation (the forward and the reverse TCA cycles). Relationships among the measurable quantities, in addition to those obtainable by a macroscopic mass balance, are found by invoking a pseudo-steady-state assumption on the nonaccumulating species in the pathway. Applications of the metabolic model, such as verifying the proposed pathway, obtaining the theoretical yield and selectivity, and detecting experimental errors, are discussed.

  9. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane.

    PubMed

    Suwalsky, M; Jemiola-Rzeminska, M; Astudillo, C; Gallardo, M J; Staforelli, J P; Villena, F; Strzalka, K

    2015-11-01

    Usnic acid (UA) has been associated with chronic diseases through its antioxidant action. Its main target is the cell membrane; however, its effect on that of human erythrocytes has been scarcely investigated. To gain insight into the molecular mechanisms of the interaction between UA and cell membranes human erythrocytes and molecular models of its membrane have been utilized. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. Results by X-ray diffraction showed that UA produced structural perturbations on DMPC and DMPE bilayers. DSC studies have indicated that thermotropic behavior of DMPE was most strongly distorted by UA than DMPC, whereas the latter is mainly affected on the pretransition. Scanning electron (SEM) and defocusing microscopy (DM) showed that UA induced alterations to erythrocytes from the normal discoid shape to echinocytes. These results imply that UA molecules were located in the outer monolayer of the erythrocyte membrane. Results of its antioxidant properties showed that UA neutralized the oxidative capacity of HClO on DMPC and DMPE bilayers; SEM, DM and hemolysis assays demonstrated the protective effect of UA against the deleterious oxidant effects of HClO upon human erythrocytes.

  10. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane.

    PubMed

    Suwalsky, M; Jemiola-Rzeminska, M; Astudillo, C; Gallardo, M J; Staforelli, J P; Villena, F; Strzalka, K

    2015-11-01

    Usnic acid (UA) has been associated with chronic diseases through its antioxidant action. Its main target is the cell membrane; however, its effect on that of human erythrocytes has been scarcely investigated. To gain insight into the molecular mechanisms of the interaction between UA and cell membranes human erythrocytes and molecular models of its membrane have been utilized. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. Results by X-ray diffraction showed that UA produced structural perturbations on DMPC and DMPE bilayers. DSC studies have indicated that thermotropic behavior of DMPE was most strongly distorted by UA than DMPC, whereas the latter is mainly affected on the pretransition. Scanning electron (SEM) and defocusing microscopy (DM) showed that UA induced alterations to erythrocytes from the normal discoid shape to echinocytes. These results imply that UA molecules were located in the outer monolayer of the erythrocyte membrane. Results of its antioxidant properties showed that UA neutralized the oxidative capacity of HClO on DMPC and DMPE bilayers; SEM, DM and hemolysis assays demonstrated the protective effect of UA against the deleterious oxidant effects of HClO upon human erythrocytes. PMID:26299817

  11. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    PubMed

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010.

  12. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    PubMed

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010. PMID:25838071

  13. The acid-base buffer capacity of podzolic soils and its changes under the impact of treatment with the Mehra-Jackson and Tamm reagents

    NASA Astrophysics Data System (ADS)

    Maksimova, Yu. G.; Maryakhina, N. N.; Tolpeshta, I. I.; Sokolova, T. A.

    2010-10-01

    The acid-base buffer capacity before and after the treatment with the Mehra-Jackson and Tamm reagents was assessed by continuous potentiometric titration for the main genetic horizons of two profiles of podzolic soils in the Central Forest State Reserve. The total buffer capacity was calculated in the pH range from the initial titration point (ITP) to 3 for the acid titration and from the ITP to 10 for the base titration, as well as the buffer capacities in the pH intervals of 0.25. It was found that both treatments abruptly decreased the base buffer capacity, which reached 70-90% in the E horizons. The high direct linear correlation of the difference between the total base buffer capacities before and after each treatment with the content of Fe in the Tamm extract was revealed. From the results obtained, a conclusion was drawn that finely dispersed Fe hydroxides were the main solid-phase constituents ensuring the base buffer capacity, and the deprotonation of hydroxyl groups on the surface of Fe hydroxides was the essential buffer reaction during the base titration.

  14. Mitochondrial and peroxisomal fatty acid oxidation capacities increase in the skeletal muscles of young pigs during early postnatal development but are not affected by cold stress.

    PubMed

    Herpin, Patrick; Vincent, Annie; Fillaut, Martine; Bonito, Bruno Piteira; Hocquette, Jean-François

    2003-01-01

    In pigs, the optimal utilization of energy substrates within muscle fibers is a prerequisite of the utmost importance for successful adaptation to extra-uterine life. In the present work we demonstrate that fatty acid (FA) oxidative capacities increased within the first five days of life in piglet skeletal muscle. Mitochondrial FA oxidation capacities increased more in the rhomboideus oxidative than in the longissimus lumborum glycolytic muscle (+114% vs. +62%, P < 0.001). The apparent rate of fatty acid degradation by peroxisomes represents 30 to 40% of total FA oxidation capacities and increased by about 170% (P < 0.001) with age in both muscles. The postnatal enhancement of skeletal muscle oxidative capacities was further supported by a rise in acid-soluble and long-chain acylcamitine tissue levels (+67%, P < 0.01), and plasma levels of albumin (+160%, P < 0.001). Cold stress had no effect on mitochondrial and peroxisomal FA oxidation but greatly enhanced (+61%, P < 0.05) the circulating levels of non-esterified fatty acids at five days of life.

  15. Phosphatidic acid production in the processing of cabbage leaves.

    PubMed

    Urikura, Mai; Morishige, Jun-Ichi; Tanaka, Tamotsu; Satouchi, Kiyoshi

    2012-11-14

    Lysophosphatidic acid (LPA) is a lipid mediator involved in various physiological responses, including wound healing. Evidence of the antiulcer activity of LPA has been reported, and soybean LPA at a concentration of 10 μM is effective in reducing stress-induced gastric ulcer. Because LPA can be formed from phosphatidic acid (PA) by digestive phospholipase A₂, dietary PA can be considered a potential antiulcer phospholipid. In this study, PA production in cut processing of cabbage leaves was examined. The amounts of PA in sliced, minced, and homogenized cabbage leaves were 107 ± 5, 134 ± 19, and 286 ± 29 nmol PA/g (wet weight), respectively, all being significantly higher than the amount of PA found in intact leaves. Mixing mayonnaise with sliced cabbage dramatically increased the PA content (1586 ± 393 nmol/3 g), indicating phospholipase D activity leaked raw cabbage produced PA. These results indicate that fine cutting raw cabbage leaves and mixing them with foods rich in phospholipids resulted in an abundant production of PA. PMID:23098184

  16. Proposed renovation of a district cooling plant to optimize the existing distribution system and increase production capacity

    SciTech Connect

    Tredinnick, S.M.

    1998-12-31

    The phaseout of chlorofluorocarbon (CFC) production in January 1996 is making district cooling (DC) an increasingly popular alternative to chiller retrofits and replacements. By connecting to a DC system, building owners and managers can focus on issues other than chilled-water production, thus liberating personnel, space, and financial resources for other important functions. A San Diego company has been serving the downtown business district of San Diego with reliable DC service since 1971. The existing system presently serves nine customers and, based on the current system plant pumping configuration, requires modifications in order to handle additional capacity. They are interested in signing on additional customers in the near future but cannot due to the limitations of the existing distribution system. This paper addresses modifications recommended to the company based on a hydraulic analysis and conceptual design completed in June 1995. The results of the analysis increased system distribution capacity from 5,245 tons (19.9 MW{sub th}) to almost 18,000 tons (62.9 MW{sub th}), while maintaining the present pipe system sizes. Investigations to increase plant capacity was not part of the scope of this paper since the focus was on the distribution system.

  17. Occurrence and role of lactic acid bacteria in seafood products.

    PubMed

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  18. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. PMID:26496844

  19. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse.

  20. Method for continuous production of aromatic carboxylic acid

    SciTech Connect

    Abrams, K.J.

    1988-12-20

    This patent describes a method for the continuous production of an aromatic carboxylic acid product in a pressurized oxidation reactor by liquid-phase, exothermic oxidation of an aromatic alkyl feed with an oxygen-containing gas, in the presence of an aromatic alkyl feed with an oxygen-containing gas, in the presence of an oxidation catalyst and in an aqueous monocarboxylic C/sub 2/ to C/sub 6/ aliphatic acid solvent medium, wherein the heat generated during the course of the oxidation is removed from the reactor by vaporization of a portion of the reaction medium and water, wherein the resulting vapors are condensed in part in a reflux loop externally of the oxidation reactor to produce a condensate and a gaseous phase, and wherein at least a portion of the condensate is returned to the oxidation reactor, the improvement comprising a method for controlling within desired limits the concentration of water in the oxidation reactor, which comprises: partitioning the vapors into a parallel condensate having a relatively lesser water-to-solvent weight ratio and a vapor phase having a relatively greater water-to-solvent weight ratio; returning the partial condensate directly to the oxidation reactor as a direct reflux stream; withdrawing the vapor phase from the reflux loop as a vapor stream; subjecting the withdrawn vapor stream to heat exchange while decreasing the vapor stream pressure to less than the oxidation reactor pressure to thereby produce an aqueous aliphatic acid stream having a water-to-solvent weight ratio greater than that of the direct reflux stream.

  1. Product development studies of amino acid conjugate of Aceclofenac.

    PubMed

    Singh, Ajay Pal; Ramadan, Wafa Mossa; Dahiya, Rajiv; Sarpal, A S; Pathak, Kamla

    2009-04-01

    The prodrugs designed by classical approach increase lipophilicity of the drug, which decreases the water solubility thus decreasing the concentration gradient, which controls drug absorption. To overcome the limitations of traditional prodrug approach, water soluble prodrugs can be designed by adding selected amino acid to the drug moiety that are the substrates for the enzyme located at the intestinal brush border thus overcoming pharmaceutical problem without compromising bioavailability. ACaa (Amino acid conjugate of Aceclofenac) was synthesized by conjugation with l-phenylalanine by conventional coupling method using N, N-dicyclohexylcarbodiimide and ACaa was characterized by melting point, TLC, photomicrograph, UV, FT-IR, FT-NMR, MS-FAB, XRD and DSC. As a part of product development study ACaa was subjected to studies like In-vivo in albino rats and in-vitro like ACaa reversion to AC (Aceclofenac) in aqueous buffers of pH 1.21, 2.38. 3.10, 6.22 and 7.41, at a constant concentration (0.05M), ionic strength (micro = 0.5) and at a temperature of 37 degrees C +/- 0.5 degrees C, ACaa showed negligible reversion (2.15 %) up to 24 hrs study at acidic pH thus suggesting stability in acidic environment of stomach, the rate of reversion increased as pH of medium increased. pH- partition profile, pH- solubility profile and micromeritic studies were also carried out in comparison to pure drug. The solubility and lipophilicity of ACaa exhibited higher values at all pH range when compared to AC. The micromeritic properties also evaluated in terms of particle shape and size, IQCS and kurtosis. Resulting IQCS value approached zero thus suggesting reducing in the degree of skewness.

  2. Production of chlorogenic acid in Varthemia persica DC (var. persica) callus cultures

    PubMed Central

    Siahpoush, A.; Ghasemi, N.; Ardakani, M. Shams; Asghari, G.

    2011-01-01

    Chlorogenic acid, a pharmacologically important compound, is a phenolic compound that occurs in certain commonly used medicinal herbs. We looked for the presence of this compound in the callus cultures of Varthemia persica DC (var. persica). We have evaluated the conditions for establishment of callus cultures of V. persica and the in vitro production of chlorogenic acid. Callus was initiated by culturing seedling of V. persica on MS basal medium supplemented with different concentrations of kinetin, naphthalene acetic acid and 2,4-diphenoxy acetic acid. Also, the influence of light, and phytohormones on the production of chlorogenic acid was examined. Kinetin stimulated the production of chlorogenic acid. Replacement of 2,4-diphenoxy acetic acid with naphthalene acetic acid did not alter the chlorogenic acid production. The ability to induce the accumulation of chlorogenic acid in the V. persica callus cultures offers an opportunity to produce a phenolic compound with therapeutic value. PMID:22049279

  3. Use of photochemiluminescence for the determination of antioxidant activities of carotenoids and antioxidant capacities of selected tomato products.

    PubMed

    Bauerfeind, Jasmin; Hintze, Victoria; Kschonsek, Josephine; Killenberg, Margrit; Böhm, Volker

    2014-07-30

    The purpose of this study was to compare the antioxidant activity of carotenoids to that of α-tocopherol by using a photochemiluminescence method (PCL). Comparisons to results obtained by using other established methods (α-TEAC, FRAP, DPPH, LPSC) were carried out. A relationship between the chemical structure of carotenoids and their antioxidant activity could be discussed. The number of conjugated double bonds and functional groups had a positive influence. Additionally, the lipophilic antioxidant capacities of selected tomato products were analyzed using PCL and α-TEAC. HPLC was used to identify and quantify contents of carotenoids, tocopherols, and tocotrienols. The raw material fresh tomatoes had the lowest antioxidant effect in both assays due to the lower carotenoid content. Tomato ketchup had the highest AOC in PCL, and tomato puree, in α-TEAC. The antioxidant capacities were mainly dependent on the water content of the samples. Furthermore, a concentration-dependent effect could be observed in both assays. PMID:25026001

  4. Vulnerabilities and adaptive capacities of southwest rangeland livestock production to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rangeland livestock industry across the southwestern US (California, Nevada, Arizona, Utah and New Mexico) consists of highly diverse production operations in these arid and semi-arid environments with low primary productivity. The vulnerabilities of this industry with projected increasing arid...

  5. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  6. Capacity Takes Flight: A Vehicle-Centered Approach to Sustainable Airspace Productivity

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ballin, Mark G.; Barmore, Bryan E.

    2005-01-01

    The National Airspace System (NAS) faces a significant challenge. With the nation's economy growing stronger, and passengers returning to the skies, the demand for air transportation is steadily rising once again. The capacity of the current airspace system will struggle to keep pace in the near term, and with demand expected to double within a decade, air traffic delays are likely to escalate, soon becoming intolerable for aviation businesses. Recognition in the aviation community is forming that retaining a growing, thriving air transportation system for the benefit of the traveling public and the world economy will likely require implementing transformational ideas in air traffic management. This video illustrates an approach NASA is pursuing to this end: the notion that a major untapped resource available to air traffic management can be leveraged, the aircraft itself. The thesis presented is that implementation of vehicle-centric air traffic management capabilities into the NAS could have a profound, positive, and sustainable impact on system capacity, individual aircraft operators, and the economy through its dependency on air.

  7. The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms.

    PubMed

    Xu, Jian Z; Zhang, Jun L; Hu, Kai H; Zhang, Wei G

    2013-05-01

    Mushrooms are able to secrete lignin peroxidase (LiP) and manganese peroxidase (MnP), and able to use the cellulose as sources of carbon. This article focuses on the relation between peroxidase-secreting capacity and cultivation period of mushrooms with non-laccase activity. Methylene blue and methyl catechol qualitative assay and spectrophotometry quantitative assay show LiP secreting unvaryingly accompanies the MnP secreting in mushroom strains. The growth rates of hyphae are detected by detecting the dry hyphal mass. We link the peroxidase activities to growth rate of mushrooms and then probe into the relationship between them. The results show that there are close relationships between LiP- and/or MnP-secretory capacities and the cultivation periods of mushrooms. The strains with high LiP and MnP activities have short cultivation periods. However, those strains have long cultivation periods because of the low levels of secreted LiP and/or MnP, even no detectable LiP and/or MnP activity. This study provides the first evidence on the imitate relation between the level of secreted LiP and MnP activities and cultivation periods of mushrooms with non-laccase activity. Our study has significantly increased the understanding of the role of LiP and MnP in the growth and development of mushrooms with non-laccase activity.

  8. Gene Discovery for Synthetic Biology: Exploring the Novel Natural Product Biosynthetic Capacity of Eukaryotic Microalgae.

    PubMed

    O'Neill, E C; Saalbach, G; Field, R A

    2016-01-01

    Eukaryotic microalgae are an incredibly diverse group of organisms whose sole unifying feature is their ability to photosynthesize. They are known for producing a range of potent toxins, which can build up during harmful algal blooms causing damage to ecosystems and fisheries. Genome sequencing is lagging behind in these organisms because of their genetic complexity, but transcriptome sequencing is beginning to make up for this deficit. As more sequence data becomes available, it is apparent that eukaryotic microalgae possess a range of complex natural product biosynthesis capabilities. Some of the genes concerned are responsible for the biosynthesis of known toxins, but there are many more for which we do not know the products. Bioinformatic and analytical techniques have been developed for natural product discovery in bacteria and these approaches can be used to extract information about the products synthesized by algae. Recent analyses suggest that eukaryotic microalgae produce many complex natural products that remain to be discovered. PMID:27480684

  9. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. PMID:27032508

  10. Electrochemical behavior of chlorogenic acid at a boron-doped diamond electrode and estimation of the antioxidant capacity in the coffee samples based on its oxidation peak.

    PubMed

    Yardım, Yavuz

    2012-04-01

    In this study, an electroanalytical methodology for the determination of chlorogenic acid (CGA) was achieved at a boron-doped diamond electrode under adsorptive transfer stripping voltammetric conditions. The values obtained for CGA were used to estimate the antioxidant properties of the coffee sample based on CGA oxidation. By using square-wave stripping mode, the compound yielded a well-defined voltammetric response at +0.49 V with respect to Ag/AgCl in Britton-Robinson buffer at pH 3.0 (after 120 s accumulations at a fixed potential of 0.40 V). At the optimum experimental conditions, linear calibration curve is obtained within the concentration range of 0.25 to 4.0 μg mL⁻¹ with the limit of detection 0.049 μg mL⁻¹ . The developed protocol was successfully applied for the analysis of antioxidant capacity in the coffee products such as Turkish coffee and instant coffee.

  11. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration.

  12. Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production.

    PubMed

    Park, Gwon Woo; Fei, Qiang; Jung, Kwonsu; Chang, Ho Nam; Kim, Yeu-Chun; Kim, Nag-jong; Choi, Jin-dal-rae; Kim, Sangyong; Cho, Jaehoon

    2014-12-01

    Volatile fatty acids (VFAs) derived from organic waste, were used as a low cost carbon source for high bioreactor productivity and titer. A multi-stage continuous high cell density culture (MSC-HCDC) process was employed for economic assessment of microbial lipids for biodiesel production. In a simulation study we used a lipid yield of 0.3 g/g-VFAs, cell mass yield of 0.5 g/g-glucose or wood hydrolyzates, and employed process variables including lipid contents from 10-90% of cell mass, bioreactor productivity of 0.5-48 g/L/h, and plant capacity of 20000-1000000 metric ton (MT)/year. A production cost of USD 1.048/kg-lipid was predicted with raw material costs of USD 0.2/kg for wood hydrolyzates and USD 0.15/kg for VFAs; 9 g/L/h bioreactor productivity; 100, 000 MT/year production capacity; and 75% lipids content. The variables having the highest impact on microbial lipid production costs were the cost of VFAs and lipid yield, followed by lipid content, fermenter cost, and lipid productivity. The cost of raw materials accounted for 66.25% of total operating costs. This study shows that biodiesel from microbial lipids has the potential to become competitive with diesels from other sources.

  13. Effect of roasting time of buckwheat groats on the formation of Maillard reaction products and antioxidant capacity.

    PubMed

    Małgorzata, Wronkowska; Konrad, Piskuła Mariusz; Zieliński, Henryk

    2016-04-01

    Changes in the formation of Maillard reaction products and antioxidant capacity of buckwheat, induced by roasting at 160 °C for 30, 40 and 50 min, were evaluated in the study. Furozine, was detected after roasting, in all buckwheat samples. Increase of FIC, the presence of significant amounts of CML and enhanced browning were observed, along with increasing times of roasting. The formation of acrylamide in the obtained buckwheat products was also significantly connected with the time of roasting. A significant degradation was observed in natural antioxidants, as affected by heat treatment time. The colour parameter changed significantly with the increasing of roasting time. Overall, 30min of roasting was beneficial from a nutritional point of view for the obtained buckwheat product.

  14. Time course production of urolithins from ellagic acid by human gut microbiota.

    PubMed

    García-Villalba, Rocío; Beltrán, David; Espín, Juan Carlos; Selma, María Victoria; Tomás-Barberán, Francisco A

    2013-09-18

    Ellagic acid (EA) is converted to urolithins by gut microbiota. Urolithins have beneficial biological effects in humans, but differences in urolithin production capacity among individuals have been shown. Therefore, the identification of the urolithin production pathways and the microorganisms implicated is of high interest. EA was incubated with gut microbiota from two volunteers able to produce urolithins but with different in vivo urolithin profiles (urolithin A and isourolithin A producers). The metabolic capabilities observed in vivo were retained in vitro. Both individuals showed a much higher abundance of Clostridium leptum group of Firmicutes phylum than Bacteroides / Prevotella . EA was either dissolved in DMSO or suspended in water. DMSO increased EA solubility but decreased urolithin production rate due to a delay in growth of some microbial groups, principally, Clostridium coccoides . This allowed the detection of catabolic intermediates [urolithins M-5, M-6, M-7, C, and 2,3,8,10-tetrahydroxy urolithin (urolithin E)]. Bacteria from C. coccoides group (or genera co-occurring in vivo with this group) seem to be involved in production of different urolithins.

  15. A study of the metal binding capacity of saccharinic acids formed during the alkali catalysed decomposition of cellulosic materials: nickel complexation by glucoisosaccharinic acids and xyloisosaccharinic acids.

    PubMed

    Almond, Michael; Belton, Daniel; Humphreys, Paul N; Laws, Andrew P

    2016-06-01

    The stoichiometry of the metal complexes formed between nickel and the ligand β-glucoisosaccharinic acid (β-GISA) and a racemic mixture of enantiomers of xyloisosaccharinic acid (XISA) has been determined at both neutral and alkaline pHs. Bjerrum plots, Job's plots and conductance measurements indicated that for each of the systems one to one Ni(ligand) complexes were formed at near neutral pHs (<7.5). At intermediate alkaline pHs (7.5-13) there is evidence to support the formation and precipitation of Ni2(ligand)(OH)3 complexes, finally, at high pH (>13) sparingly soluble Ni2(ligand)(OH)4 complexes were formed. The stability constants for the Ni(β-GISA), Ni(α-GISA) and Ni(XISA) complexes formed at neutral pH were determined under identical conditions using polarographic studies. The measured stability constants for Ni(β-GISA) (log10 β = 1.94 ± 0.15) and for Ni(α-GISA)(log10 β = 2.07 ± 0.13) are very similar; the value measured for the Ni(XISA) complex (log10 β = 0.83) was an order of magnitude smaller. The stability constants for the Ni2(Ligand)(OH)4 complexes formed at highly alkaline pHs were determined using the Schubert method. The measured stability constant for Ni2(β-GISA)(OH)4 (log10 β = 30.6 ± 0.5) was an order of magnitude bigger than the value for Ni2(α-GISA)(OH)4 (log10 β = 29.0 ± 0.5) measured under identical conditions. Attempts to measure the stability constant for Ni2(XISA)(OH)4 were unsuccessful; Ni2(XISA)(OH)4 complexes were not present in significant amounts at high pH to allow the log10β value to be determined by the Schubert method. PMID:27107221

  16. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate.

    PubMed

    Huang, Shun-Li; Zhao, Li-Na; Cai, Xixi; Wang, Shao-Yun; Huang, Yi-Fan; Hong, Jing; Rao, Ping-Fan

    2015-02-01

    The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25:1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements.

  17. Metabolic Engineering of Escherichia coli for Production of Mixed-Acid Fermentation End Products

    PubMed Central

    Förster, Andreas H.; Gescher, Johannes

    2014-01-01

    Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of E. coli toward cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate, and succinate are presented. PMID:25152889

  18. Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide

    DOEpatents

    Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.

    2001-01-01

    A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.

  19. [Use of new high-protein products in nutrition for the purpose of increasing the work capacity of students].

    PubMed

    Sobakin, M A; Fateeva, E M; Balashova, V A; Popova, A V; Kodrian, N Iu

    1977-01-01

    The effect of a dietary that includes new high-protein products containing complete protein, on the health status and performance capacity of schoolchildren during their school-hours was studied. Under observation were kept 60 schoolchildren, aged 13-14 years who were learning two foreign languages. Schoolchildren receiving a specialized ration were noted to show a number of positive regular changes. Their physical state, clinico-physiological characteristics and the functional state of the central nervous system demonstrated a definite improvement. PMID:930042

  20. Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources.

    PubMed

    Joshi, V D; Sreekantiah, K R; Manjrekar, S P

    1996-01-01

    A process for production of gluconic acid from glucose by a Micrococcus sp. is described. More than 400 bacterial cultures isolated from local soil were tested for gluconic acid production. Three isolates, were selected on basis of their ability to produce gluconic acid and high titrable acidity. These were identified as Micrococcus sp. and were named M 27, M 54 and M 81. Nutritional and other parameters for maximum production of gluconic acid by the selected isolates were optimised. It was found that Micrococcus sp. isolate M 27 gave highest yield of 8.19 g gluconic acid from 9 g glucose utilised giving 91% conversion effeciency.

  1. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius.

    PubMed

    Yang, Lei; Lübeck, Mette; Lübeck, Peter S

    2014-01-01

    Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.

  2. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified. PMID:27112846

  3. Origin of haloacetic acids in milk and dairy products.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2016-04-01

    Haloacetic acids (HAAs) are formed during the process of water disinfection. Therefore their presence in foods can be correlated with the addition of or contact with treated water. To determine the origin of HAAs in milk and dairy products, firstly a chromatographic method was developed for their determination. The sample treatment involves deproteination of milk followed by derivatization/extraction of the HAAs in the supernatant. About 20% of the foods analyzed contained two HAAs - which in no case exceeded 2 μg L(-1), that can be ascribed to contamination from sanitizers usually employed in the dairy industry. The process of boiling tap water (containing HAAs) for the preparation of powdered infant formula did not remove them; therefore it would be advisable to prepare this type of milk with mineral water (free of HAAs). In addition, it is possible to establish if the milk has been adulterated with treated water through the determination of HAAs.

  4. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified.

  5. Production of levulinic acid and use as a platform chemical for derived products

    SciTech Connect

    Bozell, J.J.; Moens, L.; Elliott, D.C.; Wang, Y.; Neuenscwander, G.G.; Fitzpatrick, S.W.; Bilski, R.J.; Jarnefeld, J.L.

    1999-07-01

    Levulinic acid (LA) can be produced cost effectively and in high yield from renewable feedstocks in a new industrial process. The technology is being demonstrated on a one ton/day scale at a facility in South Glens Falls, New York. Low cost LA can be used as a platform chemical for the production of a wide range of value-added products. This research has demonstrated that LA can be converted to methyltetrahydrofuran (MTHF), a solvent and fuel extender. MTHF is produced in {gt}80% molar yield via a single stage catalytic hydrogenation process. A new preparation of {delta}-aminolevulinic acid (DALA), a broad spectrum herbicide from LA has also been developed. Each step in this new process proceeds in high ({gt}80%) yield and affords DALA (as the hydrochloride salt) in greater than 90% purity, giving a process that could be commercially viable. LA is also being investigated as a starting material for the production of diphenolic acid (DPA), a direct replacement for bisphenol A.

  6. Production of oxalic acid by some fungi infected tubers.

    PubMed

    Faboya, O; Ikotun, T; Fatoki, O S

    1983-01-01

    Oxalic acid (as oxalate) was detected in four tubers commonly used for food in Nigeria-Dioscorea rotundata (White yam), Solanum tuberosum (Irish potato), Ipomoea batatas (Sweet potato), and Manihot esculenta (cassava). Whereas healthy I. batata had the highest oxalic acid content, healthy M. esculenta contained the lowest. When all tubers were artifically inoculated with four fungi-Penicillium oxalicum CURIE and THOM, Aspergillus niger VAN TIEGH, A. flavus and A. tamarii KITA, there was an increase in oxalate content/g of tuber tissue. The greatest amount of oxalate was produced by P. oxalicum in D. rotundata tuber. Consistently higher amounts of oxalate were produced by the four fungi in infected sweet potato tuber than in any other tuber and consistently lower amounts of oxalate were produced by the four fungi in Irish potato tuber. Differences in the carbohydrate type present in the tubers and in the biosynthesis pathway are thought to be responsible for variation in the production of oxalate in the different tubers by the four fungi used.

  7. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    PubMed

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  8. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    PubMed Central

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M.; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E.; Chaston, Sheena D.; McMahon, Katherine D.

    2013-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing micro-organisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl–acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (~90 μg/mL FFA) cultures grown on rich Luria–Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds. PMID:21643704

  9. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  10. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  11. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  12. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  13. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  14. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  15. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  16. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  17. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  18. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the...

  19. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the...

  20. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the...

  1. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the...

  2. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  3. Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus.

    PubMed

    Guo, Dekun; Zhao, Youbao; Yang, Keqian

    2013-07-01

    The glycerol utilization (gyl) operon is involved in clavulanic acid (CA) production by Streptomyces clavuligerus, and possibly supplies the glyceraldehyde-3-phosphate (G3P) precursor for CA biosynthesis. The gyl operon is regulated by GylR and is induced by glycerol. To enhance CA production in S. clavuligerus, an extra copy of ccaR expressed from Pgyl (the gyl promoter) was integrated into the chromosome of S. clavuligerus NRRL 3585. This construct coordinated the transcription of CA biosynthetic pathway genes with expression of the gyl operon. In the transformants carrying the Pgyl-controlled regulatory gene ccaR, CA production was enhanced 3.19-fold in glycerol-enriched batch cultures, relative to the control strain carrying an extra copy of ccaR controlled by its own promoter (PccaR). Consistent with enhanced CA production, the transcription levels of ccaR, ceas2 and claR were significantly up-regulated in the transformants containing Pgyl-controlled ccaR.

  4. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid.

    PubMed

    Lock, Edward A; Reed, Celia J; McMillan, Joellyn M; Oatis, John E; Schnellmann, Rick G

    2007-02-12

    The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3-3mM CH for 3 days or 0.03-3mM CH for 10 days, respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolized CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and three-fold greater capacity than HRPTC to form TCE-OH and TCA, respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days [Lock, E.A., Reed, C.J., 2006. Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicol. Sci. 19, 313-331] supporting the view that glutathione derived

  5. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water.

  6. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. PMID:27469095

  7. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis.

  8. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain.

    PubMed

    Eschauzier, Christian; Beerendonk, Erwin; Scholte-Veenendaal, Petra; De Voogt, Pim

    2012-02-01

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, dune passage, aeration, rapid sand filtration, ozonation, pellet softening, granular activated carbon (GAC) filtration, slow sand filtration, and finished drinking water. In the intake water taken from the Lek canal (a tributary of the river Rhine), the most abundant PFAA were PFBA (perfluorobutanoic acid), PFBS (perfluorobutane sulfonate), PFOS (perfluorooctane sulfonate), and PFOA (perfluorooctanoic acid). During treatment, longer chain PFAA such as PFNA (perfluorononanoic acid) and PFOS were readily removed by the GAC treatment step and their GAC effluent concentrations were reduced to levels below the limits of quantitation (LOQ) (0.23 and 0.24 ng/L for PFOS and PFNA, respectively). However, more hydrophilic shorter chain PFAA (especially PFBA and PFBS) were not removed by GAC and their concentrations remained constant through treatment. A decreasing removal capacity of the GAC was observed with increasing carbon loading and with decreasing carbon chain length of the PFAAs. This study shows that none of the treatment steps, including softening processes, are effective for PFAA removal, except for GAC filtration. GAC can effectively remove certain PFAA from the drinking water cycle.The enrichment of branched PFOS and PFOA isomers relative to non branched isomers during GAC filtration was observed during treatment. The finished water contained 26 and 19 ng/L of PFBA and PFBS. Other PFAAs were present in concentrations below 4.2 ng/L The concentrations of PFAA observed in finished waters are no reason for concern for human health as margins to existing guidelines are sufficiently large.

  9. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    PubMed Central

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-01-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587

  10. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    PubMed

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen.

  11. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    PubMed

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. PMID:26639411

  12. Citric Acid Production from Orange Peel Wastes by Solid-State Fermentation

    PubMed Central

    Torrado, Ana María; Cortés, Sandra; Manuel Salgado, José; Max, Belén; Rodríguez, Noelia; Bibbins, Belinda P.; Converti, Attilio; Manuel Domínguez, José

    2011-01-01

    Valencia orange (Citrus sinensis) peel was employed in this work as raw material for the production of citric acid (CA) by solid-state fermentation (SSF) of Aspergillus niger CECT-2090 (ATCC 9142, NRRL 599) in Erlenmeyer flasks. To investigate the effects of the main operating variables, the inoculum concentration was varied in the range 0.5·103 to 0.7·108 spores/g dry orange peel, the bed loading from 1.0 to 4.8 g of dry orange peel (corresponding to 35-80 % of the total volume), and the moisture content between 50 and 100 % of the maximum water retention capacity (MWRC) of the material. Moreover, additional experiments were done adding methanol or water in different proportions and ways. The optimal conditions for CA production revealed to be an inoculum of 0.5·106 spores/g dry orange peel, a bed loading of 1.0 g of dry orange peel, and a humidification pattern of 70 % MWRC at the beginning of the incubation with posterior addition of 0.12 mL H2O/g dry orange peel (corresponding to 3.3 % of the MWRC) every 12 h starting from 62 h. The addition of methanol was detrimental for the CA production. Under these conditions, the SSF ensured an effective specific production of CA (193 mg CA/g dry orange peel), corresponding to yields of product on total initial and consumed sugars (glucose, fructose and sucrose) of 376 and 383 mg CA/g, respectively. These results, which demonstrate the viability of the CA production by SSF from orange peel without addition of other nutrients, could be of interest to possible, future industrial applications. PMID:24031646

  13. Citric Acid production from orange peel wastes by solid-state fermentation.

    PubMed

    Torrado, Ana María; Cortés, Sandra; Manuel Salgado, José; Max, Belén; Rodríguez, Noelia; Bibbins, Belinda P; Converti, Attilio; Manuel Domínguez, José

    2011-01-01

    Valencia orange (Citrus sinensis) peel was employed in this work as raw material for the production of citric acid (CA) by solid-state fermentation (SSF) of Aspergillus niger CECT-2090 (ATCC 9142, NRRL 599) in Erlenmeyer flasks. To investigate the effects of the main operating variables, the inoculum concentration was varied in the range 0.5·10(3) to 0.7·10(8) spores/g dry orange peel, the bed loading from 1.0 to 4.8 g of dry orange peel (corresponding to 35-80 % of the total volume), and the moisture content between 50 and 100 % of the maximum water retention capacity (MWRC) of the material. Moreover, additional experiments were done adding methanol or water in different proportions and ways. The optimal conditions for CA production revealed to be an inoculum of 0.5·10(6) spores/g dry orange peel, a bed loading of 1.0 g of dry orange peel, and a humidification pattern of 70 % MWRC at the beginning of the incubation with posterior addition of 0.12 mL H2O/g dry orange peel (corresponding to 3.3 % of the MWRC) every 12 h starting from 62 h. The addition of methanol was detrimental for the CA production. Under these conditions, the SSF ensured an effective specific production of CA (193 mg CA/g dry orange peel), corresponding to yields of product on total initial and consumed sugars (glucose, fructose and sucrose) of 376 and 383 mg CA/g, respectively. These results, which demonstrate the viability of the CA production by SSF from orange peel without addition of other nutrients, could be of interest to possible, future industrial applications. PMID:24031646

  14. Development of a process for high capacity arc heater production of silicon for solar arrays

    NASA Technical Reports Server (NTRS)

    Meyer, T. N.

    1980-01-01

    A high temperature silicon production process using existing electric arc heater technology is discussed. Silicon tetrachloride and a reductant, liquid sodium, were injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction occurred, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon were developed. The desired degree of separation was not achieved. The electrical, control and instrumentation, cooling water, gas, SiCl4, and sodium systems are discussed. The plasma reactor, silicon collection, effluent disposal, the gas burnoff stack, and decontamination and safety are also discussed. Procedure manuals, shakedown testing, data acquisition and analysis, product characterization, disassembly and decontamination, and component evaluation are reviewed.

  15. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  16. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    PubMed

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus.

  17. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii.

    PubMed Central

    Cunningham, J E; Kuiack, C

    1992-01-01

    An isolate of Penicillium bilaii previously reported to solubilize mineral phosphates and enhance plant uptake of phosphate was studied. Using agar media with calcium phosphate and the pH indicator alizarin red S, the influence of the medium composition on phosphate solubility and medium acidification was recorded. The major acidic metabolites produced by P. bilaii in a sucrose nitrate liquid medium were found to be oxalic acid and citric acid. Citric acid production was promoted under nitrogen-limited conditions, while oxalic acid production was promoted under carbon-limited conditions. Citric acid was produced in both growth and stationary phases, but oxalic acid production occurred only in stationary phase. When submerged cultures which normally produce acid were induced to sporulate, the culture medium shifted toward alkaline rather than acid reaction with growth. PMID:1622211

  18. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    PubMed

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans. PMID:26725502

  19. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    PubMed

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans.

  20. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of