Science.gov

Sample records for acid production subcategory

  1. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... boric acid production subcategory. 415.280 Section 415.280 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process....

  2. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the...

  3. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the...

  4. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the...

  5. 40 CFR 415.280 - Applicability; description of the boric acid production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Boric Acid Production Subcategory § 415.280 Applicability; description of the boric acid... production of boric acid from ore-mined borax and from borax produced by the Trona process. ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the...

  6. 40 CFR 415.80 - Applicability; description of the hydrofluoric acid production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the hydrofluoric acid production subcategory. 415.80 Section 415.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  7. 40 CFR 415.80 - Applicability; description of the hydrofluoric acid production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the hydrofluoric acid production subcategory. 415.80 Section 415.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  8. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  9. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  10. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  11. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  12. 40 CFR 415.400 - Applicability; description of the fluorine production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fluorine production subcategory. 415.400 Section 415.400 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Fluorine Production Subcategory § 415.400 Applicability; description of the fluorine production... fluorine by the liquid hydrofluoric acid electrolysis process....

  13. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... resulting from or associated with the manufacture of by-product sulfuric acid at primary copper smelters... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the...

  14. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... resulting from or associated with the manufacture of by-product sulfuric acid at primary copper smelters... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the...

  15. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... resulting from or associated with the manufacture of by-product sulfuric acid at primary copper smelters... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the...

  16. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... resulting from or associated with the manufacture of by-product sulfuric acid at primary copper smelters... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the...

  17. 40 CFR 415.140 - Applicability; description of the sodium bicarbonate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium bicarbonate production subcategory. 415.140 Section 415.140 Protection of Environment... POINT SOURCE CATEGORY Sodium Bicarbonate Production Subcategory § 415.140 Applicability; description of the sodium bicarbonate production subcategory. The provisions of this subpart are applicable...

  18. 40 CFR 415.140 - Applicability; description of the sodium bicarbonate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium bicarbonate production subcategory. 415.140 Section 415.140 Protection of Environment... POINT SOURCE CATEGORY Sodium Bicarbonate Production Subcategory § 415.140 Applicability; description of the sodium bicarbonate production subcategory. The provisions of this subpart are applicable...

  19. 40 CFR 415.140 - Applicability; description of the sodium bicarbonate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium bicarbonate production subcategory. 415.140 Section 415.140 Protection of Environment... POINT SOURCE CATEGORY Sodium Bicarbonate Production Subcategory § 415.140 Applicability; description of the sodium bicarbonate production subcategory. The provisions of this subpart are applicable...

  20. 40 CFR 415.140 - Applicability; description of the sodium bicarbonate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium bicarbonate production subcategory. 415.140 Section 415.140 Protection of Environment... POINT SOURCE CATEGORY Sodium Bicarbonate Production Subcategory § 415.140 Applicability; description of the sodium bicarbonate production subcategory. The provisions of this subpart are applicable...

  1. 40 CFR 415.140 - Applicability; description of the sodium bicarbonate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sodium bicarbonate production subcategory. 415.140 Section 415.140 Protection of Environment... POINT SOURCE CATEGORY Sodium Bicarbonate Production Subcategory § 415.140 Applicability; description of the sodium bicarbonate production subcategory. The provisions of this subpart are applicable...

  2. 40 CFR 420.90 - Applicability; description of the acid pickling subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pickling subcategory. 420.90 Section 420.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Pickling Subcategory § 420.90 Applicability; description of the acid pickling subcategory. The provisions... owned treatment works resulting from sulfuric acid, hydrochloric acid, or combination acid...

  3. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acid manufacturing by fat splitting subcategory. 417.20 Section 417.20 Protection of Environment... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart...

  4. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... acid manufacturing by fat splitting subcategory. 417.20 Section 417.20 Protection of Environment... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart...

  5. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... acid manufacturing by fat splitting subcategory. 417.20 Section 417.20 Protection of Environment... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart...

  6. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fatty acid manufacturing by fat splitting subcategory. 417.20 Section 417.20 Protection of Environment... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart...

  7. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... acid manufacturing by fat splitting subcategory. 417.20 Section 417.20 Protection of Environment... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart...

  8. 40 CFR 417.30 - Applicability; description of the soap manufacturing by fatty acid neutralization subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturing by fatty acid neutralization subcategory. 417.30 Section 417.30 Protection of Environment... POINT SOURCE CATEGORY Soap Manufacturing by Fatty Acid Neutralization Subcategory § 417.30 Applicability; description of the soap manufacturing by fatty acid neutralization subcategory. The provisions of this...

  9. 40 CFR 417.30 - Applicability; description of the soap manufacturing by fatty acid neutralization subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturing by fatty acid neutralization subcategory. 417.30 Section 417.30 Protection of Environment... POINT SOURCE CATEGORY Soap Manufacturing by Fatty Acid Neutralization Subcategory § 417.30 Applicability; description of the soap manufacturing by fatty acid neutralization subcategory. The provisions of this...

  10. 40 CFR 417.30 - Applicability; description of the soap manufacturing by fatty acid neutralization subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacturing by fatty acid neutralization subcategory. 417.30 Section 417.30 Protection of Environment... POINT SOURCE CATEGORY Soap Manufacturing by Fatty Acid Neutralization Subcategory § 417.30 Applicability; description of the soap manufacturing by fatty acid neutralization subcategory. The provisions of this...

  11. 40 CFR 417.30 - Applicability; description of the soap manufacturing by fatty acid neutralization subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacturing by fatty acid neutralization subcategory. 417.30 Section 417.30 Protection of Environment... POINT SOURCE CATEGORY Soap Manufacturing by Fatty Acid Neutralization Subcategory § 417.30 Applicability; description of the soap manufacturing by fatty acid neutralization subcategory. The provisions of this...

  12. 40 CFR 417.30 - Applicability; description of the soap manufacturing by fatty acid neutralization subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturing by fatty acid neutralization subcategory. 417.30 Section 417.30 Protection of Environment... POINT SOURCE CATEGORY Soap Manufacturing by Fatty Acid Neutralization Subcategory § 417.30 Applicability; description of the soap manufacturing by fatty acid neutralization subcategory. The provisions of this...

  13. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  14. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  15. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  16. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  17. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  18. 40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product....

  19. 40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product....

  20. 40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product....

  1. 40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product....

  2. 40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product....

  3. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  4. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  5. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  6. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  7. 40 CFR 415.430 - Applicability; description of the iodine production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... iodine production subcategory. 415.430 Section 415.430 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Iodine Production Subcategory § 415.430 Applicability; description of the iodine production... iodine....

  8. 40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium... the production of calcium carbide in uncovered furnaces....

  9. 40 CFR 415.50 - Applicability; description of the calcium oxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium oxide production subcategory. 415.50 Section 415.50 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Oxide Production Subcategory § 415.50 Applicability; description of the calcium... the production of calcium oxide....

  10. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  11. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  12. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  13. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  14. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  15. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  16. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  17. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  18. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  19. 40 CFR 415.650 - Applicability; description of the cobalt salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cobalt salts production subcategory. 415.650 Section 415.650 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Cobalt Salts Production Subcategory § 415.650 Applicability; description of the cobalt... cobalt salts....

  20. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  1. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  2. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  3. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  4. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  5. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  6. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  7. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  8. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  9. 40 CFR 415.550 - Applicability; description of the sodium fluoride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium fluoride production subcategory. 415.550 Section 415.550 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Fluoride Production Subcategory § 415.550 Applicability; description of the sodium fluoride production subcategory. The provisions of this subpart are applicable to discharges and to...

  10. 40 CFR 415.550 - Applicability; description of the sodium fluoride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium fluoride production subcategory. 415.550 Section 415.550 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Fluoride Production Subcategory § 415.550 Applicability; description of the sodium fluoride production subcategory. The provisions of this subpart are applicable to discharges and to...

  11. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  12. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  13. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  14. 40 CFR 407.40 - Applicability; description of the frozen potato products subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... frozen potato products subcategory. 407.40 Section 407.40 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Frozen Potato Products Subcategory § 407.40 Applicability; description of the frozen potato products subcategory. The provisions of this subpart are applicable to...

  15. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  16. 40 CFR 407.40 - Applicability; description of the frozen potato products subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... frozen potato products subcategory. 407.40 Section 407.40 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Frozen Potato Products Subcategory § 407.40 Applicability; description of the frozen potato products subcategory. The provisions of this subpart are applicable to...

  17. 40 CFR 407.40 - Applicability; description of the frozen potato products subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... frozen potato products subcategory. 407.40 Section 407.40 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Frozen Potato Products Subcategory § 407.40 Applicability; description of the frozen potato products subcategory. The provisions of this subpart are applicable to...

  18. 40 CFR 407.40 - Applicability; description of the frozen potato products subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... frozen potato products subcategory. 407.40 Section 407.40 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Frozen Potato Products Subcategory § 407.40 Applicability; description of the frozen potato products subcategory. The provisions of this subpart are applicable to...

  19. 40 CFR 407.40 - Applicability; description of the frozen potato products subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... frozen potato products subcategory. 407.40 Section 407.40 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Frozen Potato Products Subcategory § 407.40 Applicability; description of the frozen potato products subcategory. The provisions of this subpart are applicable to...

  20. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  1. 40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable...

  2. 40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable...

  3. 40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable...

  4. 40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable...

  5. 40 CFR 415.490 - Applicability; description of the oxygen and nitrogen production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... oxygen and nitrogen production subcategory. 415.490 Section 415.490 Protection of Environment... POINT SOURCE CATEGORY Oxygen and Nitrogen Production Subcategory § 415.490 Applicability; description of the oxygen and nitrogen production subcategory. The provisions of this subpart are applicable...

  6. 40 CFR 415.550 - Applicability; description of the sodium fluoride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sodium fluoride production subcategory. 415.550 Section 415.550 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Fluoride Production Subcategory § 415.550 Applicability; description of the sodium fluoride production subcategory. The provisions of this subpart are applicable to discharges and to...

  7. 40 CFR 415.550 - Applicability; description of the sodium fluoride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium fluoride production subcategory. 415.550 Section 415.550 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Fluoride Production Subcategory § 415.550 Applicability; description of the sodium fluoride production subcategory. The provisions of this subpart are applicable to discharges and to...

  8. 40 CFR 415.550 - Applicability; description of the sodium fluoride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium fluoride production subcategory. 415.550 Section 415.550 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Fluoride Production Subcategory § 415.550 Applicability; description of the sodium fluoride production subcategory. The provisions of this subpart are applicable to discharges and to...

  9. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  10. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  11. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  12. 40 CFR 415.20 - Applicability; description of the aluminum sulfate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum sulfate production subcategory. 415.20 Section 415.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Sulfate Production Subcategory § 415.20 Applicability; description of the aluminum sulfate production subcategory. The provisions of this subpart are applicable to discharges and...

  13. 40 CFR 415.230 - Applicability; description of the aluminum fluoride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum fluoride production subcategory. 415.230 Section 415.230 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Fluoride Production Subcategory § 415.230 Applicability; description of the aluminum fluoride production subcategory. This subpart applies to discharges to waters of the United...

  14. 40 CFR 415.230 - Applicability; description of the aluminum fluoride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum fluoride production subcategory. 415.230 Section 415.230 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Fluoride Production Subcategory § 415.230 Applicability; description of the aluminum fluoride production subcategory. This subpart applies to discharges to waters of the United...

  15. 40 CFR 415.20 - Applicability; description of the aluminum sulfate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum sulfate production subcategory. 415.20 Section 415.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Sulfate Production Subcategory § 415.20 Applicability; description of the aluminum sulfate production subcategory. The provisions of this subpart are applicable to discharges and...

  16. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  17. 40 CFR 415.230 - Applicability; description of the aluminum fluoride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum fluoride production subcategory. 415.230 Section 415.230 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Fluoride Production Subcategory § 415.230 Applicability; description of the aluminum fluoride production subcategory. This subpart applies to discharges to waters of the United...

  18. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  19. 40 CFR 415.20 - Applicability; description of the aluminum sulfate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum sulfate production subcategory. 415.20 Section 415.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Sulfate Production Subcategory § 415.20 Applicability; description of the aluminum sulfate production subcategory. The provisions of this subpart are applicable to discharges and...

  20. 40 CFR 415.230 - Applicability; description of the aluminum fluoride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aluminum fluoride production subcategory. 415.230 Section 415.230 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Fluoride Production Subcategory § 415.230 Applicability; description of the aluminum fluoride production subcategory. This subpart applies to discharges to waters of the United...

  1. 40 CFR 415.230 - Applicability; description of the aluminum fluoride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aluminum fluoride production subcategory. 415.230 Section 415.230 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Fluoride Production Subcategory § 415.230 Applicability; description of the aluminum fluoride production subcategory. This subpart applies to discharges to waters of the United...

  2. 40 CFR 415.20 - Applicability; description of the aluminum sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aluminum sulfate production subcategory. 415.20 Section 415.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Sulfate Production Subcategory § 415.20 Applicability; description of the aluminum sulfate production subcategory. The provisions of this subpart are applicable to discharges and...

  3. 40 CFR 415.20 - Applicability; description of the aluminum sulfate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aluminum sulfate production subcategory. 415.20 Section 415.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Sulfate Production Subcategory § 415.20 Applicability; description of the aluminum sulfate production subcategory. The provisions of this subpart are applicable to discharges and...

  4. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to...

  5. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to...

  6. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to...

  7. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to...

  8. 40 CFR 415.450 - Applicability; description of the lithium carbonate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lithium carbonate production subcategory. 415.450 Section 415.450 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Lithium Carbonate Production Subcategory § 415.450 Applicability; description of the lithium carbonate production subcategory. The provisions of this subpart are applicable to...

  9. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  10. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United...

  11. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  12. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United...

  13. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  14. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United...

  15. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United...

  16. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  17. 40 CFR 415.40 - Applicability; description of the calcium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium chloride production subcategory. 415.40 Section 415.40 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Chloride Production Subcategory § 415.40 Applicability; description of the calcium chloride production subcategory. The provisions of this subpart are applicable to...

  18. 40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to...

  19. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of the calcium carbonate production subcategory. The provisions of this subpart are applicable to...

  20. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory § 415.200 Applicability; description of the sodium sulfite production subcategory. The provisions of this subpart are applicable to discharges resulting...

  1. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory § 415.200 Applicability; description of the sodium sulfite production subcategory. The provisions of this subpart are applicable to discharges resulting...

  2. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory § 415.200 Applicability; description of the sodium sulfite production subcategory. The provisions of this subpart are applicable to discharges resulting...

  3. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory § 415.200 Applicability; description of the sodium sulfite production subcategory. The provisions of this subpart are applicable to discharges resulting...

  4. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Sulfite Production Subcategory § 415.200 Applicability; description of the sodium sulfite production subcategory. The provisions of this subpart are applicable to discharges resulting...

  5. 40 CFR 415.120 - Applicability; description of the potassium dichromate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium dichromate production subcategory. 415.120 Section 415.120 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Dichromate Production Subcategory § 415.120 Applicability; description of the potassium dichromate production subcategory. The provisions of this subpart are applicable to discharges...

  6. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  7. 40 CFR 415.130 - Applicability; description of the potassium sulfate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium sulfate production subcategory. 415.130 Section 415.130 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Sulfate Production Subcategory § 415.130 Applicability; description of the potassium sulfate production subcategory. The provisions of this subpart are applicable to...

  8. 40 CFR 415.130 - Applicability; description of the potassium sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium sulfate production subcategory. 415.130 Section 415.130 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Sulfate Production Subcategory § 415.130 Applicability; description of the potassium sulfate production subcategory. The provisions of this subpart are applicable to...

  9. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  10. 40 CFR 415.120 - Applicability; description of the potassium dichromate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium dichromate production subcategory. 415.120 Section 415.120 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Dichromate Production Subcategory § 415.120 Applicability; description of the potassium dichromate production subcategory. The provisions of this subpart are applicable to discharges...

  11. 40 CFR 415.120 - Applicability; description of the potassium dichromate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium dichromate production subcategory. 415.120 Section 415.120 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Dichromate Production Subcategory § 415.120 Applicability; description of the potassium dichromate production subcategory. The provisions of this subpart are applicable to discharges...

  12. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  13. 40 CFR 415.130 - Applicability; description of the potassium sulfate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium sulfate production subcategory. 415.130 Section 415.130 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Sulfate Production Subcategory § 415.130 Applicability; description of the potassium sulfate production subcategory. The provisions of this subpart are applicable to...

  14. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  15. 40 CFR 415.130 - Applicability; description of the potassium sulfate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium sulfate production subcategory. 415.130 Section 415.130 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Sulfate Production Subcategory § 415.130 Applicability; description of the potassium sulfate production subcategory. The provisions of this subpart are applicable to...

  16. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  17. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  18. 40 CFR 415.500 - Applicability; description of the potassium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium chloride production subcategory. 415.500 Section 415.500 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Chloride Production Subcategory § 415.500 Applicability; description of the potassium chloride production subcategory. The provisions of this subpart are applicable to...

  19. 40 CFR 415.130 - Applicability; description of the potassium sulfate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium sulfate production subcategory. 415.130 Section 415.130 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Sulfate Production Subcategory § 415.130 Applicability; description of the potassium sulfate production subcategory. The provisions of this subpart are applicable to...

  20. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  1. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  2. 40 CFR 415.500 - Applicability; description of the potassium chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium chloride production subcategory. 415.500 Section 415.500 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Chloride Production Subcategory § 415.500 Applicability; description of the potassium chloride production subcategory. The provisions of this subpart are applicable to...

  3. 40 CFR 415.500 - Applicability; description of the potassium chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium chloride production subcategory. 415.500 Section 415.500 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Chloride Production Subcategory § 415.500 Applicability; description of the potassium chloride production subcategory. The provisions of this subpart are applicable to...

  4. 40 CFR 415.120 - Applicability; description of the potassium dichromate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium dichromate production subcategory. 415.120 Section 415.120 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Dichromate Production Subcategory § 415.120 Applicability; description of the potassium dichromate production subcategory. The provisions of this subpart are applicable to discharges...

  5. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  6. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  7. 40 CFR 415.500 - Applicability; description of the potassium chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium chloride production subcategory. 415.500 Section 415.500 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Chloride Production Subcategory § 415.500 Applicability; description of the potassium chloride production subcategory. The provisions of this subpart are applicable to...

  8. 40 CFR 415.500 - Applicability; description of the potassium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium chloride production subcategory. 415.500 Section 415.500 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Chloride Production Subcategory § 415.500 Applicability; description of the potassium chloride production subcategory. The provisions of this subpart are applicable to...

  9. 40 CFR 415.120 - Applicability; description of the potassium dichromate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium dichromate production subcategory. 415.120 Section 415.120 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Dichromate Production Subcategory § 415.120 Applicability; description of the potassium dichromate production subcategory. The provisions of this subpart are applicable to discharges...

  10. 40 CFR 407.30 - Applicability; description of the citrus products subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... citrus products subcategory. 407.30 Section 407.30 Protection of Environment ENVIRONMENTAL PROTECTION... PROCESSING POINT SOURCE CATEGORY Citrus Products Subcategory § 407.30 Applicability; description of the citrus products subcategory. The provisions of this subpart are applicable to discharges resulting...

  11. 40 CFR 407.30 - Applicability; description of the citrus products subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... citrus products subcategory. 407.30 Section 407.30 Protection of Environment ENVIRONMENTAL PROTECTION... PROCESSING POINT SOURCE CATEGORY Citrus Products Subcategory § 407.30 Applicability; description of the citrus products subcategory. The provisions of this subpart are applicable to discharges resulting...

  12. 40 CFR 407.30 - Applicability; description of the citrus products subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... citrus products subcategory. 407.30 Section 407.30 Protection of Environment ENVIRONMENTAL PROTECTION... PROCESSING POINT SOURCE CATEGORY Citrus Products Subcategory § 407.30 Applicability; description of the citrus products subcategory. The provisions of this subpart are applicable to discharges resulting...

  13. 40 CFR 407.30 - Applicability; description of the citrus products subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... citrus products subcategory. 407.30 Section 407.30 Protection of Environment ENVIRONMENTAL PROTECTION... PROCESSING POINT SOURCE CATEGORY Citrus Products Subcategory § 407.30 Applicability; description of the citrus products subcategory. The provisions of this subpart are applicable to discharges resulting...

  14. 40 CFR 407.30 - Applicability; description of the citrus products subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... citrus products subcategory. 407.30 Section 407.30 Protection of Environment ENVIRONMENTAL PROTECTION... PROCESSING POINT SOURCE CATEGORY Citrus Products Subcategory § 407.30 Applicability; description of the citrus products subcategory. The provisions of this subpart are applicable to discharges resulting...

  15. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  16. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United...

  17. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory § 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions...

  18. 40 CFR 405.20 - Applicability; description of the fluid products subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the fluid products subcategory. 405.20 Section 405.20 Protection of Environment ENVIRONMENTAL PROTECTION... Fluid Products Subcategory § 405.20 Applicability; description of the fluid products subcategory....

  19. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United...

  20. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United...

  1. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United...

  2. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United...

  3. 40 CFR 415.220 - Applicability; description of the titanium dioxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... titanium dioxide production subcategory. 415.220 Section 415.220 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Titanium Dioxide Production Subcategory § 415.220 Applicability; description of the titanium dioxide production subcategory. This subpart applies to discharges to waters of the United...

  4. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  5. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  6. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  7. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  8. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  9. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  10. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  11. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  12. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  13. 40 CFR 415.640 - Applicability; description of the cadmium pigments and salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cadmium pigments and salts production subcategory. 415.640 Section 415.640 Protection of Environment... POINT SOURCE CATEGORY Cadmium Pigments and Salts Production Subcategory § 415.640 Applicability; description of the cadmium pigments and salts production subcategory. The provisions of this subpart...

  14. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The...

  15. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The...

  16. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The...

  17. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The...

  18. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The...

  19. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability: Description of the metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the...

  20. 40 CFR 454.40 - Applicability; description of manufacture of tall oil rosin, pitch and fatty acids subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacture of tall oil rosin, pitch and fatty acids subcategory. 454.40 Section 454.40 Protection of... CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Tall Oil Rosin, Pitch and Fatty Acids Subcategory § 454.40 Applicability; description of manufacture of tall oil rosin, pitch and fatty acids subcategory. The...

  1. 40 CFR 454.40 - Applicability; description of manufacture of tall oil rosin, pitch and fatty acids subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacture of tall oil rosin, pitch and fatty acids subcategory. 454.40 Section 454.40 Protection of... CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Tall Oil Rosin, Pitch and Fatty Acids Subcategory § 454.40 Applicability; description of manufacture of tall oil rosin, pitch and fatty acids subcategory. The...

  2. 40 CFR 415.270 - Applicability; description of the borax production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... borax production subcategory. 415.270 Section 415.270 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Borax Production Subcategory § 415.270 Applicability; description of the borax production... borax by the ore-mining process and by the Trona process....

  3. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver... introduction of pollutants into publicly owned treatment works resulting from the production of silver nitrate....

  4. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver... introduction of pollutants into publicly owned treatment works resulting from the production of silver nitrate....

  5. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver... introduction of pollutants into publicly owned treatment works resulting from the production of silver nitrate....

  6. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver... introduction of pollutants into publicly owned treatment works resulting from the production of silver nitrate....

  7. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver... introduction of pollutants into publicly owned treatment works resulting from the production of silver nitrate....

  8. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium... the production of sodium chloride by the solution brine-mining process and by the solar...

  9. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium... the production of sodium chloride by the solution brine-mining process and by the solar...

  10. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium... the production of sodium chloride by the solution brine-mining process and by the solar...

  11. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.160 Applicability; description of the sodium... the production of sodium chloride by the solution brine-mining process and by the solar...

  12. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  13. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  14. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  15. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  16. 40 CFR 415.290 - Applicability; description of the bromine production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bromine production subcategory. 415.290 Section 415.290 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Bromine Production Subcategory § 415.290 Applicability; description of the bromine production... bromine by the brine-mining process and by the Trona process....

  17. 40 CFR 405.20 - Applicability; description of the fluid products subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the fluid... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Fluid Products Subcategory § 405.20 Applicability; description of the fluid products subcategory. The provisions of...

  18. 40 CFR 405.20 - Applicability; description of the fluid products subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the fluid... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Fluid Products Subcategory § 405.20 Applicability; description of the fluid products subcategory. The provisions of...

  19. 40 CFR 405.20 - Applicability; description of the fluid products subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the fluid... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Fluid Products Subcategory § 405.20 Applicability; description of the fluid products subcategory. The provisions of...

  20. 40 CFR 405.20 - Applicability; description of the fluid products subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the fluid... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Fluid Products Subcategory § 405.20 Applicability; description of the fluid products subcategory. The provisions of...

  1. 40 CFR 407.20 - Applicability; description of the apple products subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... apple products subcategory. 407.20 Section 407.20 Protection of Environment ENVIRONMENTAL PROTECTION... PROCESSING POINT SOURCE CATEGORY Apple Products Subcategory § 407.20 Applicability; description of the apple... processing of apples into apple products. The processing of apples into caustic peeled or dehydrated...

  2. 40 CFR 415.270 - Applicability; description of the borax production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the borax... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Borax Production Subcategory § 415.270 Applicability; description of the borax production subcategory....

  3. 40 CFR 415.270 - Applicability; description of the borax production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the borax... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Borax Production Subcategory § 415.270 Applicability; description of the borax production subcategory....

  4. 40 CFR 415.270 - Applicability; description of the borax production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the borax... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Borax Production Subcategory § 415.270 Applicability; description of the borax production subcategory....

  5. 40 CFR 415.270 - Applicability; description of the borax production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the borax... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Borax Production Subcategory § 415.270 Applicability; description of the borax production subcategory....

  6. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  7. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  8. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  9. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  10. 40 CFR 415.360 - Applicability; description of the copper salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and...

  11. 40 CFR 418.70 - Applicability; description of the mixed and blend fertilizer production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mixed and blend fertilizer production subcategory. 418.70 Section 418.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Mixed and Blend Fertilizer Production Subcategory § 418.70 Applicability; description...

  12. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  13. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  14. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  15. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  16. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  17. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining area...

  18. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining...

  19. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining...

  20. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.30 Applicability; description of the acid or ferruginous mine drainage subcategory. The provisions of this subpart are applicable to acid or ferruginous mine drainage from an active mining...

  1. 40 CFR 454.40 - Applicability; description of manufacture of tall oil rosin, pitch and fatty acids subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacture of tall oil rosin, pitch and fatty acids subcategory. 454.40 Section 454.40 Protection of... WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Tall Oil Rosin, Pitch and Fatty Acids Subcategory § 454.40 Applicability; description of manufacture of tall oil rosin, pitch and fatty acids...

  2. 40 CFR 454.40 - Applicability; description of manufacture of tall oil rosin, pitch and fatty acids subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufacture of tall oil rosin, pitch and fatty acids subcategory. 454.40 Section 454.40 Protection of... WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Tall Oil Rosin, Pitch and Fatty Acids Subcategory § 454.40 Applicability; description of manufacture of tall oil rosin, pitch and fatty acids...

  3. 40 CFR 454.40 - Applicability; description of manufacture of tall oil rosin, pitch and fatty acids subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacture of tall oil rosin, pitch and fatty acids subcategory. 454.40 Section 454.40 Protection of... WOOD CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Tall Oil Rosin, Pitch and Fatty Acids Subcategory § 454.40 Applicability; description of manufacture of tall oil rosin, pitch and fatty acids...

  4. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate....

  5. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate....

  6. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate....

  7. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate....

  8. 40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate....

  9. 40 CFR 434.30 - Applicability; description of the acid or ferruginous mine drainage subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the acid or ferruginous mine drainage subcategory. 434.30 Section 434.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW...

  10. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  11. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  12. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  13. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  14. 40 CFR 418.50 - Applicability; description of the nitric acid subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the nitric acid subcategory. 418.50 Section 418.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Nitric...

  15. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  16. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  17. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  18. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  19. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  20. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  1. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  2. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  3. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  4. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  5. 40 CFR 407.20 - Applicability; description of the apple products subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the apple... SOURCE CATEGORY Apple Products Subcategory § 407.20 Applicability; description of the apple products... apples into apple products. The processing of apples into caustic peeled or dehydrated products...

  6. 40 CFR 407.20 - Applicability; description of the apple products subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the apple... SOURCE CATEGORY Apple Products Subcategory § 407.20 Applicability; description of the apple products... apples into apple products. The processing of apples into caustic peeled or dehydrated products...

  7. 40 CFR 407.20 - Applicability; description of the apple products subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the apple... SOURCE CATEGORY Apple Products Subcategory § 407.20 Applicability; description of the apple products... apples into apple products. The processing of apples into caustic peeled or dehydrated products...

  8. 40 CFR 407.20 - Applicability; description of the apple products subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the apple... SOURCE CATEGORY Apple Products Subcategory § 407.20 Applicability; description of the apple products... apples into apple products. The processing of apples into caustic peeled or dehydrated products...

  9. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the zinc... CATEGORY Zinc Chloride Production Subcategory § 415.670 Applicability; description of the zinc chloride... of pollutants into treatment works which are publicly owned resulting from the production of...

  10. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the zinc... CATEGORY Zinc Chloride Production Subcategory § 415.670 Applicability; description of the zinc chloride... of pollutants into treatment works which are publicly owned resulting from the production of...

  11. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the zinc... CATEGORY Zinc Chloride Production Subcategory § 415.670 Applicability; description of the zinc chloride... of pollutants into treatment works which are publicly owned resulting from the production of...

  12. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the zinc... CATEGORY Zinc Chloride Production Subcategory § 415.670 Applicability; description of the zinc chloride... of pollutants into treatment works which are publicly owned resulting from the production of...

  13. 40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the zinc... CATEGORY Zinc Chloride Production Subcategory § 415.670 Applicability; description of the zinc chloride... of pollutants into treatment works which are publicly owned resulting from the production of...

  14. 40 CFR 415.440 - Applicability; description of the lead monoxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the lead... CATEGORY Lead Monoxide Production Subcategory § 415.440 Applicability; description of the lead monoxide... of pollutants into treatment works which are publicly owned resulting from the production of...

  15. 40 CFR 415.440 - Applicability; description of the lead monoxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the lead... CATEGORY Lead Monoxide Production Subcategory § 415.440 Applicability; description of the lead monoxide... of pollutants into treatment works which are publicly owned resulting from the production of...

  16. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide...

  17. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide...

  18. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide...

  19. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide...

  20. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide...

  1. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Ammonium Chloride...

  2. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Calcium Carbonate...

  3. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  4. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  5. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  6. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Ammonium Chloride...

  7. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  8. 40 CFR 415.240 - Applicability; description of the ammonium chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the ammonium chloride production subcategory. 415.240 Section 415.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  9. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  10. 40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  11. 40 CFR 415.50 - Applicability; description of the calcium oxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the calcium oxide production subcategory. 415.50 Section 415.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  12. 40 CFR 415.40 - Applicability; description of the calcium chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the calcium chloride production subcategory. 415.40 Section 415.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING...

  13. 40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the sodium chloride production subcategory. 415.160 Section 415.160 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Chloride...

  14. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the ammonium sulfate production subcategory. 418.60 Section 418.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT...

  15. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the ammonium sulfate production subcategory. 418.60 Section 418.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT...

  16. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the ammonium sulfate production subcategory. 418.60 Section 418.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT...

  17. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the ammonium sulfate production subcategory. 418.60 Section 418.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT...

  18. 40 CFR 418.60 - Applicability; description of the ammonium sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the ammonium sulfate production subcategory. 418.60 Section 418.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT...

  19. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  20. 40 CFR 420.90 - Applicability; description of the acid pickling subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... owned treatment works resulting from sulfuric acid, hydrochloric acid, or combination acid pickling... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the acid... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY...

  1. 40 CFR 420.90 - Applicability; description of the acid pickling subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... owned treatment works resulting from sulfuric acid, hydrochloric acid, or combination acid pickling... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the acid... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY...

  2. 40 CFR 420.90 - Applicability; description of the acid pickling subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... owned treatment works resulting from sulfuric acid, hydrochloric acid, or combination acid pickling... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the acid... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY...

  3. 40 CFR 420.90 - Applicability; description of the acid pickling subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... owned treatment works resulting from sulfuric acid, hydrochloric acid, or combination acid pickling... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the acid... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY...

  4. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  5. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  6. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  7. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  8. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  9. Microbial production of lactic acid.

    PubMed

    Eiteman, Mark A; Ramalingam, Subramanian

    2015-05-01

    Lactic acid is an important commodity chemical having a wide range of applications. Microbial production effectively competes with chemical synthesis methods because biochemical synthesis permits the generation of either one of the two enantiomers with high optical purity at high yield and titer, a result which is particularly beneficial for the production of poly(lactic acid) polymers having specific properties. The commercial viability of microbial lactic acid production relies on utilization of inexpensive carbon substrates derived from agricultural or waste resources. Therefore, optimal lactic acid formation requires an understanding and engineering of both the competing pathways involved in carbohydrate metabolism, as well as pathways leading to potential by-products which both affect product yield. Recent research leverages those biochemical pathways, while researchers also continue to seek strains with improved tolerance and ability to perform under desirable industrial conditions, for example, of pH and temperature. PMID:25604523

  10. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  11. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  12. Amino acids in sheep production.

    PubMed

    McCoard, Susan A; Sales, Francisco A; Sciascia, Quentin L

    2016-01-01

    Increasing production efficiency with a high standard of animal welfare and respect for the environment is a goal of sheep farming systems. Substantial gains in productivity have been achieved through improved genetics, nutrition and management changes; however the survival and growth performance of multiple-born lambs still remains a problem. This is a significant production efficiency and animal well-being issue. There is a growing body of evidence that some amino acids have a role in regulating growth, reproduction and immunity through modulation of metabolic and cell signaling pathways. The purpose of this review is to provide an overview of what is currently known about the role of amino acids in sheep production and the potential for supplementation strategies to influence on-farm survival and growth of lambs. PMID:26709661

  13. 40 CFR 430.70 - Applicability; description of the mechanical pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mechanical pulp subcategory. 430.70 Section 430.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Mechanical Pulp Subcategory § 430.70 Applicability; description of the mechanical pulp subcategory. The... groundwood chemi-mechanical mills; the production of pulp and paper at groundwood mills through...

  14. 40 CFR 429.110 - Applicability; description of the log washing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... washing subcategory. 429.110 Section 429.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Log Washing Subcategory § 429.110 Applicability; description of the log washing subcategory. This subpart applies...

  15. 40 CFR 429.130 - Applicability; description of the finishing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... finishing subcategory. 429.130 Section 429.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Finishing Subcategory § 429.130 Applicability; description of the finishing subcategory. This subpart applies...

  16. 40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Zinc Subcategory § 421.80 Applicability: Description of the primary zinc subcategory. The provisions of this subpart are applicable to discharges resulting from the production of primary zinc by...

  17. 40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Zinc Subcategory § 421.80 Applicability: Description of the primary zinc subcategory. The provisions of this subpart are applicable to discharges resulting from the production of primary zinc by...

  18. 40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Zinc Subcategory § 421.80 Applicability: Description of the primary zinc subcategory. The provisions of this subpart are applicable to discharges resulting from the production of primary zinc by...

  19. 40 CFR 421.130 - Applicability: Description of the secondary lead subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary lead subcategory. 421.130 Section 421.130 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Lead Subcategory § 421.130 Applicability: Description of the secondary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead...

  20. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not...

  1. 40 CFR 430.80 - Applicability; description of the non-wood chemical pulp subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-wood chemical pulp subcategory. 430.80 Section 430.80 Protection of Environment ENVIRONMENTAL... CATEGORY Non-Wood Chemical Pulp Subcategory § 430.80 Applicability; description of the non-wood chemical... production of pulp and paper at non-wood chemical pulp mills. This subcategory includes, but is not...

  2. 40 CFR 421.290 - Applicability: Description of the secondary tin subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary tin subcategory. 421.290 Section 421.290 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Tin Subcategory § 421.290 Applicability: Description of the secondary tin subcategory. The provisions of this subpart are applicable to discharges resulting from the production of tin at secondary...

  3. 40 CFR 429.20 - Applicability; description of the barking subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... barking subcategory. 429.20 Section 429.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Barking Subcategory § 429.20 Applicability; description of the barking subcategory. This subpart applies to...

  4. 40 CFR 429.20 - Applicability; description of the barking subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... barking subcategory. 429.20 Section 429.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Barking Subcategory § 429.20 Applicability; description of the barking subcategory. This subpart applies to...

  5. 40 CFR 405.90 - Applicability; description of the condensed milk subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... condensed milk subcategory. 405.90 Section 405.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Condensed Milk Subcategory § 405.90 Applicability; description of the condensed milk subcategory. The provisions of...

  6. 40 CFR 405.90 - Applicability; description of the condensed milk subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... condensed milk subcategory. 405.90 Section 405.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Condensed Milk Subcategory § 405.90 Applicability; description of the condensed milk subcategory. The provisions of...

  7. 40 CFR 405.90 - Applicability; description of the condensed milk subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... condensed milk subcategory. 405.90 Section 405.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Condensed Milk Subcategory § 405.90 Applicability; description of the condensed milk subcategory. The provisions of...

  8. 40 CFR 405.90 - Applicability; description of the condensed milk subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... condensed milk subcategory. 405.90 Section 405.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Condensed Milk Subcategory § 405.90 Applicability; description of the condensed milk subcategory. The provisions of...

  9. 40 CFR 429.40 - Applicability; description of the plywood subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plywood subcategory. 429.40 Section 429.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Plywood Subcategory § 429.40 Applicability; description of the plywood subcategory. This subpart applies to...

  10. 40 CFR 405.90 - Applicability; description of the condensed milk subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... condensed milk subcategory. 405.90 Section 405.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Condensed Milk Subcategory § 405.90 Applicability; description of the condensed milk subcategory. The provisions of...

  11. 40 CFR 405.100 - Applicability; description of the dry milk subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... milk subcategory. 405.100 Section 405.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Milk Subcategory § 405.100 Applicability; description of the dry milk subcategory. The provisions of this...

  12. 40 CFR 421.70 - Applicability: Description of the primary lead subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary lead subcategory. 421.70 Section 421.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Lead Subcategory § 421.70 Applicability: Description of the primary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead at primary...

  13. 40 CFR 421.70 - Applicability: Description of the primary lead subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary lead subcategory. 421.70 Section 421.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Lead Subcategory § 421.70 Applicability: Description of the primary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead at primary...

  14. 40 CFR 421.130 - Applicability: Description of the secondary lead subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary lead subcategory. 421.130 Section 421.130 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Lead Subcategory § 421.130 Applicability: Description of the secondary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead...

  15. 40 CFR 421.130 - Applicability: Description of the secondary lead subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary lead subcategory. 421.130 Section 421.130 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Lead Subcategory § 421.130 Applicability: Description of the secondary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead...

  16. 40 CFR 421.130 - Applicability: Description of the secondary lead subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary lead subcategory. 421.130 Section 421.130 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Lead Subcategory § 421.130 Applicability: Description of the secondary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead...

  17. 40 CFR 421.70 - Applicability: Description of the primary lead subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary lead subcategory. 421.70 Section 421.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Lead Subcategory § 421.70 Applicability: Description of the primary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead at primary...

  18. 40 CFR 421.130 - Applicability: Description of the secondary lead subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary lead subcategory. 421.130 Section 421.130 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Lead Subcategory § 421.130 Applicability: Description of the secondary lead subcategory. The provisions of this subpart are applicable to discharges resulting from the production of lead...

  19. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  20. Biochemistry of microbial itaconic acid production

    PubMed Central

    Steiger, Matthias G.; Blumhoff, Marzena L.; Mattanovich, Diethard; Sauer, Michael

    2013-01-01

    Itaconic acid is an unsaturated dicarbonic acid which has a high potential as a biochemical building block, because it can be used as a monomer for the production of a plethora of products including resins, plastics, paints, and synthetic fibers. Some Aspergillus species, like A. itaconicus and A. terreus, show the ability to synthesize this organic acid and A. terreus can secrete significant amounts to the media (>80 g/L). However, compared with the citric acid production process (titers >200 g/L) the achieved titers are still low and the overall process is expensive because purified substrates are required for optimal productivity. Itaconate is formed by the enzymatic activity of a cis-aconitate decarboxylase (CadA) encoded by the cadA gene in A. terreus. Cloning of the cadA gene into the citric acid producing fungus A. niger showed that it is possible to produce itaconic acid also in a different host organism. This review will describe the current status and recent advances in the understanding of the molecular processes leading to the biotechnological production of itaconic acid. PMID:23420787

  1. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  2. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  3. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  4. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  5. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  6. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  7. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  8. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  9. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  10. Biotechnological production and application of ganoderic acids.

    PubMed

    Xu, Jun-Wei; Zhao, Wei; Zhong, Jian-Jiang

    2010-06-01

    Ganoderic acids (GAs), a kind of highly oxygenated lanostane-type triterpenoids, are important bioactive constituents of the famous medicinal mushroom Ganoderma lucidum. They have received wide attention in recent years due to extraordinarily pharmacological functions. Submerged fermentation of G. lucidum is viewed as a promising technology for production of GAs, and substantial efforts have been devoted to process development for enhancing GA production in the last decade. This article reviews recent publication about fermentative production of GAs and their potential applications, especially the progresses toward manipulation of fermentation conditions and bioprocessing strategies are summarized. The biosynthetic pathway of GAs is also outlined. PMID:20437236

  11. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  12. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  13. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  14. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  15. 40 CFR 430.100 - Applicability; description of the secondary fiber non-deink subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary fiber non-deink subcategory. 430.100 Section 430.100 Protection of Environment ENVIRONMENTAL... CATEGORY Secondary Fiber Non-Deink Subcategory § 430.100 Applicability; description of the secondary fiber... production of: Paperboard from wastepaper; tissue paper from wastepaper without deinking at secondary...

  16. 40 CFR 406.40 - Applicability; description of the bulgur wheat flour milling subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bulgur wheat flour milling subcategory. 406.40 Section 406.40 Protection of Environment ENVIRONMENTAL... Wheat Flour Milling Subcategory § 406.40 Applicability; description of the bulgur wheat flour milling... wheat is parboiled, dried, and partially debranned in the production of bulgur....

  17. 40 CFR 406.40 - Applicability; description of the bulgur wheat flour milling subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bulgur wheat flour milling subcategory. 406.40 Section 406.40 Protection of Environment ENVIRONMENTAL... Wheat Flour Milling Subcategory § 406.40 Applicability; description of the bulgur wheat flour milling... wheat is parboiled, dried, and partially debranned in the production of bulgur....

  18. 40 CFR 406.40 - Applicability; description of the bulgur wheat flour milling subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bulgur wheat flour milling subcategory. 406.40 Section 406.40 Protection of Environment ENVIRONMENTAL... Wheat Flour Milling Subcategory § 406.40 Applicability; description of the bulgur wheat flour milling... wheat is parboiled, dried, and partially debranned in the production of bulgur....

  19. 40 CFR 406.40 - Applicability; description of the bulgur wheat flour milling subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bulgur wheat flour milling subcategory. 406.40 Section 406.40 Protection of Environment ENVIRONMENTAL... Wheat Flour Milling Subcategory § 406.40 Applicability; description of the bulgur wheat flour milling... wheat is parboiled, dried, and partially debranned in the production of bulgur....

  20. 40 CFR 406.100 - Applicability; description of the wheat starch and gluten subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wheat starch and gluten subcategory. 406.100 Section 406.100 Protection of Environment ENVIRONMENTAL... Starch and Gluten Subcategory § 406.100 Applicability; description of the wheat starch and gluten... operations utilizing wheat flour as a raw material for production of wheat starch and gluten...

  1. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare... production of rare earth metals and mischmetal by primary rare earth metals facilities......

  2. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare... production of rare earth metals and mischmetal by primary rare earth metals facilities......

  3. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare... production of rare earth metals and mischmetal by primary rare earth metals facilities......

  4. 40 CFR 421.270 - Applicability: Description of the primary rare earth metals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary rare earth metals subcategory. 421.270 Section 421.270 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Rare Earth Metals Subcategory § 421.270 Applicability: Description of the primary rare... production of rare earth metals and mischmetal by primary rare earth metals facilities......

  5. 40 CFR 421.20 - Applicability: description of the primary aluminum smelting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary aluminum smelting subcategory. 421.20 Section 421.20 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Aluminum Smelting Subcategory § 421.20 Applicability: description of the primary aluminum... production of aluminum from alumina in the Hall-Heroult process....

  6. 40 CFR 421.20 - Applicability: description of the primary aluminum smelting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary aluminum smelting subcategory. 421.20 Section 421.20 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Aluminum Smelting Subcategory § 421.20 Applicability: description of the primary aluminum... production of aluminum from alumina in the Hall-Heroult process....

  7. 40 CFR 421.20 - Applicability: description of the primary aluminum smelting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary aluminum smelting subcategory. 421.20 Section 421.20 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Aluminum Smelting Subcategory § 421.20 Applicability: description of the primary aluminum... production of aluminum from alumina in the Hall-Heroult process....

  8. 40 CFR 430.100 - Applicability; description of the secondary fiber non-deink subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary fiber non-deink subcategory. 430.100 Section 430.100 Protection of Environment ENVIRONMENTAL... CATEGORY Secondary Fiber Non-Deink Subcategory § 430.100 Applicability; description of the secondary fiber... production of: Paperboard from wastepaper; tissue paper from wastepaper without deinking at secondary...

  9. 40 CFR 428.80 - Applicability; description of the wet digestion reclaimed rubber subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... digestion reclaimed rubber subcategory. 428.80 Section 428.80 Protection of Environment ENVIRONMENTAL... Wet Digestion Reclaimed Rubber Subcategory § 428.80 Applicability; description of the wet digestion... discharges resulting from the production of reclaimed rubber by use of the wet digestion process....

  10. 40 CFR 428.80 - Applicability; description of the wet digestion reclaimed rubber subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... digestion reclaimed rubber subcategory. 428.80 Section 428.80 Protection of Environment ENVIRONMENTAL... Wet Digestion Reclaimed Rubber Subcategory § 428.80 Applicability; description of the wet digestion... discharges resulting from the production of reclaimed rubber by use of the wet digestion process....

  11. 40 CFR 406.40 - Applicability; description of the bulgur wheat flour milling subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bulgur wheat flour milling subcategory. 406.40 Section 406.40 Protection of Environment ENVIRONMENTAL... Wheat Flour Milling Subcategory § 406.40 Applicability; description of the bulgur wheat flour milling... wheat is parboiled, dried, and partially debranned in the production of bulgur....

  12. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  13. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  14. Biobased organic acids production by metabolically engineered microorganisms.

    PubMed

    Chen, Yun; Nielsen, Jens

    2016-02-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed. PMID:26748037

  15. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  16. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  17. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. PMID:23624242

  18. Conjugated linoleic acid-enriched beef production.

    PubMed

    Mir, Priya S; McAllister, Timothy A; Scott, Shannon; Aalhus, Jennifer; Baron, Vern; McCartney, Duane; Charmley, Edward; Goonewardene, Laki; Basarab, John; Okine, Erasmus; Weselake, Randall J; Mir, Zahir

    2004-06-01

    Canadian beef consumption is approximately 31 kg per annum, or a third of all meats consumed. Beef is a nutrient-rich food, providing good quality protein, vitamins B-6 and B-12, niacin, iron, and zinc. However, animal fats have gained the reputation of being less healthy. The identification of the anticarcinogenic effects of beef extracts due to the presence of conjugated linoleic acid (CLA) has heightened interest in increasing the amount of CLA deposited in beef. Beef cattle produce CLA and deposit these compounds in the meat; thus, beef consumers can receive bioformed CLA. Beef contains both of the bioactive CLA isomers, namely, cis-9, trans-11 and trans-10, cis-12. The relative content of these CLA isomers in beef depends on the feeds consumed by the animals during production. Feeding cattle linoleic acid-rich oils for extended periods of time increases the CLA content of beef. Depending on the type and relative maturity of the pasture, beef from pasture-fed cattle may have a higher CLA content than beef from grain- or silage-fed cattle. In feedlot animals fed high-grain diets, inclusion of dietary oil along with hay during both the growth and finishing phases led to an increase in CLA content from 2.8 to 14 mg/g beef fat, which would provide 77 mg CLA in an 85-g serving of beef. The CLAs appear to be concentrated in intramuscular and subcutaneous fat of beef cattle, with the CLA trans-10, cis-12 isomer being greater in the subcutaneous fat. PMID:15159258

  19. Lactobionic and cellobionic acid production profiles of the resting cells of acetic acid bacteria.

    PubMed

    Kiryu, Takaaki; Kiso, Taro; Nakano, Hirofumi; Murakami, Hiromi

    2015-01-01

    Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid. PMID:25965080

  20. Analysis of cyclic pyrolysis products formed from amino acid monomer.

    PubMed

    Choi, Sung-Seen; Ko, Ji-Eun

    2011-11-18

    Amino acid was mixed with silica and tetramethylammonium hydroxide (TMAH) to favor pyrolysis of amino acid monomer. The pyrolysis products formed from amino acid monomer were using GC/MS and GC. 20 amino acids of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were analyzed. The pyrolysis products were divided into cyclic and non-cyclic products. Among the 20 amino acids, arginine, asparagine, glutamic acid, glutamine, histidine, lysine, and phenylalanine generated cyclic pyrolysis products of the monomer. New cyclic pyrolysis products were formed by isolation of amino acid monomers. They commonly had polar side functional groups to 5-, 6-, or 7-membered ring structure. Arginine, asparagine, glutamic acid, glutamine, histidine, and phenylalanine generated only 5- or 6-membered ring products. However, lysine generated both 6- and 7-membered ring compounds. Variations of the relative intensities of the cyclic pyrolysis products with the pyrolysis temperature and amino acid concentration were also investigated. PMID:21993510

  1. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10679 Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl...

  2. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  3. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  4. Microbial granulation for lactic acid production.

    PubMed

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. PMID:25925200

  5. Chicoric acid: chemistry, distribution, and production

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Scagel, Carolyn

    2013-12-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  6. Chicoric acid: chemistry, distribution, and production

    PubMed Central

    Lee, Jungmin; Scagel, Carolyn F.

    2013-01-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification, and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed. PMID:24790967

  7. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  8. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  9. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  10. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  11. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  12. Methods for producing 3-hydroxypropionic acid and other products

    DOEpatents

    Lynch, Michael D.; Gill, Ryan T.; Lipscomb, Tanya E. W.

    2016-07-12

    This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.

  13. Modeling the continuous lactic acid production process from wheat flour.

    PubMed

    Gonzalez, Karen; Tebbani, Sihem; Lopes, Filipa; Thorigné, Aurore; Givry, Sébastien; Dumur, Didier; Pareau, Dominique

    2016-01-01

    A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity. PMID:26399412

  14. Toward biotechnological production of adipic acid and precursors from biorenewables.

    PubMed

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. PMID:22824738

  15. Biotechnological routes based on lactic acid production from biomass.

    PubMed

    Gao, Chao; Ma, Cuiqing; Xu, Ping

    2011-01-01

    Lactic acid, the most important hydroxycarboxylic acid, is now commercially produced by the fermentation of sugars present in biomass. In addition to its use in the synthesis of biodegradable polymers, lactic acid can be regarded as a feedstock for the green chemistry of the future. Different potentially useful chemicals such as pyruvic acid, acrylic acid, 1,2-propanediol, and lactate ester can be produced from lactic acid via chemical and biotechnological routes. Here, we reviewed the current status of the production of potentially valuable chemicals from lactic acid via biotechnological routes. Although some of the reactions described in this review article are still not applicable at current stage, due to their "greener" properties, biotechnological processes for the production of lactic acid derivatives might replace the chemical routes in the future. PMID:21846500

  16. New uses of bioglycerin: production of arachidonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filamentous fungi of the genus Mortierella are known to produce arachidonic acid from glucose and M. alpina is currently used in industrial scale production of arachidonic acid in Japan. In anticipation of a large excess of co-product bioglycerin from the national biodiesel program, we would like ...

  17. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    PubMed

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine). PMID:24679256

  18. Effects of acid deposition on agricultural production

    SciTech Connect

    Moskowitz, P.D.; Medeiros, W.H.; Oden, N.L.; Thode, H.C. Jr.; Coveney, E.A.; Jacobson, J.S.; Rosenthal, R.E.; Evans, L.S.; Lewin, K.F.; Allen, F.L.

    1985-09-01

    A preliminary assessment, both qualitative and quantitative, was carried out on the effects of acid deposition on agriculture. An inventory was made of US crops exposed to different acid deposition levels in 1982. Most crops (valued at more than $50 billion) were exposed to annual average acid deposition levels greater than pH 4.6, but crops worth more than $220 billion were exposed to even lower pH levels. Published results of experiments on crop response to acid deposition have not identified any single crop as being consistently sensitive, and suggest that present levels of acidic precipitation in the US are not significantly affecting growth and yield of crops. Because relatively few experiments appropriate to a quantitative acid deposition assessment have been conducted, the quantitative section is necessarily based on a restricted data set. Corn, potatoes, and soybeans have been studied in experimental environments which simulate agronomic conditions and which have adequate statistical power for yield estimates; only some varieties of soybeans have demonstrated statistically significant sensitivity to acid deposition.

  19. Production of extracellular fatty acid using engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL) produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain p

  20. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    PubMed

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production. PMID:26384571

  1. Heterologous production of caffeic acid from tyrosine in Escherichia coli.

    PubMed

    Rodrigues, J L; Araújo, R G; Prather, K L J; Kluskens, L D; Rodrigues, L R

    2015-04-01

    Caffeic acid is a plant secondary metabolite and its biological synthesis has attracted increased attention due to its beneficial effects on human health. In this study, Escherichia coli was engineered for the production of caffeic acid using tyrosine as the initial precursor of the pathway. The pathway design included tyrosine ammonia lyase (TAL) from Rhodotorula glutinis to convert tyrosine to p-coumaric acid and 4-coumarate 3-hydroxylase (C3H) from Saccharothrix espanaensis or cytochrome P450 CYP199A2 from Rhodopseudomonas palustris to convert p-coumaric acid to caffeic acid. The genes were codon-optimized and different combinations of plasmids were used to improve the titer of caffeic acid. TAL was able to efficiently convert 3mM of tyrosine to p-coumaric acid with the highest production obtained being 2.62mM (472mg/L). CYP199A2 exhibited higher catalytic activity towards p-coumaric acid than C3H. The highest caffeic acid production obtained using TAL and CYP199A2 and TAL and C3H was 1.56mM (280mg/L) and 1mM (180mg/L), respectively. This is the first study that shows caffeic acid production using CYP199A2 and tyrosine as the initial precursor. This study suggests the possibility of further producing more complex plant secondary metabolites like flavonoids and curcuminoids. PMID:25765308

  2. By-products of electrochemical synthesis of suberic acid

    SciTech Connect

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.; Antonenko, N.S.; Grudtsyn, Yu.D.

    1988-05-10

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  3. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation. PMID:18601027

  4. Thermodynamic prediction of hydrogen production from mixed-acid fermentations.

    PubMed

    Forrest, Andrea K; Wales, Melinda E; Holtzapple, Mark T

    2011-10-01

    The MixAlco™ process biologically converts biomass to carboxylate salts that may be chemically converted to a wide variety of chemicals and fuels. The process utilizes lignocellulosic biomass as feedstock (e.g., municipal solid waste, sewage sludge, and agricultural residues), creating an economic basis for sustainable biofuels. This study provides a thermodynamic analysis of hydrogen yield from mixed-acid fermentations from two feedstocks: paper and bagasse. During batch fermentations, hydrogen production, acid production, and sugar digestion were analyzed to determine the energy selectivity of each system. To predict hydrogen production during continuous operation, this energy selectivity was then applied to countercurrent fermentations of the same systems. The analysis successfully predicted hydrogen production from the paper fermentation to within 11% and the bagasse fermentation to within 21% of the actual production. The analysis was able to faithfully represent hydrogen production and represents a step forward in understanding and predicting hydrogen production from mixed-acid fermentations. PMID:21875794

  5. Gluconic acid production by gad mutant of Klebsiella pneumoniae.

    PubMed

    Wang, Dexin; Wang, Chenhong; Wei, Dong; Shi, Jiping; Kim, Chul Ho; Jiang, Biao; Han, Zengsheng; Hao, Jian

    2016-08-01

    Klebsiella pneumoniae produces many economically important chemicals. Using glucose as a carbon source, the main metabolic product in K. pneumoniae is 2,3-butanediol. Gluconic acid is an intermediate of the glucose oxidation pathway. In the current study, a metabolic engineering strategy was used to develop a gluconic acid-producing K. pneumoniae strain. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. Gluconic acid accumulation by K. pneumoniae Δgad was an acid-dependent aerobic process, with accumulation observed at pH 5.5 or lower, and at higher levels of oxygen supplementation. Under all other conditions tested, 2,3-butanediol was the main metabolic product of the process. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by K. pneumoniae Δgad, and the conversion ratio of glucose to gluconic acid reached 1 g/g. The K. pneumoniae Δgad described in this study is the first genetically modified strain used for gluconic acid production, and this optimized method for gluconic acid production may have important industrial applications. Gluconic acid is an intermediate of this glucose oxidation pathway. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by the K. pneumoniae Δgad strain, and the conversion ratio of glucose to gluconic acid reached 1 g/g. PMID:27339313

  6. Recent advances in biological production of 3-hydroxypropionic acid.

    PubMed

    Kumar, Vinod; Ashok, Somasundar; Park, Sunghoon

    2013-11-01

    3-Hydroxypropionic acid (3-HP) is a valuable platform chemical that can be produced biologically from glucose or glycerol. This review article provides an overview and the current status of microbial 3-HP production. The constraints of microbial 3-HP production and possible solutions are also described. Finally, future prospects of biological 3-HP production are discussed. PMID:23473969

  7. Chicoric acid: chemistry, distribution, and production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 60 genera have been found to contain chicoric...

  8. Kojic Acid Production from Agro-Industrial By-Products Using Fungi

    PubMed Central

    El-Kady, Ismael A.; Zohri, Abdel Naser A.; Hamed, Shimaa R.

    2014-01-01

    A total of 278 different isolates of filamentous fungi were screened using synthetic medium for respective ability to produce kojic acid. Nineteen, six, and five isolates proved to be low, moderate, and high kojic acid producers, respectively. Levels of kojic acid produced were generally increased when shaking cultivation was used rather than those obtained using static cultivation. A trial for the utilization of 15 agro-industrial wastes or by-products for kojic acid production by the five selected higher kojic acid producer isolates was made. The best by-product medium recorded was molasses for kojic acid. A. flavus numbers 7 and 24 were able to grow and produce kojic acid on only 12 out of 15 wastes or by-products media. The best medium used for kojic acid production by A. flavus number 7 was rice fragments followed by molasses, while the best medium used for kojic acid production by A. flavus number 24 was the molasses followed by orange, pea, and rice fragments. An attempt for production of kojic acid using a 1.5 L laboratory fermentor has been made. Aspergillus flavus number 7 was used and grown on molasses medium; maximum level (53.5 g/L) of kojic acid was obtained after eight days of incubation. PMID:24778881

  9. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    PubMed

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor. PMID:27268482

  10. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    PubMed

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids. PMID:27033536

  11. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    NASA Astrophysics Data System (ADS)

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  12. Biotechnological production of muconic acid: current status and future prospects.

    PubMed

    Xie, Neng-Zhong; Liang, Hong; Huang, Ri-Bo; Xu, Ping

    2014-01-01

    Muconic acid (MA), a high value-added bio-product with reactive dicarboxylic groups and conjugated double bonds, has garnered increasing interest owing to its potential applications in the manufacture of new functional resins, bio-plastics, food additives, agrochemicals, and pharmaceuticals. At the very least, MA can be used to produce commercially important bulk chemicals such as adipic acid, terephthalic acid and trimellitic acid. Recently, great progress has been made in the development of biotechnological routes for MA production. This present review provides a comprehensive and systematic overview of recent advances and challenges in biotechnological production of MA. Various biological methods are summarized and compared, and their constraints and possible solutions are also described. Finally, the future prospects are discussed with respect to the current state, challenges, and trends in this field, and the guidelines to develop high-performance microbial cell factories are also proposed for the MA production by systems metabolic engineering. PMID:24751381

  13. Genetic Engineering of Rhizopus for Enhancing Lactic Acid Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  14. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Rhizopus is frequently used to convert, or ferment sugars obtained from agricultural crops to lactic acid. This natural product has long been utilized by the food industry as an additive for preservation, flavor, and acidity. Additionally, it is used for the manufacture of environmental...

  15. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions

    SciTech Connect

    Blum, U.

    1998-04-01

    Reversible sorption of phenolic acids by soils may provide some protection to phenolic acids from microbial degradation. In the absence of microbes, reversible sorption 35 days after addition of 0.5--3 {micro}mol/g of ferulic acid or p-coumaric acid was 8--14% in Cecil A{sub p} horizon and 31--38% in Cecil B{sub t} horizon soil materials. The reversibly sorbed/solution ratios (r/s) for ferulic acid or p-coumaric acid ranged from 0.12 to 0.25 in A{sub p} and 0.65 to 0.85 in B{sub t} horizon soil materials. When microbes were introduced, the r/s ratio for both the A{sub p} and B{sub t} horizon soil materials increased over time up to 5 and 2, respectively, thereby indicating a more rapid utilization of solution phenolic acids over reversibly sorbed phenolic acids. The increase in r/s ratio and the overall microbial utilization of ferulic acid and/or p-coumaric acid were much more rapid in A{sub p} than in B{sub t} horizon soil materials. Reversible sorption, however, provided protection of phenolic acids from microbial utilization for only very short periods of time. Differential soil fixation, microbial production of benzoic acids (e.g., vanillic acid and p-hydroxybenzoic acid) from cinnamic acids (e.g., ferulic acid and p-coumaric acid, respectively), and the subsequent differential utilization of cinnamic and benzoic acids by soil microbes indicated that these processes can substantially influence the magnitude and duration of the phytotoxicity of individual phenolic acids.

  16. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways.

    PubMed

    Li, Jing; Zhang, Yansheng

    2014-04-01

    Betulinic acid is a plant-based triterpenoid that has been recognized for its antitumor and anti-HIV activities. The level of betulinic acid in its natural hosts is extremely low. In the present study, we constructed betulinic acid biosynthetic pathway in Saccharomyces cerevisiae by metabolic engineering. Given the betulinic acid forming pathways sharing the common substrate acetyl-CoA with fatty acid synthesis, the metabolic fluxes between the two pathways were varied by changing gene expressions, and their effects on betulinic acid production were investigated. We constructed nine S. cerevisiae strains representing nine combinations of the flux distributions between betulinic acid and fatty acid pathways. Our results demonstrated that it was possible to improve the betulinic acid production in S. cerevisiae while keeping a desirable growth phenotype by optimally balancing the carbon fluxes of the two pathways. Through modulating the expressions of the key genes on betulinic acid and fatty acid pathways, the difference in betulinic acid yield varied largely in the range of 0.01-1.92 mg L(-1) OD(-1). The metabolic engineering approach used in this study could be extended for synthesizing other triterpenoids in S. cerevisiae. PMID:24389702

  17. Production of Value-added Products by Lactic Acid Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  18. Metabolic engineering of biocatalysts for carboxylic acids production

    PubMed Central

    Liu, Ping; Jarboe, Laura R.

    2012-01-01

    Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values required for economically viable processes, the carboxylic acid-producing microbes need to be robust and well-performing. Traditional strain development methods based on mutagenesis have proven useful in the selection of desirable microbial behavior, such as robustness and carboxylic acid production. On the other hand, rationally-based metabolic engineering, like genetic manipulation for pathway design, has becoming increasingly important to this field and has been used for the production of several organic acids, such as succinic acid, malic acid and lactic acid. This review investigates recent works on Saccharomyces cerevisiae and Escherichia coli, as well as the strategies to improve tolerance towards these chemicals. PMID:24688671

  19. A Comparative Overview of Prescription Omega-3 Fatty Acid Products

    PubMed Central

    Ito, Matthew K.

    2015-01-01

    An estimated 25% of adults in the United States have elevated triglyceride (TG) levels. This is of particular concern given the evidence for a causal role of TG in the pathway of cardiovascular (CV) disease. Approved prescription omega-3 fatty acid products (RxOM3FAs) contain the long-chain fatty acids docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) and are effective options for the treatment of high TG levels. RxOM3FAs that contain both EPA and DHA include omega-3-acid ethyl esters (ethyl esters of EPA and DHA; brand and generic products) and omega-3-carboxylic acids (free fatty acids primarily composed of EPA and DHA), while the RxOM3FA icosapent ethyl (the ethyl ester of EPA) contains EPA only. All RxOM3FA products produce substantial TG reduction and other beneficial effects on atherogenic lipid and inflammation-related parameters, blood pressure, and heart rate variability, but products that contain DHA may raise low-density lipoprotein-cholesterol (LDL-C). This commentary provides an overview of hypertriglyceridemia while summarizing the pharmacology, efficacy, and safety of prescription RxOM3FAs. PMID:26681905

  20. Lactic acid production by Enteroccocus faecium in liquefied sago starch

    PubMed Central

    2012-01-01

    Enterococcus faecium No. 78 (PNCM-BIOTECH 10375) isolated from puto, a type of fermented rice in the Philippines was used to produce lactic acid in repeated batch fermentation mode. Enzymatically liquefied sago starch was used as the sole carbon source, since sago (Metroxylon spp) is a sustainable crop for industrial exploitation. Liquefied sago starch was inoculated with E. faecium to perform the saccharification and fermentation processes simultaneously. Results demonstrated that E. faecium was reused for 11 fermentation cycles with an average lactic acid yield of 36.3 ± 4.71 g/l. The lactic acid production was superior to that of simple batch mode and continuous fermentation in terms of lactic acid concentration. An un-dissociated lactic acid concentration of 1.15 mM affected the productivity of the cells. Work is in progress to maintain and increase the usability of the cells over higher fermentation cycles. PMID:23021076

  1. Production of Gluconic Acid by Some Local Fungi

    PubMed Central

    Shindia, A. A.; El-Esawy, A. E.; Sheriff, Y. M. M. M.

    2006-01-01

    Forty-one fungal species belonging to 15 fungal genera isolated from Egyptian soil and sugar cane waste samples were tested for their capacity of producing acidity and gluconic acid. For the tests, the fungi were grown on glucose substrate and culture filtrates were examined using paper chromatography analysis. Most of the tested fungi have a relative wide potentiality for total acid production in their filtrates. Nearly 51% of them showed their ability of producing gluconic acid. Aspergillus niger was distinguishable from other species by its capacity to produce substantial amounts of gluconic acid when it was cultivated on a selective medium. The optimized cultural conditions for gluconic acid yields were using submerged culture at 30℃ at initial pH 6.0 for 7 days of incubation. Among the various concentrations of substrate used, glucose (14%, w/v) was found to be the most suitable carbon source for maximal gluconic acid during fermentation. Maximum values of fungal biomass (10.02 g/l) and gluconic acid (58.46 g/l) were obtained when the fungus was grown with 1% peptone as sole nitrogen source. Influence of the concentration of some inorganic salts as well as the rate of aeration on the gluconic acid and biomass production is also described. PMID:24039465

  2. Aluminum: A neurotoxic product of acid rain

    SciTech Connect

    Martin, R.B.

    1994-07-01

    Two separate but converging concerns have resulted in an upsurge in research on aluminum ion in the past 15 years. Acid rain releases Al(III) from soils into fresh waters, where it is for the first time accessible to living organisms. Though long considered benign, Al(III) has recently been found to cause bone and neurological disorders, while its role in Alzheimer`s disease remains uncertain. The greater availability of Al(III), coupled with its demonstrated harmful effects, challenges chemists to describe its chemistry and biochemistry. Many interactions of Al(III) have been described, but several questions remain unsolved. A great deal of work not within the scope of this Account is described in several edited volumes. (This Account uses Al(III) as a generic term for the 3+ ion when a specific form is not indicated). 96 refs., 2 figs., 2 tabs.

  3. Biotechnology For hydroxy Fatty Acid Production in Oilseed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional source of hydroxyl fatty acid is from castor oil which contains 90% ricinoleate. Ricinoleate and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and bio-diesel. However, the production of castor oil is hampered by the presen...

  4. Membrane recovery of phenolic acid co-products from biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technology to convert lignocellulosic biomass to biofuels is progressing with parallel efforts to develop processes to recover valuable natural products and generate additional revenue from these associated co-products. The lignified components of plant tissues contain phenolic acid structures s...

  5. Production of 3-hydroxypropionic acid from acrylic acid by newly isolated rhodococcus erythropolis LG12.

    PubMed

    Lee, Sang-Hyun; Park, Si Jae; Park, Oh-Jin; Cho, Junhyeong; Rhee, Joo Won

    2009-05-01

    A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropolis LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an OD600 of 5. Further cultivation of R. erythropolis LG12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/I/h at 30 degrees after 72 h. PMID:19494695

  6. ACID RECYCLING TO OPTIMIZE CITRIC ACID-MODIFIED SOYBEAN HULL PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were 1) to develop a wash procedure to remove non-reacted or residual citric acid after soybean hull modification in order to maximize the amount of non- reacted acid removed but minimize the subsequent effect on the product's ability to adsorb copper ion (Cu2+) and 2) t...

  7. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria.

    PubMed

    Sainz, F; Navarro, D; Mateo, E; Torija, M J; Mas, A

    2016-04-01

    The oxidative metabolism of acetic acid bacteria (AAB) can be exploited for the production of several compounds, including D-gluconic acid. The production of D-gluconic acid in fermented beverages could be useful for the development of new products without glucose. In the present study, we analyzed nineteen strains belonging to eight different species of AAB to select those that could produce D-gluconic acid from D-glucose without consuming D-fructose. We tested their performance in three different media and analyzed the changes in the levels of D-glucose, D-fructose, D-gluconic acid and the derived gluconates. D-Glucose and D-fructose consumption and D-gluconic acid production were heavily dependent on the strain and the media. The most suitable strains for our purpose were Gluconobacter japonicus CECT 8443 and Gluconobacter oxydans Po5. The strawberry isolate Acetobacter malorum (CECT 7749) also produced D-gluconic acid; however, it further oxidized D-gluconic acid to keto-D-gluconates. PMID:26848948

  8. Modulation of interleukin production by ascorbic acid.

    PubMed

    Schwager, J; Schulze, J

    1998-06-30

    We studied the influence of ascorbate (vitamin C) on peripheral blood mononuclear cells (PBMC) of pigs with hereditary deficiency in ascorbate synthesis. Groups of animals were depleted of, or supplemented with dietary ascorbate for up to 5 weeks. B lymphocytes and T lymphocyte subsets differed in the two experimental groups only marginally and transiently as determined by analysis of cell surface markers. The proliferative response of PBMC to B and T lymphocyte mitogens was lower in depleted as compared to supplemented animals. Interleukin (IL)-2 and IL-6 were determined by bioassays and were secreted within few hours after mitogenic activation of PBMC which contained normal physiological concentrations of ascorbate. IL-2 production peaked at about 24 h of in vitro culture after Con A activation, but it lasted for 2-3 days after PWM activation. The production of IL-2 and IL-6 were compared during systemic depletion and supplementation with ascorbate. Depleted PBMC produced IL-2 which accumulated in cultures instead of being rapidly consumed by IL-2 dependent cell growth. This suggests that cellular ascorbate influences the production of IL-2. Secretion of IL-6 by mitogen activated PBMC was also affected by prolonged dietary ascorbate depletion. The results suggest that ascorbate levels exert an early effect on immune homeostasis via reactive oxygen intermediates (ROI)-dependent expression of interleukin genes, since the transcription factor NF-kappa B is sensitive to ROI and regulates the expression of interleukin genes. PMID:9656430

  9. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  10. Production and applications of rosmarinic acid and structurally related compounds.

    PubMed

    Kim, Gun-Dong; Park, Yong Seek; Jin, Young-Ho; Park, Cheung-Seog

    2015-03-01

    Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) is a naturally occurring hydroxylated compound commonly found in species of the subfamily Nepetoideae of the Lamiaceae and Boraginaceae, such as Rosmarinus officinalis, Salvia officinalis, and Perilla frutescens. RA is biosynthesized from the amino acids L-phenylalanine and L-tyrosine by eight enzymes that include phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase. RA can also be chemically produced by the esterification of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA and its numerous derivatives containing one or two RA with other aromatic moieties are well known and include lithospermic acid, yunnaneic acid, salvianolic acid, and melitric acid. Recently, RA and its derivatives have attracted interest for their biological activities, which include anti-inflammatory, anti-oxidant, anti-angiogenic, anti-tumor, and anti-microbial functions. Clinically, RA attenuates T cell receptor-mediated signaling, attenuates allergic diseases like allergic rhinitis and asthma, and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like symptoms, protects from neurotoxicity, and slows the development of Alzheimer's disease. These attributes have increased the demand for the biotechnological production and application of RA and its derivatives. The present review discusses the function and application of RA and its derivatives including the molecular mechanisms underlying clinical efficacy. PMID:25620368

  11. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    PubMed

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  12. Economical succinic acid production from cane molasses by Actinobacillus succinogenes.

    PubMed

    Liu, Yu-Peng; Zheng, Pu; Sun, Zhi-Hao; Ni, Ye; Dong, Jin-Jun; Zhu, Lei-Lei

    2008-04-01

    In this work, production of succinic acid by Actinobacillus succinogenes CGMCC1593 using cane molasses as a low cost carbon source was developed. In anaerobic bottles fermentation, succinic acid concentration of 50.6+/-0.9 g l(-1) was attained at 60 h using an optimum medium containing molasses pretreated with sulfuric acid, resulting in a succinic acid yield of 79.5+/-1.1% and sugar utilization of 97.1+/-0.6%. When batch fermentation was carried out in a 5-l stirred bioreactor with pretreated molasses, 46.4 g l(-1) of succinic acid was attained at 48 h and faster cells growth was also observed. Fed batch fermentation was performed to minimize the substrate (sugar) inhibition effect, giving 55.2 g l(-1) of succinic acid and 1.15 g l(-1)h(-1) of productivity at 48 h. The present study suggests that the inexpensive cane molasses could be utilized for the economical and efficient production of succinic acid by A. succinogenes. PMID:17532626

  13. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources. PMID:27116971

  14. Utilization of by-products derived from bioethanol production process for cost-effective production of lactic acid.

    PubMed

    Moon, Se-Kwon; Wee, Young-Jung; Choi, Gi-Wook

    2014-10-01

    The by-products of bioethanol production such as thin stillage (TS) and condensed distillers solubles (CDS) were used as a potential nitrogen source for economical production of lactic acid. The effect of those by-products and their concentrations on lactic acid fermentation were investigated using Lactobacillus paracasei CHB2121. Approximately, 6.7 g/L of yeast extract at a carbon source to nitrogen source ratio of 15 was required to produce 90 g/L of lactic acid in the medium containing 100 g/L of glucose. Batch fermentation of TS medium resulted in 90 g/L of lactic acid after 48 h, and the medium containing 10 % CDS resulted in 95 g/L of lactic acid after 44 h. Therefore, TS and CDS could be considered as potential alternative fermentation medium for the economical production of lactic acid. Furthermore, lactic acid fermentation was performed using only cassava and CDS for commercial production of lactic acid. The volumetric productivity of lactic acid [2.94 g/(L·h)] was 37 % higher than the productivity obtained from the medium with glucose and CDS. PMID:25163666

  15. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. PMID:25577101

  16. Phenoloxidase production and vanillic acid metabolism by Zygomycetes.

    PubMed

    Seigle-Murandi, F; Guiraud, P; Steiman, R; Benoit-Guyod, J L

    1992-04-01

    The ability of 23 strains of Zygomycetes to produce extracellular phenoloxidases was examined on solid media by using 10 different reagents. The results varied depending on the reagent and indicated that most of the strains were devoid of phenoloxidase activity. The production of inducible phenoloxidases was demonstrated by the Bavendamm reaction. The study of the biotransformation of vanillic acid in synthetic medium indicated that the reaction most often obtained was the reduction of vanillic acid to vanillyl alcohol. Helicostylum piriforme and Rhizopus microsporus var. chinensis completely metabolized vanillic acid while good transformation was obtained with Absidia spinosa, Cunninghamella bainieri, Mucor bacilliformis, Mucor plumbeus, Rhizopus arrhizus, Rhizopus stolonifer, Syncephalastrum racemosum and Zygorhynchus moelleri. Other strains did not degrade or poorly degraded vanillic acid. Decarboxylation and demethoxylation of this compound was independent of the production of phenoloxidases as in the case of white-rot fungi. Other enzymatic systems might be implicated in this phenomenon. PMID:1602986

  17. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T.; Yomano, Lorraine; Grabar, Tammy B.; Moore, Jonathan C.

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  18. Materials and methods for efficient lactic acid production

    SciTech Connect

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  19. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  20. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    PubMed

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  1. New yeast-based approaches in production of palmitoleic acid.

    PubMed

    Kolouchová, Irena; Sigler, Karel; Schreiberová, Olga; Masák, Jan; Řezanka, Tomáš

    2015-09-01

    Palmitoleic acid is found in certain dairy products and has broad applications in medicine and cosmetics. We tried to find a suitable producer of this acid among traditional biotechnological yeast species (Kluyveromyces polysporus, Torulaspora delbrueckii, Saccharomyces cerevisiae) characterized by high biomass yield and Candida krusei, Yarrowia lipolytica and Trichosporon cutaneum accumulating large amounts of lipids. The main factor affecting the content of palmitoleic acid was found to be the C/N ratio in the culture medium, with ammonium sulfate as an optimum nitrogen source leading to highest biomass yield with concomitantly increased lipid accumulation, and an increased content of ω6-linoleic acid, the precursor of prostaglandins, leukotrienes, and thromboxanes. We found that C. krusei can be conveniently used for the purpose, albeit only under certain cultivation conditions, whereas S. cerevisiae can produce high and stable amounts of palmitoleic acid in a broad range of cultivation conditions ranging from conventional to nutrient limitations. PMID:26101962

  2. Recent advances in production of succinic acid from lignocellulosic biomass.

    PubMed

    Akhtar, Junaid; Idris, Ani; Abd Aziz, Ramlan

    2014-02-01

    Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF - a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail. PMID:24292125

  3. 2012: no trans fatty acids in Spanish bakery products.

    PubMed

    Ansorena, Diana; Echarte, Andrea; Ollé, Rebeca; Astiasarán, Iciar

    2013-05-01

    Trans fatty acids (TFA) are strongly correlated with an increased risk of cardiovascular and other chronic diseases. Current dietary recommendations exclude bakery products from frequent consumption basically due to their traditionally high content of TFA. The aim of this work was to analyse the lipid profile of different bakery products currently commercialised in Spain and with a conventionally high fat and TFA content. Premium and store brands for each product were included in the study. No significant amounts of TFA were found in any of the analysed products, regardless the brand. TFA content ranged between 0.17 g and 0.22 g/100 g product (mean=0.19 g/100 g product). Expressed on percentage of fatty acids, the maximum value was 0.87 g/100 g fatty acids and the mean value was 0.68%. These data are significantly lower than those observed in previously published papers for these types of products, and highlighted the importance of updating food composition databases in order to accurately estimate the real and current intake of TFA. PMID:23265507

  4. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. PMID:23199277

  5. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity.

    PubMed

    Royce, Liam A; Yoon, Jong Moon; Chen, Yingxi; Rickenbach, Emily; Shanks, Jacqueline V; Jarboe, Laura R

    2015-05-01

    Carboxylic acids are an attractive biorenewable chemical, but as with many biorenewables, their toxicity to microbial biocatalysts limits their fermentative production. While it is generally accepted that membrane damage is the main mechanism of fatty acid toxicity, previous metabolic engineering efforts that increased membrane integrity did not enable increased carboxylic acid production. Here we used an evolutionary approach to improve tolerance to exogenous octanoic acid, with the goal of learning design strategies from this evolved strain. This evolution of an Escherichia coli MG1655 derivative at neutral pH in minimal media produced a strain with increased tolerance not only to octanoic acid, but also to hexanoic acid, decanoic acid, n-butanol and isobutanol. This evolved strain also produced carboxylic acids at a 5-fold higher titer than its parent strain when expressing the Anaerococcus tetradius thioesterase. While it has been previously suggested that intracellular acidification may contribute to carboxylic acid toxicity, we saw no evidence that the evolved strain has increased resistance to this acidification. Characterization of the evolved strain membrane showed that it had significantly altered membrane polarization (fluidity), integrity (leakage) and composition relative to its parent. The changes in membrane composition included a significant increase in average lipid length in a variety of growth conditions, including 30°C, 42°C, carboxylic acid challenge and ethanol challenge. The evolved strain has a more dynamic membrane composition, showing both a larger number of significant changes and larger fold changes in the relative abundance of membrane lipids. These results highlight the importance of the cell membrane in increasing microbial tolerance and production of biorenewable fuels and chemicals. PMID:25839166

  6. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  7. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.; Quinby, H.L.

    1987-04-16

    The present invention related to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rat of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 ..mu..moles of lead as lead oxide was 0.042 ..mu..moles m1/sup /-/1/ hr/sup /-/1/. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of the strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids. 4 figs., 3 tabs.

  8. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production.

    PubMed

    Blazeck, John; Miller, Jarrett; Pan, Anny; Gengler, Jon; Holden, Clinton; Jamoussi, Mariam; Alper, Hal S

    2014-10-01

    Renewable alternatives for petroleum-derived chemicals are achievable through biosynthetic production. Here, we utilize Saccharomyces cerevisiae to enable the synthesis of itaconic acid, a molecule with diverse applications as a petrochemical replacement. We first optimize pathway expression within S. cerevisiae through the use of a hybrid promoter. Next, we utilize sequential, in silico computational genome-scanning to identify beneficial genetic perturbations that are metabolically distant from the itaconic acid synthesis pathway. In this manner, we successfully identify three non-obvious genetic targets (∆ade3 ∆bna2 ∆tes1) that successively improve itaconic acid titer. We establish that focused manipulations of upstream pathway enzymes (localized refactoring) and enzyme re-localization to both mitochondria and cytosol fail to improve itaconic acid titers. Finally, we establish a higher cell density fermentation that ultimately achieves itaconic acid titer of 168 mg/L, a sevenfold improvement over initial conditions. This work represents an attempt to increase itaconic acid production in yeast and demonstrates the successful utilization of computationally guided genetic manipulation to increase metabolic capacity. PMID:24997118

  9. Production of ω-hydroxy octanoic acid with Escherichia coli.

    PubMed

    Kirtz, Marko; Klebensberger, Janosch; Otte, Konrad B; Richter, Sven M; Hauer, Bernhard

    2016-07-20

    The present proof-of-concept study reports the construction of a whole-cell biocatalyst for the de novo production of ω-hydroxy octanoic acid. This was achieved by hijacking the natural fatty acid cycle and subsequent hydroxylation using a specific monooxygenase without the need for the additional feed of alkene-like precursors. For this, we used the model organism Escherichia coli and increased primarily the release of the octanoic acid precursors by overexpressing the plant thioesterase FatB2 from Cuphea hookeriana in a β-oxidation deficient strain, which lead to the production of 2.32mM (8.38mggcww(-1)) octanoic acid in 24h. In order to produce the corresponding ω-hydroxy derivative, we additionally expressed the engineered self-sufficient monooxygenase fusion protein CYP153AMaq(G307A)-CPRBM3 within the octanoic acid producing strain. With this, we finally produced 234μM (0.95mggcww(-1)) ω-hydroxy octanoic acid in a 20h fed-batch set-up. PMID:27184430

  10. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties. PMID:25748518

  11. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  12. Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition

    PubMed Central

    Amaretti, Alberto; Leonardi, Alan; Quartieri, Andrea; Gozzoli, Caterina; Rossi, Maddalena

    2016-01-01

    Conjugated linoleic acids (CLA) are positional and geometric isomers of linoleic acid involved in a number of health aspects. In humans, CLA production is performed by gut microbiota, including some species of potential probiotic bifidobacteria. 128 strains of 31 Bifidobacterium species were screened with a spectrophotometric assay to identify novel CLA producers. Most species were nonproducers, while producers belonged to B. breve and B. pseudocatenulatum. GC-MS revealed that CLA producer strains yielded 9cis,11trans-CLA and 9trans,11trans-CLA, without any production of other isomers. Hydroxylated forms of LA were absent in producer strains, suggesting that the myosin-cross-reactive antigen (MCRA) protein that exerts hydratase activity is not involved in LA isomerization. Moreover, both CLA producer and nonproducer species bear a MCRA homologue. The strain B. breve WC 0421 was the best CLA producer, converting LA into 68.8% 9cis,11trans-CLA and 25.1% 9trans,11trans-CLA. Production occurred mostly during the lag and the exponential phase. For the first time, production and incorporation of CLA in biomass were assessed. B. breve WC 0421 stored CLA in the form of free fatty acids, without changing the composition of the esterified fatty acids, which mainly occurred in the plasmatic membrane. PMID:27429985

  13. Thermodynamic analysis of acetic acid steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Goicoechea, Saioa; Ehrich, Heike; Arias, Pedro L.; Kockmann, Norbert

    2015-04-01

    A thermodynamic analysis of hydrogen generation by acetic acid steam reforming has been carried out with respect to applications in solid oxide fuel cells. The effect of operating parameters on equilibrium composition has been examined focusing especially on hydrogen and carbon monoxide production, which are the fuels in this type of fuel cell. The temperature, steam to acetic acid ratio, and to a lesser extent pressure affect significantly the equilibrium product distribution due to their influence on steam reforming, thermal decomposition and water-gas shift reaction. The study shows that steam reforming of acetic acid with a steam to acetic acid ratio of 2 to 1 is thermodynamically feasible with hydrogen, carbon monoxide and water as the main products at the equilibrium at temperatures higher than 700 °C, and achieving CO/CO2 ratios higher than 1. Thus, it can be concluded that within the operation temperature range of solid oxide fuel cells - between 700 °C and 1000 °C - the production of a gas rich in hydrogen and carbon monoxide is promoted.

  14. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. PMID:26996259

  15. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  16. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    PubMed Central

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts. PMID:10639127

  17. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs. PMID:26293409

  18. Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803.

    PubMed

    Chin, Taejun; Sano, Mei; Takahashi, Tetsuya; Ohara, Hitomi; Aso, Yuji

    2015-02-10

    Here, we report the photosynthetic production of itaconic acid (IA), a promising building block, from carbon dioxide (CO₂) by Synechocystis sp. PCC6803. The engineered PCC6803 strain expressing cis-aconitate decarboxylase, the key enzyme in IA biosynthesis, produced 0.9 mg/L and 14.5 mg/L of IA at production rates of 42.8 μgL(-1)day(-1) and 919.0 μgL(-1)day(-1), under conditions of constant bubbling with air and 5% CO₂, respectively. This is the first report on the possibility of IA production from CO₂ via the photosynthetic process in cyanobacteria. PMID:25554635

  19. Microbial Products Trigger Amino Acid Exudation from Plant Roots1

    PubMed Central

    Phillips, Donald A.; Fox, Tama C.; King, Maria D.; Bhuvaneswari, T.V.; Teuber, Larry R.

    2004-01-01

    Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 μm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 μm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from 15N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant. PMID:15347793

  20. An overview of conjugated linoleic acid: microbial production and application.

    PubMed

    Gholami, Zahra; Khosravi-Darani, Kianoush

    2014-01-01

    Conjugated linoleic acid (CLA) has attracted considerable attention in health due to its important physiological properties proved in several in vivo experiments. Many bacteria, especially some probiotics, are able to produce CLA from the linoleic acid (LA) present in milk. In this review, CLA production by microorganisms is described. Then factors on the influencing the microbial production and the initial CLA content in milk fat are introduced. After a glimpse on the content of CLA in dairy products and human body, health benefits of CLA including anti-cancer, anti-diabetic, antiathrosclerosis and anti-osteoporosis properties, as well as prevention of body fat increase and function as stimulator of the immunity system are explained. PMID:25138090

  1. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens.

    PubMed

    Salvachúa, Davinia; Smith, Holly; St John, Peter C; Mohagheghi, Ali; Peterson, Darren J; Black, Brenna A; Dowe, Nancy; Beckham, Gregg T

    2016-08-01

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60g/L reached up to 30g/L, with metabolic yields of 0.69g/g, and an overall productivity of 0.43g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates. PMID:27179951

  2. Covalent interaction of ascorbic acid with natural products

    PubMed Central

    Kesinger, Nicholas G.; Stevens, Jan F.

    2009-01-01

    While ascorbic acid (Vitamin C) is mostly known as a cofactor for proline hydroxylase and as a biological antioxidant, it also forms covalent bonds with natural products which we here refer to as ‘ascorbylation’. A number of natural products containing an ascorbate moiety has been isolated and characterized from a variety of biological sources, ranging from marine algae to flowering plants. Most of these compounds are formed as a result of nucleophilic substitution or addition by ascorbate, e.g. the ascorbigens from Brassica species are ascorbylated indole derivatives. Some ascorbylated tannins appear to be formed from electrophilic addition to dehydroascorbic acid. There are also examples of annulations of ascorbate with dietary polyphenols, e.g., epigallocatechin gallate (EGCG) and resveratrol derivatives. Herein is a survey of thirty-three ascorbylated natural products and their reported biological activities. PMID:19875138

  3. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  4. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  5. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  6. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  7. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  8. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  9. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.

    PubMed

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  10. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland; Chendrayan, Krishnachetty; Quinby, Helen L.

    1988-01-01

    The present invention relates to an anaerobic bacterial culture of Clostridium sp. ATCC No. 53464 which solubilizes lead oxide under anaerobic conditions in coal and industrial wastes and therefore presents a method of removing lead from such wastes before they are dumped into the environment. The rate of lead dissolution during logarithmic growth of the bacteria in 40 ml medium containing 3.32 .mu.moles of lead as lead oxide was 0.042 .mu.moles ml.sup.-1 hr.sup.-1. Dissolution of lead oxide by the bacterial isolate is due to the production of metabolites and acidity in the culture medium. The major metabolites are acetic, butyric and lactic acid. Clostridium sp. ATCC No. 53464 can be used in the recovery of strategic metals from ores and wastes and also for the production of lactic acid for commercial purposes. The process yields large quantities of lactic acid as well as lead complexed in a stable form with said acids.

  11. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii.

    PubMed

    Guan, Ningzi; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian; Liu, Long

    2016-06-01

    Propionic acid (PA) and its salts are widely used in the food, pharmaceutical, and chemical industries. Microbial production of PA by propionibacteria is a typical product-inhibited process, and acid resistance is crucial in the improvement of PA titers and productivity. We previously identified two key acid resistance elements-the arginine deaminase and glutamate decarboxylase systems-that protect propionibacteria against PA stress by maintaining intracellular pH homeostasis. In this study, we attempted to improve the acid resistance and PA production of Propionibacterium jensenii ATCC 4868 by engineering these elements. Specifically, five genes (arcA, arcC, gadB, gdh, and ybaS) encoding components of the arginine deaminase and glutamate decarboxylase systems were overexpressed in P. jensenii. The activities of the five enzymes in the engineered strains were 26.7-489.0% higher than those in wild-type P. jensenii. The growth rates of the engineered strains decreased, whereas specific PA production increased significantly compared with those of the wild-type strain. Among the overexpressed genes, gadB (encoding glutamate decarboxylase) increased PA resistance and yield most effectively; the PA resistance of P. jensenii-gadB was more than 10-fold higher than that of the wild-type strain, and the production titer, yield, and conversion ratio of PA reached 10.81 g/L, 5.92 g/g cells, and 0.56 g/g glycerol, representing increases of 22.0%, 23.8%, and 21.7%, respectively. We also investigated the effects of introducing these acid resistance elements on the transcript levels of related enzymes. The results showed that the expression of genes in the engineered pathways affected the expression of the other genes. Additionally, the intracellular pools of amino acids were altered as different genes were overexpressed, which may further contribute to the enhanced PA production. This study provides an effective strategy for improving PA production in propionibacteria; this

  12. Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2012-12-01

    Physiological heterogeneity constitutes a critical parameter in biotechnological systems since both metabolite yield and productivity are often hampered by the presence of undesired physiological cell subpopulations. In the present study, the physiological status and functionality of Pseudomonas taetrolens cells were monitored by multiparameter flow cytometry during fermentative lactobionic acid production at the shake-flask and bioreactor scale. In shake-flask fermentation, the onset of the lactobionic acid production phase was accompanied by a progressive loss of cellular metabolic activity, membrane polarization, and membrane integrity concomitantly to acidification. In fact, population dynamics has shown the prevalence of damaged and dead subpopulations when submitted to a pH < 4 from 16 h onwards. Furthermore, fluorescence-activated cell sorting revealed that these sublethally injured cells were nonculturable. In contrast, P. taetrolens cells exhibited a robust physiological status during bioreactor cultivations performed with a pH-shifted strategy at 6.5, remaining predominantly healthy and metabolically active (>96 %) as well as maintaining bioconversion efficiency throughout the course of the fermentation. Additionally, an assessment of the seed culture's physiological robustness was carried out in order to determine the best seed culture age. Results showed that bioreactor culture performance, growth, and lactobionic acid production efficiency were strongly dependent on the physiological heterogeneity displayed by the seed culture. This study provides the most suitable criteria for optimizing lactobionic acid production efficiency through a novel flow cytometric-based approach based on the physiological status of P. taetrolens. It also constitutes a valuable, broad-ranging methodology for the enhancement of microbial bioprocesses involved in the production of secondary metabolites. PMID:22777280

  13. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  14. Enhanced production of docosahexaenoic acid in mammalian cells.

    PubMed

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the accumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased production of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  15. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  16. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. PMID:27226531

  17. A fluidized-bed continuous bioreactor for lactic acid production

    SciTech Connect

    Andrews, G.F.; Fonta, J.P.

    1988-05-01

    A laboratory bioreactor consists of a fluidized bed of monosized activated carbon coated with a biofilm of the homolactic fermentative organism Streptococcus thermophilus. Biofilm growth moves the carbon through the bed, and adsorption of substrate and product at the bottom and top of the bed respectively reduces their inhibitory effects on the organism. Theory shows that high reactor productivity and rapid recirculation of carbon through the bed require a biofilm thickness of 25 to 45% of the carbon particle radius on particles fed into the base of the bed. This could not be achieved in practice due to the fragility of the biofilm. Product concentration was higher than expected from measurements of product inhibition, possibly because it is the undissociated form of the acid that both inhibits metabolism and adsorbs on the activated carbon. The observed productivity of 12 gm/1 hr could be greatly increased by ph control. 13 refs., 7 figs., 2 tabs.

  18. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    PubMed

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113. PMID:18830824

  19. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum.

    PubMed

    Pérez-López, Paula; González-García, Sara; Allewaert, Céline; Verween, Annick; Murray, Patrick; Feijoo, Gumersindo; Moreira, Ma Teresa

    2014-01-01

    Polyunsaturated fatty acids (PUFAs) play an important role in human health. Due to the increased market demand, the production of PUFAs from potential alternative sources such as microalgae is receiving increased interest. The aim of this study was to perform a life cycle assessment (LCA) of the biotechnological production of eicosapentaenoic acid (EPA) from the marine diatom Phaeodactylum tricornutum, followed by the identification of avenues to improve its environmental profile. The LCA tackles two production schemes of P. tricornutum PUFAs with an EPA content of 36%: lab and pilot scales. The results at lab scale show that both the electricity requirements and the production of the extraction agent (chloroform) have significant influence on the life cycle environmental performance of microalgal EPA production. An alternative method based on hexane was proposed to replace chloroform and environmental benefits were identified. Regarding the production of EPA at pilot scale, three main environmental factors were identified: the production of the nitrogen source required for microalgae growing, the transport activities and electricity requirements. Improvement alternatives were proposed and discussed concerning: a) the use of nitrogen based fertilizers, b) the valorization of the residual algal paste as soil conditioner and, c) the anaerobic digestion of the residual algal paste for bioenergy production. Encouraging environmental benefits could be achieved if sodium nitrate was substituted by urea, calcium nitrate or ammonium nitrate, regardless the category under assessment. In contrast, minor improvement was found when valorizing the residual algal paste as mineral fertilizer, due to its overall low content in N and P. Concerning the biogas production from the anaerobic digestion, the improvement on the environmental profile was also limited due to the discrepancy between the potential energy production from the algal paste and the high electricity requirements in

  20. Carboxylic acid production from brewer's spent grain via mixed culture fermentation.

    PubMed

    Liang, Shaobo; Wan, Caixia

    2015-04-01

    This study aimed at investigating carboxylic acid production from brewer's spent grain (BSG) via mixed culture fermentation. The results showed that the distribution of fermentation products was significantly affected by pH conditions and the addition of electron donors. Lactic acid was the dominant component under acidic and alkaline conditions while volatile fatty acids (VFAs) became dominant under the neutral condition. Furthermore, the neutral condition favored the chain elongation of carboxylic acids, especially with ethanol as the electron donor. Ethanol addition enhanced valeric acid and caproic acid production by 44% and 167%, respectively. Lactic acid addition also had positive effects on VFAs production under the neutral condition but limited to C2-C4 products. As a result, propionic acid and butyric acid production was increased by 109% and 152%, respectively. These findings provide substantial evidence for regulating carboxylic acid production during mixed culture fermentation of BSG by controlling pH and adding electron donors. PMID:25698409

  1. Lactide Synthesis and Chirality Control for Polylactic acid Production.

    PubMed

    Van Wouwe, Pieter; Dusselier, Michiel; Vanleeuw, Evelien; Sels, Bert

    2016-05-10

    Polylactic acid (PLA) is a very promising biodegradable, renewable, and biocompatible polymer. Aside from its production, its application field is also increasing, with use not only in commodity applications but also as durables and in biomedicine. In the current PLA production scheme, the most expensive part is not the polymerization itself but obtaining the building blocks lactic acid (LA) and lactide, the actual cyclic monomer for polymerization. Although the synthesis of LA and the polymerization have been studied systematically, reports of lactide synthesis are scarce. Most lactide synthesis methods are described in patent literature, and current energy-intensive, aselective industrial processes are based on archaic scientific literature. This Review, therefore, highlights new methods with a technical comparison and description of the different approaches. Water-removal methodologies are compared, as this is a crucial factor in PLA production. Apart from the synthesis of lactide, this Review also emphasizes the use of chemically produced racemic lactic acid (esters) as a starting point in the PLA production scheme. Stereochemically tailored PLA can be produced according to such a strategy, giving access to various polymer properties. PMID:27071863

  2. Lactic acid bacteria as a cell factory for riboflavin production

    PubMed Central

    Thakur, Kiran; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  3. Lactic acid bacteria as a cell factory for riboflavin production.

    PubMed

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  4. Technology and economic assessment of lactic acid production and uses

    SciTech Connect

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  5. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  6. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  7. Control of product selectivity using solid acids for the catalytic addition of phenol to hydroxy fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acid catalyzed reactions of hydroxy fatty acids, such as ricinoleic and lesquerolic, in the presence of phenolics can lead to four products or product groups. These include simple dehydration to dienoic acids, cyclization to epoxides, Friedel-Crafts alkylations of the double bonds, or ether for...

  8. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10664 Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic)....

  9. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10664 Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic)....

  10. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  11. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues. PMID:24607804

  12. Spectral characterization of acid weathering products on Martian basaltic glass

    NASA Astrophysics Data System (ADS)

    Yant, Marcella; Rogers, A. Deanne; Nekvasil, Hanna; Zhao, Yu-Yan Sara; Bristow, Tom

    2016-03-01

    For the first time, direct infrared spectral analyses of glasses with Martian compositions, altered under controlled conditions, are presented in order to assess surface weathering and regolith development on Mars. Basaltic glasses of Irvine and Backstay composition were synthesized and altered using H2SO4-HCl acid solutions (pH 0-4). Scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, Raman, and infrared spectral measurements were acquired for each reaction product. Infrared spectra were also acquired from previously synthesized and altered glasses with Pathfinder-measured compositions. Acid alteration on particles in the most acidic solutions (pH ≤ 1) yielded sulfate-dominated visible near infrared (VNIR) and thermal infrared (TIR) spectra with some silica influence. Spectral differences between alteration products from each starting material were present, reflecting strong sensitivity to changes in mineral assemblage. In the TIR, alteration features were preserved after reworking and consolidation. In the VNIR, hydrated sulfate features were present along with strong negative spectral slopes. Although such signatures are found in a few isolated locations on Mars with high-resolution spectrometers, much of the Martian surface lacks these characteristics, suggesting the following: acid alteration occurred at pH ≥ 2; small amounts of sulfates were reworked with unaltered material; there is a prevalence of intermediate-to-high silica glass in Martian starting materials (more resistant to acid alteration); primary or added sulfur were lacking; alteration features are obscured by dust; and/or large-scale, pervasive, acid sulfate weathering of the Martian surface did not occur. These results highlight the need to better understand the spectral properties of altered Martian surface material in order to enhance the interpretation of remote spectra for altered terrains.

  13. Enhanced Production of Docosahexaenoic Acid in Mammalian Cells

    PubMed Central

    Zhu, Guiming; Jiang, Xudong; Ou, Qin; Zhang, Tao; Wang, Mingfu; Sun, Guozhi; Wang, Zhao; Sun, Jie; Ge, Tangdong

    2014-01-01

    Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the acumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased prodution of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA. PMID:24788769

  14. Development of an industrializable fermentation process for propionic acid production.

    PubMed

    Stowers, Chris C; Cox, Brad M; Rodriguez, Brandon A

    2014-05-01

    Propionic acid (PA) is a short-chain fatty acid with wide industrial application including uses in pharmaceuticals, herbicides, cosmetics, and food preservatives. As a three-carbon building block, PA also has potential as a precursor for high-volume commodity chemicals such as propylene. Currently, most PA is manufactured through petrochemical routes, which can be tied to increasing prices and volatility due to difficulty in demand forecasting and feedstock availability. Herein described are research advancements to develop an industrially feasible, renewable route to PA. Seventeen Propionibacterium strains were screened using glucose and sucrose as the carbon source to identify the best platform strain. Propionibacterium acidipropionici ATCC 4875 was selected as the platform strain and subsequent fermentation optimization studies were performed to maximize productivity and yield. Fermentation productivity was improved three-fold to exceed 2 g/l/h by densifying the inoculum source. Byproduct levels, particularly lactic and succinic acid, were reduced by optimizing fermentor headspace pressure and shear. Following achievement of commercially viable productivities, the lab-grade medium components were replaced with industrial counterparts to further reduce fermentation costs. A pure enzymatically treated corn mash (ECM) medium improved the apparent PA yield to 0.6 g/g (PA produced/glucose consumed), but it came at the cost of reduced productivity. Supplementation of ECM with cyanocobalamin restored productivity to near lab-grade media levels. The optimized ECM recipe achieved a productivity of 0.5 g/l/h with an apparent PA yield of 0.60 g/g corresponding to a media cost <1 USD/kg of PA. These improvements significantly narrow the gap between the fermentation and incumbent petrochemical processes, which is estimated to have a manufacturing cost of 0.82 USD/kg in 2017. PMID:24627047

  15. 40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Natural and Processed...

  16. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT... heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming....

  17. 40 CFR 463.20 - Applicability; description of the cleaning water subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning... the cleaning water subcategory are processes where water comes in contact with the plastic product for... equipment, such as molds and mandrels, that contact the plastic material for the purpose of cleaning...

  18. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT... heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming....

  19. 40 CFR 463.20 - Applicability; description of the cleaning water subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning... the cleaning water subcategory are processes where water comes in contact with the plastic product for... equipment, such as molds and mandrels, that contact the plastic material for the purpose of cleaning...

  20. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PLASTICS MOLDING AND... cooling and heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming....

  1. 40 CFR 428.10 - Applicability; description of the tire and inner tube plants subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the tire... Tire and Inner Tube Plants Subcategory § 428.10 Applicability; description of the tire and inner tube... pollutants resulting from the production of pneumatic tires and inner tubes in tire and inner tube plants....

  2. 40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Natural and Processed...

  3. 40 CFR 405.100 - Applicability; description of the dry milk subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are applicable to discharges resulting from the manufacture of dry whole milk, dry skim milk and dry... milk subcategory. 405.100 Section 405.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry...

  4. 40 CFR 405.100 - Applicability; description of the dry milk subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are applicable to discharges resulting from the manufacture of dry whole milk, dry skim milk and dry... milk subcategory. 405.100 Section 405.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry...

  5. 40 CFR 419.40 - Applicability; description of the lube subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... discharges from any facility that produces petroleum products by the use of topping, cracking, and lube oil manufacturing processes, whether or not the facility includes any process in addition to topping, cracking, and...) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Lube Subcategory §...

  6. 40 CFR 419.10 - Applicability; description of the topping subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PETROLEUM REFINING POINT SOURCE CATEGORY Topping Subcategory... discharges from any facility that produces petroleum products by the use of topping and catalytic reforming, whether or not the facility includes any other process in addition to topping and catalytic reforming....

  7. Biosynthesis of Phosphonic and Phosphinic Acid Natural Products

    PubMed Central

    Metcalf, William W.; van der Donk, Wilfred A.

    2009-01-01

    Natural products containing carbon-phosphorus bonds (phosphonic and phosphinic acids) have found widespread use in medicine and agriculture. Recent years have seen a renewed interest in the biochemistry and biology of these compounds with the cloning of the biosynthetic gene clusters for several family members. This review discusses the commonalities and differences in the molecular logic that lies behind the biosynthesis of these compounds. The current knowledge regarding the metabolic pathways and enzymes involved in the production of a number of natural products, including the approved antibiotic fosfomycin, the widely used herbicide phosphinothricin, and the clinical candidate for treatment of malaria FR900098, is presented. Many of the enzymes involved in the biosynthesis of these compounds catalyze chemically and biologically unprecedented transformations and a wealth of new biochemistry has been revealed through their study. These studies have also suggested new strategies for natural product discovery. PMID:19489722

  8. Production of ascorbic acid releasing biomaterials for pelvic floor repair

    PubMed Central

    Mangır, Naşide; Bullock, Anthony J.; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    Objective An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Materials and methods Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2 weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. Results No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. Conclusion This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Statement of significance Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better

  9. Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance.

    PubMed

    Mackenzie, W

    1986-02-01

    Atkinson and colleagues recently proposed several concepts that contrast with traditional views: first, that acid-base balance is regulated chiefly by the reactions leading to urea production in the liver; second, that ammonium excretion by the kidney plays no role in acid-base homeostasis; and third, that ammonium does not stimulate ureagenesis (except indirectly). To examine these concepts, plasma ions other than bicarbonate are categorized as 1) fixed cations (Na+, K+, Ca2+, and Mg2+, symbolized M+) and anions (Cl-), 2) buffer anions (A-), 3) other anions (X-), and 4) ammonium plus charged amino groups (N+). Since electroneutrality dictates that M+ + N+ = Cl- + HCO3- + A- + X-, it follows that delta HCO3- = delta(M+ - Cl-) - delta A- - delta X- + delta N+. Therefore acid-base disturbances (changes in HCO3-) can be categorized as to how they affect bodily content and hence plasma concentration of each of these four types of ions. The stoichiometry of ureagenesis, glutamine hydrolysis, ammonium and titratable acid excretion, oxidation of neutral, acidic, and basic amino acids, and oxidation of methionine, phosphoserine, and protein are examined to see how they alter these quantities. It is concluded that 1) although ureagenesis is pH dependent and also counteracts a tendency of amino acid oxidation to cause alkalosis, this tendency is inherently limited by the hyperammonemia (delta N+) that necessarily accompanies it, 2) ammonium excretion is equivalent to hydrogen excretion in its effects on acid-base balance if, and only if, it occurs in exchange for sodium or is accompanied by chloride excretion and only when the glutamate generated by glutamine hydrolysis is oxidized.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3511732

  10. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol.

    PubMed

    Habe, Hiroshi; Shimada, Yuko; Yakushi, Toshiharu; Hattori, Hiromi; Ano, Yoshitaka; Fukuoka, Tokuma; Kitamoto, Dai; Itagaki, Masayuki; Watanabe, Kunihiro; Yanagishita, Hiroshi; Matsushita, Kazunobu; Sakaki, Keiji

    2009-12-01

    Glyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly. The growth parameters of two different strain types, Gluconobacter frateurii NBRC103465 and Acetobacter tropicalis NBRC16470, were optimized using a jar fermentor. G. frateurii accumulated 136.5 g/liter of GA with a 72% d-GA enantiomeric excess (ee) in the culture broth, whereas A. tropicalis produced 101.8 g/liter of d-GA with a 99% ee. The 136.5 g/liter of glycerate in the culture broth was concentrated to 236.5 g/liter by desalting electrodialysis during the 140-min operating time, and then, from 50 ml of the concentrated solution, 9.35 g of GA calcium salt was obtained by crystallization. Gene disruption analysis using G. oxydans IFO12528 revealed that the membrane-bound alcohol dehydrogenase (mADH)-encoding gene (adhA) is required for GA production, and purified mADH from G. oxydans IFO12528 catalyzed the oxidation of glycerol. These results strongly suggest that mADH is involved in GA production by acetic acid bacteria. We propose that GA is potentially mass producible from glycerol feedstock by a biotechnological process. PMID:19837846

  11. The Sugar Model: Catalysis by Amines and Amino Acid Products

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2001-02-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonyl-containing products under the conditions studied (pH 5.5 and 50°C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. α-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  12. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  13. Microbial production and applications of 5-aminolevulinic acid.

    PubMed

    Liu, Shuli; Zhang, Guangming; Li, Xiangkun; Zhang, Jie

    2014-09-01

    5-Aminolevulinic acid (ALA), an important intermediate in tetrapyrrole biosynthesis in organisms, has been widely applied in many fields, such as medicine, agriculture, and the food industry, due to its biochemical characteristics. Research efforts supporting the microbial production of ALA have received increasing interest due to its dominant advantages over chemical synthesis, including higher yields, lesser pollutant emissions, and a lesser monetary cost. ALA synthesis using photosynthetic bacteria (PSB) is a promising approach in various microbial synthesis methods. In this review, recent advances on the microbial production of ALA with an emphasis on PSB are summarized, the key enzymes in the biosynthesis pathway (especially the relationship between key enzymes and key genes) are detailed, regulation strategies are described, and the significant influencing factors on the ALA biosynthesis and application of ALA are outlined. Furthermore, the eco-friendly perspective involving the combination of wastewater treatment and microbial production of ALA is conceived. PMID:25022665

  14. Vanadium phosphate catalysts for biodiesel production from acid industrial by-products.

    PubMed

    Domingues, Carina; Correia, M Joana Neiva; Carvalho, Renato; Henriques, Carlos; Bordado, João; Dias, Ana Paula Soares

    2013-04-10

    Biodiesel production from high acidity industrial by-products was studied using heterogeneous acid catalysts. These by-products contain 26-39% of free fatty acids, 45-66% of fatty acids methyl esters and 0.6-1.1% of water and are consequently inadequate for direct basic catalyzed transesterification. Macroporous vanadyl phosphate catalysts with V/P=1 (atomic ratio) prepared via sol-gel like technique was used as catalyst and it was possible to produce in one reaction batch a biodiesel contain 87% and 94% of FAME, depending on the by-product used as raw material. The initial FAME content in the by-products had a beneficial effect on the reactions because they act as a co-solvent, thus improving the miscibility of the reaction mixture components. The water formed during esterification process seems to hinder the esters formation, possibly due to competitive adsorption with methanol and to the promotion of the FAME hydrolysis reaction.The observed catalyst deactivation seems to be related to the reduction of vanadium species. However, spent catalysts can be regenerated, even partially, by reoxidation of the reduced vanadium species with air. PMID:22902409

  15. Analysis of mycolic acid cleavage products and cellular fatty acids of Mycobacterium species by capillary gas chromatography.

    PubMed

    Lambert, M A; Moss, C W; Silcox, V A; Good, R C

    1986-04-01

    After growth and experimental conditions were established, the mycolic acid cleavage products, constituent fatty acids, and alcohols of representative strains of Mycobacterium tuberculosis, M. smegmatis, M. fortuitum complex, M. kansasii, M. gordonae, and M. avium complex were determined by capillary gas chromatography. Reproducible cleavage of mycolic acid methyl esters to tetracosanoic (24:0) or hexacosanoic (26:0) acid methyl esters was achieved by heating the sample in a high-temperature muffle furnace. The major constituent fatty acids in all species were hexadecanoic (16:0) and octadecenoic (18:1 omega 9-c, oleic) acids. With the exception of M. gordonae, 10-methyloctadecanoic acid was found in all species; moreover, M. gordonae was the only species tested which contained 2-methyltetradecanoic acid. M. kansasii was characterized by the presence of 2,4-dimethyltetradecanoic acid, M. avium complex by 2-eicosanol, and M. tuberculosis by 26:0 mycolic acid cleavage product. The mycolic acid cleavage product in the other five species tested was 24:0. Although a limited number of strains and species were tested, preliminary results indicate that this gas chromatographic method can be used to characterize mycobacterial cultures by their mycolic acid cleavage products and constituent fatty acid and alcohol content. PMID:3084554

  16. The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica.

    PubMed

    Kamzolova, Svetlana V; Allayarov, Ramil K; Lunina, Julia N; Morgunov, Igor G

    2016-04-01

    The effect of oxalic and itaconic acids, the inhibitors of the isocitrate lyase, on the production of isocitric acid by the wild strain Yarrowia lipolytica VKM Y-2373 grown in the medium containing rapeseed oil was studied. In the presence of oxalic and itaconic acids, strain Y. lipolytica accumulated in the medium isocitric acid (70.0 and 82.7 g/L, respectively) and citric acid (23.0 and 18.4 g/L, respectively). In control experiment, when the inhibitors were not added to the medium, the strain accumulated isocitric and citric acids at concentrations of 62.0 and 28.0 g/L, respectively. Thus, the use of the oxalic and itaconic acids as additives to the medium is a simple and convenient method of isocitric acid production with a minimum content of citric acid. PMID:26851896

  17. Putrescine production from different amino acid precursors by lactic acid bacteria from wine and cider.

    PubMed

    Costantini, Antonella; Pietroniro, Roberta; Doria, Francesca; Pessione, Enrica; Garcia-Moruno, Emilia

    2013-07-01

    The aim of this work was to study the production of biogenic amines and particularly putrescine in lactic acid bacteria (LAB) related to wine and cider. We applied an analytical protocol that involves the use of PCR and TLC techniques to determine the production of putrescine from different precursors. Moreover, we also studied the ability of the Lactobacillus and Pediococcus tested to produce histamine and tyramine. The results showed that the majority of the Lactobacillus brevis analyzed harbour both AgDI and tdc genes and are tyramine and putrescine producers. Conversely, among the other LAB tested, only one Lactobacillus hilgardii and one Pediococcus pentosaceus produced putrescine. The AgDI gene was also detected in two other LAB (Lactobacillus mali and Pediococcus parvulus), but no putrescine production was observed. Finally, hdc gene and histamine production were found in strains (L. hilgardii 5211, isolated from wine, and Lactobacillus casei 18, isolated from cider) that were not putrescine producers. PMID:23685467

  18. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  19. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  20. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503