Science.gov

Sample records for acid production compared

  1. A Comparative Overview of Prescription Omega-3 Fatty Acid Products

    PubMed Central

    Ito, Matthew K.

    2015-01-01

    An estimated 25% of adults in the United States have elevated triglyceride (TG) levels. This is of particular concern given the evidence for a causal role of TG in the pathway of cardiovascular (CV) disease. Approved prescription omega-3 fatty acid products (RxOM3FAs) contain the long-chain fatty acids docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) and are effective options for the treatment of high TG levels. RxOM3FAs that contain both EPA and DHA include omega-3-acid ethyl esters (ethyl esters of EPA and DHA; brand and generic products) and omega-3-carboxylic acids (free fatty acids primarily composed of EPA and DHA), while the RxOM3FA icosapent ethyl (the ethyl ester of EPA) contains EPA only. All RxOM3FA products produce substantial TG reduction and other beneficial effects on atherogenic lipid and inflammation-related parameters, blood pressure, and heart rate variability, but products that contain DHA may raise low-density lipoprotein-cholesterol (LDL-C). This commentary provides an overview of hypertriglyceridemia while summarizing the pharmacology, efficacy, and safety of prescription RxOM3FAs. PMID:26681905

  2. Comparative Study of SPORL and Dilute Acid Pretreatments of Spruce for Cellulosic Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of two pretreatment methods, Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL) and Dilute Acid (DA), was compared in pretreating softwood (spruce) for fuel ethanol production under the same conditions of temperature (180°C), time (30 min), sulfuric acid loading...

  3. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    PubMed

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. PMID:26639411

  4. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. PMID:26367771

  5. Production of Antilisterial Bacteriocins from Lactic Acid Bacteria in Dairy-Based Media: A Comparative Study.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2015-12-01

    One hundred and eight strains of lactic acid bacteria (LAB) were screened for bacteriocin production by the modified deferred antagonism and agar well diffusion methods. When the modified deferred antagonism method was employed, 82 LAB strains showed inhibitory action against Listeria monocytogenes v7 ½a, whereas 26 LAB strains expressed no inhibition. Only 12 LAB strains exhibited inhibitory activity when the agar well diffusion method was used, 11 of which had been previously recognized as bacteriocin production positive (Bac(+)). Lactobacillus viridescens NRRL B-1951 was determined, for the first time, to produce an inhibitory compound with a proteinaceous nature. The inhibitory activity was observed in the presence of lipase, α-chymotrypsin, and trypsin, but no inhibition zone could be detected in the presence of proteinase K, indicating the proteinaceous nature of the inhibitory compound. The inhibitory compound was active against Lact. sake ATCC 15521 and Lact. plantarum NCDO 995. Bacteriocin production by the Bac(+) LAB strains was assessed in Lactobacillus MRS Broth as well as in dairy-based media such as nonfat milk, demineralized whey powder, and cheddar cheese whey supplemented with complex nutrient sources that are rich in nitrogen. Lact. sake ATCC 15521 and L. monocytogenes CWD 1002, CWD 1092, CWD 1157, CWD 1198, and v7 ½a were used as indicators. The inhibitory activities of the bacteriocins varied depending on the indicator strains and the growth media used. The LAB indicator strains were found to be more sensitive to inhibition by bacteriocins when compared to the listerial indicator strains. Among the listerial indicators, L. monocytogenes CWD 1002 and CWD 1198 were the most sensitive strains to the bacteriocins investigated in this study. Media composition had a significant influence on bacteriocin production and activity. When compared to demineralized whey powder medium and cheddar cheese whey medium supplemented with whey protein concentrate

  6. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover

    PubMed Central

    2014-01-01

    Background In a biorefinery producing cellulosic biofuels, biomass pretreatment will significantly influence the efficacy of enzymatic hydrolysis and microbial fermentation. Comparison of different biomass pretreatment techniques by studying the impact of pretreatment on downstream operations at industrially relevant conditions and performing comprehensive mass balances will help focus attention on necessary process improvements, and thereby help reduce the cost of biofuel production. Results An on-going collaboration between the three US Department of Energy (DOE) funded bioenergy research centers (Great Lakes Bioenergy Research Center (GLBRC), Joint BioEnergy Institute (JBEI) and BioEnergy Science Center (BESC)) has given us a unique opportunity to compare the performance of three pretreatment processes, notably dilute acid (DA), ionic liquid (IL) and ammonia fiber expansion (AFEXTM), using the same source of corn stover. Separate hydrolysis and fermentation (SHF) was carried out using various combinations of commercially available enzymes and engineered yeast (Saccharomyces cerevisiae 424A) strain. The optimal commercial enzyme combination (Ctec2: Htec2: Multifect Pectinase, percentage total protein loading basis) was evaluated for each pretreatment with a microplate-based assay using milled pretreated solids at 0.2% glucan loading and 15 mg total protein loading/g of glucan. The best enzyme combinations were 67:33:0 for DA, 39:33:28 for IL and 67:17:17 for AFEX. The amounts of sugar (kg) (glucose: xylose: total gluco- and xylo-oligomers) per 100 kg of untreated corn stover produced after 72 hours of 6% glucan loading enzymatic hydrolysis were: DA (25:2:2), IL (31:15:2) and AFEX (26:13:7). Additionally, the amounts of ethanol (kg) produced per 100 kg of untreated corn stover and the respective ethanol metabolic yield (%) achieved with exogenous nutrient supplemented fermentations were: DA (14.0, 92.0%), IL (21.2, 93.0%) and AFEX (20.5, 95.0%), respectively

  7. Bile acid production in human subjects: rate of oxidation of (24,25-/sup 3/H)cholesterol compared to fecal bile acid excretion

    SciTech Connect

    Davidson, N.O.; Bradlow, H.L.; Ahrens, E.H. Jr.; Rosenfeld, R.S.; Schwartz, C.C.

    1986-02-01

    Bile acid production has been quantitated in seven subjects by methods that compare the results of two independent approaches, namely, quantitation of cholesterol side-chain oxidation and fecal bile acid excretion. Six hypertriglyceridemic (HT) subjects and one normolipidemic control were studied by both techniques. A further control subject was studied by the cholesterol side-chain oxidation method alone. Cholesterol side-chain oxidation was quantitated by measuring the appearance of /sup 3/H/sub 2/O after intravenous administration of (24,25-/sup 3/H)cholesterol, using multicompartmental analysis of plasma cholesterol and (/sup 3/H)water specific activity. Body water kinetics were independently defined by use of oral D/sub 2/O. Two HT subjects were restudied while they were taking cholestyramine, 16 g/day. In all ten studies, multicompartmental analysis closely simulated the observed appearance of /sup 3/H/sub 2/O. Values obtained for bile acid production suggest that cholesterol oxidation, or bile acid input, was significantly greater than fecal bile acid output in the HT subjects (P less than 0.05). Cholesterol side-chain oxidation rates in the two normal subjects were lower than those encountered in HT subjects, being similar to published values for normal subjects both for bile acid synthesis as determined by isotope dilution kinetics and fecal bile acid excretion. Studies conducted with two, synthetically different, preparations of (24,25-/sup 3/H)cholesterol indicated that, in one of the two preparations, approximately 20% of the tritium label was at positions proximal to C24. In the other preparation examined, all of the tritium was located at, or distal to, C24. Further studies revealed that 0.055-0.24% of the dose was present as labile tritium by virtue of its appearance as /sup 3/H/sub 2/O following in vitro incubation with human plasma. (Abstract Truncated)

  8. Enhanced L-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis.

    PubMed

    Tian, Xiwei; Wang, Yonghong; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-03-01

    This study investigated cell physiological and metabolic responses of Lactobacillus paracasei to osmotic stresses. Both cellular fatty acid composition and metabolite profiling were responded by increasing unsaturated and epoxy-fatty acid proportions, as well as accumulating some specific intracellular metabolites. Simultaneously, metabolite profiling was adopted to rationally and systematically discover potential osmoprotectants. Consequently, exogenous addition of proline or aspartate was validated to be a feasible and efficacious approach to improve cell growth under hyperosmotic stress in shake flasks. Particularly, with 5-L cultivation system, L-lactic acid concentration increased from 108 to 150 g/L during the following 16-h fermentation in 2 g/L proline addition group, while it only increased from 110 to 140 g/L in no proline addition group. Moreover, glucose consumption rate with proline addition reached 3.49 g/L/h during this phase, 35.8 % higher than that with no proline addition. However, extreme high osmotic pressure would significantly limit the osmoprotection of proline, and the osmolality threshold for L. paracasei was approximately 3600 mOsm/kg. It was suggested that proline principally played a role as a compatible solute accumulated in the cell for hyperosmotic preservation. The strategies of exploiting osmotic protectant with metabolite profiling and enhancing L-lactic acid production by osmoprotectant addition would be potential to provide a new insight for other microorganisms and organic acids production. PMID:26658821

  9. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  10. Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.

    SciTech Connect

    Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J.; Beller, Harry R.; Keasling, Jay D.; Chang, Shiyan

    2013-01-01

    In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

  11. Comparative reaction engineering studies for succinic acid production from sucrose by metabolically engineered Escherichia coli in fed-batch-operated stirred tank bioreactors.

    PubMed

    Hoefel, Torben; Faust, Georg; Reinecke, Liv; Rudinger, Nicolas; Weuster-Botz, Dirk

    2012-10-01

    This study presents a comparative reaction engineering analysis of metabolically engineered sucrose-utilizing Escherichia coli derived from E. coli K12 MG1655 for the anaerobic production of succinic acid. Production capacities of 16 different recombinant strains were evaluated in 48 parallel fed-batch-operated milliliter-scale stirred tank bioreactors (10 mL) with continuous CO₂ sparging. The effects of recombinant sucrose-utilization systems (csc-operon or scr-operon), enhancements of anaplerotic reactions (pck, ppc, maeA, maeB or heterologous pyc) and gene deletions (ldhA, adhE, ack-pta and ptsG) were studied with respect to the overall process performances of the respective recombinant strains. Both sucrose-utilization systems enabled the production of succinic acid from sucrose in E. coli K12 MG1655. Maximum succinate production was observed by overexpressing the pyruvate carboxylase from Corynebacterium glutamicum resulting in a succinate concentration of 26.8 g L⁻¹ after 48 h and a cell-specific productivity of 0.14 g g⁻¹ h⁻¹. Further experiments in a fed-batch-operated laboratory-scale stirred tank bioreactor (2 L) showed that micro-aerobic conditions preceding the anaerobic phase enhance succinic acid production of E. coli K12 MG1655-derived strains. The work demonstrates the importance of parallel approaches within the scope of applied metabolic engineering studies. PMID:22588847

  12. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil).

    PubMed

    Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar

    2012-08-01

    The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. PMID:22537973

  13. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  14. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis.

    PubMed

    Harding, K G; Dennis, J S; von Blottnitz, H; Harrison, S T L

    2007-05-31

    Polymers based on olefins have wide commercial applicability. However, they are made from non-renewable resources and are characterised by difficulty in disposal where recycle and re-use is not feasible. Poly-beta-hydroxybutyric acid (PHB) provides one example of a polymer made from renewable resources. Before motivating its widespread use, the advantages of a renewable polymer must be weighed against the environmental aspects of its production. Previous studies relating the environmental impacts of petroleum-based and bio-plastics have centred on the impact categories of global warming and fossil fuel depletion. Cradle-to-grave studies report equivalent or reduced global warming impacts, in comparison to equivalent polyolefin processes. This stems from a perceived CO(2) neutral status of the renewable resource. Indeed, no previous work has reported the results of a life cycle assessment (LCA) giving the environmental impacts in all major categories. This study investigates a cradle-to-gate LCA of PHB production taking into account net CO(2) generation and all major impact categories. It compares the findings with similar studies of polypropylene (PP) and polyethylene (PE). It is found that, in all of the life cycle categories, PHB is superior to PP. Energy requirements are slightly lower than previously observed and significantly lower than those for polyolefin production. PE impacts are lower than PHB values in acidification and eutrophication. PMID:17400318

  15. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  16. Comparative genomics of the lactic acid bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacter...

  17. Microbial production of lactic acid.

    PubMed

    Eiteman, Mark A; Ramalingam, Subramanian

    2015-05-01

    Lactic acid is an important commodity chemical having a wide range of applications. Microbial production effectively competes with chemical synthesis methods because biochemical synthesis permits the generation of either one of the two enantiomers with high optical purity at high yield and titer, a result which is particularly beneficial for the production of poly(lactic acid) polymers having specific properties. The commercial viability of microbial lactic acid production relies on utilization of inexpensive carbon substrates derived from agricultural or waste resources. Therefore, optimal lactic acid formation requires an understanding and engineering of both the competing pathways involved in carbohydrate metabolism, as well as pathways leading to potential by-products which both affect product yield. Recent research leverages those biochemical pathways, while researchers also continue to seek strains with improved tolerance and ability to perform under desirable industrial conditions, for example, of pH and temperature. PMID:25604523

  18. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  19. Biochemistry of microbial itaconic acid production

    PubMed Central

    Steiger, Matthias G.; Blumhoff, Marzena L.; Mattanovich, Diethard; Sauer, Michael

    2013-01-01

    Itaconic acid is an unsaturated dicarbonic acid which has a high potential as a biochemical building block, because it can be used as a monomer for the production of a plethora of products including resins, plastics, paints, and synthetic fibers. Some Aspergillus species, like A. itaconicus and A. terreus, show the ability to synthesize this organic acid and A. terreus can secrete significant amounts to the media (>80 g/L). However, compared with the citric acid production process (titers >200 g/L) the achieved titers are still low and the overall process is expensive because purified substrates are required for optimal productivity. Itaconate is formed by the enzymatic activity of a cis-aconitate decarboxylase (CadA) encoded by the cadA gene in A. terreus. Cloning of the cadA gene into the citric acid producing fungus A. niger showed that it is possible to produce itaconic acid also in a different host organism. This review will describe the current status and recent advances in the understanding of the molecular processes leading to the biotechnological production of itaconic acid. PMID:23420787

  20. Stability-indicating methods for the analysis of ciprofloxacin in the presence of its acid induced degradation product: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-04-01

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of its acidic degradation product. The methods under study are ratio derivative, ratio difference, mean centering and dual wavelength. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of ciprofloxacin in quality-control laboratories.

  1. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  2. Amino acids in sheep production.

    PubMed

    McCoard, Susan A; Sales, Francisco A; Sciascia, Quentin L

    2016-01-01

    Increasing production efficiency with a high standard of animal welfare and respect for the environment is a goal of sheep farming systems. Substantial gains in productivity have been achieved through improved genetics, nutrition and management changes; however the survival and growth performance of multiple-born lambs still remains a problem. This is a significant production efficiency and animal well-being issue. There is a growing body of evidence that some amino acids have a role in regulating growth, reproduction and immunity through modulation of metabolic and cell signaling pathways. The purpose of this review is to provide an overview of what is currently known about the role of amino acids in sheep production and the potential for supplementation strategies to influence on-farm survival and growth of lambs. PMID:26709661

  3. Comparative genomics of the lactic acid bacteria

    SciTech Connect

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  4. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. PMID:23624242

  5. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  6. Comparative Research Productivity Measures for Economic Departments.

    ERIC Educational Resources Information Center

    Huettner, David A.; Clark, William

    1997-01-01

    Develops a simple theoretical model to evaluate interdisciplinary differences in research productivity between economics departments and related subjects. Compares the research publishing statistics of economics, finance, psychology, geology, physics, oceanography, chemistry, and geophysics. Considers a number of factors including journal…

  7. Communicating tobacco product harm: Compared to what?

    PubMed Central

    Kaufman, Annette R.; Suls, Jerry M.; Klein, William M.P.

    2015-01-01

    With the expansion of tobacco product options, a better understanding is needed of how information about the known and unknown risks of products is communicated to the public. Engaging in comparative processes is an common way for people to understand novel products, but the referent of comparison matters and can influence perceptions and behavior. This paper builds awareness of research from other disciplines, including decision science, marketing, and psychology, which can help inform research and tobacco control efforts. PMID:26162963

  8. Communicating tobacco product harm: Compared to what?

    PubMed

    Kaufman, Annette R; Suls, Jerry M; Klein, William M P

    2016-01-01

    With the expansion of tobacco product options, a better understanding is needed of how information about the known and unknown risks of products is communicated to the public. Engaging in comparative processes is an common way for people to understand novel products, but the referent of comparison matters and can influence perceptions and behavior. This paper builds awareness of research from other disciplines, including decision science, marketing, and psychology, which can help inform research and tobacco control efforts. PMID:26162963

  9. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    PubMed

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor. PMID:27268482

  10. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  11. Biotechnological production of muconic acid: current status and future prospects.

    PubMed

    Xie, Neng-Zhong; Liang, Hong; Huang, Ri-Bo; Xu, Ping

    2014-01-01

    Muconic acid (MA), a high value-added bio-product with reactive dicarboxylic groups and conjugated double bonds, has garnered increasing interest owing to its potential applications in the manufacture of new functional resins, bio-plastics, food additives, agrochemicals, and pharmaceuticals. At the very least, MA can be used to produce commercially important bulk chemicals such as adipic acid, terephthalic acid and trimellitic acid. Recently, great progress has been made in the development of biotechnological routes for MA production. This present review provides a comprehensive and systematic overview of recent advances and challenges in biotechnological production of MA. Various biological methods are summarized and compared, and their constraints and possible solutions are also described. Finally, the future prospects are discussed with respect to the current state, challenges, and trends in this field, and the guidelines to develop high-performance microbial cell factories are also proposed for the MA production by systems metabolic engineering. PMID:24751381

  12. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  13. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  14. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    PubMed

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  15. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  16. Biotechnological production and application of ganoderic acids.

    PubMed

    Xu, Jun-Wei; Zhao, Wei; Zhong, Jian-Jiang

    2010-06-01

    Ganoderic acids (GAs), a kind of highly oxygenated lanostane-type triterpenoids, are important bioactive constituents of the famous medicinal mushroom Ganoderma lucidum. They have received wide attention in recent years due to extraordinarily pharmacological functions. Submerged fermentation of G. lucidum is viewed as a promising technology for production of GAs, and substantial efforts have been devoted to process development for enhancing GA production in the last decade. This article reviews recent publication about fermentative production of GAs and their potential applications, especially the progresses toward manipulation of fermentation conditions and bioprocessing strategies are summarized. The biosynthetic pathway of GAs is also outlined. PMID:20437236

  17. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. PMID:25577101

  18. Comparative Analysis of GOCI Ocean Color Products

    PubMed Central

    Amin, Ruhul; Lewis, Mark David; Lawson, Adam; Gould, Richard W.; Martinolich, Paul; Li, Rong-Rong; Ladner, Sherwin; Gallegos, Sonia

    2015-01-01

    The Geostationary Ocean Color Imager (GOCI) is the first geostationary ocean color sensor in orbit that provides bio-optical properties from coastal and open waters around the Korean Peninsula at unprecedented temporal resolution. In this study, we compare the normalized water-leaving radiance (nLw) products generated by the Naval Research Laboratory Automated Processing System (APS) with those produced by the stand-alone software package, the GOCI Data Processing System (GDPS), developed by the Korean Ocean Research & Development Institute (KORDI). Both results are then compared to the nLw measured by the above water radiometer at the Ieodo site. This above-water radiometer is part of the Aerosol Robotic NETwork (AeroNET). The results indicate that the APS and GDPS processed nLw correlates well within the same image slot where the coefficient of determination (r2) is higher than 0.84 for all the bands from 412 nm to 745 nm. The agreement between APS and the AeroNET data is higher when compared to the GDPS results. The Root-Mean-Squared-Error (RMSE) between AeroNET and APS data ranges from 0.24 [mW/(cm2srμm)] at 555 nm to 0.52 [mW/(cm2srμm)] at 412 nm while RMSE between AeroNET and GDPS data ranges from 0.47 [mW/(cm2srμm)] at 443 nm to 0.69 [mW/(cm2srμm)] at 490 nm. PMID:26473861

  19. Comparative analysis of GOCI ocean color products.

    PubMed

    Amin, Ruhul; Lewis, Mark David; Lawson, Adam; Gould, Richard W; Martinolich, Paul; Li, Rong-Rong; Ladner, Sherwin; Gallegos, Sonia

    2015-01-01

    The Geostationary Ocean Color Imager (GOCI) is the first geostationary ocean color sensor in orbit that provides bio-optical properties from coastal and open waters around the Korean Peninsula at unprecedented temporal resolution. In this study, we compare the normalized water-leaving radiance (nLw) products generated by the Naval Research Laboratory Automated Processing System (APS) with those produced by the stand-alone software package, the GOCI Data Processing System (GDPS), developed by the Korean Ocean Research & Development Institute (KORDI). Both results are then compared to the nLw measured by the above water radiometer at the Ieodo site. This above-water radiometer is part of the Aerosol Robotic NETwork (AeroNET). The results indicate that the APS and GDPS processed  correlates well within the same image slot where the coefficient of determination (r²) is higher than 0.84 for all the bands from 412 nm to 745 nm. The agreement between APS and the AeroNET data is higher when compared to the GDPS results. The Root-Mean-Squared-Error (RMSE) between AeroNET and APS data ranges from 0.24 [mW/(cm²srμm)] at 555 nm to 0.52 [mW/(cm²srμm)]  at 412 nm while RMSE between AeroNET and GDPS data ranges from 0.47 [mW/(cm²srμm)] at 443 nm to 0.69 [mW/(cm²srμm)]  at 490 nm. PMID:26473861

  20. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  1. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  2. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  3. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  4. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    PubMed

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  5. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. PMID:26996259

  6. Comparative Pharmacokinetics of Perfluorononanoic acid in Rats and Mice

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a fluorinated organic chemical found at low levels in the environment, but is detectable in humans and wildlife. This study compared the pharmacokinetic properties of PFNA in two laboratory rodent species. Male and female Sprague-Dawley rats (n ...

  7. Comparative pharmacokinetics of perfluorononanoic acid in rat and mouse

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a fluorinated organic chemical found at low levels in the environment, but is detectable in humans and wildlife. The present study compared the pharmacokinetic properties of PFNA in two laboratory rodent species. Male and female Sprague-Dawley rat...

  8. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  9. Increased fracture penetration and productivity using xanthan gelled acid in massive carbonate formations

    SciTech Connect

    Molon, J.P.; Fox, K.B.

    1983-03-01

    A measurable improvement in productivity can be achieved using xanthan gelled acid to stimulate carbonate formations. Well productivity results were compared to conventional acid fracture treatments. The significant improvements over classical acid fracturing techniques are due to the improved control of acid leakoff rates, retarded reaction rate and improved fracture width maintenance. The difficulties involved in acid fracturing massive Middle East carbonate formations are discussed and solutions are proposed using gelled acid technology. Some limitations in computer predictions of acid fracturing results are also discussed.

  10. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    PubMed

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast. PMID:25041612

  11. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  12. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  13. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  14. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.

    PubMed

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  15. Comparative effects of n-3, n-6 and n-9 unsaturated fatty acid-rich diet consumption on lupus nephritis, autoantibody production and CD4+ T cell-related gene responses in the autoimmune NZBWF1 mouse.

    PubMed

    Pestka, James J; Vines, Laura L; Bates, Melissa A; He, Kaiyu; Langohr, Ingeborg

    2014-01-01

    Mortality from systemic lupus erythematosus (SLE), a prototypical autoimmune disease, correlates with the onset and severity of kidney glomerulonephritis. There are both preclinical and clinical evidence that SLE patients may benefit from consumption of n-3 polyunsaturated fatty acids (PUFA) found in fish oil, but the mechanisms remain unclear. Here we employed the NZBWF1 SLE mouse model to compare the effects of dietary lipids on the onset and severity of autoimmune glomerulonephritis after consuming: 1) n-3 PUFA-rich diet containing docosahexaenoic acid-enriched fish oil (DFO), 2) n-6 PUFA-rich Western-type diet containing corn oil (CRN) or 3) n-9 monounsaturated fatty acid (MUFA)-rich Mediterranean-type diet containing high oleic safflower oil (HOS). Elevated plasma autoantibodies, proteinuria and glomerulonephritis were evident in mice fed either the n-6 PUFA or n-9 MUFA diets, however, all three endpoints were markedly attenuated in mice that consumed the n-3 PUFA diet until 34 wk of age. A focused PCR array was used to relate these findings to the expression of 84 genes associated with CD4+ T cell function in the spleen and kidney both prior to and after the onset of the autoimmune nephritis. n-3 PUFA suppression of autoimmunity in NZBWF1 mice was found to co-occur with a generalized downregulation of CD4+ T cell-related genes in kidney and/or spleen at wk 34. These genes were associated with the inflammatory response, antigen presentation, T cell activation, B cell activation/differentiation and leukocyte recruitment. Quantitative RT-PCR of representative affected genes confirmed that n-3 PUFA consumption was associated with reduced expression of CD80, CTLA-4, IL-10, IL-18, CCL-5, CXCR3, IL-6, TNF-α and osteopontin mRNAs in kidney and/or spleens as compared to mice fed n-6 PUFA or n-9 MUFA diets. Remarkably, many of the genes identified in this study are currently under consideration as biomarkers and/or biotherapeutic targets for SLE and other autoimmune

  16. Comparative assessment of the methods for exchangeable acidity measuring

    NASA Astrophysics Data System (ADS)

    Vanchikova, E. V.; Shamrikova, E. V.; Bespyatykh, N. V.; Zaboeva, G. A.; Bobrova, Yu. I.; Kyz"yurova, E. V.; Grishchenko, N. V.

    2016-05-01

    A comparative assessment of the results of measuring the exchangeable acidity and its components by different methods was performed for the main mineral genetic horizons of texturally-differentiated gleyed and nongleyed soddy-podzolic and gley-podzolic soils of the Komi Republic. It was shown that the contents of all the components of exchangeable soil acidity determined by the Russian method (with potassium chloride solution as extractant, c(KCl) = 1 mol/dm3) were significantly higher than those obtained by the international method (with barium chloride solution as extractant, c(BaCl2) = 0.1 mol/dm3). The error of the estimate of the concentration of H+ ions extracted with barium chloride solution equaled 100%, and this allowed only qualitative description of this component of the soil acidity. In the case of the extraction with potassium chloride, the error of measurements was 50%. It was also shown that the use of potentiometric titration suggested by the Russian method overestimates the results of soil acidity measurement caused by the exchangeable metal ions (Al(III), Fe(III), and Mn(II)) in comparison with the atomic emission method.

  17. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  18. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii.

    PubMed

    Guan, Ningzi; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2016-06-01

    Propionic acid (PA) and its salts are widely used in the food, pharmaceutical, and chemical industries. Microbial production of PA by propionibacteria is a typical product-inhibited process, and acid resistance is crucial in the improvement of PA titers and productivity. We previously identified two key acid resistance elements-the arginine deaminase and glutamate decarboxylase systems-that protect propionibacteria against PA stress by maintaining intracellular pH homeostasis. In this study, we attempted to improve the acid resistance and PA production of Propionibacterium jensenii ATCC 4868 by engineering these elements. Specifically, five genes (arcA, arcC, gadB, gdh, and ybaS) encoding components of the arginine deaminase and glutamate decarboxylase systems were overexpressed in P. jensenii. The activities of the five enzymes in the engineered strains were 26.7-489.0% higher than those in wild-type P. jensenii. The growth rates of the engineered strains decreased, whereas specific PA production increased significantly compared with those of the wild-type strain. Among the overexpressed genes, gadB (encoding glutamate decarboxylase) increased PA resistance and yield most effectively; the PA resistance of P. jensenii-gadB was more than 10-fold higher than that of the wild-type strain, and the production titer, yield, and conversion ratio of PA reached 10.81 g/L, 5.92 g/g cells, and 0.56 g/g glycerol, representing increases of 22.0%, 23.8%, and 21.7%, respectively. We also investigated the effects of introducing these acid resistance elements on the transcript levels of related enzymes. The results showed that the expression of genes in the engineered pathways affected the expression of the other genes. Additionally, the intracellular pools of amino acids were altered as different genes were overexpressed, which may further contribute to the enhanced PA production. This study provides an effective strategy for improving PA production in propionibacteria; this

  19. Comparative analyses of lysophosphatidic acid receptor-mediated signaling.

    PubMed

    Fukushima, Nobuyuki; Ishii, Shoichi; Tsujiuchi, Toshifumi; Kagawa, Nao; Katoh, Kazutaka

    2015-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions. Computational analyses have also identified several amino acids (aa) critical for LPA recognition by human LPA receptors. This review focuses on the evolutionary aspects of LPA receptor-mediated signaling by comparing the aa sequences of vertebrate LPA receptors and LPA-producing enzymes; it also summarizes the LPA receptor-dependent effects commonly observed in mouse, frog, and fish. PMID:25732591

  20. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  1. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  2. Production of ascorbic acid releasing biomaterials for pelvic floor repair

    PubMed Central

    Mangır, Naşide; Bullock, Anthony J.; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    Objective An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Materials and methods Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2 weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. Results No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. Conclusion This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Statement of significance Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better

  3. FORMATION OF ACIDIC TRACE ORGANIC BY-PRODUCTS FROM THE CHLORINATION OF HUMIC ACIDS

    EPA Science Inventory

    A method for concentrating and analyzing acidic trace organics produced by the chlorination of humic acids at concentrations approximating common drinking water levels is described. Data are compared from several humic acid sources. Specific compound analyses of the extracts were...

  4. Lactide Synthesis and Chirality Control for Polylactic acid Production.

    PubMed

    Van Wouwe, Pieter; Dusselier, Michiel; Vanleeuw, Evelien; Sels, Bert

    2016-05-10

    Polylactic acid (PLA) is a very promising biodegradable, renewable, and biocompatible polymer. Aside from its production, its application field is also increasing, with use not only in commodity applications but also as durables and in biomedicine. In the current PLA production scheme, the most expensive part is not the polymerization itself but obtaining the building blocks lactic acid (LA) and lactide, the actual cyclic monomer for polymerization. Although the synthesis of LA and the polymerization have been studied systematically, reports of lactide synthesis are scarce. Most lactide synthesis methods are described in patent literature, and current energy-intensive, aselective industrial processes are based on archaic scientific literature. This Review, therefore, highlights new methods with a technical comparison and description of the different approaches. Water-removal methodologies are compared, as this is a crucial factor in PLA production. Apart from the synthesis of lactide, this Review also emphasizes the use of chemically produced racemic lactic acid (esters) as a starting point in the PLA production scheme. Stereochemically tailored PLA can be produced according to such a strategy, giving access to various polymer properties. PMID:27071863

  5. Modulation of interleukin production by ascorbic acid.

    PubMed

    Schwager, J; Schulze, J

    1998-06-30

    We studied the influence of ascorbate (vitamin C) on peripheral blood mononuclear cells (PBMC) of pigs with hereditary deficiency in ascorbate synthesis. Groups of animals were depleted of, or supplemented with dietary ascorbate for up to 5 weeks. B lymphocytes and T lymphocyte subsets differed in the two experimental groups only marginally and transiently as determined by analysis of cell surface markers. The proliferative response of PBMC to B and T lymphocyte mitogens was lower in depleted as compared to supplemented animals. Interleukin (IL)-2 and IL-6 were determined by bioassays and were secreted within few hours after mitogenic activation of PBMC which contained normal physiological concentrations of ascorbate. IL-2 production peaked at about 24 h of in vitro culture after Con A activation, but it lasted for 2-3 days after PWM activation. The production of IL-2 and IL-6 were compared during systemic depletion and supplementation with ascorbate. Depleted PBMC produced IL-2 which accumulated in cultures instead of being rapidly consumed by IL-2 dependent cell growth. This suggests that cellular ascorbate influences the production of IL-2. Secretion of IL-6 by mitogen activated PBMC was also affected by prolonged dietary ascorbate depletion. The results suggest that ascorbate levels exert an early effect on immune homeostasis via reactive oxygen intermediates (ROI)-dependent expression of interleukin genes, since the transcription factor NF-kappa B is sensitive to ROI and regulates the expression of interleukin genes. PMID:9656430

  6. [Some considerations about the use of carbon sources in jasmonic acid production.].

    PubMed

    Almeida González, G; Klibansky Delgado, M; Altuna Seijas, B; Eng Sánchez, F; Legrá Mora, S; Armenteros Galarraga, S

    1999-09-01

    The effect of different carbon sources as sucrose, fructose, glucose and molasses were studied in relation to jasmonic acid production. The best results were obtained with a simple medium made up by final molasses, potassium nitrate and acid potassium phosphate, without the addition of other salts like Fe, Zn, Cu, Mo, etc. This alternative guaranteed a 100% increase in jasmonic acid production, compared to pattern medium, since a concentration of 2.08 g/l was obtained. PMID:18473562

  7. Conjugated linoleic acid-enriched beef production.

    PubMed

    Mir, Priya S; McAllister, Timothy A; Scott, Shannon; Aalhus, Jennifer; Baron, Vern; McCartney, Duane; Charmley, Edward; Goonewardene, Laki; Basarab, John; Okine, Erasmus; Weselake, Randall J; Mir, Zahir

    2004-06-01

    Canadian beef consumption is approximately 31 kg per annum, or a third of all meats consumed. Beef is a nutrient-rich food, providing good quality protein, vitamins B-6 and B-12, niacin, iron, and zinc. However, animal fats have gained the reputation of being less healthy. The identification of the anticarcinogenic effects of beef extracts due to the presence of conjugated linoleic acid (CLA) has heightened interest in increasing the amount of CLA deposited in beef. Beef cattle produce CLA and deposit these compounds in the meat; thus, beef consumers can receive bioformed CLA. Beef contains both of the bioactive CLA isomers, namely, cis-9, trans-11 and trans-10, cis-12. The relative content of these CLA isomers in beef depends on the feeds consumed by the animals during production. Feeding cattle linoleic acid-rich oils for extended periods of time increases the CLA content of beef. Depending on the type and relative maturity of the pasture, beef from pasture-fed cattle may have a higher CLA content than beef from grain- or silage-fed cattle. In feedlot animals fed high-grain diets, inclusion of dietary oil along with hay during both the growth and finishing phases led to an increase in CLA content from 2.8 to 14 mg/g beef fat, which would provide 77 mg CLA in an 85-g serving of beef. The CLAs appear to be concentrated in intramuscular and subcutaneous fat of beef cattle, with the CLA trans-10, cis-12 isomer being greater in the subcutaneous fat. PMID:15159258

  8. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    PubMed

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  9. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    PubMed

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production. PMID:26450510

  10. Analysis of cyclic pyrolysis products formed from amino acid monomer.

    PubMed

    Choi, Sung-Seen; Ko, Ji-Eun

    2011-11-18

    Amino acid was mixed with silica and tetramethylammonium hydroxide (TMAH) to favor pyrolysis of amino acid monomer. The pyrolysis products formed from amino acid monomer were using GC/MS and GC. 20 amino acids of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were analyzed. The pyrolysis products were divided into cyclic and non-cyclic products. Among the 20 amino acids, arginine, asparagine, glutamic acid, glutamine, histidine, lysine, and phenylalanine generated cyclic pyrolysis products of the monomer. New cyclic pyrolysis products were formed by isolation of amino acid monomers. They commonly had polar side functional groups to 5-, 6-, or 7-membered ring structure. Arginine, asparagine, glutamic acid, glutamine, histidine, and phenylalanine generated only 5- or 6-membered ring products. However, lysine generated both 6- and 7-membered ring compounds. Variations of the relative intensities of the cyclic pyrolysis products with the pyrolysis temperature and amino acid concentration were also investigated. PMID:21993510

  11. [Comparative study on selenium and amino acids content in leaves of planted and wild Scutellaria baicalensis].

    PubMed

    Sheng, Ji-Ping; Chen, Hai-Rong; Shen, Lin

    2009-01-01

    Scutellaria baicalensis is one of the most important Chinese herbs. It is widely used in Asian medicine to improve impaired brain function and to treat headaches, and used to treat prostate cancer. It is also known to be anti-inflammatory and antifungal, and also seems to have antiviral properties, including possible effectiveness against HIV. Scutellaria baicalensis tea and other products are in development. In the present study, the content of selenium (Se) in leaves of planted and wild Scutellaria baicalensis was determined by fluorescence photometer. The contents of 18 kinds of amino acids in the leaves of planted and wild Scutellaria baicalensis were determined with amino acids instruments. The results showed that the two kinds of leaves were rich in Se content, and the content of Se in planted Scutellaria baicalensis (0.051 microg x g(-1)) was not significantly different from that in wild one (0.051 microg x g(-1), alpha = 0.05). The amino acids, of which the total content was up to 14.62% and 10.25% separately, were rich in both planted and wild Scutellaria baicalensis. Among the 18 kinds of amino acids, aspartic acid, glutamic acid and leucine were comparatively high in leaves of planted and wild Scutellaria baicalensis. There are 8 kinds of amino acids essential to human body, which were higher in leaves of planted Scutellaria baicalensis than those of wild one. This study, for the first time, determined Se and amino acids content in Scutellaria baicalensis and concluded that the leaves of planted type have Se and amino acids content not lower or higher than that of wild type, and the planted type could be a good substitute of wild type in the development of Scutellaria baicalensis products. This study also provided useful data for explaining the multifunction of Scutellaria baicalensis and theological basis for developing its medical and edible value. PMID:19385241

  12. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10679 Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl...

  13. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  14. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  15. Fermentative production of shikimic acid: a paradigm shift of production concept from plant route to microbial route.

    PubMed

    Tripathi, Priyanka; Rawat, Garima; Yadav, Sweta; Saxena, R K

    2013-11-01

    Different physiological and nutritional parameters affect the fermentative production of shikimic acid. In our study, Citrobacter freundii initially produced 0.62 g/L of shikimic acid in 72 h. However, when process optimization was employed, 5.11 g/L of shikimic acid was produced in the production medium consisting of glucose (5.0 %), asparagine (4.5 %), CaCO3 (2.0 %), at pH 6.0, when inoculated with 6 % inoculum and incubated at 30 ± 1 °C, 200 rpm for 60 h. Preliminary fed-batch studies have resulted in the production of 9.11 g/L of shikimic acid on feeding the production medium by 20 g/L of glucose at 24 h of the fermentation run. Production of similar amount of shikimic acid was observed when the optimized conditions were employed in a 10-L bioreactor as obtained in shake flask conditions. A total of 9.11 g/L of shikimic acid was produced in 60 h. This is approximately 14.69-fold increase in shikimic acid production when compared to the initial un-optimized production conditions. This has also resulted in the reduction of the production time. The present study provides useful information to the industrialists seeking environmentally benign technology for the production of bulk biomolecules through manipulation of various chemical parameters. PMID:23543261

  16. Microbial granulation for lactic acid production.

    PubMed

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. PMID:25925200

  17. Chicoric acid: chemistry, distribution, and production

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Scagel, Carolyn

    2013-12-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  18. Chicoric acid: chemistry, distribution, and production

    PubMed Central

    Lee, Jungmin; Scagel, Carolyn F.

    2013-01-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed. PMID:24790967

  19. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  20. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  1. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  2. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  3. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  4. Genotype, production system and sex effects on fatty acid composition of meat from goat kids.

    PubMed

    Özcan, Mustafa; Demirel, Gulcan; Yakan, Akın; Ekiz, Bülent; Tölü, Cemil; Savaş, Türker

    2015-02-01

    Two trials were performed to assess the meat fatty acid profile of goat kids from different genotypes, production systems and sex. In the first trial, genotype effect was determined in 24 suckling male kids from Turkish Saanen, Maltese and Gokceada breeds. In the second trial, male and female Gokceada Goat kids were used to compare the effect of extensive and semi-intensive production systems on fatty acid composition of meat. Significant genotype effect was observed in the percentages of myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1 n-9), linolenic acid (C18:3 n-3), arachidonic acid (C20:4 n-6) and docosahexaenoic acid (C22:6 n-3), despite no differences on the ratios of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) and n-6/n-3 (P > 0.05). The effect of production system had also significant effects on fatty acids, but sex only influenced significantly stearic acid (C18:0), C18:1 n-9 and C18:3 n-3 fatty acids and total PUFA level and PUFA/SFA ratio. This study confirms that dairy breeds are prone to produce higher levels of unsaturated fatty acids in their muscle. Meanwhile, meat from Gokceada goat kids, which is one of the indigenous breeds in Turkey, had similar PUFA/SFA and n-6/n-3 ratios to Turkish Saanen and Maltase. PMID:25186278

  5. Comparative studies of porphyrin production in Propionibacterium acnes and Propionibacterium granulosum.

    PubMed Central

    Lee, W L; Shalita, A R; Poh-Fitzpatrick, M B

    1978-01-01

    Porphyrin production by Propionibacterium acnes and that by Propionibacterium granulosum were compared. Porphyrin synthesized by both organisms was identified as coproporphyrin III on the bases of absorption and fluorescence spectra and behavior on paper chromatography and thin-layer chromatography. Quantitative, rather than qualitative, differences in production were found between these organisms. In general, P. granulosum produced significantly greater amounts (P less than 0.001) of porphyrin than did P. acnes. delta-Aminolevulinic acid synthetase appeared to be the rate-limiting enzyme of the heme biosynthetic pathway in both organisms. The increased porphyrin production in P. granulosum is apparently associated with increased delta-aminolevulinic acid synthetase activity. PMID:637914

  6. Methods for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  7. Succinic acid production with metabolically engineered E. coli recovered from two-stage fermentation.

    PubMed

    Ma, Jiang-Feng; Jiang, Min; Chen, Ke-Quan; Xu, Bing; Liu, Shu-Wen; Wei, Ping; Ying, Han-Jie

    2010-10-01

    Escherichia coli AFP111 cells recovered from spent two-stage fermentation broth were investigated for additional production of succinic acid under anaerobic conditions. Recovered cells produced succinic acid in an aqueous environment with no nutrient supplementation except for glucose and MgCO(3). In addition, initial glucose concentration and cell density had a significant influence on succinic acid mass yield and productivity. Although the final concentration of succinic acid from recovered cells was lower than from two-stage fermentation, an average succinic acid mass yield of 0.85 g/g was achieved with an average productivity of 1.81 g/l h after three rounds of recycling, which was comparable to two-stage fermentation. These results suggested that recovered cells might be reused for the efficient production of succinic acid. PMID:20495946

  8. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity. PMID:26399412

  9. Toward biotechnological production of adipic acid and precursors from biorenewables.

    PubMed

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. PMID:22824738

  10. Biotechnological routes based on lactic acid production from biomass.

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2011-01-01

    Lactic acid, the most important hydroxycarboxylic acid, is now commercially produced by the fermentation of sugars present in biomass. In addition to its use in the synthesis of biodegradable polymers, lactic acid can be regarded as a feedstock for the green chemistry of the future. Different potentially useful chemicals such as pyruvic acid, acrylic acid, 1,2-propanediol, and lactate ester can be produced from lactic acid via chemical and biotechnological routes. Here, we reviewed the current status of the production of potentially valuable chemicals from lactic acid via biotechnological routes. Although some of the reactions described in this review article are still not applicable at current stage, due to their "greener" properties, biotechnological processes for the production of lactic acid derivatives might replace the chemical routes in the future. PMID:21846500

  11. New uses of bioglycerin: production of arachidonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filamentous fungi of the genus Mortierella are known to produce arachidonic acid from glucose and M. alpina is currently used in industrial scale production of arachidonic acid in Japan. In anticipation of a large excess of co-product bioglycerin from the national biodiesel program, we would like ...

  12. A new viscosupplement based on partially hydrophobic hyaluronic acid: a comparative study.

    PubMed

    Finelli, Ivana; Chiessi, Ester; Galesso, Devis; Renier, Davide; Paradossi, Gaio

    2011-01-01

    A novel partially hydrophobized derivative of hyaluronic acid (HYADD® 4), containing a low number of C16 side-chains per polysaccharide backbone, provides injectable hydrogels stabilized by side-chain hydrophobic interactions. The rheological properties of Hymovis®, a physical hydrogel based on the hyaluronic acid derivative HYADD® 4, were evaluated using as reference a solution of the parent natural polysaccharide, hyaluronic acid. The rheological measurements were performed both in flow and oscillation regimes at the physiological frequency values of the knee, typically spanning the range from 0.5 Hz (walking frequency) to 3 Hz (running frequency). Moreover, the viscoelastic features of Hymovis® were compared with the market-available viscosupplementation products in view of its use in joint diseases.The different behavior of the investigated materials in crossover frequency measurements and in structure recovery experiments can be explained on the basis of the structural and dynamic properties of the polymeric systems. PMID:22433568

  13. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    PubMed

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine). PMID:24679256

  14. Effects of acid deposition on agricultural production

    SciTech Connect

    Moskowitz, P.D.; Medeiros, W.H.; Oden, N.L.; Thode, H.C. Jr.; Coveney, E.A.; Jacobson, J.S.; Rosenthal, R.E.; Evans, L.S.; Lewin, K.F.; Allen, F.L.

    1985-09-01

    A preliminary assessment, both qualitative and quantitative, was carried out on the effects of acid deposition on agriculture. An inventory was made of US crops exposed to different acid deposition levels in 1982. Most crops (valued at more than $50 billion) were exposed to annual average acid deposition levels greater than pH 4.6, but crops worth more than $220 billion were exposed to even lower pH levels. Published results of experiments on crop response to acid deposition have not identified any single crop as being consistently sensitive, and suggest that present levels of acidic precipitation in the US are not significantly affecting growth and yield of crops. Because relatively few experiments appropriate to a quantitative acid deposition assessment have been conducted, the quantitative section is necessarily based on a restricted data set. Corn, potatoes, and soybeans have been studied in experimental environments which simulate agronomic conditions and which have adequate statistical power for yield estimates; only some varieties of soybeans have demonstrated statistically significant sensitivity to acid deposition.

  15. Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria.

    PubMed Central

    Sturr, M G; Marquis, R E

    1992-01-01

    pH activity profiles and inhibitor sensitivities were compared for membrane ATPases isolated from three oral lactic acid bacteria, Lactobacillus casei ATCC 4646, Streptococcus mutans GS-5, and Streptococcus sanguis NCTC 10904, with, respectively, high, moderate, and low levels of acid tolerance. Membranes containing F1F0 ATPases were isolated by means of salt lysis of cells treated with muralytic enzymes. Membrane-free F1F0 complexes were then isolated from membranes by detergent extraction with Triton X-100 or octylglucoside. Finally, F1 complexes free of the proton-conducting F0 sector were obtained by washing membranes with buffers of low ionic strength. The pH activity profiles of the membrane-associated enzymes reflected the general acid tolerances of the organisms from which they were isolated; for example, pH optima were approximately 5.5, 6.0, and 7.0, respectively, for enzymes from L. casei, S. mutans, and S. sanguis. Roughly similar profiles were found for membrane-free F1F0 complexes, which were stabilized by phospholipids against loss of activity during storage. However, profiles for F1 enzymes were distinctly narrower, indicating that association with F0 and possibly other membrane components enhanced tolerance to both acid and alkaline media. All of the enzymes were found to have similar sensitivities to Al-F complexes, but only F1F0 enzymes were highly sensitive to dicyclohexylcarbodiimide. The procedures described for isolation of membrane-free F1F0 forms of the enzymes from oral lactic acid bacteria will be of use in future studies of the characteristics of the enzymes, especially in studies with liposomes. PMID:1386211

  16. The global regulator LaeA controls production of citric acid and endoglucanases in Aspergillus carbonarius.

    PubMed

    Linde, Tore; Zoglowek, Marta; Lübeck, Mette; Frisvad, Jens Christian; Lübeck, Peter Stephensen

    2016-08-01

    The global regulatory protein LaeA is known for regulating the production of many kinds of secondary metabolites in Aspergillus species, as well as sexual and asexual reproduction, and morphology. In Aspergillus carbonarius, it has been shown that LaeA regulates production of ochratoxin. We have investigated the regulatory effect of LaeA on production of citric acid and cellulolytic enzymes in A. carbonarius. Two types of A. carbonarius strains, having laeA knocked out or overexpressed, were constructed and tested in fermentation. The knockout of laeA significantly decreased the production of citric acid and endoglucanases, but did not reduce the production of beta-glucosidases or xylanases. The citric acid accumulation was reduced with 74-96 % compared to the wild type. The endoglucanase activity was reduced with 51-78 %. Overexpression of LaeA seemed not to have an effect on citric acid production or on cellulose or xylanase activity. PMID:27169528

  17. Production of extracellular fatty acid using engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL) produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain p

  18. Catalytic performance of hybrid nanocatalyst for levulinic acid production from glucose

    NASA Astrophysics Data System (ADS)

    Ya'aini, Nazlina; Amin, Nor Aishah Saidina

    2012-11-01

    Levulinic acid is one of the potential and versatile biomass-derived chemicals. Product analysis via HPLC revealed that the heterogeneous dehydration of glucose over hybrid nanocatalyst exhibited better performance compared to single catalyst. Hybrid nanocatalyst containing H-Y zeolite and CrCl3 could substitute homogenous acid catalyst for attaining high levulinic acid yield. Different CrC3 and H-Y zeolite weight ratios of 1:1, 1:2 and 2:1 were prepared according to the wetness impregnation method. The hybrid catalyst with a 1:1 weight ratio performed better compared to others with the highest levulinic acid yield reported (93.5%) at 140 °C, 180 min reaction time, 0.1 g catalyst loading and 0.1 g glucose feed. Characterization results revealed that properties such as surface area, mesoporosity and acidic strength of the catalyst have significant effects on glucose dehydration for levulinic acid production.

  19. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    PubMed

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production. PMID:26384571

  20. Heterologous production of caffeic acid from tyrosine in Escherichia coli.

    PubMed

    Rodrigues, J L; Araújo, R G; Prather, K L J; Kluskens, L D; Rodrigues, L R

    2015-04-01

    Caffeic acid is a plant secondary metabolite and its biological synthesis has attracted increased attention due to its beneficial effects on human health. In this study, Escherichia coli was engineered for the production of caffeic acid using tyrosine as the initial precursor of the pathway. The pathway design included tyrosine ammonia lyase (TAL) from Rhodotorula glutinis to convert tyrosine to p-coumaric acid and 4-coumarate 3-hydroxylase (C3H) from Saccharothrix espanaensis or cytochrome P450 CYP199A2 from Rhodopseudomonas palustris to convert p-coumaric acid to caffeic acid. The genes were codon-optimized and different combinations of plasmids were used to improve the titer of caffeic acid. TAL was able to efficiently convert 3mM of tyrosine to p-coumaric acid with the highest production obtained being 2.62mM (472mg/L). CYP199A2 exhibited higher catalytic activity towards p-coumaric acid than C3H. The highest caffeic acid production obtained using TAL and CYP199A2 and TAL and C3H was 1.56mM (280mg/L) and 1mM (180mg/L), respectively. This is the first study that shows caffeic acid production using CYP199A2 and tyrosine as the initial precursor. This study suggests the possibility of further producing more complex plant secondary metabolites like flavonoids and curcuminoids. PMID:25765308

  1. By-products of electrochemical synthesis of suberic acid

    SciTech Connect

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.; Antonenko, N.S.; Grudtsyn, Yu.D.

    1988-05-10

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  2. Comparative Pharmacokinetics of Perfluorononanoic acid in Rats and Mice.

    EPA Science Inventory

    Perfluorononanoic acid (pFNA), a member of the perfluoroalkyl acids (PFAAs) is found at low concentrations in the environment, but detectable in humans and wildlife. Previous studies have examined the pharmacokinetics (PK) of shorter carbon-chain PFAAs, such as perfluorobutyric a...

  3. *Comparative pharmacokinetics of perfluorononanoic acid in rats and mice

    EPA Science Inventory

    Perfluorononanoic acid (PFNA), a member of the perfluoroalkyl acids (PFAAs) is found at low concentrations in the environment, but detectable in humans and wildlife. Previous studies have examined the pharmacokinetics (PK) of shorter carbon-chain PFAAs, such as perfluorobutyric a...

  4. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation. PMID:18601027

  5. Comparing pion production models to MiniBooNE data

    SciTech Connect

    Rodrigues, P. A.

    2015-05-15

    Predictions for neutrino-induced charged- and neutral-current single pion production on CH{sub 2} from theoretical models and Monte Carlo event generators are compared with the cross section measurements from the MiniBooNE experiment.

  6. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei.

    PubMed

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2016-02-01

    Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact on the pattern and the amount of organic acids produced by A. saccharolyticus. The wild-type strain produced higher amount of malic acid and succinic acid in the pH buffered condition (pH 6.5) compared with the pH non-buffered condition. The enzyme assays showed that the rTCA branch was active in the acid production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led to an enhanced production of succinic acid in frd transformants compared with the wild-type in both pH buffered and pH non-buffered conditions with highest amount produced in the pH buffered condition (16.2 ± 0.5 g/L). This study demonstrates the feasibility of increasing succinic acid production through the cytosolic reductive pathway by genetic engineering in A. saccharolyticus. PMID:26521243

  7. Biotechnological production of alpha-keto acids: Current status and perspectives.

    PubMed

    Song, Yang; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-11-01

    Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis. PMID:27575335

  8. Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products.

    PubMed

    Fialkow, Jonathan

    2016-08-01

    Omega-3 fatty acid products are available as prescription formulations (icosapent ethyl, omega-3-acid ethyl esters, omega-3-acid ethyl esters A, omega-3-carboxylic acids) and dietary supplements (predominantly fish oils). Most dietary supplements and all but one prescription formulation contain mixtures of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Products containing both EPA and DHA may raise low-density lipoprotein cholesterol (LDL-C). In clinical trials, the EPA-only prescription product, icosapent ethyl, did not raise LDL-C compared with placebo. To correct a common misconception, it is important to note that omega-3 fatty acid dietary supplements are not US FDA-approved over-the-counter drugs and are not required to demonstrate safety and efficacy prior to marketing. Conversely, prescription products are supported by extensive clinical safety and efficacy investigations required for FDA approval and have active and ongoing safety monitoring programs. While omega-3 fatty acid dietary supplements may have a place in the supplementation of diet, they generally contain lower levels of EPA and DHA than prescription products and are not approved or intended to treat disease. Perhaps due to the lack of regulation of dietary supplements, EPA and DHA levels may vary widely within and between brands, and products may also contain unwanted cholesterol or fats or potentially harmful components, including toxins and oxidized fatty acids. Accordingly, omega-3 fatty acid dietary supplements should not be substituted for prescription products. Similarly, prescription products containing DHA and EPA should not be substituted for the EPA-only prescription product, as DHA may raise LDL-C and thereby complicate the management of patients with dyslipidemia. PMID:27138439

  9. Thermodynamic prediction of hydrogen production from mixed-acid fermentations.

    PubMed

    Forrest, Andrea K; Wales, Melinda E; Holtzapple, Mark T

    2011-10-01

    The MixAlco™ process biologically converts biomass to carboxylate salts that may be chemically converted to a wide variety of chemicals and fuels. The process utilizes lignocellulosic biomass as feedstock (e.g., municipal solid waste, sewage sludge, and agricultural residues), creating an economic basis for sustainable biofuels. This study provides a thermodynamic analysis of hydrogen yield from mixed-acid fermentations from two feedstocks: paper and bagasse. During batch fermentations, hydrogen production, acid production, and sugar digestion were analyzed to determine the energy selectivity of each system. To predict hydrogen production during continuous operation, this energy selectivity was then applied to countercurrent fermentations of the same systems. The analysis successfully predicted hydrogen production from the paper fermentation to within 11% and the bagasse fermentation to within 21% of the actual production. The analysis was able to faithfully represent hydrogen production and represents a step forward in understanding and predicting hydrogen production from mixed-acid fermentations. PMID:21875794

  10. Gluconic acid production by gad mutant of Klebsiella pneumoniae.

    PubMed

    Wang, Dexin; Wang, Chenhong; Wei, Dong; Shi, Jiping; Kim, Chul Ho; Jiang, Biao; Han, Zengsheng; Hao, Jian

    2016-08-01

    Klebsiella pneumoniae produces many economically important chemicals. Using glucose as a carbon source, the main metabolic product in K. pneumoniae is 2,3-butanediol. Gluconic acid is an intermediate of the glucose oxidation pathway. In the current study, a metabolic engineering strategy was used to develop a gluconic acid-producing K. pneumoniae strain. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. Gluconic acid accumulation by K. pneumoniae Δgad was an acid-dependent aerobic process, with accumulation observed at pH 5.5 or lower, and at higher levels of oxygen supplementation. Under all other conditions tested, 2,3-butanediol was the main metabolic product of the process. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by K. pneumoniae Δgad, and the conversion ratio of glucose to gluconic acid reached 1 g/g. The K. pneumoniae Δgad described in this study is the first genetically modified strain used for gluconic acid production, and this optimized method for gluconic acid production may have important industrial applications. Gluconic acid is an intermediate of this glucose oxidation pathway. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by the K. pneumoniae Δgad strain, and the conversion ratio of glucose to gluconic acid reached 1 g/g. PMID:27339313

  11. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  12. Recent advances in biological production of 3-hydroxypropionic acid.

    PubMed

    Kumar, Vinod; Ashok, Somasundar; Park, Sunghoon

    2013-11-01

    3-Hydroxypropionic acid (3-HP) is a valuable platform chemical that can be produced biologically from glucose or glycerol. This review article provides an overview and the current status of microbial 3-HP production. The constraints of microbial 3-HP production and possible solutions are also described. Finally, future prospects of biological 3-HP production are discussed. PMID:23473969

  13. [Comparative study on nutmeg, mace and their processed products].

    PubMed

    Jia, T; Wang, Z; Wang, Y; Li, J

    1997-09-01

    The contents of volatile oil, myristicin, safrol and methyleugenol, as well as the composition and content of fatty oil in nutmeg, mace and their processed products were comparatively studied. The composition of volatile oil and the detection of trimyristin were compared by TLC. A scientific basis for the development and application of mace has thus been provided. PMID:11038942

  14. Chicoric acid: chemistry, distribution, and production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 60 genera have been found to contain chicoric...

  15. Kojic Acid Production from Agro-Industrial By-Products Using Fungi

    PubMed Central

    El-Kady, Ismael A.; Zohri, Abdel Naser A.; Hamed, Shimaa R.

    2014-01-01

    A total of 278 different isolates of filamentous fungi were screened using synthetic medium for respective ability to produce kojic acid. Nineteen, six, and five isolates proved to be low, moderate, and high kojic acid producers, respectively. Levels of kojic acid produced were generally increased when shaking cultivation was used rather than those obtained using static cultivation. A trial for the utilization of 15 agro-industrial wastes or by-products for kojic acid production by the five selected higher kojic acid producer isolates was made. The best by-product medium recorded was molasses for kojic acid. A. flavus numbers 7 and 24 were able to grow and produce kojic acid on only 12 out of 15 wastes or by-products media. The best medium used for kojic acid production by A. flavus number 7 was rice fragments followed by molasses, while the best medium used for kojic acid production by A. flavus number 24 was the molasses followed by orange, pea, and rice fragments. An attempt for production of kojic acid using a 1.5 L laboratory fermentor has been made. Aspergillus flavus number 7 was used and grown on molasses medium; maximum level (53.5 g/L) of kojic acid was obtained after eight days of incubation. PMID:24778881

  16. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids. PMID:27033536

  17. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    NASA Astrophysics Data System (ADS)

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  18. Genetic Engineering of Rhizopus for Enhancing Lactic Acid Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  19. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  20. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions

    SciTech Connect

    Blum, U.

    1998-04-01

    Reversible sorption of phenolic acids by soils may provide some protection to phenolic acids from microbial degradation. In the absence of microbes, reversible sorption 35 days after addition of 0.5--3 {micro}mol/g of ferulic acid or p-coumaric acid was 8--14% in Cecil A{sub p} horizon and 31--38% in Cecil B{sub t} horizon soil materials. The reversibly sorbed/solution ratios (r/s) for ferulic acid or p-coumaric acid ranged from 0.12 to 0.25 in A{sub p} and 0.65 to 0.85 in B{sub t} horizon soil materials. When microbes were introduced, the r/s ratio for both the A{sub p} and B{sub t} horizon soil materials increased over time up to 5 and 2, respectively, thereby indicating a more rapid utilization of solution phenolic acids over reversibly sorbed phenolic acids. The increase in r/s ratio and the overall microbial utilization of ferulic acid and/or p-coumaric acid were much more rapid in A{sub p} than in B{sub t} horizon soil materials. Reversible sorption, however, provided protection of phenolic acids from microbial utilization for only very short periods of time. Differential soil fixation, microbial production of benzoic acids (e.g., vanillic acid and p-hydroxybenzoic acid) from cinnamic acids (e.g., ferulic acid and p-coumaric acid, respectively), and the subsequent differential utilization of cinnamic and benzoic acids by soil microbes indicated that these processes can substantially influence the magnitude and duration of the phytotoxicity of individual phenolic acids.

  1. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways.

    PubMed

    Li, Jing; Zhang, Yansheng

    2014-04-01

    Betulinic acid is a plant-based triterpenoid that has been recognized for its antitumor and anti-HIV activities. The level of betulinic acid in its natural hosts is extremely low. In the present study, we constructed betulinic acid biosynthetic pathway in Saccharomyces cerevisiae by metabolic engineering. Given the betulinic acid forming pathways sharing the common substrate acetyl-CoA with fatty acid synthesis, the metabolic fluxes between the two pathways were varied by changing gene expressions, and their effects on betulinic acid production were investigated. We constructed nine S. cerevisiae strains representing nine combinations of the flux distributions between betulinic acid and fatty acid pathways. Our results demonstrated that it was possible to improve the betulinic acid production in S. cerevisiae while keeping a desirable growth phenotype by optimally balancing the carbon fluxes of the two pathways. Through modulating the expressions of the key genes on betulinic acid and fatty acid pathways, the difference in betulinic acid yield varied largely in the range of 0.01-1.92 mg L(-1) OD(-1). The metabolic engineering approach used in this study could be extended for synthesizing other triterpenoids in S. cerevisiae. PMID:24389702

  2. Improved growth, productivity and quality of tomato (Solanum lycopersicum L.) plants through application of shikimic acid

    PubMed Central

    Al-Amri, Salem M.

    2013-01-01

    A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions. PMID:24235870

  3. Occurrence and role of lactic acid bacteria in seafood products.

    PubMed

    Françoise, Leroi

    2010-09-01

    Lactic acid bacteria (LAB) in fish flesh has long been disregarded because the high post-mortem pH, the low percentage of sugars, the high content of low molecular weight nitrogenous molecules and the low temperature of temperate waters favor the rapid growth of pH-sensitive psychrotolerant marine Gram-negative bacteria like Pseudomonas, Shewanella and Photobacterium. In seafood packed in both vacuum (VP) and modified atmosphere (MAP) packaging commonly CO(2) enriched, the growth of the Gram-negative aerobic bacteria group (predominantly pseudomonads) is effectively inhibited and the number reached by LAB during storage is higher than that achieved in air but always several log units lower than the trimethylamine oxide (TMA-O) reducing and CO(2)-resistant organisms (Shewanella putrefaciens and Photobacterium phosphoreum). Accordingly, LAB are not of much concern in seafood neither aerobically stored nor VP and MAP. However, they may acquire great relevance in lightly preserved fish products (LPFP), including those VP or MAP. Fresh fish presents a very high water activity (aw) value (0.99). However, aw is reduced to about 0.96 when salt (typically 6% WP) is added to the product. As a result, aerobic Gram-negative bacteria are inhibited, which allows the growth of other organisms more resistant to reduced aw, i.e. LAB, and then they may acquire a central role in the microbial events occurring in the product. Changes in consumers' habits have led to an increase of convenient LPFP with a relative long shelf-life (at least 3 weeks) which, on the other hand, may constitute a serious problem from a safety perspective since Listeria monocytogenes and sometimes Clostridium botulinum (mainly type E) may able to grow. In any case the LAB function in marine products is complex, depending on species, strains, interaction with other bacteria and the food matrix. They may have no particular effect or they may be responsible for spoilage and, in certain cases, they may even exert

  4. Product carbon footprints and their uncertainties in comparative decision contexts.

    PubMed

    Henriksson, Patrik J G; Heijungs, Reinout; Dao, Hai M; Phan, Lam T; de Snoo, Geert R; Guinée, Jeroen B

    2015-01-01

    In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp.) farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance. PMID:25781175

  5. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  6. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis

    EPA Science Inventory

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskel...

  7. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  8. Metabolic engineering of biocatalysts for carboxylic acids production

    PubMed Central

    Liu, Ping; Jarboe, Laura R.

    2012-01-01

    Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering, like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on Saccharomyces cerevisiae and Escherichia coli, as well as the strategies to improve tolerance towards these chemicals. PMID:24688671

  9. Lactic acid production by Enteroccocus faecium in liquefied sago starch

    PubMed Central

    2012-01-01

    Enterococcus faecium No. 78 (PNCM-BIOTECH 10375) isolated from puto, a type of fermented rice in the Philippines was used to produce lactic acid in repeated batch fermentation mode. Enzymatically liquefied sago starch was used as the sole carbon source, since sago (Metroxylon spp) is a sustainable crop for industrial exploitation. Liquefied sago starch was inoculated with E. faecium to perform the saccharification and fermentation processes simultaneously. Results demonstrated that E. faecium was reused for 11 fermentation cycles with an average lactic acid yield of 36.3 ± 4.71 g/l. The lactic acid production was superior to that of simple batch mode and continuous fermentation in terms of lactic acid concentration. An un-dissociated lactic acid concentration of 1.15 mM affected the productivity of the cells. Work is in progress to maintain and increase the usability of the cells over higher fermentation cycles. PMID:23021076

  10. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    PubMed

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production. PMID:27485282

  11. Production of Gluconic Acid by Some Local Fungi

    PubMed Central

    Shindia, A. A.; El-Esawy, A. E.; Sheriff, Y. M. M. M.

    2006-01-01

    Forty-one fungal species belonging to 15 fungal genera isolated from Egyptian soil and sugar cane waste samples were tested for their capacity of producing acidity and gluconic acid. For the tests, the fungi were grown on glucose substrate and culture filtrates were examined using paper chromatography analysis. Most of the tested fungi have a relative wide potentiality for total acid production in their filtrates. Nearly 51% of them showed their ability of producing gluconic acid. Aspergillus niger was distinguishable from other species by its capacity to produce substantial amounts of gluconic acid when it was cultivated on a selective medium. The optimized cultural conditions for gluconic acid yields were using submerged culture at 30℃ at initial pH 6.0 for 7 days of incubation. Among the various concentrations of substrate used, glucose (14%, w/v) was found to be the most suitable carbon source for maximal gluconic acid during fermentation. Maximum values of fungal biomass (10.02 g/l) and gluconic acid (58.46 g/l) were obtained when the fungus was grown with 1% peptone as sole nitrogen source. Influence of the concentration of some inorganic salts as well as the rate of aeration on the gluconic acid and biomass production is also described. PMID:24039465

  12. [Bactericide activity of cefadroxil comparated with amoxicillin-clavulanic acid, cefaclor and josamycin].

    PubMed

    Etesse-Carsenti, H; Caillon, J; Mondain, V; Durant, J; Bernard, E; Dellamonica, P; Drugeon, H B

    1991-09-01

    Betalactamase-producing organisms are responsible for an increasing number of ENT and lower respiratory tract infections. Or cephalosporins and the combination of amoxicillin with the beta-lactamase inhibitor clavulanic acid are alternatives to ampicillin therapy. The killing activity of cefadroxil on the organisms most often responsible for ENT and respiratory infections was evaluated in vitro using a viable bacteria count method, comparatively with cefaclor, josamycin, and amoxicillin-clavulanic acid. Killing activity was found to be time-dependent for all the antimicrobial agents studied. Cefadroxil exhibited the same bactericidal effect on Streptococcus pyogenes and S. pneumoniae than the other agents. Haemophilus influenzae and an increasing number of Pneumococcus strains were resistant to josamycin which is therefore not appropriate for first-line therapy. As compared with amoxicillin and amoxicillin-clavulanic acid, cefadroxil was less active on H. influenzae and more active on Staphylococcus aureus. Production of beta-lactamase failed to influence the killing activity of cefadroxil. These bacteriologic data, together with results of pharmacologic studies (long half-life and good penetration within tissues) can explain the clinical successes obtained with cefadroxil in ENT and lower respiratory tract infections. PMID:1758716

  13. Aluminum: A neurotoxic product of acid rain

    SciTech Connect

    Martin, R.B.

    1994-07-01

    Two separate but converging concerns have resulted in an upsurge in research on aluminum ion in the past 15 years. Acid rain releases Al(III) from soils into fresh waters, where it is for the first time accessible to living organisms. Though long considered benign, Al(III) has recently been found to cause bone and neurological disorders, while its role in Alzheimer`s disease remains uncertain. The greater availability of Al(III), coupled with its demonstrated harmful effects, challenges chemists to describe its chemistry and biochemistry. Many interactions of Al(III) have been described, but several questions remain unsolved. A great deal of work not within the scope of this Account is described in several edited volumes. (This Account uses Al(III) as a generic term for the 3+ ion when a specific form is not indicated). 96 refs., 2 figs., 2 tabs.

  14. Making environmental assessments of biomass production systems comparable worldwide

    NASA Astrophysics Data System (ADS)

    Meyer, Markus A.; Seppelt, Ralf; Witing, Felix; Priess, Joerg A.

    2016-03-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  15. Biotechnology For hydroxy Fatty Acid Production in Oilseed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional source of hydroxyl fatty acid is from castor oil which contains 90% ricinoleate. Ricinoleate and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and bio-diesel. However, the production of castor oil is hampered by the presen...

  16. Membrane recovery of phenolic acid co-products from biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technology to convert lignocellulosic biomass to biofuels is progressing with parallel efforts to develop processes to recover valuable natural products and generate additional revenue from these associated co-products. The lignified components of plant tissues contain phenolic acid structures s...

  17. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    SciTech Connect

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  18. Production of 3-hydroxypropionic acid from acrylic acid by newly isolated rhodococcus erythropolis LG12.

    PubMed

    Lee, Sang-Hyun; Park, Si Jae; Park, Oh-Jin; Cho, Junhyeong; Rhee, Joo Won

    2009-05-01

    A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropolis LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an OD600 of 5. Further cultivation of R. erythropolis LG12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/I/h at 30 degrees after 72 h. PMID:19494695

  19. ACID RECYCLING TO OPTIMIZE CITRIC ACID-MODIFIED SOYBEAN HULL PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were 1) to develop a wash procedure to remove non-reacted or residual citric acid after soybean hull modification in order to maximize the amount of non- reacted acid removed but minimize the subsequent effect on the product's ability to adsorb copper ion (Cu2+) and 2) t...

  20. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    PubMed

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates. PMID:26848948

  1. In vitro bile acid binding and short-chain fatty acid profile of flax fiber and ethanol co-products.

    PubMed

    Fodje, Adele M L; Chang, Peter R; Leterme, Pascal

    2009-10-01

    Fibers from flaxseed and co-products from ethanol production could be potential sources of dietary fiber in human diet. In vitro fermentation and bile acid binding models were used to investigate the metabolic effects of lignaMax (Bioriginal Food and Science Corp., Saskatoon, SK, Canada) flax meal, spent flax meal, soluble flax gum, wheat insoluble fiber (WIF), and rye insoluble fiber (RIF). Wheat and rye bran were used as reference samples. Bile acid binding of substrates was analysed at taurocholate ([(14)C]taurocholate) concentration of 12.5 mM. Soluble flax gum showed the highest bile acid binding (0.57 micromol/mg of fiber) (P acid binding between wheat bran (0.2 micromol/mg of fiber) and WIF (0.26 micromol/mg of fiber). RIF had higher (P acid binding (0.20 micromol/mg of fiber) than rye bran (0.13 micromol/mg of fiber). Substrates were hydrolyzed and incubated with pig fecal samples. Short-chain fatty acid (SCFA) profile and gas accumulation (G(f)) were compared. Soluble flax gum generated the highest amount of acetic and propionic acids. SCFA profiles of wheat/rye brans and WIF/RIF were similar (except for butyric acid). G(f) for soluble flax gum was greater (P < .001) than that of spent flax meal. G(f) values of the wheat samples were similar, whereas the G(f) of the rye bran was higher (P < .001) than that of RIF. Fractional degradation rate (micro(t = T/2)) (P < .001) was also recorded. The highest mu(t = T/2) was observed for the soluble flax gum. Oil-depleted flaxseed fractions and WIF/RIF (co-products from ethanol production) could be potential sources of dietary fiber in human nutrition. PMID:19857071

  2. Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts

    PubMed Central

    Dao, Hai M.; Phan, Lam T.; de Snoo, Geert R.

    2015-01-01

    In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product’s lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp.) farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products’ environmental performance. PMID:25781175

  3. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  4. Reference Management Software: A Comparative Analysis of Four Products

    ERIC Educational Resources Information Center

    Gilmour, Ron; Cobus-Kuo, Laura

    2011-01-01

    Reference management (RM) software is widely used by researchers in the health and natural sciences. Librarians are often called upon to provide support for these products. The present study compares four prominent RMs: CiteULike, RefWorks, Mendeley, and Zotero, in terms of features offered and the accuracy of the bibliographies that they…

  5. Endoscopic evaluation of the comparative effects of acetylsalicylic acid and choline magnesium trisalicylate on human gastric and duodenal mucosa.

    PubMed

    Kilander, A; Dotevall, G

    1983-02-01

    A new salicylate product, choline magnesium trisalicylate (Trilisate tablets), and acetylsalicylic acid were compared for their local effects in equipotent doses on the gastroduodenal mucosa in a randomized, double-blind, cross-over study, using 10 healthy volunteers. After five-day periods of administration, gastroduodenoscopy was performed and photographs were obtained. All subjects given acetylsalicylic acid developed multiple mucosal lesions, but in only four subjects given choline magnesium trisalicylate were slight mucosal changes noted. Mean serum salicylate levels were similar in the two groups. Our data suggest that the risk of developing mucosal lesions is much less during treatment with choline magnesium trisalicylate than with acetylsalicylic acid. PMID:6337663

  6. Production and applications of rosmarinic acid and structurally related compounds.

    PubMed

    Kim, Gun-Dong; Park, Yong Seek; Jin, Young-Ho; Park, Cheung-Seog

    2015-03-01

    Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) is a naturally occurring hydroxylated compound commonly found in species of the subfamily Nepetoideae of the Lamiaceae and Boraginaceae, such as Rosmarinus officinalis, Salvia officinalis, and Perilla frutescens. RA is biosynthesized from the amino acids L-phenylalanine and L-tyrosine by eight enzymes that include phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase. RA can also be chemically produced by the esterification of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA and its numerous derivatives containing one or two RA with other aromatic moieties are well known and include lithospermic acid, yunnaneic acid, salvianolic acid, and melitric acid. Recently, RA and its derivatives have attracted interest for their biological activities, which include anti-inflammatory, anti-oxidant, anti-angiogenic, anti-tumor, and anti-microbial functions. Clinically, RA attenuates T cell receptor-mediated signaling, attenuates allergic diseases like allergic rhinitis and asthma, and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like symptoms, protects from neurotoxicity, and slows the development of Alzheimer's disease. These attributes have increased the demand for the biotechnological production and application of RA and its derivatives. The present review discusses the function and application of RA and its derivatives including the molecular mechanisms underlying clinical efficacy. PMID:25620368

  7. Economical succinic acid production from cane molasses by Actinobacillus succinogenes.

    PubMed

    Liu, Yu-Peng; Zheng, Pu; Sun, Zhi-Hao; Ni, Ye; Dong, Jin-Jun; Zhu, Lei-Lei

    2008-04-01

    In this work, production of succinic acid by Actinobacillus succinogenes CGMCC1593 using cane molasses as a low cost carbon source was developed. In anaerobic bottles fermentation, succinic acid concentration of 50.6+/-0.9 g l(-1) was attained at 60 h using an optimum medium containing molasses pretreated with sulfuric acid, resulting in a succinic acid yield of 79.5+/-1.1% and sugar utilization of 97.1+/-0.6%. When batch fermentation was carried out in a 5-l stirred bioreactor with pretreated molasses, 46.4 g l(-1) of succinic acid was attained at 48 h and faster cells growth was also observed. Fed batch fermentation was performed to minimize the substrate (sugar) inhibition effect, giving 55.2 g l(-1) of succinic acid and 1.15 g l(-1)h(-1) of productivity at 48 h. The present study suggests that the inexpensive cane molasses could be utilized for the economical and efficient production of succinic acid by A. succinogenes. PMID:17532626

  8. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources. PMID:27116971

  9. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution

    PubMed Central

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-01-01

    The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid–liquid separation of the KWSS, the addition of Fe3+ during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe3+ addition), the flux to the EMP with the addition of Fe3+ (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe3+ also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l−1, an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn2+ showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  10. Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress

    SciTech Connect

    Lee, E.H. )

    1991-01-01

    Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the corresponding susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.

  11. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production.

    PubMed

    Andrés-Barrao, Cristina; Saad, Maged M; Cabello Ferrete, Elena; Bravo, Daniel; Chappuis, Marie-Luise; Ortega Pérez, Ruben; Junier, Pilar; Perret, Xavier; Barja, François

    2016-05-01

    Acetic acid bacteria (AAB) are widespread microorganisms in nature, extensively used in food industry to transform alcohols and sugar alcohols into their corresponding organic acids. Specialized strains are used in the production of vinegar through the oxidative transformation of ethanol into acetic acid. The main AAB involved in the production of high-acid vinegars using the submerged fermentation method belong to the genus Komagataeibacter, characterized by their higher ADH stability and activity, and higher acetic acid resistance (15-20%), compared to other AAB. In this work, the bacteria involved in the production of high-acid spirit vinegar through a spontaneous acetic acid fermentation process was studied. The analysis using a culture-independent approach revealed a homogeneous bacterial population involved in the process, identified as Komagataeibacter spp. Differentially expressed proteins during acetic acid fermentation were investigated by using 2D-DIGE and mass spectrometry. Most of these proteins were functionally related to stress response, the TCA cycle and different metabolic processes. In addition, scanning and transmission electron microscopy and specific staining of polysaccharide SDS-PAGE gels confirmed that Komagataeibacter spp. lacked the characteristic polysaccharide layer surrounding the outer membrane that has been previously reported to have an important role in acetic acid resistance in the genus Acetobacter. PMID:26742622

  12. Utilization of by-products derived from bioethanol production process for cost-effective production of lactic acid.

    PubMed

    Moon, Se-Kwon; Wee, Young-Jung; Choi, Gi-Wook

    2014-10-01

    The by-products of bioethanol production such as thin stillage (TS) and condensed distillers solubles (CDS) were used as a potential nitrogen source for economical production of lactic acid. The effect of those by-products and their concentrations on lactic acid fermentation were investigated using Lactobacillus paracasei CHB2121. Approximately, 6.7 g/L of yeast extract at a carbon source to nitrogen source ratio of 15 was required to produce 90 g/L of lactic acid in the medium containing 100 g/L of glucose. Batch fermentation of TS medium resulted in 90 g/L of lactic acid after 48 h, and the medium containing 10 % CDS resulted in 95 g/L of lactic acid after 44 h. Therefore, TS and CDS could be considered as potential alternative fermentation medium for the economical production of lactic acid. Furthermore, lactic acid fermentation was performed using only cassava and CDS for commercial production of lactic acid. The volumetric productivity of lactic acid [2.94 g/(L·h)] was 37 % higher than the productivity obtained from the medium with glucose and CDS. PMID:25163666

  13. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    SciTech Connect

    Parish, Esther S; Kline, Keith L; Dale, Virginia H; Efroymson, Rebecca Ann; McBride, Allen; Johnson, Timothy L; Hilliard, Michael R; Bielicki, Dr Jeffrey M

    2013-01-01

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  14. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    NASA Astrophysics Data System (ADS)

    Parish, Esther S.; Kline, Keith L.; Dale, Virginia H.; Efroymson, Rebecca A.; McBride, Allen C.; Johnson, Timothy L.; Hilliard, Michael R.; Bielicki, Jeffrey M.

    2013-02-01

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol-supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  15. Productivity of concentrated hyaluronic acid using a Maxblend fermentor.

    PubMed

    Hasegawa, S; Nagatsuru, M; Shibutani, M; Yamamoto, S; Hasebe, S

    1999-01-01

    Application of the Maxblend impeller to the fermentative production of hyaluronic acid (HA) was investigated. A 2-m3-scale fermentor fitted with this impeller (MBF) was used and the main fermentation was started with 85% of the nominal volume containing the pre-culture broth and medium. The kinetic characteristics of the MBF were compared with those of a conventional-type fermentor fitted with a turbine blade (TBN). The HA production yield in the MBF was over 20% higher than that in the TBN under the operating conditions of a high aeration rate and low vessel pressure since the broth viscosity increased. The apparent viscosity of the broth at the end of the cultivation rose to about 70 Pa.s. The molecular weight of the HA produced was independent of the agitation speed within the investigated range, and no significant difference was observed between the viscosity-average molecular weights of the HA obtained in the two types of fermentor, each having an estimated value of 4.3 x 10(6) under the same agitation power. PMID:16232576

  16. Betaine and Beet Molasses Enhance L-Lactic Acid Production by Bacillus coagulans

    PubMed Central

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses. PMID:24956474

  17. Phenoloxidase production and vanillic acid metabolism by Zygomycetes.

    PubMed

    Seigle-Murandi, F; Guiraud, P; Steiman, R; Benoit-Guyod, J L

    1992-04-01

    The ability of 23 strains of Zygomycetes to produce extracellular phenoloxidases was examined on solid media by using 10 different reagents. The results varied depending on the reagent and indicated that most of the strains were devoid of phenoloxidase activity. The production of inducible phenoloxidases was demonstrated by the Bavendamm reaction. The study of the biotransformation of vanillic acid in synthetic medium indicated that the reaction most often obtained was the reduction of vanillic acid to vanillyl alcohol. Helicostylum piriforme and Rhizopus microsporus var. chinensis completely metabolized vanillic acid while good transformation was obtained with Absidia spinosa, Cunninghamella bainieri, Mucor bacilliformis, Mucor plumbeus, Rhizopus arrhizus, Rhizopus stolonifer, Syncephalastrum racemosum and Zygorhynchus moelleri. Other strains did not degrade or poorly degraded vanillic acid. Decarboxylation and demethoxylation of this compound was independent of the production of phenoloxidases as in the case of white-rot fungi. Other enzymatic systems might be implicated in this phenomenon. PMID:1602986

  18. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T.; Yomano, Lorraine; Grabar, Tammy B.; Moore, Jonathan C.

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  19. Materials and methods for efficient lactic acid production

    SciTech Connect

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  20. New yeast-based approaches in production of palmitoleic acid.

    PubMed

    Kolouchová, Irena; Sigler, Karel; Schreiberová, Olga; Masák, Jan; Řezanka, Tomáš

    2015-09-01

    Palmitoleic acid is found in certain dairy products and has broad applications in medicine and cosmetics. We tried to find a suitable producer of this acid among traditional biotechnological yeast species (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) characterized by high biomass yield and Candida krusei, Yarrowia lipolytica and Trichosporon cutaneum accumulating large amounts of lipids. The main factor affecting the content of palmitoleic acid was found to be the C/N ratio in the culture medium, with ammonium sulfate as an optimum nitrogen source leading to highest biomass yield with concomitantly increased lipid accumulation, and an increased content of ω6-linoleic acid, the precursor of prostaglandins, leukotrienes, and thromboxanes. We found that C. krusei can be conveniently used for the purpose, albeit only under certain cultivation conditions, whereas S. cerevisiae can produce high and stable amounts of palmitoleic acid in a broad range of cultivation conditions ranging from conventional to nutrient limitations. PMID:26101962

  1. The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli.

    PubMed

    Sung, Changmin; Jung, Eunok; Choi, Kwon-Young; Bae, Jin-Hyung; Kim, Minsuk; Kim, Joonwon; Kim, Eun-Jung; Kim, Pyoung Il; Kim, Byung-Gee

    2015-08-01

    Hydroxylated fatty acids (HFAs) are used as important precursors for bulk and fine chemicals in the chemical industry. Here, to overproduce long-chain (C16-C18) fatty acids and hydroxy fatty acid, their biosynthetic pathways including thioesterase (Lreu_0335) from Lactobacillus reuteri DSM20016, β-hydroxyacyl-ACP dehydratase (fabZ) from Escherichia coli, and a P450 system (i.e., CYP153A from Marinobacter aquaeolei VT8 and camA/camB from Pseudomonas putida ATCC17453) were overexpressed. Acyl-CoA synthase (fadD) involved in fatty acid degradation by β-oxidation was also deleted in E. coli BW25113. The engineered E. coli FFA4 strain without the P450 system could produce 503.0 mg/l of palmitic (C16) and 508.4 mg/l of stearic (C18) acids, of which the amounts are ca. 1.6- and 2.3-fold higher than those of the wild type. On the other hand, the E. coli HFA4 strain including the P450 system for ω-hydroxylation could produce 211.7 mg/l of ω-hydroxy palmitic acid, which was 42.1 ± 0.1 % of the generated palmitic acid, indicating that the hydroxylation reaction was the rate-determining step for the HFA production. For the maximum production of ω-hydroxy palmitic acid, NADH, i.e., an essential cofactor for P450 reaction, was overproduced by the integration of NAD(+)-dependent formate dehydrogenase (FDH) from Candida boidinii into E. coli chromosome and the deletion of alcohol dehydrogenase (ADH). Finally, the NADH-level-optimized E. coli strain produced 610 mg/l of ω-hydroxy palmitic acid (ω-HPA), which was almost a threefold increase in its yield compared to the same strain without NADH overproduction. PMID:25957153

  2. A comparative study of the complexation of uranium(VI) withoxydiacetic acid and its amide derivatives

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2005-05-01

    There has been significant interest in recent years in the studies of alkyl-substituted amides as extractants for actinide separation because the products of radiolytic and hydrolytic degradation of amides are less detrimental to separation processes than those of organophosphorus compounds traditionally used in actinide separations. Stripping of actinides from the amide-containing organic solvents is relatively easy. In addition, the amide ligands are completely incinerable so that the amount of secondary wastes generated in nuclear waste treatment could be significantly reduced. One group of alkyl-substituted oxa-diamides have been shown to be promising in the separation of actinides from nuclear wastes. For example, tetraoctyl-3-oxa-glutaramide and tetraisobutyl-oxa-glutaramide form actinide complexes that can be effectively extracted from nitric acid solutions. To understand the thermodynamic principles governing the complexation of actinides with oxa-diamides, we have studied the complexation of U(VI) with dimethyl-3-oxa-glutaramic acid (DMOGA) and tetramethyl-3-oxa-glutaramide (TMOGA) in aqueous solutions, in comparison with oxydiacetic acid (ODA) (Figure 1). Previous studies have indicated that the complexation of U(VI) with ODA is strong and entropy-driven. Comparing the results for DMOGA and TMOGA with those for ODA could provide insight into the energetics of amide complexation with U(VI) and the relationship between the thermodynamic properties and the ligand structure.

  3. Recent advances in production of succinic acid from lignocellulosic biomass.

    PubMed

    Akhtar, Junaid; Idris, Ani; Abd Aziz, Ramlan

    2014-02-01

    Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF - a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail. PMID:24292125

  4. Comparative toxicity of hypochlorous acid and hypochlorite ions to mosquitofish

    SciTech Connect

    Mattice, J.S.; Tsai, S.C.; Burch, M.B.

    1981-07-01

    We examined the relative toxicity of hypochlorous acid (HOCl) and the hypochlorite ion (OCl/sup -/) by exposing mosquitofish Gambusia affinis for 1 hour to predominantly free residual chlorine (FRC) at six levels of pH following a 7-day acclimation to the test pH. Median lethal concentrations (LC50), in terms of total residual chlorine (TRC), increased with increasing pH. Because of the influence of hydrogen ion concentration on dissociation of HOCl, the percent of FRC present as HOCl is about 97% and 13%, respectively, at the low and high pH. Cursory examination of toxicity of monochloramine (NH/sub 2/Cl) and mixtures of NH/sub 2/Cl and dichloramine (NHCl/sub 2/) suggested that their contributions to toxicity were negligible at any test pH. Free residual chlorine concentrations at the LC50 for each pH were fitted to a theoretical model derived from an assumption that toxicities of HOCl and OCl/sup -/ were additive.

  5. Comparing Methodologies Among Observatories Tracking Productivity and Impact

    NASA Astrophysics Data System (ADS)

    Lagerstrom, J.

    2010-10-01

    Many institutions, observatories and facilities track publications as a way to measure impact and productivity as well as provide information for internal decision-making. What are the various methods used to do this? How are these results reported? Are there enough commonalities among the methods to make it possible to compare one institution to another? Or are we stuck with apples and oranges? These questions will be explored; the results of a survey will be discussed.

  6. Role of fatty acid composites in the toxicity of titanium dioxide nanoparticles used in cosmetic products.

    PubMed

    Chang, JuOae; Lee, Chang-Woo; Alsulimani, Helal Hussain; Choi, Jee Eun; Lee, Joo-Kyung; Kim, AhYoung; Park, Bae Ho; Kim, Jonghan; Lee, HeaYeon

    2016-01-01

    It has been recognized that the use of nanoparticles (NPs) in the cosmetic industry results in products with better efficacy and functionality. However, recent advances in molecular toxicology have revealed that NP exposure can promote cytotoxicity and oxidative damage, which has raised health concerns in the use of NPs in personal care products. Nevertheless, the mechanistic basis for the toxicity and safety of cosmetic NPs is poorly understood. The goal of the study was to determine the cytotoxicity and intracellular distribution of titanium dioxide (TiO2) NPs containing fatty acid composites (palmitoleic acid, palmitic acid, stearic acid and oleic acid) commonly used in cosmetic products. Two types of cells, human fibroblast skin cells and adenocarcinoma lung cells, were exposed to either bare TiO2 NPs or TiO2 NPs mixed with fatty acids for up to 48 hr. NMR analysis confirmed that the fatty acid composites remained in the NPs after wash. The cytotoxicity of TiO2 NPs was determined by cell viability measurement using quantitative confocal microscopy, and the localization of two different forms of TiO2 NPs were assessed using electron spectroscopic imaging with transmission electron microscopy. TiO2 NPs containing fatty acids posed significantly reduced cytotoxicity (80-88% decreases) than bare NPs in both cell types. Furthermore, there was less intracellular penetration of the NPs containing fatty acid composites compared with bare NPs. These results provide important insights into the role of fatty acids in protecting the cells from possible toxicity caused by NPs used in the production of cosmetic products. PMID:27432239

  7. Comparing and Combining Surface Soil Moisture Products from AMSR2

    NASA Astrophysics Data System (ADS)

    Parinussa, R.; Kim, S.; Liu, Y.; Johnson, F.; Sharma, A.

    2015-12-01

    Soil moisture is an important variable in hydrological systems as its part of the water cycle in the atmosphere, the land surface and subsurface. Microwave remote sensing is a viable tool to monitor global soil moisture conditions at regular time intervals. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a sensor onboard the Global Change Observation Mission 1 - Water that was launched in May 2012. Multiple soil moisture products from AMSR2 observations exist; these were compared and combined with special emphasis to the global scale. The first product is retrieved by the Japan Aerospace Exploration Agency (JAXA) algorithm, the other uses the Land Parameter Retrieval Model (LPRM). These two products were compared against each other and evaluated against COSMOS data over the United States, Australia, Europe and Africa. The temporal correlations highlight differences in the representation of the seasonal cycle of soil moisture. It is hypothesized that four factors, physical surface temperatures, surface roughness, vegetation and ground soil wetness conditions, affect the quality of soil moisture retrievals. The complementary between the products led to the opportunity to combine them into a superior one that benefits from the strengths of both algorithms.These soil moisture algorithms share the same background in the radiative transfer model, but each algorithm applies different approaches to reflect various external conditions. As a result, the performance of the products is complementary in many locations in terms of bias, RMSE and, most importantly temporal correlation coefficients. Here, we present a methodology that combines the two AMSR2 based soil moisture products into a single product, which improves the overall performance by leveraging the strengths of the individual products. The new product is combined by applying an optimal weighting factor, calculated based on variance and correlation coefficients against a reference dataset. The complementary

  8. 2012: no trans fatty acids in Spanish bakery products.

    PubMed

    Ansorena, Diana; Echarte, Andrea; Ollé, Rebeca; Astiasarán, Iciar

    2013-05-01

    Trans fatty acids (TFA) are strongly correlated with an increased risk of cardiovascular and other chronic diseases. Current dietary recommendations exclude bakery products from frequent consumption basically due to their traditionally high content of TFA. The aim of this work was to analyse the lipid profile of different bakery products currently commercialised in Spain and with a conventionally high fat and TFA content. Premium and store brands for each product were included in the study. No significant amounts of TFA were found in any of the analysed products, regardless the brand. TFA content ranged between 0.17 g and 0.22 g/100 g product (mean=0.19 g/100 g product). Expressed on percentage of fatty acids, the maximum value was 0.87 g/100 g fatty acids and the mean value was 0.68%. These data are significantly lower than those observed in previously published papers for these types of products, and highlighted the importance of updating food composition databases in order to accurately estimate the real and current intake of TFA. PMID:23265507

  9. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  10. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity.

    PubMed

    Royce, Liam A; Yoon, Jong Moon; Chen, Yingxi; Rickenbach, Emily; Shanks, Jacqueline V; Jarboe, Laura R

    2015-05-01

    Carboxylic acids are an attractive biorenewable chemical, but as with many biorenewables, their toxicity to microbial biocatalysts limits their fermentative production. While it is generally accepted that membrane damage is the main mechanism of fatty acid toxicity, previous metabolic engineering efforts that increased membrane integrity did not enable increased carboxylic acid production. Here we used an evolutionary approach to improve tolerance to exogenous octanoic acid, with the goal of learning design strategies from this evolved strain. This evolution of an Escherichia coli MG1655 derivative at neutral pH in minimal media produced a strain with increased tolerance not only to octanoic acid, but also to hexanoic acid, decanoic acid, n-butanol and isobutanol. This evolved strain also produced carboxylic acids at a 5-fold higher titer than its parent strain when expressing the Anaerococcus tetradius thioesterase. While it has been previously suggested that intracellular acidification may contribute to carboxylic acid toxicity, we saw no evidence that the evolved strain has increased resistance to this acidification. Characterization of the evolved strain membrane showed that it had significantly altered membrane polarization (fluidity), integrity (leakage) and composition relative to its parent. The changes in membrane composition included a significant increase in average lipid length in a variety of growth conditions, including 30°C, 42°C, carboxylic acid challenge and ethanol challenge. The evolved strain has a more dynamic membrane composition, showing both a larger number of significant changes and larger fold changes in the relative abundance of membrane lipids. These results highlight the importance of the cell membrane in increasing microbial tolerance and production of biorenewable fuels and chemicals. PMID:25839166

  11. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  12. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Jokić, Bojan M; Nikolić, Svetlana B; Pejin, Jelena D

    2013-05-01

    In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. PMID:23186681

  13. Comparing Chemical Mechanisms using Tagged Ozone Production Potentials

    NASA Astrophysics Data System (ADS)

    Coates, J.; Butler, T. M.

    2013-12-01

    Tropospheric ozone (O3) is a short-lived climate forcing pollutant that is detrimental to human health and crop growth. It is produced by reactions of volatile organic compounds (VOCs) and nitrogen oxides (NOx) in the presence of sunlight [Atkinson,2000]. The chemistry of intermediate species formed during VOC degradation show a time dependence and impacts the amount of O3 produced by the VOC [Butler et al., 2011]. Representing the intricacies of these reactions is not viable for chemical mechanisms used in global and regional models due to the computational resources available. Thus, chemical mechanisms reduce the amount of reactions either by lumping chemical species together as a model species, reducing the number of reaction pathways or both. As different chemical mechanisms use varying reduction techniques and assumptions especially with respect to the intermediate degradation species, it is important to compare the temporal evolution of ozone production obtained from differing chemical mechanisms. In this study, chemical mechanisms are compared using Tagged Ozone Production Potentials (TOPP) [Butler et al.,2011]. TOPPs measure the effect of a VOC on the odd oxygen family (Ox), which includes O3, nitrogen dioxide (NO2) and other species whose cycling effect O3 and NO2 production. TOPP values are obtained via a boxmodel run lasting seven diurnal cycles and tagging all species produced during VOC degradation; this enables the Ox production to be attributed to the VOC. This technique enables the temporal evolution of a VOCs' Ox production to be compared between the mechanisms. Comparing the TOPP profiles of the VOCs obtained using different mechanisms shows the effect of reduction techniques implemented by the mechanism and also allows a comparison of the tropospheric chemistry represented in the mechanisms. [Atkinson,2000] Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34:2063-2101 [Butler et al., 2011] Butler, T. M

  14. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions.

    PubMed

    Knuf, Christoph; Nookaew, Intawat; Brown, Stephen H; McCulloch, Michael; Berry, Alan; Nielsen, Jens

    2013-10-01

    Malic acid has great potential for replacing petrochemical building blocks in the future. For this application, high yields, rates, and titers are essential in order to sustain a viable biotechnological production process. Natural high-capacity malic acid producers like the malic acid producer Aspergillus flavus have so far been disqualified because of special growth requirements or the production of mycotoxins. As A. oryzae is a very close relative or even an ecotype of A. flavus, it is likely that its high malic acid production capabilities with a generally regarded as safe (GRAS) status may be combined with already existing large-scale fermentation experience. In order to verify the malic acid production potential, two wild-type strains, NRRL3485 and NRRL3488, were compared in shake flasks. As NRRL3488 showed a volumetric production rate twice as high as that of NRRL3485, this strain was selected for further investigation of the influence of two different nitrogen sources on malic acid secretion. The cultivation in lab-scale fermentors resulted in a higher final titer, 30.27 ± 1.05 g liter(-1), using peptone than the one of 22.27 ± 0.46 g liter(-1) obtained when ammonium was used. Through transcriptome analysis, a binding site similar to the one of the Saccharomyces cerevisiae yeast transcription factor Msn2/4 was identified in the upstream regions of glycolytic genes and the cytosolic malic acid production pathway from pyruvate via oxaloacetate to malate, which suggests that malic acid production is a stress response. Furthermore, the pyruvate carboxylase reaction was identified as a target for metabolic engineering, after it was confirmed to be transcriptionally regulated through the correlation of intracellular fluxes and transcriptional changes. PMID:23892740

  15. Investigation of Malic Acid Production in Aspergillus oryzae under Nitrogen Starvation Conditions

    PubMed Central

    Knuf, Christoph; Nookaew, Intawat; Brown, Stephen H.; McCulloch, Michael; Berry, Alan

    2013-01-01

    Malic acid has great potential for replacing petrochemical building blocks in the future. For this application, high yields, rates, and titers are essential in order to sustain a viable biotechnological production process. Natural high-capacity malic acid producers like the malic acid producer Aspergillus flavus have so far been disqualified because of special growth requirements or the production of mycotoxins. As A. oryzae is a very close relative or even an ecotype of A. flavus, it is likely that its high malic acid production capabilities with a generally regarded as safe (GRAS) status may be combined with already existing large-scale fermentation experience. In order to verify the malic acid production potential, two wild-type strains, NRRL3485 and NRRL3488, were compared in shake flasks. As NRRL3488 showed a volumetric production rate twice as high as that of NRRL3485, this strain was selected for further investigation of the influence of two different nitrogen sources on malic acid secretion. The cultivation in lab-scale fermentors resulted in a higher final titer, 30.27 ± 1.05 g liter−1, using peptone than the one of 22.27 ± 0.46 g liter−1 obtained when ammonium was used. Through transcriptome analysis, a binding site similar to the one of the Saccharomyces cerevisiae yeast transcription factor Msn2/4 was identified in the upstream regions of glycolytic genes and the cytosolic malic acid production pathway from pyruvate via oxaloacetate to malate, which suggests that malic acid production is a stress response. Furthermore, the pyruvate carboxylase reaction was identified as a target for metabolic engineering, after it was confirmed to be transcriptionally regulated through the correlation of intracellular fluxes and transcriptional changes. PMID:23892740

  16. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  17. Efficacy of 15% Trichloroacetic Acid and 50% Glycolic Acid Peel in the Treatment of Frictional Melanosis: A Comparative Study

    PubMed Central

    Sacchidanand, S; Shetty, Ashvith B; Leelavathy, B

    2015-01-01

    Background: Frictional dermal melanosis is aesthetically displeasing. Various modalities ranging from depigmenting agents to lasers have been tried but it continues to be a difficult problem to treat. Objective: To study and compare the efficacy of 15% trichloroacetic acid (TCA) and 50% glycolic acid in the treatment of frictional melanosis of the forearm. Materials and Methods: 40 patients of frictional melanosis of the forearm were included in the study. Patients were randomly divided into two equal groups A and B. Pre-peel priming was carried out with 12% glycolic acid and sunscreen for 2 weeks. Group A was treated with trichloroacetic acid (TCA-15%) peel and Group B with glycolic acid (GA-50%) peel. Four peels were done one every 15 days. Clinical photographs were taken to assess the response. Response to therapy was evaluated by both objective and subjective methods. The patients were followed up for 3 months after the last peel to note any relapse. Results: Both TCA and glycolic acid peels were effective in frictional melanosis. TCA showed better response compared to glycolic acid at the end of the treatment, both by subjective and objective methods. However, this difference was not statistically significant (P > 0.05). No permanent side effects were seen in any of the treated patients and the improvement was sustained without any relapse at 3 months. Conclusion: Chemical peeling with both tricholoroacetic acid (15%) and glycolic acid (50%) is safe and effective for the treatment of frictional dermal melanosis. Tricholoroacetic acid was found to be marginally superior to glycolic acid. PMID:25949021

  18. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  19. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production.

    PubMed

    Blazeck, John; Miller, Jarrett; Pan, Anny; Gengler, Jon; Holden, Clinton; Jamoussi, Mariam; Alper, Hal S

    2014-10-01

    Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity. PMID:24997118

  20. Production of ω-hydroxy octanoic acid with Escherichia coli.

    PubMed

    Kirtz, Marko; Klebensberger, Janosch; Otte, Konrad B; Richter, Sven M; Hauer, Bernhard

    2016-07-20

    The present proof-of-concept study reports the construction of a whole-cell biocatalyst for the de novo production of ω-hydroxy octanoic acid. This was achieved by hijacking the natural fatty acid cycle and subsequent hydroxylation using a specific monooxygenase without the need for the additional feed of alkene-like precursors. For this, we used the model organism Escherichia coli and increased primarily the release of the octanoic acid precursors by overexpressing the plant thioesterase FatB2 from Cuphea hookeriana in a β-oxidation deficient strain, which lead to the production of 2.32mM (8.38mggcww(-1)) octanoic acid in 24h. In order to produce the corresponding ω-hydroxy derivative, we additionally expressed the engineered self-sufficient monooxygenase fusion protein CYP153AMaq(G307A)-CPRBM3 within the octanoic acid producing strain. With this, we finally produced 234μM (0.95mggcww(-1)) ω-hydroxy octanoic acid in a 20h fed-batch set-up. PMID:27184430

  1. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties. PMID:25748518

  2. Comparative structure analysis of non-polar organic ferrofluids stabilized by saturated mono-carboxylic acids.

    PubMed

    Avdeev, M V; Bica, D; Vékás, L; Aksenov, V L; Feoktystov, A V; Marinica, O; Rosta, L; Garamus, V M; Willumeit, R

    2009-06-01

    The structure of ferrofluids (magnetite in decahydronaphtalene) stabilized with saturated mono-carboxylic acids of different chain lengths (lauric, myristic, palmitic and stearic acids) is studied by means of magnetization analysis and small-angle neutron scattering. It is shown that in case of saturated acid surfactants, magnetite nanoparticles are dispersed in the carrier approximately with the same size distribution whose mean value and width are significantly less as compared to the classical stabilization with non-saturated oleic acid. The found thickness of the surfactant shell around magnetite is analyzed with respect to stabilizing properties of mono-carboxylic acids. PMID:19376524

  3. Reduction of in vitro growth in Flavobacterium columnare and Saprolegnia parasitica by products containing peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial products containing peracetic acid (PAA) are strong disinfectants with a wide spectrum of antimicrobial activity and have been suggested as potential therapeutic agents in aquaculture. The aim of this study was to compare the in vitro reduction of growth on two fish pathogens, Flavobacte...

  4. Changes in soil chemistry following wood and grass biochar amendments to an acidic agricultural production soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of biochars produced by biomass gasification for remediation of acidic production soils and plant growth in general is not as well known compared to effects from biochars resulting from pyrolysis. Recent characterization of biochar produced from gasification of Kentucky bluegrass (Poa pr...

  5. Defining Product Intake Fraction to Quantify and Compare Exposure to Consumer Products.

    PubMed

    Jolliet, Olivier; Ernstoff, Alexi S; Csiszar, Susan A; Fantke, Peter

    2015-08-01

    There is a growing consciousness that exposure studies need to better cover near-field exposure associated with products use. To consistently and quantitatively compare human exposure to chemicals in consumer products, we introduce the concept of product intake fraction, as the fraction of a chemical within a product that is eventually taken in by the human population. This metric enables consistent comparison of exposures during consumer product use for different product-chemical combinations, exposure duration, exposure routes and pathways and for other life cycle stages. We present example applications of the product intake fraction concept, for two chemicals in two personal care products and two chemicals encapsulated in two articles, showing how intakes of these chemicals can primarily occur during product use. We demonstrate the utility of the product intake fraction and its application modalities within life cycle assessment and risk assessment contexts. The product intake fraction helps to provide a clear interface between the life cycle inventory and impact assessment phases, to identify best suited sentinel products and to calculate overall exposure to chemicals in consumer products, or back-calculate maximum allowable concentrations of substances inside products. PMID:26102159

  6. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  7. Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition

    PubMed Central

    Amaretti, Alberto; Leonardi, Alan; Quartieri, Andrea; Gozzoli, Caterina; Rossi, Maddalena

    2016-01-01

    Conjugated linoleic acids (CLA) are positional and geometric isomers of linoleic acid involved in a number of health aspects. In humans, CLA production is performed by gut microbiota, including some species of potential probiotic bifidobacteria. 128 strains of 31 Bifidobacterium species were screened with a spectrophotometric assay to identify novel CLA producers. Most species were nonproducers, while producers belonged to B. breve and B. pseudocatenulatum. GC-MS revealed that CLA producer strains yielded 9cis,11trans-CLA and 9trans,11trans-CLA, without any production of other isomers. Hydroxylated forms of LA were absent in producer strains, suggesting that the myosin-cross-reactive antigen (MCRA) protein that exerts hydratase activity is not involved in LA isomerization. Moreover, both CLA producer and nonproducer species bear a MCRA homologue. The strain B. breve WC 0421 was the best CLA producer, converting LA into 68.8% 9cis,11trans-CLA and 25.1% 9trans,11trans-CLA. Production occurred mostly during the lag and the exponential phase. For the first time, production and incorporation of CLA in biomass were assessed. B. breve WC 0421 stored CLA in the form of free fatty acids, without changing the composition of the esterified fatty acids, which mainly occurred in the plasmatic membrane. PMID:27429985

  8. Thermodynamic analysis of acetic acid steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Goicoechea, Saioa; Ehrich, Heike; Arias, Pedro L.; Kockmann, Norbert

    2015-04-01

    A thermodynamic analysis of hydrogen generation by acetic acid steam reforming has been carried out with respect to applications in solid oxide fuel cells. The effect of operating parameters on equilibrium composition has been examined focusing especially on hydrogen and carbon monoxide production, which are the fuels in this type of fuel cell. The temperature, steam to acetic acid ratio, and to a lesser extent pressure affect significantly the equilibrium product distribution due to their influence on steam reforming, thermal decomposition and water-gas shift reaction. The study shows that steam reforming of acetic acid with a steam to acetic acid ratio of 2 to 1 is thermodynamically feasible with hydrogen, carbon monoxide and water as the main products at the equilibrium at temperatures higher than 700 °C, and achieving CO/CO2 ratios higher than 1. Thus, it can be concluded that within the operation temperature range of solid oxide fuel cells - between 700 °C and 1000 °C - the production of a gas rich in hydrogen and carbon monoxide is promoted.

  9. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  10. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    PubMed Central

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts. PMID:10639127

  11. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs. PMID:26293409

  12. Efficacy of tranexamic acid as compared to aprotinin in open heart surgery in children

    PubMed Central

    Muthialu, Nagarajan; Balakrishnan, Soundaravalli; Sundar, Rajani; Muralidharan, Srinivasan

    2015-01-01

    Background: Coagulopathy is a major issue in children undergoing high-risk pediatric cardiac surgery. Use of anti-fibrinolytics is well documented in adults, but recently there are questions raised about safety and effectiveness of their use on routine use. Tranexamic acid is a potent anti-fibrinolytic, but its role is not fully understood in children. This study aims to study the benefits tranexamic acid in controlling postoperative bleeding in pediatric cardiac surgical patients. Methods and Results: Fifty consecutive children who underwent cardiac surgery were randomized prospectively to receive either aprotinin (Group A; n = 24) or tranexamic acid (Group B; n = 26) from September 2009 to February 2010 were studied. Primary end points were early mortality, postoperative drainage, reoperation for bleeding and complications. Mean age and body weight was smaller in Group A (Age: 48.55 vs. 64.73 months; weight 10.75 vs. 14.80 kg) respectively. Group A had more cyanotic heart disease than Group B (87.5% vs. 76.92%). Mean cardiopulmonary bypass time (144.33 vs. 84.34 min) and aortic cross-clamp time (78.5 vs. 41.46 min) were significantly higher in group A. While the blood and products usage was significantly higher in Group A, there was no difference in indexed postoperative drainage in first 4, 8 and 12 h and postoperative coagulation parameters. Mean C-reactive protein was less in Group A than B and renal dysfunction was seen more in Group A (25% vs. 7.6%). Mortality in Group A was 16.66% and 7.6% in Group B. Conclusion: Anti-fibrinolytics have a definitive role in high-risk children who undergo open-heart surgery. Tranexamic acid is as equally effective as aprotinin with no additional increase in morbidity or mortality. Ultramini Abstract: Coagulopathy has been a major issue in pediatric cardiac surgery, and anti-fibrinolytics have been used fairly regularly in various settings. This study aims to evaluate the efficacy of tranexamic acid as compared against that

  13. Preparative production of colominic acid oligomers via a facile microwave hydrolysis

    PubMed Central

    Patane, Jonathan; Trapani, Vincent; Villavert, Janice; McReynolds, Katherine Dawn

    2009-01-01

    The hydrolysis of colominic acid via microwave irradiation was studied for the production of short chain oligomers with a degree of polymerization (DP) of 1–6. This method was compared to the traditional acid hydrolytic method for the production of preparative quantities of short colominic acid oligomers. The oligomers were purified by size exclusion chromatography and characterized by 1H NMR. Optimal conditions for producing the dimer were found to be 12 minutes at 10% power in a 1000 Watt domestic microwave. This method is advantageous over the traditional technique in that the hydrolysis can be completed in just a few minutes, rather than hours, it is reproducible, and yields large quantities of the desirable short chain oligomers of colominic acid. PMID:19281967

  14. Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803.

    PubMed

    Chin, Taejun; Sano, Mei; Takahashi, Tetsuya; Ohara, Hitomi; Aso, Yuji

    2015-02-10

    Here, we report the photosynthetic production of itaconic acid (IA), a promising building block, from carbon dioxide (CO₂) by Synechocystis sp. PCC6803. The engineered PCC6803 strain expressing cis-aconitate decarboxylase, the key enzyme in IA biosynthesis, produced 0.9 mg/L and 14.5 mg/L of IA at production rates of 42.8 μgL(-1)day(-1) and 919.0 μgL(-1)day(-1), under conditions of constant bubbling with air and 5% CO₂, respectively. This is the first report on the possibility of IA production from CO₂ via the photosynthetic process in cyanobacteria. PMID:25554635

  15. Optimizing ethanol and methane production from steam-pretreated, phosphoric acid-impregnated corn stover.

    PubMed

    Bondesson, Pia-Maria; Dupuy, Aurélie; Galbe, Mats; Zacchi, Guido

    2015-02-01

    Pretreatment is of vital importance in the production of ethanol and methane from agricultural residues. In this study, the effects of steam pretreatment with phosphoric acid on enzymatic hydrolysis (EH), simultaneous saccharification and fermentation (SSF), anaerobic digestion (AD) and the total energy output at three different temperatures were investigated. The effect of separating the solids for SSF and the liquid for AD was also studied and compared with using the whole slurry first in SSF and then in AD. Furthermore, the phosphoric acid was compared to previous studies using sulphuric acid or no catalyst. Using phosphoric acid resulted in higher yields than when no catalyst was used. However, compared with sulphuric acid, an improved yield was only seen with phosphoric acid in the case of EH. The higher pretreatment temperatures (200 and 210 °C) resulted in the highest yields after EH and SSF, while the highest methane yield was obtained with the lower pretreatment temperature (190 °C). The highest yield in terms of total energy recovery (78 %) was obtained after pretreatment at 190 °C, but a pretreatment temperature of 200 °C is, however, the best alternative since fewer steps are required (whole slurry in SSF and then in AD) and high product yields were obtained (76 %). PMID:25399069

  16. Microbial Products Trigger Amino Acid Exudation from Plant Roots1

    PubMed Central

    Phillips, Donald A.; Fox, Tama C.; King, Maria D.; Bhuvaneswari, T.V.; Teuber, Larry R.

    2004-01-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 μm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 μm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from 15N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant. PMID:15347793

  17. An overview of conjugated linoleic acid: microbial production and application.

    PubMed

    Gholami, Zahra; Khosravi-Darani, Kianoush

    2014-01-01

    Conjugated linoleic acid (CLA) has attracted considerable attention in health due to its important physiological properties proved in several in vivo experiments. Many bacteria, especially some probiotics, are able to produce CLA from the linoleic acid (LA) present in milk. In this review, CLA production by microorganisms is described. Then factors on the influencing the microbial production and the initial CLA content in milk fat are introduced. After a glimpse on the content of CLA in dairy products and human body, health benefits of CLA including anti-cancer, anti-diabetic, antiathrosclerosis and anti-osteoporosis properties, as well as prevention of body fat increase and function as stimulator of the immunity system are explained. PMID:25138090

  18. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens.

    PubMed

    Salvachúa, Davinia; Smith, Holly; St John, Peter C; Mohagheghi, Ali; Peterson, Darren J; Black, Brenna A; Dowe, Nancy; Beckham, Gregg T

    2016-08-01

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60g/L reached up to 30g/L, with metabolic yields of 0.69g/g, and an overall productivity of 0.43g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates. PMID:27179951

  19. Covalent interaction of ascorbic acid with natural products

    PubMed Central

    Kesinger, Nicholas G.; Stevens, Jan F.

    2009-01-01

    While ascorbic acid (Vitamin C) is mostly known as a cofactor for proline hydroxylase and as a biological antioxidant, it also forms covalent bonds with natural products which we here refer to as ‘ascorbylation’. A number of natural products containing an ascorbate moiety has been isolated and characterized from a variety of biological sources, ranging from marine algae to flowering plants. Most of these compounds are formed as a result of nucleophilic substitution or addition by ascorbate, e.g. the ascorbigens from Brassica species are ascorbylated indole derivatives. Some ascorbylated tannins appear to be formed from electrophilic addition to dehydroascorbic acid. There are also examples of annulations of ascorbate with dietary polyphenols, e.g., epigallocatechin gallate (EGCG) and resveratrol derivatives. Herein is a survey of thirty-three ascorbylated natural products and their reported biological activities. PMID:19875138

  20. Biosynthetic Pathway Analysis for Improving the Cordycepin and Cordycepic Acid Production in Hirsutella sinensis.

    PubMed

    Lin, Shan; Liu, Zhi-Qiang; Xue, Ya-Ping; Baker, Peter James; Wu, Hui; Xu, Feng; Teng, Yi; Brathwaite, Mgavi Elombe; Zheng, Yu-Guo

    2016-06-01

    Hirsutella sinensis is considered as the only correct anamorph of Ophiocordyceps sinensis. To improve cordycepin and cordycepic acid production in H. sinensis, the biosynthetic pathways of cordycepin and cordycepic acid were predicted, and verified by cloning and expressing genes involved in these pathways, respectively. Then, 5'-nucleotidase participating in biosynthetic pathway of cordycepin, hexokinase, and glucose phosphate isomerase involved in biosynthetic pathway of cordycepic acid, were demonstrated playing important roles in the corresponding biosynthetic pathway by real-time PCR, accompanying with significantly up-regulated 15.03-, 5.27-, and 3.94-fold, respectively. Moreover, the metabolic regulation of H. sinensis was performed. As expected, cordycepin production reached 1.09 mg/g when additional substrate of 5'-nucleotidase was 4 mg/mL, resulting in an increase of 201.1 % compared with the control. In the same way, cordycepic acid production reached 26.6 and 23.4 % by adding substrate of hexokinase or glucose phosphate isomerase, leading to a rise of 77.3 and 55.1 %, respectively. To date, this is the first time to improve cordycepin and cordycepic acid production through metabolic regulation based on biosynthetic pathway analysis, and metabolic regulation is proved as a simple and effective way to enhance the output of cordycepin and cordycepic acid in submerged cultivation of H. sinensis. PMID:26922724

  1. Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey

    SciTech Connect

    Tango, M.S.A.; Ghaly, A.E.

    1999-12-01

    A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentation time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.

  2. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  3. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae. PMID:27393831

  4. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  5. Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2012-12-01

    Physiological heterogeneity constitutes a critical parameter in biotechnological systems since both metabolite yield and productivity are often hampered by the presence of undesired physiological cell subpopulations. In the present study, the physiological status and functionality of Pseudomonas taetrolens cells were monitored by multiparameter flow cytometry during fermentative lactobionic acid production at the shake-flask and bioreactor scale. In shake-flask fermentation, the onset of the lactobionic acid production phase was accompanied by a progressive loss of cellular metabolic activity, membrane polarization, and membrane integrity concomitantly to acidification. In fact, population dynamics has shown the prevalence of damaged and dead subpopulations when submitted to a pH < 4 from 16 h onwards. Furthermore, fluorescence-activated cell sorting revealed that these sublethally injured cells were nonculturable. In contrast, P. taetrolens cells exhibited a robust physiological status during bioreactor cultivations performed with a pH-shifted strategy at 6.5, remaining predominantly healthy and metabolically active (>96 %) as well as maintaining bioconversion efficiency throughout the course of the fermentation. Additionally, an assessment of the seed culture's physiological robustness was carried out in order to determine the best seed culture age. Results showed that bioreactor culture performance, growth, and lactobionic acid production efficiency were strongly dependent on the physiological heterogeneity displayed by the seed culture. This study provides the most suitable criteria for optimizing lactobionic acid production efficiency through a novel flow cytometric-based approach based on the physiological status of P. taetrolens. It also constitutes a valuable, broad-ranging methodology for the enhancement of microbial bioprocesses involved in the production of secondary metabolites. PMID:22777280

  6. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  7. Enhanced production of docosahexaenoic acid in mammalian cells.

    PubMed

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the accumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased production of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  8. A new product with formic acid for Varroa jacobsoni Oud. control in Argentina. I. Efficacy.

    PubMed

    Eguaras, M; Del Hoyo, M; Palacio, M A; Ruffinengo, S; Bedascarrasbure, E L

    2001-02-01

    An organic product based on formic acid in a gel matrix was evaluated for use in Varroa control under autumnal climatic conditions in Argentina. Twenty colonies each received two gel packets with formic acid in two applications and numbers of falling mites were registered. After this treatment colonies received two other acaricides in order to compare efficacy. Average final efficacy in colonies treated with the organic product was 92% with a low variability. The gel matrix kept an adequate formic acid concentration inside the colonies with only two applications. This product is, therefore, a good alternative for Varroa control because it is organic, easy to use and presents a low variability in final efficacy between colonies. No queen, brood, or adult honeybee mortality was registered. PMID:11254094

  9. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  10. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  11. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    PubMed Central

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  12. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids. PMID:26851898

  13. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. PMID:27226531

  14. Comparative acute freshwater hazard assessment and preliminary PNEC development for eight fluorinated acids.

    PubMed

    Hoke, Robert A; Bouchelle, Laurie D; Ferrell, Barbra D; Buck, Robert C

    2012-05-01

    estimated using approaches consistent with REACH guidance and when compared with available environmental concentrations, these PNECs suggest that the fluorinated acids tested pose little risk for aquatic organisms. PMID:22280982

  15. A fluidized-bed continuous bioreactor for lactic acid production

    SciTech Connect

    Andrews, G.F.; Fonta, J.P.

    1988-05-01

    A laboratory bioreactor consists of a fluidized bed of monosized activated carbon coated with a biofilm of the homolactic fermentative organism Streptococcus thermophilus. Biofilm growth moves the carbon through the bed, and adsorption of substrate and product at the bottom and top of the bed respectively reduces their inhibitory effects on the organism. Theory shows that high reactor productivity and rapid recirculation of carbon through the bed require a biofilm thickness of 25 to 45% of the carbon particle radius on particles fed into the base of the bed. This could not be achieved in practice due to the fragility of the biofilm. Product concentration was higher than expected from measurements of product inhibition, possibly because it is the undissociated form of the acid that both inhibits metabolism and adsorbs on the activated carbon. The observed productivity of 12 gm/1 hr could be greatly increased by ph control. 13 refs., 7 figs., 2 tabs.

  16. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113. PMID:18830824

  17. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

    2010-10-01

    The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

  18. Comparative effects of oral aromatic and branched-chain amino acids on urine calcium and excretion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aromatic amino acids (AAAs) bind to the calcium sensor receptor (CaR) but branched-chain amino acids (B-CAAs) do not; by binding to this receptor, AAAs have an increased potential to affect calcium homeostasis. This study was conducted to determine and compare the effects of AAAs and B-CAAs on calci...

  19. A Comparative Study of French and Turkish Students' Ideas on Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cokelez, Aytekin

    2010-01-01

    The goal of this comparative study was to determine the knowledge that French and Turkish upper secondary-school students (grades 11 and 12) acquire on the concept of acid-base reactions. Following an examination of the relevant curricula and textbooks in the two countries, 528 students answered six written questions about the acid-base concept.…

  20. COMPARATIVE PATHOGENESIS OF HALOACETIC ACID AND PROTEIN KINASE INHIBITOR EMBRYOTOXICITY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    Comparative pathogenesis of haloacetic acid and protein kinase inhibitor embryotoxicity in mouse whole embryo culture.

    Ward KW, Rogers EH, Hunter ES 3rd.

    Curriculum in Toxicology, University of North Carolina at Chapel Hill, 27599-7270, USA.

    Haloacetic acids ...

  1. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2015-11-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  2. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

    NASA Astrophysics Data System (ADS)

    Dong, Xuewei; He, Qingfang; Peng, Zhenying; Yu, Jinhui; Bian, Fei; Li, Youzhi; Bi, Yuping

    2016-07-01

    Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

  3. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum.

    PubMed

    Pérez-López, Paula; González-García, Sara; Allewaert, Céline; Verween, Annick; Murray, Patrick; Feijoo, Gumersindo; Moreira, Ma Teresa

    2014-01-01

    Polyunsaturated fatty acids (PUFAs) play an important role in human health. Due to the increased market demand, the production of PUFAs from potential alternative sources such as microalgae is receiving increased interest. The aim of this study was to perform a life cycle assessment (LCA) of the biotechnological production of eicosapentaenoic acid (EPA) from the marine diatom Phaeodactylum tricornutum, followed by the identification of avenues to improve its environmental profile. The LCA tackles two production schemes of P. tricornutum PUFAs with an EPA content of 36%: lab and pilot scales. The results at lab scale show that both the electricity requirements and the production of the extraction agent (chloroform) have significant influence on the life cycle environmental performance of microalgal EPA production. An alternative method based on hexane was proposed to replace chloroform and environmental benefits were identified. Regarding the production of EPA at pilot scale, three main environmental factors were identified: the production of the nitrogen source required for microalgae growing, the transport activities and electricity requirements. Improvement alternatives were proposed and discussed concerning: a) the use of nitrogen based fertilizers, b) the valorization of the residual algal paste as soil conditioner and, c) the anaerobic digestion of the residual algal paste for bioenergy production. Encouraging environmental benefits could be achieved if sodium nitrate was substituted by urea, calcium nitrate or ammonium nitrate, regardless the category under assessment. In contrast, minor improvement was found when valorizing the residual algal paste as mineral fertilizer, due to its overall low content in N and P. Concerning the biogas production from the anaerobic digestion, the improvement on the environmental profile was also limited due to the discrepancy between the potential energy production from the algal paste and the high electricity requirements in

  4. Milk production responses to dietary stearic acid vary by production level in dairy cattle.

    PubMed

    Piantoni, P; Lock, A L; Allen, M S

    2015-03-01

    Effects of stearic acid supplementation on feed intake and metabolic and production responses of dairy cows with a wide range of milk production (32.2 to 64.4 kg/d) were evaluated in a crossover design experiment with a covariate period. Thirty-two multiparous Holstein cows (142±55 d in milk) were assigned randomly within level of milk yield to treatment sequence. Treatments were diets supplemented (2% of diet dry matter) with stearic acid (SA; 98% C18:0) or control (soyhulls). The diets were based on corn silage and alfalfa and contained 24.5% forage neutral detergent fiber, 25.1% starch, and 17.3% crude protein. Treatment periods were 21 d with the final 4 d used for data and sample collection. Compared with the control, SA increased dry matter intake (DMI; 26.1 vs. 25.2 kg/d) and milk yield (40.2 vs. 38.5 kg/d). Stearic acid had no effect on the concentration of milk components but increased yields of fat (1.42 vs. 1.35 kg/d), protein (1.19 vs. 1.14 kg/d), and lactose (1.96 vs. 1.87 kg/d). The SA treatment increased 3.5% fat-corrected milk (3.5% FCM; 40.5 vs. 38.6 kg/d) but did not affect feed efficiency (3.5% FCM/DMI, 1.55 vs. 1.53), body weight, or body condition score compared with the control. Linear interactions between treatment and level of milk yield during the covariate period were detected for DMI and yields of milk, fat, protein, lactose, and 3.5% FCM; responses to SA were positively related to milk yield of cows. The SA treatment increased crude protein digestibility (67.4 vs. 65.5%), tended to increase neutral detergent fiber digestibility (43.6 vs. 42.3%), decreased fatty acid (FA) digestibility (56.6 vs. 76.1%), and did not affect organic matter digestibility. Fatty acid yield response, calculated as the additional FA yield secreted in milk per unit of additional FA intake, was only 13.3% for total FA and 8.2% for C18:0 plus cis-9 C18:1. Low estimated digestibility of the SA supplement was at least partly responsible for the low FA yield response

  5. Carboxylic acid production from brewer's spent grain via mixed culture fermentation.

    PubMed

    Liang, Shaobo; Wan, Caixia

    2015-04-01

    This study aimed at investigating carboxylic acid production from brewer's spent grain (BSG) via mixed culture fermentation. The results showed that the distribution of fermentation products was significantly affected by pH conditions and the addition of electron donors. Lactic acid was the dominant component under acidic and alkaline conditions while volatile fatty acids (VFAs) became dominant under the neutral condition. Furthermore, the neutral condition favored the chain elongation of carboxylic acids, especially with ethanol as the electron donor. Ethanol addition enhanced valeric acid and caproic acid production by 44% and 167%, respectively. Lactic acid addition also had positive effects on VFAs production under the neutral condition but limited to C2-C4 products. As a result, propionic acid and butyric acid production was increased by 109% and 152%, respectively. These findings provide substantial evidence for regulating carboxylic acid production during mixed culture fermentation of BSG by controlling pH and adding electron donors. PMID:25698409

  6. Lactic acid bacteria as a cell factory for riboflavin production

    PubMed Central

    Thakur, Kiran; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  7. Lactic acid bacteria as a cell factory for riboflavin production.

    PubMed

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  8. Technology and economic assessment of lactic acid production and uses

    SciTech Connect

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  9. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  10. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  11. HPLC study of the impurities present in different ursodeoxycholic acid preparations: comparative evaluation of four detectors.

    PubMed

    Roda, A; Gatti, R; Cavrini, V; Cerrè, C; Simoni, P

    1993-08-01

    The use of HPLC with different detectors has been investigated for the analysis of bile acid impurities present in four different commercially available ursodeoxycholic acid preparations. The bile acids were efficiently separated by C18 reversed-phase HPLC using methanol-water (3:2, v/v) as the mobile phase. The detectors used for bile acid detection were: UV at 200 nm refractive index (RI) and an evaporative light scattering mass detector (ELSD II). A prederivatization method with the formation of a fluorescent naphthacyl ester has also been used. GC-MS analysis of Me-TMS bile acid derivatives was included as a reference method. The four ursodeoxycholic acid samples were 98-99% pure. The main impurities present in the samples were chenodeoxycholic acid and to a lesser extent lithocholic acid. Only one sample was found to be almost 100% pure using all the detectors. Significant agreement of the data was found between RI, ELSD II detectors and the fluorescent method; the UV detector was unsuitable for use in this method. The analytical performances of the four detectors for bile acid analysis are reported and discussed. When the four-detector data were compared with the GC-MS method, reasonable agreement resulted. Discordant results were found in the quantitation of trace impurities like lithocholic acid and/or other minor bile acids present in amounts less than 0.1%. PMID:8257741

  12. Control of product selectivity using solid acids for the catalytic addition of phenol to hydroxy fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acid catalyzed reactions of hydroxy fatty acids, such as ricinoleic and lesquerolic, in the presence of phenolics can lead to four products or product groups. These include simple dehydration to dienoic acids, cyclization to epoxides, Friedel-Crafts alkylations of the double bonds, or ether for...

  13. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10664 Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic)....

  14. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10664 Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic)....

  15. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria

    PubMed Central

    Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso

    2016-01-01

    The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485

  16. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boric acid production subcategory. 415.280 Section 415.280 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process....

  17. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  18. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues. PMID:24607804

  19. Inhibition of Large Neutral Amino Acid Transporters Suppresses Kynurenic Acid Production Via Inhibition of Kynurenine Uptake in Rodent Brain.

    PubMed

    Sekine, Airi; Kuroki, Yusuke; Urata, Tomomi; Mori, Noriyuki; Fukuwatari, Tsutomu

    2016-09-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor and N-methyl-D-aspartic acid receptor at endogenous brain concentrations. Recent studies have suggested that increases of brain KYNA levels are involved in psychiatric disorders such as schizophrenia and depression, and regulation of KYNA production has become a new target for treatment of these diseases. Kynurenine (KYN), the immediate precursor of KYNA, is transported into astrocytes via large neutral amino acid transporters (LATs). In the present study, the effect of LATs regulation on KYN uptake and KYNA production was investigated in vitro and in vivo using an LATs inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). In the in vitro study, cortical slices of rat brain were incubated with a physiological concentration of KYN and 3 µmol/L-3 mmol/L BCH. BCH inhibited KYNA production and KYN uptake in a dose-dependent manner, and their IC50 values were 90.7 and 97.4 µmol/L, respectively. In the in vivo study, mice were administered KYN (50 mg/kg BW) orally and BCH (200 mg/kg BW) intravenously. Administration of KYN increased brain KYN and KYNA levels compared with the mice treated with vehicle, whereas additional administration of BCH suppressed KYN-induced elevations in KYN and KYNA levels to 50 and 70 % in the brain. These results suggest that inhibition of LATs prevented the increase of KYNA production via blockade of KYN uptake in the brain in vitro and in vivo. LATs can be a target to modulate brain function by regulation of KYNA production in the brain. PMID:27161376

  20. Spectral characterization of acid weathering products on Martian basaltic glass

    NASA Astrophysics Data System (ADS)

    Yant, Marcella; Rogers, A. Deanne; Nekvasil, Hanna; Zhao, Yu-Yan Sara; Bristow, Tom

    2016-03-01

    For the first time, direct infrared spectral analyses of glasses with Martian compositions, altered under controlled conditions, are presented in order to assess surface weathering and regolith development on Mars. Basaltic glasses of Irvine and Backstay composition were synthesized and altered using H2SO4-HCl acid solutions (pH 0-4). Scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, Raman, and infrared spectral measurements were acquired for each reaction product. Infrared spectra were also acquired from previously synthesized and altered glasses with Pathfinder-measured compositions. Acid alteration on particles in the most acidic solutions (pH ≤ 1) yielded sulfate-dominated visible near infrared (VNIR) and thermal infrared (TIR) spectra with some silica influence. Spectral differences between alteration products from each starting material were present, reflecting strong sensitivity to changes in mineral assemblage. In the TIR, alteration features were preserved after reworking and consolidation. In the VNIR, hydrated sulfate features were present along with strong negative spectral slopes. Although such signatures are found in a few isolated locations on Mars with high-resolution spectrometers, much of the Martian surface lacks these characteristics, suggesting the following: acid alteration occurred at pH ≥ 2; small amounts of sulfates were reworked with unaltered material; there is a prevalence of intermediate-to-high silica glass in Martian starting materials (more resistant to acid alteration); primary or added sulfur were lacking; alteration features are obscured by dust; and/or large-scale, pervasive, acid sulfate weathering of the Martian surface did not occur. These results highlight the need to better understand the spectral properties of altered Martian surface material in order to enhance the interpretation of remote spectra for altered terrains.

  1. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  2. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure. PMID:26484732

  3. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals.

    PubMed

    Tolonen, Emma-Tuulia; Sarpola, Arja; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2014-12-01

    The aim of this research was to investigate whether by-products from quicklime manufacturing could be used instead of commercial quicklime (CaO) or hydrated lime (Ca(OH)2), which are traditionally used as neutralization chemicals in acid mine drainage treatment. Four by-products were studied and the results were compared with quicklime and hydrated lime. The studied by-products were partly burnt lime stored outdoors, partly burnt lime stored in a silo, kiln dust and a mixture of partly burnt lime stored outdoors and dolomite. Present application options for these by-products are limited and they are largely considered waste. Chemical precipitation experiments were performed with the jar test. All the studied by-products removed over 99% of Al, As, Cd, Co, Cu, Fe, Mn, Ni, Zn and approximately 60% of sulphate from acid mine drainage. However, the neutralization capacity of the by-products and thus the amount of by-product needed as well as the amount of sludge produced varied. The results indicated that two out of the four studied by-products could be used as an alternative to quicklime or hydrated lime for acid mine drainage treatment. PMID:25193795

  4. Enhanced Production of Docosahexaenoic Acid in Mammalian Cells

    PubMed Central

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the acumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased prodution of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  5. Development of an industrializable fermentation process for propionic acid production.

    PubMed

    Stowers, Chris C; Cox, Brad M; Rodriguez, Brandon A

    2014-05-01

    Propionic acid (PA) is a short-chain fatty acid with wide industrial application including uses in pharmaceuticals, herbicides, cosmetics, and food preservatives. As a three-carbon building block, PA also has potential as a precursor for high-volume commodity chemicals such as propylene. Currently, most PA is manufactured through petrochemical routes, which can be tied to increasing prices and volatility due to difficulty in demand forecasting and feedstock availability. Herein described are research advancements to develop an industrially feasible, renewable route to PA. Seventeen Propionibacterium strains were screened using glucose and sucrose as the carbon source to identify the best platform strain. Propionibacterium acidipropionici ATCC 4875 was selected as the platform strain and subsequent fermentation optimization studies were performed to maximize productivity and yield. Fermentation productivity was improved three-fold to exceed 2 g/l/h by densifying the inoculum source. Byproduct levels, particularly lactic and succinic acid, were reduced by optimizing fermentor headspace pressure and shear. Following achievement of commercially viable productivities, the lab-grade medium components were replaced with industrial counterparts to further reduce fermentation costs. A pure enzymatically treated corn mash (ECM) medium improved the apparent PA yield to 0.6 g/g (PA produced/glucose consumed), but it came at the cost of reduced productivity. Supplementation of ECM with cyanocobalamin restored productivity to near lab-grade media levels. The optimized ECM recipe achieved a productivity of 0.5 g/l/h with an apparent PA yield of 0.60 g/g corresponding to a media cost <1 USD/kg of PA. These improvements significantly narrow the gap between the fermentation and incumbent petrochemical processes, which is estimated to have a manufacturing cost of 0.82 USD/kg in 2017. PMID:24627047

  6. A novel cleaner production process of citric acid by recycling its treated wastewater.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-07-01

    In this study, a novel cleaner production process of citric acid was proposed to completely solve the problem of wastewater management in citric acid industry. In the process, wastewater from citric acid fermentation was used to produce methane through anaerobic digestion and then the anaerobic digestion effluent was further treated with air stripping and electrodialysis before recycled as process water for the later citric acid fermentation. This proposed process was performed for 10 batches and the average citric acid production in recycling batches was 142.4±2.1g/L which was comparable to that with tap water (141.6g/L). Anaerobic digestion was also efficient and stable in operation. The average chemical oxygen demand (COD) removal rate was 95.1±1.2% and methane yield approached to 297.7±19.8mL/g TCODremoved. In conclusion, this novel process minimized the wastewater discharge and achieved the cleaner production in citric acid industry. PMID:27054882

  7. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues. PMID:27118013

  8. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    SciTech Connect

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  9. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    PubMed

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  10. Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid.

    PubMed

    Cao, Fenghua; Chen, Yang; Zhai, Fengying; Li, Jing; Wang, Jianghua; Wang, Xiaohong; Wang, Shengtian; Zhu, Weimin

    2008-09-01

    Transesterification of waste cooking oil with high acid value and high water contents using heteropolyacid H3PW12O40 x 6H2O (PW12) as catalyst was investigated. The hexahydrate form of PW(12) was found to be the most promising catalyst which exhibited highest ester yield 87% for transesterification of waste cooking oil and ester yield 97% for esterification of long-chain palmitic acid, respectively. The PW12 acid catalyst shows higher activity under the optimized reaction conditions compared with conventional homogeneous catalyst sulfuric acid, and can easily be separated from the products by distillation of the excess methanol and can be reused more times. The most important feature of this catalyst is that the catalytic activity is not affected by the content of free fatty acids (FFAs) and the content of water in the waste cooking oil and the transesterification can occur at a lower temperature (65 degrees C), a lower methanol oil ratio (70:1) and be finished within a shorter time. The results illustrate that PW12 acid is an excellent water-tolerant and environmentally benign acid catalyst for production of biodiesel from waste cooking oil. PMID:18646228

  11. Biosynthesis of Phosphonic and Phosphinic Acid Natural Products

    PubMed Central

    Metcalf, William W.; van der Donk, Wilfred A.

    2009-01-01

    Natural products containing carbon-phosphorus bonds (phosphonic and phosphinic acids) have found widespread use in medicine and agriculture. Recent years have seen a renewed interest in the biochemistry and biology of these compounds with the cloning of the biosynthetic gene clusters for several family members. This review discusses the commonalities and differences in the molecular logic that lies behind the biosynthesis of these compounds. The current knowledge regarding the metabolic pathways and enzymes involved in the production of a number of natural products, including the approved antibiotic fosfomycin, the widely used herbicide phosphinothricin, and the clinical candidate for treatment of malaria FR900098, is presented. Many of the enzymes involved in the biosynthesis of these compounds catalyze chemically and biologically unprecedented transformations and a wealth of new biochemistry has been revealed through their study. These studies have also suggested new strategies for natural product discovery. PMID:19489722

  12. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  13. Lactic Acid Production in a Mixed-Culture Biofilm Reactor †

    PubMed Central

    Demirci, Ali; Pometto, Anthony L.; Johnson, Kenneth E.

    1993-01-01

    Novel solid supports, consisting of polypropylene blended with various agricultural materials (pp composite), were evaluated as supports for pure- and mixed-culture continuous lactic acid fermentations in biofilm reactors. Streptomyces viridosporus T7A (ATCC 39115) was used to form a biofilm, and Lactobacillus casei subsp. rhamnosus (ATCC 11443) was used for lactic acid production. For mixed-culture fermentations, a 15-day continuous fermentation of S. viridosporus was performed initially to establish the biofilm. The culture medium was then inoculated with L. casei subsp. rhamnosus. For pure-culture fermentation, L. casei subsp. rhamnosus was inoculated directly into the reactors containing sterile pp composite chips. The biofilm reactors containing various pp composite chips were compared with a biofilm reactor containing pure polypropylene chips and with a reactor containing a suspension culture. Continuous fermentation was started, and each flow rate (0.06 to 1.92 ml/min) was held constant for 24 h; steady state was achieved after 10 h. Lactic acid production was determined throughout the 24-h period by high-performance liquid chromatography. Production rates that were two to five times faster than those of the suspension culture (control) were observed for the pure- and mixed-culture bioreactors. Both lactic acid production rates and lactic acid concentrations in the culture medium were consistently higher in mixed-culture than in pure-culture fermentations. Biofilm formation on the chips was detected at harvest by chip clumping and Gram staining. PMID:16348843

  14. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees.

    PubMed

    Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid

    2015-01-01

    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM. PMID:25884548

  15. Intracellular domoic acid production in Pseudo-nitzschia multistriata isolated from the Gulf of Naples (Tyrrhenian Sea, Italy).

    PubMed

    Amato, Alberto; Lüdeking, Alexander; Kooistra, Wiebe H C F

    2010-01-01

    Twenty-six Pseudo-nitzschia multistriata cultures were tested for intracellular domoic acid production and fourteen were found to be toxic. Four suboptimal growth conditions were compared with conditions observed to be optimal to explore possible triggers for intracellular domoic acid production. Silica- and phosphate-limitation and low light treatment induced elevated toxin concentrations whereas high temperature appeared to suppress it. Inheritance of the toxin-production ability was investigated by measuring intracellular toxin content in a total of thirty-nine F(1) strains from two different crosses. Results showed radical differences in domoic acid levels among the F(1) offspring from the same parents. PMID:19615395

  16. Prescription omega-3 fatty acid products: considerations for patients with diabetes mellitus

    PubMed Central

    Tajuddin, Nadeem; Shaikh, Ali; Hassan, Amir

    2016-01-01

    Type 2 diabetes mellitus (T2DM) and metabolic syndrome contribute to hypertriglyceridemia, which may increase residual risk of cardiovascular disease in patients with elevated triglyceride (TG) levels despite optimal low-density lipoprotein cholesterol (LDL-C) levels with statin therapy. Prescription products containing the long-chain omega-3 fatty acids (OM3FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are an effective strategy for reducing TG levels. This article provides an overview of prescription OM3FAs, including relevant clinical data in patients with T2DM and/or metabolic syndrome. Prescription OM3FAs contain either combinations of DHA and EPA (omega-3-acid ethyl esters, omega-3-carboxylic acids, omega-3-acid ethyl esters A) or EPA alone (icosapent ethyl). These products are well tolerated and can be used safely with statins. Randomized controlled trials have demonstrated that all prescription OM3FAs produce statistically significant reductions in TG levels compared with placebo; however, differential effects on LDL-C levels have been reported. Products containing DHA may increase LDL-C levels, whereas the EPA-only product did not increase LDL-C levels compared with placebo. Because increases in LDL-C levels may be unwanted in patients with T2DM and/or dyslipidemia, the EPA-only product should not be replaced with products containing DHA. Available data on the effects of OM3FAs in patients with diabetes and/or metabolic syndrome support that these products can be used safely in patients with T2DM and have beneficial effects on atherogenic parameters; in particular, the EPA-only prescription product significantly reduced TG, non-high-density lipoprotein cholesterol, Apo B, remnant lipoprotein cholesterol, and high-sensitivity CRP levels without increasing LDL-C levels compared with placebo. Ongoing studies of the effects of prescription OM3FAs on cardiovascular outcomes will help determine whether these products will emerge as effective add

  17. Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance.

    PubMed

    Mackenzie, W

    1986-02-01

    Atkinson and colleagues recently proposed several concepts that contrast with traditional views: first, that acid-base balance is regulated chiefly by the reactions leading to urea production in the liver; second, that ammonium excretion by the kidney plays no role in acid-base homeostasis; and third, that ammonium does not stimulate ureagenesis (except indirectly). To examine these concepts, plasma ions other than bicarbonate are categorized as 1) fixed cations (Na+, K+, Ca2+, and Mg2+, symbolized M+) and anions (Cl-), 2) buffer anions (A-), 3) other anions (X-), and 4) ammonium plus charged amino groups (N+). Since electroneutrality dictates that M+ + N+ = Cl- + HCO3- + A- + X-, it follows that delta HCO3- = delta(M+ - Cl-) - delta A- - delta X- + delta N+. Therefore acid-base disturbances (changes in HCO3-) can be categorized as to how they affect bodily content and hence plasma concentration of each of these four types of ions. The stoichiometry of ureagenesis, glutamine hydrolysis, ammonium and titratable acid excretion, oxidation of neutral, acidic, and basic amino acids, and oxidation of methionine, phosphoserine, and protein are examined to see how they alter these quantities. It is concluded that 1) although ureagenesis is pH dependent and also counteracts a tendency of amino acid oxidation to cause alkalosis, this tendency is inherently limited by the hyperammonemia (delta N+) that necessarily accompanies it, 2) ammonium excretion is equivalent to hydrogen excretion in its effects on acid-base balance if, and only if, it occurs in exchange for sodium or is accompanied by chloride excretion and only when the glutamate generated by glutamine hydrolysis is oxidized.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3511732

  18. Survey of perfluoroalkyl acids (PFAAs) and their precursors present in Japanese consumer products.

    PubMed

    Ye, Feng; Zushi, Yasuyuki; Masunaga, Shigeki

    2015-05-01

    Perfluoroalkyl acids (PFAAs) and their precursors have been used in various consumer products. However, limited information regarding their occurrence and concentration levels in products is available. In this study, we investigated 18 PFAAs and 14 PFAA precursors in various categories of consumer products purchased in Japan. Relatively high total concentrations of PFAAs and their precursors were found in sprays for fabrics and textiles (products (compared to other categories, and the similar observation was found in previous studies in Norway and Germany. A precursor of perfluorooctane sulfonic acid (PFOS), N-methyl perfluorooctane sulfonamidoethanol (MeFOSE) was detected in a higher frequency (8%) and in greater concentrations (products is required. Furthermore, the amount of PFAAs emitted from consumer products may be underestimated if the occurrence of PFAA precursors is not considered. In addition to PFAA precursors, long chain perfluoroalkyl carboxylic acids (PFCAs) (carbon chain length⩾7) were also detected in greater concentrations than short chain PFCAs (⩽6). This result suggests that consumer products are one of the important sources of long-chain PFCAs in the environment. PMID:25753850

  19. Antimicrobial and cytotoxic effects of phosphoric acid solution compared to other root canal irrigants

    PubMed Central

    PRADO, Maíra; da SILVA, Emmanuel João Nogueira Leal; DUQUE, Thais Mageste; ZAIA, Alexandre Augusto; FERRAZ, Caio Cezar Randi; de ALMEIDA, José Flávio Affonso; GOMES, Brenda Paula Figueiredo de Almeida

    2015-01-01

    Phosphoric acid has been suggested as an irrigant due to its effectiveness in removing the smear layer. Objectives : The purpose of this study was to compare the antimicrobial and cytotoxic effects of a 37% phosphoric acid solution to other irrigants commonly used in endodontics. Material and Methods : The substances 37% phosphoric acid, 17% EDTA, 10% citric acid, 2% chlorhexidine (solution and gel), and 5.25% NaOCl were evaluated. The antimicrobial activity was tested against Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Actinomyces meyeri, Parvimonas micra, Porphyromonas gingivalis, and Prevotella nigrescens according to the agar diffusion method. The cytotoxicity of the irrigants was determined by using the MTT assay. Results : Phosphoric acid presented higher antimicrobial activity compared to the other tested irrigants. With regard to the cell viability, this solution showed results similar to those with 5.25% NaOCl and 2% chlorhexidine (gel and solution), whereas 17% EDTA and 10% citric acid showed higher cell viability compared to other irrigants. Conclusion : Phosphoric acid demonstrated higher antimicrobial activity and cytotoxicity similar to that of 5.25% NaOCl and 2% chlorhexidine (gel and solution). PMID:26018307

  20. Comparative Proteome of Acetobacter pasteurianus Ab3 During the High Acidity Rice Vinegar Fermentation.

    PubMed

    Wang, Zhe; Zang, Ning; Shi, Jieyan; Feng, Wei; Liu, Ye; Liang, Xinle

    2015-12-01

    As a traditional Asian food for several centuries, vinegar is known to be produced by acetic acid bacteria. The Acetobacter species is the primary starter for vinegar fermentation and has evolutionarily acquired acetic acid resistance, in which Acetobacter pasteurianus Ab3 is routinely used for industrial production of rice vinegar with a high acidity (9 %, w/v). In contrast to the documented short-term and low acetic acid effects on A. pasteurianus, here we investigated the molecular and cellular signatures of long-term and high acetic acid responses by proteomic profiling with bidimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS) analyses. Protein spots of interest were selected based on the threshold ANOVA p value of 0.05 and minimal twofold of differential expression, leading to the identification of 26 proteins that are functionally enriched in oxidoreductase activity, cell membrane, and metabolism. The alterations in protein functioning in respiratory chain and protein denaturation may underlay cellular modifications at the outer membrane. Significantly, we found that at higher acidity fermentation phase, the A. pasteurianus Ab3 cells would adapt to distinct physiological processes from that of an ordinary vinegar fermentation with intermediate acidity, indicating increasing energy requirement and dependency of membrane integrity during the transition of acetic acid production. Together, our study provided new insights into the adaptation mechanisms in A. pasteurianus to high acetic acid environments and yield novel regulators and key pathways during the development of acetic acid resistance. PMID:26369782

  1. Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2012-04-01

    The influence of dissolved oxygen availability on cell growth and lactobionic acid production from whey by Pseudomonas taetrolens has been investigated for the first time. Results from pH-shift bioreactor cultivations have shown that high agitation rate schemes stimulated cell growth, increased pH-shift values and the oxygen uptake rate by cells, whereas lactobionic acid production was negatively affected. Conversely, higher aeration rates than 1.5 Lpm neither stimulated cell growth nor lactobionic acid production (22% lower for an aeration rate of 2 Lpm). Overall insights into bioprocess performance enabled the implementation of 350 rpm as the optimal agitation strategy during cultivation, which increased lactobionic productivity 1.2-fold (0.58-0.7 g/Lh) compared to that achieved at 1000 rpm. Oxygen supply has been shown to be a key bioprocess parameter for enhanced overall efficiency of the system, representing essential information for the implementation of lactobionic acid production at a large scale. PMID:22310213

  2. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol.

    PubMed

    Habe, Hiroshi; Shimada, Yuko; Yakushi, Toshiharu; Hattori, Hiromi; Ano, Yoshitaka; Fukuoka, Tokuma; Kitamoto, Dai; Itagaki, Masayuki; Watanabe, Kunihiro; Yanagishita, Hiroshi; Matsushita, Kazunobu; Sakaki, Keiji

    2009-12-01

    Glyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly. The growth parameters of two different strain types, Gluconobacter frateurii NBRC103465 and Acetobacter tropicalis NBRC16470, were optimized using a jar fermentor. G. frateurii accumulated 136.5 g/liter of GA with a 72% d-GA enantiomeric excess (ee) in the culture broth, whereas A. tropicalis produced 101.8 g/liter of d-GA with a 99% ee. The 136.5 g/liter of glycerate in the culture broth was concentrated to 236.5 g/liter by desalting electrodialysis during the 140-min operating time, and then, from 50 ml of the concentrated solution, 9.35 g of GA calcium salt was obtained by crystallization. Gene disruption analysis using G. oxydans IFO12528 revealed that the membrane-bound alcohol dehydrogenase (mADH)-encoding gene (adhA) is required for GA production, and purified mADH from G. oxydans IFO12528 catalyzed the oxidation of glycerol. These results strongly suggest that mADH is involved in GA production by acetic acid bacteria. We propose that GA is potentially mass producible from glycerol feedstock by a biotechnological process. PMID:19837846

  3. Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids.

    PubMed

    Fan, K W; Chen, F; Jones, E B; Vrijmoed, L L

    2001-10-01

    Nine thraustochytrid strains isolated from subtropical mangroves were screened for their eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production potential in a glucose yeast extract medium. Their ability to utilize okara (soymilk residue) for growth and EPA and DHA production was also evaluated. EPA yield was low in most strains, while DHA level was high on glucose yeast extract medium, producing 28.1-41.1% of total fatty acids, for all strains, with the exception of Ulkenia sp. KF13. The DHA yield of Schizochytrium mangrovei strains ranged from 747.7 to 2778.9 mg/l after 52 h of fermentation at 25 degrees C. All strains utilized okara as a substrate for growth, but DHA yield was lower when compared with fermentation in a glucose yeast extract medium. PMID:11687930

  4. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption. PMID:24522611

  5. The Sugar Model: Catalysis by Amines and Amino Acid Products

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2001-02-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonyl-containing products under the conditions studied (pH 5.5 and 50°C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. α-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  6. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  7. Microbial production and applications of 5-aminolevulinic acid.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Xiangkun; Zhang, Jie

    2014-09-01

    5-Aminolevulinic acid (ALA), an important intermediate in tetrapyrrole biosynthesis in organisms, has been widely applied in many fields, such as medicine, agriculture, and the food industry, due to its biochemical characteristics. Research efforts supporting the microbial production of ALA have received increasing interest due to its dominant advantages over chemical synthesis, including higher yields, lesser pollutant emissions, and a lesser monetary cost. ALA synthesis using photosynthetic bacteria (PSB) is a promising approach in various microbial synthesis methods. In this review, recent advances on the microbial production of ALA with an emphasis on PSB are summarized, the key enzymes in the biosynthesis pathway (especially the relationship between key enzymes and key genes) are detailed, regulation strategies are described, and the significant influencing factors on the ALA biosynthesis and application of ALA are outlined. Furthermore, the eco-friendly perspective involving the combination of wastewater treatment and microbial production of ALA is conceived. PMID:25022665

  8. A Candida guilliermondii lysine hyperproducer capable of elevated citric acid production.

    PubMed

    West, Thomas P

    2016-05-01

    A mutant of the yeast Candida guilliermondii ATCC 9058 exhibiting elevated citric acid production was isolated based upon its ability to overproduce lysine. This method involved the use of a solid medium containing a combination of lysine analogues to identify a mutant that produced a several-fold higher lysine level compared to its parent strain using glucose or glycerol as a carbon source. The mutant strain was also capable of producing more than a fivefold higher citric acid level on glycerol as a carbon source compared to its parent strain. It was concluded that the screening of yeast lysine hyperproducer strains could provide a rapid approach to isolate yeast citric acid hyperproducer strains. PMID:27038943

  9. Vanadium phosphate catalysts for biodiesel production from acid industrial by-products.

    PubMed

    Domingues, Carina; Correia, M Joana Neiva; Carvalho, Renato; Henriques, Carlos; Bordado, João; Dias, Ana Paula Soares

    2013-04-10

    Biodiesel production from high acidity industrial by-products was studied using heterogeneous acid catalysts. These by-products contain 26-39% of free fatty acids, 45-66% of fatty acids methyl esters and 0.6-1.1% of water and are consequently inadequate for direct basic catalyzed transesterification. Macroporous vanadyl phosphate catalysts with V/P=1 (atomic ratio) prepared via sol-gel like technique was used as catalyst and it was possible to produce in one reaction batch a biodiesel contain 87% and 94% of FAME, depending on the by-product used as raw material. The initial FAME content in the by-products had a beneficial effect on the reactions because they act as a co-solvent, thus improving the miscibility of the reaction mixture components. The water formed during esterification process seems to hinder the esters formation, possibly due to competitive adsorption with methanol and to the promotion of the FAME hydrolysis reaction.The observed catalyst deactivation seems to be related to the reduction of vanadium species. However, spent catalysts can be regenerated, even partially, by reoxidation of the reduced vanadium species with air. PMID:22902409

  10. Analysis of mycolic acid cleavage products and cellular fatty acids of Mycobacterium species by capillary gas chromatography.

    PubMed

    Lambert, M A; Moss, C W; Silcox, V A; Good, R C

    1986-04-01

    After growth and experimental conditions were established, the mycolic acid cleavage products, constituent fatty acids, and alcohols of representative strains of Mycobacterium tuberculosis, M. smegmatis, M. fortuitum complex, M. kansasii, M. gordonae, and M. avium complex were determined by capillary gas chromatography. Reproducible cleavage of mycolic acid methyl esters to tetracosanoic (24:0) or hexacosanoic (26:0) acid methyl esters was achieved by heating the sample in a high-temperature muffle furnace. The major constituent fatty acids in all species were hexadecanoic (16:0) and octadecenoic (18:1 omega 9-c, oleic) acids. With the exception of M. gordonae, 10-methyloctadecanoic acid was found in all species; moreover, M. gordonae was the only species tested which contained 2-methyltetradecanoic acid. M. kansasii was characterized by the presence of 2,4-dimethyltetradecanoic acid, M. avium complex by 2-eicosanol, and M. tuberculosis by 26:0 mycolic acid cleavage product. The mycolic acid cleavage product in the other five species tested was 24:0. Although a limited number of strains and species were tested, preliminary results indicate that this gas chromatographic method can be used to characterize mycobacterial cultures by their mycolic acid cleavage products and constituent fatty acid and alcohol content. PMID:3084554

  11. The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Allayarov, Ramil K; Lunina, Julia N; Morgunov, Igor G

    2016-04-01

    The effect of oxalic and itaconic acids, the inhibitors of the isocitrate lyase, on the production of isocitric acid by the wild strain Yarrowia lipolytica VKM Y-2373 grown in the medium containing rapeseed oil was studied. In the presence of oxalic and itaconic acids, strain Y. lipolytica accumulated in the medium isocitric acid (70.0 and 82.7 g/L, respectively) and citric acid (23.0 and 18.4 g/L, respectively). In control experiment, when the inhibitors were not added to the medium, the strain accumulated isocitric and citric acids at concentrations of 62.0 and 28.0 g/L, respectively. Thus, the use of the oxalic and itaconic acids as additives to the medium is a simple and convenient method of isocitric acid production with a minimum content of citric acid. PMID:26851896

  12. Encapsulation of ascorbic acid promotes the reduction of Maillard reaction products in UHT milk.

    PubMed

    Troise, Antonio Dario; Vitiello, Daniele; Tsang, Catherine; Fiore, Alberto

    2016-06-15

    The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly susceptible to the reduction of available lysine and to the formation of Maillard reaction products (MRPs), as Nε-(carboxyethyl)-l-lysine (CEL), Nε-(carboxymethyl)-l-lysine (CML), Amadori products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction (MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with control samples. The effects were also investigated towards the formation of amide-AGEs (advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that several mechanisms coincide with the MR in the presence of ascorbic acid. PMID:27240727

  13. Putrescine production from different amino acid precursors by lactic acid bacteria from wine and cider.

    PubMed

    Costantini, Antonella; Pietroniro, Roberta; Doria, Francesca; Pessione, Enrica; Garcia-Moruno, Emilia

    2013-07-01

    The aim of this work was to study the production of biogenic amines and particularly putrescine in lactic acid bacteria (LAB) related to wine and cider. We applied an analytical protocol that involves the use of PCR and TLC techniques to determine the production of putrescine from different precursors. Moreover, we also studied the ability of the Lactobacillus and Pediococcus tested to produce histamine and tyramine. The results showed that the majority of the Lactobacillus brevis analyzed harbour both AgDI and tdc genes and are tyramine and putrescine producers. Conversely, among the other LAB tested, only one Lactobacillus hilgardii and one Pediococcus pentosaceus produced putrescine. The AgDI gene was also detected in two other LAB (Lactobacillus mali and Pediococcus parvulus), but no putrescine production was observed. Finally, hdc gene and histamine production were found in strains (L. hilgardii 5211, isolated from wine, and Lactobacillus casei 18, isolated from cider) that were not putrescine producers. PMID:23685467

  14. Screening, Characterization and In Vitro Evaluation of Probiotic Properties Among Lactic Acid Bacteria Through Comparative Analysis.

    PubMed

    Devi, Sundru Manjulata; Archer, Ann Catherine; Halami, Prakash M

    2015-09-01

    The present work aimed to identify probiotic bacteria from healthy human infant faecal and dairy samples. Subsequently, an assay was developed to evaluate the probiotic properties using comparative genetic approach for marker genes involved in adhesion to the intestinal epithelial layer. Several in vitro properties including tolerance to biological barriers (such as acid and bile), antimicrobial spectrum, resistance to simulated digestive fluids and cellular hydrophobicity were assessed. The potential probiotic cultures were rapidly characterized by morphological, physiological and molecular-based methods [such as RFLP, ITS, RAPD and (GTG)5]. Further analysis by 16S rDNA sequencing revealed that the selected isolates belong to Lactobacillus, Pediococcus and Enterococcus species. Two cultures of non-lactic, non-pathogenic Staphylococcus spp. were also isolated. The native isolates were able to survive under acidic, bile and simulated intestinal conditions. In addition, these cultures inhibited the growth of tested bacterial pathogens. Further, no correlation was observed between hydrophobicity and adhesion ability. Sequencing of probiotic marker genes such as bile salt hydrolase (bsh), fibronectin-binding protein (fbp) and mucin-binding protein (mub) for selected isolates revealed nucleotide variation. The probiotic binding domains were detected by several bioinformatic tools. The approach used in the study enabled the identification of potential probiotic domains responsible for adhesion of bacteria to intestinal epithelial layer, which may further assist in screening of novel probiotic bacteria. The rapid detection of binding domains will help in revealing the beneficial properties of the probiotic cultures. Further, studies will be performed to develop a novel probiotic product which will contribute in food and feed industry. PMID:26049925

  15. Lipid biomarker production and preservation in acidic ecosystems: Relevance to early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Jahnke, L. L.; Parenteau, M. N.; Harris, R.; Bristow, T.; Farmer, J. D.; Des Marais, D. J.

    2013-12-01

    Compared to relatively benign carbonate buffered marine environments, terrestrial Archean and Paleoproterozoic life was forced to cope with a broader range of pH values. In particular, acidic terrestrial ecosystems arose from the oxidation of reduced species in hydrothermal settings and crustal reservoirs of metal sulfides, creating acid sulfate conditions. While oxidation of reduced species is facilitated by reactions with molecular oxygen, acidic conditions also arose in Archean hydrothermal systems before the rise of oxygen (Van Kranendonk, 2006), expanding the range of time over which acidophiles could have existed on the early Earth. Acidic terrestrial habitats would have included acidic hydrothermal springs, acid sulfate soils, and possibly lakes and streams lacking substantial buffering capacity with sources of acidity in their catchments. Although acidic hot springs are considered extreme environments on Earth, robust and diverse microbial communities thrive in these habitats. Such acidophiles are found across all three domains of life and include both phototrophic and chemotrophic members. In this presentation, we examine hopanes and sterols that are characteristic of microbial communities living in acidic hydrothermal environments. Moreover we discuss taphonomic processes governing the capture and preservation of these biosignatures in acid environments. In particular, we discuss the production and early preservation of hopanoids and sterols in the following geological/mineralogical settings: 1) rapid entombment of microbes and organic matter by predominantly fine-grained silica; 2) rapid burial of organic matter by clay-rich, silica poor sediments; 3) and the survival of organics in iron oxide and sulfate rich sediments. We discovered and isolated an acid-tolerant purple non-sulfur anoxygenic phototroph from Lassen Volcanic National Park that synthesizes 3methyl-bacteriohopanepolyols. These compounds were previously thought to be exclusively made by

  16. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  17. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  18. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  19. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone. PMID:26111613

  20. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Keun; Kumaran, Rangarajulu Senthil; Jeon, Hyeon Jin; Song, Hak-Jin; Yang, Yung-Hun; Lee, Sang Hyun; Song, Kyung-Guen; Kim, Kwang Jin; Singh, Vijay; Kim, Hyung Joo

    2015-06-01

    Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus. The induced light stress was optimized for its biomass and fatty acid content. The microalgae are exposed to various frequency of intermittent LED flashing light (blue and red lights) at three different phases in the 18 day cell growth (log, lag and stationary phase). The frequency of light flashing rate was adjusted to 120, 10, 5, 3.75, and 1 times per min. The effect of light stress on growth and fatty acids composition of A. obliquus induced an increase in algae growth and fatty acid production. Different optimal timing for light stress was subjected to elucidate the effect of light stress on algae growth and fatty acid production. The results showed an increase in the algae growth (1.2 mg/L of chl a content) under light stress condition at FT10 (flashing time, 10 times per min) from the initial day (log phase) compared with the control experiment (0.4 mg/L of chl a content). However, the total fatty acids (71 mg/g) and volumetric FAME production (9.4 ml/l) level was found to be significant under FT5 (flashing time, 5 times per min), adopting flashing light from day 10 (stationary phase). TEM studies also revealed the deposition of lipid to be largest in the 18 day old cells under flashing light (FT5) condition, representing maximum accumulation of lipids bodies (up to 770 nm diameter in particle size) occupying approximately 42% of the total area of the cell.

  1. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). PMID:21855329

  2. A comparative study of serum protein-bound sialic acid in benign and malignant prostatic growth: possible role of oxidative stress in sialic acid homeostasis.

    PubMed

    Goswami, K; Nandeesha, H; Koner, B C; Nandakumar, D N

    2007-01-01

    Benign and malignant prostatic growths are associated with an increase in sialoconjugates (e.g. prostate-specific antigen (PSA)) in blood. Oxidative stress plays a crucial role in pathogenesis of various malignancies. The objective of this study was to evaluate oxidative stress parameters and protein-bound sialic acid level in sera of prostatic tumor cases and to asses for any association between them. Sera samples were collected and estimated for carbonylation of proteins, lipid peroxidation products, PSA and protein-bound sialic acid from 10 patients in each group with prostatic carcinoma (Ca prostate) and benign prostatic hyperplasia (BPH) along with 10 healthy male subjects of similar age group as control. In carcinoma prostate cases, lipid peroxides, protein carbonyls, protein-bound sialic acid and PSA were significantly increased compared to BPH and controls. There was significant association between oxidative stress parameters (lipid peroxide and protein carbonyl) and sialoconjugates (PSA and protein-bound sialic acid). In BPH cases, serum lipid peroxides and protein-bound sialic acid were significantly higher in comparison to controls and protein carbonyls were correlated with protein-bound sialic acid. ROC curve for sialic acid showed that it can be used as a marker to differentiate carcinoma prostate from benign growth of prostate at a cutoff level of 11.38 mug/mg protein with a sensitivity of 100% and specificity of 80%. We conclude that oxidative stress might be associated with the degree of sialylation of protein and graded changes in these parameters possibly unveil the pathogenic demarcation from benign to malignant condition of prostate. PMID:17404581

  3. Engineering a cyanobacterial cell factory for production of lactic acid.

    PubMed

    Angermayr, S Andreas; Paszota, Michal; Hellingwerf, Klaas J

    2012-10-01

    Metabolic engineering of microorganisms has become a versatile tool to facilitate production of bulk chemicals, fuels, etc. Accordingly, CO(2) has been exploited via cyanobacterial metabolism as a sustainable carbon source of biofuel and bioplastic precursors. Here we extended these observations by showing that integration of an ldh gene from Bacillus subtilis (encoding an l-lactate dehydrogenase) into the genome of Synechocystis sp. strain PCC6803 leads to l-lactic acid production, a phenotype which is shown to be stable for prolonged batch culturing. Coexpression of a heterologous soluble transhydrogenase leads to an even higher lactate production rate and yield (lactic acid accumulating up to a several-millimolar concentration in the extracellular medium) than those for the single ldh mutant. The expression of a transhydrogenase alone, however, appears to be harmful to the cells, and a mutant carrying such a gene is rapidly outcompeted by a revertant(s) with a wild-type growth phenotype. Furthermore, our results indicate that the introduction of a lactate dehydrogenase rescues this phenotype by preventing the reversion. PMID:22865063

  4. Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production

    PubMed Central

    2011-01-01

    Background The therapeutic and health promoting role of highly unsaturated fatty acids (HUFAs) from fish, i.e. eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are well known. These same benefits may however be shared by some of their precursors, the polyunsaturated fatty acids (PUFAs), such as stearidonic acid (SDA, 18:4 n-3). In order to obtain alternative sources for the large-scale production of PUFAs, new searches are being conducted focusing on higher plants oils which can contain these n-3 and n-6 C18 precursors, i.e. SDA and GLA (18:3n-6, γ-linolenic acid). Results The establishment of the novel Echium acanthocarpum hairy root cultures represents a powerful tool in order to research the accumulation and metabolism of fatty acids (FAs) in a plant particularly rich in GLA and SDA. Furthermore, this study constitutes the first example of a Boraginaceae species hairy root induction and establishment for FA studies and production. The dominant PUFAs, 18:2n-6 (LA, linoleic acid) and 18:3n-6 (GLA), accounted for about 50% of total FAs obtained, while the n-3 PUFAs, 18:3n-3 (ALA, α-linolenic acid) and 18:4n-3 (SDA), represented approximately 5% of the total. Production of FAs did not parallel hairy root growth, and the optimal productivity was always associated with the highest biomass density during the culture period. Assuming a compromise between FA production and hairy root biomass, it was determined that sampling times 4 and 5 gave the most useful FA yields. Total lipid amounts were in general comparable between the different hairy root lines (29.75 and 60.95 mg/g DW), with the major lipid classes being triacylglycerols. The FAs were chiefly stored in the hairy roots with very minute amounts being released into the liquid nutrient medium. Conclusions The novel results presented here show the utility and high potential of E. acanthocarpum hairy roots. They are capable of biosynthesizing and accumulating a large range of

  5. Application of kaolin to improve citric acid production by a thermophilic Aspergillus niger.

    PubMed

    Ali, Sikander

    2006-12-01

    Citric acid production by a thermophilic strain of the filamentous fungus Aspergillus niger IIB-6 in a medium containing blackstrap cane molasses was improved by the addition of kaolin to the fermentation medium. The fermentation was run in a 7.5-l stirred bioreactor (60% working volume). The optimal sugar concentration was found to be 150 g/l. Kaolin (1.0 ml) was added to the fermentation medium to enhance volumetric production. The best results in terms of product formation were observed when 15 parts per million (ppm) kaolin was added 24 h after inoculation. With added kaolin, citric acid production was enhanced 2.34-fold, compared to a control fermentation without added kaolin. The length of incubation to attain this product yield was shortened from 168 to 96 h. The comparison of kinetic parameters showed improved citrate synthase activity of the culture (Y (p/x)=7.046 g/g). When the culture grown at various kaolin concentrations was monitored for Q (p), Q (s), and q (p), there was significant improvement in these variables over the control. Specific production by the culture (q (p)=0.073 g/g cells/h) was improved several fold. The addition of kaolin substantially improved the enthalpy (DeltaH (D)=74.5 kJ/mol) and entropy of activation (DeltaS=-174 J/mol/K) for citric acid production, free energies for transition state formation, and substrate binding for sucrose hydrolysis. The performance of fuzzy logic control of the bioreactor was found to be very promising for an improvement ( approximately 4.2-fold) in the production of citric acid (96.88 g/l), which is of value in commercial applications. PMID:16871375

  6. Single-Cell Protein Production by the Acid-Tolerant Fungus Scytalidium acidophilum from Acid Hydrolysates of Waste Paper †

    PubMed Central

    Ivarson, K. C.; Morita, H.

    1982-01-01

    The bioconversion of waste paper to single-cell protein at pH <1 by Scytalidium acidophilum is described. Waste paper pretreated with 72% H2SO4 at 4°C was diluted with water to a pH of <0.1 and hydrolyzed. This yielded an adequate sugar-containing substrate for the growth of the fungus. A total of 97% of the sugars (glucose, galactose, mannose, xylose, arabinose) in the hydrolysates were converted to cell biomass. Microbial contamination was not observed. Based on the sugars consumed, S. acidophilum produced higher yields in shake cultures than many other Fungi Imperfecti. In aerated cultures, productivity increased, and yields of 43 to 46% containing 44 to 47% crude protein were obtained. This compares favorably with Candida utilis, a yeast used commercially to produce single-cell protein. The chemical constituents and the essential amino acids of the fungal cells were similar to those of other fungi. The nucleic acid content was characteristic of microbes containing low levels of nucleic acid. The advantages of using S. acidophilum for single-cell protein production are discussed. PMID:16345970

  7. Single-cell protein production by the acid-tolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper

    SciTech Connect

    Ivarson, K.C.; Morita, H.

    1982-03-01

    The bioconversion of waste paper to single-cell protein at pH less than 1 by Scytalidium acidophilum is described. Waste paper pretreated with 72% H/sub 2/SO/sub 4/ at 4 degrees C was diluted with water to a pH of less than 0.1 and hydrolyzed. This yielded an adequate sugar-containing substrate for the growth of the fungus. A total of 97% of the sugars (glucose, galactose, mannose, xylose, arabinose) in the hydrolysates were converted to cell biomass. Microbial contamination was not observed. Based on the sugars consumed, S. acidophilum produced higher yields in shake cultures than many other Fungi Imperfecti. In aerated cultures, productivity increased, and yields of 43 to 46% containing 44 to 47% crude protein were obtained. This compares favorably with Candida utilis, a yeast used commercially to produce single-cell protein. The chemical constituents and the essential amino acids of the fungal cells were similar to those of other fungi. The nucleic acid content was characteristic of microbes containing low levels of nucleic acid. The advantages of using S. acidophilum for single-cell protein production are discussed. (Refs. 30).

  8. Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures.

    PubMed

    Liang, Shaobo; Gliniewicz, Karol; Mendes-Soares, Helena; Settles, Matthew L; Forney, Larry J; Coats, Erik R; McDonald, Armando G

    2015-03-01

    Three undefined mixed cultures (activated sludge) from different municipal wastewater treatment plants were used as seeds in a novel lactic acid fermentation process fed with potato peel waste (PPW). Anaerobic sequencing batch fermenters were run under identical conditions to produce predominantly lactic acid. Illumina sequencing was used to examine the 16S rRNA genes of bacteria in the three seeds and fermenters. Results showed that the structure of microbial communities of three seeds were different. All three fermentation products had unique community structures that were dominated (>96%) by species of the genus Lactobacillus, while members of this genus constituted <0.1% in seeds. The species of Lactobacillus sp. differed among the three fermentations. Results of this study suggest the structure of microbial communities in lactic acid fermentation of PPW with undefined mixed cultures were robust and resilient, which provided engineering prospects for the microbial utilization of carbohydrate wastes to produce lactic acid. PMID:25545096

  9. The potential of lactic acid bacteria for the production of safe and wholesome food.

    PubMed

    Hammes, W P; Tichaczek, P S

    1994-03-01

    By tradition lactic acid bacteria (LAB) are involved in the production of fermented foods. These constitute one quarter of our diet and are characterized by a safe history, certain beneficial health effects, and an extended shelf life when compared with raw materials. The various fermenting substrates are habitats for specific LAB that differ in their metabolic potential. The health effects exerted by LAB are the following: 1. Production of lactic acid and minor amounts of acetic and formic acid. These cause: a drop in pH and thereby growth inhibition of food spoiling or poisoning bacteria; killing of certain pathogens; detoxification by degradation of noxious compounds of plant origin (usually in combination with plant-derived enzymatic activities). 2. Production of antimicrobial compounds (e.g. bacteriocins, H2O2, fatty acids). 3. Probiotic effects as live organisms in food. The wholesomeness of LAB can also be extended to fields outside human nutrition, as they may act as probiotics in animal production or as plant protectives in agriculture and thus contribute to healthy raw materials for food production. Modern concepts or perspectives of the application of LAB include the following: 1. Selection of the best adapted and safely performing LAB strains. 2. Selection of strains with probiotic effects. 3. Selection of strains with health-promoting effects (e.g. production of vitamins or essential amino acids, anti-tumour activity). 4. Selection of strains with food protective activities (inhibiting spoilage or food pathogens). These strains can be added to food or used as starters in food fermentations. They may be found as wild-type organisms or can be obtained by genetic engineering.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8178575

  10. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10629 Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic)....

  11. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10629 Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic)....

  12. Comparing Ultrasound and Mechanical Steering in a Biodiesel Production Process

    NASA Astrophysics Data System (ADS)

    Costa-Felix, Rodrigo P. B.; Ferreira, Jerusa R. L.

    The analysis of the kinetics of the transesterification reaction is crucial to compare different routes or routes with different catalysts or reaction accelerators. The use of ultrasound is considereda method for accelerating the biodiesel production. However, little effort has been done and is reported in the literature about how and under what conditions the use of ultrasound really speeds up the process, or the conditions under which its use is unnecessary or even harmful, burdening the process. Two dissimilar energy injections into a typical route were tested: ultrasound (@ 1 MHz and no heating) and mechanical steering (with heating), both applied in an 8:1 ratio of soybean oil and methanol, adding 1% of KOH as catalyzer. As results, during the first 10 minutes of reaction ultrasound showed unbearable effect on the transesterification, whilst mechanical steering and heating achieved almost 70% of conversion ratio. However, during the following 10 minutes, the mechanical steering and heating got nothing more than 80% of conversion, a considerable less efficient process than ultrasound assisted one, which achieved more than 90%. The straightforward explanation is that ultrasound continually inserts energy in a slower rate, what can result in a more stable conversion scenario. On the other hand, mechanical steering and heating provides more energy at a glance, but cannot push the final conversion rate beyond a limit, as the transesterification is a double-way chemical process. The instability mechanical steering and heating settles in the reaction medium pulls the components back to their original states more than pushes than to the converted equilibrium state of the matter.

  13. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.

    PubMed

    Monedero, Vicente; Pérez-Martínez, Gaspar; Yebra, María J

    2010-04-01

    Polyols are sugar alcohols largely used as sweeteners and they are claimed to have several health-promoting effects (low-caloric, low-glycemic, low-insulinemic, anticariogenic, and prebiotic). While at present chemical synthesis is the only strategy able to assure the polyol market demand, the biotechnological production of polyols has been implemented in yeasts, fungi, and bacteria. Lactic acid bacteria (LAB) are a group of microorganisms particularly suited for polyol production as they display a fermentative metabolism associated with an important redox modulation and a limited biosynthetic capacity. In addition, LAB participate in food fermentation processes, where in situ production of polyols during fermentation may be useful in the development of novel functional foods. Here, we review the polyol production by LAB, focusing on metabolic engineering strategies aimed to redirect sugar fermentation pathways towards the synthesis of biotechnologically important sugar alcohols such as sorbitol, mannitol, and xylitol. Furthermore, possible approaches are presented for engineering new fermentation routes in LAB for production of arabitol, ribitol, and erythritol. PMID:20180114

  14. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  15. Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.

    PubMed

    Li, C; Zhang, G F; Mao, X; Wang, J Y; Duan, C Y; Wang, Z J; Liu, L B

    2016-06-01

    Algal carcass is a low-value byproduct of algae after its conversion to biodiesel. Dried algal carcass is rich in protein, carbohydrate, and multiple amino acids, and it is typically well suited for growth and acid production of lactic acid bacteria. In this study, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was used to ferment different algal carcass media (ACM), including 2% ACM, 2% ACM with 1.9% glucose (ACM-G), and 2% ACM with 1.9% glucose and 2g/L amino acid mixture (ACM-GA). Concentrations of organic acids (lactic acid and acetic acid), acetyl-CoA, and ATP were analyzed by HPLC, and activities of lactate dehydrogenase (LDH), acetokinase (ACK), pyruvate kinase (PK), and phosphofructokinase (PFK) were determined by using a chemical approach. The growth of L. bulgaricus cells in ACM-GA was close to that in the control medium (de Man, Rogosa, and Sharpe). Lactic acid and acetic acid contents were greatly reduced when L. bulgaricus cells were grown in ACM compared with the control medium. Acetyl-CoA content varied with organic acid content and was increased in cells grown in different ACM compared with the control medium. The ATP content of L. bulgaricus cells in ACM was reduced compared with that of cells grown in the control medium. Activities of PFK and ACK of L. bulgaricus cells grown in ACM were higher and those of PK and LDH were lower compared with the control. Thus, ACM rich in nutrients may serve as an excellent substrate for growth by lactic acid bacteria, and addition of appropriate amounts of glucose and amino acids can improve growth and acid production. PMID:26995135

  16. New products from the agri-food industry: the return of n-3 fatty acids into the food supply.

    PubMed

    Simopoulos, A P

    1999-01-01

    The meat from animals and fish in the wild, chicken eggs produced under complete natural conditions, and wild plants contain higher amounts of n-3 fatty acids compared to domesticated or cultivated ones. The composition of meats, fish, and eggs is dependent on animal feed. Fish-meal, flax, and n-3 from algae in animal feeds increase the n-3 fatty acid content of egg yolks and lead to the availability of n-3 fatty acid-enriched eggs in the marketplace. Research is ongoing for the production of n-3 fatty acid-enriched products from poultry, beef, lamb, pork, milk, bakery products, etc. In the case of n-3 fatty acid-enriched eggs, the egg under complete natural conditions (Greek or Ampelistra egg) can serve as a guide for proper composition. Otherwise, the amount of n-3 fatty acids is determined by the organoleptic properties of the products. It is essential in the process of returning the n-3 fatty acids into the food supply that the balance of n-6/n-3 fatty acids in the diet that existed during evolution is maintained. Clinical investigations confirm the importance of n-3 fatty acids for normal function during growth and development and in the modulation of chronic diseases. The availability of n-3 fatty acid-enriched products should lead to improvements in the food supply. Pregnant and lactating women and infants should benefit since their diet is deficient in n-3 fatty acids, especially for the vegetarians among them. Studies with n-3-enriched eggs lower cholesterol levels, platelet aggregation, and blood pressure. Since cardiovascular disease, hypertension, and autoimmune, allergic, and neurological disorders appear to respond to n-3 fatty acid supplementation, a diet balanced in n-3 and n-6 fatty acids consistent with the diet during human evolution should decrease or delay their manifestation. PMID:10419184

  17. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis

    PubMed Central

    2013-01-01

    Background Glycolic acid is a C2 hydroxy acid that is a widely used chemical compound. It can be polymerised to produce biodegradable polymers with excellent gas barrier properties. Currently, glycolic acid is produced in a chemical process using fossil resources and toxic chemicals. Biotechnological production of glycolic acid using renewable resources is a desirable alternative. Results The yeasts Saccharomyces cerevisiae and Kluyveromyces lactis are suitable organisms for glycolic acid production since they are acid tolerant and can grow in the presence of up to 50 g l-1 glycolic acid. We engineered S. cerevisiae and K. lactis for glycolic acid production using the reactions of the glyoxylate cycle to produce glyoxylic acid and then reducing it to glycolic acid. The expression of a high affinity glyoxylate reductase alone already led to glycolic acid production. The production was further improved by deleting genes encoding malate synthase and the cytosolic form of isocitrate dehydrogenase. The engineered S. cerevisiae strain produced up to about 1 g l-1 of glycolic acid in a medium containing d-xylose and ethanol. Similar modifications in K. lactis resulted in a much higher glycolic acid titer. In a bioreactor cultivation with d-xylose and ethanol up to 15 g l-1 of glycolic acid was obtained. Conclusions This is the first demonstration of engineering yeast to produce glycolic acid. Prior to this work glycolic acid production through the glyoxylate cycle has only been reported in bacteria. The benefit of a yeast host is the possibility for glycolic acid production also at low pH, which was demonstrated in flask cultivations. Production of glycolic acid was first shown in S. cerevisiae. To test whether a Crabtree negative yeast would be better suited for glycolic acid production we engineered K. lactis in the same way and demonstrated it to be a better host for glycolic acid production. PMID:24053654

  18. Metabolic modeling of fumaric acid production by Rhizopus arrhizus

    SciTech Connect

    Gangl, I.C.; Weigand, W.W.; Keller, F.A.

    1991-12-31

    A metabolic model is developed for fumaric acid production by Rhizopus arrhizus. The model describes the reaction network and the extents of reaction in terms of the concentrations of the measurable species. The proposed pathway consists of the Embden-Meyerhof pathway and two pathways to FA production, both of which require CO{sub 2} fixation (the forward and the reverse TCA cycles). Relationships among the measurable quantities, in addition to those obtainable by a macroscopic mass balance, are found by invoking a pseudo-steady-state assumption on the nonaccumulating species in the pathway. Applications of the metabolic model, such as verifying the proposed pathway, obtaining the theoretical yield and selectivity, and detecting experimental errors, are discussed.

  19. Aspergillus oryzae nrtA affects kojic acid production.

    PubMed

    Sano, Motoaki

    2016-09-01

    We analyzed the role of the nitrate transporter-encoding gene (nrtA) of Aspergillus oryzae by gene disruption. Southern hybridization analysis indicated that homologous recombination occurred at the resident nrtA locus. Real-time PCR showed that the nrtA gene was strongly inducible by NaNO3. The nrtA disruptant did not exhibit normal growth when nitrate was available as the sole nitrogen source. These results indicate that NrtA is essential for nitrate uptake in A. oryzae. Kojic acid (KA) production was inhibited by the addition of a small amount of sodium nitrate. The nrtA-disrupted strain was deficient in the uptake of nitrate. As a result, KA production in this strain was not considerably affected by the presence of nitrate. PMID:27108780

  20. Relationship between morphology and itaconic acid production by Aspergillus terreus.

    PubMed

    Gao, Qian; Liu, Jie; Liu, Liming

    2014-02-28

    The morphology of filamentous fungi closely correlates with the productivity in submerged culture. Using itaconic acid (IA) production by Aspergillus terreus as a research model, the quantitative relationship between the growth form of A. terreus and IA production was investigated. IA fermentation was scaled up from shake flasks to a 7 L stirred tank bioreactor based on the quantitative relationship. Our results demonstrated the following: (1) Three morphologies of A. terreus were formed by changing the inoculum level and shape of the flask. (2) Investigation of the effects of the three morphologies on broth rheology and IA production revealed the higher yield of IA on dry cell weight (DCW, IA/DCW) and yield of glucose on DCW (consumed glucose/DCW) were achieved during clump growth of A. terreus. (3) By varying the KH2PO4 concentration and culture temperature, the relationships between clump diameter and IA production were established, demonstrating that the yield of IA on DCW (R(2) = 0.9809) and yield of glucose on DCW (R(2) = 0.9421) were closely correlated with clump diameter. The optimum clump diameter range for higher IA production was 0.40-0.50 mm. (4) When the clump diameter was controlled at 0.45 mm by manipulating the mechanical stress in a 7 L fermentor, the yield of IA on DCW and yield of glucose on DCW were increased by 25.1% and 16.3%, respectively. The results presented in this study provide a potential approach for further enhancement of metabolite production by filamentous fungi. PMID:24169454

  1. Unexpected products of the hypochlorous acid-induced oxidation of oleic acid: A study using high performance thin-layer chromatography-electrospray ionization mass spectrometry.

    PubMed

    Schröter, Jenny; Griesinger, Hans; Reuß, Eyla; Schulz, Michael; Riemer, Thomas; Süß, Rosmarie; Schiller, Jürgen; Fuchs, Beate

    2016-03-25

    Reactive oxygen species (ROS) play important physiological roles and are of particular relevance in the pathogenesis of inflammatory diseases. At inflammatory conditions, the enzyme myeloperoxidase generates hypochlorous acid (HOCl) which adds to the double bonds of fatty acyl residues of (phospho)lipids under the formation of chlorohydrins. This may lead to the development of many inflammatory diseases, such as atherosclerosis or arthritis, if the ROS generation exceeds a certain extent. Using oleic acid as the simplest unsaturated fatty acid which contains just a single double bond, as a model system, we investigated all products - including the chlorohydrin - after its reaction with HOCl by a combination of thin-layer chromatography and electrospray ionization mass spectrometry. Unlike the general acceptance, the reaction of oleic acid and HOCl leads not exclusively to the formation of chlorohydrin (isomers) but is much more complex: there are also considerable amounts of dimeric and (to a minor extent) trimeric products which can be assigned to isomeric ethers and esters. The obtained products after oleic acid chlorination were also compared with the reaction products of 1-palmitoyl-2-oleoyl-sn-phosphatidylcholine (POPC) and HOCl. The reasons why different products are obtained will be discussed and the involvement of the carboxylic acid emphasized. PMID:26700153

  2. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus.

    PubMed

    Amado, Isabel R; Vázquez, José A; Pastrana, Lorenzo; Teixeira, José A

    2016-05-01

    This study focuses on the optimisation of cheese whey formulated media for the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Culture media containing whey (W; 2.1g/L) or whey hydrolysate (WH; 2.4 g/L) gave the highest HA productions. Both W and WH produced high yields on protein consumed, suggesting cheese whey is a good nitrogen source for S. zooepidemicus production of HA. Polysaccharide concentrations of 4.0 g/L and 3.2g/L were produced in W and WH in a further scale-up to 5L bioreactors, confirming the suitability of the low-cost nitrogen source. Cheese whey culture media provided high molecular weight (>3000 kDa) HA products. This study revealed replacing the commercial peptone by the low-cost alternative could reduce HA production costs by up to a 70% compared to synthetic media. PMID:26769504

  3. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    PubMed

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010. PMID:25838071

  4. Production of orotic acid by a Klura3Δ mutant of Kluyveromyces lactis.

    PubMed

    Carvalho, Nuno; Coelho, Eduardo; Gales, Luís; Costa, Vítor; Teixeira, José António; Moradas-Ferreira, Pedro

    2016-06-01

    We demonstrated that a Klura3Δ, mutant of the yeast Kluyveromyces lactis is able to produce and secrete into the growth medium considerable amounts of orotic acid. Using yeast extract-peptone-glucose (YPD) based media we optimized production conditions in flask and bioreactor cultures. With cells grown in YPD 5% glucose medium, the best production in flask was obtained with a 1:12.5 ratio for flask: culture volume, 180 rpm, 28°C and 200 mM MOPS for pH stabilization at neutral values (initial culture pH at 8.0). The best production in a 2 L bioreactor was achieved at 500 rpm with 1 vvm aeration, 28°C and pH 7.0. Under these optimum conditions, similar rates of orotic acid production were obtained and maximum concentration achieved after 96 h was 6.7 g/L in flask and bioreactor cultures. These results revealed an excellent reproducibility between both systems and provided evidence for the biotechnological potential of Klura3Δ strain to produce orotic acid since the amounts obtained are comparable to the production in flask using a similar mutant of the industrially valuable Corynebacterium glutamicum. PMID:26707627

  5. Comparative Effectiveness on Survival of Zoledronic Acid versus Pamidronate in Multiple Myeloma

    PubMed Central

    Sanfilippo, KM; Gage, B; Luo, S; Weilbaecher, K; Tomasson, M; Vij, R; Colditz, G; Carson, K

    2015-01-01

    Zoledronic acid and pamidronate are the two bisphosphonates approved to reduce multiple myeloma skeletal complications in the United States. Little prior evidence exists comparing survival outcomes between the two. We evaluated the incidence of skeletal related events and overall survival in myeloma patients treated with zoledronic acid versus pamidronate using a cohort of 1,018 United States Veterans. At median follow-up of 26.9 months, patients receiving zoledronic acid had a 22% reduction in risk of death compared to pamidronate (hazard ratio (HR) 0.78; 95% CI, 0.67–0.92). The benefit persisted after controlling for potential confounders. Adjusted Cox modeling with inverse probability weighting and propensity score matching supported these findings. Zoledronic acid was also associated with a 25% decrease in skeletal-related events. Zoledronic acid is associated with increased overall survival and decreased skeletal related events compared to pamidronate in patients with multiple myeloma and should become the preferred bisphosphonate. PMID:24844358

  6. Method for continuous production of aromatic carboxylic acid

    SciTech Connect

    Abrams, K.J.

    1988-12-20

    This patent describes a method for the continuous production of an aromatic carboxylic acid product in a pressurized oxidation reactor by liquid-phase, exothermic oxidation of an aromatic alkyl feed with an oxygen-containing gas, in the presence of an aromatic alkyl feed with an oxygen-containing gas, in the presence of an oxidation catalyst and in an aqueous monocarboxylic C/sub 2/ to C/sub 6/ aliphatic acid solvent medium, wherein the heat generated during the course of the oxidation is removed from the reactor by vaporization of a portion of the reaction medium and water, wherein the resulting vapors are condensed in part in a reflux loop externally of the oxidation reactor to produce a condensate and a gaseous phase, and wherein at least a portion of the condensate is returned to the oxidation reactor, the improvement comprising a method for controlling within desired limits the concentration of water in the oxidation reactor, which comprises: partitioning the vapors into a parallel condensate having a relatively lesser water-to-solvent weight ratio and a vapor phase having a relatively greater water-to-solvent weight ratio; returning the partial condensate directly to the oxidation reactor as a direct reflux stream; withdrawing the vapor phase from the reflux loop as a vapor stream; subjecting the withdrawn vapor stream to heat exchange while decreasing the vapor stream pressure to less than the oxidation reactor pressure to thereby produce an aqueous aliphatic acid stream having a water-to-solvent weight ratio greater than that of the direct reflux stream.

  7. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.

    PubMed

    Semerjian, Lucy; Damaj, Ahmad; Salam, Darine

    2015-11-01

    The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs. PMID:26439123

  8. Retrospective analysis for the identification of 4-aminocarminic acid photo-degradation products in beverages.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mastroianni, Rita; Mazzucco, Eleonora; Manfredi, Marcello; Marengo, Emilio

    2015-01-01

    This article deals with the identification of the photo-degradation products of 4-aminocarminic acid potentially present in commercial beverages. Sixteen beverages of different composition but all containing the E120 dye were previously analysed by ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole-time of flight mass spectrometry to identify the common degradation products of the E120 dye. Since it is plausible to find unauthorised 4-aminocarminic acid in beverages which report generic E120 dye on the label, retrospective analysis was employed here not only to search for the possible presence of 4-aminocarminic acid but also to investigate the potential formation of photo-degradation products derived from this compound. For this purpose, a statistical approach based on Student's t-test was used to compare the degraded beverages containing 4-aminocarminic acid with all the others. Five degradation products were identified and their structures were elucidated on the basis of the high-accuracy and high-resolution of mass and mass/mass spectra. The toxicity of the degradation products was evaluated through the Ames Salmonella/microsome mutagenicity assay. No evidence of mutagenicity was obtained for the beverages subjected or not to irradiation, whereas a toxic effect of the 4-aminocarminic acid standard solution already at 100.0 µg l(-1) was found. This leads, once again, to the conclusion that the toxicity study must be carried out on the beverages in order to take into account of all the possible masking/protection interactions among the ingredients. PMID:25562586

  9. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina

    PubMed Central

    Hao, Guangfei; Du, Kai; Huang, Xiaoyun; Song, Yuanda; Gu, Zhennan; Wang, Lei; Zhang, Hao; Chen, Wei; Chen, Yong Q.

    2015-01-01

    Malic enzyme (ME) catalyses the oxidative decarboxylation of L-malate to pyruvate and provides NADPH for intracellular metabolism, such as fatty acid synthesis. Here, the mitochondrial ME (mME) gene from Mortierella alpina was homologously over-expressed. Compared with controls, fungal arachidonic acid (ARA; 20:4 n-6) content increased by 60 % without affecting the total fatty acid content. Our results suggest that enhancing mME activity may be an effective mean to increase industrial production of ARA in M. alpina. PMID:24863290

  10. Radiolytic hydrogen production from process vessels in HB line - production rates compared to evolution rates and discussion of LASL reviews

    SciTech Connect

    Bibler, N.E.

    1992-11-12

    Hydrogen production from radiolysis of aqueous solutions can create a safety hazard since hydrogen is flammable. At times this production can be significant, especially in HB line where nitric acid solutions containing high concentrations of Pu-238, an intense alpha emitter, are processed. The hydrogen production rates from these solutions are necessary for safety analyses of these process systems. The methods and conclusions of hydrogen production rate tests are provided in this report.

  11. Hydrogen production by photoelectrochemically splitting solutions of formic acid.

    PubMed

    Li, Lei; Guo, Wenliang; Zhu, Yusong; Wu, Yuping

    2011-10-17

    A TiO₂/FTO (FTO=fluorine-doped tin oxide) electrode was prepared by dip-coating FTO in a suspension of TiO₂ prepared from a sol-gel method and was used as a photoanode to split an aqueous solution of formic acid to produce hydrogen. The surface of the TiO₂/FTO film was covered with assemblies of TiO₂ nanoparticles with a diameter of approximately 20 nm. Under irradiation by using a Xe lamp, splitting of formic acid was performed at different applied current densities. Compared to splitting water or utilizing FTO and Pt foil as the anode, the splitting voltage is much lower and can be as low as -0.27 V. The results show that the splitting voltage is related to the concentration of free formate groups. The evolution rate of hydrogen measured by using gas chromatography is 130 μmol h⁻¹ at a current density of 20 mA cm⁻² and the energy-conversion efficiency can be 1.79 %. Photoelectrolysis of formic acid has the potential to be an efficient way to produce hydrogen with a high energy-conversion efficiency. PMID:21994155

  12. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage.

    PubMed

    Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng

    2015-07-01

    The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments. PMID:25535937

  13. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage

    PubMed Central

    Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng

    2015-01-01

    The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments. PMID:25535937

  14. Production of 3-hydroxypropionic acid from glycerol by acid tolerant Escherichia coli.

    PubMed

    Sankaranarayanan, Mugesh; Ashok, Somasundar; Park, Sunghoon

    2014-07-01

    The biological production of 3-hydroxypropionic acid (3-HP) has attracted significant attention because of its industrial importance. The low titer, yield and productivity, all of which are related directly or indirectly to the toxicity of 3-HP, have limited the commercial production of 3-HP. The aim of this study was to identify and select a 3-HP tolerant Escherichia coli strain among nine strains reported to produce various organic acids efficiently at high titer. When transformed with heterologous glycerol dehydratase, reactivase and aldehyde dehydrogenase, all nine E. coli strains produced 3-HP from glycerol but the level of 3-HP production, protein expression and activities of the important enzymes differed significantly according to the strain. Two E. coli strains, W3110 and W, showed higher levels of growth than the others in the presence of 25 g/L 3-HP. In the glycerol fed-batch bioreactor experiments, the recombinant E. coli W produced a high level of 3-HP at 460 ± 10 mM (41.5 ± 1.1 g/L) in 48 h with a yield of 31 % and a productivity of 0.86 ± 0.05 g/L h. In contrast, the recombinant E. coli W3110 produced only 180 ± 8.5 mM 3-HP (15.3 ± 0.8 g/L) in 48 h with a yield and productivity of 26 % and 0.36 ± 0.02 g/L h, respectively. This shows that the tolerance to and the production of 3-HP differ significantly among the well-known, similar strains of E. coli. The titer and productivity obtained with E. coli W were the highest reported thus far for the biological production of 3-HP from glycerol by E. coli. PMID:24788379

  15. Optimal Production of 7,10-dihydroxy-8(E)-hexadecenoic Acid from Palmitoleic Acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion process. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains te...

  16. Production and physicochemical assessment of new stevia amino acid sweeteners from the natural stevioside.

    PubMed

    Khattab, Sherine N; Massoud, Mona I; Jad, Yahya El-Sayed; Bekhit, Adnan A; El-Faham, Ayman

    2015-04-15

    New stevia amino acid sweeteners, stevia glycine ethyl ester (ST-GL) and stevia l-alanine methyl ester (ST-GL), were synthesised and characterised by IR, NMR ((1)H NMR and (13)C NMR) and elemental analysis. The purity of the new sweeteners was determined by HPLC and their sensory properties were evaluated relative to sucrose in an aqueous system. Furthermore, the stevia derivatives (ST-GL and ST-AL) were evaluated for their acute toxicity, melting point, solubility and heat stability. The novel sweeteners were stable in acidic, neutral or basic aqueous solutions maintained at 100 °C for 2 h. The sweetness intensity rate of the novel sweeteners was higher than sucrose. Stevia amino acid (ST-GL and ST-AL) solutions had a clean sweetness taste without bitterness when compared to stevioside. The novel sweeteners can be utilised as non-caloric sweeteners in the production of low-calorie food. PMID:25466115

  17. Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization.

    PubMed

    Bhattacharyya, Saurav; Chakraborty, Sudip; Datta, Siddhartha; Drioli, Enrico; Bhattacharjee, Chiranjib

    2013-01-01

    Potato peel is a waste biomass which can be a source of raw material for biofuel production. This biomass contains a sufficient amount of total reducing sugar (TRS), which can be extracted and further treated with microbial pathways to produce bioethanol. The extraction of TRS from potato peels by hydrolysis in dilute sulphuric acid was investigated at different acid concentrations (0.50%, 0.75% and 1% w/v) and sonication was carried out to improve the extent of sugar extraction after hydrolysis. Response surface methodology based on central composite design was used to verify the experimental data and later applied for the optimization of the main important reaction variables including amplitude (60%, 80% and 100%), cycle (0.6, 0.8 and 1.0) and treatment time (5, 10 and 15 min) for the responses of TRS extraction by acid hydrolysis and later compared with the experimental data. PMID:24191439

  18. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli.

    PubMed Central

    Lin, J; Lee, I S; Frey, J; Slonczewski, J L; Foster, J W

    1995-01-01

    Several members of the family Enterobacteriaceae were examined for differences in extreme acid survival strategies. A surprising degree of variety was found between three related genera. The minimum growth pH of Salmonella typhimurium was shown to be significantly lower (pH 4.0) than that of either Escherichia coli (pH 4.4) or Shigella flexneri (pH 4.8), yet E. coli and S. flexneri both survive exposure to lower pH levels (2 to 2.5) than S. typhimurium (pH 3.0) in complex medium. S. typhimurium and E. coli but not S. flexneri expressed low-pH-inducible log-phase and stationary-phase acid tolerance response (ATR) systems that function in minimal or complex medium to protect cells to pH 3.0. All of the organisms also expressed a pH-independent general stress resistance system that contributed to acid survival during stationary phase. E. coli and S. flexneri possessed several acid survival systems (termed acid resistance [AR]) that were not demonstrable in S. typhimurium. These additional AR systems protected cells to pH 2.5 and below but required supplementation of minimal medium for either induction or function. One acid-inducible AR system required oxidative growth in complex medium for expression but successfully protected cells to pH 2.5 in unsupplemented minimal medium, while two other AR systems important for fermentatively grown cells required the addition of either glutamate or arginine during pH 2.5 acid challenge. The arginine AR system was only observed in E. coli and required stationary-phase induction in acidified complex medium. The product of the adi locus, arginine decarboxylase, was responsible for arginine-based acid survival. PMID:7608084

  19. Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting.

    PubMed

    Kosugi, Akihiko; Tanaka, Ryohei; Magara, Kengo; Murata, Yoshinori; Arai, Takamitsu; Sulaiman, Othman; Hashim, Rokiah; Hamid, Zubaidah Aimi Abdul; Yahya, Mohd Khairul Azri; Yusof, Mohd Nor Mohd; Ibrahim, Wan Asma; Mori, Yutaka

    2010-09-01

    Old oil palm trunks that had been felled for replanting were found to contain large quantities of high glucose content sap. Notably, the sap in the inner part of the trunk accounted for more than 80% of the whole trunk weight. The glucose concentration of the sap from the inner part was 85.2g/L and decreased towards the outer part. Other sugars found in relatively low concentrations were sucrose, fructose, galactose, xylose, and rhamnose. In addition, oil palm sap was found to be rich in various kinds of amino acids, organic acids, minerals and vitamins. Based on these findings, we fermented the sap to produce ethanol using the sake brewing yeast strain, Saccharomyces cerevisiae Kyokai no.7. Ethanol was produced from the sap without the addition of nutrients, at a comparable rate and yield to the reference fermentation on YPD medium with glucose as a carbon source. Likewise, we produced lactic acid, a promising material for bio-plastics, poly-lactate, from the sap using the homolactic acid bacterium Lactobacillus lactis ATCC19435. We confirmed that sugars contained in the sap were readily converted to lactic acid with almost the same efficiency as the reference fermentation on MSR medium with glucose as a substrate. These results indicate that oil palm trunks felled for replanting are a significant resource for the production of fuel ethanol and lactic acid in palm oil-producing countries such as Malaysia and Indonesia. PMID:20547348

  20. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate.

    PubMed

    Yang, Lei; Lübeck, Mette; Souroullas, Konstantinos; Lübeck, Peter S

    2016-04-01

    Aspergillus carbonarius exhibits excellent abilities to utilize a wide range of carbon sources and to produce various organic acids. In this study, wheat straw hydrolysate containing high concentrations of glucose and xylose was used for organic acid production by A. carbonarius. The results indicated that A. carbonarius efficiently co-consumed glucose and xylose and produced various types of organic acids in hydrolysate adjusted to pH 7. The inhibitor tolerance of A. carbonarius to the hydrolysate at different pH values was investigated and compared using spores and recycled mycelia. This comparison showed a slight difference in the inhibitor tolerance of the spores and the recycled mycelia based on their growth patterns. Moreover, the wild-type and a glucose oxidase deficient (Δgox) mutant were compared for their abilities to produce organic acids using the hydrolysate and a defined medium. The two strains showed a different pattern of organic acid production in the hydrolysate where the Δgox mutant produced more oxalic acid but less citric acid than the wild-type, which was different from the results obtained in the defined medium This study demonstrates the feasibility of using lignocellulosic biomass for the organic acid production by A. carbonarius. PMID:26925619

  1. Structure-reactivity relationship of Amadori rearrangement products compared to related ketoses.

    PubMed

    Kaufmann, Martin; Meissner, Philipp M; Pelke, Daniel; Mügge, Clemens; Kroh, Lothar W

    2016-06-16

    Structure-reactivity relationships of Amadori rearrangement products compared to their related ketoses were derived from multiple NMR spectroscopic techniques. Besides structure elucidation of six Amadori rearrangement products derived from d-glucose and d-galactose with l-alanine, l-phenylalanine and l-proline, especially quantitative (13)C selective saturation transfer NMR spectroscopy was applied to deduce information on isomeric systems. It could be shown exemplarily that the Amadori compound N-(1-deoxy-d-fructos-1-yl)-l-proline exhibits much higher isomerisation rates than d-fructose, which can be explained by C-1 substituent mediated intramolecular catalysis. In combination with a reduced carbonyl activity of Amadori compounds compared to their related ketoses which results in an increased acyclic keto isomer concentration, the results on isomerisation dynamics lead to a highly significant increased reactivity of Amadori compounds. This can be clearly seen, comparing approximated carbohydrate milieu stability time constants (ACuSTiC) which is 1 s for N-(1-deoxy-d-fructos-1-yl)-l-proline and 10 s for d-fructose at pD 4.20 ± 0.05 at 350 K. In addition, first NMR spectroscopic data are provided, which prove that α-pyranose of (amino acid substituted) d-fructose adopts both, (2)C5 and (5)C2 conformation. PMID:27152632

  2. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  3. Co-culture-inducible bacteriocin production in lactic acid bacteria.

    PubMed

    Chanos, Panagiotis; Mygind, Tina

    2016-05-01

    It is common knowledge that microorganisms have capabilities, like the production of antimicrobial compounds, which do not normally appear in ideal laboratory conditions. Common antimicrobial discovery techniques require the isolation of monocultures and their individual screening against target microorganisms. One strategy to achieve expression of otherwise hidden antimicrobials is induction by co-cultures. In the area of bacteriocin-producing lactic acid bacteria, there has been some research focusing into the characteristics of co-culture-inducible bacteriocin production and particularly the molecular mechanism(s) of such interactions. No clear relationship has been seen between bacteriocin-inducing and bacteriocin-producing microorganisms. The three-component regulatory system seems to be playing a central role in the induction, but inducing compounds have not been identified or characterized. However, the presence of the universal messenger molecule autoinducer-2 has been associated in some cases with the co-culture-inducible bacteriocin phenotype and it may play the role in the additional regulation of the three-component regulatory system. Understanding the mechanisms of induction would facilitate the development of strategies for screening and development of co-culture bacteriocin-producing systems and novel products as well as the perseverance of such systems in food and down to the intestinal tract, possibly conferring a probiotic effect on the host. PMID:27037694

  4. The influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp.: modeling of production kinetic profiles.

    PubMed

    Ma, Xiao-Kui; Li, Le; Peterson, Eric Charles; Ruan, Tingting; Duan, Xiaoyi

    2015-11-01

    For the purpose of improving the fungal production of flavonoids, the influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp. P0988 was investigated by developing the corresponding kinetics of flavonoid production in a 7-L bioreactor. Phellinus sp. was confirmed to form flavonoids in pellets and broth when cultivated in basic medium, and the optimum concentration of NAA and coumarin in medium for flavonoid production were determined to be 0.03 and 0.02 g/L, respectively. The developed unstructured mathematical models were in good agreement with the experimental results with respect to flavonoid production kinetic profiles with NAA and coumarin supplementation at optimum levels and revealed significant accuracy in terms of statistical consistency and robustness. Analysis of these kinetic processes indicated that NAA and coumarin supplementations imposed a stronger positive influence on flavonoid production and substrate consumption compared to their effects on cell growth. The separate addition of NAA and coumarin resulted in enhancements in final product accumulation and productivity, achieving final flavonoid concentrations of 3.60 and 2.75 g/L, respectively, and glucose consumption showed a significant decrease compared to the non-supplemented control as well. Also, the separate presence of NAA and coumarin respectively decreased maintenance coefficients (M s) from 2.48 in the control to 1.39 and 0.22, representing decreases of 43.9 and 91.1 %, respectively. The current study is the first known application of mathematical kinetic models to explore the influence of medium components adding on flavonoid production by fungi. PMID:26231135

  5. Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide

    DOEpatents

    Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.

    2001-01-01

    A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.

  6. Inhibition of acid production in coal refuse amended with CaSO{sub 3}-based flue gas desulfurization by-products

    SciTech Connect

    Hao, Y.; Dick, W.A.; Beeghly, J.

    1998-12-31

    Oxidation of pyrite in coal refuse produces acid which caused environmental degradation. Some flue gas desulfurization (FGD) by-products contain calcium sulfite (CaSO{sub 3}) which is a strong reductant. Calcium sulfite competes with pyrite for oxygen resulting in inhibition of pyrite oxidation. In addition fly ash, CaCO{sub 3} and CaSO{sub 3} in FGD can neutralize acidity. Coal refuse, amended with FGD or its components, was packed into columns (2.5 x 13 cm) and leached weekly with water for 13 weeks. The pH, titratable acidity, and concentrations of Al, As, B, Ca, Fe, Pb, S, Se, were determined. The FGD containing CaSO{sub 2} inhibited acid production in coal refuse. The final leachate for FGD treatment had a pH of 5.3 and 20 mM of acidity (hydrogen ion) as compared to a pH of 1.7 and acidity of 480 mM for the control. Compared to the control, the FGD treatment yielded loser concentrations of all elements except for B and Ca. There was an interaction between all the components in the FGD and an indication that alterations of the ratio of components in FGD may significantly improve their inhibitory effect on acid production in coal refuse.

  7. Study of Lateral Gene Transfer in an Acid Mine Drainage Community Enabled by Comparative Genomics

    NASA Astrophysics Data System (ADS)

    Hugenholtz, P.; Croft, L.; Tyson, G. W.; Baker, B. J.; Detter, C.; Richardson, P. M.; Banfield, J. F.

    2002-12-01

    Lateral gene transfer (LGT) is thought to play a crucial role in the ecology and evolution of prokaryotes. We are investigating the role of LGT in an acid mine drainage community hosted in a pyrite-dominated metal sulfide deposit at the Richmond mine at Iron Mountain, CA. Due to biologically-mediated pyrite dissolution, the prevailing conditions within the mine are extremely low pH (< 1.0), very high ionic concentrations (molar concentrations of iron sulfate and mM concentrations of arsenic, copper and zinc), and moderate to high temperatures (30 to >50 C). These conditions are thought to largely isolate the community from potential external gene donors since naked DNA, phage and prokaryotes native to neutral pH habitats do not persist at pH <1.0 precluding an external influx of genes by transformation, transduction and conjugation, respectively. Microbial communities exist in several distinct habitats within Richmond mine including biofilms (subaqueous slime streamers and subaerial slimes) and cells attached directly to pyrite granules. This, however, belies an unusual simplicity in community composition. All communities investigated to date comprise only a handful of phylogenetically distinct organisms, typically dominated by the iron-oxidizing genera Leptospirillum and Ferroplasma. We have undertaken a community genomics analysis of a subaerial biofilm dominated by a Leptospirillum population to facilitate the study of LGT in this type of environment. The genome of Ferroplasma acidarmanus fer1, a minor component of the target community (but a major component of other Richmond mine communities), has been sequenced. Comparative genome analyses indicate that F. acidarmanus and the ancestor of two acidophilic Thermoplasma species belonging to the Euryarchaeota have traded many genes with phylogenetically remote acidophilic Sulfolobus species (Crenarchaeota). The putatively transferred sets of Sulfolobus genes in Ferroplasma and the Thermoplasma ancestor are distinct

  8. Organic production enhances milk nutritional quality by shifting fatty acid composition: a United States-wide, 18-month study.

    PubMed

    Benbrook, Charles M; Butler, Gillian; Latif, Maged A; Leifert, Carlo; Davis, Donald R

    2013-01-01

    Over the last century, intakes of omega-6 (ω-6) fatty acids in Western diets have dramatically increased, while omega-3 (ω-3) intakes have fallen. Resulting ω-6/ω-3 intake ratios have risen to nutritionally undesirable levels, generally 10 to 15, compared to a possible optimal ratio near 2.3. We report results of the first large-scale, nationwide study of fatty acids in U.S. organic and conventional milk. Averaged over 12 months, organic milk contained 25% less ω-6 fatty acids and 62% more ω-3 fatty acids than conventional milk, yielding a 2.5-fold higher ω-6/ω-3 ratio in conventional compared to organic milk (5.77 vs. 2.28). All individual ω-3 fatty acid concentrations were higher in organic milk--α-linolenic acid (by 60%), eicosapentaenoic acid (32%), and docosapentaenoic acid (19%)--as was the concentration of conjugated linoleic acid (18%). We report mostly moderate regional and seasonal variability in milk fatty acid profiles. Hypothetical diets of adult women were modeled to assess milk fatty-acid-driven differences in overall dietary ω-6/ω-3 ratios. Diets varied according to three choices: high instead of moderate dairy consumption; organic vs. conventional dairy products; and reduced vs. typical consumption of ω-6 fatty acids. The three choices together would decrease the ω-6/ω-3 ratio among adult women by ∼80% of the total decrease needed to reach a target ratio of 2.3, with relative impact "switch to low ω-6 foods" > "switch to organic dairy products" ≈ "increase consumption of conventional dairy products." Based on recommended servings of dairy products and seafoods, dairy products supply far more α-linolenic acid than seafoods, about one-third as much eicosapentaenoic acid, and slightly more docosapentaenoic acid, but negligible docosahexaenoic acid. We conclude that consumers have viable options to reduce average ω-6/ω-3 intake ratios, thereby reducing or eliminating probable risk factors for a wide range of developmental and

  9. Reactivity, Selectivity, and Stability in Sulfenic Acid Detection: A Comparative Study of Nucleophilic and Electrophilic Probes.

    PubMed

    Gupta, Vinayak; Paritala, Hanumantharao; Carroll, Kate S

    2016-05-18

    The comparative reaction efficiencies of currently used nucleophilic and electrophilic probes toward cysteine sulfenic acid have been thoroughly evaluated in two different settings-(i) a small molecule dipeptide based model and (ii) a recombinant protein model. We further evaluated the stability of corresponding thioether and sulfoxide adducts under reducing conditions which are commonly encountered during proteomic protocols and in cell analysis. Powered by the development of new cyclic and linear C-nucleophiles, the unsurpassed efficiency in the capture of sulfenic acid under competitive conditions is achieved and thus holds great promise as highly potent tools for activity-based sulfenome profiling. PMID:27123991

  10. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    PubMed

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover. PMID:25947618

  11. ENERGY PRODUCTION AND RESIDENTIAL HEATING: TAXATION, SUBSIDIES, AND COMPARATIVE COSTS

    EPA Science Inventory

    This analysis is in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. It examines the effect of economic incentives on public and private decisions affecting energy production and us...

  12. Comparing Learning from Productive Failure and Vicarious Failure

    ERIC Educational Resources Information Center

    Kapur, Manu

    2014-01-01

    A total of 136 eighth-grade math students from 2 Singapore schools learned from either productive failure (PF) or vicarious failure (VF). PF students "generated" solutions to a complex problem targeting the concept of variance that they had not learned yet before receiving instruction on the targeted concept. VF students…

  13. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified. PMID:27112846

  14. Role of solid acid catalysts in bio diesel production.

    PubMed

    Shivayogimath, C B; Sunita, G; Manoj Kumar, B

    2009-07-01

    Biodiesel is gaining importance as an alternate source of attractive fuel because of depleting fossil fuel resources. It is produced by trans-esterification, in which oil or fat reacts with a monohydric alcohol in presence of a catalyst. In the present work, trans-esterification of sunflower oil with methanol is carried out by using zirconia supported isopoly and heteropoly tungstates (HPAs) as catalysts. Effects of reaction parameters, such as catalyst types and its concentration, molar ratio of sunflower oil to methanol, reaction temperature and time, have been optimized to get higher conversion of sunflower oil and the product distribution of fatty acid methyl esters (FAME) in the trans-esterfication reaction. PMID:21117436

  15. Origin of haloacetic acids in milk and dairy products.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2016-04-01

    Haloacetic acids (HAAs) are formed during the process of water disinfection. Therefore their presence in foods can be correlated with the addition of or contact with treated water. To determine the origin of HAAs in milk and dairy products, firstly a chromatographic method was developed for their determination. The sample treatment involves deproteination of milk followed by derivatization/extraction of the HAAs in the supernatant. About 20% of the foods analyzed contained two HAAs - which in no case exceeded 2 μg L(-1), that can be ascribed to contamination from sanitizers usually employed in the dairy industry. The process of boiling tap water (containing HAAs) for the preparation of powdered infant formula did not remove them; therefore it would be advisable to prepare this type of milk with mineral water (free of HAAs). In addition, it is possible to establish if the milk has been adulterated with treated water through the determination of HAAs. PMID:26593550

  16. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the...

  17. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the...

  18. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the...

  19. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the...

  20. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  1. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  2. Optimization of ascorbic acid-2-phosphate production from ascorbic acid using resting cell of Brevundimonas diminuta.

    PubMed

    Shin, Woo-Jung; Kim, Byung-Yong; Bang, Won-Gi

    2007-05-01

    With the aim to produce ascorbic acid-2-phosphate (AsA-2-P) from L-ascorbic acid (AsA, Vitamin C), nine bacteria conferring the ability to transform AsA to AsA-2-P were isolated from soil samples alongside known strains from culture collections. Most isolates were classified to the genus Brevundimonas by 16S phylogenetic analysis. Among them, Brevundimonas diminuta KACC 10306 was selected as the experimental strain because of its the highest productivity of AsA-2-P. The optimum set of conditions for the AsA-2-P production from AsA using resting cells as the source of the enzyme was also investigated. The optimum cultivation time was 16 h and the cell concentration was 120 g/l (wet weight). The optimum concentrations of AsA and pyrophosphate were 550 mM and 450 mM, respectively. The most effective buffer was 50 mM sodium formate. The optimum pH was 4.5 and temperature was 40 degrees C. Under the above conditions, 27.5 g/l of AsA-2-P was produced from AsA after 36 h of incubation, which corresponded to a 19.7% conversion efficiency based on the initial concentration of AsA. PMID:18051298

  3. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    PubMed Central

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M.; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E.; Chaston, Sheena D.; McMahon, Katherine D.

    2013-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing micro-organisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl–acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (~90 μg/mL FFA) cultures grown on rich Luria–Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds. PMID:21643704

  4. OCCURRENCE OF IODO-ACID AND IODO-THM DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid, bromoiodoacetic acid, (E)-3-bromo-3-iodo- prope...

  5. OCCURRENCE AND TOXICITY OF IODO-ACID DISINFECTION BY-PRODUCTS IN CHLORAMINATED DRINKING WATER

    EPA Science Inventory

    As part of a recent Nationwide Disinfection By-Product (DBP) Occurrence Study, iodo-acids were identified for the first time as DBPs in drinking water disinfected with chloramines. The iodo-acids identified included iodoacetic acid (IAA), bromoiodoacetic acid, (E)-3-bromo-3-iodo...

  6. Effect of Surfactants on Production of Oxygenated Unsaturated Fatty Acids by Bacillus megaterium ALA2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus megaterium ALA2 (NRRL B-21660) produces many oxygenated unsaturated fatty acids from linoleic acid. Its major product, 12,13,17-trihydroxy-9(Z)-octadecenoic acid (12,13,17-THOA), inhibits the growth of some plant pathogenic fungi. Because hydrophobic fatty acids need to be evenly disperse...

  7. Production of levulinic acid and use as a platform chemical for derived products

    SciTech Connect

    Bozell, J.J.; Moens, L.; Elliott, D.C.; Wang, Y.; Neuenscwander, G.G.; Fitzpatrick, S.W.; Bilski, R.J.; Jarnefeld, J.L.

    1999-07-01

    Levulinic acid (LA) can be produced cost effectively and in high yield from renewable feedstocks in a new industrial process. The technology is being demonstrated on a one ton/day scale at a facility in South Glens Falls, New York. Low cost LA can be used as a platform chemical for the production of a wide range of value-added products. This research has demonstrated that LA can be converted to methyltetrahydrofuran (MTHF), a solvent and fuel extender. MTHF is produced in {gt}80% molar yield via a single stage catalytic hydrogenation process. A new preparation of {delta}-aminolevulinic acid (DALA), a broad spectrum herbicide from LA has also been developed. Each step in this new process proceeds in high ({gt}80%) yield and affords DALA (as the hydrochloride salt) in greater than 90% purity, giving a process that could be commercially viable. LA is also being investigated as a starting material for the production of diphenolic acid (DPA), a direct replacement for bisphenol A.

  8. Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides

    PubMed Central

    Rees, Martin D.; Bottle, Steven E.; Fairfull-Smith, Kathryn E.; Malle, Ernst; Whitelock, John M.; Davies, Michael J.

    2014-01-01

    Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases. PMID:19379130

  9. Kinetics and Products of Heterogeneous Oxidation of Oleic acid, Linoleic acid and Linolenic acid in Aerosol Particles by Hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Nah, T.; Leone, S. R.; Wilson, K. R.

    2010-12-01

    A significant mass fraction of atmospheric aerosols is composed of a variety of oxidized organic compounds with varying functional groups that may affect the rate at which they chemically age. Here we study the heterogeneous reaction of OH radicals with different sub-micron, alkenoic acid particles: Oleic acid (OA), Linoleic acid (LA), and Linolenic acid (LNA), in the presence of H2O2 and O2. This research explores how OH addition reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. Particles are chemically aged in a photochemical flow tube reactor where they are exposed to OH radicals (~ 1011 molecule cm-3 s) that are produced by the photolysis of H2O2 at 254 nm. The aerosols are then sized and their composition analyzed via Atmospheric Pressure Chemical Ionization (APCI). Detailed kinetic measurements show that the reactive uptake coefficient is larger than 1, indicating the presence of secondary chemistry occurring in the condensed phase. Reactive uptake coefficient is found to scale linearly with the number of double bonds present in the molecule. In addition, the reactive uptake coefficient is found to depend sensitively upon the concentrations of O2 in the photochemical flow tube reactor, indicating that O2 plays a role in secondary chemistry. In the absence of O2 the reactive uptake coefficient increases to ~ 8, 5 and 3 for LNA, LA, and OA, respectively. The reactive uptake coefficient approaches values of 6, 4 and 2 for LNA, LA, and OA respectively when 18% of the total nitrogen flow is replaced with O2. Mechanistic pathways and products will also be presented herein.

  10. Comparative Assessment of Advanced Gay Hydrate Production Methods

    SciTech Connect

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  11. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. PMID:25898079

  12. Comparative study of fungal strains for thermostable inulinase production.

    PubMed

    Flores-Gallegos, Adriana C; Contreras-Esquivel, Juan C; Morlett-Chávez, Jesús A; Aguilar, Cristóbal N; Rodríguez-Herrera, Raúl

    2015-04-01

    Fructose and fructo-oligosaccharides (FOS) are important ingredients in the food industry. Fructose is considered an alternative sweetener to sucrose because it has higher sweetening capacity and increases iron absorption in children, and FOS's are a source of dietary fiber with a bifidogenic effect. Both compounds can be obtained by enzymatic hydrolysis of inulin. However, inulin presents limited solubility at room temperature, thus, fructose and FOS production is carried out at 60°C. Therefore, there is a growing interest to isolate and characterize thermostable inulinases. The aim of this work was to evaluate the capacity of different fungal strains to produce potential thermostable inulinases. A total of 27 fungal strains belonging to the genera Aspergillus, Penicillium, Rhizopus, Rhizomucor and Thermomyces were evaluated for production of inulinase under submerged culture using Czapek Dox medium with inulin as a sole carbon source. Strains were incubated at 37°C and 200 rpm for 96 h. Crude enzyme extract was obtained to evaluate inulinase and invertase activity. In order to select the fungal strain with the highest thermostable inulinase production, a selection criterion was established. It was possible to determine the highest inulinase activity for Rhizopus microsporus 13aIV (10.71 U/mL) at 36 h with an optimum temperature of inulinase of 70°C. After 6 h at 60°C, the enzyme did not show any significant loss of activity and retained about 87% activity, while it only retains 57% activity at 70°C. According to hydrolysis products, R. microsporus produced endo and exo-inulinase. PMID:25454696

  13. Cerebral asymmetry for language: Comparing production with comprehension.

    PubMed

    Häberling, Isabelle S; Steinemann, Anita; Corballis, Michael C

    2016-01-01

    Although left-hemispheric damage can impair both the production and comprehension of language, it has been claimed that comprehension is more bilaterally represented than is production. A variant of this theme is based on the theory that different aspects of language are processed by a dorsal stream, responsible for mapping words to articulation, and a ventral stream for processing input for meaning. Some have claimed that the dorsal stream is left-hemispheric, while the ventral stream is bilaterally organized. We used fMRI to record activation while left- and right-handed participants performed covert word-generation task and judged whether word pairs were synonyms. Regions of interest were Broca's area as part of the dorsal stream and the superior and middle temporal gyri as part of the ventral stream. Laterality indices showed equal left-hemispheric lateralization in Broca's area for word generation and both Broca's area and temporal lobe for the synonym judgments. Handedness influenced laterality equally in each area and task, with right-handers showing stronger left-hemispheric dominance than left-handers. Although our findings provide no evidence that asymmetry is more pronounced for production than for comprehension, correlations between the tasks and regions of interest support the view that lateralization in the temporal lobe depends on feedback influences from frontal regions. PMID:26548403

  14. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L

    PubMed Central

    Rodríguez, AA; Stella, AM; Storni, MM; Zulpa, G; Zaccaro, MC

    2006-01-01

    Salt stress is one of the most serious factors limiting the productivity of rice, the staple diet in many countries. Gibberellic acid has been reported to reduce NaCl-induced growth inhibition in some plants including rice. Most paddy soils have a natural population of Cyanobacteria, prokaryotic photosynthethic microorganisms, which synthesize and liberate plant growth regulators such as gibberellins that could exert a natural beneficial effect on salt stressed rice plants. The aim of this work was to evaluate the effect of the cyanobacterium Scytonema hofmanni extracellular products on the growth of rice seedlings inhibited by NaCl and to compare it with the effect of the gibberellic acid in the same stress condition. Growth (length and weight of the seedlings) and biochemical parameters (5-aminolevulinate dehydratase activity, total free porphyrin and pigments content) were evaluated. Salt exposure negatively affected all parameters measured, with the exception of chlorophyll. Chlrorophyll concentrations nearly doubled upon exposure to high salt. Gibberellic acid counteracted the effect of salt on the length and dry weight of the shoot, and on carotenoid and chlorophyll b contents. Extracellular products nullified the salt effect on shoot dry weight and carotenoid content; partially counteracted the effect on shoot length (from 54% to 38% decrease), root dry weight (from 59% to 41% decrease) and total free porphyrin (from 31 to 13% decrease); reduced by 35% the salt increase of chlorophyll a; had no effect on root length and chlorophyll b. Gibberellic acid and extracellular products increased 5-aminolevulinate dehydratase activity over the control without salt. When coincident with high salinity, exposure to either EP or GA3, resulted in a reversal of shoot-related responses to salt stress. We propose that Scytonema hofmanni extracellular products may counteract altered hormone homeostasis of rice seedlings under salt stress by producing gibberellin-like plant

  15. Change in product selectivity during the production of glyceric acid from glycerol by Gluconobacter strains in the presence of methanol

    PubMed Central

    2013-01-01

    To enhance the value-added use of methanol-containing raw glycerol derived from biodiesel fuel production, the effect of methanol supplementation on glyceric acid (GA) production by Gluconobacter spp. was investigated. We first conducted fed-batch fermentation with Gluconobacter frateurii NBRC103465 using raw glycerol as a feeding solution. GA productivity decreased with increasing dihydroxyacetone (DHA) formation when the raw glycerol contained methanol. The results of this experiment and comparative experiments using a synthetic solution modeled after the raw glycerol indicate that the presence of methanol caused a change in the concentrations of GA and DHA, two glycerol derivatives produced during fermentation. Other Gluconobacter spp. also decreased GA production in the presence of 1% (v/v) methanol. In addition, purified membrane-bound alcohol dehydrogenase (mADH) from Gluconobacter oxydans, which is a key enzyme in GA production, showed a decrease in dehydrogenase activity toward glycerol as the methanol concentration increased. These results strongly suggest that the observed decrease in GA production by Gluconobacter spp. resulted from the methanol-induced inhibition of mADH-mediated glycerol oxidation. PMID:23547945

  16. Serum uric acid level in normal pregnant and preeclamptic ladies: a comparative study.

    PubMed

    Pramanik, T; Khatiwada, B; Pradhan, P

    2014-09-01

    Preeclampsia is a serious pregnancy complication characterized by hypertension, proteinuria with or without pathological edema. According to some studies, serum uric acid lacks sensitivity and specificity as a diagnostic tool whereas another group of the researchers indicated uricemia as a predictor of preeclampsia in pregnant ladies. The present study was designed to assess whether serum uric acid can be used as a biochemical indicator or not in preeclamptic patients. Pre-eclamptic patients admitted in Nepal Medical College Teaching Hospital from June 2012 to June 2013 were included in this study. Age matched normal healthy pregnant ladies served as control. The record of their blood pressure and serum uric acid level was evaluated. Results showed significantly high blood pressure [SBP 149.42±12.35 vs 109.00±7.93 mm Hg; DBP 96.85±8.32 vs 72.5±7.10 mm Hg], and serum uric acid level [6.27±1.37 vs 4.27±0.61 mg/dl] in pre-eclamptic patients compared to their healthy counterparts. Uric acid is a terminal metabolite of the degradation of nucleotides, which increases their blood levels in patients with preeclampsia increasing its synthesis by damage and death of trophoblastic cells and proliferation. Uricemia in preeclampsia likely results from reduced uric acid clearance from diminished glomerular filtration, increased tubular reabsorption and decreased secretion. Results of the present study indicated association of elevated serum uric acid level with preeclampsia which could be used as a biochemical indicator of preeclampsia in pregnant women. PMID:25799807

  17. Comparing the Effect of Mefenamic Acid and Vitex Agnus on Intrauterine Device Induced Bleeding

    PubMed Central

    Yavarikia, Parisa; Shahnazi, Mahnaz; Hadavand Mirzaie, Samira; Javadzadeh, Yousef; Lutfi, Razieh

    2013-01-01

    Introduction: Increased bleeding is the most common cause of intrauterine device (IUD) removal. The use of alternative therapies to treat bleeding has increased due to the complications of medications. But most alternative therapies are not accepted by women. Therefore, conducting studies to find the right treatment with fewer complications and being acceptable is necessary. This study aimed to compare the effect of mefenamic acid and vitex agnus castus on IUD induced bleeding. Methods: This was a double blinded randomized controlled clinical trial. It was conducted on 84 women with random allocation in to two groups of 42 treated with mefenamic acid and vitex agnus capsules taking three times a day during menstruation for four months. Data were collected by demographic questionnaire and Higham 5 stage chart (1 month before the treatment and 4 months during the treatment)., Paired t-test, independent t-test, chi-square test, analysis of variance (ANOVA) with repeated measurements, and SPSS software were used to determine the results. Results: Mefenamic acid and vitex agnus significantly decreased bleeding. This decrease in month 4 was 52% in the mefenamic acid group and 47.6% in the vitex agnus group. The mean bleeding score changes was statistically significant between the two groups in the first three months and before the intervention. In the mefenamic acid group, the decreased bleeding was significantly more than the vitex agnus group. However, during the 4th month, the mean change was not statistically significant. Conclusion: Mefenamic acid and vitex agnus were both effective on IUD induced bleeding; however, mefenamic acid was more effective. PMID:25276733

  18. Effect of dissolved inorganic carbon on β-carotene and fatty acid production in Dunaliella sp.

    PubMed

    Srinivasan, Ramachandran; Kumar, Velayutham Arumuga; Kumar, Dileep; Ramesh, Nachimuthu; Babu, Subramanian; Gothandam, Kodiveri Muthukalianan

    2015-03-01

    This study aimed to explore the effect of sodium bicarbonate (0-200 mM) on the production of β-carotene and lipid content in Dunaliella salina and Dunaliella bardawil. Total carotenoid and chlorophyll content were determined at regular intervals by a UV-VIS spectrophotometer. The β-carotene and lipid contents were analyzed using high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC-MS). The HPLC results revealed a twofold increase of β-carotene in D. salina and D. bardawil cultures grown with sodium bicarbonate. Moreover, total fatty acid profiles from GC-MS indicated a maximum relative percentage of saturated fatty acids (tetradecanoic acid, 10,13-diethyl, methyl ester and methyl 16-methyl-heptadecanoate) compared to polyunsaturated fatty acids in both algae. Our results indicate that the optimum concentration of bicarbonate (100 to 150 mM) was required to stimulate a positive effect on β-carotene production as well as the lipid profile in Dunaliella sp. PMID:25575588

  19. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    PubMed

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  20. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics

    PubMed Central

    Linnes, J. C.; Rodriguez, N. M.; Liu, L.

    2016-01-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  1. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  2. Organic Production Enhances Milk Nutritional Quality by Shifting Fatty Acid Composition: A United States–Wide, 18-Month Study

    PubMed Central

    Benbrook, Charles M.; Butler, Gillian; Latif, Maged A.; Leifert, Carlo; Davis, Donald R.

    2013-01-01

    Over the last century, intakes of omega-6 (ω-6) fatty acids in Western diets have dramatically increased, while omega-3 (ω-3) intakes have fallen. Resulting ω-6/ω-3 intake ratios have risen to nutritionally undesirable levels, generally 10 to 15, compared to a possible optimal ratio near 2.3. We report results of the first large-scale, nationwide study of fatty acids in U.S. organic and conventional milk. Averaged over 12 months, organic milk contained 25% less ω-6 fatty acids and 62% more ω-3 fatty acids than conventional milk, yielding a 2.5-fold higher ω-6/ω-3 ratio in conventional compared to organic milk (5.77 vs. 2.28). All individual ω-3 fatty acid concentrations were higher in organic milk—α-linolenic acid (by 60%), eicosapentaenoic acid (32%), and docosapentaenoic acid (19%)—as was the concentration of conjugated linoleic acid (18%). We report mostly moderate regional and seasonal variability in milk fatty acid profiles. Hypothetical diets of adult women were modeled to assess milk fatty-acid-driven differences in overall dietary ω-6/ω-3 ratios. Diets varied according to three choices: high instead of moderate dairy consumption; organic vs. conventional dairy products; and reduced vs. typical consumption of ω-6 fatty acids. The three choices together would decrease the ω-6/ω-3 ratio among adult women by ∼80% of the total decrease needed to reach a target ratio of 2.3, with relative impact “switch to low ω-6 foods” > “switch to organic dairy products” ≈ “increase consumption of conventional dairy products.” Based on recommended servings of dairy products and seafoods, dairy products supply far more α-linolenic acid than seafoods, about one-third as much eicosapentaenoic acid, and slightly more docosapentaenoic acid, but negligible docosahexaenoic acid. We conclude that consumers have viable options to reduce average ω-6/ω-3 intake ratios, thereby reducing or eliminating probable risk factors for a wide range of

  3. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  4. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii.

    PubMed Central

    Cunningham, J E; Kuiack, C

    1992-01-01

    An isolate of Penicillium bilaii previously reported to solubilize mineral phosphates and enhance plant uptake of phosphate was studied. Using agar media with calcium phosphate and the pH indicator alizarin red S, the influence of the medium composition on phosphate solubility and medium acidification was recorded. The major acidic metabolites produced by P. bilaii in a sucrose nitrate liquid medium were found to be oxalic acid and citric acid. Citric acid production was promoted under nitrogen-limited conditions, while oxalic acid production was promoted under carbon-limited conditions. Citric acid was produced in both growth and stationary phases, but oxalic acid production occurred only in stationary phase. When submerged cultures which normally produce acid were induced to sporulate, the culture medium shifted toward alkaline rather than acid reaction with growth. PMID:1622211

  5. Comparative plasma pharmacokinetics of ceftiofur sodium and ceftiofur crystalline-free acid in neonatal calves.

    PubMed

    Woodrow, J S; Caldwell, M; Cox, S; Hines, M; Credille, B C

    2016-06-01

    The objective of this study was to compare the plasma pharmacokinetic profile of ceftiofur crystalline-free acid (CCFA) and ceftiofur sodium in neonatal calves between 4 and 6 days of age. In one group (n = 7), a single dose of CCFA was administered subcutaneously (SQ) at the base of the ear at a dose of 6.6 mg/kg of body weight. In a second group (n = 7), a single dose of ceftiofur sodium was administered SQ in the neck at a dose of 2.2 mg/kg of body weight. Concentrations of desfuroylceftiofur acetamide (DCA) in plasma were determined by HPLC. Median time to maximum DCA concentration was 12 h (range 12-48 h) for CCFA and 1 h (range 1-2 h) for ceftiofur sodium. Median maximum plasma DCA concentration was significantly higher for calves given ceftiofur sodium (5.62 μg/mL; range 4.10-6.91 μg/mL) than for calves given CCFA (3.23 μg/mL; range 2.15-4.13 μg/mL). AUC0-∞ and Vd/F were significantly greater for calves given CCFA than for calves given ceftiofur sodium. The median terminal half-life of DCA in plasma was significantly longer for calves given CCFA (60.6 h; range 43.5-83.4 h) than for calves given ceftiofur sodium (18.1 h; range 16.7-39.7 h). Cl/F was not significantly different between groups. The duration of time median plasma DCA concentrations remained above 2.0 μg/mL was significantly longer in calves that received CCFA (84.6 h; range 48-103 h) as compared to calves that received ceftiofur sodium (21.7 h; range 12.6-33.6 h). Based on the results of this study, CCFA administered SQ at a dose of 6.6 mg/kg in neonatal calves provided plasma concentrations above the therapeutic target of 2 μg/mL for at least 3 days following a single dose. It is important to note that the use of ceftiofur-containing products is restricted by the FDA and the use of CCFA in veal calves is strictly prohibited. PMID:26542633

  6. A Randomised, Open-label, Comparative Study of Tranexamic Acid Microinjections and Tranexamic Acid with Microneedling in Patients with Melasma

    PubMed Central

    Budamakuntla, Leelavathy; Loganathan, Eswari; Suresh, Deepak Hurkudli; Shanmugam, Sharavana; Suryanarayan, Shwetha; Dongare, Aparna; Venkataramiah, Lakshmi Dammaningala; Prabhu, Namitha

    2013-01-01

    Background: Melasma is a common cause of facial hyperpigmentation with significant cosmetic deformity. Although several treatment modalities are available, none is satisfactory. Aim: To compare the therapeutic efficacy and safety of tranexamic acid (TA) microinjections versus tranexamic acid with microneedling in melasma. Materials and Methods: This is a prospective, randomised, open-label study with a sample size of 60; 30 in each treatment arms. Thirty patients were administered with localised microinjections of TA in one arm, and other 30 with TA with microneedling. The procedure was done at monthly intervals (0, 4 and 8 weeks) and followed up for three consecutive months. Clinical images were taken at each visit including modified Melasma Area Severity Index MASI scoring, patient global assessment and physician global assessment to assess the clinical response. Results: In the microinjection group, there was 35.72% improvement in the MASI score compared to 44.41% in the microneedling group, at the end of third follow-up visit. Six patients (26.09%) in the microinjections group, as compared to 12 patients (41.38%) in the microneedling group, showed more than 50% improvement. However, there were no major adverse events observed in both the treatment groups. Conclusions: On the basis of these results, TA can be used as potentially a new, effective, safe and promising therapeutic agent in melasma. The medication is easily available and affordable. Better therapeutic response to treatment in the microneedling group could be attributed to the deeper and uniform delivery of the medication through microchannels created by microneedling. PMID:24163529

  7. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    PubMed

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae. PMID:25422103

  8. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids.

    PubMed

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  9. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids

    PubMed Central

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  10. Physiological and transcriptional characterization of Saccharomyces cerevisiae engineered for production of fatty acid ethyl esters.

    PubMed

    de Jong, Bouke Wim; Siewers, Verena; Nielsen, Jens

    2016-02-01

    Saccharomyces cerevisiae has previously been engineered to become a cell factory for the production of fatty acid ethyl esters (FAEEs), molecules suitable for crude diesel replacement. To find new metabolic engineering targets for the improvement of FAEE cell factories, three different FAEE-producing strains of S. cerevisiae, constructed previously, were compared and characterized by quantification of key fluxes and genome-wide transcription analysis. From both the physiological and the transcriptional data, it was indicated that strain CB2I20, with high expression of a heterologous wax ester synthase gene (ws2) and strain BdJ15, containing disruptions of genes DGA1, LRO1, ARE1, ARE2 and POX1, which prevent the conversion of acyl-CoA to sterol esters, triacylglycerides and the degradation to acetyl-CoA, triggered oxidative stress that consequently influenced cellular growth. In the latter strain, stress was possibly triggered by disabling the buffering capacity of lipid droplets in encapsulating toxic fatty acids such as oleic acid. Additionally, it was indicated that there was an increased demand for NADPH required for the reduction steps in fatty acid biosynthesis. In conclusion, our analysis clearly shows that engineering of fatty acid biosynthesis results in transcriptional reprogramming and has a significant effect on overall cellular metabolism. PMID:26590613

  11. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    PubMed

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P < 0.05) in the incubated soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was < 10.0 mg kg(-1) following by-product application, as compared to 24 mg kg(-1) for plants growing in unamended soil. PMID:23947715

  12. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  13. Effects of alpha-amylase and its inhibitors on acid production from cooked starch by oral streptococci.

    PubMed

    Aizawa, S; Miyasawa-Hori, H; Nakajo, K; Washio, J; Mayanagi, H; Fukumoto, S; Takahashi, N

    2009-01-01

    This study evaluated acid production from cooked starch by Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus mitis, and the effects of alpha-amylase inhibitors (maltotriitol and acarbose) and xylitol on acid production. Streptococcal cell suspensions were anaerobically incubated with various carbohydrates that included cooked potato starch in the presence or absence of alpha-amylase. Subsequently, the fall in pH and the acid production rate at pH 7.0 were measured. In addition, the effects of adding alpha-amylase inhibitors and xylitol to the reaction mixture were evaluated. In the absence of alpha-amylase, both the fall in pH and the acid production rate from cooked starch were small. On the other hand, in the presence of alpha-amylase, the pH fell to 3.9-4.4 and the acid production rate was 0.61-0.92 micromol per optical density unit per min. These values were comparable to those for maltose. When using cooked starch, the fall in pH by S. sanguinis and S. mitis was similar to that by S. mutans and S. sobrinus. For all streptococci, alpha-amylase inhibitors caused a decrease in acid production from cooked starch, although xylitol only decreased acid production by S. mutans and S. sobrinus. These results suggest that cooked starch is potentially acidogenic in the presence of alpha-amylase, which occurs in the oral cavity. In terms of the acidogenic potential of cooked starch, S. sanguinis and S. mitis were comparable to S. mutans and S. sobrinus. Alpha-amylase inhibitors and xylitol might moderate this activity. PMID:19136828

  14. Production of 14-oxo-cis-11-eicosenoic acid from lesquerolic acid by genetically variable Sphingobacterium multivorum strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to explore the extent of microbial conversion of lesquerolic acid (LQA; 14-hydroxy-cis-11-eicosenoic acid) by whole cell catalysis and to identify the newly converted product. Among 17 environmental isolates selected from compost amended with soybean oil and unsatura...

  15. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  16. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  17. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  18. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  19. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  20. Massive production of farnesol-derived dicarboxylic acids in mice treated with the squalene synthase inhibitor zaragozic acid A.

    PubMed

    Vaidya, S; Bostedor, R; Kurtz, M M; Bergstrom, J D; Bansal, V S

    1998-07-01

    The zaragozic acids are potent inhibitors of squalene synthase. In vivo studies in mice confirmed our earlier observations that inhibition of squalene synthase by zaragozic acid A was accompanied by an increase in the incorporation of label from [3H]mevalonate into farnesyl-diphosphate (FPP)-derived isoprenoic acids (J. D. Bergstrom et al., 1993, Proc. Natl. Acad. Sci. USA 90, 80-84). Farnesyl-diphosphate-derived metabolites appear transiently in the liver. We were unable to detect any farnesol formation in the zaragozic acid-treated animals which indicates that FPP is readily converted to farnesoic acid and dicarboxylic acids in the liver. These metabolites were found to be produced only in the liver and not in the kidney. trans-3,7-Dimethyl-2-octaen-1,8-dioic acid and 3, 7-dimethyloctan-1,8-dioic acid were identified as the major end products of farnesyl-diphosphate metabolism in the urine of mice treated with zaragozic acid A. Quantitative analysis of these FPP-derived dicarboxylic acids by gas-liquid chromatography revealed that approximately 11 mg of total dicarboxylic acids is excreted per day into the urine of a mouse after 3 days of treatment with zaragozic acid A. PMID:9647670

  1. Actinobacillus succinogenes ATCC 55618 Fermentation Medium Optimization for the Production of Succinic Acid by Response Surface Methodology

    PubMed Central

    Zhu, Li-Wen; Wang, Cheng-Cheng; Liu, Rui-Sang; Li, Hong-Mei; Wan, Duan-Ji; Tang, Ya-Jie

    2012-01-01

    As a potential intermediary feedstock, succinic acid takes an important place in bulk chemical productions. For the first time, a method combining Plackett-Burman design (PBD), steepest ascent method (SA), and Box-Behnken design (BBD) was developed to optimize Actinobacillus succinogenes ATCC 55618 fermentation medium. First, glucose, yeast extract, and MgCO3 were identified to be key medium components by PBD. Second, preliminary optimization was run by SA method to access the optimal region of the key medium components. Finally, the responses, that is, the production of succinic acid, were optimized simultaneously by using BBD, and the optimal concentration was located to be 84.6 g L−1 of glucose, 14.5 g L−1 of yeast extract, and 64.7 g L−1 of MgCO3. Verification experiment indicated that the maximal succinic acid production of 52.7 ± 0.8 g L−1 was obtained under the identified optimal conditions. The result agreed with the predicted value well. Compared with that of the basic medium, the production of succinic acid and yield of succinic acid against glucose were enhanced by 67.3% and 111.1%, respectively. The results obtained in this study may be useful for the industrial commercial production of succinic acid. PMID:23093852

  2. Actinobacillus succinogenes ATCC 55618 fermentation medium optimization for the production of succinic acid by response surface methodology.

    PubMed

    Zhu, Li-Wen; Wang, Cheng-Cheng; Liu, Rui-Sang; Li, Hong-Mei; Wan, Duan-Ji; Tang, Ya-Jie

    2012-01-01

    As a potential intermediary feedstock, succinic acid takes an important place in bulk chemical productions. For the first time, a method combining Plackett-Burman design (PBD), steepest ascent method (SA), and Box-Behnken design (BBD) was developed to optimize Actinobacillus succinogenes ATCC 55618 fermentation medium. First, glucose, yeast extract, and MgCO(3) were identified to be key medium components by PBD. Second, preliminary optimization was run by SA method to access the optimal region of the key medium components. Finally, the responses, that is, the production of succinic acid, were optimized simultaneously by using BBD, and the optimal concentration was located to be 84.6 g L(-1) of glucose, 14.5 g L(-1) of yeast extract, and 64.7 g L(-1) of MgCO(3). Verification experiment indicated that the maximal succinic acid production of 52.7 ± 0.8 g L(-1) was obtained under the identified optimal conditions. The result agreed with the predicted value well. Compared with that of the basic medium, the production of succinic acid and yield of succinic acid against glucose were enhanced by 67.3% and 111.1%, respectively. The results obtained in this study may be useful for the industrial commercial production of succinic acid. PMID:23093852

  3. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  4. A comparative analysis of Media Lengua and Quichua vowel production.

    PubMed

    Stewart, Jesse

    2014-01-01

    This study presents a comparative analysis of F1 and F2 vowel frequencies from Pijal Media Lengua (PML) and Imbabura Quichua. Mixed-effects models are used to test Spanish-derived high and low vowels against their Quichua-derived counterparts for statistical significance. Spanish-derived and Quichua-derived high vowels are also tested against Spanish-derived mid vowels. This analysis suggests that PML may be manipulating as many as eight vowels where Spanishderived high and low vowels coexist as near-mergers with their Quichua-derived counterparts, while high and mid vowels coexist with partial overlap. Quichua, traditionally viewed as a three-vowel system, shows similar results and may be manipulating as many as six vowels. PMID:25721292

  5. Eicosanoid production and lymphatic responsiveness in human cigarette smokers compared with non-smokers.

    PubMed

    Sinzinger, H; Kaliman, J; Oguogho, A

    2000-03-01

    Leg lymphatic segments were isolated from 10 patients (4 cigarette smokers and 6 non-smokers) undergoing conventional lymphography. Prostaglandin (PG) levels and PG synthesis in the lymphatics and in a variety of body fluids and the effects of eicosanoids on lymphatic contractility were determined. Leg lymphatics from 4 smokers generated less PGI2 and contained more 8-epi-PGF2 alpha when compared with leg lymphatics in 6 non-smokers. Similarly, levels of 8-epi-PGF2 alpha in smokers compared with non-smokers were higher in plasma (28.6 cf 19.7 pg/ml), leg lymph (146.7 cf 65.3 pg/ml), serum (299.0 cf 204.1 pg/ml), and urine (473.4 cf 241.0 pg/mg creatinine). Lymphatics from smokers also showed a higher contractile response, less 14C-arachidonic acid conversion to PGI2 and less PGI2-formation with various stimuli compared with non-smokers. Together these findings suggest that smoking induces oxidation injury, promotes altered (iso-)eicosanoid production and impacts on the function and dysfunction of peripheral lymphatics under normal circumstances and in a variety of clinical disorders. PMID:10769813

  6. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production.

    PubMed

    Li, Ping; Cai, Di; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Zhang, Changwei; Wang, Zheng; Tan, Tianwei

    2016-04-01

    In this study, the effects of different parts of corn stalk, including stem, leaf, flower, cob and husk on second generation ethanol production were evaluated. FTIR, XRD and SEM were performed to investigate the effect of dilute acid pretreatment. The bagasse obtained after pretreatment were further hydrolyzed by cellulase and used as the substrate for ethanol fermentation. As results, hemicelluloses fractions in different parts of corn stalk were dramatically removed and the solid fractions showed vivid compositions and crystallinities. Compared with other parts of corn stalk, the cob had higher sugar content and better enzymatic digestibility. The highest glucose yield of 94.2% and ethanol production of 24.0gL(-1) were achieved when the cob was used as feedstock, while the glucose yield and the ethanol production were only 86.0% and 17.1gL(-1) in the case of flower. PMID:26849200

  7. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  8. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  9. Comparative electrochemical degradation of salicylic and aminosalicylic acids: Influence of functional groups on decay kinetics and mineralization.

    PubMed

    Florenza, Xavier; Garcia-Segura, Sergi; Centellas, Francesc; Brillas, Enric

    2016-07-01

    Solutions of 100 mL with 1.20 mM of salicylic acid (SA), 4-aminosalicylic acid (4-ASA) or 5-aminosalicylic acid (5-ASA) have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were carried out with a stirred tank reactor with a BDD anode and an air-diffusion cathode for continuous H2O2 production. A marked influence of the functional groups of the drugs was observed in their decay kinetics, increasing in the order SA < 5-ASA < 4-ASA in AO-H2O2 and 5-ASA < SA < 4-ASA in EF and PEF, due to the different attack of OH generated at the BDD surface and in the bulk from Fenton's reaction, respectively. This effect was clearly observed when varying the current density between 16.7 and 100 mA cm(-2). The relative mineralization power of the processes always followed the sequence: AO-H2O2 < EF < PEF. The three drugs underwent analogous mineralization abatement up to 88% by AO-H2O2 at 100 mA cm(-2). The mineralization rate in EF and PEF grew in the order: 4-ASA < 5-ASA < SA. The most powerful process was PEF, attaining >98% mineralization for all the drugs at 100 mA cm(-2). Oxalic and oxamic acids were detected as final short-linear aliphatic carboxylic acids by ion-exclusion HPLC, allowing the fast photolysis of their Fe(III) complexes by UVA light to justify the high power of PEF. PMID:27045634

  10. Mammalian Cell Cytotoxicity and Genotoxicity of the Haloacetic Acids, A Major Class of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The haloacetic acids (HAAs) are disinfection by-products (DBPs) that are formed during the disinfection of drinking water, wastewaters and recreational pool waters. Currently, five HAAs [bromoacetic acid (BAA), dibromoacetic acid (DBAA), chloroacetic acid (CAA), dichloroacetic ac...

  11. Bioconverted Products of Essential Fatty Acids as Potential Antimicrobial Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review deals with the recent findings on the microbial conversion of essential fatty acids (EFAs) through Pseudomonas aeruginosa PR3 NRRL-B-18602, and the antimicrobial properties of bioconverted essential fatty acids, with particular emphasis on n-3 or n-6 fatty acids. The first section deals...

  12. Production of Lipase and Oxygenated Fatty Acids from Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils such as soybean oil and corn oil are cheap raw materials. Various value-added oxygenated fatty acids have been produced from unsaturated fatty acids such as oleic and linoleic acid by biotransformation. Lipase from the non-pathogenic yeast Candida cylindracea is another important va...

  13. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  14. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.

    PubMed

    Lee, Sunhee; Park, Soohyun; Park, Chulhwan; Pack, Seung Pil; Lee, Jinwon

    2014-12-01

    Fatty acid production and composition are determined by the type of acyl-acyl carrier protein thioesterases (acyl-ACP TEs) expressed in Escherichia coli. Bacterial acyl-ACP TEs from Lactococcus lactis (SGJS47), Enterococcus faecalis (SGJS49), and Burkholderia cepacia (SGJS50) were codon-optimized and expressed in E. coli for enhanced fatty acid production. Samples were extracted at the lag, log, and stationary phases of cell growth, and gene expression levels of the codon optimized acy-ACP TEs as well as fatty acid production were monitored. At 24h after initiation of gene expression, the OPLlTE expression level and fatty acid production in SGJS47 increased up to 15.8-fold and 3.2-fold compared to the control and other recombinant strains, respectively. Additionally, in SGJS47, improvement in free fatty acid (FFA) composition, high-specificity production of short-chain fatty acids (C8, C10) and unsaturated fatty acids (C16:1) was achieved in crude glycerol medium condition. Compared with control strain, the percentage of FFAs (C8 and C10) was enhanced by approximately 16- to 21-fold, C16:1 FFA ratio increased approximately 18-fold. Observation of codon-optimized acyl-ACP TE genes expression level in E. coli may be useful for understanding mechanisms towards improving fatty acid production. Engineered strains have the potential to overproduce specific FFAs and thereby reduce the cost of fatty acid production by using industrially inexpensive carbon sources. PMID:25442943

  15. Comparative characterization of the deamidation of carboxylic acid deamidated wheat gluten by altering the processing conditions.

    PubMed

    Liao, Lan; Han, Xueyue; Chen, Lin-Ping; Ni, Li; Liu, Zhi-Bin; Zhang, Wen; Chen, Qing

    2016-11-01

    The physicochemical, structural and functional properties of citric-acid-deamidated wheat gluten at controlled degrees of deamidation (25%, 40% and 55%), which were obtained by using different acid concentrations (3.93×10(-5), 3.14×10(-3) and 2.36×10(-2)mol/L) and temperatures (70°C 2h, 90°C 1h and 110°C 40min), were compared. Various deamidation processing conditions leading to the same degree of deamidation resulted in proteins with different physicochemical and structural characteristics, as indicted by the degree of hydrolysis, Z-potential, surface hydrophobicity, particle size, SDS-PAGE results, SEC-HPLC results, intrinsic fluorescence and FTIR spectra. Agglomerative hierarchical clustering analysis and principal component analysis qualitatively indicated a significant effect of pH on protein deamidation. Three samples at 40% deamidation, which were produced by a moderate acid concentration, showed the best emulsifying and foaming properties. Processes conducted at greater than 90°C causing protein aggregation and at a high acid concentration rupturing peptide bonds, impaired protein quality. These findings demonstrated that a limited amount of H(+) could function well in the catalysis of the deamidation of amide groups without an excess of H(+), which hydrolyses peptide bonds in a stronger hydrothermal treatment. PMID:27211678

  16. Lipid production on free fatty acids by oleaginous yeasts under non-growth conditions.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Wang, Yandan; Shen, Hongwei; Zhao, Zongbao K

    2015-10-01

    Microbial lipids produced by oleaginous yeasts serve as promising alternatives to traditional oils and fats for the production of biodiesel and oleochemicals. To improve its techno-economics, it is pivotal to use wastes and produce high quality lipids of special fatty acid composition. In the present study, four oleaginous yeasts were tested to use free fatty acids for lipid production under non-growth conditions. Microbial lipids of exceptionally high fatty acid relative contents, e.g. those contained over 70% myristic acid or 80% oleic acid, were produced that may be otherwise inaccessible by growing cells on various carbon sources. It was found that Cryptococcus curvatus is a robust strain that can efficiently use oleic acid as well as even-numbered saturated fatty acids with carbon atoms ranging from 10 to 20. Our results provided new opportunity for the production of functional lipids and for the exploitation of organic wastes rich in free fatty acids. PMID:26159379

  17. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    PubMed

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids. PMID:24922334

  18. Production of ω-3 Polyunsaturated Fatty Acids From Cull Potato Using an Algae Culture Process

    NASA Astrophysics Data System (ADS)

    Chi, Zhanyou; Hu, Bo; Liu, Yan; Frear, Craig; Wen, Zhiyou; Chen, Shulin

    Algal cultivation for converting cull potato to docosahexaenoic acid (DHA) was studied. Schizochytrium limacinum SR21 was selected as the better producing strain, compared with Thraustochytrium aureum because of higher cell density and DHA content. Used as both carbon and nitrogen source, an optimal ratio of hydrolyzed potato broth in the culture medium was determined as 50%, with which the highest production of 21.7 g/L dry algae biomass and 5.35 g/L DHA was obtained, with extra glucose supplemented. Repeat culture further improved the cell density but not fed batch culture, suggesting limited growth was most likely caused by metabolites inhibition.

  19. Ordering of p-n-alkoxybenzoic acids at phase transition temperatures: a comparative computational analysis.

    PubMed

    Ajeetha, Narayanan; Ojha, Durga Prasad; Pisipati, Venkata Gopala Krishna Murthy

    2006-01-01

    A comparative analysis of molecular ordering of nematogenic p-n-alkoxybenzoic acids has been carried out with respect to translatory and orientational motions for the acids with seven (7OBAC), eight (8OBAC), nine (9OBAC) and 10 (10OBAC) carbon atoms in the alkyl chain. The CNDO/2 method has been used to compute the net atomic charge and dipole moment components at each atomic center. Modified Rayleigh-Schrodinger perturbation theory with multicentered-multipole expansion method has been used to evaluate long-range intermolecular interactions while a '6-exp' potential function has been assumed for short-range interactions. The total interaction-energy values obtained by these computations were used to calculate the probability of each configuration at the phase-transition temperature using the Maxwell-Boltzmann formula. The flexibility of various configurations has been studied in terms of variation of probability due to small departures from the most probable configuration. A comparative picture of molecular parameters like total energy, binding energy and total dipole moment has been given. An attempt has been made to explain the nematogenicity of these acids in terms of their relative order with the molecular parameter introduced in this paper. PMID:16311756

  20. Comparative Analysis of Human, Mouse, and Pig Glial Fibrillary Acidic Protein Gene Structures.

    PubMed

    Eun, Kiyoung; Hwang, Seon-Ung; Jeon, Hye-Min; Hyun, Sang-Hwan; Kim, Hyunggee

    2016-01-01

    Comparing the coding and regulatory sequences of genes in different species provides information on whether proteins translated from genes have conserved functions or gene expressions are regulated by analogical mechanisms. Herein, we compared the coding and regulatory sequences of glial fibrillary acidic protein (GFAP) from humans, mice, and pigs. The GFAP gene encodes a class III intermediate filament protein expressed specifically in astrocytes of the central nervous system. On comparing the mRNA, regulatory region (promoter), and protein sequences of GFAP gene in silico, we found that GFAP mRNA 3'-untranslated region (3'-UTR), promoter, and amino acid sequences showed higher similarities between humans and pigs than between humans and mice. In addition, the promoter-luciferase reporter gene assay revealed that the pig GFAP promoter functioned in human astrocytes. Notably, the 1.8-kb promoter fragment upstream from transcription initiation site showed strongest transcriptional activity compared to 5.2-kb DNA fragment or other regions of GFAP promoter. We also found that pig GFAP mRNA and promoter activity increased in pig fibroblasts by human IL-1β treatment. Taken together, these results suggest that the regulatory mechanisms and functions of pig genes might be more similar to those of humans than mice, indicating that pigs, particularly miniature pigs, are a useful model for studying human biological and pathological events. PMID:26913554

  1. Plasma phospholipid pentadecanoic acid, EPA, and DHA, and the frequency of dairy and fish product intake in young children

    PubMed Central

    Lund-Blix, Nicolai A.; Rønningen, Kjersti S.; Bøås, Håkon; Tapia, German; Andersen, Lene F.

    2016-01-01

    Background There is a lack of studies comparing dietary assessment methods with the biomarkers of fatty acids in children. Objective The objective was to evaluate the suitability of a food frequency questionnaire (FFQ) to rank young children according to their intake of dairy and fish products by comparing food frequency estimates to the plasma phospholipid fatty acids pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Design Cross-sectional data for the present study were derived from the prospective cohort ‘Environmental Triggers of Type 1 Diabetes Study’. Infants were recruited from the Norwegian general population during 2001–2007. One hundred and ten (age 3–10 years) children had sufficient volumes of plasma and FFQ filled in within 2 months from blood sampling and were included in this evaluation study. The quantitative determination of plasma phospholipid fatty acids was done by fatty acid methyl ester analysis. The association between the frequency of dairy and fish product intake and the plasma phospholipid fatty acids was assessed by a Spearman correlation analysis and by investigating whether participants were classified into the same quartiles of distribution. Results Significant correlations were found between pentadecanoic acid and the intake frequency of total dairy products (r=0.29), total fat dairy products (r=0.39), and cheese products (r=0.36). EPA and DHA were significantly correlated with the intake frequency of oily fish (r=0.26 and 0.37, respectively) and cod liver/fish oil supplements (r=0.47 for EPA and r=0.50 DHA). To a large extent, the FFQ was able to classify individuals into the same quartile as the relevant fatty acid biomarker. Conclusions The present study suggests that, when using the plasma phospholipid fatty acids pentadecanoic acid, EPA, and DHA as biomarkers, the FFQ used in young children showed a moderate capability to rank the intake frequency of dairy products with a high-fat content

  2. Clavulanic acid production by the MMS 150 mutant obtained from wild type Streptomyces clavuligerus ATCC 27064

    PubMed Central

    da Silva Vasconcelos, Eliton; de Lima, Vanderlei Aparecido; Goto, Leandro Seiji; Cruz-Hernández, Isara Lourdes; Hokka, Carlos Osamu

    2013-01-01

    Clavulanic acid (CA) is a powerful inhibitor of the beta-lactamases, enzymes produced by bacteria resistants to penicillin and cefalosporin. This molecule is produced industrially by strains of Streptomyces clavuligerus in complex media which carbon and nitrogen resources are supplied by inexpensive compounds still providing high productivity. The genetic production improvement using physical and chemical mutagenic agents is an important strategy in programs of industrial production development of bioactive metabolites. However, parental strains are susceptible to loss of their original productivity due genetic instability phenomenona. In this work, some S. clavuligerus mutant strains obtained by treatment with UV light and with MMS are compared with the wild type (Streptomyces clavuligerus ATCC 27064). The results indicated that the random mutations originated some strains with different phenotypes, most divergent demonstrated by the mutants strains named AC116, MMS 150 and MMS 54, that exhibited lack of pigmentation in their mature spores. Also, the strain MMS 150 presented a larger production of CA when cultivated in semi-synthetics media. Using other media, the wild type strain obtained a larger CA production. Besides, using the modifed complex media the MMS 150 strain showed changes in its lipolitic activity and a larger production of CA. The studies also allowed finding the best conditions for a lipase activity exhibited by wild type S. clavuligerus and the MMS150 mutant. PMID:24688492

  3. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate.

    PubMed

    Subramanian, Mohan Raj; Talluri, Suvarna; Christopher, Lew P

    2015-03-01

    Lactic acid is an intermediate-volume specialty chemical for a wide range of food and industrial applications such as pharmaceuticals, cosmetics and chemical syntheses. Although lactic acid production has been well documented, improved production parameters that lead to reduced production costs are always of interest in industrial developments. In this study, we describe the production of lactic acid at high concentration, yield and volumetric productivity utilizing a novel homofermentative, facultative anaerobe Enterococcus faecalis CBRD01. The highest concentration of 182 g lactic acid l(-1) was achieved after 38 h of fed-batch fermentation on glucose. The bacterial isolate utilized only 2-13% of carbon for its growth and energy metabolism, while 87-98% of carbon was converted to lactic acid at an overall volumetric productivity of 5 g l(-1)  h(-1). At 13 h of fermentation, the volumetric productivity of lactate production reached 10.3 g l(-1)  h(-1), which is the highest ever reported for microbial production of lactic acid. The lactic acid produced was of high purity as formation of other metabolites was less than 0.1%. The present investigation demonstrates a new opportunity for enhanced production of lactic acid with potential for reduced purification costs. PMID:24894833

  4. Comparative study on sound production in different Holocentridae species

    PubMed Central

    2011-01-01

    Background Holocentrids (squirrelfish and soldierfish) are vocal reef fishes whose calls and sound-producing mechanisms have been studied in some species only. The present study aims to compare sound-producing mechanisms in different Holocentridae genera (Holocentrus, Myripristis, Neoniphon, Sargocentron) from separate regions and, in some cases, at different developmental stages. An accurate comparison was made by recording six species while being hand-held, by observing TEM) the sonic muscles and by dissections of the sound-producing mechanism. Results In all these species, calls presented harmonics, their dominant frequency was between 80 and 130 Hz and they were composed of trains of 4 to 11 pulses with gradual increasing periods towards the end of the call. In each case, the calls did not provide reliable information on fish size. The sounds were produced by homologous fast-contracting sonic muscles that insert on articulated ribs whose proximal heads are integrated into the swimbladder: each pulse is the result of the back and forth movements of the ribs. Small differences in the shape of the oscillograms of the different species could be related to the number of ribs that are involved in the sound-producing mechanism. These fish species are able to make sounds as soon as they settle on the reef, when they are 40 days old. Comparison between Neoniphon from Madagascar and from Rangiroa in French Polynesia showed a new, unexpected kind of dialect involving differences at the level of pulse distribution. Neoniphon calls were characterised by a single pulse that was isolated at the beginning of the remaining train in Madagascar whereas they did not show any isolated single pulses at the beginning of the call in Rangiroa. Conclusion This family cannot use the acoustic fundamental frequencies (or pulse periods) of grunts to infer the size of partners. Pulse duration and number of pulses are statistically related to fish size. However, these characteristics are

  5. Enhanced phenylpyruvic acid production with Proteus vulgaris in fed-batch and continuous fermentation.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2016-01-01

    Phenylpyruvic acid is a deaminated form of phenylalanine and is used in various areas such as development of cheese and wine flavors, diagnosis of phenylketonuria, and to decrease excessive nitrogen accumulation in the manure of farm animals. However, reported phenylpyruvic acid fermentation studies in the literature have been usually performed at shake-flask scale with low production. In this study, phenylpyruvic acid production was evaluated in bench-top bioreactors by conducting fed-batch and continuous fermentation for the first time. As a result, maximum phenylpyruvic acid concentrations increased from 1350 mg/L (batch fermentation) to 2958 mg/L utilizing fed-batch fermentation. Furthermore, phenylpyruvic acid productivity was increased from 48 mg/L/hr (batch fermentation) to 104 and 259 mg/L/hr by conducting fed-batch and continuous fermentation, respectively. Overall, this study demonstrated that fed-batch and continuous fermentation significantly improved phenylpyruvic acid production in bench-scale bioreactor production. PMID:25569523

  6. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  7. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  8. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    PubMed

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-01

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. PMID:25828707

  9. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.

    PubMed

    Mehtiö, Tuomas; Toivari, Mervi; Wiebe, Marilyn G; Harlin, Ali; Penttilä, Merja; Koivula, Anu

    2016-10-01

    This review considers the chemical and biotechnological synthesis of acids that are obtained by direct oxidation of mono- or oligosaccharide, referred to as sugar acids. It focuses on sugar acids which can be readily derived from plant biomass sources and their current and future applications. The three main classes of sugar acids are aldonic, aldaric and uronic acids. Interest in organic acids derived from sugars has recently increased, as part of the interest to develop biorefineries which produce not only biofuels, but also chemicals to replace those currently derived from petroleum. More than half of the most desirable biologically produced platform chemicals are organic acids. Currently, the only sugar acid with high commercial production is d-gluconic acid. However, other sugar acids such as d-glucaric and meso-galactaric acids are being produced at a lower scale. The sugar acids have application as sequestering agents and binders, corrosion inhibitors, biodegradable chelators for pharmaceuticals and pH regulators. There is also considerable interest in the use of these molecules in the production of synthetic polymers, including polyamides, polyesters and hydrogels. Further development of these sugar acids will lead to higher volume production of the appropriate sugar acids and will help support the next generation of biorefineries. PMID:26177333

  10. Screening of urocanic acid isomers in human basal and squamous cell carcinoma tumors compared with tumor periphery and healthy skin.

    PubMed

    Decara, Juan Manuel; Aguilera, José; Abdala, Roberto; Sánchez, Purificación; Figueroa, Félix L; Herrera, Enrique

    2008-10-01

    Trans-urocanic acid is a major chromophore for ultraviolet (UV) radiation in human epidermis. The UV induces photoisomerization of trans-urocanic acid (tUCA) form to cis-urocanic acid (cUCA) and has been reported as an important mediator in the immunosuppression induced by UV. This immunomodulation has been recognized as an important factor related to skin cancer development. This is the first time that UCA isomers have been measured in epidermis of skin biopsies from patients with squamous cell carcinoma (SCC) and with basal cell carcinoma (BCC) and compared with the tumor periphery and biopsies of healthy photoexposed and non-photoexposed skin as controls. The UCA isomers were separated and quantified by high performance liquid chromatography. Analysis of UCA in healthy skin showed significant increase in total UCA content in non-photoexposed body sites compared with highly exposed skins. In contrast, the percentage of cUCA was higher in photoexposed body sites. Maximal levels of cUCA were found in cheek, forehead and forearm and lower levels in abdomen and thigh. No differences were found in total UCA concentration between the tumor samples and healthy photoexposed skin. However, differences were found in relation between isomers. Higher levels of cUCA were detected in SCC biopsies (44% of total UCA) compared with samples of BCC and that of healthy photoexposed skin (30%). These results suggest that the UV radiation exposure, a main factor in development of SCC can be mediated, apart from direct effect to cells (DNA damage), by immunosuppression pathways mediated by high production of cUCA. PMID:18312386

  11. Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products.

    PubMed

    Blodgett, Joshua A V; Zhang, Jun Kai; Yu, Xiaomin; Metcalf, William W

    2016-01-01

    Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus methylation remain poorly understood. In addition, the model for non-ribosomal peptide synthetase assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it with the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analyzed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery. PMID:26328935

  12. Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products

    PubMed Central

    Blodgett, Joshua A. V; Zhang, Jun Kai; Yu, Xiaomin; Metcalf, William W.

    2015-01-01

    Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus-methylation remain poorly understood. In addition, the model for NRPS assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it to the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analysed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery. PMID:26328935

  13. Comparing Distortion Product Otoacoustic Emissions to Intracochlear Distortion Products Inferred from a Noninvasive Assay.

    PubMed

    Martin, Glen K; Stagner, Barden B; Dong, Wei; Lonsbury-Martin, Brenda L

    2016-08-01

    The behavior of intracochlear distortion products (iDPs) was inferred by interacting a probe tone (f3) with the iDP of interest to produce a "secondary" distortion product otoacoustic emission termed DPOAE(2ry). Measures of the DPOAE(2ry) were then used to deduce the properties of the iDP. This approach was used in alert rabbits and anesthetized gerbils to compare ear-canal 2f1-f2 and 2f2-f1 DPOAE f2/f1 ratio functions, level/phase (L/P) maps, and interference-response areas (IRAs) to their simultaneously collected DPOAE(2ry) counterparts. These same measures were also collected in a human volunteer to demonstrate similarities with their laboratory animal counterparts and their potential applicability to humans. Results showed that DPOAEs and inferred iDPs evidenced distinct behaviors and properties. That is, DPOAE ratio functions elicited by low-level primaries peaked around an f2/f1 = 1.21 or 1.25, depending on species, while the corresponding inferred iDP ratio functions peaked at f2/f1 ratios of ~1. Additionally, L/P maps showed rapid phase variation with DPOAE frequency (fdp) for the narrow-ratio 2f1-f2 and all 2f2-f1 DPOAEs, while the corresponding DPOAE(2ry) measures evidenced relatively constant phases. Common features of narrow-ratio DPOAE IRAs, such as large enhancements for interference tones (ITs) presented above f2, were not present in DPOAE(2ry) IRAs. Finally, based on prior experiments in gerbils, the behavior of the iDP directly measured in intracochlear pressure was compared to the iDP inferred from the DPOAE(2ry) and found to be similar. Together, these findings are consistent with the notion that under certain conditions, ear-canal DPOAEs provide poor representations of iDPs and thus support a "beamforming" hypothesis. According to this concept, distributed emission components directed toward the ear canal from the f2 and basal to f2 regions can be of differing phases and thus cancel, while these same components directed toward fdp add in

  14. Legume finishing provides beef with positive human dietary fatty acid ratios and consumer preference comparable with grain-finished beef.

    PubMed

    Chail, A; Legako, J F; Pitcher, L R; Griggs, T C; Ward, R E; Martini, S; MacAdam, J W

    2016-05-01

    Consumer liking, proximate composition, pH, Warner-Bratzler shear force, fatty acid composition, and volatile compounds were determined from the LM (longissimus thoracis) of cattle ( = 6 per diet) finished on conventional feedlot (USUGrain), legume, and grass forage diets. Forage diets included a condensed tannin-containing perennial legume, birdsfoot trefoil (; USUBFT), and a grass, meadow brome ( Rehmann; USUGrass). Moreover, representative retail forage (USDA Certified Organic Grass-fed [OrgGrass]) and conventional beef (USDA Choice, Grain-fed; ChGrain) were investigated ( = 6 per retail type). The ChGrain had the greatest ( < 0.05) intramuscular fat (IMF) percentage followed by USUGrain, the IMF percentage of which was greater ( < 0.05) than that of USUGrass and OrgGrass. The IMF content of USUBFT was similar ( > 0.05) to that of both USUGrain and USUGrass. Both grain-finished beef treatments were rated greater ( < 0.05) for flavor, tenderness, fattiness, juiciness, and overall liking compared with USUGrass and OrgGrass. Consumer liking of USUBFT beef tenderness, fattiness, and overall liking were comparable ( > 0.05) with that of USUGrain and ChGrain. Flavor liking was rated greatest ( < 0.05) for USUGrain and ChGrain, and that of USUBFT was intermediate ( > 0.05) to those of ChGrain, USUGrass, and OrgGrass. Cumulative SFA and MUFA concentrations were greatest ( < 0.05) in ChGrain and USUGrain, whereas USUGrass and OrgGrass had lower ( < 0.05) concentrations. Concentrations of cumulative SFA and MUFA in USUBFT were intermediate and similar ( > 0.05) to those of USUGrain and USUGrass. Each forage-finished beef treatment, USUGrass, OrgGrass, and USUBFT, had lower ( < 0.001) ratios of -6:-3 fatty acids. Hexanal was the most numerically abundant volatile compound. The concentration of hexanal increased with increasing concentrations of total PUFA. Among all the lipid degradation products (aldehydes, alcohols, furans, carboxylic acids, and ketones) measured in this

  15. Comparative Proteomics Analysis of Engineered Saccharomyces cerevisiae with Enhanced Biofuel Precursor Production

    PubMed Central

    Tang, Xiaoling; Feng, Huixing; Zhang, Jianhua; Chen, Wei Ning

    2013-01-01

    The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production. PMID:24376832

  16. Comparative determination of sibutramine as an adulterant in natural slimming products by HPLC and HPTLC densitometry.

    PubMed

    Ariburnu, Etil; Uludag, Mehmet Fazli; Yalcinkaya, Huseyin; Yesilada, Erdem

    2012-05-01

    A new validated method for the identification and quantification of the sibutramine was developed by HPTLC-densitometry at 225 nm and advantages and disadvantages compared with HPLC-FLD at 225 nm emission and 316 nm excitation. Both methods were applied to the analysis of three natural slimming products in the market for the quantitative analysis of illegally added sibutramine. HPTLC separations were performed on (20 cm × 10 cm) glass HPTLC plates coated with silica gel 60 F(254) using a mobile phase, n-hexane-acetone-ammonia (10:1:0.1, v/v/v). For HPLC analysis, a phenyl column (5.0 μm, 150 mm × 4.6 mm, i.d.) and an isocratic mobile phase of acetonitrile-water-formic acid (pH 3.0; 0.19M) (45:55:0.78, v/v/v) was used. The calibration curve area versus concentration was found to be linear in the range of 250-2000 ng/spot(-1) and 5-200 μg/ml for HPTLC and HPLC, respectively. Both methods were validated for accuracy, precision, linearity, selectivity, recovery and short term stability. As a conclusion, these methods were found to be useful for the routine analysis of illegally added sibutramine in the marketed products. PMID:22410500

  17. Production of Butyric Acid and Butanol from Biomass

    SciTech Connect

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  18. Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood

    PubMed Central

    Lim, Sang-Dong

    2014-01-01

    Folic acid, one of the B group of vitamins, is an essential substance for maintaining the functions of the nervous system, and is also known to decrease the level of homocysteine in plasma. Homocysteine influences the lowering of the cognitive function in humans, and especially in elderly people. In order to determine the strains with a strong capacity to produce folic acid, 190 bacteria were isolated from various kinds of jeotgal and chungkuk-jang. In our test experiment, JA71 was found to contain 9.03μg/mL of folic acid after 24 h of incubation in an MRS broth. This showed that JA71 has the highest folic acid production ability compared to the other lactic acid bacteria that were isolated. JA71 was identified as Lactobacillus plantarum by the result of API carbohydrate fermentation pattern and 16s rDNA sequence. JA71 was investigated for its physiological characteristics. The optimum growth temperature of JA71 was 37℃, and the cultures took 12 h to reach pH 4.4. JA71 proved more sensitive to bacitracin when compared with fifteen different antibiotics, and showed most resistance to neomycin and vancomycin. Moreover, it was comparatively tolerant of bile juice and acid, and displayed resistance to Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus with restraint rates of 60.4%, 96.7%, and 76.2%, respectively. These results demonstrate that JA71 could be an excellent strain for application to functional products. PMID:26760752

  19. Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood.

    PubMed

    Park, Sun-Young; Do, Jeong-Ryong; Kim, Young-Jin; Kim, Kee-Sung; Lim, Sang-Dong

    2014-01-01

    Folic acid, one of the B group of vitamins, is an essential substance for maintaining the functions of the nervous system, and is also known to decrease the level of homocysteine in plasma. Homocysteine influences the lowering of the cognitive function in humans, and especially in elderly people. In order to determine the strains with a strong capacity to produce folic acid, 190 bacteria were isolated from various kinds of jeotgal and chungkuk-jang. In our test experiment, JA71 was found to contain 9.03μg/mL of folic acid after 24 h of incubation in an MRS broth. This showed that JA71 has the highest folic acid production ability compared to the other lactic acid bacteria that were isolated. JA71 was identified as Lactobacillus plantarum by the result of API carbohydrate fermentation pattern and 16s rDNA sequence. JA71 was investigated for its physiological characteristics. The optimum growth temperature of JA71 was 37℃, and the cultures took 12 h to reach pH 4.4. JA71 proved more sensitive to bacitracin when compared with fifteen different antibiotics, and showed most resistance to neomycin and vancomycin. Moreover, it was comparatively tolerant of bile juice and acid, and displayed resistance to Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus with restraint rates of 60.4%, 96.7%, and 76.2%, respectively. These results demonstrate that JA71 could be an excellent strain for application to functional products. PMID:26760752

  20. Potential role of stabilized Criegee radicals in sulfuric acid production in a high biogenic VOC environment.

    PubMed

    Kim, Saewung; Guenther, Alex; Lefer, Barry; Flynn, James; Griffin, Robert; Rutter, Andrew P; Gong, Longwen; Cevik, Basak Karakurt

    2015-03-17

    We present field observations made in June 2011 downwind of Dallas-Fort Worth, TX, and evaluate the role of stabilized Criegee radicals (sCIs) in gaseous sulfuric acid (H2SO4) production. Zero-dimensional model calculations show that sCI from biogenic volatile organic compounds composed the majority of the sCIs. The main uncertainty associated with an evaluation of H2SO4 production from the sCI reaction channel is the lack of experimentally determined reaction rates for sCIs formed from isoprene ozonolysis with SO2 along with systematic discrepancies in experimentally derived reaction rates between other sCIs and SO2 and water vapor. In general, the maximum of H2SO4 production from the sCI channel is found in the late afternoon as ozone increases toward the late afternoon. The sCI channel, however, contributes minor H2SO4 production compared with the conventional OH channel in the mid-day. Finally, the production and the loss rates of H2SO4 are compared. The application of the recommended mass accommodation coefficient causes significant overestimation of H2SO4 loss rates compared with H2SO4 production rates. However, the application of a lower experimental value for the mass accommodation coefficient provides good agreement between the loss and production rates of H2SO4. The results suggest that the recommended coefficient for the H2O surface may not be suitable for this relatively dry environment. PMID:25700170

  1. Camelina meal increases egg n-3 fatty acid content without altering quality or production in laying hens.

    PubMed

    Kakani, Radhika; Fowler, Justin; Haq, Akram-Ul; Murphy, Eric J; Rosenberger, Thad A; Berhow, Mark; Bailey, Christopher A

    2012-05-01

    Camelina sativa is an oilseed plant rich in n-3 and n-6 fatty acids and extruding the seeds results in high protein meal (*40%) containing high levels of n-3 fatty acids. In this study, we examined the effects of feeding extruded defatted camelina meal to commercial laying hens, measuring egg production, quality, and fatty acid composition. Lohmann White Leghorn hens (29 weeks old) were randomly allocated to three dietary treatment groups (n = 25 per group) and data was collected over a 12 week production period. All the treatment groups were fed a corn soy based experimental diet containing 0% (control), 5, or 10% extruded camelina meal. We found no significant differences in percent hen-day egg production and feed consumed per dozen eggs. Egg shell strength was significantly higher in both camelina groups compared to the controls. Egg total n-3 fatty acid content increased 1.9- and 2.7-fold in 5 and 10% camelina groups respectively relative to the control. A similar increase in DHA content also occurred. Further camelina meal did not alter glucosinolate levels and no detectable glucosinolates or metabolic product isothiocyanates were found in the eggs from either the 5 or 10% camelina groups. These results indicate that camelina meal is a viable dietary source of n-3 fatty acids for poultry and its dietary inclusion results in eggs enriched with n-3 fatty acids. PMID:22302480

  2. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    PubMed

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here. PMID:24343766

  3. Shakedown operations in commercial production of sulfuric acid from acid tar

    SciTech Connect

    Perfil'ev, V.M.; Golyshev, V.B.; Goncharenko, A.D.; Shtafinskaya, A.M.; Sushchev, V.S.

    1985-07-01

    The authors describe process technology for processing acid tars to obtain sulfuric acid by means of high temperature splitting to regenerate spent sulfuric acid contaminated with organic impurities. An illustration presents a simplified flow plan for acid tar processing. The authors conclude, from experience with this unit, that process indexes meet design requirements, in particular with respect to the degree of decomposition of the acid tar, the temperature conditions the SO/sub 2/ conversion, the SO/sub 3/ adsorption, and the quality and quantity of the oleum and commercial sulfuric acid obtained.

  4. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    PubMed

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. PMID:27359065

  5. Production of Diethyl Terephthalate from Biomass-Derived Muconic Acid.

    PubMed

    Lu, Rui; Lu, Fang; Chen, Jiazhi; Yu, Weiqiang; Huang, Qianqian; Zhang, Junjie; Xu, Jie

    2016-01-01

    We report a cascade synthetic route to directly obtain diethyl terephthalate, a replacement for terephthalic acid, from biomass-derived muconic acid, ethanol, and ethylene. The process involves two steps: First, a substituted cyclohexene system is built through esterification and Diels-Alder reaction; then, a dehydrogenation reaction provides diethyl terephthalate. The key esterification reaction leads to improved solubility and modulates the electronic properties of muconic acid, thus promoting the Diels-Alder reaction with ethylene. With silicotungstic acid as the catalyst, nearly 100% conversion of muconic acid was achieved, and the cycloadducts were formed with more than 99.0% selectivity. The palladium-catalyzed dehydrogenation reaction preferentially occurs under neutral or mildly basic conditions. The total yield of diethyl terephthalate reached 80.6% based on the amount of muconic acid used in the two-step synthetic process. PMID:26592149

  6. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Octadecanoic acid, reaction...

  7. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tall oil fatty acids,...

  8. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction...

  9. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Octadecanoic acid, reaction...

  10. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Octadecanoic acid, reaction...

  11. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Tall oil fatty acids,...

  12. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Tall oil fatty acids,...

  13. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tall oil fatty acids,...

  14. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Tall oil fatty acids,...

  15. [Comparative biological value of the proteins comprising the products for the tube and regular feeding of patients with mandibular fractures].

    PubMed

    Kholodov, S V; Vitollo, A S; Kalamkarova, O M; Rud'ko, V F; Vysotskiĭ, V G

    1988-01-01

    A comparative clinical evaluation was made of the biological effectiveness of protein components in the composition of three types of diet for patients with fractures of the mandible who had received "Ensure" (USA), a product for complete tube feeding; an experimental sample developed at the Institute of Nutrition, Academy of Medical Sciences of the USSR; and a routine clinical diet. The biological effectiveness of the proteins was estimated by some anthropometric and biochemical parameters as well as on the basis of nitrogenous metabolism in the patients. It has been established that the protein content in the routine clinical diets does not meet the high requirements in amino acids of patients with fracture of the mandible. In this respect the products for tube and dietotherapy have proved to be effective and completely provide the need of such patients in essential amino acids that has been evidenced by the results of the investigations conducted. PMID:3146160

  16. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  17. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  18. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor.

    PubMed

    Mounir, Majid; Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Hamouda, Allal; Ismaili Alaoui, Mustapha; Thonart, Philippe

    2016-02-01

    The activity of bacterial strains significantly influences the quality and the taste of vinegar. Previous studies of acetic acid bacteria have primarily focused on the ability of bacterial strains to produce high amounts of acetic acid. However, few studies have examined the production of gluconic acid during acetous fermentation at high temperatures. The production of vinegar at high temperatures by two strains of acetic acid bacteria isolated from apple and cactus fruits, namely AF01 and CV01, respectively, was evaluated in this study. The simultaneous production of gluconic and acetic acids was also examined in this study. Biochemical and molecular identification based on a 16s rDNA sequence analysis confirmed that these strains can be classified as Acetobacter pasteurianus. To assess the ability of the isolated strains to grow and produce acetic acid and gluconic acid at high temperatures, a semi-continuous fermentation was performed in a 20-L bioreactor. The two strains abundantly grew at a high temperature (41°C). At the end of the fermentation, the AF01 and CV01 strains yielded acetic acid concentrations of 7.64% (w/v) and 10.08% (w/v), respectively. Interestingly, CV01 was able to simultaneously produce acetic and gluconic acids during acetic fermentation, whereas AF01 mainly produced acetic acid. In addition, CV01 was less sensitive to ethanol depletion during semi-continuous fermentation. Finally, the enzymatic study showed that the two strains exhibited high ADH and ALDH enzyme activity at 38°C compared with the mesophilic reference strain LMG 1632, which was significantly susceptible to thermal inactivation. PMID:26253254

  19. A Comparative Study of Phosphoric Acid-doped m-PBI Membranes

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Payzant, E Andrew; Meisner, Roberta A; Sumpter, Bobby G; Benicewicz, Brian

    2014-01-01

    Phosphoric acid (PA)-doped m-polybenzimidazole (PBI) membranes used in high temperature fuel cells and hydrogen pumps were prepared by a conventional imbibing process and a sol-gel fabrication process. A comparative study was conducted to investigate the critical properties of PA doping levels, ionic conductivities, mechanical properties, and molecular ordering. This systematic study found that sol-gel PA-doped m-PBI membranes were able to absorb higher acid doping levels and to achieve higher ionic conductivities than conventionally imbibed membranes when treated in an equivalent manner. Even at similar acid loadings, the sol-gel membranes exhibited higher ionic conductivities. Heat treatment of conventionally imbibed membranes with 29wt% solids caused a significant reduction in mechanical properties; conversely, sol-gel membranes exhibited an enhancement in mechanical properties. From X-ray structural studies and atomistic simulations, both conventionally imbibed and sol-gel membranes exhibited d-spacings of 3.5 and 4.6 , which were tentatively attributed to parallel ring stacking and staggered side-to-side packing, respectively, of the imidazole rings in these aromatic hetercyclic polymers. An anisotropic staggered side-to-side chain packing present in the conventional membranes may be root to the reduction in mechanical properties.

  20. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids.

    PubMed

    Marković, Svetlana; Tošović, Jelena

    2016-11-01

    A detailed conformational analysis was performed to determine the most stable conformers of chlorogenic, cryptochlorogenic, and neochlorogenic acids. The simulated and experimental NMR spectra of caffeoylquinic acids are in excellent agreement. The bond dissociation enthalpies, proton affinities, electron transfer enthalpies, ionisation potentials, and proton dissociation enthalpies for these compounds and caffeic acid in benzene, methanol, and water were used for thermodynamic consideration of the major antioxidative mechanisms: HAT (Hydrogen Atom Transfer), SPLET (Sequential Proton-Loss Electron-Transfer), and SET-PT (Single Electron Transfer - Proton Transfer). All compounds are characterised with very similar values of each enthalpy, suggesting that they will exhibit comparable antioxidative activities. This assumption is in perfect accord with the experimental findings. It was suggested that HAT may be the predominant mechanism in nonpolar solvents, while HAT and SPLET are competitive pathways in polar media. All calculations were performed using the B3LYP-D2/6-311++G(d,p) and M06-2X/6-311++G(d,p) levels of theory and CPCM solvation model. PMID:27211685

  1. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    SciTech Connect

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  2. Engineering Yarrowia lipolytica for production of medium-chain fatty acids.

    PubMed

    Rutter, Charles D; Zhang, Shuyan; Rao, Christopher V

    2015-09-01

    Lipids are naturally derived products that offer an attractive, renewable alternative to petroleum-based hydrocarbons. While naturally produced long-chain fatty acids can replace some petroleum analogs, medium-chain fatty acid would more closely match the desired physical and chemical properties of currently employed petroleum products. In this study, we engineered Yarrowia lipolytica, an oleaginous yeast that naturally produces lipids at high titers, to produce medium-chain fatty acids. Five different acyl-acyl carrier protein (ACP) thioesterases with specificity for medium-chain acyl-ACP molecules were expressed in Y. lipolytica, resulting in formation of either decanoic or octanoic acid. These novel fatty acid products were found to comprise up to 40 % of the total cell lipids. Furthermore, the reduction in chain length resulted in a twofold increase in specific lipid productivity in these engineered strains. The medium-chain fatty acids were found to be incorporated into all lipid classes. PMID:26129951

  3. Detection and Quantification of Valerenic Acid in Commercially Available Valerian Products

    ERIC Educational Resources Information Center

    Douglas, Ruth H.; Muldowney, Ciaran A.; Mohamed, Rabab; Keohane, Fiona; Shanahan, Catherine; Walsh, John J.; Kavanagh, Pierce V.

    2007-01-01

    Several valerian-containing products sold in pharmacies were evaluated to verify the presence of Valeriana officinalis by identifying the presence of valerenic acid found only in species of Valeriana. The content of valerenic acid was found to vary considerably in the products analyzed, thus emphasizing the importance of standardizing herbal…

  4. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction products...

  5. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, reaction products...

  6. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, reaction products...

  7. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction products...

  8. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, reaction products...

  9. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To determine the effects of hops extract, on in vitro volatile fatty acid (VFA) production by bovine rumen microorganisms. Methods and Results: When mixed rumen microbes were suspended in media containing carbohydrates, the initial rates of VFA production were suppressed by beta-acid rich hops...

  10. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  11. Diversity of Δ12 fatty acid desaturases in santalaceae and their role in production of seed oil acetylenic fatty acids.

    PubMed

    Okada, Shoko; Zhou, Xue-Rong; Damcevski, Katherine; Gibb, Nerida; Wood, Craig; Hamberg, Mats; Haritos, Victoria S

    2013-11-01

    Plants in the Santalaceae family, including the native cherry Exocarpos cupressiformis and sweet quandong Santalum acuminatum, accumulate ximenynic acid (trans-11-octadecen-9-ynoic acid) in their seed oil and conjugated polyacetylenic fatty acids in root tissue. Twelve full-length genes coding for microsomal Δ12 fatty acid desaturases (FADs) from the two Santalaceae species were identified by degenerate PCR. Phylogenetic analysis of the predicted amino acid sequences placed five Santalaceae FADs with Δ12 FADs, which include Arabidopsis thaliana FAD2. When expressed in yeast, the major activity of these genes was Δ12 desaturation of oleic acid, but unusual activities were also observed: i.e. Δ15 desaturation of linoleic acid as well as trans-Δ12 and trans-Δ11 desaturations of stearolic acid (9-octadecynoic acid). The trans-12-octadecen-9-ynoic acid product was also detected in quandong seed oil. The two other FAD groups (FADX and FADY) were present in both species; in a phylogenetic tree of microsomal FAD enzymes, FADX and FADY formed a unique clade, suggesting that are highly divergent. The FADX group enzymes had no detectable Δ12 FAD activity but instead catalyzed cis-Δ13 desaturation of stearolic acid when expressed in yeast. No products were detected for the FADY group when expressed recombinantly. Quantitative PCR analysis showed that the FADY genes were expressed in leaf rather than developing seed of the native cherry. FADs with promiscuous and unique activities have been identified in Santalaceae and explain the origin of some of the unusual lipids found in this plant family. PMID:24062307

  12. Diversity of Δ12 Fatty Acid Desaturases in Santalaceae and Their Role in Production of Seed Oil Acetylenic Fatty Acids*

    PubMed Central

    Okada, Shoko; Zhou, Xue-Rong; Damcevski, Katherine; Gibb, Nerida; Wood, Craig; Hamberg, Mats; Haritos, Victoria S.

    2013-01-01

    Plants in the Santalaceae family, including the native cherry Exocarpos cupressiformis and sweet quandong Santalum acuminatum, accumulate ximenynic acid (trans-11-octadecen-9-ynoic acid) in their seed oil and conjugated polyacetylenic fatty acids in root tissue. Twelve full-length genes coding for microsomal Δ12 fatty acid desaturases (FADs) from the two Santalaceae species were identified by degenerate PCR. Phylogenetic analysis of the predicted amino acid sequences placed five Santalaceae FADs with Δ12 FADs, which include Arabidopsis thaliana FAD2. When expressed in yeast, the major activity of these genes was Δ12 desaturation of oleic acid, but unusual activities were also observed: i.e. Δ15 desaturation of linoleic acid as well as trans-Δ12 and trans-Δ11 desaturations of stearolic acid (9-octadecynoic acid). The trans-12-octadecen-9-ynoic acid product was also detected in quandong seed oil. The two other FAD groups (FADX and FADY) were present in both species; in a phylogenetic tree of microsomal FAD enzymes, FADX and FADY formed a unique clade, suggesting that are highly divergent. The FADX group enzymes had no detectable Δ12 FAD activity but instead catalyzed cis-Δ13 desaturation of stearolic acid when expressed in yeast. No products were detected for the FADY group when expressed recombinantly. Quantitative PCR analysis showed that the FADY genes were expressed in leaf rather than developing seed of the native cherry. FADs with promiscuous and unique activities have been identified in Santalaceae and explain the origin of some of the unusual lipids found in this plant family. PMID:24062307

  13. Production of amino acids using auxotrophic mutants of methylotrophic bacillus

    DOEpatents

    Hanson, Richard S.; Flickinger, Michael C.; Schendel, Frederick J.; Guettler, Michael V.

    2001-07-17

    A method of producing amino acids by culturing an amino acid auxotroph of a biologically pure strain of a type I methylotrophic bacterium of the genus Bacillus which exhibits sustained growth at 50.degree. C. using methanol as a carbon and energy source and requiring vitamin B.sub.12 and biotin is provided.

  14. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  15. Caffeic Acid Derivatives in Dried Lamiaceae and Echinacea purpurea Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentrations of caffeic acid derivatives within Lamiaceae and Echinacea (herb, spice, tea, and dietary supplement forms) readily available in the U.S. marketplace (n=72) were determined. After the first identification of chicoric acid in Ocimum basilicum (basil), the extent to which chicoric a...

  16. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    PubMed

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates. PMID:26043971

  17. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production

    PubMed Central

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2015-01-01

    Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. PMID:25431456

  18. Comparative evaluation of standardized ileal amino acid digestibility in protein supplements for piglets.

    PubMed

    Eklund, M; Sauer, N; Hörner, S; Rademacher, M; Mosenthin, R

    2012-12-01

    Standardized ileal digestibility (SID) of AA was determined in 6 protein ingredients for piglets. A basal diet based on corn (Zea mays) starch and casein was supplemented with fluid-bed-dried porcine intestinal mucosa hydrolysate, spray-dried porcine intestinal mucosa hydrolysate, soy (Glycine max) protein concentrate, 2 batches of soy protein, or full-fat soybeans. The SID of AA did not differ between the 4 soybean products (P > 0.05). Compared to most SID values in the 4 soybean products, SID of AA were lower in the 2 porcine intestinal mucosa hydrolysates (P ≤ 0.05). In conclusion, although the initial trypsin inhibitor contents in the raw soybeans have not been determined, high SID values in the 4 soybean products indicate that the different processing procedures used to manufacture these products were efficient to inactivate trypsin inhibitors. For most AA in the 2 porcine intestinal mucosa hydrolysates, drying procedure did not affect SID of AA, but SID values were generally lower compared to the 4 soybean products. PMID:23365314

  19. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.

    PubMed

    Lee, Charles C; Kibblewhite, Rena E; Paavola, Chad D; Orts, William J; Wagschal, Kurt

    2016-07-01

    Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes. PMID:27198564

  20. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.

    PubMed

    Pérez-García, Fernando; Peters-Wendisch, Petra; Wendisch, Volker F

    2016-09-01

    The Gram-positive Corynebacterium glutamicum is widely used for fermentative production of amino acids. The world production of L-lysine has surpassed 2 million tons per year. Glucose uptake and phosphorylation by C. glutamicum mainly occur by the phosphotransferase system (PTS) and to lesser extent by inositol permeases and glucokinases. Heterologous expression of the genes for the high-affinity glucose permease from Streptomyces coelicolor and Bacillus subtilis glucokinase fully compensated for the absence of the PTS in Δhpr strains. Growth of PTS-positive strains with glucose was accelerated when the endogenous inositol permease IolT2 and glucokinase from B. subtilis were overproduced with balanced translation initiation rates using plasmid pEKEx3-IolTBest. When the genome-reduced C. glutamicum strain GRLys1 carrying additional in-frame deletions of sugR and ldhA to derepress glycolytic and PTS genes and to circumvent formation of L-lactate as by-product was transformed with this plasmid or with pVWEx1-IolTBest, 18 to 20 % higher volumetric productivities and 70 to 72 % higher specific productivities as compared to the parental strain resulted. The non-proteinogenic amino acid L-pipecolic acid (L-PA), a precursor of immunosuppressants, peptide antibiotics, or piperidine alkaloids, can be derived from L-lysine. To enable production of L-PA by the constructed L-lysine-producing strain, the L-lysine 6-dehydrogenase gene lysDH from Silicibacter pomeroyi and the endogenous pyrroline 5-carboxylate reductase gene proC were overexpressed as synthetic operon. This enabled C. glutamicum to produce L-PA with a yield of 0.09 ± 0.01 g g(-1) and a volumetric productivity of 0.04 ± 0.01 g L(-1) h(-1).To the best of our knowledge, this is the first fermentative process for the production of L-PA from glucose. PMID:27345060

  1. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A. L. C. H.; Bergaentzle, M.

    2012-08-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters.

  2. Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2011-10-01

    Lactobionic acid finds applications in the fields of pharmaceuticals, cosmetics and medicine. The production of lactobionic acid from whey by Pseudomonas taetrolens was studied in shake-flasks and in a bioreactor. Shake-flask experiments showed that lactobionic acid was a non-growth associated product. A two-stage pH-shift bioconversion strategy with a pH-uncontrolled above 6.5 during the growth phase and maintained at 6.5 during cumulative production was adopted in bioreactor batch cultures. An inoculation level of 30% promoted high cell culture densities that triggered lactobionic acid production at a rate of 1.12 g/Lh. This methodology displayed efficient bioconversion with cheese whey as an inexpensive substrate for lactobionic acid production. PMID:21862326

  3. Effect of amino acids and vitamins on laccase production by the bird's nest fungus Cyathus bulleri.

    PubMed

    Dhawan, Shikha; Kuhad, Ramesh Chander

    2002-08-01

    Various amino acids, their analogues and vitamins have shown stimulatory as well as inhibitory effects on laccase production by Cyathus bulleri. DL-methionine, DL-tryptophan, glycine and DL-valine stimulated laccase production, while L-cysteine monohydrochloride completely inhibited the enzyme production. Among vitamins tested biotin, riboflavin and pyridoxine hydrochloride were found to induce laccase production. PMID:12137266

  4. Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil.

    PubMed

    Yang, Cuiyue; Nie, Renfeng; Fu, Jie; Hou, Zhaoyin; Lu, Xiuyang

    2013-10-01

    A series of fatty acids in microalgae oil, such as stearic acid, palmitic acid, lauric acid, myristic acid, arachidic acid and behenic acid, were selected as the raw materials to produce aviation fuel via hydrothermal decarboxylation over a multi-wall carbon nanotube supported Pt catalyst (Pt/MWCNTs). It was found that Pt/MWCNTs catalysts exhibited higher activity for the hydrothermal decarboxylation of stearic acid with a 97% selectivity toward heptadecane compared to Pt/C and Ru/C under the same conditions. And Pt/MWCNTs is also capable for the decarboxylation of different fatty acids in microalgae oil. The reaction conditions, such as Pt/MWCNTs loading amount, reaction temperature and time were optimized. The activation energy of stearic acid decarboxylation over Pt/MWCNTs was calculated (114 kJ/mol). PMID:23973977

  5. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important nutrition and disease management properties. Presently fish oil (FO) supplementation relies on capsular triglyceride. Flavored emulsified lipid preparations may provide an improved approach to FO del...

  6. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels.

    PubMed

    Janßen, Helge Jans; Steinbüchel, Alexander

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  7. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    PubMed Central

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  8. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    PubMed Central

    Senedese, Ana Lívia Chemeli; Maciel Filho, Rubens; Maciel, Maria Regina Wolf

    2015-01-01

    Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid). L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses) and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v) inoculum). Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid. PMID:25922852

  9. Production and Degradation of Oxalic Acid by Brown Rot Fungi

    PubMed Central

    Espejo, Eduardo; Agosin, Eduardo

    1991-01-01

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi. PMID:16348522

  10. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  11. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells

    PubMed Central

    Park, Hui Gyu; Park, Woo Jung; Kothapalli, Kumar S. D.; Brenna, J. Thomas

    2015-01-01

    Docosahexaenoic acid (DHA) is a Δ4-desaturated C22 fatty acid and the limiting highly unsaturated fatty acid (HUFA) in neural tissue. The biosynthesis of Δ4-desaturated docosanoid fatty acids 22:6n-3 and 22:5n-6 are believed to proceed via a circuitous biochemical pathway requiring repeated use of a fatty acid desaturase 2 (FADS2) protein to perform Δ6 desaturation on C24 fatty acids in the endoplasmic reticulum followed by 1 round of β-oxidation in the peroxisomes. We demonstrate here that the FADS2 gene product can directly Δ4-desaturate 22:5n-3→22:6n-3 (DHA) and 22:4n-6→22:5n-6. Human MCF-7 cells lacking functional FADS2-mediated Δ6-desaturase were stably transformed with FADS2, FADS1, or empty vector. When incubated with 22:5n-3 or 22:4n-6, FADS2 stable cells produce 22:6n-3 or 22:5n-6, respectively. Similarly, FADS2 stable cells when incubated with d5-18:3n-3 show synthesis of d5-22:6n-3 with no labeling of 24:5n-3 or 24:6n-3 at 24 h. Further, both C24 fatty acids are shown to be products of the respective C22 fatty acids via elongation. Our results demonstrate that the FADS2 classical transcript mediates direct Δ4 desaturation to yield 22:6n-3 and 22:5n-6 in human cells, as has been widely shown previously for desaturation by fish and many other organisms.—Park, H. G., Park, W. J., Kothapalli, K. S. D., Brenna, J. T. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. PMID:26065859

  12. Regulating Pyruvate Carboxylase in the Living Culture of Aspergillus Terreus Nrrl 1960 by L-Aspartate for Enhanced Itaconic Acid Production.

    PubMed

    Songserm, Pajareeya; Thitiprasert, Sitanan; Tolieng, Vasana; Piluk, Jiraporn; Tanasupawat, Somboon; Assabumrungrat, Sutthichai; Yang, Shang-Tian; Karnchanatat, Aphichart; Thongchul, Nuttha

    2015-10-01

    Aspergillus terreus was reported as the promising fungal strain for itaconic acid; however, the commercial production suffers from the low yield. Low production yield was claimed as the result of completing the tricarboxylic acid (TCA) cycle towards biomass synthesis while under limiting phosphate and nitrogen; TCA cycle was somewhat shunted and consequently, the metabolite fluxes move towards itaconic acid production route. By regulating enzymes in TCA cycle, it is believed that itaconic acid production can be improved. One of the key responsible enzymes involved in itaconic acid production was triggered in this study. Pyruvate carboxylase was allosterically inhibited by L-aspartate. The presence of 10 mM L-aspartate in the production medium directly repressed PC expression in the living A. terreus while the limited malate flux regulated the malate/citrate antiporters resulting in the increasing cis-aconitate decarboxylase activity to simultaneously convert cis-aconitate, citrate isomer, into itaconic acid. The transport of cis-aconitate via the antiporters induced citrate synthase and 6-phosphofructo-1-kinase activities in response to balance the fluxes of TCA intermediates. Successively, itaconic acid production yield and final concentration could be improved by 8.33 and 60.32 %, respectively, compared to those obtained from the control fermentation with the shortened lag time to produce itaconic acid during the production phase. PMID:26208692

  13. Selection method of pH conditions to establish Pseudomonas taetrolens physiological states and lactobionic acid production.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2013-05-01

    Microbial physiological responses resulting from inappropriate bioprocessing conditions may have a marked impact on process performance within any fermentation system. The influence of different pH-control strategies on physiological status, microbial growth and lactobionic acid production from whey by Pseudomonas taetrolens during bioreactor cultivations has been investigated for the first time in this work. Both cellular behaviour and bioconversion efficiency from P. taetrolens were found to be negatively influenced by pH-control modes carried out at values lower than 6.0 and higher than 7.0. Production schemes were also influenced by the operational pH employed, with asynchronous production from damaged and metabolically active subpopulations at pH values lower than 6.0. Moreover, P. taetrolens showed reduced cellular proliferation and a subsequent delay in the onset of the production phase under acidic conditions (pH < 6.0). Unlike cultivations performed at 6.5, both pH-shift and pH-stat cultivation strategies performed at pH values lower than 6.0 resulted in decreased lactobionic acid production. Whereas the cellular response showed a stress-induced physiological response under acidic conditions, healthy functional cells were predominant at medium operational pH values (6.5-7.0). P. taetrolens thus displayed a robust physiological status at initial pH value of 6.5, resulting in an enhanced bioconversion yield and lactobionic acid productivity (7- and 4-fold higher compared to those attained at initial pH values of 4.5 and 5.0, respectively). These results have shown that pH-control modes strongly affected both the physiological response of cells and the biological performance of P. taetrolens, providing key information for bio-production of lactobionic acid on an industrial scale. PMID:23254761

  14. Comparative genotoxicity of 3-hydroxyanthranilic acid and anthranilic acid in the presence of a metal cofactor Cu (II) in vitro.

    PubMed

    Gadupudi, Gopi S; Chung, King-Thom

    2011-12-24

    Several clinical studies have reported that an increase in excretion of tryptophan metabolites 3-hydroxyanthranilic acid (3-OHAA), anthranilic acid (AA) and other metabolites in the urine of bladder cancer patients are implicated to play a role in the etiology of bladder cancer; however the mechanisms involved are unknown. The present study compares the genotoxicity of tryptophan metabolites AA and 3-OHAA to cause mutagenesis in vitro. The DNA damage effects of tryptophan metabolites were analyzed using plasmid relaxation assay performed with AA and 3-OHAA at various concentrations between 50μM and 400μM in the presence of plasmid DNA pSP-72. Both AA and 3-OHAA did not show any plasmid relaxation activity when tested alone. However, 3-OHAA in the presence of metal cofactor Cu (II) induced plasmid relaxation by causing nicks in the plasmid. This effect was not observed in the presence of other metal cofactors Fe (II) and Mn (III). Cu (II) at increasing concentrations between 5μM and 20μM and in the presence of 100μM 3-OHAA showed an apparent dose-response in causing DNA strand breaks. The Cu (II) mediated mutagenic activation of 3-OHAA was further investigated using Ames Salmonella/microsome mutagenicity assay with reactive oxygen species (ROS) sensitive tester strain Salmonella TA102. When 100μg of 3-OHAA per plate was incubated with Cu (II) a significant increase in TA102 revertants was observed with an increase in the concentration of Cu (II) from 2.5μg to 50μg. In contrast, AA with Cu (II) at such low concentration was unable to cause any significant increase in number of the TA102 revertants. This evidence for mutagenicity with only 3-OHAA and Cu (II) but not AA suggests the presence of hydroxyl group at ortho position to amino group in 3-OHAA structurally, is critical in reacting with Cu (II) to generate genotoxicity. PMID:22015263

  15. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    PubMed

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. PMID:26168906

  16. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts.

    PubMed

    do Espírito Santo, Ana Paula; Cartolano, Nathalie S; Silva, Thaiane F; Soares, Fabiana A S M; Gioielli, Luiz A; Perego, Patrizia; Converti, Attilio; Oliveira, Maricê N

    2012-03-15

    This study evaluated the effect of the supplementation of total dietary fiber from apple, banana or passion fruit processing by-products on the post-acidification, total titratable acidity, bacteria counts and fatty acid profiles in skim milk yoghurts co-fermented by four different probiotics strains: Lactobacillus acidophilus L10 and Bifidobacterium animalis subsp. lactis BL04, HN019 and B94. Apple and banana fibers increased the probiotic viability during shelf-life. All the fibers were able to increase the short chain and polyunsaturated fatty acid contents of yoghurts compared to their respective controls. A synergistic effect between the type of fiber and the probiotic strain on the conjugated linoleic acid content was observed, and the amount of α-linolenic acid was increased by banana fiber. The results of this study demonstrate, for the first time, that fruit fibers can improve the fatty acid profile of probiotic yoghurts and point out the suitability of using fibers from fruit processing the by-products to develop new high value-added fermented dairy products. PMID:22264421

  17. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-01

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors. PMID:24411456

  18. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    PubMed Central

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  19. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin

    PubMed Central

    2011-01-01

    Background Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated. Results The highest catalytic activity was achieved with a 96.1% esterification rate, and the catalyst can be reused three times with little deactivation under optimized conditions. Biodiesel production from Jatropha oil was studied under such conditions. It was found that 96.3% biodiesel yield from non-pretreated Jatropha oil with high-acid value (12.7 mg KOH/g) could be achieved. Conclusions The catalyst can be easily separated for reuse. This single-step process could be a potential route for biodiesel production from high-acid value oil by simplifying the procedure and reducing costs. PMID:22145867

  20. Production of Biologically Active Hydroxy Fatty Acids from Vegetable Oils by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids have gained industrial attention because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. The bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from ...

  1. Production of Biologically Active Hydroxy Fatty Acids by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA) have gained important attentions because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsatu...

  2. Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1.

    PubMed

    Jung, Da-Hye; Kim, Eun-Jung; Jung, Eunok; Kazlauskas, Romas J; Choi, Kwon-Young; Kim, Byung-Gee

    2016-07-01

    p-Coumaric acid (pCA) is abundant in biomass with low lignin content, such as straw and stubble from rye, wheat, and barley. pCA can be isolated from biomass and used for the synthesis of aromatic hydrocarbons. Here, we report engineering of the natural pathway for conversion of pCA into p-hydroxybenzoic acid (pHBA) to increase the amount of pHBA that accumulates more than 100-fold. Burkholderia glumae strain BGR1 (BGR1) grows efficiently on pCA as a sole carbon source via a CoA-dependent non-β-oxidation pathway. This pathway removes two carbons from pCA as acetyl-CoA yielding p-hydroxybenzaldehyde and subsequently oxidizes it to pHBA. To increase the amount of accumulated pHBA in BGR1, we first deleted two genes encoding enzymes that degrade pHBA in the β-ketoadipate pathway. At 10 mM of pCA, the double deletion mutant BGR1_PB4 (Δphb3hΔbcl) accumulated pHBA with 95% conversion, while the control BGR1 accumulated only with 11.2% conversion. When a packed bed reactor containing immobilized BGR1_PB4 cells was operated at a dilution rate 0.2 h(-1) , the productivity of pHBA was achieved at 9.27 mg/L/h for 134 h. However, in a batch reactor at 20 mM pCA, growth of BGR1_PB4 was strongly inhibited, resulting in a low conversion of 19.3%. To further increase the amount of accumulated pCA, we identified the first enzyme in the pathway, p-hydroxcinnmaoyl-CoA synthetase II (phcs II), as the rate-limiting enzyme. Over expression of phcs II using a Palk promoter in a batch reaction at 20 mM of pCA yielded 99.0% conversion to pHBA, which is the highest concentration of pHBA ever reported using a biological process. Biotechnol. Bioeng. 2016;113: 1493-1503. © 2015 Wiley Periodicals, Inc. PMID:26693833

  3. ANALYSIS OF ARACHIDONIC ACID METABOLITE AND PLATELET ACTIVATING FACTOR PRODUCTION

    EPA Science Inventory

    Metabolites of arachidonic acid ("eicosanoids") and platelet activating factor are important bioactive lipids that may be involved in the pathobiological alterations in animals induced by pollutant exposure. nalysis of these substances in biological tissue and fluids is important...

  4. Comparison of Bacillus monooxygenase genes for unique fatty acid production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews Bacillus genes encoding monooxygenase enzymes producing unique fatty acid metabolites. Specifically, it examines standard monooxygenase electron transfer schemes and related domain structures of these fused domain enzymes on route to understanding the observed oxygenase activiti...

  5. Fermentation and recovery process for lactic acid production

    DOEpatents

    Tsai, S.P.; Moon, S.H.; Coleman, R.

    1995-11-07

    A method is described for converting starch to glucose and fermenting glucose to lactic acid, including simultaneous saccharification and fermentation through use of a novel consortium of bacterial strains. 2 figs.

  6. Comparative Inter-Species Pharmacokinetics of Phenoxyacetic Acid Herbicides and Related Organic Acids. Evidence that the Dog is Not a Relevant Species for Evaluation of Human Health Risk.

    SciTech Connect

    Timchalk, Chuck

    2004-07-15

    Phenoxyacetic acids including 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) are widely utilized organic acid herbicides that have undergone extensive toxicity and pharmacokinetic analyses. The dog is particularly susceptible to the toxicity of phenoxyacetic acids and related organic acids relative to other species. Active renal clearance mechanisms for organic acids are ubiquitous in mammalian species, and thus a likely mechanism responsible for the increased sensitivity of the dog to these agents is linked to a lower capacity to secrete organic acids from the kidney. Using published data describing the pharmacokinetics of phenoxyacetic and structurally related organic acids in a variety of species including humans, inter-species comparative pharmacokinetics were evaluated using allometic parameter scaling. For both 2,4-D and MCPA the dog plasma half-life (t1/2) and renal clearance (Clr; ml hr-1) rates did not scale as a function of body weight across species; whereas for all other species evaluated, including humans, these pharmacokinetic parameters reasonably scaled. This exceptional response in the dog is clearly illustrated by comparing the plasma t1/2 at comparable doses of 2,4-D and MCPA, across several species. At a dosage of 5 mg/kg, in dogs the plasma t1/2 for 2,4-D and MCPA were {approx}92 - 106 hr and 63 hr, respectively, which is substantially longer than in the rat ({approx}1 and 6 hr, respectively) or in humans (12 and 11 hr, respectively). This longer t1/2, and slower elimination in the dog, results in substantially higher body burdens of these organic acids, at comparable doses, relative to other species. Although these results indicate the important role of renal transport clearance mechanisms as determinants of the clearance and potential toxicity outcomes of phenoxyacetic acid herbicides across several species, other contributing mechanisms such as reabsorption from the renal tubules is highly likely. These

  7. Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes

    NASA Astrophysics Data System (ADS)

    Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.

    2016-06-01

    Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.

  8. Development of xylose-fermenting yeasts for ethanol production at high acetic acid concentrations

    SciTech Connect

    Mohandas, D.V.; Whelan, D.R.; Panchal, C.J.

    1995-12-31

    Mutants resistant to comparatively high levels of acetic acid were isolated from the xylose-fermenting yeasts Candida shehatae and Pichia Stipitis by adapting these cultures to increasing concentrations of acetic acid grown in shake-flask cultures. These mutants were tested for their ability to ferment xylose in presence of high acetic acid concentrations, in acid hydrolysates of wood, and in hardwood spent sulfite liquor, and compared with their wild-type counterparts and between themselves. The P. stipitis mutant exhibited faster fermentation times, better tolerance to acid hydrolysates, and tolerance to lower pH.

  9. Comparative responses of freshwater organisms to exposures of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; McQueen, Andrew D; Rodgers, John H

    2016-06-01

    Comparative toxicity studies using unconfounded exposures can prioritize the selection of sensitive sentinel test species and refine methods for evaluating ecological risks of complex mixtures like naphthenic acids (NAs), a group of organic acids associated with crude oils and energy-derived waters that have been a source of aquatic toxicity. The objectives of this study were to compare responses of freshwater aquatic organisms (vertebrate, invertebrates, and a macrophyte; in terms of acute toxicity) to Fluka commercial NAs and to compare measured toxicity data with peer-reviewed toxicity data for other commercial NA sources and energy-derived NA sources. Exposures were confirmed using high performance liquid chromatography. Responses (7-d LC50s/EC50) ranged from 1.9 mg L(-1) for Pimephales promelas to 56.2 mg L(-1) for Typha latifolia. Following P. promelas in order of decreasing sensitivity were Ceriodaphnia dubia (7-d LC50 = 2.8 mg L(-1)), Hyalella azteca (7-d LC50 = 4.1 mg L(-1)), Chironomus dilutus (7-d LC50 = 6.5 mg L(-1)), and T. latifolia (7-d EC50 = 56.2 mg L(-1)), indicating that in terms of sensitivities, fish > invertebrates > plant for Fluka NAs in this study. Factors that affect exposures and measurements of exposures differ among commercial and energy-derived NAs and constrain comparisons. Despite differences in exposures, fish and invertebrates were relatively sensitive to both commercial and energy-derived NA sources (based on laboratory measurements and peer-reviewed data) and could be appropriate sentinel species for risk evaluations. PMID:27016812

  10. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  11. In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread.

    PubMed

    Dall'Asta, Margherita; Bresciani, Letizia; Calani, Luca; Cossu, Marta; Martini, Daniela; Melegari, Camilla; Del Rio, Daniele; Pellegrini, Nicoletta; Brighenti, Furio; Scazzina, Francesca

    2016-01-01

    Wheat aleurone, due to its potentially higher bioaccessibility and bioavailability of micronutrients and phenolic acids, could represent a useful ingredient in the production of commonly consumed cereal-based food. The aim of the present study was to investigate the in vitro bioaccessibility of phenolic acids both from an aleurone-enriched bread and from a whole grain bread. The two bread samples were firstly characterized for the phenolic acid content. An in vitro digestion was then performed in order to evaluate the release of phenolic acids. The results obtained suggest that the bioaccessibility of the phenolic acids in the aleurone-enriched bread is higher than in the whole grain bread. These in vitro results suggest the potential use of aleurone in the production of foods, and this may represent an attractive possibility to vehicle nutritionally interesting components to consumers. PMID:26771635

  12. In Vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread

    PubMed Central

    Dall’Asta, Margherita; Bresciani, Letizia; Calani, Luca; Cossu, Marta; Martini, Daniela; Melegari, Camilla; Del Rio, Daniele; Pellegrini, Nicoletta; Brighenti, Furio; Scazzina, Francesca

    2016-01-01

    Wheat aleurone, due to its potentially higher bioaccessibility and bioavailability of micronutrients and phenolic acids, could represent a useful ingredient in the production of commonly consumed cereal-based food. The aim of the present study was to investigate the in vitro bioaccessibility of phenolic acids both from an aleurone-enriched bread and from a whole grain bread. The two bread samples were firstly characterized for the phenolic acid content. An in vitro digestion was then performed in order to evaluate the release of phenolic acids. The results obtained suggest that the bioaccessibility of the phenolic acids in the aleurone-enriched bread is higher than in the whole grain bread. These in vitro results suggest the potential use of aleurone in the production of foods, and this may represent an attractive possibility to vehicle nutritionally interesting components to consumers. PMID:26771635

  13. Production of high optical purity l-lactic acid from waste activated sludge by supplementing carbohydrate: effect of temperature and pretreatment time.

    PubMed

    Jian, Qiwei; Li, Xiang; Chen, Yinguang; Liu, Yanan; Pan, Yin

    2016-10-01

    It has been widely accepted that the most environmentally beneficial way to treat waste activated sludge (WAS), the byproduct of municipal wastewater treatment plant, is to recover the valuable organic acid. However, the bio-conversion of lactic acid, one of the high added-value chemical, is seldom reported from WAS fermentation. In this paper, l-lactic acid was observed dominant in the WAS fermentation liquid with carbohydrate addition at ambient temperature. Furthermore, the effect of temperature on l-lactic acid and d-lactic acid production was fully discussed: two isomers were rapidly produced and consumed up in one day at mesophilic condition; and almost optically pure l-lactic acid was generated at thermophilic condition, yet time-consuming with yield of l-lactic acid enhancing by 52.9% compared to that at ambient temperature. The study mechanism showed that mesophilic condition was optimal for both production and consumption of l-lactic acid and d-lactic acid, while consumption of l-lactic acid and production of d-lactic acid were severely inhibited at thermophilic condition. Therefore, by maintaining thermophilic for 4 h in advance and subsequently fermenting mesophilic for 34 h, the concentration of l-lactic acid with optical activity of 98.3% was improved to 16.6 ± 0.5 g COD/L at a high specific efficiency of 0.6097/d. PMID:26878176

  14. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products.

    PubMed

    Mattila, Pirjo; Pihlava, Juha-Matti; Hellström, Jarkko

    2005-10-19

    The contents of free and total phenolic acids and alk(en)ylresorcinols were analyzed in commercial products of eight grains: oat (Avena sativa), wheat (Triticum spp.), rye (Secale cerale), barley (Hordeum vulgare), buckwheat (Fagopyrum esculentum), millet (Panicum miliaceum), rice (Oryza sativa), and corn (Zea mays). Avenanthramides were determined in three oat products. Free phenolic acids, alk(en)ylresorcinols, and avenanthramides were extracted with methanolic acetic acid, 100% methanol, and 80% methanol, respectively, and quantified by HPLC. The contents of total phenolic acids were quantified by HPLC analysis after alkaline and acid hydrolyses. The highest contents of total phenolic acids were in brans of wheat (4527 mg/kg) and rye (4190 mg/kg) and in whole-grain flours of these grains (1342 and 1366 mg/kg, respectively). In other products, the contents varied from 111 mg/kg (white wheat bread) to 765 mg/kg (whole-grain rye bread). Common phenolic acids found in the grain products were ferulic acid (most abundant), ferulic acid dehydrodimers, sinapic acid, and p-coumaric acid. The grain products were found to contain either none or only low amounts of free phenolic acids. The content of avenanthramides in oat flakes (26-27 mg/kg) was about double that found in oat bran (13 mg/kg). The highest contents of alk(en)ylresorcinols were observed in brans of rye (4108 mg/kg) and wheat (3225 mg/kg). In addition, whole-grain rye products (rye bread, rye flour, and whole-wheat flour) contained considerable levels of alk(en)ylresorcinols (524, 927, and 759 mg/kg, respectively). PMID:16218677

  15. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation. PMID:24754448

  16. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  17. Glycerin esterification of scum derived free fatty acids for biodiesel production.

    PubMed

    Anderson, Erik; Addy, Min; Xie, Qinglong; Ma, Huan; Liu, Yuhuan; Cheng, Yanling; Onuma, Nonso; Chen, Paul; Ruan, Roger

    2016-01-01

    Scum is an oily waste stream of the wastewater treatment process that can be used to produce biodiesel. Combining acid hydrolysis and solvent extraction, a free fatty acid and acyl-glycerol rich product was produced. Free fatty acids (FFAs) present were converted to acyl-glycols via a high temperature (238°C) glycerin esterification process known as glycerolysis. The inorganic catalysts zinc aluminum oxide and sodium sulfate were tested during glycerolysis to compare the reaction kinetics of converting FFA to acyl-glycerols. It was concluded that the zinc-based catalyst increased the reaction rate significantly, from a "k" value of 2.57 (uncatalyzed) to 5.63, completing the reaction in 60min, half the time it took the uncatalyzed reaction (120min). Sodium sulfate's presence however slowed the reaction, resulting in a "k" value of 1.45, completing the reaction in 180min. Use of the external catalyst Zn-Al2O3 showed the greatest catalytic potential, but also assumes additional costs. PMID:26479430

  18. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanzee, monkey, bovine, ovine, dog, mouse, rat, wallaby, opossum, chicken and zebrafish allowed us to identify candidate regulatory regions in intron 1 and 3'-untranslated region (UTR) in addition to the coding region. Highly conserved putative binding sites for transcription factors, such as heat shock factor 2 (HSF2) and myocite enhancer factor 2 (MEF2), were discovered in the intron 1. In 3'-UTR, the functional sequence (ATTAAA) for nucleus-specific polyadenylation was found in all the analysed species. The functional sequence (TTTTTAT) for maturation-specific polyadenylation was identically observed only in ovine, and one or two nucleotide mismatches in the other species. A comparison of the amino acid sequences in 53 species revealed a large sequence identity. Especially the octapeptide repeat region was observed in all the species but frog and zebrafish. Functional changes and susceptibility to prion diseases with various isoforms of prion protein could be caused by numeric variability and conformational changes discovered in the repeat sequences. PMID:18397498

  19. Comparative evaluation on fatty acid and Matricaria recutita essential oil incorporated into casein-based film.

    PubMed

    Aliheidari, Nahal; Fazaeli, Mahboubeh; Ahmadi, Reza; Ghasemlou, Mehran; Emam-Djomeh, Zahra

    2013-05-01

    Sodium caseinate composite films containing lipids-oleic acid (OA), stearic acid (SA), or Matricaria recutita essential oil (MEO) - were prepared through emulsification and their physical, thermal, mechanical, and barrier properties were evaluated and compared. Furthermore, their antimicrobial effectiveness against Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli was studied. Emulsified films were softer, less rigid, and more stretchable than pure films. The films' water vapor barrier properties were found to decrease upon the addition of lipid content; this effect was greatly reduced when MEO was added. The presence of OA/SA and MEO decreased tensile strength and elastic modulus but increased the elongation at break. Thermal analysis of all emulsified films showed two endothermic peaks; these results confirmed those obtained by SEM studies, where a partial separation of the two phases occurred. The films' antimicrobial activities were increased by incorporating lipids, particularly those containing MEO, which were more effective against the studied bacteria. This work showed that when taking all the studied variables into account, films formulated with MEO were found most suitable for various food applications. PMID:23415659

  20. Comparative gene identification 58/α/β hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity

    PubMed Central

    McMahon, Derek; Dinh, Anna; Kurz, Daniel; Shah, Dharika; Han, Gil-Soo; Carman, George M.; Brasaemle, Dawn L.

    2014-01-01

    Mutations in the gene encoding comparative gene identification 58 (CGI-58)/α/β hydrolase domain 5 (ABHD5) cause Chanarin-Dorfman syndrome, characterized by excessive triacylglycerol storage in cells and tissues. CGI-58 has been identified as a coactivator of adipose TG lipase (ATGL) and a lysophosphatidic acid acyltransferase (LPAAT). We developed a molecular model of CGI-58 structure and then mutated predicted active site residues and performed LPAAT activity assays of recombinant WT and mutated CGI-58. When mutations of predicted catalytic residues failed to reduce LPAAT activity, we determined that LPAAT activity was due to a bacterial contaminant of affinity purification procedures, plsC, the sole LPAAT in Escherichia coli. Purification protocols were optimized to reduce plsC contamination, in turn reducing LPAAT activity. When CGI-58 was expressed in SM2-1(DE3) cells that lack plsC, lysates lacked LPAAT activity. Additionally, mouse CGI-58 expressed in bacteria as a glutathione-S-transferase fusion protein and human CGI-58 expressed in yeast lacked LPAAT activity. Previously reported lipid binding activity of CGI-58 was revisited using protein-lipid overlays. Recombinant CGI-58 failed to bind lysophosphatidic acid, but interestingly, bound phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5)P]. Prebinding CGI-58 with PI(3)P or PI(5)P did not alter its coactivation of ATGL in vitro. In summary, purified recombinant CGI-58 that is functional as an ATGL coactivator lacks LPAAT activity. PMID:24879803