Sample records for acid production increased

  1. Enhanced itaconic acid production in Aspergillus with increased LaeA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Baker, Scott E.

    Fungi, such as Aspergillus niger, having a dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase (Alg3) gene genetic inactivation, increased expression of a loss of aflR expression A (LaeA), or both, are described. In some examples, such mutants have several phenotypes, including an increased production of citric acid relative to the parental strain. Methods of using the disclosed fungi to make citric acid are also described, as are compositions and kits including the disclosed fungi. Further described are Aspergillus terreus fungi overexpressing the LaeA gene and the use of such fungi for the production of itaconic acid.

  2. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less

  3. Factors Which Increase Acid Production in Milk by Lactobacilli

    PubMed Central

    Huhtanen, C. N.; Williams, W. L.

    1963-01-01

    The stimulation by yeast extract of acid production in milk by various lactobacilli was studied. It was found that supplementing milk with purine and pyrimidine bases and amino acids allowed nearly maximal acid production by Lactobacillus bulgaricus strain 7994, L. acidophilus 4796, 4356, and 4357, and L. leichmannii 326 and 327. Further supplementation with deoxyribotides allowed maximal acid production by L. acidophilus 204, but L. acidophilus 207 required adenosine or adenylic acid. L. casei strain 7469 showed no appreciable response to the amino acids or purine and pyrimidine bases, and is presumed to require an unidentified factor in corn steep liquor. PMID:13955610

  4. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  5. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-05

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors. Copyright © 2013 Elsevier Inc

  6. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    PubMed

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  7. [Evaluation of the possibilities to increase the content of conjugated linoleic acid (CLA) in meat and meat product].

    PubMed

    Piotrowska, Anna; Swiader, Katarzyna; Waszkiewicz-Robak, Bozena; Swiderski, Franciszek

    2012-01-01

    The paper characterizes pro-health properties of conjugated linoleic acid (CLA) and assesses the possibility of increasing their content in pork and pork meat products. Studies conducted on animals indicate antitumor, antiatherosclerotic and antiinflammatory effect ofCLA, also find impact on reducing body fat and increasing muscle growth. However, the number of observations concerning human populations is insufficient to fully evaluate the relationship between CLA intake and reducing the risk of lifestyle diseases. Therefore, it is necessary to conduct further research. Literature data indicate that the use in pigs feed suplementation with CLA preparations, can increase the content of these compounds in the meat and also show, that isomer cis-9, trans-11 is accumulated at significantly higher level. However, these changes were accompanied by increased the share of saturated fatty acids at the expense of monounsaturated which is unfavorable for human health. A better way to increase the CLA content in pork meat appears to be the addition of CLA preparation during the production process, because it does not affect the level of saturated fats. Pork and pork meat products enriched in CLA are characterized by low susceptibility to oxidation, which may result from the coupling of double bonds, antioxidantive properties of conjugated linoleic acid and the increased content of saturated fatty acids. The issue of beneficial effects on human health of pork and pork products with a higher content of CLA, requires further studies conducted on humans. Only then these products can be classified as a functional foods.

  8. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  9. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  10. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  11. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.

    PubMed

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi

    2016-07-01

    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Supplementation of medium with diammonium hydrogen phosphate enhanced the D-lactate dehydrogenase levels leading to increased D-lactic acid productivity.

    PubMed

    Singhvi, Mamata; Jadhav, Akanksha; Gokhale, Digambar

    2013-10-01

    The production of D-lactic acid by Lactobacillus lactis RM2-24 was investigated using modified media to increase the efficiency of the fermentation process. The results indicated that the addition of 5 g/l peptone and 1 g/l (NH4)2HPO4 enhanced D-lactic acid production by 32%, as compared to that obtained from non supplemented media, with a productivity of 3.0 g/l/h. Lactate dehydrogenase (LDH) expression profile in these different media was studied which resulted in appearance of additional LDH isoform produced by cells when they were grown in HSYE supplemented with (NH4)2HPO4. The additional LDH appears to be L-LDH contributing to production of L-lactic acid in the fermented broth. This is totally new information in the lactic acid fermentation and could be very useful to industries engaged in D-lactic acid production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  15. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms.

    PubMed

    Meng, Xin; Yang, Jianming; Cao, Yujin; Li, Liangzhi; Jiang, Xinglin; Xu, Xin; Liu, Wei; Xian, Mo; Zhang, Yingwei

    2011-08-01

    Unlike many oleaginous microorganisms, E. coli only maintains a small amount of natural lipids in cells, impeding its utility to overproduce fatty acids. In this study, acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus was expressed in E. coli to redirect the carbon flux to the generation of malonyl-CoA, which resulted in a threefold increase in intracellular lipids. Moreover, providing a high level of NADPH by overexpressing malic enzyme and adding malate to the culture medium resulted in a fourfold increase in intracellular lipids (about 197.74 mg/g). Co-expression of ACC and malic enzyme resulted in 284.56 mg/g intracellular lipids, a 5.6-fold increase compared to the wild-type strain. This study provides some attractive strategies for increasing lipid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms, which could aid the development of a prokaryotic fatty acid producer.

  16. Further increased production of free fatty acids by overexpressing a predicted transketolase gene of the pentose phosphate pathway in Aspergillus oryzae faaA disruptant.

    PubMed

    Tamano, Koichi; Miura, Ai

    2016-09-01

    Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.

  17. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  19. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  20. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  1. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  2. Enzymatic Pretreatment Coupled with the Addition of p-Hydroxyanisole Increased Levulinic Acid Production from Steam-Exploded Rice Straw Short Fiber.

    PubMed

    Ma, Li-Tong; Zhao, Zhi-Min; Yu, Bin; Chen, Hong-Zhang

    2016-11-01

    Levulinic acid production, directly from lignocellulosic biomass, resulted in low yields due to the poor substrate accessibility and occurrence of side reactions. The effects of reaction conditions, enzymatic pretreatment, and inhibitor addition on the conversion of steam-exploded rice straw (SERS) short fiber to levulinic acid catalyzed by solid superacid were investigated systematically. The results indicated that the optimal reaction conditions were temperature, time, and solid superacid concentration combinations of 200 °C, 15 min, and 7.5 %. Enzymatic pretreatment improved the substrate accessibility to solid superacid catalyst, and p-hydroxyanisole inhibitor reduced the side reactions during reaction processes, which helped to increase levulinic acid yield. The levulinic acid yield reached 25.2 % under the optimal conditions, which was 61.5 % higher than that without enzymatic pretreatment and inhibitor addition. Therefore, enzymatic pretreatment coupled with the addition of p-hydroxyanisole increased levulinic acid production effectively, which contributed to the value-added utilization of lignocellulosic biomass.

  3. Milk production and nutrient digestibility responses to increasing levels of stearic acid supplementation of dairy cows.

    PubMed

    Boerman, J P; de Souza, J; Lock, A L

    2017-04-01

    The objective of our study was to evaluate the dose-response effects of a stearic acid (C18:0)-enriched supplement on nutrient digestibility, production responses, and the maximum amount of C18:0 that can be incorporated into the milk fat of dairy cows. Multiparous Holstein cows (n = 32; 145 ± 66 d in milk) with a wide range in milk yield (30 to 70 kg/d) were blocked by milk yield and assigned to replicated 4 × 4 Latin squares. Treatments were diets supplemented with a C18:0-enriched supplement (SA; 93% C18:0) at 0, 0.80, 1.50, or 2.30% of diet dry matter (DM). Periods were 21 d with the final 5 d used for data and sample collection. Dry matter intake increased linearly as SA supplementation increased. Supplementation of SA had no effect on the yield of milk or milk components. Due to the increase in DM intake, SA linearly reduced the ratio of energy-corrected milk to DM intake. Supplementation of SA did not affect body weight. Increasing SA reduced digestibility of 16-carbon, 18-carbon, and total fatty acids (FA), with the reduction in digestibility of 18-carbon FA being approximately 30 percentage units from the 0.0 to 2.30% SA supplemented diets. Supplementation of SA linearly increased concentrations of preformed milk fatty acids (FA) but did not affect the yield of preformed milk FA. Yields of C18:0 plus cis-9 C18:1 were increased by SA supplementation; however, the increase from 0 to 2.3% SA was only 16 g/d. The concentration and yield of de novo and 16-carbon milk FA were unaffected by SA supplementation. In conclusion, increasing doses of SA decreased FA digestibility and had little effect on production parameters. Although SA increased the yield of C18:0 and cis-9 C18:1 in milk fat, it had no overall effect on milk fat yield. The lack of production responses to a C18:0-enriched fat supplement was most likely associated with the marked decrease in FA digestibility. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights

  4. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  5. Oxidative stress in acidic conditions increases the production of inositol phosphates in chick retinal cells in culture.

    PubMed

    Rego, A C; Duarte, E P; Oliveira, C R

    1996-01-01

    The effect of oxidative stress on the production of [3H]inositol phosphates (InsP) by retinal cells in culture was analyzed. The process of oxidation was induced by incubating the cells with ascorbic acid and ferrous sulphate, and increased extent of oxidation was obtained by varying the pH from neutral to moderate acidosis (pH 6.5). The oxidative process significantly reduced cell viability (about 15%) by decreasing the capacity of mitochondria dehydrogenases to reduce tetrazolium salts, but had no effect on the leakage of lactate dehydrogenase. The production of [3H]InsP, in the absence of receptor activation, was increased dose dependently by oxidative stress. Maximal increases to 189 +/- 7%, 197 +/- 13%, and 329 +/- 22% were observed, respectively, for inositol monophosphates (InsP1), inositol bisphosphates (InsP2), and inositol trisphosphates (InsP3), at 2.5 nmol thiobarbituric acid reactive substances (TBARS)/mg protein. The response to cholinergic receptor activation was slightly decreased in cells oxidized in acidic conditions. Antagonists of glutamate receptors failed to inhibit the enhancement in InsP that occurred upon cellular oxidation, suggesting that the effect was not mediated by activation of glutamate receptors. Cellular oxidation increased by about two fold the uptake of 45Ca2+ in the absence of agonist stimulation. However, stimulation of phospholipase C by Ca2+ did not mediate the increase in [3H]InsP upon cell oxidation in acidic conditions, because the addition of 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1-H-pyrrole-2,5-dione (U-73122), an inhibitor of phospholipase C-dependent processes, did not affect the production of [3H]InsP in oxidized cells. Nevertheless, U-73122 significantly inhibited carbachol- and K(+)-stimulated accumulation of [3H]InsP. Furthermore, the enhancement of [3H]InsP induced by ascorbate/Fe2+ was still observed in the absence of external Ca2+. This increase in the production of InsP did not

  6. Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production

    PubMed Central

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress. PMID:25793624

  7. Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity*

    PubMed Central

    Tsushima, Yu; Nishizawa, Hitoshi; Tochino, Yoshihiro; Nakatsuji, Hideaki; Sekimoto, Ryohei; Nagao, Hirofumi; Shirakura, Takashi; Kato, Kenta; Imaizumi, Keiichiro; Takahashi, Hiroyuki; Tamura, Mizuho; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Iichiro

    2013-01-01

    Obesity is often accompanied by hyperuricemia. However, purine metabolism in various tissues, especially regarding uric acid production, has not been fully elucidated. Here we report, using mouse models, that adipose tissue could produce and secrete uric acid through xanthine oxidoreductase (XOR) and that the production was enhanced in obesity. Plasma uric acid was elevated in obese mice and attenuated by administration of the XOR inhibitor febuxostat. Adipose tissue was one of major organs that had abundant expression and activities of XOR, and adipose tissues in obese mice had higher XOR activities than those in control mice. 3T3-L1 and mouse primary mature adipocytes produced and secreted uric acid into culture medium. The secretion was inhibited by febuxostat in a dose-dependent manner or by gene knockdown of XOR. Surgical ischemia in adipose tissue increased local uric acid production and secretion via XOR, with a subsequent increase in circulating uric acid levels. Uric acid secretion from whole adipose tissue was increased in obese mice, and uric acid secretion from 3T3-L1 adipocytes was increased under hypoxia. Our results suggest that purine catabolism in adipose tissue could be enhanced in obesity. PMID:23913681

  8. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  9. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    PubMed

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Guaiacol production from ferulic acid, vanillin and vanillic acid by Alicyclobacillus acidoterrestris.

    PubMed

    Witthuhn, R Corli; van der Merwe, Enette; Venter, Pierre; Cameron, Michelle

    2012-06-15

    Alicyclobacilli are thermophilic, acidophilic bacteria (TAB) that spoil fruit juice products by producing guaiacol. It is currently believed that guaiacol is formed by Alicyclobacillus in fruit juices as a product of ferulic acid metabolism. The aim of this study was to identify the precursors that can be metabolised by Alicyclobacillus acidoterrestris to produce guaiacol and to evaluate the pathway of guaiacol production. A. acidoterrestris FB2 was incubated at 45°C for 7days in Bacillus acidoterrestris (BAT) broth supplemented with ferulic acid, vanillin or vanillic acid, respectively. The samples were analysed every day to determine the cell concentration, the supplement concentration using high performance liquid chromatography with UV-diode array detection (HPLC-DAD) and the guaiacol concentration, using both the peroxidase enzyme colourimetric assay (PECA) and HPLC-DAD. The cell concentration of A. acidoterrestris FB2 during the 7days in all samples were above the critical cell concentration of 10(5)cfu/mL reportedly required for guaiacol production. The guaiacol produced by A. acidoterrestris FB2 increased with an increase in vanillin or vanillic acid concentration and a metabolic pathway of A. acidoterrestris FB2 directly from vanillin to guaiacol was established. The high concentration of vanillic acid (1000mg/L) resulted in an initial inhibitory effect on the cells, but the cell concentration increased after day 2. Guaiacol production did not occur in the absence of either a precursor or A. acidoterrestris FB2 and guaiacol was not produced by A. acidoterrestris FB2 in the samples supplemented with ferulic acid. The presence of Alicyclobacillus spp. that has the ability to produce guaiacol, as well as the substrates vanillin or vanillic acid is prerequisite for production of guaiacol. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Feedback-Resistant Acetohydroxy Acid Synthase Increases Valine Production in Corynebacterium glutamicum

    PubMed Central

    Elišáková, Veronika; Pátek, Miroslav; Holátko, Jiří; Nešvera, Jan; Leyval, Damien; Goergen, Jean-Louis; Delaunay, Stéphane

    2005-01-01

    Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum ΔilvA ΔpanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions. PMID:15640189

  12. Amino acids production focusing on fermentation technologies - A review.

    PubMed

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Increased mitochondrial matrix directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria

    PubMed Central

    Bhattacharya, Arunabh; Lustgarten, Michael; Shi, Yun; Liu, Yuhong; Jang, Youngmok C; Pulliam, Daniel; Jernigan, Amanda L; Van Remmen, Holly

    2013-01-01

    Previous studies have shown that muscle atrophy is associated with mitochondrial dysfunction and an increased rate of mitochondrial reactive oxygen species production. We recently demonstrated that fatty acid hydroperoxides (FA-OOH) are significantly elevated in mitochondria isolated from atrophied muscles. The purpose of the current study is to determine whether FA-OOH can alter skeletal muscle mitochondrial function. We found that FA-OOH (at low micromolar concentrations) induces mitochondrial dysfunction assessed by decrease in the rate of ATP production, oxygen consumption and activity of respiratory chain complexes I and III. Using methods to distinguish superoxide release towards the matrix and inter-membrane space, we demonstrate that FA-OOH significantly elevates oxidative stress in the mitochondrial matrix (and not the inter-membrane space) with complex I as the major site of superoxide production (most likely from a site upstream of the ubiquinone binding site but downstream from the flavin binding site-the iron sulfur clusters). Our results are the first to indicate that FA-OOH’s are important modulators of mitochondrial function and oxidative stress in skeletal muscle mitochondria and may play an important role in muscle atrophies that are associated with increased generation of FA-OOH’s, e.g., denervation-induced muscle atrophy. PMID:21172427

  15. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling.

    PubMed

    Zheng, Pu; Zhang, Kunkun; Yan, Qiang; Xu, Yan; Sun, Zhihao

    2013-08-01

    Succinic acid is an important platform chemical for synthesis of C4 compounds. We applied genome shuffling to improve fermentative production of succinic acid by A. succinogenes. Using a screening strategy composed of selection in fermentation broth, cultured in 96-deep-well plates, and condensed HPLC screening, a starting population of 11 mutants producing a higher succinic acid concentration was selected and subjected to recursive protoplasts fusion. After three rounds of genome shuffling, strain F3-II-3-F was obtained, producing succinic acid at 1.99 g/l/h with a yield of 95.6 g/l. The genome shuffled strain had about a 73 % improvement in succinic acid production compared to the parent strain after 48 h in fed-batch fermentation. The genomic variability of F3-II-3-F was confirmed by amplified fragment-length polymorphism. The activity levels of key enzymes involved in end-product formation from glucose and metabolic flux distribution during succinic acid production were compared between A. succinogenes CGMCC 1593 and F3-II-3-F. Increased activity of glucokinase, fructose-1,6-bisphosphate aldolase, PEP carboxykinase and fumarase, as well as decreased activity of pyruvate kinase, pyruvate formate-lyase, and acetate kinase explained the enhanced succinic acid production and decreased acetic acid formation. Metabolic flux analysis suggested that increased flux to NADH was the main reason for increased activity of the C4 pathway resulting in increased yields of succinic acid. The present work will be propitious to the development of a bio-succinic acid fermentation industry.

  16. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian [East Lansing, MI; Kleff, Susanne [East Lansing, MI; Guettler, Michael V [Holt, MI

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  17. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  18. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    PubMed

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (<5.0), but hydrolyzed to oxaluric acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  19. Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis.

    PubMed

    Black, Katharine E; Berdyshev, Evgeny; Bain, Gretchen; Castelino, Flavia V; Shea, Barry S; Probst, Clemens K; Fontaine, Benjamin A; Bronova, Irina; Goulet, Lance; Lagares, David; Ahluwalia, Neil; Knipe, Rachel S; Natarajan, Viswanathan; Tager, Andrew M

    2016-06-01

    Lysophosphatidic acid (LPA) is an important mediator of pulmonary fibrosis. In blood and multiple tumor types, autotaxin produces LPA from lysophosphatidylcholine (LPC) via lysophospholipase D activity, but alternative enzymatic pathways also exist for LPA production. We examined the role of autotaxin (ATX) in pulmonary LPA production during fibrogenesis in a bleomycin mouse model. We found that bleomycin injury increases the bronchoalveolar lavage (BAL) fluid levels of ATX protein 17-fold. However, the LPA and LPC species that increase in BAL of bleomycin-injured mice were discordant, inconsistent with a substrate-product relationship between LPC and LPA in pulmonary fibrosis. LPA species with longer chain polyunsaturated acyl groups predominated in BAL fluid after bleomycin injury, with 22:5 and 22:6 species accounting for 55 and 16% of the total, whereas the predominant BAL LPC species contained shorter chain, saturated acyl groups, with 16:0 and 18:0 species accounting for 56 and 14% of the total. Further, administration of the potent ATX inhibitor PAT-048 to bleomycin-challenged mice markedly decreased ATX activity systemically and in the lung, without effect on pulmonary LPA or fibrosis. Therefore, alternative ATX-independent pathways are likely responsible for local generation of LPA in the injured lung. These pathways will require identification to therapeutically target LPA production in pulmonary fibrosis.-Black, K. E., Berdyshev, E., Bain, G., Castelino, F. V., Shea, B. S., Probst, C. K., Fontaine, B. A., Bronova, I., Goulet, L., Lagares, D., Ahluwalia, N., Knipe, R. S., Natarajan, V., Tager, A. M. Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis. © FASEB.

  20. Enhanced citric acid production in aspergillus with inactivated asparagine-linked glycosylation protein 3 (ALG3), and/or increased laeA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ziyu; Baker, Scott E.

    Provided herein are fungi, such as Aspergillus niger, having a dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase (Alg3) gene genetic inactivation, increased expression of a loss of aflR expression A (Lae), or both. In some examples, such mutants have several phenotypes, including an increased production of citric acid relative to the parental strain. Methods of using the disclosed fungi to make citric acid are also provided, as are compositions and kits including the disclosed fungi.

  1. Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells.

    PubMed

    Zhao, Yan; Cao, Weijia; Wang, Zhen; Zhang, Bowen; Chen, Kequan; Ouyang, Pingkai

    2016-02-01

    In this study, Actinobacillus succinogenes NJ113 microbial electrolysis cells (MECs) were used to enhance the reducing power responsible for succinic acid production from corncob hydrolysate. During corncob hydrolysate fermentation, electric MECs resulted in a 1.31-fold increase in succinic acid production and a 1.33-fold increase in the reducing power compared with those in non-electric MECs. When the hydrolysate was detoxified by combining Ca(OH)2, NaOH, and activated carbon, succinic acid production increased from 3.47 to 6.95 g/l. Using a constant potential of -1.8 V further increased succinic acid production to 7.18 g/l. A total of 18.09 g/l of succinic acid and a yield of 0.60 g/g total sugar were obtained after a 60-h fermentation when NaOH was used as a pH regulator. The improved succinic acid yield from corncob hydrolysate fermentation using A. succinogenes NJ113 in electric MECs demonstrates the great potential of using biomass as a feedstock to cost-effectively produce succinate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Increasing meat product functionality by the addition of milled flaxseed Linum usitatissimum.

    PubMed

    Zając, Marzena; Kulawik, Piotr; Tkaczewska, Joanna; Migdał, Władysław; Pustkowiak, Henryk

    2017-07-01

    Functional meat products are still rare on the market because it is difficult to incorporate new ingredients and obtain both a healthy and acceptable product. Flaxseed is known for its beneficial properties and, in the present study, it was used as an ingredient in the production of homogenised and liver sausages (0%, 5% and 10% flaxseed addition). Homogenised and liver sausages with the addition of 5% flaxseed were given the highest scores by the consumers, although the colour changed with the addition of flaxseed. The spreadability and hardness of the liver sausages increased with the addition of flaxseed, whereas the texture of homogenised sausages did not change. Addition of flaxseed improved the fatty acids profile from a health point of view for both products, as a result of increasing n-3 fatty acids and overall polyunsaturated fatty acids content. Values for thiobarbituric acid reactive substances were higher in products with flaxseed and were observed to increase during storage. The results of the present study indicate that it is possible to obtain products that are acceptable by consumers and, at the same time, are more healthy. A high level of α-linolenic acid in the sausages at a level of addition of 5% allows the product to be labelled with information regarding their high omega-3 fatty acid content. However, those products are more susceptible to oxidation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  4. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  5. Lipoteichoic Acid Isolated from Weissella cibaria Increases Cytokine Production in Human Monocyte-Like THP-1 Cells and Mouse Splenocytes.

    PubMed

    Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Kim, Seongjae; Lee, Youn-Woo; Jeon, Boram; Jagdish, Deepa; Kim, Hangeun; Chung, Dae Kyun

    2016-07-28

    Lactic acid bacteria (LAB) have beneficial effects on intestinal health and skin diseases. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is known to induce the production of several cytokines such as TNF-α, IL-1β, and IL-8 and affect the intestinal microflora, anti-aging, sepsis, and cholesterol level. In this study, Weissella cibaria was isolated from Indian dairy products, and we examined its immune-enhancing effects. Live and heatkilled W. cibaria did not induce the secretion of immune-related cytokines, whereas LTA isolated from W. cibaria (cLTA) significantly increased the secretion of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. cLTA increased the phosphorylation of nuclear factor kappalight-chain-enhancer of activated B cells, p38 mitogen-activated protein kinases, and c-Jun N-terminal kinases in THP-1 cells. The secretion of TNF-α and IL-6 was also increased in the cLTA-treated mouse splenocytes. These results suggest that cLTA, but not W. cibaria whole cells, has immune-boosting potential and can be used to treat immunosuppression diseases.

  6. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    PubMed

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  7. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.

    PubMed

    Hernández, Martín A; Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo; Alvarez, Héctor M

    2015-03-01

    Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.

  8. Increased dipicolinic acid production with an enhanced spoVF operon in Bacillus subtilis and medium optimization.

    PubMed

    Takahashi, Fumikazu; Sumitomo, Nobuyuki; Hagihara, Hiroshi; Ozaki, Katsuya

    2015-01-01

    Dipicolinic acid (DPA) is a multi-functional agent for cosmetics, antimicrobial products, detergents, and functional polymers. The aim of this study was to design a new method for producing DPA from renewable material. The Bacillus subtilis spoVF operon encodes enzymes for DPA synthase and the part of lysine biosynthetic pathway. However, DPA is only synthesized in the sporulation phase, so the productivity of DPA is low level. Here, we report that DPA synthase was expressed in vegetative cells, and DPA was produced in the culture medium by replacement of the spoVFA promoter with other highly expressed promoter in B. subtilis vegetative cells, such as spoVG promoter. DPA levels were increased in the culture medium of genetically modified strains. DPA productivity was significantly improved up to 29.14 g/L in 72 h culture by improving the medium composition using a two-step optimization technique with the Taguchi methodology.

  9. Oral hygiene products and acidic medicines.

    PubMed

    Hellwig, E; Lussi, A

    2006-01-01

    Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds, favors the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Xerostomia or oral dryness can occur as a consequence of medication such as tranquilizers, anti-histamines, anti-emetics and anti-parkinsonian medicaments or of salivary gland dysfunction e.g. due to radiotherapy of the oral cavity and the head and neck region. Above all, these patients should be aware of the potential demineralization effects of oral hygiene products with low pH and high titratable acids. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder as well chewing hydrochloric acids tablets for treatment of stomach disorders can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers, patients and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acids.

  10. Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme.

    PubMed

    Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Haupenthal, Viola J; Blümel, Tamara; Stötzel, Hannah; Grimm, Heike S; Hartmann, Tobias

    2016-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major Aβ-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aβ-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aβ production, EPA and DHA might ameliorate AD pathology by increasing Aβ turnover.

  11. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    PubMed

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  12. High production of D-tagatose by the addition of boric acid.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2007-01-01

    An L-arabinose isomerase mutant enzyme from Geobacillus thermodenitrificans was used to catalyze the isomerization of D-galactose to D-tagatose with boric acid. Maximum production of D-tagatose occurred at pH 8.5-9.0, 60 degrees C, and 0.4 molar ratio of boric acid to D-galactose, and the production increased with increasing enzyme concentration. Under the optimum conditions, the enzyme (10.8 units/mL) converted 300 g/L D-galactose to 230 g/L D-tagatose for 20 h with a yield of 77% (w/w); the production and conversion yield with boric acid were 1.5-fold and 24% higher than without boric acid, respectively. In 24 h, the enzyme produced 370 g/L D-tagatose from 500 g/L D-galactose with boric acid, corresponding to a conversion yield of 74% (w/w) and a production rate of 15.4 g/L.h. The production and yield of D-tagatose obtained in this study are unprecedented.

  13. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5

    PubMed Central

    Ruiz, Jimena A.; Bernar, Evangelina M.; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  14. Effect of acetyl salicylic acid on increased production of thromboxane after aortic graft surgery.

    PubMed

    Lewin, J; Swedenborg, J; Egberg, N; Vesterqvist, O; Green, K

    1989-06-01

    Contact between blood and foreign surfaces, e.g. vascular grafts, causes activation and release of platelets. One consequence of platelet activation is production of thromboxane A2 (TxA2). The physiological effects of TxA2, i.e. platelet aggregation and vaso-constriction are counteracted by another prostanoid, prostacyclin (PGI2). Acetylsalicylic acid (ASA) causes a longlasting inhibition of platelet TxA2 production and a more shortlasting inhibition of PGI2 production. The present study examines TxA2 and PGI2 synthesis in patients receiving synthetic arterial grafts, some of which were treated with ASA. The prostanoid synthesis was evaluated by measurement of their main urinary metabolites with gas chromatography-mass spectrometry. Platelet release was evaluated by measurements of beta-thromboglobulin (beta-TG) and the plasma coagulation by measurements of fibrinopeptide A (FPA). These compounds were also measured in urine in order to avoid artifacts caused by activation of platelets and plasma coagulation during blood sampling. Following replacement of the abdominal aorta with a synthetic vascular graft there was a marked increase in the synthesis of TxA2 and PGI2. Increased levels of beta-TG and FPA were also demonstrated. Administration of ASA on the first and second postoperative days significantly reduced the synthesis of TxA2 but caused no significant effects on the other parameters measured. It is concluded that ASA may be beneficial in the postoperative period since it counteracts TxA2 with vasoconstricting and platelet aggregating properties but leaves PGI2 with vasodilating and antiaggregating properties relatively uneffected.

  15. Engineering acyl carrier protein to enhance production of shortened fatty acids.

    PubMed

    Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C

    2016-01-01

    The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.

  16. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    PubMed

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  17. Biochar Enhances Aspergillus niger Rock Phosphate Solubilization by Increasing Organic Acid Production and Alleviating Fluoride Toxicity

    PubMed Central

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2014-01-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F−) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F− adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F− released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F− while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F− measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F− per liter can be removed from solution by biochar when added at 3 g liter−1 to the culture medium. Thus, biochar acted as an F− sink during RP solubilization and led to an F− concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F− and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F−, the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  18. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  19. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.

  20. Overexpression of NtWRKY50 Increases Resistance to Ralstonia solanacearum and Alters Salicylic Acid and Jasmonic Acid Production in Tobacco

    PubMed Central

    Liu, Qiuping; Liu, Ying; Tang, Yuanman; Chen, Juanni; Ding, Wei

    2017-01-01

    WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco (Nicotiana tabacum) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum. Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica, hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50. PMID:29075272

  1. Overexpression of NtWRKY50 Increases Resistance to Ralstonia solanacearum and Alters Salicylic Acid and Jasmonic Acid Production in Tobacco.

    PubMed

    Liu, Qiuping; Liu, Ying; Tang, Yuanman; Chen, Juanni; Ding, Wei

    2017-01-01

    WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco ( Nicotiana tabacum ) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum . Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica , hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50 .

  2. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta).

    PubMed

    Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel

    2017-10-01

    Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.

  3. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  4. Methyl Jasmonate and Salicylic Acid Enhanced the Production of Ursolic and Oleanolic Acid in Callus Cultures of Lepechinia Caulescens

    PubMed Central

    Vergara Martínez, Víctor M.; Estrada-Soto, Samuel E.; Arellano-García, José de Jesús; Rivera-Leyva, Julio C.; Castillo-España, Patricia; Flores, Angélica Flores; Cardoso-Taketa, Alexandre T.; Perea-Arango, Irene

    2017-01-01

    Background: The production of triterpenes from plants for pharmacological purposes varies in concentration, due to genetic and environmental factors. In vitro culture enables the control and increase of these bioactive molecules. Objective: To evaluate the effect of plant growth regulators and elicitors in the induction of calli and the production of ursolic acid (UA) and oleanolic acid (OA) in Lepechinia caulescens. Materials and Methods: Leaf explants were exposed for the induction of calli at different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). Methyl jasmonate (MJ) and salicylic acid were used as elicitors. High-performance liquid chromatography method was used to quantify UA and OA content in each treatment. Results: Treatment with 3.0 mg/L of 2,4-D and 0.1 mg/L of BAP produced the best results for calli induction and production of UA (1.57 mg/g dry weight [DW]) and OA (1.13 mg/g DW). Both elicitors facilitated the accumulation of triterpenes. Conclusion: The combination of auxins and cytokinins showed favorable results for the induction of calli. Variation concerning the accumulation of UA and OA was observed between treatments. MJ increased the production of triterpenes five times after 8 h of exposure, compared to control treatment. There is a greater accumulation of UA (16.58 mg/g DW) and OA (1.94 mg/g DW) in leaves of wild plants. SUMMARY Callus cultures of Lepechinia caulescens were obtained from leaf explants treated with 2,4-dichlorophenoxyacetic acid and 6-bencylaminopurineResulting cultures were elicited with methyl jasmonate (MJ) and salicylic acid to increase the production of the triterpenes, ursolic acid (UA), and oleanolic acid (OA)The cultures elicited with MJ increased the production of UA and OA five times, as compared to the control. Abbreviations used: 2,4-D: 2,4-dichlorophenoxyacetic acid, BAP: 6-benzylaminopurine, DW: Dry weight, MJ: Methyl jasmonate, OA: Oleanolic acid, PGRs

  5. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA).

    PubMed

    Brinton, Eliot A; Mason, R Preston

    2017-01-31

    The omega-3 fatty acid eicosapentaenoic acid (EPA) has multiple actions potentially conferring cardiovascular benefit, including lowering serum triglyceride (TG) and non-high-density lipoprotein cholesterol (non-HDL-C) levels and potentially reducing key steps in atherogenesis. Dietary supplements are a common source of omega-3 fatty acids in the US, but virtually all contain docosahexaenoic acid (DHA) in addition to EPA, and lipid effects differ between DHA and EPA. Contrary to popular belief, no over-the-counter omega-3 products are available in the US, only prescription products and dietary supplements. Among the US prescription omega-3 products, only one contains EPA exclusively (Vascepa); another closely related prescription omega-3 product also contains highly purified EPA, but is approved only in Japan and is provided in different capsule sizes. These high-purity EPA products do not raise low-density lipoprotein cholesterol (LDL-C) levels, even in patients with TG levels >500 mg/dL, in contrast to the increase in LDL-C levels with prescription omega-3 products that also contain DHA. The Japanese prescription EPA product was shown to significantly reduce major coronary events in hypercholesterolemic patients when added to statin therapy in the Japan EPA Lipid Intervention Study (JELIS). The effects of Vascepa on cardiovascular outcomes are being investigated in statin-treated patients with high TG levels in the Reduction of Cardiovascular Events With EPA-Intervention Trial (REDUCE-IT).

  6. Biotechnological production of gluconic acid: future implications.

    PubMed

    Singh, Om V; Kumar, Raj

    2007-06-01

    Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20-8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.

  7. Lotus Seed Resistant Starch Regulates Gut Microbiota and Increases Short-Chain Fatty Acids Production and Mineral Absorption in Mice.

    PubMed

    Zeng, Hongliang; Huang, Cancan; Lin, Shan; Zheng, Mingjing; Chen, Chuanjie; Zheng, Baodong; Zhang, Yi

    2017-10-25

    Lotus seed resistant starch, known as resistant starch type 3 (LRS3), was orally administered to mice to investigate its effects on the gut microbiota, short-chain fatty acids (SCFAs) production, and mineral absorption. The results showed that mice fed LRS3 displayed a lower level of gut bacterial diversity than other groups. The numbers of starch-utilizing and butyrate-producing bacteria, such as Lactobacillus and Bifidobacterium and Lachnospiraceae, Ruminococcaceae, and Clostridium, respectively, in mice increased after the administration of medium and high doses of LRS3, while those of Rikenellaceae and Porphyromonadaceae decreased. Furthermore, SCFAs and lactic acid in mice feces were affected by LRS3, and lactate was fermented to butyrate by gut microbiota. LRS3 enhanced the intestinal absorption of calcium, magnesium, and iron, and this was dependent on the type and concentration of SCFAs, especially butyrate. Thus, LRS3 promoted the production of SCFAs and mineral absorption by regulating gut microbiota in mice.

  8. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy.

    PubMed

    van der Pol, Edwin C; Eggink, Gerrit; Weusthuis, Ruud A

    2016-01-01

    Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme

  9. Bioaugmentation with Clostridium tyrobutyricum to improve butyric acid production through direct rice straw bioconversion.

    PubMed

    Chi, Xue; Li, Jianzheng; Wang, Xin; Zhang, Yafei; Leu, Shao-Yuan; Wang, Ying

    2018-05-02

    One-pot bioconversion is an economically attractive biorefinery strategy to reduce enzyme consumption. Direct conversion of lignocellulosic biomass for butyric acid production is still challenging because of competition among microorganisms. In a consolidated hydrolysis/fermentation bioprocessing (CBP) the microbial structure may eventually prefer the production of caproic acid rather than butyric acid production. This paper presents a new bioaugmentation approach for high butyric acid production from rice straw. By dosing 0.03 g/L of Clostridium tyrobutyricum ATCC 25755 in the CBP, an increase of 226% higher butyric acid was yielded. The selectivity and concentration also increased to 60.7% and 18.05 g/L, respectively. DNA-sequencing confirmed the shift of bacterial community in the augmented CBP. Butyric acid producer was enriched in the bioaugmented bacterial community and the bacteria related to long chain acids production was degenerated. The findings may be useful in future research and process design to enhance productivity of desired bio-products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  11. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  12. Succinic Acid Production from Cheese Whey using Actinobacillus succinogenes 130 Z

    NASA Astrophysics Data System (ADS)

    Wan, Caixia; Li, Yebo; Shahbazi, Abolghasem; Xiu, Shuangning

    Actinobacillus succinogenes 130 Z was used to produce succinic acid from cheese whey in this study. At the presence of external CO2 supply, the effects of initial cheese whey concentration, pH, and inoculum size on the succinic acid production were studied. The by-product formation during the fermentation process was also analyzed. The highest succinic acid yield of 0.57 was obtained at initial cheese whey concentration of 50 g/L, while the highest succinic acid productivity of 0.58 g h-1 L-1 was obtained at initial cheese whey concentration of 100 g/L. Increase in pH and inoculum size caused higher succinic acid yield and productivity. At the preferred fermentation condition of pH 6.8, inoculum size of 5% and initial cheese whey concentration of 50 g/L, succinic acid yield of 0.57, and productivity of 0.44 g h-1 L-1 were obtained. Acetic acid and formic acid were the main by-products throughout the fermentation run of 48 h. It is feasible to produce succinic acid using lactose from cheese whey as carbon resource by A. succinogenes 130 Z.

  13. Methods for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  14. Method for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E.W.

    2016-08-30

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  15. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  16. Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients.

    PubMed

    Almeida, Sandra; Gao, Fuying; Coppola, Giovanni; Gao, Fen-Biao

    2016-06-01

    Mutations in the granulin (GRN) gene cause frontotemporal dementia (FTD) due to progranulin haploinsufficiency. Compounds that can increase progranulin production and secretion may be considered as potential therapeutic drugs; however, very few of them have been directly tested on human cortical neurons. To this end, we differentiated 9 induced pluripotent stem cell lines derived from a control subject, a sporadic FTD case and an FTD patient with progranulin S116X mutation. Treatment with 1 μM suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, increased the production of progranulin in cortical neurons of all subjects at both the mRNA and protein levels without affecting their viability. Microarray analysis revealed that SAHA treatment not only reversed some gene expression changes caused by progranulin haploinsufficiency but also caused massive alterations in the overall transcriptome. Thus, histone deacetylase inhibitors may be considered as therapeutic drugs for GRN mutation carriers. However, this class of drugs also causes drastic changes in overall gene expression in human cortical neurons and their side effects and potential impacts on other pathways should be carefully evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    PubMed

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Itaconic acid production in microorganisms.

    PubMed

    Zhao, Meilin; Lu, Xinyao; Zong, Hong; Li, Jinyang; Zhuge, Bin

    2018-03-01

    Itaconic acid, 2-methylidenebutanedioic acid, is a precursor of polymers, chemicals, and fuels. Many fungi can synthesize itaconic acid; Aspergillus terreus and Ustilago maydis produce up to 85 and 53 g l -1 , respectively. Other organisms, including Aspergillus niger and yeasts, have been engineered to produce itaconic acid. However, the titer of itaconic acid is low compared with the analogous major fermentation product, citric acid, for which the yield is > 200 g l -1 . Here, we review two types of pathway for itaconic acid biosynthesis as well as recent advances by metabolic engineering strategies and process optimization to enhance itaconic acid productivity in native producers and heterologous hosts. We also propose further improvements to overcome existing problems.

  19. [Dependence of rumen fatty acid production on the composition of rations].

    PubMed

    Lebzien, P; Rohr, K; Oslage, H J

    1981-10-01

    utilisation of the fat-free organic matter for the production of fatty acids in the rumen. This could mainly be traced back to the increased production of propionic acid. The production of acetic acid per kg fat-free organic matter was insignificantly reduced. A reduced quota of roughage in the ration as well as the use of feed fats resulted in a decrease in the production of acetic acid and an increase in the production of propionic acid. The influence of the quota of roughage, however, was bigger than that of the use of fats. When rations rich in roughage were given, the share the energy contained in the total fatty acids has in the total of the digested energy was, on an average of both animals, slightly lower in comparison to rations rich in concentrated feed. However, the reason for this is not to be found in a lower share the energy digested in the stomachs has in the total of digested energy but in a higher amount of fermentation losses with a nutrition rich in roughage.

  20. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  1. [Fatty acids in confectionery products].

    PubMed

    Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

    2000-01-01

    The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

  2. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  3. Aspirin increases mitochondrial fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less

  4. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    PubMed Central

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  5. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.

    PubMed

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-09-02

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids.

  6. Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors

    DOE PAGES

    Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; ...

    2015-11-14

    The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO 2-to-Al 2O 3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N 2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form amore » slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.« less

  7. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  8. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  9. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  10. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    PubMed

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. 2012: no trans fatty acids in Spanish bakery products.

    PubMed

    Ansorena, Diana; Echarte, Andrea; Ollé, Rebeca; Astiasarán, Iciar

    2013-05-01

    Trans fatty acids (TFA) are strongly correlated with an increased risk of cardiovascular and other chronic diseases. Current dietary recommendations exclude bakery products from frequent consumption basically due to their traditionally high content of TFA. The aim of this work was to analyse the lipid profile of different bakery products currently commercialised in Spain and with a conventionally high fat and TFA content. Premium and store brands for each product were included in the study. No significant amounts of TFA were found in any of the analysed products, regardless the brand. TFA content ranged between 0.17 g and 0.22 g/100 g product (mean=0.19 g/100 g product). Expressed on percentage of fatty acids, the maximum value was 0.87 g/100 g fatty acids and the mean value was 0.68%. These data are significantly lower than those observed in previously published papers for these types of products, and highlighted the importance of updating food composition databases in order to accurately estimate the real and current intake of TFA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Increased ophthalmic acid production is supported by amino acid catabolism under fasting conditions in mice.

    PubMed

    Kobayashi, Sho; Lee, Jaeyong; Takao, Toshifumi; Fujii, Junichi

    2017-09-23

    Glutathione (GSH) plays pivotal roles in antioxidation and detoxification. The transsulfuration pathway, in conjunction with methionine metabolism, produces equimolar amounts of cysteine (Cys) and 2-oxobutyric acid (2OB). The resulting 2OB is then converted into 2-aminobutyric acid (2AB) by a transaminase and is utilized as a substitute for Cys by the GSH-synthesizing machinery to produce ophthalmic acid (OPT). By establishing a method for simultaneously measuring Cys, GSH, and OPT by liquid chromatography-mass spectrometry, we found that fasting causes an elevation in OPT levels in the liver and blood plasma, even though the levels of Cys and GSH are decreased. Autophagy was activated, but the levels of GSH/OPT-synthesizing enzymes remained unchanged. After 6 h of fasting, the mice were given 1% 2AB and/or 5% glucose in the drinking water for an additional 24 h and the above metabolites analyzed. 2AB administration caused an increase in OPT levels, and, when glucose was co-administered with 2AB, the levels of OPT were elevated further but GSH levels were decreased somewhat. These results suggest that, while Cys is utilized for glyconeogenesis under fasting conditions, reaching levels that were insufficient for the synthesis of GSH, 2OB was preferentially converted to 2AB via amino acid catabolism and was utilized as a building block for OPT. Thus the consumption of Cys and the parallel elevation of 2AB under fasting conditions appeared to force γ-glutamylcysteine synthetase to form γ-glutamyl-2AB, despite the fact that the enzyme has a higher Km value for 2AB than Cys. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.

    PubMed

    Lee, Jinsuk J; Crook, Nathan; Sun, Jie; Alper, Hal S

    2016-01-01

    Polylactic acid (PLA) is an important renewable polymer, but current processes for producing its precursor, lactic acid, suffer from process inefficiencies related to the use of bacterial hosts. Therefore, improving the capacity of Saccharomyces cerevisiae to produce lactic acid is a promising approach to improve industrial production of lactic acid. As one such improvement required, the lactic acid tolerance of yeast must be significantly increased. To enable improved tolerance, we employed an RNAi-mediated genome-wide expression knockdown approach as a means to rapidly identify potential genetic targets. In this approach, several gene knockdown targets were identified which confer increased acid tolerance to S. cerevisiae BY4741, of which knockdown of the ribosome-associated chaperone SSB1 conferred the highest increase (52%). This target was then transferred into a lactic acid-overproducing strain of S. cerevisiae CEN.PK in the form of a knockout and the resulting strain demonstrated up to 33% increased cell growth, 58% increased glucose consumption, and 60% increased L-lactic acid production. As SSB1 contains a close functional homolog SSB2 in yeast, this result was counterintuitive and may point to as-yet-undefined functional differences between SSB1 and SSB2 related to lactic acid production. The final strain produced over 50 g/L of lactic acid in under 60 h of fermentation.

  14. Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius.

    PubMed

    Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen

    2017-03-14

    C 4 -dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C 4 -dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C 4 -dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C 4 -dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C 4 -dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C 4 -dicarboxylic acids in A. carbonarius is the C 4 -dicarboxylate transporter. Furthermore it shows that the C 4 -dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C 4 -dicarboxylic acid production.

  15. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  16. Yarrowia lipolytica: a model yeast for citric acid production.

    PubMed

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  18. Organic Acid Production by Filamentous Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnuson, Jon K.; Lasure, Linda L.

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter.more » Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  19. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  20. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde [Sycamore, IL; Ingram, Lonnie O'Neal [Gainesville, FL; Shanmugam, Keelnatham T [Gainesville, FL; Yomano, Lorraine [Gainesville, FL; Grabar, Tammy B [Gainesville, FL; Moore, Jonathan C [Gainesville, FL

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  1. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.

    PubMed

    Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin

    2009-08-10

    A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.

  2. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  3. Product study of oleic acid ozonolysis as function of humidity

    NASA Astrophysics Data System (ADS)

    Vesna, O.; Sax, M.; Kalberer, M.; Gaschen, A.; Ammann, M.

    The heterogeneous reaction of ozone with oleic acid (OA) aerosol particles was studied as function of humidity and reaction time in an aerosol flow reactor using an off-line gas chromatography mass spectrometry (GC-MS) technique. We report quantitative yields of the major C9 ozonolysis products in both gas and condensed phases and the effect of relative humidity on the product distribution. The measurements were carried out with OA aerosol particles at room temperature. The results indicate that the product yields are increasing with increasing relative humidity during the reaction. Nonanal (NN) was detected as the major gas-phase product (55.6 ± 2.3%), with 94.5 ± 2.4% of the NN yield in the gas, and 5.5 ± 2.7% in the particulate phase, whereas nonanoic, oxononanoic and azelaic acids were detected exclusively in the particulate phase. Using UV-spectrometry, we observed that peroxides make up the largest fraction of products, about half of the product aerosol mass, and their concentration decreased with increasing humidity.

  4. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products.

    PubMed

    Adeboye, Peter Temitope; Bettiga, Maurizio; Aldaeus, Fredrik; Larsson, Per Tomas; Olsson, Lisbeth

    2015-09-21

    Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic compounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phenolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of the culture broth to monitor various intermediate and final metabolites. Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to involved several transient intermediates that were concurrently formed and converted to other phenolic products. Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevisiae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield

  5. Folic Acid Production by Engineered Ashbya gossypii.

    PubMed

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-11-01

    Folic acid (vitamin B 9 ) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Microbial production of poly-γ-glutamic acid.

    PubMed

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  7. Obesity increases oesophageal acid exposure

    PubMed Central

    El‐Serag, Hashem B; Ergun, Gulchin A; Pandolfino, John; Fitzgerald, Stephanie; Tran, Thomas; Kramer, Jennifer R

    2007-01-01

    Background Obesity has been associated with gastro‐oesophageal reflux disease (GERD); however, the mechanism by which obesity may cause GERD is unclear. Aim To examine the association between oesophageal acid exposure and total body or abdominal anthropometric measures. Methods A cross‐sectional study of consecutive patients undergoing 24 h pH‐metry was conducted. Standardised measurements of body weight and height as well as waist and hip circumference were obtained. The association between several parameters of oesophageal acid exposures and anthropometric measures were examined in univariate and multivariate analyses. Results 206 patients (63% women) with a mean age of 51.4 years who were not on acid‐suppressing drugs were enrolled. A body mass index (BMI) of >30 kg/m2 (compared with BMI<25 kg/m2) was associated with a significant increase in acid reflux episodes, long reflux episodes (>5 min), time with pH<4, and a calculated summary score. These significant associations have affected total, postprandial, upright and supine pH measurements. Waist circumference was also associated with oesophageal acid exposure, but was not as significant or consistent as BMI. When adjusted for waist circumference by including it in the same model, the association between BMI>30 kg/m2 and measures of oesophageal acid exposure became attenuated for all, and not significant for some, thus indicating that waist circumference may mediate a large part of the effect of obesity on oesophageal acid exposure. Conclusions Obesity increases the risk of GERD, at least partly, by increasing oesophageal acid exposure. Waist circumference partly explains the association between obesity and oesophageal acid exposure. PMID:17127706

  8. Semicontinuous Production of Lactic Acid From Cheese Whey Using Integrated Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Coulibaly, Sekou; Mims, Michele M.

    Semicontinuous production of lactic acid from cheese whey using free cells of Bifidobacterium longum with and without nanofiltration was studied. For the semicontinuous fermentation without membrane separation, the lactic acid productivity of the second and third runs is much lower than the first run. The semicontinuous fermentation with nanoseparation was run semicontinuously for 72 h with lactic acid to be harvested every 24 h using a nanofiltration membrane unit. The cells and unutilized lactose were kept in the reactor and mixed with newly added cheese whey in the subsequent runs. Slight increase in the lactic acid productivity was observed in the second and third runs during the semicontinuous fermentation with nanofiltration. It can be concluded that nanoseparation could improve the lactic acid productivity of the semicontinuous fermentation process.

  9. Microwave-assisted biodiesel production by esterification of palm fatty acid distillate.

    PubMed

    Lokman, Ibrahim M; Rashid, Umer; Zainal, Zulkarnain; Yunus, Robiah; Taufiq-Yap, Yun Hin

    2014-01-01

    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.

  10. Inhibitory Effect of Autoclaving Whey-Based Medium on Propionic Acid Production by Propionibacterium shermanii.

    PubMed

    Anderson, T M; Bodie, E A; Goodman, N; Schwartz, R D

    1986-02-01

    Propionic acid production by Propionibacterium shermanii was compared in pasteurized and autoclaved whey-based media. Propionic acid production decreased with increasing whey concentration in autoclaved media but not in pasteurized media. Increasing the yeast extract concentration from 5 to 10 g/liter greatly reduced the inhibitory effect of autoclaving.

  11. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.

    PubMed

    Huang, Xuenian; Lu, Xuefeng; Li, Yueming; Li, Xia; Li, Jian-Jun

    2014-08-11

    Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.

  12. Regulation of lithospermic acid B and shikonin production in Lithospermum erythrorhizon cell suspension cultures.

    PubMed

    Yamamoto, Hirobumi; Zhao, Ping; Yazaki, Kazufumi; Inoue, Kenichiro

    2002-08-01

    Cell suspension cultures of Lithospermum erythrorhizon produced a large amount of lithospermic acid B, a caffeic acid tetramer, as well as shikonin derivatives (each ca. 10% of dry wt.) when cultured in shikonin production medium M-9. Various culture factors for increasing the production of lithospermic acid B were investigated. Lithospermic acid B production was inhibited by 2, 4-D or NH4+, whereas it was stimulated by Cu2+. These regulatory patterns were similar to those for the production of shikonin derivatives in these cell cultures, suggestive of close relations and similar metabolic regulation between the production of these compounds. Cultivation under light illumination, however, showed that these metabolisms were independently regulated. In particular, blue light showed a stimulatory effect on lithospermic acid B production, while shikonin production was strongly inhibited, indicative of an effective condition for lithospermic acid B production.

  13. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    PubMed

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    PubMed

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  16. Inhibitory Effect of Autoclaving Whey-Based Medium on Propionic Acid Production by Propionibacterium shermanii

    PubMed Central

    Anderson, Thomas M.; Bodie, Elizabeth A.; Goodman, Nelson; Schwartz, Robert D.

    1986-01-01

    Propionic acid production by Propionibacterium shermanii was compared in pasteurized and autoclaved whey-based media. Propionic acid production decreased with increasing whey concentration in autoclaved media but not in pasteurized media. Increasing the yeast extract concentration from 5 to 10 g/liter greatly reduced the inhibitory effect of autoclaving. PMID:16346998

  17. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.

    PubMed

    Park, Won-Kun; Yoo, Gursong; Moon, Myounghoon; Kim, Chul Woong; Choi, Yoon-E; Yang, Ji-Won

    2013-11-01

    Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris-acetate-phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.

  18. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production.

    PubMed

    Ju, Si Yeon; Kim, Jin Ho; Lee, Pyung Cheon

    2016-01-01

    Lactic acid has been approved by the United States Food and Drug Administration as Generally Regarded As Safe (GRAS) and is commonly used in the cosmetics, pharmaceutical, and food industries. Applications of lactic acid have also emerged in the plastics industry. Lactic acid bacteria (LAB), such as Leuconostoc and Lactobacillus , are widely used as lactic acid producers for food-related and biotechnological applications. Nonetheless, industrial mass production of lactic acid in LAB is a challenge mainly because of growth inhibition caused by the end product, lactic acid. Thus, it is important to improve acid tolerance of LAB to achieve balanced cell growth and a high titer of lactic acid. Recently, adaptive evolution has been employed as one of the strategies to improve the fitness and to induce adaptive changes in bacteria under specific growth conditions, such as acid stress. Wild-type Leuconostoc mesenteroides was challenged long term with exogenously supplied lactic acid, whose concentration was increased stepwise (for enhancement of lactic acid tolerance) during 1 year. In the course of the adaptive evolution at 70 g/L lactic acid, three mutants (LMS50, LMS60, and LMS70) showing high specific growth rates and lactic acid production were isolated and characterized. Mutant LMS70, isolated at 70 g/L lactic acid, increased d-lactic acid production up to 76.8 g/L, which was twice that in the wild type (37.8 g/L). Proteomic, genomic, and physiological analyses revealed that several possible factors affected acid tolerance, among which a mutation of ATPase ε subunit (involved in the regulation of intracellular pH) and upregulation of intracellular ammonia, as a buffering system, were confirmed to contribute to the observed enhancement of tolerance and production of d-lactic acid. During adaptive evolution under lethal stress conditions, the fitness of L. mesenteroides gradually increased to accumulate beneficial mutations according to the stress level. The

  19. Production of 5'-phosphodiesterase by Catharanthus roseus cells promoted by heat-degraded products generated from uronic acid.

    PubMed

    Akimoto-Tomiyama, Chiharu; Aoyagi, Hideki; Ozawa, Tetsuo; Tanaka, Hideo

    2002-01-01

    Polyalginate was autoclaved at 121 degrees C for 20 min and its molecular weight distribution was analyzed. The autoclaved alginate yielded alginate polymer, oligomer and heat degraded products (HDPs). Each of the separated substances promoted 5'-phosphodiesterase (5'-PDase) production in suspension culture of Catharanthus roseus cells. HDPs could also be generated from other uronic acids (galacturonic acid and glucuronic acid) by autoclave treatment. The most effective substance in the HDPs was isolated and characterized as trans-4,5-dihydroxy-2-cyclopenten-1-one (DHCP). The optimal conditions for DHCP production were also established (autoclaving 1 mg/ml monogalacturonic acid [pH 2] at 121 degrees C for 2 h). A combination of oligo-alginate (below 4 kDa) and HDPs significantly promoted the production of 5'-PDase in C. roseus. Based on the above results, a novel alginate complex that gave a 44-fold increase in 5'-PDase production by C. roseus was developed.

  20. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  1. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    PubMed

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  2. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    PubMed

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l -1 , monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  3. Camelina meal increases egg n-3 fatty acid content without altering egg quality or production in laying hens

    USDA-ARS?s Scientific Manuscript database

    Camelina sativa is an oilseed plant rich in n-3 and n-6-fatty acids and extruding defatted seed meal results in high protein meal (~40%) containing residual n-3 fatty acids. We examined the effects of feeding extruded defatted camelina seed meal to commercial laying hens on egg production, quality, ...

  4. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    PubMed

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots.

  5. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    PubMed

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  6. Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

    PubMed Central

    Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778

  7. Fermentation of wet-exploded corn stover for the production of volatile fatty acids.

    PubMed

    Murali, Nanditha; Fernandez, Sebastian; Ahring, Birgitte Kiaer

    2017-03-01

    Volatile fatty acids (VFA) have been used as platform molecules for production of biofuels and bioproducts. In the current study, we examine the VFA production from wet-exploded corn stover through anaerobic fermentation using rumen bacteria. The total VFA yield (acetic acid equivalents) was found to increase from 22.8g/L at 2.5% total solids (TS) to 40.8g/L at 5% TS. It was found that the acetic acid concentration increased from 10g/L to 22g/L at 2.5% and 5% TS, respectively. An increased propionic acid production was seen between day 10 and 20 at 5% TS. Valeric acid (4g/L) was produced at 5% TS and not at 2.5% TS. Composition analysis showed that 50% of the carbohydrates were converted to VFA at 5% TS and 33% at 2.5% TS. Our results show that rumen fermentation of lignocellulosic biomass after wet explosion can produce high concentrations of VFA without addition of external enzymes of importance for the process economics of lignocellulosic biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. fabH deletion increases DHA production in Escherichia coli expressing Pfa genes.

    PubMed

    Giner-Robles, Laura; Lázaro, Beatriz; de la Cruz, Fernando; Moncalián, Gabriel

    2018-06-08

    Some marine bacteria, such as Moritella marina, produce the nutraceutical docosahexaenoic acid (DHA) thanks to a specific enzymatic complex called Pfa synthase. Escherichia coli heterologously expressing the pfa gene cluster from M. marina also produces DHA. The aim of this study was to find genetic or metabolic conditions to increase DHA production in E. coli. First, we analysed the effect of the antibiotic cerulenin, showing that DHA production increased twofold. Then, we tested a series of single gene knockout mutations affecting fatty acid biosynthesis, in order to optimize the synthesis of DHA. The most effective mutant, fabH, showed a threefold increase compared to wild type strain. The combination of cerulenin inhibition and fabH deletion rendered a 6.5-fold improvement compared to control strain. Both strategies seem to have the same mechanism of action, in which fatty acid synthesis via the canonical pathway (fab pathway) is affected in its first catalytic step, which allows the substrates to be used by the heterologous pathway to synthesize DHA. DHA-producing E. coli strain that carries a fabH gene deletion boosts DHA production by tuning down the competing canonical biosynthesis pathway. Our approach can be used for optimization of DHA production in different organisms.

  9. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio.

    PubMed

    Suo, Yukai; Ren, Mengmeng; Yang, Xitong; Liao, Zhengping; Fu, Hongxin; Wang, Jufang

    2018-05-01

    Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases separation and purification costs of butyric acid. Hence, enhancing the butyrate/acetate ratio is important for economical butyric acid production. This study indicated that enhancing the acetyl-CoA to butyrate flux by overexpression of both the butyryl-CoA/acetate CoA transferase (cat1) and crotonase (crt) genes in C. tyrobutyricum could significantly reduce acetic acid concentration. Fed-batch fermentation of ATCC 25755/cat1 + crt resulted in increased butyrate/acetate ratio of 15.76 g/g, which was 2.24-fold higher than that of the wild-type strain. Furthermore, in order to simultaneously increase the butyrate/acetate ratio, butyric acid concentration and productivity, the recombinant strain ATCC 25755/ppcc (co-expression of 6-phosphofructokinase (pfkA) gene, pyruvate kinase (pykA) gene, cat1, and crt) was constructed. Consequently, ATCC 25755/ppcc produced more butyric acid (46.8 vs. 35.0 g/L) with a higher productivity (0.83 vs. 0.49 g/L·h) and butyrate/acetate ratio (13.22 vs. 7.22 g/g) as compared with the wild-type strain in batch fermentation using high glucose concentration (120 g/L). This study demonstrates that enhancing the acetyl-CoA to butyrate flux is an effective way to reduce acetic acid production and increase butyrate/acetate ratio.

  10. Production of ω-hydroxy octanoic acid with Escherichia coli.

    PubMed

    Kirtz, Marko; Klebensberger, Janosch; Otte, Konrad B; Richter, Sven M; Hauer, Bernhard

    2016-07-20

    The present proof-of-concept study reports the construction of a whole-cell biocatalyst for the de novo production of ω-hydroxy octanoic acid. This was achieved by hijacking the natural fatty acid cycle and subsequent hydroxylation using a specific monooxygenase without the need for the additional feed of alkene-like precursors. For this, we used the model organism Escherichia coli and increased primarily the release of the octanoic acid precursors by overexpressing the plant thioesterase FatB2 from Cuphea hookeriana in a β-oxidation deficient strain, which lead to the production of 2.32mM (8.38mggcww(-1)) octanoic acid in 24h. In order to produce the corresponding ω-hydroxy derivative, we additionally expressed the engineered self-sufficient monooxygenase fusion protein CYP153AMaq(G307A)-CPRBM3 within the octanoic acid producing strain. With this, we finally produced 234μM (0.95mggcww(-1)) ω-hydroxy octanoic acid in a 20h fed-batch set-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  12. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    DOEpatents

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  13. Integrated production of lactic acid and biomass on distillery stillage.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  14. Acidic organic compounds in beverage, food, and feed production.

    PubMed

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  15. Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures.

    PubMed

    Brink, Hendrik Gideon; Nicol, Willie

    2014-08-19

    Succinic acid is well established as bio-based platform chemical with production quantities expecting to increase exponentially within the next decade. Actinobacillus succinogenes is by far the most studied wild organism for producing succinic acid and is known for high yield and titre during production on various sugars in batch culture. At low shear conditions continuous fermentation with A. succinogenes results in biofilm formation. In this study, a novel shear controlled fermenter was developed that enabled: 1) chemostat operation where self-immobilisation was opposed by high shear rates and, 2) in-situ removal of biofilm by increasing shear rates and subsequent analysis thereof. The volumetric productivity of the biofilm fermentations were an order of magnitude more than the chemostat runs. In addition the biofilm runs obtained substantially higher yields. Succinic acid to acetic acid ratios for chemostat runs were 1.28±0.2 g.g(-1), while the ratios for biofilm runs started at 2.4 g.g(-1) and increased up to 3.3 g.g(-1) as glucose consumption increased. This corresponded to an overall yield on glucose of 0.48±0.05 g.g(-1) for chemostat runs, while the yields varied between 0.63 g.g(-1) and 0.74 g.g(-1) for biofilm runs. Specific growth rates (μ) were shown to be severely inhibited by the formation of organic acids, with μ only 12% of μ(max) at a succinic acid titre of 7 g.L(-1). Maintenance production of succinic acid was shown to be dominant for the biofilm runs with cell based production rates (extracellular polymeric substance removed) decreasing as SA titre increases. The novel fermenter allowed for an in-depth bioreaction analysis of A. succinogenes. Biofilm cells achieve higher SA yields than suspended cells and allow for operation at higher succinic acid titre. Both growth and maintenance rates were shown to drastically decrease with succinic acid titre. The A. succinogenes biofilm process has vast potential, where self-induced high cell densities

  16. Nutrient digestibility and milk production responses to increasing levels of palmitic acid supplementation vary in cows receiving diets with or without whole cottonseed.

    PubMed

    Rico, J E; de Souza, J; Allen, M S; Lock, A L

    2017-01-01

    Our study evaluated the dose-dependent effects of a palmitic acid-enriched supplement in basal diets with or without the inclusion of whole cottonseed on nutrient digestibility and production responses of dairy cows. Sixteen Holstein cows (149 ± 56 days in milk) were used in a split plot Latin square design experiment. Cows were blocked by 3.5% fat-corrected milk (FCM) and allocated to a main plot receiving either a basal diet with soyhulls (SH, = 8) or a basal diet with whole cottonseed (CS, = 8) that was fed throughout the experiment. A palmitic acid-enriched supplement (PA 88.5% C16:0) was fed at 0, 0.75, 1.50, or 2.25% of ration DM in a replicated 4 × 4 Latin Square design within each basal diet group. Periods were 14 d with the final 4 d used for data collection. PA dose increased milk fat content linearly, and cubically affected yields of milk fat and 3.5% FCM. The PA dose did not affect milk protein and lactose contents, BW, and BCS, but tended to increase yields of milk, milk protein, and milk lactose. Also, PA dose reduced DMI and 16-carbon fatty acid digestibility quadratically, and increased 18-carbon fatty acid digestibility quadratically. There were no effects of basal diet on the yield of milk or milk components, but DMI tended to decrease in CS compared with SH, increasing feed efficiency (3.5% FCM/DMI). Compared with SH, CS diets increased yield of preformed milk fatty acids and 16-carbon fatty acid digestibility, and tended to decrease 18-carbon fatty acid digestibility. We observed basal diet × PA dose interactions for yields of milk and milk protein and for 16-carbon and total fatty acid digestibility, as well as tendency for yields of milk fat and 3.5% FCM. Also, there was a tendency for an interaction between basal diet and PA dose for NDF digestibility, which increased more for CS with increasing PA than for SH. PA dose linearly decreased digestibility of total fatty acids in SH diets but did not affect it in CS diets Results demonstrate

  17. High cell density cultivation of probiotics and lactic acid production.

    PubMed

    Schiraldi, Chiara; Adduci, Vincenzo; Valli, Vivien; Maresca, Carmelina; Giuliano, Mariateresa; Lamberti, Monica; Cartenì, Maria; De Rosa, Mario

    2003-04-20

    The commercial interest in functional foods that contain live microorganisms, also named probiotics, is paralleled by the increasing scientific attention to their functionality in the digestive tract. This is especially true of yogurts that contain strains of lactic-acid bacteria of intestinal origin, among these, Lactobacillus delbrueckii ssp. bulgaricus is extensively used in the dairy industry and it has been demonstrated to be a probiotic strain. In this work we describe high cell density cultivations of this microorganism also focusing on the stereospecific production of lactic acid. Key parameters such as medium composition (bactocasitone concentration) and diverse aeration conditions were explored. The results showed that the final concentration of biomass in anaerobic fermentation was lower than the one obtained in microaerophilic conditions, while it gave a very high productivity of lactic acid which was present as a racemic mixture in the permeate. Fermentation experiments carried out with air sparging, even at very low flow-rate, led to the production of the sole L(+) lactic acid giving sevenfold increase in biomass yield in respect to the batch cultivation. Finally, a mathematical model was developed to describe the microfiltration bioprocess applied in this research considering an inhibition kinetic and enucleating a suitable mathematical description for the decrease of the transmembrane flux. Copyright 2003 Wiley Periodicals, Inc.

  18. Aspirin Increases Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2016-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 hr incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. PMID:27856258

  19. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  20. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  1. Exaggerated compensatory response to acute respiratory alkalosis in panic disorder is induced by increased lactic acid production.

    PubMed

    Ueda, Yoshiyasu; Aizawa, Masayo; Takahashi, Atsushi; Fujii, Masamitsu; Isaka, Yoshitaka

    2009-03-01

    In acute respiratory alkalosis, the severity of alkalaemia is ameliorated by a decrease in plasma [HCO(3)(-)] of 0.2 mEq/L for each 1 mmHg decrease in PaCO(2). Although hyperventilation in panic disorder patients is frequently encountered in outpatients, the drop in plasma [HCO(3)(-)] sometimes surpasses the expectation calculated from the above formula. The quantitative relationship between reduced PaCO(2) and plasma [HCO(3)(-)] in acute respiratory alkalosis has not been studied in panic disorder patients. Our objective was to provide reference data for the compensatory metabolic changes in acute respiratory alkalosis in panic disorder patients. In 34 panic disorder patients with hyperventilation attacks, we measured arterial pH, PaCO(2), plasma [HCO(3)(-)] and lactate on arrival at the emergency room. For each decrease of 1 mmHg in PaCO(2), plasma [HCO(3)(-)] decreased by 0.41 mEq/L. During hypocapnia, panic disorder patients exhibited larger increases in serum lactate levels (mean +/- SD; 2.59 +/- 1.50 mmol/L, range; 0.78-7.78 mmol/L) than previously reported in non-panic disorder subjects. Plasma lactate accumulation was correlated with PaCO(2) (P < 0.001). These results suggest that the compensatory metabolic response to acute respiratory alkalosis is exaggerated by increased lactic acid production in panic disorder patients. Here, we call attention to the diagnosis of acid-base derangements by means of plasma [HCO(3)(-)] and lactate concentration in panic disorder patients.

  2. Biotechnological Production of Organic Acids from Renewable Resources.

    PubMed

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  3. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    PubMed

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  4. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid.

    PubMed

    Abdel-Rahman, Mohamed Ali; Sonomoto, Kenji

    2016-10-20

    There has been growing interest in the microbial production of optically pure lactic acid due to the increased demand for lactic acid-derived environmentally friendly products, for example biodegradable plastic (poly-lactic acid), as an alternative to petroleum-derived materials. To maximize the market uptake of these products, their cost should be competitive and this could be achieved by decreasing the production cost of the raw material, that is, lactic acid. It is of great importance to isolate and develop robust and highly efficient microbial lactic acid producers. Alongside the fermentative substrate and concentration, the yield and productivity of lactic acid are key parameters and major factors in determining the final production cost of lactic acid. In this review, we will discuss the current limitations and challenges for cost-efficient microbial production of optically pure lactic acid. The main obstacles to effective fermentation are the use of food resources, indirect utilization of polymeric sugars, sensitivity to inhibitory compounds released during biomass treatments, substrate inhibition, decreased lactic acid yield and productivity, inefficient utilization of mixed sugars, end product inhibition, increased use of neutralizing agents, contamination problems, and decreased optical purity of lactic acid. Furthermore, opportunities to address and overcome these limitations, either by fermentation technology or metabolic engineering approaches, will be introduced and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Systems metabolic engineering design: Fatty acid production as an emerging case study

    PubMed Central

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-01-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660

  6. Engineering Rhodosporidium toruloides for increased lipid production.

    PubMed

    Zhang, Shuyan; Skerker, Jeffrey M; Rutter, Charles D; Maurer, Matthew J; Arkin, Adam P; Rao, Christopher V

    2016-05-01

    Oleaginous yeast are promising organisms for the production of lipid-based chemicals and fuels from simple sugars. In this work, we explored Rhodosporidium toruloides for the production of lipid-based products. This oleaginous yeast natively produces lipids at high titers and can grow on glucose and xylose. As a first step, we sequenced the genomes of two strains, IFO0880, and IFO0559, and generated draft assemblies and annotations. We then used this information to engineer two R. toruloides strains for increased lipid production by over-expressing the native acetyl-CoA carboxylase and diacylglycerol acyltransferase genes using Agrobacterium tumefaciens mediated transformation. Our best strain, derived from IFO0880, was able to produce 16.4 ± 1.1 g/L lipid from 70 g/L glucose and 9.5 ± 1.3 g/L lipid from 70 g/L xylose in shake-flask experiments. This work represents one of the first examples of metabolic engineering in R. toruloides and establishes this yeast as a new platform for production of fatty-acid derived products. © 2015 Wiley Periodicals, Inc.

  7. An Increase in Healthcare-Associated Clostridium difficile Infection Associated with Use of a Defective Peracetic Acid-Based Surface Disinfectant.

    PubMed

    Cadnum, Jennifer L; Jencson, Annette L; O'Donnell, Marguerite C; Flannery, Elizabeth R; Nerandzic, Michelle M; Donskey, Curtis J

    2017-03-01

    BACKGROUND We investigated an increase in the incidence of healthcare-associated Clostridium difficile infection (CDI) that occurred following a change from a bleach disinfectant to a peracetic acid-based disinfectant. OBJECTIVE To evaluate the efficacy of the peracetic acid-based disinfectant. DESIGN Laboratory-based product evaluation. METHODS The commercial peracetic acid-based product is activated on site by mixing a small volume of concentrated hydrogen peroxide and peracetic acid present in a "SmartCap" reservoir with the remaining contents of the container. We measured concentrations of peracetic acid in newly activated and in-use product and determined the stability of nonactivated and activated product. We tested the efficacy of the product against C. difficile spores using the American Society for Testing and Materials standard quantitative carrier disk test method. RESULTS Measured concentrations of peracetic acid (50-800 parts per million [ppm]) were significantly lower than the level stated on the product label (1,500 ppm), and similar results were obtained for containers from multiple lot numbers and from another hospital. Product with peracetic acid levels below 600 ppm had significantly reduced activity against C. difficile spores. Peracetic acid concentrations were reduced markedly after storage of either activated or nonactivated product for several weeks. The Environmental Protection Agency confirmed the finding of low disinfectant levels and ordered discontinuation of sale of the product. CONCLUSION Use of a defective peracetic acid-based surface disinfectant may have contributed to an increase in healthcare-associated CDI. Our findings highlight the importance of evaluating the efficacy of liquid disinfectants in healthcare settings. Infect Control Hosp Epidemiol 2017;38:300-305.

  8. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    PubMed

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.

  9. Toward Sustainable Amino Acid Production.

    PubMed

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  10. Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici

    DOE PAGES

    Wang, Xiaoqing; Salvachua, Davinia; Sanchez i Nogue, Violeta; ...

    2017-08-17

    The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N 2 was found to exhibit improved performance over CO 2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agentsmore » were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH 4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. These results highlight the importance of media and fermentation strategy to improve PA production. Altogether, this work demonstrates the feasibility of

  11. Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoqing; Salvachua, Davinia; Sanchez i Nogue, Violeta

    The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N 2 was found to exhibit improved performance over CO 2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agentsmore » were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH 4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. These results highlight the importance of media and fermentation strategy to improve PA production. Altogether, this work demonstrates the feasibility of

  12. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  13. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  14. Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production1

    PubMed Central

    Hellmann, Jason; Zhang, Michael J.; Tang, Yunan; Rane, Madhavi; Bhatnagar, Aruni; Spite, Matthew

    2013-01-01

    Extensive evidence indicates that nutrient excess associated with obesity and type 2 diabetes activates innate immune responses that lead to chronic, sterile low-grade inflammation and obese and diabetic humans also have deficits in wound healing and increased susceptibility to infections. Nevertheless, the mechanisms that sustain un-resolved inflammation during obesity remain unclear. Here, we report that saturated free fatty acids that are elevated in obesity alter resolution of acute sterile inflammation by promoting neutrophil survival and decreasing macrophage phagocytosis. Using a targeted mass spectrometry-based lipidomics approach, we found that in db/db mice, prostaglandin (E2/D2) levels were elevated in inflammatory exudates during the development of acute peritonitis. Moreover, in isolated macrophages, palmitic acid stimulated COX-2 induction and prostanoid production. Defects in macrophage phagocytosis induced by palmitic acid were mimicked by PGE2 and PGD2 and were reversed by cyclooxygenase inhibition or prostanoid receptor antagonism. Macrophages isolated from obese-diabetic mice expressed prostanoid receptors, EP2 and DP1, and contained significantly higher levels of downstream effector, cAMP, compared with WT mice. Therapeutic administration of EP2/DP1 dual receptor antagonist, AH6809, decreased neutrophil accumulation in the peritoneum of db/db mice, as well as the accumulation of apoptotic cells in the thymus. Together, these studies provide new insights into the mechanisms underlying altered innate immune responses in obesity and suggest that targeting specific prostanoid receptors may represent a novel strategy for resolving inflammation and restoring phagocyte defects in obese and diabetic individuals. PMID:23785121

  15. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acidmore » (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  16. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

    PubMed

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  17. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from α-linolenic acid: conjugated linolenic acid (CLnA).

    PubMed

    Park, Hui Gyu; Cho, Hyung Taek; Song, Myoung-Chong; Kim, Sang Bum; Kwon, Eung Gi; Choi, Nag Jin; Kim, Young Jun

    2012-03-28

    This study was performed to characterize natural CLnA isomer production by Bifidobacterium breve LMC520 of human origin in comparison to conjugated linoleic acid (CLA) production. B. breve LMC520 was found to be highly active in terms of CLnA production, of which the major portion was identified as cis-9,trans-11,cis-15 CLnA isomer by GC-MS and NMR analysis. B. breve LMC520 was incubated for 48 h using MRS medium (containing 0.05% L-cysteine · HCl) under different environmental conditions such as atmosphere, pH, and substrate concentration. The high conversion rate of α-linolenic acid (α-LNA) to CLnA (99%) was retained up to 2 mM α-LNA, and the production was proportionally increased nearly 7-fold with 8 mM by the 6 h of incubation under anaerobic conditions at a wide range of pH values (between 5 and 9). When α-LNA was compared with linoleic acid (LA) as a substrate for isomerization by B. breve LMC520, the conversion of α-LNA was higher than that of LA. These results demonstrated that specific CLnA isomer could be produced through active bacterial conversion at an optimized condition. Because many conjugated octadecatrienoic acids in nature are shown to play many positive roles, the noble isomer found in this study has potential as a functional source.

  19. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.

    PubMed

    Jang, Yu-Sin; Woo, Hee Moon; Im, Jung Ae; Kim, In Ho; Lee, Sang Yup

    2013-11-01

    Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.

  20. Novel consortium of Klebsiella variicola and Lactobacillus species enhances the functional potential of fermented dairy products by increasing the availability of branched-chain amino acids and the amount of distinctive volatiles.

    PubMed

    Rosales-Bravo, H; Morales-Torres, H C; Vázquez-Martínez, J; Molina-Torres, J; Olalde-Portugal, V; Partida-Martínez, L P

    2017-11-01

    Identify novel bacterial taxa that could increase the availability of branched-chain amino acids and the amount of distinctive volatiles during skim milk fermentation. We recovered 344 bacterial isolates from stool samples of healthy and breastfed infants. Five were selected based on their ability to produce branched-chain amino acids. Three strains were identified as Escherichia coli, one as Klebsiella pneumoniae and other as Klebsiella variicola by molecular and biochemical methods. HPLC and solid-phase microextraction with GC-MS were used for the determination of free amino acids and volatile compounds respectively. The consortium formed by K. variicola and four Lactobacillus species showed the highest production of Leu and Ile in skim milk fermentation. In addition, the production of volatile compounds, such as acetoin, ethanol, 2-nonanone, and acetic, hexanoic and octanoic acids, increased in comparison to commercial yogurt, Emmental and Gouda cheese. Also, distinctive volatiles, such as 2,3-butanediol, 4-methyl-2- hexanone and octanol, were identified. The use of K. variicola in combination with probiotic Lactobacillus species enhances the availability of Leu and Ile and the amount of distinctive volatiles during skim milk fermentation. The identified consortium increases the functional potential of fermented dairy products. © 2017 The Society for Applied Microbiology.

  1. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.

    PubMed

    Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J

    2016-07-28

    The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD

  2. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.

    PubMed

    Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens

    2010-05-01

    Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.

  3. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production.

    PubMed

    Navone, Laura; McCubbin, Tim; Gonzalez-Garcia, Ricardo A; Nielsen, Lars K; Marcellin, Esteban

    2018-06-01

    Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp . shermanii and the pan- Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp . shermanii , two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in

  4. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market.

    PubMed

    Baumann, Ivan; Westermann, Peter

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  5. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    PubMed Central

    Baumann, Ivan

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  6. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Systems metabolic engineering design: fatty acid production as an emerging case study.

    PubMed

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  8. Microwave Energy Increases Fatty Acid Methyl Ester Yield in Human Whole Blood Due to Increased Sphingomyelin Transesterification.

    PubMed

    Metherel, Adam H; Aristizabal Henao, Juan J; Ciobanu, Flaviu; Taha, Ameer Y; Stark, Ken D

    2015-09-01

    Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield.

  9. Microbial production of lactic acid: the latest development.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2016-12-01

    Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid.

  10. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment.

    PubMed

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna; Angelidaki, Irini

    2018-05-29

    The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    PubMed Central

    Vuković, Rosemary; Likić, Saša; Jelaska, Sibila

    2015-01-01

    Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326

  12. Monascus ruber as cell factory for lactic acid production at low pH.

    PubMed

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.

    PubMed

    Zhang, Yiming; Nielsen, Jens; Liu, Zihe

    2018-06-05

    Fatty acid-derived hydrocarbons attract increasing attention as biofuels due to their immiscibility with water, high-energy content, low freezing point, and high compatibility with existing refineries and end-user infrastructures. Yeast Saccharomyces cerevisiae has advantages for production of fatty acid-derived hydrocarbons as its native routes toward fatty acid synthesis involve only a few reactions that allow more efficient conversion of carbon substrates. Here we describe major biosynthetic pathways of fatty acid-derived hydrocarbons in yeast, and summarize key metabolic engineering strategies, including enhancing precursor supply, eliminating competing pathways, and expressing heterologous pathways. With recent advances in yeast production of fatty acid-derived hydrocarbons, our review identifies key research challenges and opportunities for future optimization, and concludes with perspectives and outlooks for further research directions. © 2018 Wiley Periodicals, Inc.

  14. Improved eicosapentaenoic acid production in Pythium splendens RBB-5 based on metabolic regulation analysis.

    PubMed

    Ren, Liang; Zhou, Pengpeng; Zhu, Yuanmin; Zhang, Ruijiao; Yu, Longjiang

    2017-05-01

    Eicosapentaenoic acid (EPA) is an essential polyunsaturated fatty acid for human beings. At present, the production of commercially available long-chain polyunsaturated fatty acids, mainly from wild-caught ocean fish, is struggling to meet the increasing demand for EPA. Production of EPA by microorganisms may be an alternative, effective and economical method. The oleaginous fungus Pythium splendens RBB-5 is a potential source of EPA, and thanks to the simple culture conditions required, high yields can be achieved in a facile manner. In the study, lipid metabolomics was performed in an attempt to enhance EPA biosynthesis in Pythium splendens. Synthetic, metabolic regulation and gene expression analyses were conducted to clarify the mechanism of EPA biosynthesis, and guide optimization of EPA production. The results showed that the Δ 6 desaturase pathway is the main EPA biosynthetic route in this organism, and ∆ 6 , ∆ 12 and Δ 17 desaturases are the rate-limiting enzymes. All the three desaturase genes were separately introduced into the parent strain to increase the flow of fatty acids into the Δ 6 desaturase pathway. Enhanced expression of these key enzymes, in combination with improved regulation of metabolism, resulted in a maximum yield of 1.43 g/L in the D12 transgenic strain, which represents a tenfold increase over the parent strain before optimization. This is the higher EPA production yield yet reported for a microbial system. Our findings may allow the production of EPA at an industrial scale, and the strategy employed could be used to increase the production of EPA or other lipids in oleaginous microorganisms.

  15. PLASMA PROTEIN PRODUCTION INFLUENCED BY AMINO ACID MIXTURES AND LACK OF ESSENTIAL AMINO ACIDS

    PubMed Central

    Madden, S. C.; Anderson, F. W.; Donovan, J. C.; Whipple, G. H.

    1945-01-01

    When blood plasma proteins are depleted by bleeding with return of red cells suspended in saline (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a constant level of plasma protein production if the diet nitrogen intake is controlled and limited. Such dogs are outwardly normal but have a lowered resistance to infection and intoxication and probably to vitamin deficiency. When the diet nitrogen is provided by certain mixtures of the ten growth essential amino acids plus glycine, given intravenously at a rapid rate, plasma protein production is good. The same mixture absorbed subcutaneously at a slower rate may be slightly better utilized. Fed orally the same mixture is better utilized and associated with a lower urinary nitrogen excretion. An ample amino acid mixture for the daily intake of a 10 kilo dog may contain in grams dl-threonine 1.4, dl-valine 3, dl-leucine 3, dl-isoleucine 2, l(+)-lysine·HCl·H2O 2.2, dl-tryptophane 0.3, dl-phenylalanine 2, dl-methionine 1.2, l(+)-histidine·HCl·H2O 1, l(+)-arginine·HCl 1, and glycine 2. Half this quantity is inadequate and not improved by addition of a mixture of alanine, serine, norleucine, proline, hydroxyproline, and tyrosine totalling 1.4 gm. Aspartic acid appears to induce vomiting when added to a mixture of amino acids. The same response has been reported for glutamic acid (8). Omission from the intake of leucine or of leucine and isoleucine results in negative nitrogen balance and rapid weight loss but plasma protein production may be temporarily maintained. It is possible that leucine may be captured from red blood cell destruction. Tryptophane deficiency causes an abrupt decline in plasma protein production. No decline occurred during 2 weeks of histidine deficiency but the urinary nitrogen increased to negative balance. Plasma protein production may be impaired during conditions of dietary deficiency not related to the protein or amino acid intake. Skin lesions and liver

  16. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes

    PubMed Central

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement. PMID:26347861

  17. Comparing the Impact of Prescription Omega-3 Fatty Acid Products on Low-Density Lipoprotein Cholesterol.

    PubMed

    Sharp, Randall P; Gales, Barry J; Sirajuddin, Riaz

    2018-04-01

    Elevated levels of triglycerides are associated with pancreatitis and an increased risk of coronary heart disease. Numerous pharmacologic therapies are available to treat hypertriglyceridemia, including prescription omega-3 fatty acids, which reduce triglyceride levels by 20-50%. Available data indicate the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be beneficial for secondary prevention of coronary heart disease. Products containing DHA may increase low-density lipoprotein cholesterol (LDL-C) and, subsequently, coronary heart disease risk. We reviewed prescription omega-3 fatty acid products, of which two-omega-3 acid ethyl esters (OM3EE) and omega-3 carboxylic acid (OM3CA)-contain both DHA and EPA, whereas the other-icosapent ethyl (IPE)-contains EPA only. We identified three retrospective chart reviews and three case reports comparing IPE with OM3EE, whereas two studies compared IPE with placebo. We also reviewed the major studies of OM3EE versus placebo used to gain US FDA approval. LDL-C levels decreased or did not increase significantly in all available studies and case reports in patients receiving the IPE product, with the best data supporting a dose of 4 g per day. The majority of studies only included patients taking IPE concomitantly with statins, but limited data from one study using IPE monotherapy showed a small reduction in LDL-C. Many questions remain regarding IPE, including whether the product reduces cardiovascular events and mortality.

  18. Acid production in dental plaque after exposure to probiotic bacteria.

    PubMed

    Keller, Mette K; Twetman, Svante

    2012-10-24

    The increasing interest in probiotic lactobacilli in health maintenance has raised the question of potential risks. One possible side effect could be an increased acidogenicity in dental plaque. The aim of this study was to investigate the effect of probiotic lactobacilli on plaque lactic acid (LA) production in vitro and in vivo. In the first part (A), suspensions of two lactobacilli strains (L. reuteri DSM 17938, L. plantarum 299v) were added to suspensions of supragingival dental plaque collected from healthy young adults (n=25). LA production after fermentation with either xylitol or fructose was analyzed. In the second part (B), subjects (n=18) were given lozenges with probiotic lactobacilli (L. reuteri DSM 17938 and ATCC PTA 5289) or placebo for two weeks in a double-blinded, randomized cross-over trial. The concentration of LA in supragingival plaque samples was determined at baseline and after 2 weeks. Salivary counts of mutans streptococci (MS) and lactobacilli were estimated with chair-side methods. Plaque suspensions with L. reuteri DSM 17938 produced significantly less LA compared with L. plantarum 299v or controls (p<0.05). Fructose gave higher LA concentrations than xylitol. In part B, there were no significant differences in LA production between baseline and follow up in any of the groups and no differences between test and placebo were displayed. The salivary MS counts were not significantly altered during the intervention but the lactobacilli counts increased significantly in the test group (p<0.05). Lactic acid production in suspensions of plaque and probiotic lactobacilli was strain-dependant and the present study provides no evidence of an increase in plaque acidity by the supply of selected probiotic lactobacilli when challenged by fructose or xylitol. The study protocol was approved by The Danish National Committee on Biomedical Research Ethics (protocol no H-2-2010-112). NCT01700712.

  19. Biotechnological production of enantiomerically pure d-lactic acid.

    PubMed

    Klotz, Silvia; Kaufmann, Norman; Kuenz, Anja; Prüße, Ulf

    2016-11-01

    The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

  20. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production.

    PubMed

    Moi, Ibrahim Musa; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Sabri, Suriana

    2018-05-10

    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.

  1. Application of acid whey and set milk to marinate beef with reference to quality parameters and product safety.

    PubMed

    Wójciak, Karolina M; Krajmas, Paweł; Solska, Elżbieta; Dolatowski, Zbigniew J

    2015-01-01

    The aim of the study was to evaluate the potential of acid whey and set milk as a marinade in the traditional production of fermented eye round. Studies involved assaying pH value, water activity (aw), oxidation-reduction potential and TBARS value, colour parameters in CIE system (L*, a*, b*), assaying the number of lactic acid bacteria and certain pathogenic bacteria after ripening process and after 60-day storing in cold storage. Sensory analysis and analysis of the fatty acids profile were performed after completion of the ripening process. Analysis of pH value in the products revealed that application of acid whey to marinate beef resulted in increased acidity of ripening eye round (5.14). The highest value of the colour parameter a* after ripening process and during storage was observed in sample AW (12.76 and 10.07 respectively), the lowest on the other hand was observed in sample SM (10.06 and 7.88 respectively). The content of polyunsaturated fatty acids (PUFA) was higher in eye round marinated in acid whey by approx. 4% in comparison to other samples. Application of acid whey to marinade beef resulted in increased share of red colour in general colour tone as well as increased oxidative stability of the product during storage. It also increased the content of polyunsaturated fatty acids (PUFA) in the product. All model products had high content of lactic acid bacteria and there were no pathogenic bacteria such as: L. monocytogenes, Y. enterocolitica, S. aureus, Clostridium sp.

  2. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.

    PubMed

    Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter

    2010-08-01

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.

  3. Bio-oil based biorefinery strategy for the production of succinic acid.

    PubMed

    Wang, Caixia; Thygesen, Anders; Liu, Yilan; Li, Qiang; Yang, Maohua; Dang, Dan; Wang, Ze; Wan, Yinhua; Lin, Weigang; Xing, Jianmin

    2013-01-01

    Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production.

  4. World market and biotechnological production of itaconic acid.

    PubMed

    Cunha da Cruz, Juliana; Machado de Castro, Aline; Camporese Sérvulo, Eliana Flávia

    2018-03-01

    The itaconic acid (IA) world market is expected to exceed 216 million of dollars by 2020 as a result of an increasing demand for bio-based chemicals. The potential of this organic acid produced by fermentation mainly with filamentous fungi relies on the vast industrial applications of polymers derived from it. The applications may be as a superabsorbent polymer for personal care or agriculture, unsaturated polyester resin for the transportation industry, poly(methyl methacrylate) for electronic devices, among many others. However, the existence of other substitutes and the high production cost limit the current IA market. IA manufacturing is done mainly in China and other Asia-Pacific countries. Higher economic feasibility and production worldwide may be achieved with the use of low-cost feedstock of local origin and with the development of applications targeted to specific local markets. Moreover, research on the biological pathway for IA synthesis and the effect of medium composition are important for amplifying the knowledge about the production of that biochemical with great market potential.

  5. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase inmore » TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.« less

  6. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    PubMed

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  7. Increase in the permeability of tonoplast of garlic (Allium sativum) by monocarboxylic acids.

    PubMed

    Bai, Bing; Li, Lei; Hu, Xiaosong; Wang, Zhengfu; Zhao, Guanghua

    2006-10-18

    Immersion of intact aged garlic (Allium sativum) cloves in a series of 5% weak organic monocarboxylate solutions (pH 2.0) resulted in green color formation. No color was formed upon treatment with other weak organic acids, such as citric and malic acids, and the inorganic hydrochloric acid under the same conditions. To understand the significance of monocarboxylic acids and their differing function from that of other acids, acetic acid was compared with organic acids citric and malic and the inorganic hydrochloric acid. The effects of these acids on the permeability of plasma and intracellular membrane of garlic cells were measured by conductivity, light microscopy, and transmission electron microscopy. Except for hydrochloric acid, treatment of garlic with all three organic acids greatly increased the relative conductivity of their respective pickling solutions, indicating that all tested organic acids increased the permeability of plasma membrane. Moreover, a pickling solution containing acetic acid exhibited 1.5-fold higher relative conductivity (approximately 90%) as compared to those (approximately 60%) of both citric and malic acids, implying that exposure of garlic cloves to acetic acid not only changed the permeability of the plasma membrane but also increased the permeability of intracellular membrane. Exposure of garlic to acetic acid led to the production of precipitate along the tonoplast, but no precipitate was formed by citric and malic acids. This indicates that the structure of the tonoplast was damaged by this treatment. Further support for this conclusion comes from results showing that the concentration of thiosulfinates [which are produced only by catalytic conversion of S-alk(en)yl-l-cysteine sulfoxides in cytosol by alliinase located in the vacuole] in the acetic acid pickling solution is 1.3 mg/mL, but almost no thiosulfinates were detected in the pickling solution of citric and malic acids. Thus, all present results suggest that damage of

  8. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop.

    PubMed

    Teixeira, Walquíria F; Fagan, Evandro B; Soares, Luis H; Soares, Jérssica N; Reichardt, Klaus; Neto, Durval D

    2018-01-01

    The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V 4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V 6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%.

  9. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop

    PubMed Central

    Teixeira, Walquíria F.; Fagan, Evandro B.; Soares, Luis H.; Soares, Jérssica N.; Reichardt, Klaus; Neto, Durval D.

    2018-01-01

    The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%. PMID:29643860

  10. Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Z.; Yang, S.T.

    1998-05-01

    An extractive fermentation process using an amine extractant and a hollow-fiber membrane extractor to selectively remove propionic acid from the fermentation broth was developed to produce propionate from lactose. Compared to the conventional batch fermentation, the extractive fermentation had a much higher productivity ({approximately}1 g/(L{center_dot}h) or 5-fold increase), higher propionate yield (up to 0.66 g/g or more than 20% increase), higher final product concentration (75 g/L or higher), and higher product purity ({approximately}90%). Meanwhile, acetate and succinate productions in the extractive fermentation were significantly reduced. The improved fermentation performance can be attributed to the reduced product inhibition and a possiblemore » metabolic pathway shift to favor more propionic but less acetic and succinic acid production. The process was stable and gave consistent long-term performance over the 1.5-month period studied. The effects of propionate concentration, pH, and amine content in the solvent on the extractive fermentation were also studied and are discussed in this paper.« less

  11. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity

    PubMed Central

    2013-01-01

    Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be

  12. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803

    PubMed Central

    2014-01-01

    Background Molecular engineering of the intermediary physiology of cyanobacteria has become important for the sustainable production of biofuels and commodity compounds from CO2 and sunlight by “designer microbes.” The chemical commodity product L-lactic acid can be synthesized in one step from a key intermediary metabolite of these organisms, pyruvate, catalyzed by a lactate dehydrogenase. Synthetic biology engineering to make “designer microbes” includes the introduction and overexpression of the product-forming biochemical pathway. For further optimization of product formation, modifications in the surrounding biochemical network of intermediary metabolism have to be made. Results To improve light-driven L-lactic acid production from CO2, we explored several metabolic engineering design principles, using a previously engineered L-lactic acid producing mutant strain of Synechocystis sp. PCC6803 as the benchmark. These strategies included: (i) increasing the expression level of the relevant product-forming enzyme, lactate dehydrogenase (LDH), for example, via expression from a replicative plasmid; (ii) co-expression of a heterologous pyruvate kinase to increase the flux towards pyruvate; and (iii) knockdown of phosphoenolpyruvate carboxylase to decrease the flux through a competing pathway (from phosphoenolpyruvate to oxaloacetate). In addition, we tested selected lactate dehydrogenases, some of which were further optimized through site-directed mutagenesis to improve the enzyme’s affinity for the co-factor nicotinamide adenine dinucleotide phosphate (NADPH). The carbon partitioning between biomass and lactic acid was increased from about 5% to over 50% by strain optimization. Conclusion An efficient photosynthetic microbial cell factory will display a high rate and extent of conversion of substrate (CO2) into product (here: L-lactic acid). In the existing CO2-based cyanobacterial cell factories that have been described in the literature, by far most of

  13. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  14. Unusal pattern of product inhibition: batch acetic acid fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behaviormore » was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.« less

  15. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum.

    PubMed

    Pérez-López, Paula; González-García, Sara; Allewaert, Céline; Verween, Annick; Murray, Patrick; Feijoo, Gumersindo; Moreira, Ma Teresa

    2014-01-01

    Polyunsaturated fatty acids (PUFAs) play an important role in human health. Due to the increased market demand, the production of PUFAs from potential alternative sources such as microalgae is receiving increased interest. The aim of this study was to perform a life cycle assessment (LCA) of the biotechnological production of eicosapentaenoic acid (EPA) from the marine diatom Phaeodactylum tricornutum, followed by the identification of avenues to improve its environmental profile. The LCA tackles two production schemes of P. tricornutum PUFAs with an EPA content of 36%: lab and pilot scales. The results at lab scale show that both the electricity requirements and the production of the extraction agent (chloroform) have significant influence on the life cycle environmental performance of microalgal EPA production. An alternative method based on hexane was proposed to replace chloroform and environmental benefits were identified. Regarding the production of EPA at pilot scale, three main environmental factors were identified: the production of the nitrogen source required for microalgae growing, the transport activities and electricity requirements. Improvement alternatives were proposed and discussed concerning: a) the use of nitrogen based fertilizers, b) the valorization of the residual algal paste as soil conditioner and, c) the anaerobic digestion of the residual algal paste for bioenergy production. Encouraging environmental benefits could be achieved if sodium nitrate was substituted by urea, calcium nitrate or ammonium nitrate, regardless the category under assessment. In contrast, minor improvement was found when valorizing the residual algal paste as mineral fertilizer, due to its overall low content in N and P. Concerning the biogas production from the anaerobic digestion, the improvement on the environmental profile was also limited due to the discrepancy between the potential energy production from the algal paste and the high electricity requirements in

  16. Maximizing the production of butyric acid from food waste as a precursor for ABE-fermentation.

    PubMed

    Stein, Ullrich Heinz; Wimmer, B; Ortner, M; Fuchs, W; Bochmann, G

    2017-11-15

    The current study reports on the maximization of butyric acid production from food waste using a mixed microbial fermentation. In semi-continuous fermentations the effect of three different pH values (5.5, 7.0 and 9.0), three different temperatures (37°C, 55°C and 70°C) and two levels of hydraulic retention time (HRT, 2days and 6days) on the formation of butyric acid as well as total volatile fatty acid production (tVFA) were investigated. Overall, pH5.5 provided the lowest butyric acid concentrations regardless of the temperature and the HRT. At mesophilic temperature (37°C) alkaline conditions (pH9.0) lead to a strong incline of tVFA as well as butyric acid concentration probably due to a decreased solubilization of the substrate. However, most efficient in terms of butyric acid production was the fermentation conducted at 55°C and pH7 where a butyric acid concentrations of 10.55g/L (HRT 2days) and 13.00g/L (HRT 6days) were achieved. Additional experiments at 70°C showed declining butyric acid production. Increase of the HRT from 2days to 6days provided an increment of butyric acid concentration throughout almost all experimental settings. However, regarding volumetric productivity the increase in concentration does not compensate for the bigger reactor volume required to establish a higher HRT. At pH7 and 55°C the resulting volumetric production rates were 5.27g/L∗d at a HRT 2days and only 2.17g/L∗d at a HRT of 6days. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.

    PubMed

    Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony

    2015-05-03

    Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed

  18. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Effects of carbon dioxide on cell growth and propionic acid production from glycerol and glucose by Propionibacterium acidipropionici.

    PubMed

    Zhang, An; Sun, Jianxin; Wang, Zhongqiang; Yang, Shang-Tian; Zhou, Haiying

    2015-01-01

    The effects of CO2 on propionic acid production and cell growth in glycerol or glucose fermentation were investigated in this study. In glycerol fermentation, the volumetric productivity of propionic acid with CO2 supplementation reached 2.94g/L/day, compared to 1.56g/L/day without CO2. The cell growth using glycerol was also significantly enhanced with CO2. In addition, the yield and productivity of succinate, the main intermediate in Wood-Werkman cycle, increased 81% and 280%, respectively; consistent with the increased activities of pyruvate carboxylase and propionyl CoA transferase, two key enzymes in the Wood-Werkman cycle. However, in glucose fermentation CO2 had minimal effect on propionic acid production and cell growth. The carbon flux distributions using glycerol or glucose were also analyzed using a stoichiometric metabolic model. The calculated maintenance coefficient (mATP) increased 100%, which may explain the increase in the productivity of propionic acid in glycerol fermentation with CO2 supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction...

  1. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction...

  2. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  3. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    PubMed

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    PubMed

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  5. Microbial acid production (Clinpro Cario L-Pop) and dental caries in infants and children.

    PubMed

    Bretz, W A; Corby, P M A; Costa, S; Quadros, M; Tavares, V S; Moreira, G; Filho, M R Melo; Weyant, R J

    2007-04-01

    The purpose of this study was to evaluate the diagnostic utility of the Clinpro Cario-L-Pop test as it relates to dental caries rates and severity in infants and children. The study population was comprised of 771 infants and children who were on average 5.2 years of age (range of 1.5 to 8 years of age). Examiners conducted dental caries clinical examination using established criteria. In addition, lesion severity was determined be measuring its depth. An indicator swab was applied to the tongue dorsum until completely moistened with saliva. The indicator swab was processed according to the manufacturer's instructions, and acid production was assessed with the aid of a color chart. Twenty-three percent of children were caries free, and 7% (n = 50) of participants were categorized as having low production of lactic acid (scores 1 to 3), 17% (n = 135) moderate production of lactic acid (scores 4 to 6), and 76% (n = 586) high production of lactic acid (scores 7 to 9). There was a tendency for moderate and high lactic acid formers to exhibit higher surface-based caries prevalence rates, higher rates for deep dentinal lesions, and increased lesion severity. There was a linear increase of white spot surface-based lesions from low to high lactic acid formers and for initial dentinal lesions. Clinpro Cario-L-Pop test results, when controlling for age and gender, significantly distinguished caries-free participants from those exhibiting any form of decay. These results suggest that Clinpro Cario-L-Pop test was useful in explaining elevated frequency and severity of dental caries in spite of the high levels of decay and of microbial acid production observed in this population.

  6. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Sonomoto, Kenji

    2018-05-26

    Lactic acid (LA) is an important platform chemical due to its significant applications in various fields and its use as a monomer for the production of biodegradable poly(lactic acid) (PLA). Free LA production is required to get rid of CaSO 4 , a waste material produced during fermentation at neutral pH which will lead to easy purification of LA required for the production of biodegradable PLA. Additionally, there is no need to use corrosive acids to release free LA from the calcium lactate produced during neutral fermentation. To date, several attempts have been made to improve the acid tolerance of lactic acid bacteria (LAB) by using both genome-shuffling approaches and rational design based on known mechanisms of LA tolerance and gene deletion in yeast strains. However, the lack of knowledge and the complexity of acid-tolerance mechanisms have made it challenging to generate LA-tolerant strains by simply modifying few target genes. Currently, adaptive evolution has proven an efficient strategy to improve the LA tolerance of individual/engineered strains. The main objectives of this article are to summarize the conventional biotechnological LA fermentation processes to date, assess their overall economic and environmental cost, and to introduce modern LA fermentation strategies for free LA production. In this review, we provide a broad overview of free LA fermentation processes using robust LAB that can ferment in acidic environments, the obstacles to these processes and their possible solutions, and the impact on future development of free LA fermentation processes commercially.

  7. Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity.

    PubMed

    Maharaj, K; Bradfield, M F A; Nicol, W

    2014-09-01

    Continuous anaerobic fermentations were performed in a biofilm reactor packed with Poraver® beads. Dilution rates (D) varied between 0.054 and 0.72 h(-1), and D-glucose and CO2 gas were used as carbon substrates. Steady-state conditions were shown to be repeatable and independent of the operational history. Production stability was achieved over periods exceeding 80 h at values of D below 0.32 h(-1). In these situations, steady-state variation (expressed as fluctuations in NaOH neutralisation flow rates) exhibited a standard deviation of less than 5 % while no indication of biofilm deactivation was detected. The total biomass amount was found to be independent of the dilution rate with an average dry concentration of 23.8 ± 2.9 g L(-1) obtained for all runs. This suggests that the attachment area controls the extent of biofilm accumulation. Specific succinic acid (SA) productivities, based on the total biomass amount, exhibited a substantial decrease with decreasing D. An SA volumetric productivity of 10.8 g L(-1) h(-1) was obtained at D = 0.7 h(-1)-the highest value reported to date in Actinobacillus succinogenes fermentations. SA yields on glucose increased with decreasing D, with a yield of 0.90 ± 0.01 g g(-1) obtained at a D of 0.054 h(-1). Production of formic acid approached zero with decreasing D, while the succinic to acetic acid ratio increased with decreasing D, resulting in an increasing SA yield on glucose.

  8. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  9. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  10. Increasing hygiene productivity.

    PubMed

    Levin, Roger P

    2003-03-01

    Dentists have many opportunities to expand the role of dental hygienists and provide patients with better oral health care, while increasing production and profits. But the proper business systems and verbal skills need to be incorporated. You must train hygienists to do all they can do for every patient. Begin with one service and add others, as the hygienists becomes familiar with each one. Set a goal of a 15% increase in production per year for the hygiene department. Clinicians using these strategies have experienced as much as a 100% to 200% increase in hygiene revenue during the first year of incorporating these services. An added benefit is that these dentists often see a substantial increase in dental treatment diagnosis and case acceptance. An effective and efficient hygiene department will often identify and help secure more than 50% of a doctor's production.

  11. Selective production of decanoic acid from iterative reversal of β-oxidation pathway.

    PubMed

    Kim, Seohyoung; Gonzalez, Ramon

    2018-05-01

    Decanoic acid is a valuable compound used as precursor for industrial chemicals, pharmaceuticals, and biofuels. Despite efforts to produce it from renewables, only limited achievements have been reported. Here, we report an engineered cell factory able to produce decanoic acid as a major product from glycerol, and abundant and renewable feedstock. We exploit the overlapping chain-length specificity of β-oxidation reversal (r-BOX) and thioesterase enzymes to selectively generate decanoic acid. This was achieved by selecting r-BOX enzymes that support the synthesis of acyl-CoA of up to 10 carbons (thiolase BktB and enoyl-CoA reductase EgTER) and a thioesterase that exhibited high activity toward decanoyl-CoA and longer-chain acyl-CoAs (FadM). Combined chromosomal and episomal expression of r-BOX core enzymes such as enoyl-CoA reductase and thiolase (in the presence of E. coli thioesterase FadM) increased titer and yield of decanoic acid, respectively. The carbon flux toward decanoic acid was substantially increased by the use of an organic overlay, which decreased its intracellular accumulation and presumably increased its concentration gradient across cell membrane, suggesting that decanoic acid transport to the extracellular medium might be a major bottleneck. When cultivated in the presence of a n-dodecane overlay, the final engineered strain produced 2.1 g/L of decanoic acid with a yield of 0.1 g/g glycerol. Collectively, our data suggests that r-BOX can be used as a platform to selectively produce decanoic acid and its derivatives at high yield, titer and productivity. © 2018 Wiley Periodicals, Inc.

  12. Bio-oil based biorefinery strategy for the production of succinic acid

    PubMed Central

    2013-01-01

    Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107

  13. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.

    PubMed

    Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A

    2018-04-13

    The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.

  14. Scale-up laccase production from Trametes versicolor stimulated by vanillic acid.

    PubMed

    Wang, Ke-Feng; Hu, Jian-Hua; Guo, Chen; Liu, Chun-Zhao

    2016-07-01

    An efficient strategy for laccase production in Trametes versicolor cultures was developed using vanillic acid as the inducer. The optimized vanillic acid treatment strategy consisted of exposing 2-day-old mycelia cultures to 80 mg/L vanillic acid. After 4 days, laccase activity of 588.84 U/L was achieved in flasks which represented a 1.79-fold increase compared to the control. In 200-L airlift bioreactor, the maximal laccase activity reached up to 785.12 U/L using the optimized vanillic acid treatment strategy. The zymograms of culture supernatants revealed three bands with laccase activity, among which Lac1 and Lac2 were abundant laccase isoforms constitutively expressed, and Lac3 was an inducible isozyme by vanillic acid. The results of real-time quantitative PCR showed that the transcription level of lcc in T. versicolor cultures grown with vanillic acid for 7 days was about 5.64-fold greater than that without vanillic acid in flasks. In 200-L airlift bioreactor cultures of T. versicolor with addition of vanillic acid, the transcript level of lcc at day 7 was 2.62-fold higher than that in flasks with vanillic acid due to the good mass transfer and oxygen supply in the bioreactor system. This study provides a basis for understanding the induction mechanism of vanillic acid for laccase production and has good potential for industrial applications.

  15. Effects of exogenous fatty acids and inhibition of de novo fatty acid synthesis on disaturated phosphatidylcholine production by fetal lung cells and adult type II cells.

    PubMed

    Maniscalco, W M; Finkelstein, J N; Parkhurst, A B

    1989-05-01

    De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.

  16. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  17. Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge.

    PubMed

    Li, Xiang; Zhang, Wenjuan; Ma, Li; Lai, Sizhou; Zhao, Shu; Chen, Yinguang; Liu, Yanan

    2016-11-01

    This study investigated the feasibility of improved production propionic acid-enriched volatile fatty acid (VFA) from high concentration (Cs) of food waste and waste activated sludge (WAS) via lactic acid pathway by using of Propionibacterium acidipropionici. It was observed that production of l-lactate overwhelmed to d-lactate at first stage, which improved from 3.21 to 35.45gCOD/L with increase of substrate Cs. However, kinetic model analysis indicated that P. acidipropionici growth rate μmax was decreased with increase of l-lactate concentration, which explained second stage free cell fermentation of propionic acid was inhibited when fed by first stage liquid from R-40, R-55 and R-70. Then, the fibrous bed bioreactor was employed to eliminate the feed inhibition. The maximal percentage of propionic acid (68.3%) and production (16.31gCOD/L) was obtained by feeding liquid of R-55, which was improved by 3.33 folds compared to the free cell fermentation. Copyright © 2016. Published by Elsevier Ltd.

  18. Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid

    PubMed Central

    Hüner, Norman P. A.; Dahal, Keshav; Kurepin, Leonid V.; Savitch, Leonid; Singh, Jas; Ivanov, Alexander G.; Kane, Khalil; Sarhan, Fathey

    2014-01-01

    We propose that targeting the enhanced photosynthetic performance associated with the cold acclimation of winter cultivars of rye (Secale cereale L.), wheat (Triticum aestivum L.), and Brassica napus L. may provide a novel approach to improve crop productivity under abiotic as well as biotic stress conditions. In support of this hypothesis, we provide the physiological, biochemical, and molecular evidence that the dwarf phenotype induced by cold acclimation is coupled to significant enhancement in photosynthetic performance, resistance to photoinhibition, and a decreased dependence on photoprotection through non-photochemical quenching which result in enhanced biomass production and ultimately increased seed yield. These system-wide changes at the levels of phenotype, physiology, and biochemistry appear to be governed by the family of C-repeat/dehydration-responsive family of transcription factors (CBF/DREB1). We relate this phenomenon to the semi-dwarf, gibberellic acid insensitive (GAI), cereal varieties developed during the “green revolution” of the early 1960s and 1970s. We suggest that genetic manipulation of the family of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) may provide a novel approach for the maintenance and perhaps even the enhancement of plant productivity under conditions of sub-optimal growth conditions predicted for our future climate. PMID:24860799

  19. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.

    PubMed

    Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He

    2012-01-01

    Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.

  20. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  1. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger.

    PubMed

    Wang, Lu; Zhang, Jianhua; Cao, Zhanglei; Wang, Yajun; Gao, Qiang; Zhang, Jian; Wang, Depei

    2015-01-16

    The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of

  2. Production and Recovery of Pyruvic Acid: Recent Advances

    NASA Astrophysics Data System (ADS)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  3. Acid production in dental plaque after exposure to probiotic bacteria

    PubMed Central

    2012-01-01

    Background The increasing interest in probiotic lactobacilli in health maintenance has raised the question of potential risks. One possible side effect could be an increased acidogenicity in dental plaque. The aim of this study was to investigate the effect of probiotic lactobacilli on plaque lactic acid (LA) production in vitro and in vivo. Methods In the first part (A), suspensions of two lactobacilli strains (L. reuteri DSM 17938, L. plantarum 299v) were added to suspensions of supragingival dental plaque collected from healthy young adults (n=25). LA production after fermentation with either xylitol or fructose was analyzed. In the second part (B), subjects (n=18) were given lozenges with probiotic lactobacilli (L. reuteri DSM 17938 and ATCC PTA 5289) or placebo for two weeks in a double-blinded, randomized cross-over trial. The concentration of LA in supragingival plaque samples was determined at baseline and after 2 weeks. Salivary counts of mutans streptococci (MS) and lactobacilli were estimated with chair-side methods. Results Plaque suspensions with L. reuteri DSM 17938 produced significantly less LA compared with L. plantarum 299v or controls (p<0.05). Fructose gave higher LA concentrations than xylitol. In part B, there were no significant differences in LA production between baseline and follow up in any of the groups and no differences between test and placebo were displayed. The salivary MS counts were not significantly altered during the intervention but the lactobacilli counts increased significantly in the test group (p<0.05). Conclusion Lactic acid production in suspensions of plaque and probiotic lactobacilli was strain-dependant and the present study provides no evidence of an increase in plaque acidity by the supply of selected probiotic lactobacilli when challenged by fructose or xylitol. The study protocol was approved by The Danish National Committee on Biomedical Research Ethics (protocol no H-2-2010-112). Trial registration NCT01700712

  4. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  5. Regulation of docosahexaenoic acid production by Schizochytrium sp.: effect of nitrogen addition.

    PubMed

    Ren, Lu-Jing; Sun, Li-Na; Zhuang, Xiao-Yan; Qu, Liang; Ji, Xiao-Jun; Huang, He

    2014-05-01

    Docosahexaenoic acid (DHA) percentage in total fatty acids (TFAs) is an important index in DHA microbial production. In this study, the change of DHA percentage in response to fermentation stages and the strategies to increase DHA percentage were investigated. Two kinds of conventional nitrogen sources, monosodium glutamate (MSG) and ammonium sulfate (AS), were tested to regulate DHA synthesis. Results showed that MSG addition could accelerate the substrate consumption rate but inhibit lipid accumulation, while AS addition could increase DHA percentage in TFAs effectively but extend fermentation period slightly. Finally, the AS addition strategy was successfully applied in 7,000-L fermentor and DHA percentage in TFAs and DHA yield reached 46.06 % and 18.48 g/L, which was 19.54 and 17.41 % higher than that of no-addition strategy. This would provide guidance for the large-scale production of the other similar polyunsaturated fatty acid, and give insight into the nitrogen metabolism in oil-producing microorganisms.

  6. Inhibition effects of perfluoroalkyl acids on progesterone production in mLTC-1.

    PubMed

    Zhao, Wei; Cui, Ruina; Wang, Jianshe; Dai, Jiayin

    2017-06-01

    Perfluoroalkyl substances (PFASs) are a class of fluorine substituted carboxylic acid, sulfonic acid and alcohol, structurally similar to their corresponding parent compounds. Previous study demonstrated the potential endocrine disruption and reproductive toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid, two dominant PFASs in animals and humans. We explored the relationship between eleven perfluoroalkyl acids (PFAAs) with different carbon chain length and their ability to inhibit progesterone production in mouse Leydig tumor cells (mLTC-1). We found an obvious dose-response relationship between progesterone inhibition rate and PFAA exposure concentration in mLTC-1. The relative inhibition rate of progesterone by PFAAs was linearly related to the carbon chain length and molar refractivity of PFAAs. Mitochondrial membrane potential (MMP) decreased after PFAA exposure at the half-maximal inhibitory effect concentration (IC 50 ) of progesterone production in mLTC-1, while the reactive oxygen species (ROS) content increased significantly. These results imply that the inhibition effect of PFAAs on progesterone production might be due, in part, to ROS damage and the decrease in MMP in mLTC-1. Copyright © 2016. Published by Elsevier B.V.

  7. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens.

    PubMed

    Torchon, Emmanuelle; Ray, Rodney; Hulver, Matthew W; McMillan, Ryan P; Voy, Brynn H

    2017-01-02

    Upregulating the fatty acid oxidation capacity of white adipose tissue in mice protects against diet-induced obesity, inflammation and insulin resistance. Part of this capacity results from induction of brown-like adipocytes within classical white depots, making it difficult to determine the oxidative contribution of the more abundant white adipocytes. Avian genomes lack a gene for uncoupling protein 1 and are devoid of brown adipose cells, making them a useful model in which to study white adipocyte metabolism in vivo. We recently reported that a brief (5 hour) period of fasting significantly upregulated many genes involved in mitochondrial and peroxisomal fatty acid oxidation pathways in white adipose tissue of young broiler chickens. The objective of this study was to determine if the effects on gene expression manifested in increased rates of fatty acid oxidation. Abdominal adipose tissue was collected from 21 day-old broiler chicks that were fasted for 3, 5 or 7 hours or fed ad libitum (controls). Fatty acid oxidation was determined by measuring and summing 14 CO 2 production and 14 C-labeled acid-soluble metabolites from the oxidation of [1- 14 C] palmitic acid. Fasting induced a progressive increase in complete fatty acid oxidation and citrate synthase activity relative to controls. These results confirm that fatty acid oxidation in white adipose tissue is dynamically controlled by nutritional status. Identifying the underlying mechanism may provide new therapeutic targets through which to increase fatty acid oxidation in situ and protect against the detrimental effects of excess free fatty acids on adipocyte insulin sensitivity.

  8. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    PubMed

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  9. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113.

    PubMed

    Jiang, Min; Dai, Wenyu; Xi, Yonglan; Wu, Mingke; Kong, Xiangping; Ma, Jiangfeng; Zhang, Min; Chen, Kequan; Wei, Ping

    2014-02-01

    In this study, sucrose, a reproducible disaccharide extracted from plants, was used as the carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. During serum bottle fermentation, the succinic acid concentration reached 57.1g/L with a yield of 71.5%. Further analysis of the sucrose utilization pathways revealed that sucrose was transported and utilized via a sucrose phosphotransferase system, sucrose-6-phosphate hydrolase, and a fructose PTS. Compared to glucose utilization in single pathway, more pathways of A. succinogenes NJ113 are dependent on sucrose utilization. By changing the control strategy in a fed-batch culture to alleviate sucrose inhibition, 60.5g/L of succinic acid was accumulated with a yield of 82.9%, and the productivity increased by 35.2%, reaching 2.16g/L/h. Thus utilization of sucrose has considerable potential economics and environmental meaning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Lactic acid production from Sophora flavescens residues pretreated with sodium hydroxide: Reutilization of the pretreated liquor during fermentation.

    PubMed

    Wang, Juan; Gao, Ming; Liu, Jianguo; Wang, Qunhui; Wang, Cong; Yin, Zihe; Wu, Chuanfu

    2017-10-01

    The feasibility of lactic acid production from Sophora flavescens residues (SFRs) pretreated with sodium hydroxide with the reutilization of the pretreated liquor during fermentation was investigated. After sodium hydroxide pretreatment, 67.5% of the lignin was removed, and hydrolysis efficiency increased from 37.3% to 79.2%. The reutilization of pretreated liquor at 50% loading during open fermentation of unwashed SFR increased lactic acid production by 34.1%. The pretreated liquor acted as pH buffer and resulted in stable pH and high cellulase activity during fermentation. Inhibitors in the pretreated liquor did not affect the growth of lactic acid bacteria but severely inhibited the growth of ethanol-producing yeast. Consequently, lactic acid production increased and ethanol production was zero at 50% loading. Water consumption during pretreatment and fermentation with 50% pretreated liquor was 1.341L per 100g SFR, which was 67.6% lower than that during fermentation with washed SFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pretreatment of macroalgae for volatile fatty acid production.

    PubMed

    Pham, Thi Nhan; Um, Youngsoon; Yoon, Hyon Hee

    2013-10-01

    In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Net endogenous acid production is associated with a faster decline in GFR in African Americans

    PubMed Central

    Scialla, Julia J.; Appel, Lawrence J.; Astor, Brad C.; Miller, Edgar R.; Beddhu, Srinivasan; Woodward, Mark; Parekh, Rulan S.; Anderson, Cheryl A. M.

    2012-01-01

    Increased acid excretion may promote renal injury. To evaluate this in African Americans with hypertensive nephrosclerosis, we studied the association between the net endogenous acid production and progression of kidney disease in 632 patients in the AASK trial. Protein and potassium intakes were estimated from 24-hour urea nitrogen and potassium excretion, and used to estimate net endogenous acid production, averaged over 2 years, approximating routine intake. The link between net endogenous acid production and the I125iothalamate glomerular filtration rate (iGFR) and time to end stage renal disease or doubling of serum creatinine was analyzed using mixed models and Cox proportional hazards regressions. The trend in higher net endogenous acid production was significantly associated with a faster decline in iGFR over a median of 3.2 years. After adjustment for age, body mass index, baseline iGFR, urine protein to creatinine ratio and randomized treatment group, the trend in higher net endogenous acid production remained significantly associated with a faster decline in iGFR at a rate 1.01 mL/min/1.73 m2 per year faster in the highest to the lowest quartile. However, in time to event analyses over a median of 7.7 years, the adjusted hazard ratio (1.10) for composite renal events per 25 mEq/day higher net endogenous acid production was not significant. Hence, our findings implicate endogenous acid production as a potential modifiable risk factor for progressive kidney disease. PMID:22475819

  13. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to reporting...

  14. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to reporting...

  15. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    PubMed

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  16. [Hydrocyanic acid content in cerals and cereal products].

    PubMed

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  17. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver.

    PubMed

    Fukuda, N; Ontko, J A

    1984-08-01

    In a series of experiments with male rat livers perfused with or without 5-tetradecyloxy-2-furoic acid (TOFA) in the presence and absence of oleate, the relationships between fatty acid synthesis, oxidation, and esterification from newly synthesized and exogenous fatty acid substrates have been examined. When livers from fed rats were perfused without exogenous fatty acid substrate, 20% of the triglyceride secreted was derived from de novo fatty acid synthesis. Addition of TOFA caused immediate and nearly complete inhibition of fatty acid synthesis, measured by incorporation of 3H2O into fatty acids. Concurrently, ketone body production increased 140% and triglyceride secretion decreased 84%. These marked reciprocal alterations in fatty acid synthesis and oxidation in the liver almost completely abolished the production of very low density lipoproteins (VLDL). Cholesterol synthesis was also depressed by TOFA, suggesting that this drug also inhibited lipid synthesis at a site other than acetyl-CoA carboxylase. When livers from fed rats were supplied with a continuous infusion of [1-14C]oleate as exogenous substrate, similar proportions, about 45-47%, of both ketone bodies and triglyceride in the perfusate were derived from the infused [1-14C]oleate. The production of ketone bodies was markedly increased by TOFA; the secretion of triglyceride and cholesterol were decreased. Altered conversion of [1-14C]oleate into these products occurred in parallel. While TOFA decreased esterification of oleate into triglyceride, incorporation of [1-14C]oleate into liver phospholipid was increased, indicating that TOFA also affected glycerolipid synthesis at the stage of diglyceride processing. The decreased secretion of triglyceride and cholesterol following TOFA treatment was localized almost exclusively in VLDL. The specific activities of 3H and of 14C fatty acids in triglyceride of the perfusate were greater than those of liver triglyceride, indicating preferential secretion of

  18. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016. © 2016 American Institute of Chemical Engineers.

  19. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate

    PubMed Central

    Subramanian, Mohan Raj; Talluri, Suvarna; Christopher, Lew P

    2015-01-01

    Lactic acid is an intermediate-volume specialty chemical for a wide range of food and industrial applications such as pharmaceuticals, cosmetics and chemical syntheses. Although lactic acid production has been well documented, improved production parameters that lead to reduced production costs are always of interest in industrial developments. In this study, we describe the production of lactic acid at high concentration, yield and volumetric productivity utilizing a novel homofermentative, facultative anaerobe Enterococcus faecalis CBRD01. The highest concentration of 182 g lactic acid l−1 was achieved after 38 h of fed-batch fermentation on glucose. The bacterial isolate utilized only 2–13% of carbon for its growth and energy metabolism, while 87–98% of carbon was converted to lactic acid at an overall volumetric productivity of 5 g l−1 h−1. At 13 h of fermentation, the volumetric productivity of lactate production reached 10.3 g l−1 h−1, which is the highest ever reported for microbial production of lactic acid. The lactic acid produced was of high purity as formation of other metabolites was less than 0.1%. The present investigation demonstrates a new opportunity for enhanced production of lactic acid with potential for reduced purification costs. PMID:24894833

  20. Effects of 20 standard amino acids on the growth, total fatty acids production, and γ-linolenic acid yield in Mucor circinelloides.

    PubMed

    Tang, Xin; Zhang, Huaiyuan; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2014-12-01

    Twenty standard amino acids were examined as single nitrogen source on the growth, total fatty acids production, and yield of γ-linolenic acid (GLA) in Mucor circinelloides. Of the amino acids, tyrosine gave the highest biomass and lipid accumulation and thus resulted in a high GLA yield with respective values of 17.8 g/L, 23 % (w/w, dry cell weight, DCW), and 0.81 g/L, which were 36, 25, and 72 % higher than when the fungus was grown with ammonium tartrate. To find out the potential mechanism underlying the increased lipid accumulation of M. circinelloides when grown on tyrosine, the activity of lipogenic enzymes of the fungus during lipid accumulation phase was measured. The enzyme activities of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase were up-regulated, while NADP-isocitrate dehydrogenase was down-regulated by tyrosine during the lipid accumulation phase of the fungus which suggested that these enzymes may be involved in the increased lipid biosynthesis by tyrosine in this fungus.

  1. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsay, S.S.; To, K.Y.

    1987-02-20

    Conidia of Aspergillus niger TMB 2022 were immobilized in calcium alginate for the production of citric acid. A 1-ml condidia suspension containing ca. 2.32 x 10/sup 8/ conidia were entrapped into sodium alginate solution in order to prepare 3% Ca-alginate (w/v) gel bead. Immobilized conidia were inoculated into productive medium containing 14% sucrose, 0.25% (NH/sub 4/)/sub 2/CO/sub 3/, 0.25% KH/sub 2/PO/sub 4/, and 0.025% MgSO/sub 4/.7H/sub 2/O with addition of 0.06 mg/l CuSO/sub 4/.5H/sub 2/O, 0.25 mg/l ZnCl/sub 2/, 1.3 mg/l FeCl/sub 3/.6H/sub 2/O, pH 3.8, and incubated at 35 degrees C for 13 days by surface culture to producemore » 61.53 g/l anhydrous citric acid. Under the same conditions with a batchwise culture, it was found that immobilized conidia could maintain a longer period for citric acid production (31 days): over 70 g/l anhydrous citric acid from runs No. 2-4, with the maximum yield for anhydrous citric acid reaching 77.02 g/l for run No. 2. In contrast, free conidia maintained a shorter acid-producing phase, circa 17 days; the maximum yield for anhydrous citric acid was 71.07 g/l for run No. 2 but dropped quickly as the run number increased. 14 references.« less

  2. Efficient production of free fatty acids from soybean meal carbohydrates.

    PubMed

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  3. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In

  4. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.

    PubMed

    Varman, Arul M; Yu, Yi; You, Le; Tang, Yinjie J

    2013-11-25

    The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, (13)C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the

  5. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  6. Natural products as potential anticonvulsants: caffeoylquinic acids.

    PubMed

    Kim, Hyo Geun; Oh, Myung Sook

    2012-03-01

    Current anticonvulsant therapies are generally directed at symptomatic treatment by suppressing excitability within the brain. Consequently, they have adverse effects such as cognitive impairment, dependence, and abuse. The need for more effective and less toxic anticonvulsants has generated renewed interest in natural products for the treatment of convulsions. Caffeoylquinic acids (CQs) are naturally occurring phenolic acids that are distributed widely in plants. There has been increasing interest in the biological activities of CQs in diseases of the central nervous system. In this issue, Nugroho et al. give evidence for the anticonvulsive effect of a CQ-rich extract from Aster glehni Franchet et Sckmidt. They optimized the extract solvent conditions, resulting in high levels of CQs and peroxynitrite-scavenging activity. Then, they investigated the sedative and anticonvulsive effects in pentobarbital- and pentylenetetrazole-induced models in mice. The CQ-rich extract significantly inhibited tonic convulsions as assessed by onset time, tonic extent, and mortality. They suggested that the CQ-rich extract from A. glehni has potential for treating convulsions. This report provides preclinical data which may be used for the development of anticonvulsants from natural products.

  7. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties.

  8. Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.

    PubMed

    Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai

    2008-05-01

    Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.

  9. Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid

    PubMed Central

    Lock, Edward A; Reed, Celia J; McMillan, JoEllyn M; Oatis, John R; Schnellmann, Rick G

    2007-01-01

    The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3–3mM CH for 3 days or 0.03–3mM CH for 10 days respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolised CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and 3-fold greater capacity than HRPTC to form TCE-OH and TCA respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days (Lock et al., 2006) supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity. PMID:17161896

  10. By-products of electrochemical synthesis of suberic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  11. DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, D.; Gao, Z. Y.; Wang, X. C.; Zeng, J.; Li, Y. M.

    2017-12-01

    Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate.

  12. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  13. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    PubMed

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  15. P2X₇-mediated calcium influx triggers a sustained, PI3K-dependent increase in metabolic acid production by osteoblast-like cells.

    PubMed

    Grol, Matthew W; Zelner, Irene; Dixon, S Jeffrey

    2012-03-01

    The P2X₇ receptor is an ATP-gated cation channel expressed by a number of cell types, including osteoblasts. Genetically modified mice with loss of P2X₇ function exhibit altered bone formation. Moreover, activation of P2X₇ in vitro stimulates osteoblast differentiation and matrix mineralization, although the underlying mechanisms remain unclear. Because osteogenesis is associated with enhanced cellular metabolism, our goal was to characterize the effects of nucleotides on metabolic acid production (proton efflux) by osteoblasts. The P2X₇ agonist 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP; 300 μM) induced dynamic membrane blebbing in MC3T3-E1 osteoblast-like cells (consistent with activation of P2X₇ receptors) but did not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min exposure to BzATP (300 μM) caused a dramatic increase in proton efflux from MC3T3-E1 cells (∼2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 μM), which activate P2 receptors other than P2X₇, failed to elicit a sustained increase in proton efflux. Specific P2X₇ receptor antagonists A 438079 and A 740003 inhibited the sustained phase of the BzATP-induced response. Extracellular Ca²⁺ was required during P2X₇ receptor stimulation for initiation of sustained proton efflux, and removal of extracellular glucose within the sustained phase abolished the elevation elicited by BzATP. In addition, inhibition of phosphatidylinositol 3-kinase blocked the maintenance but not initiation of the sustained phase. Taken together, we conclude that brief activation of P2X₇ receptors on osteoblast-like cells triggers a dramatic, Ca²⁺-dependent stimulation of metabolic acid production. This increase in proton efflux is sustained and dependent on glucose and phosphatidylinositol 3-kinase activity.

  16. Vinegar production from post-distillation slurry deriving from rice shochu production with the addition of caproic acid-producing bacteria consortium and lactic acid bacterium.

    PubMed

    Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Effects of cultivar, fruit number and reflected photosynthetically active radiation on Fragaria x ananassa productivity and fruit ellagic acid and ascorbic acid concentrations.

    PubMed

    Atkinson, C J; Dodds, P A A; Ford, Y Y; Le Mière, J; Taylor, J M; Blake, P S; Paul, N

    2006-03-01

    A number of strawberry varieties were surveyed for their total ellagic acid concentration, and attempts were made to determine if ellagic acid and ascorbic acid concentrations of two strawberry cultivars could be increased by polythene reflective mulches. After adjusting crop yields and cultivation using polythene mulches with two different PAR reflective capacities, field- and polytunnel-grown strawberries were analysed for ellagic acid and ascorbic acid concentrations by HPLC. Comparative measurements of yield and fruit quality were determined along with plant developmental changes. Ellagic acid concentration varied widely with strawberry cultivar (60-341 microg g(-1) frozen weight), as did the ratio of conjugated ellagic acid : free ellagic acid. Also, there was significant year-to-year variation in total ellagic acid concentration with some cultivars. Mulches with different reflective capacities impacted on strawberry production; highly reflective mulches significantly increased growth and yield, the latter due to increases in fruit size and number. Highly reflective mulches significantly increased total concentrations of ellagic acid and ascorbic acid relative to control in fruit of different cultivars. The potential of agronomic practices to enhance the concentration and amounts of these important dietary bioactive compounds is discussed.

  18. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose.

    PubMed

    Fu, Hongxin; Yu, Le; Lin, Meng; Wang, Jufang; Xiu, Zhilong; Yang, Shang-Tian

    2017-03-01

    Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8g/L vs. 19.4g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28g/L·h vs. 0.16g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53g/L·h vs. 0.26g/L·h) and yield (0.32g/g vs. 0.28g/g). When the initial total sugar concentration was ~120g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4g/L, yield of 0.43g/g sugar consumed, productivity of 0.87g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation.

    PubMed

    Zhao, Bo; Wang, Limin; Li, Fengsong; Hua, Dongliang; Ma, Cuiqing; Ma, Yanhe; Xu, Ping

    2010-08-01

    D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. High dietary acid load is associated with increased prevalence of hypertension: the Furukawa Nutrition and Health Study.

    PubMed

    Akter, Shamima; Eguchi, Masafumi; Kurotani, Kayo; Kochi, Takeshi; Pham, Ngoc Minh; Ito, Rie; Kuwahara, Keisuke; Tsuruoka, Hiroko; Mizoue, Tetsuya; Kabe, Isamu; Nanri, Akiko

    2015-02-01

    Acid-base status has been suggested to influence blood pressure, but there is a paucity of epidemiologic evidence linking dietary acid load to hypertension. We examined cross-sectionally the association between dietary acid load and hypertension in a Japanese working population. Data were derived from health surveys from 2028 employees, ages 18 to 70 y, in two workplaces in Japan. A validated brief diet history questionnaire was used to assess diet. Two measures were used to characterize dietary acid load: potential renal acid load and estimated net endogenous acid production, which were derived from nutrient intakes. Multilevel logistic regression was used to examine the association between dietary acid load and hypertension with adjustment of potential confounding variables. High dietary acid load was suggestively associated with increased prevalence of hypertension. The multivariable adjusted odds ratios (95% confidence interval) of hypertension for the lowest through highest tertiles of net endogenous acid production were 1.00 (reference), 1.07 (0.80-1.42), and 1.33 (0.998-1.78), respectively (P for trend = 0.053). This positive association was statistically significant among normal-weight (body mass index <23 kg/m(2); P for trend = 0.03) and non-shift workers (P for trend = 0.04). Similar positive associations were observed between potential renal acid load and hypertension. The present findings suggest that high dietary acid load may be associated with increased prevalence of hypertension among those who were normal weight and non-shift workers. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Lipase-catalyzed production of short-chain acids terpenyl esters of interest to the food industry.

    PubMed

    Laboret, F; Perraud, R

    1999-12-01

    The production of low molecular weight esters as flavor compounds by biotechnological processes has a potential interest for the food industry. The use of natural available substrates and enzymes is an essential part of the process design, because the products may obtain natural label. In this study, direct esterification of citronellol and geraniol with short-chain fatty acids catalyzed by free lipase from Mucor miehei was performed with high yields in n-hexane. The effects of the acid:alcohol ratio on the bioconversion rate of increasing chain length esters was investigated. To reach the optimum yield, substrates and enzyme concentration were determined. The inhibiting effects of acid are strongly attenuated by reducing the quantity of acid and increasing the amount of enzyme in media following the optimum values. Improvements have been made to increase the ester purity. The consumption of excess substrate by adding calculated amounts of acid gives a 10% yield enhancement, and leads to 100% pure terpenyl esters. The first steps to a scale-up application were attempted using a reactor that allowed us to produce ester quantities up to 100 cm3. Separation and purification of the products were treated with success, underlining the lipase stability and efficiency under the conditions of this study. The ability to recover the enzyme, and reusing it in bioconversions, plays a major role in reducing the cost of the overall process.

  3. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  4. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum.

    PubMed

    Zheng, Pu; Liu, Miao; Liu, Xiao-de; Du, Qiao-Yan; Ni, Ye; Sun, Zhi-Hao

    2012-03-01

    Genome shuffling was used to improve the thermotolerance of L: -glutamic acid-producing strain Corynebacteria glutamicum. Five strains with subtle improvements in high temperature tolerance and productivity were selected by ultraviolet irradiation and diethyl sulfate mutagenesis. An improved strain (F343) was obtained by three rounds of genome shuffling of the five strains as mentioned above. The cell density of F343 was four times higher than that of ancestor strains after 24 h of cultivation at 44°C, and importantly, the yield of L: -glutamic acid was increased by 1.8-times comparing with that of the ancestor strain at 38°C in a 5-L fermentor. With glucose supplement and two-stage pH control, the L: -glutamate acid concentration of F343 reached 119 g/L after fermentation for 30 h. The genetic diversity between F343 and its ancestors was also evaluated by amplified fragment length polymorphism analysis. Results suggest that the phenotypes for both thermotolerance and L: -glutamic acid production in F343 were evolved.

  6. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  7. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.

    PubMed

    Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C

    2018-03-20

    We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.

  8. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    PubMed

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  9. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.

    PubMed

    Baek, Seung-Ho; Kwon, Eunice Y; Bae, Sang-Jeong; Cho, Bo-Ram; Kim, Seon-Young; Hahn, Ji-Sook

    2017-10-01

    Microbial lactic acid (LA) production under acidic fermentation conditions is favorable to reduce the production cost, but circumventing LA toxicity is a major challenge. A d-LA-producing Saccharomyces cerevisiae strain JHY5610 is generated by expressing d-lactate dehydrogenase gene (Lm. ldhA) from Leuconostoc mesenteroides, while deleting genes involved in ethanol production (ADH1, ADH2, ADH3, ADH4, and ADH5), glycerol production (GPD1 and GPD2), and degradation of d-LA (DLD1). Adaptive laboratory evolution of JHY5610 lead to a strain JHY5710 having higher LA tolerance and d-LA-production capability. Genome sequencing of JHY5710 reveal that SUR1 I245S mutation increases LA tolerance and d-LA-production, whereas a loss-of-function mutation of ERF2 only contributes to increasing d-LA production. Introduction of both SUR1 I245S and erf2Δ mutations into JHY5610 largely mimic the d-LA-production capability of JHY5710, suggesting that these two mutations, which could modulate sphingolipid production and protein palmitoylation, are mainly responsible for the improved d-LA production in JHY5710. JHY5710 is further improved by deleting PDC1 encoding pyruvate decarboxylase and additional integration of Lm. ldhA gene. The resulting strain JHY5730 produce up to 82.6 g L -1 of d-LA with a yield of 0.83 g g -1 glucose and a productivity of 1.50 g/(L · h) in fed-batch fermentation at pH 3.5. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose.

    PubMed

    Yamada, Ryosuke; Yoshie, Toshihide; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-05-18

    Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.

  11. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  12. Biotechnological production of alpha-keto acids: Current status and perspectives.

    PubMed

    Song, Yang; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-11-01

    Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis. Copyright © 2016. Published by Elsevier Ltd.

  13. Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production.

    PubMed

    Oliveira, Adriano H; Ogrodowski, Cristiane C; de Macedo, André C; Santana, Maria Helena A; Gonçalves, Luciana R B

    2013-12-01

    In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer.

  14. Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production

    PubMed Central

    Oliveira, Adriano H.; Ogrodowski, Cristiane C.; de Macedo, André C.; Santana, Maria Helena A.; Gonçalves, Luciana R.B.

    2013-01-01

    In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer. PMID:24688498

  15. Effect of acetic acid on Saccharomyces carlsbergensis ATCC 6269 batch ethanol production monitored by flow cytometry.

    PubMed

    Freitas, Cláudia; Neves, Elisabete; Reis, Alberto; Passarinho, Paula C; da Silva, Teresa Lopes

    2012-11-01

    Bioethanol produced from lignocellulosic materials has been considered a sustainable alternative fuel. Such type of raw materials have a huge potential, but their hydrolysis into mono-sugars releases toxic compounds such as weak acids, which affect the microorganisms' physiology, inhibiting the growth and ethanol production. Acetic acid (HAc) is the most abundant weak acid in the lignocellulosic materials hydrolysates. In order to understand the physiological changes of Saccharomyces carlsbergensis when fermenting in the presence of different acetic acid (HAc) concentrations, the yeast growth was monitored by multi-parameter flow cytometry at same time that the ethanol production was assessed. The membrane potential stain DiOC(6)(3) fluorescence intensity decreased as the HAc concentration increased, which was attributed to the plasmic membrane potential reduction as a result of the toxic effect of the HAc undissociated form. Nevertheless, the proportion of cells with permeabilized membrane did not increase with the HAc concentration increase. Fermentations ending at lower external pH and higher ethanol concentrations depicted the highest proportions of permeabilized cells and cells with increased reactive oxygen species levels. Flow cytometry allowed monitoring, near real time (at-line), the physiological states of the yeast during the fermentations. The information obtained can be used to optimize culture conditions to improve bioethanol production.

  16. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  17. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation.

    PubMed

    Esquivel-Elizondo, Sofia; Miceli, Joseph; Torres, Cesar I; Krajmalnik-Brown, Rosa

    2018-02-01

    Medium-chain fatty acids (MCFA) are important biofuel precursors. Carbon monoxide (CO) is a sustainable electron and carbon donor for fatty acid elongation, since it is metabolized to MCFA precursors, it is toxic to most methanogens, and it is a waste product generated in the gasification of waste biomass. The main objective of this work was to determine if the inhibition of methanogenesis through the continuous addition of CO would lead to increased acetate or MCFA production during fermentation of ethanol. The effects of CO partial pressures (P CO ; 0.08-0.3 atm) on methanogenesis, fatty acids production, and the associated microbial communities were studied in batch cultures fed with CO and ethanol. Methanogenesis was partially inhibited at P CO  ≥ 0.11 atm. This inhibition led to increased acetate production during the first phase of fermentation (0-19 days). However, a second addition of ethanol (day 19) triggered MCFA production only at P CO  ≥ 0.11 atm, which probably occurred through the elongation of acetate with CO-derived ethanol and H 2 :CO 2 . Accordingly, during the second phase of fermentation (days 20-36), the distribution of electrons to acetate decreased at higher P CO , while electrons channeled to MCFA increased. Most probably, Acetobacterium, Clostridium, Pleomorphomonas, Oscillospira, and Blautia metabolized CO to H 2 :CO 2 , ethanol and/or fatty acids, while Peptostreptococcaceae, Lachnospiraceae, and other Clostridiales utilized these metabolites, along with the provided ethanol, for MCFA production. These results are important for biotechnological systems where fatty acids production are preferred over methanogenesis, such as in chain elongation systems and microbial fuel cells. © 2017 Wiley Periodicals, Inc.

  18. Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Rakin, Marica B; Nikolić, Svetlana B; Pejin, Jelena D; Bulatović, Maja L

    2012-09-15

    Expansion of lactic acid applications, predominantly for the preparation of biodegradable polymers increased the research interest for new, economically favourable production processes. Liquid stillage from bioethanol production can be an inexpensive, valuable source of nutrients for growth of lactic acid bacteria. Utilisation of residual biomass with spent fermentation media as a functional animal feed can greatly influence the process value and its ecological aspect. In this paper, the kinetics of lactic acid and biomass production on liquid stillage by Lactobacillus rhamnosus ATCC 7469 was studied. In addition, the impact of temperature, inoculum concentration, shaking and pH control by addition of CaCO(3) was evaluated. Maximal lactic acid yield of 73.4%, as well as high biomass production (3×10(8) CFU ml(-1)) were achieved under selected conditions (41°C, 5% (v/v) of inoculum, 1% (w/v) of CaCO(3), initial pH of 6.5 and shaking rate of 90 rpm). These results were achieved without supplementation of the stillage with nitrogen or mineral sources. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Production of sugars and levulinic acid from marine biomass Gelidium amansii.

    PubMed

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    This study focused on optimization of reaction conditions for formation of sugars and levulinic acid from marine algal biomass Gelidium amansii using acid catalyst and by using statistical approach. By this approach, optimal conditions for production of sugars and levulinic acid were found as follows: glucose (reaction temperature of 139.4 degrees C, reaction time of 15.0 min, and catalyst concentration of 3.0%), galactose (108.2 degrees C, 45.0 min, and 3.0%), and levulinic acid (160.0 degrees C, 43.1 min, and 3.0%). While trying to optimize the conditions for the production of glucose and galactose, levulinic acid production was found to be minimum. Similarly, the production of glucose and galactose were found to be minimum while optimizing the conditions for the production of levulinic acid. In addition, optimized production of glucose required a higher reaction temperature and shorter reaction time than that of galactose. Levulinic acid was formed at a high reaction temperature, long reaction time, and high catalyst concentration. The combined results of this study may provide useful information to develop more economical and efficient systems for production of sugars and chemicals from marine biomass.

  20. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity.

    PubMed

    Simopoulos, Artemis P

    2016-03-02

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  1. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    PubMed Central

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  2. Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.

    PubMed

    Pappenberger, Günter; Hohmann, Hans-Peter

    2014-01-01

    L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.

  3. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli.

    PubMed

    Lee, Sunhee; Jung, Yeontae; Lee, Seunghan; Lee, Jinwon

    2013-03-01

    Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD(+)/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.

  4. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli.

    PubMed

    Kawaguchi, Hideo; Katsuyama, Yohei; Danyao, Du; Kahar, Prihardi; Nakamura-Tsuruta, Sachiko; Teramura, Hiroshi; Wakai, Keiko; Yoshihara, Kumiko; Minami, Hiromichi; Ogino, Chiaki; Ohnishi, Yasuo; Kondo, Ahikiko

    2017-07-01

    Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.

  5. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  6. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject to...

  7. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject to...

  8. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine.

    PubMed

    Parsaeimehr, Ali; Sun, Zhilan; Dou, Xiao; Chen, Yi-Feng

    2015-01-01

    Photoautotrophic microalgae are a promising avenue for sustained biodiesel production, but are compromised by low yields of biomass and lipids at present. We are developing a chemical approach to improve microalgal accumulation of feedstock lipids as well as high-value alpha-linolenic acid which in turn might provide a driving force for biodiesel production. We demonstrate the effectiveness of the small bioactive molecule "acetylcholine" on accumulation of biomass, total lipids, and alpha-linolenic acid in Chlorella sorokiniana. The effectiveness exists in different species of Chlorella. Moreover, the precursor and analogs of acetylcholine display increased effectiveness at higher applied doses, with maximal increases by 126, 80, and 60% over controls for biomass, total lipids, and alpha-linolenic acid, respectively. Production of calculated biodiesel was also improved by the precursor and analogs of acetylcholine. The biodiesel quality affected by changes in microalgal fatty acid composition was addressed. The chemical approach described here could improve the lipid yield and biodiesel production of photoautotrophic microalgae if combined with current genetic approaches.

  9. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boric acid production subcategory. 415.280 Section 415.280 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ...

  10. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows.

    PubMed

    Palakawong Na Ayudthaya, Susakul; van de Weijer, Antonius H P; van Gelder, Antonie H; Stams, Alfons J M; de Vos, Willem M; Plugge, Caroline M

    2018-01-01

    Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial communities were compared using 16S ribosomal ribonucleic acid gene amplicon pyrosequencing. In both reactors, lactate was the main initial product and was associated with growth of Streptococcus spp. (86% average relative abundance). Subsequently, lactate served as a substrate for secondary fermentations. In the reactor inoculated with rumen fluid from the Dutch cow, the relative abundance of Bacillus and Streptococcus increased from the start, and lactate, acetate, formate and ethanol were produced. From day 1.33 to 2, lactate and acetate were degraded, resulting in butyrate production. Butyrate production coincided with a decrease in relative abundance of Streptococcus spp. and increased relative abundances of bacteria of other groups, including Parabacteroides , Sporanaerobacter , Helicobacteraceae, Peptostreptococcaceae and Porphyromonadaceae. In the reactor with the Thai cow inoculum, Streptococcus spp. also increased from the start. When lactate was consumed, acetate, propionate and butyrate were produced (day 3-4). After day 3, bacteria belonging to five dominant groups, Bacteroides, Pseudoramibacter _ Eubacterium , Dysgonomonas , Enterobacteriaceae and Porphyromonadaceae, were detected and these showed significant positive correlations with acetate, propionate and butyrate levels. The complexity of rumen microorganisms with high adaptation capacity makes rumen fluid a suitable source to convert organic waste into valuable products without the addition of hydrolytic enzymes. Starch waste is a source for organic acid production, especially lactate.

  12. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.

    PubMed

    de Lima, Pollyne Borborema Almeida; Mulder, Kelly Cristina Leite; Melo, Nadiele Tamires Moreira; Carvalho, Lucas Silva; Menino, Gisele Soares; Mulinari, Eduardo; de Castro, Virgilio H; Dos Reis, Thaila F; Goldman, Gustavo Henrique; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa

    2016-09-15

    Crude glycerol is the main byproduct of the biodiesel industry. Although it can have different applications, its purification is costly. Therefore, in this study a biotechnological route has been proposed for further utilization of crude glycerol in the fermentative production of lactic acid. This acid is largely utilized in food, pharmaceutical, textile, and chemical industries, making it the hydroxycarboxylic acid with the highest market potential worldwide. Currently, industrial production of lactic acid is done mainly using sugar as the substrate. Thus here, for the first time, Pichia pastoris has been engineered for heterologous L-lactic acid production using glycerol as a single carbon source. For that, the Bos taurus lactate dehydrogenase gene was introduced into P. pastoris. Moreover, a heterologous and a novel homologous lactate transporter have been evaluated for L-lactic acid production. Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g. We showed that P. pastoris has a

  13. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    PubMed

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.

  14. An oxidized metabolite of linoleic acid increases intracellular calcium in rat adrenal glomerulosa cells.

    PubMed

    Payet, Marcel D; Goodfriend, Theodore L; Bilodeau, Lyne; Mackendale, Cherilu; Chouinard, Lucie; Gallo-Payet, Nicole

    2006-12-01

    EKODE, an epoxy-keto derivative of linoleic acid, was previously shown to stimulate aldosterone secretion in rat adrenal glomerulosa cells. In the present study, we investigated the effect of exogenous EKODE on cytosolic [Ca(2+)] increase and aimed to elucidate the mechanism involved in this process. Through the use of the fluorescent Ca(2+)-sensitive dye Fluo-4, EKODE was shown to rapidly increase intracellular [Ca(2+)] ([Ca(2+)](i)) along a bell-shaped dose-response relationship with a maximum peak at 5 microM. Experiments performed in the presence or absence of Ca(2+) revealed that this increase in [Ca(2+)](i) originated exclusively from intracellular pools. EKODE-induced [Ca(2+)](i) increase was blunted by prior application of angiotensin II, Xestospongin C, and cyclopiazonic acid, indicating that inositol trisphosphate (InsP(3))-sensitive Ca(2+) stores can be mobilized by EKODE despite the absence of InsP(3) production. Accordingly, EKODE response was not sensitive to the phospholipase C inhibitor U-73122. EKODE mobilized a Ca(2+) store included in the thapsigargin (TG)-sensitive stores, although the interaction between EKODE and TG appears complex, since EKODE added at the plateau response of TG induced a rapid drop in [Ca(2+)](i). 9-oxo-octadecadienoic acid, another oxidized derivative of linoleic acid, also increases [Ca(2+)](i), with a dose-response curve similar to EKODE. However, arachidonic and linoleic acids at 10 microM failed to increase [Ca(2+)](i) but did reduce the amplitude of the response to EKODE. It is concluded that EKODE mobilizes Ca(2+) from an InsP(3)-sensitive store and that this [Ca(2+)](i) increase is responsible for aldosterone secretion by glomerulosa cells. Similar bell-shaped dose-response curves for aldosterone and [Ca(2+)](i) increases reinforce this hypothesis.

  15. Formic acid production using a microbial electrolysis desalination and chemical-production cell.

    PubMed

    Lu, Yaobin; Luo, Haiping; Yang, Kunpeng; Liu, Guangli; Zhang, Renduo; Li, Xiao; Ye, Bo

    2017-11-01

    The aim of this study was to investigate the feasibility and optimization of formic acid production in the microbial electrolysis desalination and chemical-production cell (MEDCC). The maximum current density in the MEDCC with 72cm of the anode fiber length (72-MEDCC) reached 24.0±2.0A/m 2 , which was much higher than previously reported. The maximum average formic acid production rate in the 72-MEDCC was 5.28 times higher than that in the MEDCC with 24cm of the anode fiber length (37.00±1.15vs. 7.00±0.25mg/h). High performance in the 72-MEDCC was attributed to small membrane spacing (1mm), high flow rate (1500μL/min) on the membrane surface and high anode biomass. The minimum electricity consumption of 0.34±0.04kWh/kg in the 72-MEDCC was only 3.1-18.8% of those in the EDBMs. The MEDCC should be a promising technology for the formic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.

    PubMed

    Le, Phuong Mai; Fraser, Catherine; Gardner, Graeme; Liang, Wei-Wan; Kralovec, Jaroslav A; Cunnane, Stephen C; Windust, Anthony J

    2007-09-01

    Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to

  17. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger

    PubMed Central

    Mostafa, Yasser S.; Alamri, Saad A.

    2012-01-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid. PMID:23961184

  18. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    PubMed

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  19. Sorting cells of the microalga Chlorococcum littorale with increased triacylglycerol productivity.

    PubMed

    Cabanelas, Iago Teles Dominguez; van der Zwart, Mathijs; Kleinegris, Dorinde M M; Wijffels, René H; Barbosa, Maria J

    2016-01-01

    Despite extensive research in the last decades, microalgae are still only economically feasible for high valued markets. Strain improvement is a strategy to increase productivities, hence reducing costs. In this work, we focus on microalgae selection: taking advantage of the natural biological variability of species to select variations based on desired characteristics. We focused on triacylglycerol (TAG), which have applications ranging from biodiesel to high-value omega-3 fatty-acids. Hence, we demonstrated a strategy to sort microalgae cells with increased TAG productivity. 1. We successfully identified sub-populations of cells with increased TAG productivity using Fluorescence assisted cell sorting (FACS). 2. We sequentially sorted cells after repeated cycles of N-starvation, resulting in five sorted populations (S1-S5). 3. The comparison between sorted and original populations showed that S5 had the highest TAG productivity [0.34 against 0.18 g l(-1) day(-1) (original), continuous light]. 4. Original and S5 were compared in lab-scale reactors under simulated summer conditions confirming the increased TAG productivity of S5 (0.4 against 0.2 g l(-1) day(-1)). Biomass composition analyses showed that S5 produced more biomass under N-starvation because of an increase only in TAG content and, flow cytometry showed that our selection removed cells with lower efficiency in producing TAGs. All combined, our results present a successful strategy to improve the TAG productivity of Chlorococcum littorale, without resourcing to genetic manipulation or random mutagenesis. Additionally, the improved TAG productivity of S5 was confirmed under simulated summer conditions, highlighting the industrial potential of S5 for microalgal TAG production.

  20. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  1. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products.

    PubMed

    Fan, Sicun; Breidt, Fred; Price, Robert; Pérez-Díaz, Ilenys

    2017-01-01

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures in acidified vegetable products and to identify suitable cultures for probiotic brined vegetable products. We therefore developed assays to measure acid resistance of these cultures to lactic and acetic acids, which are present in pickled vegetable products. We used relatively high acid concentrations (compared to commercial products) of 360 mM lactic acid and 420 mM acetic acid to determine acid resistance with a 1 h treatment. Growth rates were measured in a cucumber juice medium at pH 5.3, 4.2, and 3.8, at 30 °C and 0% to 2% NaCl. Significant differences in acid resistance and growth rates were found among the 10 cultures. In general, the acid resistant strains had slower growth rates than the acid sensitive strains. Based on the acid resistance data, selected cultures were tested for long-term survival in a simulated acidified refrigerated cucumber product. We found that one of the most acid resistant strains (Lactobacillus casei) could survive for up to 63 d at 4 °C without significant loss of viability at 10 8 CFU/mL. These data may aid in the development of commercial probiotic refrigerated pickle products. © 2016 Institute of Food Technologists®.

  2. Organic production enhances milk nutritional quality by shifting fatty acid composition: a United States-wide, 18-month study.

    PubMed

    Benbrook, Charles M; Butler, Gillian; Latif, Maged A; Leifert, Carlo; Davis, Donald R

    2013-01-01

    Over the last century, intakes of omega-6 (ω-6) fatty acids in Western diets have dramatically increased, while omega-3 (ω-3) intakes have fallen. Resulting ω-6/ω-3 intake ratios have risen to nutritionally undesirable levels, generally 10 to 15, compared to a possible optimal ratio near 2.3. We report results of the first large-scale, nationwide study of fatty acids in U.S. organic and conventional milk. Averaged over 12 months, organic milk contained 25% less ω-6 fatty acids and 62% more ω-3 fatty acids than conventional milk, yielding a 2.5-fold higher ω-6/ω-3 ratio in conventional compared to organic milk (5.77 vs. 2.28). All individual ω-3 fatty acid concentrations were higher in organic milk--α-linolenic acid (by 60%), eicosapentaenoic acid (32%), and docosapentaenoic acid (19%)--as was the concentration of conjugated linoleic acid (18%). We report mostly moderate regional and seasonal variability in milk fatty acid profiles. Hypothetical diets of adult women were modeled to assess milk fatty-acid-driven differences in overall dietary ω-6/ω-3 ratios. Diets varied according to three choices: high instead of moderate dairy consumption; organic vs. conventional dairy products; and reduced vs. typical consumption of ω-6 fatty acids. The three choices together would decrease the ω-6/ω-3 ratio among adult women by ∼80% of the total decrease needed to reach a target ratio of 2.3, with relative impact "switch to low ω-6 foods" > "switch to organic dairy products" ≈ "increase consumption of conventional dairy products." Based on recommended servings of dairy products and seafoods, dairy products supply far more α-linolenic acid than seafoods, about one-third as much eicosapentaenoic acid, and slightly more docosapentaenoic acid, but negligible docosahexaenoic acid. We conclude that consumers have viable options to reduce average ω-6/ω-3 intake ratios, thereby reducing or eliminating probable risk factors for a wide range of developmental and

  3. Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.

    PubMed

    Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand

    2017-05-01

    Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.

  4. Single-Cell Measurements of Enzyme Levels as a Predictive Tool for Cellular Fates during Organic Acid Production

    PubMed Central

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna

    2013-01-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  5. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita.

    PubMed

    Lee, Sang Il; Lee, Keon Jin; Chun, Ho Hyun; Ha, Sanghyun; Gwak, Hyun Jung; Kim, Ho Myeong; Lee, Jong-Hee; Choi, Hak-Jong; Kim, Hyeong Hwan; Shin, Teak Soo; Park, Hae Woong; Kim, Jin-Cheol

    2018-03-01

    Oxalic acid has potent nematicidal activity against the root-knot nematode Meloidogyne incognita. In this study, fermentation parameters for oxalic acid production in submerged culture of Aspergillus niger F22 at 23, 25, and 30 °C were optimized in 5-L jar fermenters. The viscosity of the culture broth increased with increasing temperature. There was a negative correlation between oxalic acid production and the apparent viscosity; high volumetric productivity of oxalic acid was obtained at low apparent viscosity (less than 1000 cP), with a productivity of more than 100 mg/L h. When the apparent viscosity was over 2500 cP, the volumetric productivity decreased below 50 mg/L h. In addition, the volumetric mass transfer coefficient, K L a, positively correlated with volumetric productivity. When the K L a value increased from 0.0 to 0.017 /s, the volumetric productivity proportionally increased up to 176 mg/L h. When the temperature decreased, K L a increased due to the decrease in viscosity, leading to increased volumetric productivity. The highest productivity of 7453.3 mg/L was obtained at the lowest temperature, i.e., 23 °C. The nematicidal activity of culture filtrate was proportional to the content of oxalic acid. Based on a constant impeller tip speed, oxalic acid production was successfully scaled up to a 500-L pilot vessel, producing a final concentration comparable to that in the 5-L jar.

  6. Optimal production of 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Suh, Min-Jung; Kim, Beom-Soo; Hou, Ching T; Lee, In-Jung; Kim, In-Hwan; Kim, Hak-Ryul

    2010-09-30

    The hydroxylation of unsaturated fatty acids by bacterial strains is one type of value-adding bioconversion processes. This process generates new hydroxy fatty acids (HFA) carrying special properties such as higher viscosity and reactivity compared with normal fatty acids. Among microbial strains tested for HFA production, Pseudomonas aeruginosa PR3 is well known to utilize various unsaturated fatty acids to produce mono-, di- and tri-hydroxy fatty acids. Previously we reported that strain PR3 could produce a novel value-added hydroxy fatty acid 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) from palmitoleic acid (Bae et al. (2007) Appl. Microbiol. Biotechnol. 75, 435-440). In this study, we focused on the development of the optimal nutritional and environmental conditions for DHD production from palmitoleic acid by PR3. Optimal carbon and nitrogen sources for DHD production were fructose and yeast extract, respectively. Optimal initial medium pH and incubation temperature were pH 8.0 and 30 degrees C and magnesium ion was essentially required for DHD production. Substrate concentration and time of substrate addition were also optimized. Under optimized conditions, maximal DHD production was 1600mg/l representing 26.7% conversion yield. Copyright 2009 Elsevier B.V. All rights reserved.

  7. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  8. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  9. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol.

    PubMed

    Iyyappan, J; Bharathiraja, B; Baskar, G; Jayamuthunagai, J; Barathkumar, S; Anna Shiny, R

    2018-03-01

    In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources.

  11. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids.

    PubMed

    Kaushik, Prashant; Andújar, Isabel; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Herraiz, Francisco Javier; Brar, Navjot Singh; Prohens, Jaime

    2015-10-09

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.

  13. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haushalter, Robert W.; Phelan, Ryan M.; Hoh, Kristina M.

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotinmore » and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.« less

  14. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  15. Effects of Bile Acids and Nisin on the Production of Enterotoxin by Clostridium perfringens in a Nutrient-Rich Medium.

    PubMed

    Park, Miseon; Rafii, Fatemeh

    2018-01-01

    Clostridium perfringens is the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year. C. perfringens enterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated in C. perfringens SM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all other C. perfringens isolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains of C. perfringens , which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium.

  16. Effects of Bile Acids and Nisin on the Production of Enterotoxin by Clostridium perfringens in a Nutrient-Rich Medium

    PubMed Central

    Park, Miseon

    2018-01-01

    Clostridium perfringens is the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year. C. perfringens enterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated in C. perfringens SM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all other C. perfringens isolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains of C. perfringens, which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium. PMID:29675044

  17. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    PubMed

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  18. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    PubMed

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  19. Development of an industrializable fermentation process for propionic acid production.

    PubMed

    Stowers, Chris C; Cox, Brad M; Rodriguez, Brandon A

    2014-05-01

    Propionic acid (PA) is a short-chain fatty acid with wide industrial application including uses in pharmaceuticals, herbicides, cosmetics, and food preservatives. As a three-carbon building block, PA also has potential as a precursor for high-volume commodity chemicals such as propylene. Currently, most PA is manufactured through petrochemical routes, which can be tied to increasing prices and volatility due to difficulty in demand forecasting and feedstock availability. Herein described are research advancements to develop an industrially feasible, renewable route to PA. Seventeen Propionibacterium strains were screened using glucose and sucrose as the carbon source to identify the best platform strain. Propionibacterium acidipropionici ATCC 4875 was selected as the platform strain and subsequent fermentation optimization studies were performed to maximize productivity and yield. Fermentation productivity was improved three-fold to exceed 2 g/l/h by densifying the inoculum source. Byproduct levels, particularly lactic and succinic acid, were reduced by optimizing fermentor headspace pressure and shear. Following achievement of commercially viable productivities, the lab-grade medium components were replaced with industrial counterparts to further reduce fermentation costs. A pure enzymatically treated corn mash (ECM) medium improved the apparent PA yield to 0.6 g/g (PA produced/glucose consumed), but it came at the cost of reduced productivity. Supplementation of ECM with cyanocobalamin restored productivity to near lab-grade media levels. The optimized ECM recipe achieved a productivity of 0.5 g/l/h with an apparent PA yield of 0.60 g/g corresponding to a media cost <1 USD/kg of PA. These improvements significantly narrow the gap between the fermentation and incumbent petrochemical processes, which is estimated to have a manufacturing cost of 0.82 USD/kg in 2017.

  20. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.

    PubMed

    Yu, Tao; Zhou, Yongjin J; Wenning, Leonie; Liu, Quanli; Krivoruchko, Anastasia; Siewers, Verena; Nielsen, Jens; David, Florian

    2017-05-26

    Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C 22 H 46 O) by expressing a specific fatty acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l -1 in yeast. This approach will provide a universal strategy towards the production of similar high value chemicals in a more scalable, stable and sustainable manner.

  1. Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits.

    PubMed

    Fleming, A; Schenkel, F S; Malchiodi, F; Ali, R A; Mallard, B; Sargolzaei, M; Jamrozik, J; Johnston, J; Miglior, F

    2018-05-01

    The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (-0.62 to -0.59) and with protein yield (-0.32 to -0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning

  2. CFD simulation of fatty acid methyl ester production in bubble column reactor

    NASA Astrophysics Data System (ADS)

    Salleh, N. S. Mohd; Nasir, N. F.

    2017-09-01

    Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.

  3. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    PubMed Central

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237

  4. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains.

    PubMed

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  5. Enzymatic Production of Ascorbic Acid-2-phosphate by Recombinant Acid Phosphatase.

    PubMed

    Zheng, Kai; Song, Wei; Sun, Anran; Chen, Xiulai; Liu, Jia; Luo, Qiuling; Wu, Jing

    2017-05-24

    In this study, an environmentally friendly and efficient enzymatic method for the synthesis of l-ascorbic acid-2-phosphate (AsA-2P) from l-ascorbic acid (AsA) was developed. The Pseudomonas aeruginosa acid phosphatase (PaAPase) was expressed in Escherichia coli BL21. The optimal temperature, optimal pH, K m , k cat , and catalytic efficiency of recombinant PaAPase were 50 °C, 5.0, 93 mM, 4.2 s -1 , and 2.7 mM -1 min -1 , respectively. The maximal dry cell weight and PaAPase phosphorylating activity reached 8.5 g/L and 1127.7 U/L, respectively. The highest AsA-2P concentration (50.0 g/L) and the maximal conversion (39.2%) were obtained by incubating 75 g/L intact cells with 88 g/L AsA and 160 g/L sodium pyrophosphate under optimal conditions (0.1 mM Ca 2+ , pH 4.0, 30 °C) for 10 h; the average AsA-2P production rate was 5.0 g/L/h, and the AsA-2P production system was successfully scaled up to a 7.5 L fermenter. Therefore, the enzymatic process showed great potential for production of AsA-2P in industry.

  6. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Deglacial diatom production in the tropical North Atlantic driven by enhanced silicic acid supply

    NASA Astrophysics Data System (ADS)

    Hendry, Katharine R.; Gong, Xun; Knorr, Gregor; Pike, Jennifer; Hall, Ian R.

    2016-03-01

    Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.

  8. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  9. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers.

    PubMed

    Krull, Susan; Hevekerl, Antje; Kuenz, Anja; Prüße, Ulf

    2017-05-01

    Itaconic acid is a promising organic acid and is commercially produced by submerged fermentation of Aspergillus terreus. The cultivation process of the sensitive filamentous fungus has been studied intensively since 1932, with respect to fermentation media components, oxygen supply, shearing rate, pH value, or culture method. Whereas increased final titers were achieved over the years, the productivity has so far remained quite low. In this study, the impact of the pH on the itaconic acid production was investigated in detail. The pH during the growth and production phase had a significant influence on the final itaconic acid concentration and pellet diameter. The highest itaconic acid concentration of 160 g/L was achieved at a 1.5-L scale within 6.7 days by raising and controlling the pH value to pH 3.4 in the production phase. An ammonia solution and an increased phosphate concentration were used with an itaconic acid yield of 0.46 (w/w) and an overall productivity of 0.99 g/L/h in a fed-batch mode. A cultivation with a lower phosphate concentration resulted in an equal final concentration with an increased yield of 0.58 (w/w) after 11.8 days and an overall productivity of 0.57 g/L/h. This optimized process was successfully transferred from a 1.5-L scale to a 15-L scale. After 9.7 days, comparable pellet morphology and a final concentration of 150 g/L itaconic acid was reached. This paper provides a process strategy to yield a final titer of itaconic acid from a wild-type strain of A. terreus which is in the same range as the well-known citric acid production.

  10. Production of chlorogenic acid in Varthemia persica DC (var. persica) callus cultures

    PubMed Central

    Siahpoush, A.; Ghasemi, N.; Ardakani, M. Shams; Asghari, G.

    2011-01-01

    Chlorogenic acid, a pharmacologically important compound, is a phenolic compound that occurs in certain commonly used medicinal herbs. We looked for the presence of this compound in the callus cultures of Varthemia persica DC (var. persica). We have evaluated the conditions for establishment of callus cultures of V. persica and the in vitro production of chlorogenic acid. Callus was initiated by culturing seedling of V. persica on MS basal medium supplemented with different concentrations of kinetin, naphthalene acetic acid and 2,4-diphenoxy acetic acid. Also, the influence of light, and phytohormones on the production of chlorogenic acid was examined. Kinetin stimulated the production of chlorogenic acid. Replacement of 2,4-diphenoxy acetic acid with naphthalene acetic acid did not alter the chlorogenic acid production. The ability to induce the accumulation of chlorogenic acid in the V. persica callus cultures offers an opportunity to produce a phenolic compound with therapeutic value. PMID:22049279

  11. Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by Penicillium verrucosum.

    PubMed

    Bhoite, Roopali N; Navya, P N; Murthy, Pushpa S

    2013-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.

  12. Prescription Omega-3 Fatty Acid Products and Dietary Supplements Are Not Interchangeable.

    PubMed

    Hilleman, Daniel; Smer, Aiman

    2016-01-01

    To provide an overview of prescription and dietary supplement omega-3 fatty acid (OM3-FA) products and considerations for clinical use. Narrative review. The PubMed database was searched for cardiovascular-related investigations focused on eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) (limit: English-only articles). Additional regulatory information on prescription and dietary supplements was obtained from United States Food and Drug Administration online sources. Prescription QM3-FA products are supported by robust clinical development and safety monitoring programs, whereas dietary supplements are not required to demonstrate safety or efficacy prior to marketing. There are no over-the-counter OM3-FA products available in the United States. Investigations of OM3-FA dietary supplements show that quantities of EPA and DHA are highly variable within and between brands. Dietary supplements also may contain potentially harmful components, including oxidized OM3-FA, other lipids, cholesterol, and toxins. Prescription OM3-FA products may contain DHA and EPA or EPA alone. All prescription OM3-FA products have demonstrated statistically significant triglyceride reduction as monotherapy or in combination with statins in patients with hypertriglyceridemia. Differential effects between products containing EPA and DHA compared with a high-purity EPA product (icosapent ethyl) have clinical implications: Increases in low-density lipoprotein cholesterol associated with DHA have the potential to confound strategies for managing patients with dyslipidemia. Cardiovascular outcomes studies of prescription CM3-FA products are ongoing. OM3-FA dietary supplements should not be substituted for prescription products, and prescription OM3-FA products that contain DHA are not equivalent to or interchangeable with high-purity EPA (icosapent ethyl) and should not be substituted for it.

  13. Malic acid production from thin stillage by Aspergillus species.

    PubMed

    West, Thomas P

    2011-12-01

    The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l(-1). Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l(-1). The highest malic acid yield (0.8 g g(-1)) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains. © Springer Science+Business Media B.V. 2011

  14. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Zhang, Han; Miao, Yelian; Wei, Ping; Chen, Jieyu

    2011-04-07

    Rapeseed meal was evaluated for succinic acid production by simultaneous saccharification and fermentation using Actinobacillus succinogenes ATCC 55618. Diluted sulfuric acid pretreatment and subsequent hydrolysis with pectinase was used to release sugars from rapeseed meal. The effects of culture pH, pectinase loading and yeast extract concentration on succinic acid production were investigated. When simultaneous saccharification and fermentation of diluted acid pretreated rapeseed meal with a dry matter content of 12.5% (w/v) was performed at pH 6.4 and a pectinase loading of 2% (w/w, on dry matter) without supplementation of yeast extract, a succinic acid concentration of 15.5 g/L was obtained at a yield of 12.4 g/100g dry matter. Fed-batch simultaneous saccharification and fermentation was carried out with supplementation of concentrated pretreated rapeseed meal and pectinase at 18 and 28 h to yield a final dry matter content of 20.5% and pectinase loading of 2%, with the succinic acid concentration enhanced to 23.4 g/L at a yield of 11.5 g/100g dry matter and a productivity of 0.33 g/(Lh). This study suggests that rapeseed meal may be an alternative substrate for the efficient production of succinic acid by A. succinogenes without requiring nitrogen source supplementation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Investigating the chlorination of acidic pharmaceuticals and by-product formation aided by an experimental design methodology.

    PubMed

    Quintana, José Benito; Rodil, Rosario; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2010-01-01

    The degradation of seven acidic drugs and two metabolites during chlorination was investigated by liquid chromatography-mass spectrometry (LC-MS). A triple-quadrupole (QqQ) system was used to follow the time course of the pharmaceuticals and by-products, while a quadrupole time-of-flight (Q-TOF) system was also used for the identification of the by-products. Under strong chlorination conditions (10mg/L Cl(2), 24h), only four of the target compounds were significantly degraded: salicylic acid, naproxen, diclofenac and indomethacine. The degradation kinetics of these four compounds were investigated at different concentrations of chlorine, bromide and pH by means of a Box-Behnken experimental design. Depending on these factors, measured pseudo-first order half-lives were in the ranges: 23-573h for salicylic acid, 13-446min for naproxen, 5-328min for diclofenac and 0.4-13.4min for indomethacine. Also, it was observed that chlorine concentration was the overall most significant factor, followed by the bromide concentration (except for indomethacine), resulting in increased degradation kinetics as they are increased. The degradation path of salicylic acid, naproxen and diclofenac consisted of aromatic substitution of one or two hydrogens by chlorine and/or bromide. Moreover, for diclofenac, two other by-products corresponding to a decarboxylation/hydroxylation pathway from the monohalogenated products were also identified. On the other hand, indomethacine degradation did not lead to halogenation products but to oxidation ones. The investigation of these by-products in real samples by LC-MS/MS (QqQ) showed that the halogenated derivates of salicylic acid occurred in all the drinking water and wastewater samples analysed.

  16. Production of Putative Diterpene Carboxylic Acid Intermediates of Triptolide in Yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, Victor; Callari, Roberta; Folly, Christophe

    The development of medical applications exploiting the broad bioactivities of the diterpene therapeutic triptolide from Tripterygium wilfordii is limited by low extraction yields from the native plant. Furthermore, the extraordinarily high structural complexity prevents an economically attractive enantioselective total synthesis. An alternative production route of triptolide through engineered Saccharomyces cerevisiae (yeast) could provide a sustainable source of triptolide. A potential intermediate in the unknown biosynthetic route to triptolide is the diterpene dehydroabietic acid. Here, we report a biosynthetic route to dehydroabietic acid by transient expression of enzymes from T. wilfordii and Sitka spruce (Picea sitchensis) in Nicotiana benthamiana. The combinationmore » of diterpene synthases TwTPS9, TwTPS27, and cytochromes P450 PsCYP720B4 yielded dehydroabietic acid and a novel analog, tentatively identified as ‘miltiradienic acid’. This biosynthetic pathway was reassembled in a yeast strain engineered for increased yields of the pathway intermediates, the diterpene olefins miltiradiene and dehydroabietadiene. Introduction in that strain of PsCYP720B4 in combination with two alternative NADPH-dependent cytochrome P450 reductases resulted in scalable in vivo production of dehydroabietic acid and its analog from glucose. Approaching future elucidation of the remaining biosynthetic steps to triptolide, our findings may provide an independent platform for testing of additional recombinant candidate genes, and ultimately pave the way to biotechnological production of the high value diterpenoid therapeutic.« less

  17. Production of Putative Diterpene Carboxylic Acid Intermediates of Triptolide in Yeast

    DOE PAGES

    Forman, Victor; Callari, Roberta; Folly, Christophe; ...

    2017-06-13

    The development of medical applications exploiting the broad bioactivities of the diterpene therapeutic triptolide from Tripterygium wilfordii is limited by low extraction yields from the native plant. Furthermore, the extraordinarily high structural complexity prevents an economically attractive enantioselective total synthesis. An alternative production route of triptolide through engineered Saccharomyces cerevisiae (yeast) could provide a sustainable source of triptolide. A potential intermediate in the unknown biosynthetic route to triptolide is the diterpene dehydroabietic acid. Here, we report a biosynthetic route to dehydroabietic acid by transient expression of enzymes from T. wilfordii and Sitka spruce (Picea sitchensis) in Nicotiana benthamiana. The combinationmore » of diterpene synthases TwTPS9, TwTPS27, and cytochromes P450 PsCYP720B4 yielded dehydroabietic acid and a novel analog, tentatively identified as ‘miltiradienic acid’. This biosynthetic pathway was reassembled in a yeast strain engineered for increased yields of the pathway intermediates, the diterpene olefins miltiradiene and dehydroabietadiene. Introduction in that strain of PsCYP720B4 in combination with two alternative NADPH-dependent cytochrome P450 reductases resulted in scalable in vivo production of dehydroabietic acid and its analog from glucose. Approaching future elucidation of the remaining biosynthetic steps to triptolide, our findings may provide an independent platform for testing of additional recombinant candidate genes, and ultimately pave the way to biotechnological production of the high value diterpenoid therapeutic.« less

  18. Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural.

    PubMed

    Carro, Juan; Fernández-Fueyo, Elena; Fernández-Alonso, Carmen; Cañada, Javier; Ullrich, René; Hofrichter, Martin; Alcalde, Miguel; Ferreira, Patricia; Martínez, Angel T

    2018-01-01

    2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxymethylfurfural, which is produced in the presence of methanol, generates less by-products and exhibits better storage stability than 5-hydroxymethylfurfural being, therefore, the industrial substrate of choice. In this work, an enzymatic cascade involving three fungal oxidoreductases has been developed for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Aryl-alcohol oxidase and unspecific peroxygenase act on 5-methoxymethylfurfural and its partially oxidized derivatives yielding 2,5-furandicarboxylic acid, as well as methanol as a by-product. Methanol oxidase takes advantage of the methanol released for in situ producing H 2 O 2 that, along with that produced by aryl-alcohol oxidase, fuels the peroxygenase reactions. In this way, the enzymatic cascade proceeds independently, with the only input of atmospheric O 2 , to attain a 70% conversion of initial 5-methoxymethylfurfural. The addition of some exogenous methanol to the reaction further improves the yield to attain an almost complete conversion of 5-methoxymethylfurfural into 2,5-furandicarboxylic acid. The synergistic action of aryl-alcohol oxidase and unspecific peroxygenase in the presence of 5-methoxymethylfurfural and O 2 is sufficient for the production of 2,5-furandicarboxylic acid. The addition of methanol oxidase to the enzymatic cascade increases the 2,5-furandicarboxylic acid yields by oxidizing a reaction by-product to fuel the peroxygenase reactions.

  19. Radical scavenging activity of lipophilized products from lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids.

    PubMed

    Choo, Wee-Sim; Birch, Edward John

    2009-02-01

    Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid.

  20. Fluoride-sensitivity of growth and acid production of oral Actinomyces: comparison with oral Streptococcus.

    PubMed

    Kawashima, Junko; Nakajo, Kazuko; Washio, Jumpei; Mayanagi, Gen; Shimauchi, Hidetoshi; Takahashi, Nobuhiro

    2013-12-01

    Actinomyces are predominant oral bacteria; however, their cariogenic potential in terms of acid production and fluoride sensitivity has not been elucidated in detail and compared with that of other caries-associated oral bacteria, such as Streptococcus. Therefore, this study aimed to elucidate and compare the acid production and growth of Actinomyces and Streptococcus in the presence of bicarbonate and fluoride to mimic conditions in the oral cavity. Acid production from glucose was measured by pH-stat at pH 5.5 and 7.0 under anaerobic conditions. Growth rate was assessed by optical density in anaerobic culture. Although Actinomyces produced acid at a lower rate than did Streptococcus, their acid production was more tolerant of fluoride (IDacid production 50 = 110-170 ppm at pH 7.0 and 10-13 ppm at pH 5.5) than that of Streptococcus (IDacid production 50 = 36-53 ppm at pH 7.0 and 6.3-6.5 ppm at pH 5.5). Bicarbonate increased acid production by Actinomyces with prominent succinate production and enhanced their fluoride tolerance (IDacid production 50 = 220-320 ppm at pH 7.0 and 33-52 ppm at pH 5.5). Bicarbonate had no effect on these variables in Streptococcus. In addition, although the growth rate of Actinomyces was lower than that of Streptococcus, Actinomyces growth was more tolerant of fluoride (IDgrowth 50 = 130-160 ppm) than was that of Streptococcus (IDgrowth 50 = 27-36 ppm). These results indicate that oral Actinomyces are more tolerant of fluoride than oral Streptococcus, and bicarbonate enhances the fluoride tolerance of oral Actinomyces. Because of the limited number of species tested here, further study is needed to generalize these findings to the genus level. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  1. Response surface methodology for optimising the culture conditions for eicosapentaenoic acid production by marine bacteria.

    PubMed

    Abd Elrazak, Ahmed; Ward, Alan C; Glassey, Jarka

    2013-05-01

    Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), are increasingly attracting scientific attention owing to their significant health-promoting role in the human body. However, the human body lacks the ability to produce them in vivo. The limitations associated with the current sources of ω-3 fatty acids from animal and plant sources have led to increased interest in microbial production. Bacterial isolate 717 was identified as a potential high EPA producer. As an important step in the process development of the microbial PUFA production, the culture conditions at the bioreactor scale were optimised for the isolate 717 using a response surface methodology exploring the significant effect of temperature, pH and dissolved oxygen and the interaction between them on the EPA production. This optimisation strategy led to a significant increase in the amount of EPA produced by the isolate under investigation, where the amount of EPA increased from 9 mg/g biomass (33 mg/l representing 7.6 % of the total fatty acids) to 45 mg/g (350 mg/l representing 25 % of the total fatty acids). To avoid additional costs associated with extreme cooling at large scale, a temperature shock experiment was carried out reducing the overall cooling time from the whole cultivation process to 4 h only prior to harvest. The ability of the organism to produce EPA under the complete absence of oxygen was tested revealing that oxygen is not critically required for the biosynthesis of EPA but the production improved in the presence of oxygen. The stability of the produced oil and the complete absence of heavy metals in the bacterial biomass are considered as an additional benefit of bacterial EPA compared to other sources of PUFA. To our knowledge this is the first report of a bacterial isolate producing EPA with such high yields making the large-scale manufacture much more economically viable.

  2. Top value platform chemicals: bio-based production of organic acids.

    PubMed

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. D-tagatose, a stereoisomer of D-fructose, increases blood uric acid concentration.

    PubMed

    Buemann, B; Toubro, S; Holst, J J; Rehfeld, J F; Bibby, B M; Astrup, A

    2000-08-01

    D-Fructose has been found to increase uric acid production by accelerating the degradation of purine nucleotides, probably due to hepatocellular depletion of inorganic phosphate (Pi) by an accumulation of ketohexose-1-phosphate. The hyperuricemic effect of D-tagatose, a stereoisomer of D-fructose, may be greater than that of D-fructose, as the subsequent degradation of D-tagatose-1-phosphate is slower than the degradation of D-fructose-1-phosphate. We tested the effect of 30 g oral D-tagatose versus D-fructose on plasma uric acid and other metabolic parameters in 8 male subjects by a double-blind crossover design. Both the peak concentration and 4-hour area under the curve (AUC) of serum uric acid were significantly higher after D-tagatose compared with either 30 g D-fructose or plain water. The decline in serum Pi concentration was greater at 50 minutes after D-tagatose versus D-fructose. The thermogenic and lactacidemic responses to D-tagatose were blunted compared with D-fructose. D-Tagatose attenuated the glycemic and insulinemic responses to a meal that was consumed 255 minutes after its administration. Moreover, both fructose and D-tagatose increased plasma concentrations of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1). The metabolic effects of D-tagatose occurred despite its putative poor absorption.

  4. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying.

    PubMed

    Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C; Wang, Tao; Li, Feng-Min

    2012-08-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.

  6. Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production.

    PubMed

    Marchan, Loris Fossier; Lee Chang, Kim J; Nichols, Peter D; Polglase, Jane L; Mitchell, Wilfrid J; Gutierrez, Tony

    2017-01-01

    Thraustochytrids isolated from hot tropical and sub-tropical waters have been well studied for DHA and biodiesel production in the last decades. However, little research has been performed on the oils of cold water thraustochytrids, in particular from the North Sea region. In this study, thraustochytrid strains from British waters showed high relative levels of omega-3 long-chain (≥C 20 ) polyunsaturated fatty acids (LC-PUFA), including docosahexaenoic acid (DHA, 22:6ω3). The relative levels of DHA (as % of total fatty acids, TFA) in the different British strains are hitherto amongst the highest recorded from any thraustochytrid screening study, with strain TL18 reaching up to 67% DHA in modified Glucose-Yeast Extract-Peptone (GYP) medium. At this screening stage, low final biomass and fatty acid yield were observed in modified GYP and MarChiquita-Brain Heart Broth (MCBHB), while PUFA profiles (as % of PUFA) remained unaltered regardless of the culture medium used. Hence, optimizing the medium and culture conditions to improve growth and lipid content, without impacting the relative percentage of DHA, has the potential to increase the final DHA concentration. With this in mind, three strains were identified as promising organisms for the production of DHA. In the context of possible future industrial exploitation involving a winterization step, we investigated the recycling of the residual oil for biodiesel use. To do this, a mathematical model was used to assess the intrinsic properties of the by-product oil. The results showed the feasibility of producing primary DHA-rich oil, assuming optimized conditions, while using the by-product oil for biodiesel use.

  7. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    PubMed

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  8. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.

    PubMed

    Cheng, Xingqun; Redanz, Sylvio; Cullin, Nyssa; Zhou, Xuedong; Xu, Xin; Joshi, Vrushali; Koley, Dipankar; Merritt, Justin; Kreth, Jens

    2018-01-15

    Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H 2 O 2 , which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H 2 O 2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H 2 O 2 production by S. sanguinis and S. gordonii S. sanguinis H 2 O 2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H 2 O 2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H 2 O 2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H 2 O 2 IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H 2 O 2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival

  9. Biotechnology for improved hHydroxy fatty acid production in oilseed lesquerella

    USDA-ARS?s Scientific Manuscript database

    The conventional source of hydroxy fatty acid (HFA) is from castor (Ricinus communis), 90% of castor oil is ricinoleic acid (18:1OH). Ricinoleic acid and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. The production of ca...

  10. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans.

    PubMed

    Herbel, B K; McGuire, M K; McGuire, M A; Shultz, T D

    1998-02-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid (LA) with conjugated double bonds. CLA has anticarcinogenic properties and has been identified in human tissues, dairy products, meats, and certain vegetable oils. A variety of animal products are good sources of CLA, but plant oils contain much less. However, plant oils are a rich source of LA, which may be isomerized to CLA by intestinal microorganisms in humans. To investigate the effect of triacylglycerol-esterified LA consumption on plasma concentrations of esterified CLA in total lipids, a dietary intervention (6 wk) was conducted with six men and six women. During the intervention period a salad dressing containing 21 g safflower oil providing 16 g LA/d was added to the subjects' daily diets. Three-day diet records and fasting blood were obtained initially and during dietary and postdietary intervention periods. Although LA intake increased significantly during the dietary intervention, plasma CLA concentrations were not affected. Plasma total cholesterol and LDL-cholesterol concentrations were significantly lower after addition of safflower oil to the diet. In summary, consumption of triacylglycerol-esterified LA in safflower oil did not increase plasma concentrations of esterified CLA in total lipids.

  11. Comparison of efficacy of products containing azelaic acid in melasma treatment.

    PubMed

    Mazurek, Klaudia; Pierzchała, Ewa

    2016-09-01

    Melasma is one of the most frequently diagnosed hyperpigmentation changes on the skin of women's faces. Nearly 30% of women using oral estrogen therapy struggle with this problem. A common way of reducing melasma is the application of azelaic acid products. Comparison of efficacy of three dermocosmetic products, containing azelaic acid, in the reduction in melasma for women aged 35-55. A group of 60 women diagnosed with melasma were divided into three even, twenty-person subgroups. Each subgroup was assigned one dermocosmetic product containing azelaic acid. For 24 weeks, the patients applied the assigned product twice a day. The level of the colorant within the hyperpigmentation was marked before the treatment, after 1 month, after 3 months, and after 6 months of therapy. The pigmentation was measured using Mexameter(®) (Courage + Khazaka electronic, Germany). In addition, during each inspection, the patients' level of hydration, elasticity, and intensity of erythema was checked using Corneometer(®) , Reviscometer(®) . All dermocosmetics containing azelaic acid that were applied significantly contributed to the reduction in pigment in the pigmentary lesion. The largest decrease in the amount of pigment was observed in the first 3 months of use of the products. A combination containing 20% azelaic acid and mandelic acid, phytic acid, 4N-butyl resorcinol, and ferulic acid proved to be the most effective dermocosmetic III (Sesderma, Valencia, Spain). Dermocosmetics containing azelaic acid significantly contribute to the clearing of melasma. The effect depends on the treatment time, the acid concentration, and addition of other components. © 2016 Wiley Periodicals, Inc.

  12. Retinoic Acid Increases Fatty Acid Oxidation and Irisin Expression in Skeletal Muscle Cells and Impacts Irisin In Vivo.

    PubMed

    Amengual, Jaume; García-Carrizo, Francisco J; Arreguín, Andrea; Mušinović, Hana; Granados, Nuria; Palou, Andreu; Bonet, M Luisa; Ribot, Joan

    2018-01-01

    All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor β/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  14. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under this...

  15. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural

    PubMed Central

    Hossain, Gazi Sakir; Yuan, Haibo; Li, Jianghua; Shin, Hyun-dong; Wang, Miao; Du, Guocheng; Chen, Jian

    2016-01-01

    ABSTRACT 2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%. IMPORTANCE In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica. This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica. PMID:27795308

  16. Metabolic Engineering for Enhanced Medium Chain Omega Hydroxy Fatty Acid Production in Escherichia coli

    PubMed Central

    Xiao, Kang; Yue, Xiu-Hong; Chen, Wen-Chao; Zhou, Xue-Rong; Wang, Lian; Xu, Lin; Huang, Feng-Hong; Wan, Xia

    2018-01-01

    Medium chain hydroxy fatty acids (HFAs) at ω-1, 2, or 3 positions (ω-1/2/3) are rare in nature but are attractive due to their potential applications in industry. They can be metabolically engineered in Escherichia coli, however, the current yield is low. In this study, metabolic engineering with P450BM3 monooxygenase was applied to regulate both the chain length and sub-terminal position of HFA products in E. coli, leading to increased yield. Five acyl-acyl carrier protein thioesterases from plants and bacteria were first evaluated for regulating the chain length of fatty acids. Co-expression of the selected thioesterase gene CcFatB1 with a fatty acid metabolism regulator fadR and monooxygenase P450BM3 boosted the production of HFAs especially ω-3-OH-C14:1, in both the wild type and fadD deficient strain. Supplementing renewable glycerol to reduce the usage of glucose as a carbon source further increased the HFAs production to 144 mg/L, representing the highest titer of such HFAs obtained in E. coli under the comparable conditions. This study illustrated an improved metabolic strategy for medium chain ω-1/2/3 HFAs production in E. coli. In addition, the produced HFAs were mostly secreted into culture media, which eased its recovery. PMID:29467747

  17. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    PubMed

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  18. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    PubMed

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. © 2016 John Wiley & Sons Ltd.

  19. Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media.

    PubMed

    Ferrochio, Laura; Cendoya, Eugenia; Farnochi, María Cecilia; Massad, Walter; Ramirez, María Laura

    2013-10-15

    The aim of this study was to evaluate the efficacy of ferulic acid (1, 10, 20 and 25 mM) at different water activity (aw) values (0.99, 0.98, 0.96 and 0.93) at 25 °C on growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on maize based media. For both Fusarium species, the lag phase significantly decreased (p ≤ 0.001), and the growth rates increased (p ≤ 0.001) at the lowest ferulic acid concentration used (1mM), regardless of the aw. However, high doses of ferulic acid (10 to 25 mM) significantly reduced (p ≤ 0.001) the growth rate of both Fusarium species, regardless of the a(w). In general, growth rate inhibition increased as ferulic acid doses increased and as media aw decreased. Fumonisin production profiles of both Fusarium species showed that low ferulic acid concentrations (1-10mM) significantly increased (p ≤ 0.001) toxin production, regardless of the aw. High doses of ferulic acid (20-25 mM) reduced fumonisin production, in comparison with the controls, by both Fusarium species but they were not statistically significant in most cases. The results show that the use of ferulic acid as a post-harvest strategy to reduce mycotoxin accumulation on maize needs to be discussed. © 2013.

  20. Engineering lactic acid bacteria for increased industrial functionality.

    PubMed

    Bron, Peter A; Kleerebezem, Michiel

    2011-01-01

    Based on their spoilage-preventing and flavor-contributing characteristics, lactic acid bacteria (LAB) are employed as starter cultures for the fermentation of foods and feeds. In addition, several specific LAB strains are marketed on basis of their beneficial effects on the consumer's health, representing an explosively growing market for the products containing these so-called probiotics. Due to this extensive industrial use there is a strong interest in unraveling the molecular mechanisms involved in industrial robustness, cognate stress resistance, and health-promoting phenotypes of these LAB that may vary drastically between different starter and probiotic strains currently marketed. This review describes some of the post-genomic tools developed, as well as their employment for the identification of bacterial effector molecules involved in the aforementioned industrially relevant phenotypes. Furthermore, it addresses possible strategies to exploit such knowledge into the rational design of LAB strains with increased industrial functionality.

  1. Organic Production Enhances Milk Nutritional Quality by Shifting Fatty Acid Composition: A United States–Wide, 18-Month Study

    PubMed Central

    Benbrook, Charles M.; Butler, Gillian; Latif, Maged A.; Leifert, Carlo; Davis, Donald R.

    2013-01-01

    Over the last century, intakes of omega-6 (ω-6) fatty acids in Western diets have dramatically increased, while omega-3 (ω-3) intakes have fallen. Resulting ω-6/ω-3 intake ratios have risen to nutritionally undesirable levels, generally 10 to 15, compared to a possible optimal ratio near 2.3. We report results of the first large-scale, nationwide study of fatty acids in U.S. organic and conventional milk. Averaged over 12 months, organic milk contained 25% less ω-6 fatty acids and 62% more ω-3 fatty acids than conventional milk, yielding a 2.5-fold higher ω-6/ω-3 ratio in conventional compared to organic milk (5.77 vs. 2.28). All individual ω-3 fatty acid concentrations were higher in organic milk—α-linolenic acid (by 60%), eicosapentaenoic acid (32%), and docosapentaenoic acid (19%)—as was the concentration of conjugated linoleic acid (18%). We report mostly moderate regional and seasonal variability in milk fatty acid profiles. Hypothetical diets of adult women were modeled to assess milk fatty-acid-driven differences in overall dietary ω-6/ω-3 ratios. Diets varied according to three choices: high instead of moderate dairy consumption; organic vs. conventional dairy products; and reduced vs. typical consumption of ω-6 fatty acids. The three choices together would decrease the ω-6/ω-3 ratio among adult women by ∼80% of the total decrease needed to reach a target ratio of 2.3, with relative impact “switch to low ω-6 foods” > “switch to organic dairy products” ≈ “increase consumption of conventional dairy products.” Based on recommended servings of dairy products and seafoods, dairy products supply far more α-linolenic acid than seafoods, about one-third as much eicosapentaenoic acid, and slightly more docosapentaenoic acid, but negligible docosahexaenoic acid. We conclude that consumers have viable options to reduce average ω-6/ω-3 intake ratios, thereby reducing or eliminating probable risk factors for a wide range of

  2. Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone.

    PubMed

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-01-01

    To increase the production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing Nostoc punctiforme 10S-dioxygenase with the aid of a chaperone. The optimal conditions for 10S-hydroxy-8(E)-octadecenoic acid production by recombinant cells co-expressing chaperone plasmid were pH 9, 35 °C, 15 % (v/v) dimethyl sulfoxide, 40 g cells l -1 , and 10 g oleic acid l -1 . Under these conditions, recombinant cells co-expressing chaperone plasmid produced 7.2 g 10S-hydroxy-8(E)-octadecenoic acid l -1 within 30 min, with a conversion yield of 72 % (w/w) and a volumetric productivity of 14.4 g l -1 h -1 . The activity of recombinant cells expressing 10S-dioxygenase was increased by 200 % with the aid of a chaperone, demonstrating the first biotechnological production of 10S-hydroxy-8(E)-octadecenoic acid using recombinant cells expressing 10S-dioxygenase.

  3. Product development studies of amino acid conjugate of Aceclofenac.

    PubMed

    Singh, Ajay Pal; Ramadan, Wafa Mossa; Dahiya, Rajiv; Sarpal, A S; Pathak, Kamla

    2009-04-01

    The prodrugs designed by classical approach increase lipophilicity of the drug, which decreases the water solubility thus decreasing the concentration gradient, which controls drug absorption. To overcome the limitations of traditional prodrug approach, water soluble prodrugs can be designed by adding selected amino acid to the drug moiety that are the substrates for the enzyme located at the intestinal brush border thus overcoming pharmaceutical problem without compromising bioavailability. ACaa (Amino acid conjugate of Aceclofenac) was synthesized by conjugation with l-phenylalanine by conventional coupling method using N, N-dicyclohexylcarbodiimide and ACaa was characterized by melting point, TLC, photomicrograph, UV, FT-IR, FT-NMR, MS-FAB, XRD and DSC. As a part of product development study ACaa was subjected to studies like In-vivo in albino rats and in-vitro like ACaa reversion to AC (Aceclofenac) in aqueous buffers of pH 1.21, 2.38. 3.10, 6.22 and 7.41, at a constant concentration (0.05M), ionic strength (micro = 0.5) and at a temperature of 37 degrees C +/- 0.5 degrees C, ACaa showed negligible reversion (2.15 %) up to 24 hrs study at acidic pH thus suggesting stability in acidic environment of stomach, the rate of reversion increased as pH of medium increased. pH- partition profile, pH- solubility profile and micromeritic studies were also carried out in comparison to pure drug. The solubility and lipophilicity of ACaa exhibited higher values at all pH range when compared to AC. The micromeritic properties also evaluated in terms of particle shape and size, IQCS and kurtosis. Resulting IQCS value approached zero thus suggesting reducing in the degree of skewness.

  4. Higher Estimated Net Endogenous Acid Production May Be Associated with Increased Prevalence of Nonalcoholic Fatty Liver Disease in Chinese Adults in Hong Kong

    PubMed Central

    Chan, Ruth; Wong, Vincent Wai-Sun; Chu, Winnie Chiu-Wing; Wong, Grace Lai-Hung; Li, Liz Sin; Leung, Jason; Chim, Angel Mei-Ling; Yeung, David Ka-Wai; Sea, Mandy Man-Mei; Woo, Jean; Chan, Francis Ka-Leung; Chan, Henry Lik-Yuen

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) has been associated with reduced growth hormone levels and signaling. Such hormonal changes also occur in metabolic acidosis. Since mild metabolic acidosis can be diet induced, diet-induced acid load may constitute a nutritional factor with possible influence on NAFLD development. This study explored whether a higher diet-induced acid load is associated with an increased likelihood of NAFLD. Apparently healthy Chinese adults (330 male, 463 female) aged 19-72 years were recruited through population screening between 2008 and 2010 in a cross-sectional population-based study in Hong Kong. Estimated net endogenous acid production (NEAP) was calculated using Frassetto’s method and potential renal acid load (PRAL) was calculated using Remer’s method based on dietary data from a food frequency questionnaire. NAFLD was defined as intrahepatic triglyceride content at >5% by proton-magnetic resonance spectroscopy. Possible advanced fibrosis was defined as liver stiffness at >7.9 kPa by transient elastography. Multivariate logistic regression models were used to examine the association between each measure of dietary acid load and prevalent NAFLD or possible advanced fibrosis with adjustment for potential anthropometric and lifestyle factors. 220 subjects (27.7%) were diagnosed with NAFLD. Estimated NEAP was positively associated with the likelihood of having NAFLD after adjustment for age, sex, body mass index, current drinker status and the presence of metabolic syndrome [OR (95% CI) = 1.25 (1.02-1.52), p = 0.022]. The association was slightly attenuated but remained significant when the model was further adjusted for other dietary variables. No association between PRAL and NAFLD prevalence was observed. Both estimated NEAP and PRAL were not associated with the presence of possible advance fibrosis. Our findings suggest that there may be a modest association between diet-induced acid load and NAFLD. More studies are needed to

  5. Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-(gamma)-glutamic acid production by Bacillus subtilis BL53.

    PubMed

    de Cesaro, Alessandra; da Silva, Suse Botelho; Ayub, Marco Antônio Záchia

    2014-09-01

    The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, L-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L(-1) h(-1) of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .

  6. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized withmore » ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and

  7. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    PubMed Central

    2012-01-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae. PMID:22830315

  8. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle

    PubMed Central

    Maarman, Gerald J.; Ojuka, Edward

    2016-01-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge. PMID:26946251

  9. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rydzak, Thomas; Garcia, David; Stevenson, David M.

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. And while recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H 2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in C. thermocellum. Deletion of glnA reduced levels of secretedmore » valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine and α-ketoglutarate levels indicative of nitrogen-rich conditions. Here, we propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine/α-ketoglutarate levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.« less

  10. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.

    PubMed

    Rydzak, Thomas; Garcia, David; Stevenson, David M; Sladek, Margaret; Klingeman, Dawn M; Holwerda, Evert K; Amador-Noguez, Daniel; Brown, Steven D; Guss, Adam M

    2017-05-01

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H 2 ), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum. Copyright © 2017. Published by Elsevier Inc.

  11. EPS production by Propionibacterium freudenreichii facilitates its immobilization for propionic acid production.

    PubMed

    Belgrano, F D S; Verçoza, B R F; Rodrigues, J C F; Hatti-Kaul, R; Pereira, N

    2018-04-28

    Immobilization of microbial cells is a useful strategy for developing high cell density bioreactors with improved stability and productivity for production of different chemicals. Functionalization of the immobilization matrix or biofilm forming property of some strains has been utilized for achieving cell attachment. The aim of the present study was to investigate the production of exopolysaccharide (EPS) by Propionibacterium freudenreichii C.I.P 59.32 and utilize this feature for immobilization of the cells on porous glass beads for production of propionic acid. Propionibacterium freudenreichii was shown to produce both capsular and excreted EPS during batch cultivations using glucose as carbon source. Different electron microscopy techniques confirmed the secretion of EPS and formation of cellular aggregates. The excreted EPS was mainly composed of mannose and glucose in a 5·3 : 1 g g -1 ratio. Immobilization of the cells on untreated and polyethyleneimine (PEI)-treated Poraver beads in a bioreactor was evaluated. Higher productivity and yield of propionic acid (0·566 g l -1  h -1 and 0·314 g g -1 , respectively) was achieved using cells immobilized to untreated beads and EPS production reached 617·5 mg l -1 after 48 h. These results suggest an important role of EPS-producing strains for improving cell immobilization and propionic acid production. This study demonstrates the EPS-producing microbe to be easily immobilized on a solid matrix and to be used in a bioprocess. Such a system could be optimized for achieving high cell density in fermentations without the need for functionalization of the matrix. © 2018 The Society for Applied Microbiology.

  12. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst.

    PubMed

    Yang, Xinwei; Ke, Chongrong; Zhu, Jiangming; Wang, Yan; Zeng, Wenchao; Huang, Jianzhong

    2018-04-01

    We previously developed a gamma-amino butyric acid (GABA)-producing strain of Escherichia coli, leading to production of 614.15 g/L GABA at 45 °C from L-glutamic acid (L-Glu) with a productivity of 40.94 g/L/h by three successive whole-cell conversion cycles. However, the increase in pH caused by the accumulation of GABA resulted in inactivation of the biocatalyst and consequently led to relatively lower productivity. In this study, by overcoming the major problem associated with the increase in pH during the production process, a more efficient biocatalyst was obtained through cascade modifications of the previously reported E. coli strain. First, we introduced four amino acid mutations to the codon-optimized GadB protein from Lactococcus lactis to shift its decarboxylation activity toward a neutral pH, resulting in 306.65 g/L of GABA with 99.14 mol% conversion yield and 69.8% increase in GABA productivity. Second, we promoted transportation of L-Glu and GABA by removing the genomic region encoding the C-plug of GadC (a glutamate/GABA antiporter) to allow its transport path to remain open at a neutral pH, which improved the GABA productivity by 16.8% with 99.3 mol% conversion of 3 M L-Glu. Third, we enhanced the expression of soluble GadB by introducing the GroESL molecular chaperones, leading to 20.2% improvement in GABA productivity, with 307.40 g/L of GABA and a 61.48 g/L/h productivity obtained in one cycle. Finally, we inhibited the degradation of GABA by inactivation of gadA and gadB from the E. coli genome, which resulted in almost no GABA degradation after 40 h. After the cascade system modifications, the engineered recombinant E. coli strain achieved a 44.04 g/L/h productivity with a 99.6 mol% conversion of 3 M L-Glu in a 5-L bioreactor, about twofold increase in productivity compared to the starting strain. This increase represents the highest GABA productivity by whole-cell bioconversion using L-Glu as a substrate in one cycle observed

  13. Effect of high-oleic-acid soybeans on production performance, milk fatty acid composition, and enteric methane emission in dairy cows.

    PubMed

    Lopes, J C; Harper, M T; Giallongo, F; Oh, J; Smith, L; Ortega-Perez, A M; Harper, S A; Melgar, A; Kniffen, D M; Fabin, R A; Hristov, A N

    2017-02-01

    The objective of this study was to investigate the effect of 3 soybean sources differing in fatty acid profile and processing method on productivity, milk composition, digestibility, rumen fermentation, and enteric methane emission in lactating dairy cows. The soybean sources were conventional, high-linoleic-acid variety extruded soybean meal (ESBM; 8.7% ether extract with 15% oleic and 54% linoleic acids); extruded Plenish (DuPont Pioneer, Johnston, IA), high-oleic-acid variety soybean meal (EPSBM; 8.4% ether extract with 73% oleic and 8% linoleic acids); and whole, heated Plenish soybeans (WPSB; 20.2% ether extract). The study involved 15 Holstein cows in a replicated 3 × 3 Latin square design experiment with three 28-d periods. The inclusion rate of the soybean sources in the diet was (dry matter basis) 17.1, 17.1, and 7.4% for ESBM, EPSBM, and WPSB, respectively, which resulted in ether extract concentration of the diets of 3.99, 3.94, and 4.18%, respectively. Compared with ESBM, the Plenish diets tended to increase dry matter intake and decreased feed efficiency (but had no effect on energy-corrected milk feed efficiency). The Plenish diets increased milk fat concentration on average by 5.6% and tended to increase milk fat yield, compared with ESBM. The WPSB diet tended to increased milk true protein compared with the extruded soybean meal diets. Treatments had no effect on rumen fermentation and enteric methane or carbon dioxide emissions, except pH was higher for WPSB versus EPSBM. The Plenish diets decreased the prevalence of Ruminococcus and increased that of Eubacterium and Treponema in whole ruminal contents. Total-tract apparent digestibility of organic matter and crude protein were decreased by WPSB compared with ESBM and EPSBM. Compared with the other treatments, urinary N excretion was increased by EPSBM and fecal N excretion was greater for WPSB. Treatments had marked effects on milk fatty acid profile. Generally, the Plenish diets increased mono

  14. Microbial granulation for lactic acid production.

    PubMed

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. © 2015 Wiley Periodicals, Inc.

  15. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica.

    PubMed

    Acevedo, E; Badilla, I; Nobel, P S

    1983-07-01

    Physiological responses of the Crassulacean acid metabolism (CAM) plant Opuntia ficus-indica (Cactaceae) were studied on a commercial plantation in central Chile. Young cladodes (flattened stems) and flower buds exhibited daytime stomatal opening, whereas mature cladodes and fruit exhibited the nocturnal stomatal opening characteristic of CAM plants. Severe water stress suppressed the nocturnal stomatal opening by mature cladodes, but their high water vapor conductance occurring near dawn was not affected. Nocturnal acidity increases were not as sensitive to water stress as was the nocturnal stomatal opening. The magnitude of the nocturnal acidity increases depended on the total daily photosynthetically active radiation (PAR), being 90% PAR-saturated at 27 moles per square meter per day for a mean nighttime air temperature of 5 degrees C and at 20 moles per square meter per day for 18 degrees C. Inasmuch as the PAR received on unshaded vertical surfaces averaged about 21 moles per square meter per day, nocturnal acidity increases by the cladodes were on the verge of being PAR-limited in the field. The net assimilation rate, which was positive throughout the year, annually averaged 3.4 grams per square meter per day for 1.0- and 2.0-year-old plants. Plants that were 5.4 years old had 7.2 square meters of cladode surface area (both sides) and an annual dry weight productivity of 13 megagrams (metric tons) per hectare per year when their ground cover was 32%. This substantial productivity for a CAM plant was accompanied by the highest nocturnal acidity increase so far observed in the field, 0.78 mole H(+) per square meter.

  16. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  17. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  18. Enzyme immunoassay for tenuazonic acid in apple and tomato products.

    PubMed

    Gross, Madeleine; Curtui, Valeriu; Ackermann, Yvonne; Latif, Hadri; Usleber, Ewald

    2011-12-14

    The Alternaria mycotoxin tenuazonic acid was derivatized with succinic anhydride and conjugated to keyhole limpet hemocyanin (KLH) and to horseradish peroxidase (HRP), respectively. The KLH conjugate was used to produce polyclonal antibodies in rabbits. A competitive direct enzyme immunoassay (EIA) for tenuazonic acid was established, which was moderately sensitive for tenuazonic acid [50% inhibition concentration (IC(50)): 320 ± 130 ng/mL] but strongly reacted with tenuazonic acid acetate (IC(50): 23.3 ± 7.5 ng/mL). Therefore, an optimized EIA protocol was established, which employed acetylation of standard and sample extract solutions. The mean standard curve detection limit (IC(30)) for tenuazonic acid acetate was 5.4 ± 2.0 ng/mL, enabling detection limits for tenuazonic acid in apple and tomato products of 25-50 ng/g (150 ng/g in tomato paste). Recoveries in a concentration range of 50-2000 ng/g were 60-130% in apple juice and tomato juice and 40-150% in other tomato products. Tenuazonic acid was detected in apple juice and tomato products from German retail shops at levels of 50-200 ng/g. In conclusion, this novel EIA for tenuazonic acid could be useful within a screening program for Alternaria mycotoxins in food.

  19. Degradation of tannic acid by cold-adapted Klebsiella sp NACASA1 and phytotoxicity assessment of tannic acid and its degradation products.

    PubMed

    Jadhav, Umesh; Kadu, Sudhir; Thokal, Nilesh; Padul, Manohar; Dawkar, Vishal; Chougale, Ashok; Salve, Abhay; Patil, Manoj

    2011-08-01

    The focus of the present study is to know the potential of bacterial isolate for tannic acid degradation at low temperature. Also, we tried to evaluate the suitability of phytotoxicity testing protocol for the determination of tannic acid toxicity. Screening for tannic acid degrading bacterial strains was carried out by using microbial isolation techniques. The 16S rDNA amplicon of the isolate was used to identify the isolate. The effect of different concentrations of tannic acid and its degradation products on germination of Vigna unguiculata was evaluated. The study was carried out to determine total sugar and starch content of the used seeds and even to check the presence of α-amylase activity during seed germination. The isolated bacterium was identified as Klebsiella sp NACASA1 and it showed degradation of tannic acid in 40 (±0.85***) h at 15°C and pH 7.0. A gradual decrease in root/shoot length was observed with increasing concentration of tannic acid. There was 95.11 (±0.24**)% inhibition in α-amylase activity at 20,000 ppm tannic acid, as compared to control. No such effects were observed on germination, root-shoot length, and α-amylase activity with tannic acid degradation products. The results obtained confirmed that tannic acid may act as a toxic agent in plant cells. The simple biodegradation process presented in this study was found to be effective in reducing toxicity of tannic acid. Also, it reveals the potential of soil bacterium to degrade tannic acid at low temperature.

  20. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.

    PubMed

    Meng, Qinglong; Zhang, Yanfei; Ju, Xiaozhi; Ma, Chunling; Ma, Hongwu; Chen, Jiuzhou; Zheng, Ping; Sun, Jibin; Zhu, Jun; Ma, Yanhe; Zhao, Xueming; Chen, Tao

    2016-05-20

    5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Temperature enhanced succinate production concurrent with increased central metabolism turnover in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Hasunuma, Tomohisa; Matsuda, Mami; Kato, Yuichi; Vavricka, Christopher John; Kondo, Akihiko

    2018-05-27

    Succinate is a versatile petrochemical compound that can be produced by microorganisms, often from carbohydrate based carbon sources. Phototrophic cyanobacteria including Synechocystis sp. PCC 6803 can more efficiently produce organic acids such as succinate without sugar supplementation, via photosynthetic production of glycogen followed by glycogen utilization, typically under dark conditions. In this study, Synechocystis 6803 bioproduction of organic acids under dark anoxic conditions was found to increase with elevation of temperature from 30 °C to 37 °C. The further enhancement of succinate bioproduction by overexpression of the rate limiting enzyme phosphoenolpyruvate carboxylase resulted in improved glycogen utilization. To gain more insight into the mechanisms underlying the increased organic acid output, a novel temperature dependent metabolomics analysis was performed. Adenylate energy charge was found to decrease along with elevating temperature, while central metabolites glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, glycerol 3-phosphate, malate, fumarate and succinate increased. Temperature dependent 13 C-labeling metabolomics analysis further revealed a glycolysis to TCA bottleneck, which could be overcome by addition of CO 2 , leading to even higher organic acid production. Optimization of initial cell concentration to 25 g-dry cell weight/L, in combination with 100 mM NaHCO 3 supplementation, afforded a succinate titer of over 1.8 g/L, the highest reported autotrophic succinate titer. Succinate titers remained high after additional knockout of ackA, resulting in the highest reported autotrophic D-lactate titer as well. The optimization of Synechocystis 6803 organic acid production therefore holds significant promise for CO 2 capture and utilization. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria.

    PubMed

    Kimoto-Nira, H; Moriya, N; Hayakawa, S; Kuramasu, K; Ohmori, H; Yamasaki, S; Ogawa, M

    2017-07-01

    It has recently been reported that the rare sugar d-allulose has beneficial effects, including the suppression of postprandial blood glucose elevation in humans, and can be substituted for sucrose as a low-calorie food ingredient. To examine the applications of d-allulose in the dairy industry, we investigated the effects of d-allulose on the acid production of 8 strains of yogurt starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and 4 strains of lactococci, including potential probiotic candidates derived from dairy products. Acid production by 2 L. delbrueckii ssp. bulgaricus yogurt starter strains in milk was suppressed by d-allulose, but this phenomenon was also observed in some strains with another sugar (xylose), a sugar alcohol (sorbitol), or both. In contrast, among the dairy probiotic candidates, Lactococcus lactis H61, which has beneficial effects for human skin when drunk as part of fermented milk, was the only strain that showed suppression of acid production in the presence of d-allulose. Strain H61 did not metabolize d-allulose. We did not observe suppression of acid production by strain H61 with the addition of xylose or sorbitol, and xylose and sorbitol were not metabolized by strain H61. The acid production of strain H61 after culture in a constituted medium (tryptone-yeast extract-glucose broth) was also suppressed with the addition of d-allulose, but growth efficiency and sugar fermentation style were not altered. Probiotic activities-such as the angiotensin-converting enzyme inhibitory activity of H61-fermented milk and the superoxide dismutase activity of H61 cells grown in tryptone-yeast extract-glucose broth-were not affected by d-allulose. d-Allulose may suppress acid production in certain lactic acid bacteria without altering their probiotic activity. It may be useful for developing new probiotic dairy products from probiotic strains such as Lactococcus lactis H61. Copyright © 2017 American Dairy Science

  3. Effect of flaxseed supplementation rate and processing on the production, fatty acid profile, and texture of milk, butter, and cheese.

    PubMed

    Oeffner, S P; Qu, Y; Just, J; Quezada, N; Ramsing, E; Keller, M; Cherian, G; Goddick, L; Bobe, G

    2013-02-01

    Health and nutrition professionals advise consumers to limit consumption of saturated fatty acids and increase the consumption of foods rich in n-3 fatty acids. Researchers have previously reported that feeding extruded flaxseed, which is high in C18:3n-3, improves the fatty acid profile of milk and dairy products to less saturated fatty acids and to more C18:3n-3. Fat concentrations in milk and butter decreased when cows were fed higher concentrations of extruded flaxseed. The objective of this study was to determine the optimal rate of flaxseed supplementation for improving the fatty acid profile without decreasing production characteristics of milk and dairy products. By using a double 5 × 5 Latin square design, 10 mid- to late-lactation Holstein cows were fed extruded (0, 0.91, 1.81, and 2.72 kg/d) and ground (1.81 kg/d) flaxseed as a top dressing for 2-wk periods each. At the end of each 2-wk treatment period, milk and serum samples were taken. Milk was subsequently manufactured into butter and fresh Mozzarella cheese. Increasing supplementation rates of extruded flaxseed improved the fatty acid profile of milk, butter, and cheese gradually to less saturated and atherogenic fatty acids and to more C18:3n-3 by increasing concentrations of C18:3n-3 in serum. The less saturated fatty acid profile was associated with decreased hardness and adhesiveness of refrigerated butter, which likely cause improved spreadability. Supplementation rates of extruded flaxseed did not affect dry matter intake of the total mixed ration, milk composition, and production of milk, butter, or cheese. Flaxseed processing did not affect production, fatty acid profile of milk, or texture of butter and cheese. Feeding up to 2.72 kg/d of extruded flaxseed to mid- to late-lactation Holstein cows may improve nutritional and functional properties of milk fat without compromising production parameters. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights

  4. An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae.

    PubMed

    Henritzi, Sandra; Fischer, Manuel; Grininger, Martin; Oreb, Mislav; Boles, Eckhard

    2018-01-01

    The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the β-oxidation pathway. The previously engineered short-chain acyl-CoA producing yeast Fas1 R1834K /Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L -1 in a 72-h fermentation. The additional accumulation of 90 mg L -1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L -1 . However, in growth tests concentrations even lower than 50.0 mg L -1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to

  5. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity.

    PubMed

    Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R

    2018-07-01

    Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.

  7. Effects of ensiling treatments on lactic acid production and supplementary methane formation of maize and amaranth--an advanced green biorefining approach.

    PubMed

    Haag, Nicola Leonard; Nägele, Hans-Joachim; Fritz, Thomas; Oechsner, Hans

    2015-02-01

    A green biorefinery enables the material and energetic use of biomass via lactic acid and methane production. Different ensiling techniques were applied to maize and amaranth with the aim to increase the amount of lactic acid in the silage. In addition the methane formation potential of the ensiled samples and the remaining solid residues after separating the organic juice were assessed. Treating maize with homofermentative lactic acid bacteria in combination with carbonated lime increased the amount of lactic acid about 91.9%. For amaranth no additional lactic acid production was obtained by treating the raw material. Specific methane yields for the solid residues of amaranth were significantly lower in comparison to the corresponding silages. The most promising treatment resulted in a production of 127.9±4.1 g kg(-1) DM lactic acid and a specific methane yield for the solid residue of 349.5±6.6 lN kg(-1) ODM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  10. Increased Dietary Intake of Saturated Fatty Acid Heptadecanoic Acid (C17:0) Associated with Decreasing Ferritin and Alleviated Metabolic Syndrome in Dolphins

    PubMed Central

    Venn-Watson, Stephanie K.; Parry, Celeste; Baird, Mark; Stevenson, Sacha; Carlin, Kevin; Daniels, Risa; Smith, Cynthia R.; Jones, Richard; Wells, Randall S.; Ridgway, Sam; Jensen, Eric D.

    2015-01-01

    Similar to humans, bottlenose dolphins (Tursiops truncatus) can develop metabolic syndrome and associated high ferritin. While fish and fish-based fatty acids may protect against metabolic syndrome in humans, findings have been inconsistent. To assess potential protective factors against metabolic syndrome related to fish diets, fatty acids were compared between two dolphin populations with higher (n = 30, Group A) and lower (n = 19, Group B) mean insulin (11 ± 12 and 2 ± 5 μIU/ml, respectively; P < 0.0001) and their dietary fish. In addition to higher insulin, triglycerides, and ferritin, Group A had lower percent serum heptadecanoic acid (C17:0) compared to Group B (0.3 ± 0.1 and 1.3 ± 0.4%, respectively; P < 0.0001). Using multivariate stepwise regression, higher percent serum C17:0, a saturated fat found in dairy fat, rye, and some fish, was an independent predictor of lower insulin in dolphins. Capelin, a common dietary fish for Group A, had no detectable C17:0, while pinfish and mullet, common in Group B’s diet, had C17:0 (41 and 67 mg/100g, respectively). When a modified diet adding 25% pinfish and/or mullet was fed to six Group A dolphins over 24 weeks (increasing the average daily dietary C17:0 intake from 400 to 1700 mg), C17:0 serum levels increased, high ferritin decreased, and blood-based metabolic syndrome indices normalized toward reference levels. These effects were not found in four reference dolphins. Further, higher total serum C17:0 was an independent and linear predictor of lower ferritin in dolphins in Group B dolphins. Among off the shelf dairy products tested, butter had the highest C17:0 (423mg/100g); nonfat dairy products had no detectable C17:0. We hypothesize that humans’ movement away from diets with potentially beneficial saturated fatty acid C17:0, including whole fat dairy products, could be a contributor to widespread low C17:0 levels, higher ferritin, and metabolic syndrome. PMID:26200116

  11. Catalytic amino acid production from biomass-derived intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  12. Catalytic amino acid production from biomass-derived intermediates

    PubMed Central

    Deng, Weiping; Zhang, Sui; Gupta, Krishna M.; Hülsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye

    2018-01-01

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. PMID:29712826

  13. Catalytic amino acid production from biomass-derived intermediates.

    PubMed

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; Gupta, Krishna M; Hülsey, Max J; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M; Beckham, Gregg T; Dyson, Paul J; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye; Yan, Ning

    2018-05-15

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. Copyright © 2018 the Author(s). Published by PNAS.

  14. Catalytic amino acid production from biomass-derived intermediates

    DOE PAGES

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; ...

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less

  15. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    PubMed

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Lactic acid production from acidogenic fermentation of fruit and vegetable wastes.

    PubMed

    Wu, Yuanyuan; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-09-01

    This work focused on the lactic acid production from acidogenic fermentation of fruit and vegetable wastes treatment. A long term completely stirred tank reactor (CSTR) lasting for 50 days was operated at organic loading rate (OLR) of 11 gVS/(L d) and sludge retention time (SRT) of 3 days with pH controlled at 4.0 (1-24 day) and 5.0 (25-50 day). The results indicated that high amount of approximately 10-20 g/L lactic acid was produced at pH of 4.0 and the fermentation type converted from coexistence of homofermentation and heterofermentation into heterofermentation. At pH of 5.0, the hydrolysis reaction was improved and the total concentration of fermentation products increased up to 29.5 g COD/L. The heterofermentation was maintained, however, bifidus pathway by Bifidobacterium played an important role. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  18. Production of Fumaric Acid in 20-Liter Fermentors

    PubMed Central

    Rhodes, R. A.; Lagoda, A. A.; Misenheimer, T. J.; Smith, M. L.; Anderson, R. F.; Jackson, R. W.

    1962-01-01

    The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO3 to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose. PMID:16349614

  19. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  20. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  1. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGES

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; ...

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm 2 at -765 mV (0.065 mA/cm 2 sterile control at -800 mV) bymore » the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m 3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m 3/day formate, and 3.1 kg/m 3/day acetate ( = 4.7 kg CO 2 captured).« less

  2. Fate and effects of picric acid and 2,6-DNT in marine environments: toxicity of degradation products.

    PubMed

    Nipper, Marion; Carr, R Scott; Biedenbach, James M; Hooten, Russell L; Miller, Karen

    2005-11-01

    The toxicity of transformation products of 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked sandy and fine-grained marine sediments and in seawater. Toxicity of pore water from sediments spiked with 2,6-DNT decreased for the macro-alga, Ulva fasciata, zoospores as biotransformation proceeded, but increased for the copepod, Schizopera knabeni, nauplii. The primary biotransformation product of 2,6-DNT, 2-amino-6-nitrotoluene, was also more toxic than the parent compound to copepod nauplii, but not to alga zoospores, in spiked seawater tests. Two biotransformation products of picric acid, picramic acid and 2,4-DNP, were more toxic than their parent compound. Porewater toxicity from picric acid-spiked sediments decreased significantly at the end of six-months incubation. Fine-grained sediment spiked with either ordnance compound had lower toxicity than its sandy counterpart after six months, suggesting faster microbial transformation in the former and production of less toxic products. Photo-transformation of 2,6-DNT in seawater resulted in a reduction in toxicity.

  3. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  4. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production.

    PubMed

    Lemmer, Kimberly C; Zhang, Weiping; Langer, Samantha J; Dohnalkova, Alice C; Hu, Dehong; Lemke, Rachelle A; Piotrowski, Jeff S; Orr, Galya; Noguera, Daniel R; Donohue, Timothy J

    2017-05-23

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation in Rhodobacter sphaeroides By screening an R. sphaeroides Tn 5 mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCE This paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be

  5. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE PAGES

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; ...

    2017-05-23

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  6. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    NASA Astrophysics Data System (ADS)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  7. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.

    PubMed

    Wang, Chen; Zhang, Hengli; Cai, Heng; Zhou, Zhihui; Chen, Yilu; Chen, Yali; Ouyang, Pingkai

    2014-01-01

    Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l(-1) xylose and 4 g l(-1) glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l(-1) with a yield of 0.69 g g(-1) total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.

  8. Low-pH production of D-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7.

    PubMed

    Park, Hyun Joo; Bae, Jung-Hoon; Ko, Hyeok-Jin; Lee, Sun-Hee; Sung, Bong Hyun; Han, Jong-In; Sohn, Jung-Hoon

    2018-06-13

    Lactic acid is a platform chemical for the sustainable production of various materials. To develop a robust yeast platform for low-pH production of D-lactic acid, an acid-tolerant yeast strain was isolated from grape skins and named Pichia kudriavzevii NG7 by ribosomal RNA sequencing. This strain was able to grow at pH 2.0 and 50°C. For the commercial application of P. kudriavzevii NG7 as a lactic acid producer, the ethanol fermentation pathway was redirected to lactic acid by replacing pyruvate decarboxylase 1 gene (PDC1) with D-lactate dehydrogenase gene (D-LDH) derived from Lactobacillus plantarum. To enhance lactic acid tolerance, this engineered strain was adapted to high lactic acid concentrations, and a new transcriptional regulator, PAR1, responsible for acid tolerance, was identified by whole-genome resequencing. The final engineered strain produced 135 g/L and 154 g/L of D-lactic acid with productivity over 3.66 g/L/h at pH 3.6 and 4.16 g/L/h at pH 4.7, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  10. Copper tolerance of brown-rot fungi : time course of oxalic acid production

    Treesearch

    Frederick Green; Carol A. Clausen

    2003-01-01

    The increase in the use of non-arsenical copper-based wood preservatives in response to environmental concerns has been accompanied by interest in copper-tolerant decay fungi. Oxalic acid production by brown-rot fungi has been proposed as one mechanism of copper tolerance. Fifteen brown-rot fungi representing the genera Postia, Wolfiporia, Meruliporia, Gloeophyllum,...

  11. Increased 13-hydroxyoctadecadienoic acid content in lipopolysaccharide stimulated macrophages.

    PubMed

    Schade, U F; Burmeister, I; Engel, R

    1987-09-15

    Endotoxin-stimulated mouse peritoneal macrophages were found to contain 13-hydroxyoctadecadienoic acid, which was released upon alkaline hydrolysis of the cells. Compared to untreated cells, incubation with LPS increased the content of 13-hydroxyoctadecadienoic acid in macrophage hydrolysates to about 8-fold. Analysis of the material on chiralphase HPLC revealed that it consisted prevalently of 13(S)-hydroxyoctadecadienoic acid. This indicates its enzymatic origine.

  12. Methods for increasing the production of ethanol from microbial fermentation

    DOEpatents

    Gaddy, James L [Fayetteville, AR; Arora, Dinesh K [Fayetteville, AR; Ko, Ching-Whan [Fayetteville, AR; Phillips, John Randall [Fayetteville, AR; Basu, Rahul [Bethlehem, PA; Wikstrom, Carl V [Fayetteville, AR; Clausen, Edgar C [Fayetteville, AR

    2007-10-23

    A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.

  13. Cell immobilization for production of lactic acid biofilms do it naturally.

    PubMed

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Chicoric acid: chemistry, distribution, and production

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Scagel, Carolyn

    2013-12-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  15. Chicoric acid: chemistry, distribution, and production.

    PubMed

    Lee, Jungmin; Scagel, Carolyn F

    2013-01-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  16. Improved Production and Antitumor Properties of Triterpene Acids from Submerged Culture of Ganoderma lingzhi.

    PubMed

    Wang, Xiao-Ling; Ding, Zhong-Yang; Liu, Gao-Qiang; Yang, Hailong; Zhou, Guo-Ying

    2016-10-20

    Triterpene acids (TAs) are the major bioactive constituents in the medicinal fungus Ganoderma lingzhi . However, fermentative production of TAs has not been optimized for commercial use, and whether the TAs isolated from G. lingzhi submerged culture mycelia possess antitumor activity needs to be further proven. In this study, enhanced TA yield and productivity were attained with G. lingzhi using response surface methodology. The interactions of three variables were studied using a Box-Benhnken design, namely initial pH, dissolved oxygen (DO) and fermentation temperature. The optimum conditions were an initial pH of 5.9, 20.0% DO and 28.6 °C. These conditions resulted in a TA yield of 308.1 mg/L in a 5-L stirred bioreactor. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and maximum TA production and productivity of 295.3 mg/L and 49.2 mg/L/day were achieved, which represented 80.9% and 111.5% increases, respectively, compared with the non-optimized conditions. Additionally, the triterpene acid extract (TAE) from G. lingzhi mycelia was found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro, and the TAE exhibited dose-dependent antitumor activity against the solid tumor sarcoma 180 in vivo. Chemical analysis revealed that the key active triterpene compounds, ganoderic acid T and ganoderic acid Me, predominated in the extract.

  17. Protein digestibility-corrected amino acid scores for bean and bean-rice infant weaning food products.

    PubMed

    Kannan, S; Nielsen, S S; Mason, A C

    2001-10-01

    Vegetable proteins are an integral part of infant weaning diets in Latin America. Protein quality in plant-based products, however, is constrained by amino acid composition and intrinsically present antinutritional factors. The goal of this study was to improve bean protein quality by utilizing fermentation and germination processing. The objectives were to determine if protein quality, as measured by Food and Agricultural Organization (FAO) approved True Protein Digestibility (TPD) and Protein Digestibility-Corrected Amino Acid Scores (PDCAAS), of formulated bean-based weaning products could be improved upon fermentation and germination and if protein quality could be further improved when processed beans were combined with cooked rice. Results showed that the highest TPD and PDCAAS values were obtained for cooked germinated beans combined with rice. The TPD values for products ranged from 80 to 91%, and the PDCAAS values were 0.38-0.51. There was no significant increase (P < 0.05) of either TPD or PDCAAS values upon fermentation. Germination increased TPD of cooked bean products; this increase was not, however, accompanied by an increase in PDCAAS. When combined with rice, the PDCAAS values for all bean products improved significantly, thus supporting the concept of cereal-legume complementation. In conclusion, this study showed the range of PDCAAS in processed black bean and bean-rice infant weaning food products. The potential for incorporation of these products into the diets of weaning age Latin American children would, however, be confirmed only after validation with growth or metabolic balance studies in human infants.

  18. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    PubMed Central

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  19. Clofibric acid increases the formation of oleic acid in endoplasmic reticulum of the liver of rats.

    PubMed

    Hirose, Akihiko; Yamazaki, Tohru; Sakamoto, Takeshi; Sunaga, Katsuyoshi; Tsuda, Tadashi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [¹⁴C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellular organelles, microsomes, peroxisomes, and mitochondria, was estimated on the basis of correction utilizing the yields from homogenates of marker enzymes for these organelles. The radioactivity was mostly localized in microsomes and the radiolabeled fatty acids present in microsomes were significantly increased by the treatment of rats with clofibric acid. The formation of radiolabeled 18:1 in microsomes markedly increased and incorporations of the formed [¹⁴C]18:1 into PC and phosphatidylethanolamine in microsomes were augmented in response to clofibric acid. The [¹⁴C]18:1 incorporated into PC was mostly located at the C-2 position, but not the C-1 position, of PC, and the radioactivity in 18:1 at the C-2 position of PC was strikingly increased by clofibric acid. These results obtained from the in vivo experiments directly link the findings that clofibric acid treatment induces microsomal stearoyl-CoA desaturase and 1-acylglycerophosphocholine acyltransferase in the liver and the findings that the treatment with the drug elevated absolute mass and mass proportion of 18:1 at the C-2 position, but not the C-1 position, of PC in the liver together.

  20. Bio-based production of methacrylic acid

    USDA-ARS?s Scientific Manuscript database

    Methacrylic acid (MAA) is an important industrial chemical commodity, with annual production exceeding 3 million metric tons and a market value surpassing $9 billion. The primary use of MAA is the conversion to ester derivatives, which are further converted into numerous useful polymers. Despite the...

  1. Effect of sodium metabisulfite on hydrogen peroxide production in light-exposed pediatric parenteral amino acid solutions.

    PubMed

    Brawley, V; Bhatia, J; Karp, W B

    1998-06-15

    The effect of sodium metabisulfite (MBS) on hydrogen peroxide (HP) production in model and commercial amino acid solutions exposed to phototherapy light was studied. Model and commercial pediatric amino acid solutions were prepared such that the amino acid concentration was 1%. MBS concentration, riboflavin concentration, and duration of exposure to phototherapy light were varied to determine the effect on HP production. Control solutions were kept in the dark. HP production was assayed in the model amino acid solutions by using potassium iodide in the presence of ammonium molybdate. In all experiments, HP production was measured at 360 nm in the presence and absence of catalase. In light-exposed solutions, HP production increased linearly for several hours and reached a plateau by eight hours. A mean maximum of 940 microM was produced (data pooled for all solutions). No detectable HP was generated in the solutions kept in the dark. After two hours of light exposure, it was necessary to add at least 10 times more MBS than is typically found in commercial total parenteral nutrient solutions to scavenge all the HP produced. An average of up to 940 microM of HP was produced in model and commercial pediatric parenteral 1% amino acid solutions in the presence of phototherapy light and clinically relevant concentrations of riboflavin and MBS. Light exposure decreased the antioxidant effect of MBS.

  2. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E [Kennewick, WA

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  3. Barley malt increases hindgut and portal butyric acid, modulates gene expression of gut tight junction proteins and Toll-like receptors in rats fed high-fat diets, but high advanced glycation end-products partially attenuate the effects.

    PubMed

    Zhong, Yadong; Teixeira, Cristina; Marungruang, Nittaya; Sae-Lim, Watina; Tareke, Eden; Andersson, Roger; Fåk, Frida; Nyman, Margareta

    2015-09-01

    Barley malt, a product of controlled germination, has been shown to produce high levels of butyric acid in the cecum and portal serum of rats and may therefore have anti-inflammatory effects. The aim of the study was to investigate how four barley malts, caramelized and colored malts, 50-malt and 350-malt, differing in functional characteristics concerning beta-glucan content and color, affect short-chain fatty acids (SCFA), barrier function and inflammation in the hindgut of rats fed high-fat diets. Male Wistar rats were given malt-supplemented high-fat diets for four weeks. Low and high-fat diets containing microcrystalline cellulose were incorporated as controls. All diets contained 70 g kg(-1) dietary fiber. The malt-fed groups were found to have had induced higher amounts of butyric and propionic acids in the hindgut and portal serum compared with controls, while cecal succinic acid only increased to a small extent. Fat increased the mRNA expression of tight junction proteins and Toll-like receptors (TLR) in the small intestine and distal colon of the rats, as well as the concentration of some amino acids in the portal plasma, but malt seemed to counteract these adverse effects to some extent. However, the high content of advanced glycation end-products (AGE) in caramelized malt tended to prohibit the positive effects on occludin in the small intestine and plasma amino acids seen with the other malt products. In conclusion, malting seems to be an interesting process for producing foods with positive health effects, but part of these effects may be destroyed if the malt contains a high content of AGE.

  4. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE PAGES

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.; ...

    2017-09-01

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  5. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  6. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    PubMed

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  7. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Optimization of hyaluronic acid production and its cytotoxicity and degradability characteristics.

    PubMed

    Gedikli, Serap; Güngör, Gökhan; Toptaş, Yağmur; Sezgin, Dilber Ece; Demirbilek, Murat; Yazıhan, Nuray; Aytar Çelik, Pınar; Denkbaş, Emir Baki; Bütün, Vural; Çabuk, Ahmet

    2018-06-14

    In the present study, culture conditions of Streptococcus equi was optimized through Box-Behnken experimental design for hyaluronic acid production. About 0.87 gL -1 of hyaluronic acid was produced under the determined conditions and optimal conditions were found as 38.42 °C, 24 hr and 250 rpm. The validity and practicability of this statistical optimization strategy were confirmed relation between predicted and experimental values. The hyaluronic acid obtained under optimal conditions was characterized. The effects of different conditions such as ultraviolet light, temperature and enzymatic degradation on hyaluronic acid produced under optimal conditions were determined. 118 °C for 32 min of autoclaved HA sample included 63.09 µg mL -1 of d-glucuronic acid, which is about two-fold of enzymatic effect. Cytotoxicity of hyaluronic acid on human dermal cells (HUVEC, HaCaT), L929 and THP-1 cells was studied. In vitro effect on pro or anti-inflammatory cytokine release of THP-1 cells was determined. Although it varies depending on the concentration, cytotoxicity of hyaluronic acid is between 5 and 30%. However, it varies depending on the concentration of hyaluronic acid, TNF-α release was not much increased compared to control study. Consequently, purification procedure is necessary to develop and it is worth developing the bacterial hyaluronic acid.

  9. Nutritional limitations to increased production on pasture-based systems.

    PubMed

    Kolver, Eric S

    2003-05-01

    The constraints to high levels of milk production imposed by a high-quality-pasture diet, and development of feeding strategies to overcome these limitations, were examined by modelling the nutritional status of New Zealand Friesian and North American Holstein-Friesian dairy cows grazing high-quality pasture. The Cornell Net Carbohydrate and Protein System (CNCPS) was used to predict sensitivity of milk production to a 10% change in the composition of pasture nutrients. The rate at which fibre and protein were degraded in the rumen and the value given to effective fibre and lignin content significantly affected the supply of metabolisable energy and protein, and the profile of amino acid supply. The first limiting factor in milk production when only high-quality pasture was fed was metabolisable energy supply, while specific amino acids, particularly methionine and lysine, limited milk production when > 20 g/kg diet consisted of a grain supplement. Compared with cows fed a total mixed ration in confinement, North American Holstein-Friesians grazing all pasture produced less milk (29.6 v. 44.1 kg/d). Of the difference in milk production 61% could be attributed to a lower DM intake (19 kg/d v. 23.4 kg/d). Predictions using the CNCPS indicated that supply of metabolisable energy was the first-limiting factor for milk production from high-quality pasture (251 g crude protein (N x 6.25)/kg, 432 g neutral-detergent fibre/kg, 77% in vitro DM digestibility), rather than metabolisable protein or amino acids. In addition, these nutritional limitations imposed by pasture diets will be greater for dairy cow genotypes that have not been selected for high performance within a pasture system.

  10. Ethylene Production and 1-Aminocyclopropane-1-Carboxylic Acid Conjugation in Thermoinhibited Cicer arietinum L. Seeds 1

    PubMed Central

    Gallardo, Mercedes; Delgado, María del Mar; Sánchez-Calle, Isabel María; Matilla, Angel Jesús

    1991-01-01

    The effect of supraoptimal temperatures (30°C, 35°C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25°C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity. PMID:16668358

  11. Increasing Product Confidence-Shifting Paradigms.

    PubMed

    Phillips, Marla; Kashyap, Vishal; Cheung, Mee-Shew

    2015-01-01

    Leaders in the pharmaceutical, medical device, and food industries expressed a unilateral concern over product confidence throughout the total product lifecycle, an unsettling fact for these leaders to manage given that their products affect the lives of millions of people each year. Fueled by the heparin incident of intentional adulteration in 2008, initial efforts for increasing product confidence were focused on improving the confidence of incoming materials, with a belief that supplier performance must be the root cause. As in the heparin case, concern over supplier performance extended deep into the supply chain to include suppliers of the suppliers-which is often a blind spot for pharmaceutical, device, and food manufacturers. Resolved to address the perceived lack of supplier performance, these U.S. Food and Drug Administration (FDA)-regulated industries began to adopt the supplier relationship management strategy, developed by the automotive industry, that emphasizes "management" of suppliers for the betterment of the manufacturers. Current product and supplier management strategies, however, have not led to a significant improvement in product confidence. As a result of the enduring concern by industry leaders over the lack of product confidence, Xavier University launched the Integrity of Supply Initiative in 2012 with a team of industry leaders and FDA officials. Through a methodical research approach, data generated by the pharmaceutical, medical device, and food manufacturers surprisingly pointed to themselves as a source of the lack of product confidence, and revealed that manufacturers either unknowingly increase the potential for error or can control/prevent many aspects of product confidence failure. It is only through this paradigm shift that manufacturers can work collaboratively with their suppliers as equal partners, instead of viewing their suppliers as "lesser" entities needing to be controlled. The basis of this shift provides manufacturers

  12. Exporters for Production of Amino Acids and Other Small Molecules.

    PubMed

    Eggeling, Lothar

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  13. Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.H.

    1991-01-01

    Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the correspondingmore » susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.« less

  14. Enhancement of l-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste.

    PubMed

    Zheng, Jin; Gao, Ming; Wang, Qunhui; Wang, Juan; Sun, Xiaohong; Chang, Qiang; Tashiro, Yukihiro

    2017-02-01

    In this study, Sophora flavescens residues (SFR) were used for l-lactic acid production and were mixed with food waste (FW) to assess the effects of different compositions of SFR and FW. Positive synergistic effects of mixed substrates were achieved with co-fermentation. Co-fermentation increased the proportion of l-lactic acid by decreasing the co-products of ethanol and other organic acids. A maximum l-lactic acid concentration of 48.4g/L and l-lactic acid conversion rate of 0.904g/g total sugar were obtained through co-fermentation of SFR and FW at the optimal ratio of 1:1.5. These results were approximately 6-fold those obtained during mono-fermentation of SFR. Co-fermentation of SFR and FW provides a suitable C/N ratio and pH for effective open fermentative production of l-lactic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the boric...

  16. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the boric...

  17. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the boric...

  18. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the boric...

  19. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  20. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications.

    PubMed

    Pehlivanoğlu, Halime; Demirci, Mehmet; Toker, Omer Said; Konar, Nevzat; Karasu, Salih; Sagdic, Osman

    2018-05-24

    Oils and fats are widely used in the food formulations in order to improve nutritional and some quality characteristics of food products. Solid fats produced from oils by hydrogenization, interesterification, and fractionation processes are widely used in different foodstuffs for these aims. In recent years, consumer awareness of relation between diet and health has increased which can cause worry about solid fat including products in terms of their high saturated fatty acid and trans fatty acid contents. Therefore, different attempts have been carried out to find alternative ways to produce solid fat with low saturated fatty acid content. One of the promising ways is using oleogels, structuring oils with oleogelators. In this review, history, raw materials and production methods of the oleogels and their functions in oleogel quality were mentioned. Moreover, studies related with oleogel usage in different products were summarized and positive and negative aspects of oleogel were also mentioned. Considering the results of the related studies, it can be concluded that oleogels can be used in the formulation of bakery products, breakfast spreads, margarines, chocolates and chocolate-derived products and some of the meat products.

  1. Betaine Improves Polymer-Grade D-Lactic Acid Production by Sporolactobacillus inulinus Using Ammonia as Green Neutralizer.

    PubMed

    Lv, Guoping; Che, Chengchuan; Li, Li; Xu, Shujing; Guan, Wanyi; Zhao, Baohua; Ju, Jiansong

    2017-07-06

    The traditional CaCO3-based fermentation process generates huge amount of insoluble CaSO4 waste. To solve this problem, we have developed an efficient and green D-lactic acid fermentation process by using ammonia as neutralizer. The 106.7 g/L of D-lactic acid production and 0.89 g per g of consumed sugar were obtained by Sporolactobacillus inulinus CASD with a high optical purity of 99.7% by adding 100 mg/L betaine in the simple batch fermentation process. The addition of betaine was experimentally proven to protect cell at high concentration of ammonium ion, increase the D-lactate dehydrogenase specific activity and thus promote the production of D-lactic acid.

  2. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    PubMed

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  3. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger.

    PubMed

    Wang, Lu; Cao, Zhanglei; Hou, Li; Yin, Liuhua; Wang, Dawei; Gao, Qiang; Wu, Zhenqiang; Wang, Depei

    2016-07-01

    Citric acid is produced by an industrial-scale process of fermentation using Aspergillus niger as a microbial cell factory. However, citric acid production was hindered by the non-fermentable isomaltose and insufficient saccharification ability in A. niger when liquefied corn starch was used as a raw material. In this study, A. niger TNA 101ΔagdA was constructed by deletion of the α-glucosidase-encoding agdA gene in A. niger CGMCC 10142 genome using Agrobacterium tumefaciens-mediated transformation. The transformants A. niger OG 1, OG 17, and OG 31 then underwent overexpression of glucoamylase in A. niger TNA 101ΔagdA. The results showed that the α-glucosidase activity of TNA 101ΔagdA was decreased by 62.5 % compared with CGMCC 10142, and isomaltose was almost undetectable in the fermentation broth. The glucoamylase activity of the transformants OG 1 and OG 17 increased by 34.5 and 16.89 % compared with that of TNA 101ΔagdA, respectively. In addition, for the recombinants TNA 101ΔagdA, OG 1 and OG 17, there were no apparent defects in the growth development. Consequently, in comparison with CGMCC 10142, TNA 101ΔagdA and OG 1 decreased the residual reducing sugar by 52.95 and 88.24 %, respectively, and correspondingly increased citric acid production at the end of fermentation by 8.68 and 16.87 %. Citric acid production was further improved by decreasing the non-fermentable residual sugar and increasing utilization rate of corn starch material in A. niger. Besides, the successive saccharification and citric acid fermentation processes were successfully integrated into one step.

  4. Pelleting in Associated with Sodium Monensin Increases the Conjugated Linoleic Acids Concentration in the Milk of Dairy Cows Fed Canola Seeds

    PubMed Central

    De Marchi, Francilaine Eloise; Romero, Jakeline Vieira; Damasceno, Julio Cesar; Grande, Paula Adriana; Zeoula, Lúcia Maria; dos Santos, Geraldo Tadeu

    2015-01-01

    To evaluate the effects of the pelleting and the addition of sodium monensin on production, the chemical and lipid composition of milk and butter physical characteristics, 4 Holstein dairy cows (135 days of lactation) with an average milk production of 14.7 kg/d, were supplemented with a concentrate containing ground canola seeds. The cows were assigned to a 4×4 Latin square design with a 2×2 factorial arrangement of treatments: i) ground maize, soybean meal, mineral and vitamin supplements, and ground canola seeds (CG); ii) CG concentrate with 31.5 mg of monensin added per kg of dry matter (DM); iii) CG pelleted concentrate; iv) CG concentrate with monensin addition pelleted. There was no difference in milk production and composition. The addition of monensin increased milk concentration of polyunsaturated fatty acids (PUFA), the PUFA/saturated fatty acids (SFA) ratio, and omega 6. The pelleting increased the concentration of monounsaturated fatty acids, the PUFA/SFA ratio, and the omega 6/omega 3 ratio, but decreased the concentration of SFA. The association between pelleting and the addition of monensin increased the concentration of conjugated linoleic acids by 46.9%. The physical characteristics of butter were not affected by the evaluated diets. We concluded that the concentrate with 31.5 mg of monensin added per kg DM basis combined with the pelleting improves the lipid composition of milk from Holstein cows that are on pasture and supplemented with ground canola seeds, without changing the production, milk composition, and spreadability of butter. PMID:26104517

  5. Production of conjugated linoleic acid-rich potato chips.

    PubMed

    Jain, Vishal P; Proctor, Andrew

    2007-01-01

    Conjugated linoleic acid (CLA) is found primarily in diary and beef products, but the health benefits of CLA can only be realized if they are consumed at much greater levels than a normal healthy dietary intake. We have recently shown that a CLA-rich soy oil can be produced by simple isomerization of linoleic acid in soy oil by photoirradiation. This oil may allow greatly increased dietary CLA without significantly elevating fat intake. The objective of this study was to prepare CLA-rich potato chips by frying in CLA-rich soy oil. Soy oil was photoisomerized in the presence of iodine catalyst with UV/visible light. The irradiated oil was clay processed to remove the residual iodine and this oil was then used to fry potato chips. Oil was extracted from fried chips and analyzed for its CLA content with gas chromatography. A 1-oz serving of CLA-rich potato chips contained approximately 2.4 g CLA as compared to 0.1 g CLA in 3-oz serving of steak fillet and 0.06 g CLA in 8-oz serving of whole milk. The peroxide value of the oil extracted from potato chips was found to be 1 meq/1000 g sample, which was within the acceptable commercial standards. This study may lead to the commercialization of CLA-rich food products.

  6. Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamori BTMFW032.

    PubMed

    Beena, P S; Basheer, Soorej M; Bhat, Sarita G; Bahkali, Ali H; Chandrasekaran, M

    2011-07-01

    Marine Aspergillus awamori BTMFW032, recently reported by us, produce acidophilic tannase as extracellular enzyme. Here, we report the application of this enzyme for synthesis of propyl gallate by direct transesterification of tannic acid and in tea cream solubilisation besides the simultaneous production of gallic acid along with tannase under submerged fermentation by this fungus. This acidophilic tannase enabled synthesis of propyl gallate by direct transesterification of tannic acid using propanol as organic reaction media under low water conditions. The identity of the product was confirmed with thin layer chromatography and Fourier transform infrared spectroscopy. It was noted that 699 U/ml of enzyme could give 60% solubilisation of tea cream within 1 h. Enzyme production medium was optimized adopting Box-Behnken design for simultaneous synthesis of tannase and gallic acid. Process variables including tannic acid, sodium chloride, ferrous sulphate, dipotassium hydrogen phosphate, incubation period and agitation were recognized as the critical factors that influenced tannase and gallic acid production. The model obtained predicted 4,824.61 U/ml of tannase and 136.206 μg/ml gallic acid after 48 h of incubation, whereas optimized medium supported 5,085 U/ml tannase and 372.6 μg/ml of gallic acid production after 36 and 84 h of incubation, respectively, with a 15-fold increase in both enzyme and gallic acid production. Results indicated scope for utilization of this acidophilic tannase for transesterification of tannic acid into propyl gallate, tea cream solubilisation and simultaneous production of gallic acid along with tannase.

  7. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    PubMed

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Chicoric acid: chemistry, distribution, and production

    PubMed Central

    Lee, Jungmin; Scagel, Carolyn F.

    2013-01-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed. PMID:24790967

  9. Production of amino acids - Genetic and metabolic engineering approaches.

    PubMed

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Environmentally Friendly Production of D(-) Lactic Acid by Sporolactobacillus nakayamae: Investigation of Fermentation Parameters and Fed-Batch Strategies.

    PubMed

    Michelz Beitel, Susan; Fontes Coelho, Luciana; Sass, Daiane Cristina; Contiero, Jonas

    2017-01-01

    The interest in the production of lactic acid has increased due to its wide range of applications. In the present study, the variables that affect fermentative D(-) lactic acid production were investigated: neutralizing agents, pH, temperature, inoculum percentage, agitation, and concentration of the medium components. An experimental design was applied to determine the optimal concentrations of the medium components and fermentation was studied using different feeding strategies. High production (122.41 g/L) and productivity (3.65 g/L·h) were efficiently achieved by Sporolactobacillus nakayamae in 54 h using a multipulse fed-batch technique with an initial medium containing 35 g/L of yeast extract (byproduct of alcohol production), 60 g/L of crystallized sugar, and 7.5 mL/L of salts. The fermentation process was conducted at 35°C and pH 6.0 controlled by NaOH with a 20% volume of inoculum and agitation at 125 rpm. The production of a high optically pure concentration of D(-) lactic acid combined with an environmentally friendly NaOH-based process demonstrates that S. nakayamae is a promising strain for D(-) lactic acid production.

  11. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    PubMed Central

    2012-01-01

    Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid) which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s) through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78%) and a corresponding reduction in polyunsaturated fatty acids (< 3%) in its seed oil. The control Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60) in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic

  12. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L

    PubMed Central

    Rodríguez, AA; Stella, AM; Storni, MM; Zulpa, G; Zaccaro, MC

    2006-01-01

    Salt stress is one of the most serious factors limiting the productivity of rice, the staple diet in many countries. Gibberellic acid has been reported to reduce NaCl-induced growth inhibition in some plants including rice. Most paddy soils have a natural population of Cyanobacteria, prokaryotic photosynthethic microorganisms, which synthesize and liberate plant growth regulators such as gibberellins that could exert a natural beneficial effect on salt stressed rice plants. The aim of this work was to evaluate the effect of the cyanobacterium Scytonema hofmanni extracellular products on the growth of rice seedlings inhibited by NaCl and to compare it with the effect of the gibberellic acid in the same stress condition. Growth (length and weight of the seedlings) and biochemical parameters (5-aminolevulinate dehydratase activity, total free porphyrin and pigments content) were evaluated. Salt exposure negatively affected all parameters measured, with the exception of chlorophyll. Chlrorophyll concentrations nearly doubled upon exposure to high salt. Gibberellic acid counteracted the effect of salt on the length and dry weight of the shoot, and on carotenoid and chlorophyll b contents. Extracellular products nullified the salt effect on shoot dry weight and carotenoid content; partially counteracted the effect on shoot length (from 54% to 38% decrease), root dry weight (from 59% to 41% decrease) and total free porphyrin (from 31 to 13% decrease); reduced by 35% the salt increase of chlorophyll a; had no effect on root length and chlorophyll b. Gibberellic acid and extracellular products increased 5-aminolevulinate dehydratase activity over the control without salt. When coincident with high salinity, exposure to either EP or GA3, resulted in a reversal of shoot-related responses to salt stress. We propose that Scytonema hofmanni extracellular products may counteract altered hormone homeostasis of rice seedlings under salt stress by producing gibberellin-like plant

  13. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica1

    PubMed Central

    Acevedo, Edmundo; Badilla, Ignacio; Nobel, Park S.

    1983-01-01

    Physiological responses of the Crassulacean acid metabolism (CAM) plant Opuntia ficus-indica (Cactaceae) were studied on a commercial plantation in central Chile. Young cladodes (flattened stems) and flower buds exhibited daytime stomatal opening, whereas mature cladodes and fruit exhibited the nocturnal stomatal opening characteristic of CAM plants. Severe water stress suppressed the nocturnal stomatal opening by mature cladodes, but their high water vapor conductance occurring near dawn was not affected. Nocturnal acidity increases were not as sensitive to water stress as was the nocturnal stomatal opening. The magnitude of the nocturnal acidity increases depended on the total daily photosynthetically active radiation (PAR), being 90% PAR-saturated at 27 moles per square meter per day for a mean nighttime air temperature of 5°C and at 20 moles per square meter per day for 18°C. Inasmuch as the PAR received on unshaded vertical surfaces averaged about 21 moles per square meter per day, nocturnal acidity increases by the cladodes were on the verge of being PAR-limited in the field. The net assimilation rate, which was positive throughout the year, annually averaged 3.4 grams per square meter per day for 1.0- and 2.0-year-old plants. Plants that were 5.4 years old had 7.2 square meters of cladode surface area (both sides) and an annual dry weight productivity of 13 megagrams (metric tons) per hectare per year when their ground cover was 32%. This substantial productivity for a CAM plant was accompanied by the highest nocturnal acidity increase so far observed in the field, 0.78 mole H+ per square meter. PMID:16663084

  14. Effects of emulsified octadecanic acids on gas production and cellulolysis by the rumen anaerobic fungus, Piromyces communis M014.

    PubMed

    Kim, Chang-H; Lee, Shin J; Ha, Jong K; Kim, Wan Y; Lee, Sung S

    2008-02-01

    Responses of the rumen anaerobic fungus, Piromyces communis M014, to octadecanic long-chain fatty acids (LCFAs) were evaluated by measuring total and hydrogen gas productions, filter paper (FP) cellulose degradation and polysaccharidase enzyme activities. Octadecanic acids (stearic acid, C(18:0); oleic acid, C(18:1); linoleic acid, C(18:2) and linolenic acid, C(18:3)) were emulsified by ultrasonication under anaerobic conditions, and added to the medium at the level of 0.001%. When P. communis M014 was grown in culture with stearic and oleic acids, the cumulative gas production, FP cellulose digestion and enzyme activities were significantly (p<0.05) increased in the early incubation times relative to those for the control. However, the addition of linolenic acid inhibited all of the investigated parameters, including cellulose degradation, enzyme activities and gas production, up to 168h incubation. These results indicated that stearic and oleic acids tended to have stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effect on cellulolysis by the rumen fungus. The fungus, P. communis M014, can biohydrogenate C(18) unsaturated fatty acids to escape from their toxic effects. Therefore, in this study, the results indicated that the more highly the added C(18) LCFA to the fungal culture was unsaturated, the higher the inhibition of gas production and cellulase enzyme activity was.

  15. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    PubMed

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h).

  16. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet

    PubMed Central

    Mellery, Julie; Geay, Florian; Tocher, Douglas R.; Kestemont, Patrick; Debier, Cathy; Rollin, Xavier; Larondelle, Yvan

    2016-01-01

    Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account. PMID:27736913

  17. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet.

    PubMed

    Mellery, Julie; Geay, Florian; Tocher, Douglas R; Kestemont, Patrick; Debier, Cathy; Rollin, Xavier; Larondelle, Yvan

    2016-01-01

    Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account.

  18. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  19. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  20. Adipic acid production catalyzed by a combination of a solid acid and an iodide salt from biomass-derived tetrahydrofuran-2,5-dicarboxylic acid

    DOE PAGES

    Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...

    2018-01-01

    We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.

  1. Fermentative utilization of glycerol residue for the production of acetic acid

    NASA Astrophysics Data System (ADS)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  2. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.

    PubMed

    Mi, Le; Qin, Dandan; Cheng, Jie; Wang, Dan; Li, Sha; Wei, Xuetuan

    2017-03-01

    Two engineered Escherichia coli strains, DQ101 (MG1655 fadD - )/pDQTES and DQ101 (MG1655 fadD - )/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD - )-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD - )/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD - )/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.

  3. Sudden substrate dilution induces a higher rate of citric acid production by Aspergillus niger.

    PubMed Central

    Legisa, M; Gradisnik-Grapulin, M

    1995-01-01

    On the basis of the present knowledge of Aspergillus niger metabolism during citric acid fermentation, an idea on how to improve the process was formed. Initially, a higher sucrose concentration was used for the germination of spores, which caused a higher intracellular level of the osmoregulator, glycerol, to be present. When citric acid started to be excreted into the medium, the substrate was suddenly diluted. Optimization of this procedure resulted in a nearly tripled volumetric rate (grams per liter per hour) of acid production, while the overall fermentation time was halved compared with the usual batch process. Yet, a characteristic delay was observed at the start of the acid excretion after the dilution. Hypo-osmotic shock caused a prominent elevation of intracellular cyclic AMP levels. Simultaneously, the specific activity of 6-phosphofructo-1-kinase increased significantly, probably due to phosphorylation of the protein molecule by cyclic AMP-dependent protein kinase. Specific 6-phosphofructo-1-kinase activity was much higher in the treated than in the normally growing mycelium. The metabolic flow through glycolysis was expected to be higher, which should contribute to a higher volumetric rate of acid production. PMID:7618885

  4. Sudden substrate dilution induces a higher rate of citric acid production by Aspergillus niger.

    PubMed

    Legisa, M; Gradisnik-Grapulin, M

    1995-07-01

    On the basis of the present knowledge of Aspergillus niger metabolism during citric acid fermentation, an idea on how to improve the process was formed. Initially, a higher sucrose concentration was used for the germination of spores, which caused a higher intracellular level of the osmoregulator, glycerol, to be present. When citric acid started to be excreted into the medium, the substrate was suddenly diluted. Optimization of this procedure resulted in a nearly tripled volumetric rate (grams per liter per hour) of acid production, while the overall fermentation time was halved compared with the usual batch process. Yet, a characteristic delay was observed at the start of the acid excretion after the dilution. Hypo-osmotic shock caused a prominent elevation of intracellular cyclic AMP levels. Simultaneously, the specific activity of 6-phosphofructo-1-kinase increased significantly, probably due to phosphorylation of the protein molecule by cyclic AMP-dependent protein kinase. Specific 6-phosphofructo-1-kinase activity was much higher in the treated than in the normally growing mycelium. The metabolic flow through glycolysis was expected to be higher, which should contribute to a higher volumetric rate of acid production.

  5. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis.

    PubMed

    Skoczinski, Pia; Volkenborn, Kristina; Fulton, Alexander; Bhadauriya, Anuseema; Nutschel, Christina; Gohlke, Holger; Knapp, Andreas; Jaeger, Karl-Erich

    2017-09-25

    Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an

  6. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Kim, Deuk-Soo; Suh, Min-Jung; Oh, Sei-Ryang; Lee, In-Jung; Kang, Sun-Chul; Hou, Ching T; Kim, Hak-Ryul

    2007-05-01

    Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.

  7. Increasing cellular level of phosphatidic acid enhances FGF-1 production in long term-cultured rat astrocytes.

    PubMed

    Nagayasu, Yuko; Morita, Shin-Ya; Hayashi, Hideki; Miura, Yutaka; Yokoyama, Kazuki; Michikawa, Makoto; Ito, Jin-Ichi

    2014-05-14

    We found in a previous study that both mRNA expression and release of fibroblast growth factor 1 (FGF-1) are greater in rat astrocytes that are long term-cultured for one month (W/M cells) than in the cells cultured for one week (W/W cells). However, FGF-1 does not enhance phosphorylation of Akt, MEK, and ERK in W/M cells, while it does in W/W cells. In this work we studied the mechanism to cause these differences between W/W and W/M cells in culture. As it is known that long term culture generates oxidative stress, we characterized the stresses which W/M cells undergo in comparison with W/W cells. The levels of superoxide dismutase 1 (SOD1) and mitochondrial Bax were higher in W/M cells than in W/W cells. W/M cells recovered their ability to respond to FGF-1 to enhance phosphorylation of Akt, MEK, and ERK in the presence of antioxidants. Oxidative stress induced by hydrogen peroxide (H2O2) had no effect on mRNA expression of FGF-1 in W/W cells, although H2O2 enhances release of FGF-1 from W/W cells without inducing apoptosis. The influence of cell density was studied on mRNA expression of FGF-1 and cellular response to FGF-1, as an increasing cell density is observed in W/M cells. The increasing cell density enhanced mRNA expression of FGF-1 in W/W cells without suppression of responses to FGF-1. The decrease in cell density lowered the FGF-1 mRNA expression in W/M cells without recovery of the response to FGF-1 to enhance phosphorylation of Akt, MEK, and ERK. These findings suggest that oxidative stress attenuate sensitivity to FGF-1 and higher cell density may enhance FGF-1 expression in W/M cells. In addition, we found that the cellular level of phosphatidic acid (PA) increased in H2O2-treated W/W and W/M cells and decreased by the treatment with antioxidants, and that PA enhances the mRNA expression of FGF-1 in the W/W cells. These findings suggest that the increasing PA production may enhance FGF-1 expression to protect astrocytes against oxidative stress

  8. Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources.

    PubMed

    Joshi, V D; Sreekantiah, K R; Manjrekar, S P

    1996-01-01

    A process for production of gluconic acid from glucose by a Micrococcus sp. is described. More than 400 bacterial cultures isolated from local soil were tested for gluconic acid production. Three isolates, were selected on basis of their ability to produce gluconic acid and high titrable acidity. These were identified as Micrococcus sp. and were named M 27, M 54 and M 81. Nutritional and other parameters for maximum production of gluconic acid by the selected isolates were optimised. It was found that Micrococcus sp. isolate M 27 gave highest yield of 8.19 g gluconic acid from 9 g glucose utilised giving 91% conversion effeciency.

  9. Effect of ultrasound on lactic acid production by Lactobacillus strains in date (Phoenix dactylifera var. Kabkab) syrup.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Saraiva, Jorge A; Jambrak, Anet Režek; Barba, Francisco J; Mota, Maria J

    2018-03-01

    Date syrup is rich in fermentable sugars and may be used as a substrate for different microbial fermentations, including lactic acid fermentation processes. The beneficial effects of ultrasounds (US) on bioprocesses have been reported for several microorganisms, due to the enhancement of cell growth, as well as improvements in yields and productivities. Therefore, US treatments (30 kHz, 100 W, 10-30 min) were applied to two lactobacilli (Lactobacillus helveticus PTCC 1332 and Lactobacillus acidophilus PTCC 1643), during fermentation using date syrup as substrate. The effects on lactic acid fermentation were evaluated by analyzing cell growth (dry cell weight and viable cell count), substrate consumption (quantification of glucose and fructose), and product formation (quantification of lactic acid) over time. The effects of US were also evaluated on cell membrane permeability. Both lactobacilli were able to grow well on date syrup without the need for addition of further ingredients. The US effects were highly dependent on treatment duration: treatments of 10- and 20-min stimulated lactobacilli growth, while the treatment extension to 30 min negatively affected cell growth. Similarly, the 10- and 20-min treatments increased sugar consumption and lactic acid production, contrarily to the 30-min treatment. All US treatments increased cell membrane permeability, with a more pronounced effect at more extended treatments. The results of this work showed that application of appropriate US treatments could be a useful tool for stimulation of lactic acid production from date syrup, as well as for other fermentative processes that use date syrup as substrate.

  10. Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1.

    PubMed

    Scholten, Edzard; Renz, Torsten; Thomas, Jochen

    2009-12-01

    A continuous cultivation process for the fermentative production of succinic acid from glycerol with the recently isolated bacterium Basfia succiniciproducens DD1 was developed. Crude glycerol (5.1 g l(-1)) was used as C-source and NH(4)OH as N-source and pH-control agent. The problem of wall growth was solved by transfers of the cultivation broth into an empty identical fermentor. The resulting continuous cultivation process was maintained for more than 80 days. Glycerol-limited steady states were established for dilution rates between 0.004 and 0.018 h(-1). Higher dilution rates resulted in glycerol accumulation. Succinic acid concentrations, productivities, yields and specific productivities increased with increasing dilution rates: at 0.018 h(-1) the highest values were 5.21 g l(-1), 0.094 g l(-1) h(-1), 1.02 g g(-1) and 0.375 g g(-1) h(-1), respectively.

  11. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.

    PubMed

    Mishra, Pranjul; Lee, Na-Rae; Lakshmanan, Meiyappan; Kim, Minsuk; Kim, Byung-Gee; Lee, Dong-Yup

    2018-03-19

    Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application. In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica. In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production.

  12. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  13. Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of D-lactic acid by genome shuffling.

    PubMed

    Zheng, Huijie; Gong, Jixian; Chen, Tao; Chen, Xun; Zhao, Xueming

    2010-02-01

    Improvement of acid tolerance and production of D-lactic acid by Sporolactobacillus inulinus ATCC 15538 was performed by using recursive protoplast fusion in a genome shuffling format. The starting population was generated by ultraviolet irradiation, diethyl sulfate mutagenesis, and pH-gradient filter and then, subjected for the recursive protoplast fusion. The concentration of lysozyme, time, and temperature for enzyme treatment were optimized by response surface methodology based on the central composite design. Based on contour plots and variance analysis, the model predicted a maximum Y (multiply protoplasts formation ratio by protoplasts regeneration ratio), 60.4%, and the corresponding above used values were 7.75 mg/ml lysozyme, 1.59 h, and 38 degrees C. A pH-5-resistant recombinant, F3-4, was obtained after three rounds of genome shuffling and its production of D-lactic acid reached 93.4 g/l in a 5 L bioreactor, which was increased by 39.8% and 119% in comparison with that of UV generated strain and the original strain S. inulinus ATCC 15538, respectively. The subculture experiments indicated that F3-4 was genetically stable.

  14. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community.

    PubMed

    Riede, Susanne; Boguhn, Jeannette; Breves, Gerhard

    2013-01-01

    The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d(-1) and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d(-1), respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.

  15. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    PubMed

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution.

    PubMed

    Su, Jialei; Shen, Feng; Qiu, Mo; Qi, Xinhua

    2017-02-14

    Agricultural waste cow dung was used as feedstock for the production of a high value-added chemical levulinic acid (LA) in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg), mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH) pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  17. Bioactivity and biotechnological production of punicic acid.

    PubMed

    Holic, Roman; Xu, Yang; Caldo, Kristian Mark P; Singer, Stacy D; Field, Catherine J; Weselake, Randall J; Chen, Guanqun

    2018-04-01

    Punicic acid (PuA; 18: 3Δ 9cis,11trans,13cis ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds. In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and emerging method with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and microorganisms.

  18. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp; Morita, Yoshihiro; Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growthmore » and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.« less

  19. Precultivation of Bacillus coagulans DSM2314 in the presence of furfural decreases inhibitory effects of lignocellulosic by-products during L(+)-lactic acid fermentation.

    PubMed

    van der Pol, Edwin; Springer, Jan; Vriesendorp, Bastienne; Weusthuis, Ruud; Eggink, Gerrit

    2016-12-01

    By-products resulting from thermo-chemical pretreatment of lignocellulose can inhibit fermentation of lignocellulosic sugars to lactic acid. Furfural is such a by-product, which is formed during acid pretreatment of lignocellulose. pH-controlled fermentations with 1 L starting volume, containing YP medium and a mixture of lignocellulosic by-products, were inoculated with precultures of Bacillus coagulans DSM2314 to which 1 g/L furfural was added. The addition of furfural to precultures resulted in an increase in L(+)-lactic acid productivity by a factor 2 to 1.39 g/L/h, an increase in lactic acid production from 54 to 71 g and an increase in conversion yields of sugar to lactic acid from 68 to 88 % W/W in subsequent fermentations. The improved performance was not caused by furfural consumption or conversion, indicating that the cells acquired a higher tolerance towards this by-product. The improvement coincided with a significant elongation of B. coagulans cells. Via RNA-Seq analysis, an upregulation of pathways involved in the synthesis of cell wall components such as bacillosamine, peptidoglycan and spermidine was observed in elongated cells. Furthermore, the gene SigB and genes promoted by SigB, such as NhaX and YsnF, were upregulated in the presence of furfural. These genes are involved in stress responses in bacilli.

  20. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose.

    PubMed

    Pan, Xinrong; Liu, Huanhuan; Liu, Jiao; Wang, Cheng; Wen, Jianping

    2016-12-01

    In order to relieve the toxicity of furfural on Rhizopus oryzae fermentation, the molecular mechanism of R. oryzae responding to furfural stress for fumaric acid-production was investigated by omics-based approaches. In metabolomics analysis, 29 metabolites including amino acid, sugars, polyols and fatty acids showed significant changes for maintaining the basic cell metabolism at the cost of lowering fumaric acid production. To further uncover the survival mechanism, lipidomics was carried out, revealing that phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and polyunsaturated acyl chains might be closely correlated with R. oryzae's adapting to furfural stress. Based on the above omics analysis, lecithin, inositol and soybean oil were exogenously supplemented separately with an optimized concentration in the presence of furfural, which increased fumaric acid titer from 5.78g/L to 10.03g/L, 10.05g/L and 12.13g/L (increased by 73.5%, 73.8% and 110%, respectively). These findings provide a methodological guidance for hemicellulose-fumaric acid development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Production of volatiles in fresh-cut apple: effect of applying alginate coatings containing linoleic acid or isoleucine.

    PubMed

    Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I

    2014-11-01

    One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. © 2014 Institute of Food Technologists®

  2. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. © 2015 Wiley Periodicals, Inc.

  3. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid.

    PubMed

    Rosal, Roberto; Gonzalo, María S; Boltes, Karina; Letón, Pedro; Vaquero, Juan J; García-Calvo, E

    2009-12-30

    The degradation of an aqueous solution of clofibric acid was investigated during catalytic and non-catalytic ozonation. The catalyst, TiO(2), enhanced the production of hydroxyl radicals from ozone and raised the fraction or clofibric acid degraded by hydroxyl radicals. The rate constant for the reaction of clofibric acid and hydroxyl radicals was not affected by the presence of the catalyst. The toxicity of the oxidation products obtained during the reaction was assessed by means of Vibrio fischeri and Daphnia magna tests in order to evaluate the potential formation of toxic by-products. The results showed that the ozonation was enhanced by the presence of TiO(2,) the clofibric acid being removed completely after 15 min at pH 5. The evolution of dissolved organic carbon, specific ultraviolet absorption at 254 nm and the concentration of carboxylic acids monitored the degradation process. The formation of 4-chlorophenol, hydroquinone, 4-chlorocatechol, 2-hydroxyisobutyric acid and three non-aromatic compounds identified as a product of the ring-opening reaction was assessed by exact mass measurements performed by liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). The bioassays showed a significant increase in toxicity during the initial stages of ozonation following a toxicity pattern closely related to the formation of ring-opening by-products.

  5. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle.

    PubMed

    Madlala, Hlengiwe P; Maarman, Gerald J; Ojuka, Edward

    2016-04-01

    The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2015-10-10

    Δ(9)-Tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound. Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand. The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant. Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ(9)-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC. We report the preparation of THCAS in amounts sufficient for the biocatalytic production of THC(A). Active THCAS was most efficiently obtained from Pichia pastoris. THCAS was produced on a 2L bioreactor scale and the enzyme was isolated by single-step chromatography with a specific activity of 73Ug(-1)total protein. An organic/aqueous two-liquid phase setup for continuous substrate delivery facilitated in situ product removal. In addition, THCAS activity in aqueous environments lasted for only 20min whereas the presence of hexane stabilized the activity over 3h. In conclusion, production of THCAS in P. pastoris Mut(S) KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana

    PubMed Central

    Abreu, Maria Elizabeth; Munné-Bosch, Sergi

    2009-01-01

    Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by Fv/Fm ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of α- and γ-tocopherol (vitamin E) and β-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants. PMID:19188277

  8. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae.

    PubMed

    Mao, Jiwei; Liu, Quanli; Song, Xiaofei; Wang, Hesuiyuan; Feng, Hui; Xu, Haijin; Qiao, Mingqiang

    2017-07-01

    To identify new enzymatic bottlenecks of L-tyrosine pathway for further improving the production of L-tyrosine and its derivatives. When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l -1 , respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l -1 ) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain. Combinatorial metabolic engineering provides a new strategy for further improvement of L-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.

  9. Detection and Quantification of Valerenic Acid in Commercially Available Valerian Products

    ERIC Educational Resources Information Center

    Douglas, Ruth H.; Muldowney, Ciaran A.; Mohamed, Rabab; Keohane, Fiona; Shanahan, Catherine; Walsh, John J.; Kavanagh, Pierce V.

    2007-01-01

    Several valerian-containing products sold in pharmacies were evaluated to verify the presence of Valeriana officinalis by identifying the presence of valerenic acid found only in species of Valeriana. The content of valerenic acid was found to vary considerably in the products analyzed, thus emphasizing the importance of standardizing herbal…

  10. Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid.

    PubMed

    Corona-González, Rosa Isela; Miramontes-Murillo, Ricardo; Arriola-Guevara, Enrique; Guatemala-Morales, Guadalupe; Toriz, Guillermo; Pelayo-Ortiz, Carlos

    2014-07-01

    The production of succinic acid was studied with entrapped and adsorbed Actinobacillus succinogenes. The adsorption of fermentation products (organic acids in the concentration range of 1-20 g/L) on different supports was evaluated. It was found that succinic acid was adsorbed in small quantities on diatomite and zeolite (12.6 mg/g support). The highest production of succinic acid was achieved with A. succinogenes entrapped in agar beads. Batch fermentations with immobilized cells were carried out with glucose concentrations ranging from 20 to 80 g/L. Succinic acid (43.4 g/L) was obtained from 78.3g/L glucose, and a high productivity (2.83 g/Lh) was obtained with a glucose concentration of 37.6g/L. For repeated batch fermentations (5 cycles in 72 h) with immobilized cells in agar, the total glucose consumed was 147.55 g/L, while the production of succinic acid was 107 g/L. Immobilized cells reduced significantly the fermentation time, yield, productivity and final concentration of succinic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    PubMed

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  12. Increased plasma d-lactic acid associated with impaired memory in rats.

    PubMed

    Hanstock, T L; Mallet, P E; Clayton, E H

    2010-12-02

    d-Lactic acidosis is associated with memory impairment in humans. Recent research indicates that d-lactic acid may inhibit the supply of energy from astrocytes to neurons involved with memory formation. However, little is known about the effects of increased hind-gut fermentation due to changes in diet on circulating lactic acid concentrations and memory. Thirty-six male Wistar rats were fed three dietary treatments: a commercial rat and mouse chow, a soluble carbohydrate based diet or a fermentable carbohydrate based diet. The parameters estimating memory were examined by employing the object recognition test. Physical parameters of fermentation including hind-gut and plasma lactic acid concentrations were examined after sacrifice, either 3 or 21h after feeding. Increased fermentation in the hind-gut of rats, indicated by lower caecum pH, was associated with increased plasma l-lactic acid (r=-0.41, p=0.020) and d-lactic acid (r=-0.33, p=0.087). Memory, being able to discriminate between a familiar and a novel object during the object recognition test, was reduced with increasing plasma d-lactic acid (r=-0.51, p=0.021). Memory impairment was associated with alterations in plasma d-lactic acid following the fermentation of carbohydrate in the hind-gut. Further work is still required to determine whether these effects are mediated centrally or via direct connections through the enteric nervous system. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    PubMed

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.

  14. Value-added lipid production from brown seaweed biomass by two-stage fermentation using acetic acid bacterium and thraustochytrid.

    PubMed

    Arafiles, Kim Hazel V; Iwasaka, Hiroaki; Eramoto, Yuri; Okamura, Yoshiko; Tajima, Takahisa; Matsumura, Yukihiko; Nakashimada, Yutaka; Aki, Tsunehiro

    2014-11-01

    Thraustochytrid production of polyunsaturated fatty acids and xanthophylls have been generally sourced from crop-derived substrates, making the exploration of alternative feedstocks attractive since they promise increased sustainability and lower production costs. In this study, a distinct two-stage fermentation system was conceptualized for the first time, using the brown seaweed sugar mannitol as substrate for the intermediary biocatalyst Gluconobacter oxydans, an acetic acid bacterium, along with the marine thraustochytrid Aurantiochytrium sp. to produce the value-added lipids and xanthophylls. Jar fermenter culture resulted in seaweed mannitol conversion to fructose with an efficiency of 83 % by G. oxydans and, after bacteriostasis with sea salts, production of astaxanthin and docosahexaenoic acid by Aurantiochytrium sp. KH105. Astaxanthin productivity was high at 3.60 mg/L/day. This new system, therefore, widens possibilities of obtaining more varieties of industrially valuable products including foods, cosmetics, pharmaceuticals, and biofuel precursor lipids from seaweed fermentation upon the use of suitable thraustochytrid strains.

  15. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with...

  16. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    PubMed

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Discovery of a Phosphonoacetic Acid Derived Natural Product by Pathway Refactoring.

    PubMed

    Freestone, Todd S; Ju, Kou-San; Wang, Bin; Zhao, Huimin

    2017-02-17

    The activation of silent natural product gene clusters is a synthetic biology problem of great interest. As the rate at which gene clusters are identified outpaces the discovery rate of new molecules, this unknown chemical space is rapidly growing, as too are the rewards for developing technologies to exploit it. One class of natural products that has been underrepresented is phosphonic acids, which have important medical and agricultural uses. Hundreds of phosphonic acid biosynthetic gene clusters have been identified encoding for unknown molecules. Although methods exist to elicit secondary metabolite gene clusters in native hosts, they require the strain to be amenable to genetic manipulation. One method to circumvent this is pathway refactoring, which we implemented in an effort to discover new phosphonic acids from a gene cluster from Streptomyces sp. strain NRRL F-525. By reengineering this cluster for expression in the production host Streptomyces lividans, utility of refactoring is demonstrated with the isolation of a novel phosphonic acid, O-phosphonoacetic acid serine, and the characterization of its biosynthesis. In addition, a new biosynthetic branch point is identified with a phosphonoacetaldehyde dehydrogenase, which was used to identify additional phosphonic acid gene clusters that share phosphonoacetic acid as an intermediate.

  18. Increased cytokine production by monocytes from human subjects who consumed grape powder was not mediated by differences in dietary intake patterns.

    PubMed

    Zunino, Susan J; Keim, Nancy L; Kelley, Darshan S; Bonnel, Ellen L; Souza, Elaine C; Peerson, Janet M

    2017-04-01

    Recently, in a randomized, double-blind crossover study, we reported that consumption of grape powder by obese human subjects increased the production of the proinflammatory cytokines interleukin (IL)-1β and IL-6 by peripheral blood monocytes after ex vivo stimulation with bacterial lipopolysaccharide compared with the placebo treatment. We hypothesized that dietary grape powder increased the production of these cytokines by stimulated monocytes. To test this hypothesis, we used 24-hour dietary recall data to determine if differences in dietary patterns played a role in increased cytokine production. No differences in total energy, protein, carbohydrates, or fat intake in the diets were observed between the grape powder and placebo intervention periods. There were no differences observed in consumption of meats and poultry, eggs, fish, vegetables, grains, total dairy, or nuts and seeds by the participants between the 2 intervention periods. When participants received the grape powder, the recall data showed decreased intakes of butyric and capric acids (P<.05), and a possible trend toward decreased intake of cheese and total fruit (P<.1). Positive associations between the intakes of margaric acid, butter, total dairy, or whole grain and IL-6 production were observed (P<.05). However, path analysis showed that total energy, protein, carbohydrates, and fats, and individual fatty acids did not influence the production of cytokines by monocytes. The path analysis indicated that the increased cytokine production by lipopolysaccharide-stimulated monocytes from obese human subjects was caused by the grape powder and not mediated by differences in dietary intake. Published by Elsevier Inc.

  19. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    PubMed

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  20. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.