Science.gov

Sample records for acid proline glycine

  1. LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen.

    PubMed Central

    Schwacke, R; Grallath, S; Breitkreuz, K E; Stransky, E; Stransky, H; Frommer, W B; Rentsch, D

    1999-01-01

    During maturation, pollen undergoes a period of dehydration accompanied by the accumulation of compatible solutes. Solute import across the pollen plasma membrane, which occurs via proteinaceous transporters, is required to support pollen development and also for subsequent germination and pollen tube growth. Analysis of the free amino acid composition of various tissues in tomato revealed that the proline content in flowers was 60 times higher than in any other organ analyzed. Within the floral organs, proline was confined predominantly to pollen, where it represented >70% of total free amino acids. Uptake experiments demonstrated that mature as well as germinated pollen rapidly take up proline. To identify proline transporters in tomato pollen, we isolated genes homologous to Arabidopsis proline transporters. LeProT1 was specifically expressed both in mature and germinating pollen, as demonstrated by RNA in situ hybridization. Expression in a yeast mutant demonstrated that LeProT1 transports proline and gamma-amino butyric acid with low affinity and glycine betaine with high affinity. Direct uptake and competition studies demonstrate that LeProT1 constitutes a general transporter for compatible solutes. PMID:10072398

  2. Quest for Cells Responsible for Age-related Increase of Salivary Glycine and Proline.

    PubMed

    Hino, Shunsuke; Nishiyama, Akira; Matsuta, Tomohiko; Horie, Norio; Shimoyama, Tetsuo; Tanaka, Shoji; Sakagami, Hiroshi

    2016-01-01

    We have previously reported that salivary glycine and proline levels are increased to nearly butanoate level in elderly people. In order to identify the source of glycine and proline, we performed high-performance liquid chromatography analysis of amino acid production to a total of seven oral cells before and after stimulation with inflammation inducers. We found that production of amino acids (per a given number of cells) by normal oral mesenchymal cells (gingival fibroblast, pulp cell, periodontal ligament fibroblast) was approximately three-fold that of oral squamous cell carcinoma cell lines (HSC-2, HSC-3, HSC-4, Ca9-22), and that production of glycine and especially proline by all these seven cells was much lower than that of glutamine and glutamic acid. Treatment of three oral mesenchymal cells with interleukin (IL)-1β or lipopoly-saccharide (LPS) reproducibly increased the production of glutamic acid and glutamine, but not that of glycine and proline. Glycine and proline only marginally stimulated the IL-8 production by IL-1β-stimulated gingival fibroblast, whereas glycine dose-dependently inhibited the nitric oxide production by lipopolysaccharide-stimulated mouse macrophage-like RAW264.7 cells. These data demonstrated that normal oral mesenchymal cells are not the major source of glycine and proline that accumulates in the saliva of aged people, suggesting the involvement of the deregulation of collagen metabolism during aging. PMID:26912818

  3. Ionization constants of aqueous amino acids at temperatures up to 250°C using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, α-alanine, and proline

    NASA Astrophysics Data System (ADS)

    Clarke, Rodney G. F.; Collins, Christopher M.; Roberts, Jenene C.; Trevani, Liliana N.; Bartholomew, Richard J.; Tremaine, Peter R.

    2005-06-01

    Ionization constants for several simple amino acids have been measured for the first time under hydrothermal conditions, using visible spectroscopy with a high-temperature, high-pressure flow cell and thermally stable colorimetric pH indicators. This method minimizes amino acid decomposition at high temperatures because the data can be collected rapidly with short equilibration times. The first ionization constant for proline and α-alanine, K a,COOH, and the first and second ionization constants for glycine, K a,COOH and K a,NH4+, have been determined at temperatures as high as 250°C. Values for the standard partial molar heat capacity of ionization, Δ rC po, COOH and Δ rC po, NH4+, have been determined from the temperature dependence of ln (K a,COOH) and ln (K a,NH4+). The methodology has been validated by measuring the ionization constant of acetic acid up to 250°C, with results that agree with literature values obtained by potentiometric measurements to within the combined experimental uncertainty. We dedicate this paper to the memory of Dr. Donald Irish (1932-2002) of the University of Waterloo—friend and former supervisor of two of the authors (R.J.B. and P.R.T.).

  4. Development of glycine-α-methyl-proline-containing tripeptides with neuroprotective properties.

    PubMed

    Cacciatore, Ivana; Fornasari, Erika; Di Stefano, Antonio; Marinelli, Lisa; Cerasa, Laura Serafina; Turkez, Hasan; Aydin, Elanur; Moretto, Alessandro; Ferrone, Alessio; Pesce, Mirko; di Giacomo, Viviana; Reale, Marcella; Costantini, Erica; Di Giovanni, Pamela; Speranza, Lorenza; Felaco, Mario; Patruno, Antonia

    2016-01-27

    Herein is described the synthesis of novel glycine-α-methyl-proline-containing tripeptides (GP(Me)X tripeptides namely GP(Me)R, GP(Me)K, and GP(Me)H) with the aim of obtaining derivatives highly stable in human plasma and able to counteract neuroinflammatory processes that are distinctive of neurodegenerative pathologies. The syntheses of GP(Me)R, GP(Me)K, and GP(Me)H were all achieved both by introducing the Pro(Me) residue into the Gly-Pro-Arg (GPR) sequence in place of the native Pro in P2 position and replacing the basic amino acid Arg in P3 position by Lys or His. Results showed that all novel GP(Me)X tripeptides are stable in human plasma (t1/2 > 51 h) and that GP(Me)H - generating stable intramolecular H-bond in a C11-turn by interaction of His imidazole ring and Gly carbonyl group - restored physiological levels of nitric oxide deriving from neuronal NOS (nNOS) activity, thus preventing the inflammatory response by suppression of the NF-kB activity and, consequently, the expression of inflammatory genes such as inducibile NOS (iNOS). Therefore, GP(Me)H could be a lead compound for further development of peptidomimetics able to contrast neuroinflammatory processes. PMID:26717205

  5. The effect of combined administration of L-proline and glycine on GH and IRI release in healthy prepuberal children.

    PubMed

    Popa, M; Florea, I; Simionescu, L; Dinulescu, E; Bartoc, R; Dimitriu, V; Juvină, E

    1979-01-01

    Proline (100 mg/kg b.w.) was given per os and after 30 minutes 10% glycine was i.v. injected to 25 healthy children of both sexes. A positive response (an increase of over 5 ng/ml of serum level of GH) was found in 21 of the 25 children. The insulin test showed a positive response in 24 of the 25 children. It was concluded that the decrease in glycine dosage from 250 mg/kg b.w. (earlier reports by the same authors) to 100 mg/kg b.w. (present data) is generally compensated by l-proline priming. The IRI serum levels were almost unchanged. By l-proline priming, the glycine test can also be applied to subjects with body weight over 40 kg, in doses of 100 mg/kg b.w. for exploring the secretory reserve of the somatotropic axis.

  6. Contrasting changes in transport of glycine vs proline at fertilization and during preimplantation development of mouse embryos

    SciTech Connect

    Haghighat, N.; Van Winkle, L.J.

    1987-05-01

    Na/sup +/ dependent glycine transport decreased steadily during cleavage of mouse embryos and then increased dramatically upon formation of early blastocysts (approx. 80 h post coitus), while proline uptake increased several-fold upon fertilization of eggs and then decreased through the blastocyst stage. V/sub max/ and K/sub m/ values for Gly transport in unfertilized eggs, 8-cell embryos and blastocysts were 9.5, 4.0 and 20 fmol. (egg or embryo)/sup -1/ min/sup -1/ and 93, 94 and 30 ..mu..M, respectively. Gly transport in 2-cell embryos was Cl-dependent and sigmoidally related to the (Na/sup +/), whereas Cl/sup -/-dependent Gly uptake was linearly related to (Na/sup +/) in blastocysts. Uptake of 1.0 ..mu..M (/sup 3/H)Gly in cleavage stages was inhibited by 10 mM sarcosine but not by Glu, Ser, or Lys and only weakly by MeAIB, BCO and pipecolate, whereas BCO, Ser, Lys, Pipecolate, Ala and Leu strongly inhibited transport in blastocysts; and Lys inhibition was unequivocally competitive (K/sub i/ approx. 70 ..mu..M). Na/sup +/-dependent uptake of 0.9 ..mu..M L-(/sup 3/H)Pro was inhibited strongly by only pipecolate in unfertilized eggs, but MeAIB and BCO were also strong inhibitors in zygotes. Fertilization was also accompanied by an increase in the V/sub max/ (0.9 vs 6.7 fmol. cell/sup -1/ min/sup -1/) and K/sub m/ (66 vs 230 ..mu..m) values for proline transport. This appears to be the first report of a change in amino acid transport upon fertilization of mammalian eggs, although transport of several amino acids increases dramatically in sea urchin zygotes.

  7. Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae.

    PubMed

    Nishida, Ikuhisa; Watanabe, Daisuke; Tsolmonbaatar, Ariunzaya; Kaino, Tomohiro; Ohtsu, Iwao; Takagi, Hiroshi

    2016-07-14

    In the budding yeast Saccharomyces cerevisiae, the AVT genes (AVT1-7), which encode vacuolar amino acid transporters belonging to the amino acid vacuolar transport (AVT)-family, were significantly upregulated in response to exogenous proline. To reveal a novel role of the Avt proteins in proline homeostasis, we analyzed the effects of deletion or overexpression of the AVT genes on the subcellular distribution of amino acids after the addition of proline to the cells grown in minimal medium. Among seven AVT gene disruptants, avt1Δ and avt7Δ showed the lowest ratios of vacuolar proline. Consistently, overexpression of the AVT1 gene specifically enhanced the vacuolar localization of proline. Since double disruption of the AVT1 and AVT7 genes did not completely abrogate vacuolar accumulation of proline, it is presumed that Avt1 has a dominant role, and Avt7 and other Avt proteins have redundant functions, in the localization of proline into the vacuolar lumen. In contrast, deletion of the AVT3 gene increased vacuolar proline, although the highly expressed AVT3 gene interfered with the accumulation of proline in the vacuole. Based on these results, it appears that Avt3 is the major protein involved in the export of proline from the vacuole. We also observed vacuolar membrane localization of GFP-fused Avt1, Avt3, and Avt7 proteins. Taken together, our data suggest that the AVT genes induced by exogenous proline are involved in the bidirectional transport of proline across the vacuolar membrane. PMID:27246536

  8. Insertion proQ220::Tn5 alters regulation of proline porter II, a transporter of proline and glycine betaine in Escherichia coli.

    PubMed Central

    Milner, J L; Wood, J M

    1989-01-01

    Mutation pro-220::Tn5, which increases the resistance of Escherichia coli to 3,4-dehydroproline (M. E. Stalmach, S. Grothe, and J. M. Wood, J. Bacteriol. 156:481-486, 1983), is not linked to putP, proP, or proU. It was located at 40.4 min on the E. coli chromosomal linkage map, by conjugational and transductional mapping, and is now denoted proQ220::Tn5. Proline porter II was not detectable when proQ220::Tn5 proP+ bacteria were cultivated under optimal conditions or with nutritional stress (amino acid limitation). Toxic proline analog sensitivity and proline porter II activity were partially restored to proQ220::Tn5 proP+ bacteria, but not to a proQ220::Tn5 proP219 strain, by a hyperosmotic shift and by growth under osmotic stress. Elevated expression of a proP::lacZ gene fusion, for bacteria grown under osmotic stress, was not influenced by the proQ220::Tn5 insertion. We propose that the proQ locus encodes a positive regulatory element which elevates proline porter II activity. PMID:2536686

  9. The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins.

    PubMed

    Toni, M; Dalla Valle, L; Alibardi, L

    2007-05-01

    The epidermis of scales of gecko lizards comprises alpha- and beta-keratins. Using bidimensional electrophoresis and immunoblotting, we have characterized keratins of corneous layers of scales in geckos, especially beta-keratins in digit pad lamellae. In the latter, the formation of thin bristles (setae) allow for the adhesion and climbing vertical or inverted surfaces. alpha-Keratins of 55-66 kDa remain in the acidic and neutral range of pI, while beta-keratins of 13-18 kDa show a broader variation of pI (4-10). Some protein spots for beta-keratins correspond to previously sequenced, basic glycine-proline-serine-rich beta-keratins of 169-191 amino acids. The predicted secondary structure shows that a large part of the molecule has a random-coiled conformation, small alpha helix regions, and a central region with 2-3 strands (beta-folding). The latter, termed core-box, shows homology with feather-scale-claw keratins of birds and is involved in the formation of beta-keratin filaments. Immunolocalization of beta-keratins indicates that these proteins are mainly present in the beta-layer and oberhautchen layer, including setae. The sequenced proteins of setae form bundles of keratins that determine their elongation. This process resembles that of feather-keratin on the elongation of barbule cells in feathers. It is suggested that small proteins rich in glycine, serine, and proline evolved in reptiles and birds to reinforce the mechanical resistance of the cytokeratin cytoskeleton initially present in the epidermis of scales and feathers.

  10. Corynebacterium glutamicum Is Equipped with Four Secondary Carriers for Compatible Solutes: Identification, Sequencing, and Characterization of the Proline/Ectoine Uptake System, ProP, and the Ectoine/Proline/Glycine Betaine Carrier, EctP

    PubMed Central

    Peter, Heidi; Weil, Brita; Burkovski, Andreas; Krämer, Reinhard; Morbach, Susanne

    1998-01-01

    Gram-positive soil bacterium Corynebacterium glutamicum uses the compatible solutes glycine betaine, proline, and ectoine for protection against hyperosmotic shock. Osmoregulated glycine betaine carrier BetP and proline permease PutP have been previously characterized; we have identified and characterized two additional osmoregulated secondary transporters for compatible solutes in C. glutamicum, namely, the proline/ectoine carrier, ProP, and the ectoine/glycine betaine/proline carrier, EctP. A ΔbetP ΔputP ΔproP ΔectP mutant was unable to respond to hyperosmotic stress, indicating that no additional uptake system for these compatible solutes is present. Osmoregulated ProP consists of 504 residues and preferred proline (Km, 48 μM) to ectoine (Km, 132 μM). The proP gene could not be expressed from its own promoter in C. glutamicum; however, expression was observed in Escherichia coli. ProP belongs to the major facilitator superfamily, whereas EctP, together with the betaine carrier, BetP, is a member of a newly established subfamily of the sodium/solute symporter superfamily. The constitutively expressed ectP codes for a 615-residue transporter. EctP preferred ectoine (Km, 63 μM) to betaine (Km, 333 μM) and proline (Km, 1,200 μM). Its activity was regulated by the external osmolality. The related betaine transporter, BetP, could be activated directly by altering the membrane state with local anesthetics, but this was not the case for EctP. Furthermore, the onset of osmotic activation was virtually instantaneous for BetP, whereas it took about 10 s for EctP. PMID:9811661

  11. Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP.

    PubMed

    Peter, H; Weil, B; Burkovski, A; Krämer, R; Morbach, S

    1998-11-01

    Gram-positive soil bacterium Corynebacterium glutamicum uses the compatible solutes glycine betaine, proline, and ectoine for protection against hyperosmotic shock. Osmoregulated glycine betaine carrier BetP and proline permease PutP have been previously characterized; we have identified and characterized two additional osmoregulated secondary transporters for compatible solutes in C. glutamicum, namely, the proline/ectoine carrier, ProP, and the ectoine/glycine betaine/proline carrier, EctP. A DeltabetP DeltaputP DeltaproP DeltaectP mutant was unable to respond to hyperosmotic stress, indicating that no additional uptake system for these compatible solutes is present. Osmoregulated ProP consists of 504 residues and preferred proline (Km, 48 microM) to ectoine (Km, 132 microM). The proP gene could not be expressed from its own promoter in C. glutamicum; however, expression was observed in Escherichia coli. ProP belongs to the major facilitator superfamily, whereas EctP, together with the betaine carrier, BetP, is a member of a newly established subfamily of the sodium/solute symporter superfamily. The constitutively expressed ectP codes for a 615-residue transporter. EctP preferred ectoine (Km, 63 microM) to betaine (Km, 333 microM) and proline (Km, 1,200 microM). Its activity was regulated by the external osmolality. The related betaine transporter, BetP, could be activated directly by altering the membrane state with local anesthetics, but this was not the case for EctP. Furthermore, the onset of osmotic activation was virtually instantaneous for BetP, whereas it took about 10 s for EctP.

  12. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    PubMed Central

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-01-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility. PMID:24633053

  13. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-03-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.

  14. Factors reducing and promoting the effectiveness of proline as an osmoprotectant in Escherichia coli K12.

    PubMed

    Milner, J L; McClellan, D J; Wood, J M

    1987-07-01

    Proline accumulation in Escherichia coli is mediated by three proline porters. Proline catabolism is effected by proline porter I (PPI) and proline/delta 1-pyrroline carboxylate dehydrogenase. Proline did not accumulate cytoplasmically when E. coli was subjected to osmotic stress in minimal salts medium. Although PPI is induced when proline is provided as carbon or nitrogen source, its activity decreased following growth of the bacteria in minimal salts medium of high osmotic strength. Proline dehydrogenase was induced by proline in low or high osmotic strength media. Proline porter II (PPII) was both activated and induced in osmotically stressed bacteria, though the dependencies of the two responses on medium osmolarity differed. Osmotic downshift during the transport measurement decreased the uptake of proline, serine and glutamine by bacteria cultured in media of high osmotic strength. Thus, while osmotic upshift caused specific activation of PPII, osmotic downshift caused a non-specific reduction in amino acid uptake. Glycine betaine inhibited the uptake of [14C]proline via PPII and PPIII but not via PPI. The dependence of that inhibition on glycine betaine concentration was similar when PPII was uninduced, induced or activated by osmotic stress, or induced by amino acid limited growth. Thus PPII and PPIII, not PPI, contribute to the mechanism of osmoprotection by proline and glycine betaine. The tendency for exogenous proline to accumulate in the cytoplasm of bacteria exposed to osmotic stress would, however, be countered by increased proline catabolism. PMID:3312483

  15. Quantification of hydroxyl radical-derived oxidation products in peptides containing glycine, alanine, valine, and proline.

    PubMed

    Morgan, Philip E; Pattison, David I; Davies, Michael J

    2012-01-15

    Proteins are a major target for oxidation due to their abundance and high reactivity. Despite extensive investigation over many years, only limited quantitative data exist on the contributions of different pathways to the oxidation of peptides and proteins. This study was designed to obtain quantitative data on the nature and yields of oxidation products (alcohols, carbonyls, hydroperoxides, fragment species) formed by a prototypic oxidant system (HO(•)/O(2)) on small peptides of limited, but known, amino acid composition. Peptides composed of Gly, Ala, Val, and Pro were examined with particular emphasis on the peptide Val-Gly-Val-Ala-Pro-Gly, a repeat motif in elastin with chemotactic activity and metalloproteinase regulation properties. The data obtained indicate that hydroperoxide formation occurs nonrandomly (Pro > Val > Ala > Gly) with this inversely related to carbonyl yields (both peptide-bound and released). Multiple alcohols are generated at both side-chain and backbone sites. Backbone fragmentation has been characterized at multiple positions, with sites adjacent to Pro residues being of major importance. Summation of the product concentrations provides clear evidence for the occurrence of chain reactions in peptides exposed to HO(•)/O(2), with the overall product yields exceeding that of the initial HO(•) generated.

  16. Proline might have been the first amino acid in the primitive genetic code.

    PubMed

    Komatsu, Reina; Sawada, Risa; Umehara, Takuya; Tamura, Koji

    2014-06-01

    Stereochemical assignment of amino acids and corresponding codons or anticodons has not been successful so far. Here, we focused on proline and GGG (anticodon of tRNA(Pro)) and investigated their mutual interaction. Circular dichroism spectroscopy revealed that guanosine nucleotides (GG, GGG) formed G-quartet structures. The structures were destroyed by adding high concentrations of proline. We propose that the possibility of the reversible proline/G-quartet interaction could have contributed to the specific assignment of proline on GGG and that this coding could have been the first in the genetic code. PMID:24973301

  17. Stereochemical Sequence Ion Selectivity: Proline versus Pipecolic-acid-containing Protonated Peptides

    NASA Astrophysics Data System (ADS)

    Abutokaikah, Maha T.; Guan, Shanshan; Bythell, Benjamin J.

    2016-10-01

    Substitution of proline by pipecolic acid, the six-membered ring congener of proline, results in vastly different tandem mass spectra. The well-known proline effect is eliminated and amide bond cleavage C-terminal to pipecolic acid dominates instead. Why do these two ostensibly similar residues produce dramatically differing spectra? Recent evidence indicates that the proton affinities of these residues are similar, so are unlikely to explain the result [Raulfs et al., J. Am. Soc. Mass Spectrom. 25, 1705-1715 (2014)]. An additional hypothesis based on increased flexibility was also advocated. Here, we provide a computational investigation of the "pipecolic acid effect," to test this and other hypotheses to determine if theory can shed additional light on this fascinating result. Our calculations provide evidence for both the increased flexibility of pipecolic-acid-containing peptides, and structural changes in the transition structures necessary to produce the sequence ions. The most striking computational finding is inversion of the stereochemistry of the transition structures leading to "proline effect"-type amide bond fragmentation between the proline/pipecolic acid-congeners: R (proline) to S (pipecolic acid). Additionally, our calculations predict substantial stabilization of the amide bond cleavage barriers for the pipecolic acid congeners by reduction in deleterious steric interactions and provide evidence for the importance of experimental energy regime in rationalizing the spectra.

  18. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery.

    PubMed

    Sharma, Sandeep; Verslues, Paul E

    2010-11-01

    Proline accumulation in response to abiotic stress is controlled partially by transcriptional regulation of key enzymes including Δ¹-pyrroline-carboxylate synthetase1 (P5CS1), proline dehydrogenase (ProDH), ornithine amino transferase (OAT) and Δ¹-pyrroline-carboxylate dehydrogenase (P5CDH). For these genes, the role of abscisic acid (ABA), role of feedback regulation by high proline and the mechanisms of gene regulation upon stress release remain unclear. An ABA-deficient (aba2-1) mutant, mutants deficient in proline accumulation (p5cs1), as well as double mutants deficient in both, were used to determine the importance of these factors in transcriptional regulation of proline metabolism. Upregulation of P5CS1 by low water potential was less dependent on ABA than that of stress-marker genes used for comparison. ProDH downregulation by low water potential and upregulation by stress release was not impaired in aba2-1, p5cs1 or p5cs1/aba2-1 compared with wild type despite differing ABA and proline levels in these mutants. Thus, ProDH is a model for characterization of novel regulatory mechanisms associated with low water potential and stress recovery. Both OAT and P5CDH were upregulated during low water potential. This contrasts with previous salt stress experiments and raises questions about the flux of metabolites through proline metabolism under low water potential when high levels of proline accumulate.

  19. Proline-glutamic acid-proline-lysine repetition peptide as an antigen for the serological diagnosis of strangles.

    PubMed

    Hobo, S; Niwa, H; Anzai, T

    2008-04-12

    The reactivity of the proline-glutamic acid-proline-lysine (PEPK) repetition peptide antigen in 3176 serum samples was investigated to evaluate its utility as an antigen for the serological diagnosis of strangles. The reactivity of the sera of horses infected with Streptococcus equi subspecies equi was high when the peptide had several PEPK repetitions. However, as the number of PEPK repetitions increased, the reactivity of the antigen with the sera of horses infected with Streptococcus equi subspecies zooepidemicus also increased. In horses infected experimentally with S equi, the reactivity of the PEPK antigen with five repetitions increased one week after inoculation and continued to increase during the following four weeks. The optical density (OD) values of test sera from horses infected experimentally with S equi and sera from horses that had recovered from strangles were high. The od values of sera from horses that had recovered from an experimental infection with S zooepidemicus and of sera from healthy horses were comparatively low.

  20. Proline-glutamic acid-proline-lysine peptide set as a specific antigen for the serological diagnosis of strangles.

    PubMed

    Hobo, S; Niwa, H; Anzai, T

    2006-11-01

    The reactivity of synthesised peptide sets for the M-like proteins SeM and SzPSe with sera from horses infected with Streptococcus equi or Streptococcus zooepidemicus, or control horses, was investigated by an ELISA. Seventeen horses were infected experimentally with S equi or S zooepidemicus, convalescent sera were obtained from 25 horses and control sera were obtained from 1945 horses. The serum antibody responses of individual horses to the peptide sets were highly variable. Some of the peptide sets for SeM reacted strongly with the sera from the horses infected experimentally with S equi, but also reacted with sera from some of the horses infected experimentally with S zooepidemicus. However, the proline-glutamic acid-proline-lysine (PEPK) repeats peptide set, synthesised from the PEPK repeats areas of SzPSe, reacted most strongly with the sera from the horses infected experimentally with S equi and the horses convalescing from strangles, and reacted only minimally with the sera from the horses infected experimentally with S zooepidemicus and the control horses.

  1. Cyclopropyl glycine and proline-containing preparation noopept evoke two types of membrane potential responses in synaptoneurosomes.

    PubMed

    Lutsenko, V K; Vukolova, M N; Gudasheva, T A

    2003-06-01

    Proline, cyclo(Pro-Gly), and acyl-prolyl-containing dipeptide GVS-111 decreased synaptoneurosome membrane potential in a Ca2+-free medium. The efficiency of these preparations decreased in the following order: GVS>cyclo(Pro-Gly)>proline. Depolarization responses induced by endogenous nootropic agent cyclo(Pro-Gly) was dose-dependent and saturable; the threshold concentration of cyclo(Pro-Gly) was 10(-9) M. In a Ca2+-containing medium GVS and cyclo(Pro-Gly) induced both hyperpolarizing and depolarizing membrane responses of synaptoneurosomes. Possible mechanisms underlying changes in the membrane potential of synaptoneurosomes induced by nootropic agents are discussed. It was interesting whether modulation of electrogenesis can improve memory and potentiate the neuroprotective effect of the test nootropic agents. PMID:12937673

  2. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile. PMID:26474598

  3. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile.

  4. D-Amino acid oxidase and presence of D-proline in Xenopus laevis.

    PubMed

    Soma, Hiroki; Furuya, Ryuji; Kaneko, Ryo; Tsukamoto, Ayaka; Shirasu, Kazumitsu; Tanigawa, Minoru; Nagata, Yoko

    2013-10-01

    We purified D-amino acid oxidase (EC 1.4.3.3, DAO) from Xenopus laevis tadpoles. The optimal temperature and pH for enzyme activity were 35-40 °C and 8.3-9.0, respectively, depending on the substrate amino acids available to the enzyme; the highest activity was observed with D-proline followed by D-phenylalanine. Activity was significantly inhibited by p-hydroxymercuribenzoate, but only moderately by p-chloromercuribenzoate or benzoate. Enzyme activity was increased until the final tadpole stage, but was reduced to one-third in the adult and was localized primarily in the kidney. The tadpoles contained high concentrations of D-proline close to the final developmental stage and nearly no D-amino acids were detected in the adult frog, indicating that D-amino acid oxidase functions in metamorphosis.

  5. Glycine-Linked Nucleoside-β-Amino Acids: Polyamide Analogues of Nucleic Acids.

    PubMed

    Banerjee, Anjan; Bagmare, Seema; Varada, Manojkumar; Kumar, Vaijayanti A

    2015-08-19

    3'-5'-Deoxyribose-sugar-phoshate backbone in DNA is completely replaced by 2'-deoxyribonucleoside-based β-amino acids interlinked by glycine to create uncharged polyamide DNA with 3'-5'-directionality. These oligomers as conjugates of α-amino acids and nucleoside-β-amino acids bind strongly and sequence-specifically only to the antiparallel complementary RNA and DNA.

  6. A Statistical Analysis of the PPII Propensity of Amino Acid Guests in Proline-Rich Peptides

    PubMed Central

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-01-01

    There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content. PMID:21320454

  7. Competing Noncovalent Host-guest Interactions and H/D Exchange: Reactions of Benzyloxycarbonyl-Proline Glycine Dipeptide Variants with ND3

    NASA Astrophysics Data System (ADS)

    Miladi, Mahsan; Olaitan, Abayomi D.; Zekavat, Behrooz; Solouki, Touradj

    2015-11-01

    A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase "host-guest" type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na+, K+, or Cs+)-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H]+ and [Z-PG-OCH3 + H]+ formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3]+) but no ND3 adducts were observed for [Z-PG + alkali metal]+ or [Z-PG + H - CO2]+. Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H]+ compared to [Z-PG + alkali metal]+ species. Molecular modeling and experimental MS results for [Z-PG + H]+ and [Z-PG + alkali metal]+ suggest that optimized cation-π and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation.

  8. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  9. Competing noncovalent host-guest interactions and H/D exchange: reactions of benzyloxycarbonyl-proline glycine dipeptide variants with ND3.

    PubMed

    Miladi, Mahsan; Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2015-11-01

    A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase "host-guest" type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na(+), K(+), or Cs(+))-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H](+) and [Z-PG-OCH3 + H](+) formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3](+)) but no ND3 adducts were observed for [Z-PG + alkali metal](+) or [Z-PG + H - CO2](+). Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H](+) compared to [Z-PG + alkali metal](+) species. Molecular modeling and experimental MS results for [Z-PG + H](+) and [Z-PG + alkali metal](+) suggest that optimized cation-π and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation. Graphical Abstract ᅟ. PMID:26289383

  10. On the influence of low-energy ionizing radiation on the amino acid molecule: proline

    NASA Astrophysics Data System (ADS)

    Tamuliene, Jelena; Romanova, Liudmila; Vukstich, Vasyl; Papp, Alexander; Shkurin, Serhiy; Baliulyte, Laura; Snegursky, Alexander

    2016-06-01

    New data on the electron-impact fragmentation of the amino acid proline molecule are presented as being related to the formation of the ionized products due to the influence of low-energy ionizing radiation on the above molecule. An extensive DFT-theory based on the theoretical approach enabled the main pathways of the proline molecules fragmentation to be elucidated. A series of the produced fragments have been identified. The absolute appearance energies for some of them have been both measured experimentally and calculated theoretically. The data of the experimental studies and theoretical calculations are compared and analyzed. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  11. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine...) Shall bring such products into compliance with an authorizing food additive regulation. A food additive... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glycine (aminoacetic acid) in food for...

  12. Effective prevention of chill-haze in beer using an acid proline-specific endoprotease from Aspergillus niger.

    PubMed

    Lopez, Michel; Edens, Luppo

    2005-10-01

    Chill-haze formation during beer production is known to involve polyphenols that interact with proline-rich proteins. We hypothesized that incubating beer wort with a proline-specific protease would extensively hydrolyze these proline-rich proteins, yielding a peptide fraction that is unable to form a haze. Predigestion of the proline-rich wheat gliadin with different proteases pointed toward a strong haze-suppressing effect by a proline-specific enzyme. This finding was confirmed in small-scale brewing experiments using a recently identified proline-specific protease with an acidic pH optimum. Subsequent pilot plant trials demonstrated that, upon its addition during the fermentation phase of beer brewing, even low levels of this acidic enzyme effectively prevented chill-haze formation in bottled beer. Results of beer foam stability measurements indicated that the enzyme treatment leaves the beer foam almost unaffected. In combination with the enzyme's cost-effectiveness and regulatory status, these preliminary test results seem to favor further industrial development of this enzymatic beer stabilization method.

  13. Identification of a highly conserved valine-glycine-phenylalanine amino acid triplet required for HIV-1 Nef function

    PubMed Central

    2012-01-01

    Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly

  14. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings.

    PubMed

    Zengin, Fikriye Kirbag; Kirbag, Sevda

    2007-07-01

    The effect of copperchloride (CuCl2) on the level of chlorophyll (a+b), proline, protein and abscisic acid in sunflower (Helianthus annuus L.) seedlings were investigated Control and copper treated (0.4, 0.5 and 0.6 mM) seedlings were grown for ten days in Hoagland solution. Abscisic acid content was determined in root, shoot and leaf tissues of seedlings by HPLC. Copper stress caused significant increase of the abscisic acid contents in roots, shoots and leaves of seedlings. The increase was dependent on the copper salt concentration. Enhanced accumulation of proline in the leaves of seedlings exposed to copper was determined, as well as a decrease of chlorophyll (a+b) and total protein (p < 0.05 or p < 0.01). It was observed that the level of chlorophyll (a+b) and total protein (p < 0.05 or p < 0.01) remarkably decreased as copper concentration increased to 0.6 mM, although the levels of proline and abscisic acid in the leaves of plants were increased--a dose-depended behavior The same trends were also observed with the level of abscisic acid of stems and roots. Copper has dose- depended effects on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. Thus, we assumed that copper levels increase above some critical points seedling growth get negative effects. This assumption is in line with previous findings.

  15. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation.

    PubMed

    Mayr, Johannes A; Zimmermann, Franz A; Fauth, Christine; Bergheim, Christa; Meierhofer, David; Radmayr, Doris; Zschocke, Johannes; Koch, Johannes; Sperl, Wolfgang

    2011-12-01

    Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins.

  16. A versatile proline/alanine transporter in the unicellular pathogen Leishmania donovani regulates amino acid homoeostasis and osmotic stress responses.

    PubMed

    Inbar, Ehud; Schlisselberg, Doreen; Suter Grotemeyer, Marianne; Rentsch, Doris; Zilberstein, Dan

    2013-01-15

    Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.

  17. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation

    PubMed Central

    Khan, M Iqbal R; Iqbal, Noushina; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2013-01-01

    We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40°C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat. PMID:24022274

  18. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation.

    PubMed

    Khan, M Iqbal R; Iqbal, Noushina; Masood, Asim; Per, Tasir S; Khan, Nafees A

    2013-11-01

    We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40 °C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat.

  19. Hypercondensation of an amino acid: synthesis and characterization of a black glycine polymer.

    PubMed

    Fox, Stefan; Dalai, Punam; Lambert, Jean-François; Strasdeit, Henry

    2015-06-01

    A granular material was obtained by thermal polymerization of glycine at 200 °C. It has been named "thermomelanoid" because of its strikingly deep-black color. The polymerization process is mainly a dehydration condensation leading to conventional amide bonds, and also CC double bonds that are formed from CO and CH2 groups ("hypercondensation"). Spectroscopic data, in particular from (13) C and (15) N solid-state cross-polarization magic angle spinning (CP-MAS) NMR spectra, suggest that the black color is due to (cross-)conjugated CC, CO, and NH groups. Small glycine peptides, especially triglycine, appear to be key intermediates in the formation of the thermomelanoid. This has been concluded by comparing the thermal behavior of glyn homopeptides (n=2-6) and glycine. The glycine polymerization was accompanied by the formation of small amounts of byproducts. Notably, a few percent of alanine and aspartic acid could be detected in the polymer. By using (13) C-labeled glycine, it was shown that these two amino acids formed through a common pathway, namely CαCα bond formation between glycine molecules. The thermomelanoid is hydrolyzed by strong acids and bases at room temperature, forming brown solutions. PMID:25933438

  20. Proline Coordination with Fatty Acid Synthesis and Redox Metabolism of Chloroplast and Mitochondria1[OPEN

    PubMed Central

    Shinde, Suhas; Villamor, Joji Grace; Lin, Wendar; Verslues, Paul E.

    2016-01-01

    Proline (Pro) accumulation is one of the most prominent changes in plant metabolism during drought and low water potential; however, the regulation and function of Pro metabolism remain unclear. We used a combination of forward genetic screening based on a Proline Dehydrogenase1 (PDH1) promoter-luciferase reporter (PDH1pro:LUC2) and RNA sequencing of the Pro synthesis mutant p5cs1-4 to identify multiple loci affecting Pro accumulation in Arabidopsis (Arabidopsis thaliana). Two mutants having high PDH1pro:LUC2 expression and increased Pro accumulation at low water potential were found to be alleles of Cytochrome P450, Family 86, Subfamily A, Polypeptide2 (CYP86A2) and Long Chain Acyl Synthetase2 (LACS2), which catalyze two successive steps in very-long-chain fatty acid (VLCFA) synthesis. Reverse genetic experiments found additional VLCFA and lipid metabolism-related mutants with increased Pro accumulation. Altered cellular redox status is a key factor in the coordination of Pro and VLCFA metabolism. The NADPH oxidase inhibitor diphenyleneiodonium (DPI) induced high levels of Pro accumulation and strongly repressed PDH1pro:LUC2 expression. cyp86a2 and lacs2 mutants were hypersensitive to diphenyleneiodonium but could be reverted to wild-type Pro and PDH1pro:LUC2 expression by reactive oxygen species scavengers. The coordination of Pro and redox metabolism also was indicated by the altered expression of chloroplast and mitochondria electron transport genes in p5cs1-4. These results show that Pro metabolism is both influenced by and influences cellular redox status via previously unknown coordination with several metabolic pathways. In particular, Pro and VLCFA synthesis share dual roles to help buffer cellular redox status while producing products useful for stress resistance, namely the compatible solute Pro and cuticle lipids. PMID:27512016

  1. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.

    PubMed

    Pilling, Sergio; Baptista, Leonardo; Boechat-Roberty, Heloisa M; Andrade, Diana P P

    2011-11-01

    Despite the extensive search for glycine (NH₂CH₂COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH₂OH. Another possible reaction involves NH₂CH₂ and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH

  2. Connecting Proline and γ-Aminobutyric Acid in Stressed Plants through Non-Enzymatic Reactions

    PubMed Central

    Signorelli, Santiago; Dans, Pablo D.; Coitiño, E. Laura; Borsani, Omar; Monza, Jorge

    2015-01-01

    The accumulation of proline (Pro) in plants exposed to biotic/abiotic stress is a well-documented and conserved response in most vegetal species. Stress conditions induce the overproduction of reactive oxygen species which can lead to cellular damage. In vitro assays have shown that enzyme inactivation by hydroxyl radicals (·OH) can be avoided in presence of Pro, suggesting that this amino acid could act as an ·OH scavenger. We applied Density Functional Theory coupled with a polarizable continuum model to elucidate how Pro reacts with ·OH. In this work we suggest that Pro reacts favourably with ·OH by H–abstraction on the amine group. This reaction produces the spontaneous decarboxylation of Pro leading to the formation of pyrrolidin-1-yl. In turn, pyrrolidin-1-yl can easily be converted to Δ1-pyrroline, the substrate of the enzyme Δ1-pyrroline dehydrogenase, which produces γ-aminobutyric acid (GABA). GABA and Pro are frequently accumulated in stressed plants and several protective roles have been assigned to these molecules. Thereby we present an alternative non-enzymatic way to synthetize GABA under oxidative stress. Finally this work sheds light on a new beneficial role of Pro accumulation in the maintenance of photosynthetic activity. PMID:25775459

  3. Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions.

    PubMed

    Signorelli, Santiago; Dans, Pablo D; Coitiño, E Laura; Borsani, Omar; Monza, Jorge

    2015-01-01

    The accumulation of proline (Pro) in plants exposed to biotic/abiotic stress is a well-documented and conserved response in most vegetal species. Stress conditions induce the overproduction of reactive oxygen species which can lead to cellular damage. In vitro assays have shown that enzyme inactivation by hydroxyl radicals (·OH) can be avoided in presence of Pro, suggesting that this amino acid could act as an ·OH scavenger. We applied Density Functional Theory coupled with a polarizable continuum model to elucidate how Pro reacts with ·OH. In this work we suggest that Pro reacts favourably with ·OH by H-abstraction on the amine group. This reaction produces the spontaneous decarboxylation of Pro leading to the formation of pyrrolidin-1-yl. In turn, pyrrolidin-1-yl can easily be converted to Δ1-pyrroline, the substrate of the enzyme Δ1-pyrroline dehydrogenase, which produces γ-aminobutyric acid (GABA). GABA and Pro are frequently accumulated in stressed plants and several protective roles have been assigned to these molecules. Thereby we present an alternative non-enzymatic way to synthetize GABA under oxidative stress. Finally this work sheds light on a new beneficial role of Pro accumulation in the maintenance of photosynthetic activity.

  4. The Infrared Spectrum of Matrix Isolated Aminoacetonitrile: A Precursor to the Amino Acid Glycine

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Bauschlicher, Charles W., Jr.; Sandford, Scott A.

    2003-01-01

    We present infrared (IR) spectral data from matrix isolation experiments and density functional theory calculations on the pre-biologically interesting molecule aminoacetonitrile, a precursor to glycine. We find that this nitrile has an unusually weak nitrile (C=N) stretch in the infrared, in contrast to expectations based on measurements and models of other nitriles under astrophysical conditions. The absence of an observable nitrile absorption feature in the infrared will make the IR search for this molecule considerably more difficult, and will raise estimates of upper limits on nitriles in interstellar and outer Solar System ices. This is also of relevance to assessing the formation routes of the amino acid glycine, since aminoacetonitrile is the putative precursor to glycine via the Strecker synthesis, the mechanism postulated to have produced the amino acids in meteorites.

  5. Transforming growth factor-beta 1 stimulates vascular smooth muscle cell L-proline transport by inducing system A amino acid transporter 2 (SAT2) gene expression.

    PubMed Central

    Ensenat, D; Hassan, S; Reyna, S V; Schafer, A I; Durante, W

    2001-01-01

    Transforming growth factor-beta1 (TGF-beta 1) is a multifunctional cytokine that contributes to arterial remodelling by stimulating vascular smooth muscle cell (SMC) growth and collagen synthesis at sites of vascular injury. Since l-proline is essential for the synthesis of collagen, we examined whether TGF-beta 1 regulates the transcellular transport of l-proline by vascular SMCs. l-Proline uptake by vascular SMCs was primarily sodium-dependent, pH-sensitive, blocked by neutral amino acids and alpha-(methylamino)isobutyric acid, and exhibited trans-inhibition. Treatment of SMCs with TGF-beta 1 stimulated l-proline transport in a concentration- and time-dependent manner. The TGF-beta 1-mediated l-proline uptake was inhibited by cycloheximide or actinomycin D. Kinetic studies indicated that TGF-beta 1-induced l-proline transport was mediated by an increase in transport capacity independent of any changes in the affinity for l-proline. TGF-beta 1 stimulated the expression of system A amino acid transporter 2 (SAT2) mRNA in a time-dependent fashion that paralleled the increase in l-proline transport. Reverse transcriptase PCR failed to detect the presence of SAT1 or amino acid transporter 3 (ATA3) in either untreated or TGF-beta 1-treated SMCs. These results demonstrate that l-proline transport by vascular SMCs is mediated predominantly by the SAT and that TGF-beta 1 stimulates SMC l-proline uptake by inducing the expression of the SAT2 gene. The ability of TGF-beta 1 to induce SAT2 expression may function to provide SMCs with the necessary levels of l-proline required for collagen synthesis and cell growth. PMID:11716780

  6. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative...

  7. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative...

  8. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine (aminoacetic acid) in food for human consumption. (a) Heretofore,...

  9. Investigations of the Mechanism of the "Proline Effect" in Tandem Mass Spectrometry Experiments: The "Pipecolic Acid Effect"

    NASA Astrophysics Data System (ADS)

    Raulfs, Mary Disa M.; Breci, Linda; Bernier, Matthew; Hamdy, Omar M.; Janiga, Ashley; Wysocki, Vicki; Poutsma, John C.

    2014-10-01

    The fragmentation behavior of a set of model peptides containing proline, its four-membered ring analog azetidine-2-carboxylic acid (Aze), its six-membered ring analog pipecolic acid (Pip), an acyclic secondary amine residue N-methyl-alanine (NMeA), and the D stereoisomers of Pro and Pip has been determined using collision-induced dissociation in ESI-tandem mass spectrometers. Experimental results for AAXAA, AVXLG, AAAXA, AGXGA, and AXPAA peptides are presented, where X represents Pro, Aze, Pip, or NMeA. Aze- and Pro-containing peptides fragment according to the well-established "proline effect" through selective cleavage of the amide bond N-terminal to the Aze/Pro residue to give yn + ions. In contrast, Pip- and NMA-fragment through a different mechanism, the "pipecolic acid effect," selectively at the amide bond C-terminal to the Pip/NMA residue to give bn + ions. Calculations of the relative basicities of various sites in model peptide molecules containing Aze, Pro, Pip, or NMeA indicate that whereas the "proline effect' can in part be rationalized by the increased basicity of the prolyl-amide site, the "pipecolic acid effect" cannot be justified through the basicity of the residue. Rather, the increased flexibility of the Pip and NMeA residues allow for conformations of the peptide for which transfer of the mobile proton to the amide site C-terminal to the Pip/NMeA becomes energetically favorable. This argument is supported by the differing results obtained for AAPAA versus AA(D-Pro)AA, a result that can best be explained by steric effects. Fragmentation of pentapeptides containing both Pro and Pip indicate that the "pipecolic acid effect" is stronger than the "proline effect."

  10. Proline Mechanisms of Stress Survival

    PubMed Central

    Liang, Xinwen; Zhang, Lu; Natarajan, Sathish Kumar

    2013-01-01

    Abstract Significance: The imino acid proline is utilized by different organisms to offset cellular imbalances caused by environmental stress. The wide use in nature of proline as a stress adaptor molecule indicates that proline has a fundamental biological role in stress response. Understanding the mechanisms by which proline enhances abiotic/biotic stress response will facilitate agricultural crop research and improve human health. Recent Advances: It is now recognized that proline metabolism propels cellular signaling processes that promote cellular apoptosis or survival. Studies have shown that proline metabolism influences signaling pathways by increasing reactive oxygen species (ROS) formation in the mitochondria via the electron transport chain. Enhanced ROS production due to proline metabolism has been implicated in the hypersensitive response in plants, lifespan extension in worms, and apoptosis, tumor suppression, and cell survival in animals. Critical Issues: The ability of proline to influence disparate cellular outcomes may be governed by ROS levels generated in the mitochondria. Defining the threshold at which proline metabolic enzyme expression switches from inducing survival pathways to cellular apoptosis would provide molecular insights into cellular redox regulation by proline. Are ROS the only mediators of proline metabolic signaling or are other factors involved? Future Directions: New evidence suggests that proline biosynthesis enzymes interact with redox proteins such as thioredoxin. An important future pursuit will be to identify other interacting partners of proline metabolic enzymes to uncover novel regulatory and signaling networks of cellular stress response. Antioxid. Redox Signal. 19, 998–1011. PMID:23581681

  11. Synthesis of amino acids by the heating of formaldehyde and ammonia.

    PubMed

    Fox, S W; Windsor, C R

    1970-11-27

    The heating of formaldehyde and ammonia yields a product that, on hydrolysis, is converted into seven amino acids: aspartic acid, glutamic acid, serine, proline, valine, glycine, and alanine. Glycine is the predominant amino acid. Inasmuch as formaldehyde and ammonia have been identified as compounds in galactic clouds, these experimental results are interpreted in a cosmochemical and geochemical context.

  12. Water Deficit-Induced Changes in Concentrations in Proline and Some Other Amino Acids in the Phloem Sap of Alfalfa.

    PubMed Central

    Girousse, C.; Bournoville, R.; Bonnemain, J. L.

    1996-01-01

    Changes in amino acid composition of alfalfa (Medicago sativa L.) phloem sap were studies in response to a water deficit. Sap was collected by stylectomy. As the leaf water potential ([psi]) decreased from -0.4 to -2.0 MPa, there was significant increase of the total amino acid concentration, due to that of some amino acids: proline, valine, isoleucine, leucine, glutamic acid, aspartic acid, and threonine. Asparagine concentration, which is the main amino acid assayed in the phloem sap of alfalfa (it accounts for 70% of the total content), did not vary with the plant water status. The other amino acid concentrations remained stable as [psi] varied; in particular, [gamma]-amino butyric acid concentration remained unchanged, whereas it varied in response to wounding. The more striking change in the sieve tubes was the accumulation of proline, which was observed below a [psi] threshold value of about -0.9 MPa (concentration x60 for a decrease of [psi] from -0.9 to -2.0 MPa). The role of such changes in phloem sap amino acid concentration in osmotic adjustment of growing tissues is discussed. PMID:12226278

  13. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.

    PubMed

    Planchet, Elisabeth; Verdu, Isabelle; Delahaie, Julien; Cukier, Caroline; Girard, Clément; Morère-Le Paven, Marie-Christine; Limami, Anis M

    2014-05-01

    Nitric oxide (NO) production and amino acid metabolism modulation, in particular abscisic acid (ABA)-dependent proline accumulation, are stimulated in planta by most abiotic stresses. However, the relationship between NO production and proline accumulation under abiotic stress is still poorly understood, especially in the early phases of plant development. To unravel this question, this work investigated the tight relationship between NO production and proline metabolism under water-deficit stress during seedling establishment. Endogenous nitrate reductase-dependent NO production in Medicago truncatula seedlings increased in a time-dependent manner after short-term water-deficit stress. This water-deficit-induced endogenous NO accumulation was mediated through a ABA-dependent pathway and accompanied by an inhibition of seed germination, a loss of water content, and a decrease in elongation of embryo axes. Interestingly, a treatment with a specific NO scavenger (cPTIO) alleviated these water-deficit detrimental effects. However, the content of total amino acids, in particular glutamate and proline, as well as the expression of genes encoding enzymes of synthesis and degradation of proline were not affected by cPTIO treatment under water-deficit stress. Under normal conditions, exogenous NO donor stimulated neither the expression of P5CS2 nor the proline content, as observed after PEG treatment. These results strongly suggest that the modulation of proline metabolism is independent of NO production under short-term water-deficit stress during seedling establishment.

  14. Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus.

    PubMed

    Amin, U S; Lash, T D; Wilkinson, B J

    1995-02-01

    Proline betaine is an osmoprotectant that is at least as effective as glycine betaine, and more effective than L-proline, for various strains of Staphylococcus aureus, and Staphylococcus epidermidis and Staphylococcus saprophyticus. 13C NMR studies revealed that proline betaine accumulated to high levels in osmotically stressed S. aureus, but was also detected in organisms grown in its presence in the absence of osmotic stress. Competition experiments indicated that proline betaine was taken up by the proline transport systems of S. aureus, but not by the high affinity glycine betaine transport system.

  15. AMPHOTERIC BEHAVIOR OF COMPLEX SYSTEMS : II. TITRATION OF SULFANILIC ACID-GLYCINE MIXTURES.

    PubMed

    Stearn, A E

    1926-11-20

    Electrometric titrations of glycine, sulfanilic acid, and various mixtures of the two have been made. These mixtures are shown to give a curve which, between their respective isoelectric points, is different from that of either substance. These mixtures have a maximum buffering power at a pH which can be theoretically calculated, and which has the characteristics of an "isoelectric point of the system." Other pairs of ampholytes are shown to act in an analogous manner.

  16. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-Leucine L-Lysine DL-Methionine (not for infant foods) L-Methionine L-Phenylalanine L-Proline L-Serine L... Aminoacetic acid (glycine) L-Leucine DL-Methionine L-Methionine L-Tryptophan L-Phenylalanine L-Proline L... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6...

  17. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-Leucine L-Lysine DL-Methionine (not for infant foods) L-Methionine L-Phenylalanine L-Proline L-Serine L... Aminoacetic acid (glycine) L-Leucine DL-Methionine L-Methionine L-Tryptophan L-Phenylalanine L-Proline L... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6...

  18. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-Leucine L-Lysine DL-Methionine (not for infant foods) L-Methionine L-Phenylalanine L-Proline L-Serine L... Aminoacetic acid (glycine) L-Leucine DL-Methionine L-Methionine L-Tryptophan L-Phenylalanine L-Proline L... DL-Methionine 3.1 L-Phenylalanine 5.8 L-Proline 4.2 L-Serine 8.4 L-Threonine 5.0 L-Tryptophan 1.6...

  19. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  20. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression.

  1. Practical synthesis of enantiomerically pure beta2-amino acids via proline-catalyzed diastereoselective aminomethylation of aldehydes.

    PubMed

    Chi, Yonggui; English, Emily P; Pomerantz, William C; Horne, W Seth; Joyce, Leo A; Alexander, Lane R; Fleming, William S; Hopkins, Elizabeth A; Gellman, Samuel H

    2007-05-01

    Proline-catalyzed diastereoselective aminomethylation of aldehydes using a chiral iminium ion, generated from a readily prepared precursor, provides alpha-substituted-beta-amino aldehydes with 85:15 to 90:10 dr. The alpha-substituted-beta-amino aldehydes can be reduced to beta-substituted-gamma-amino alcohols, the major diastereomer of which can be isolated via crystallization or column chromatography. The amino alcohols are efficiently transformed to protected beta2-amino acids, which are valuable building blocks for beta-peptides, natural products, and other interesting molecules. Because conditions for the aminomethylation and subsequent reactions are mild, beta2-amino acid derivatives with protected functional groups in the side chain, such as beta2-homoglutamic acid, beta2-homotyrosine, and beta2-homolysine, can be prepared in this way. The synthetic route is short, and purifications are simple; therefore, this method enables the preparation of protected beta2-amino acids in useful quantities.

  2. Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats.

    PubMed

    El Hafidi, Mohammed; Pérez, Israel; Zamora, Jose; Soto, Virgilia; Carvajal-Sandoval, Guillermo; Baños, Guadalupe

    2004-12-01

    The study investigated the mechanism by which glycine protects against increased circulating nonesterified fatty acids (NEFA), fat cell size, intra-abdominal fat accumulation, and blood pressure (BP) induced in male Wistar rats by sucrose ingestion. The addition of 1% glycine to the drinking water containing 30% sucrose, for 4 wk, markedly reduced high BP in sucrose-fed rats (SFR) (122.3 +/- 5.6 vs. 147.6 +/- 5.4 mmHg in SFR without glycine, P < 0.001). Decreases in plasma triglyceride (TG) levels (0.9 +/- 0.3 vs. 1.4 +/- 0.3 mM, P < 0.001), intra-abdominal fat (6.8 +/- 2.16 vs. 14.8 +/- 4.0 g, P < 0.01), and adipose cell size were observed in SFR treated with glycine compared with SFR without treatment. Total NEFA concentration in the plasma of SFR was significantly decreased by glycine intake (0.64 +/- 0.08 vs. 1.11 +/- 0.09 mM in SFR without glycine, P < 0.001). In control animals, glycine decreased glucose, TGs, and total NEFA but without reaching significance. In SFR treated with glycine, mitochondrial respiration, as an indicator of the rate of fat oxidation, showed an increase in the state IV oxidation rate of the beta-oxidation substrates octanoic acid and palmitoyl carnitine. This suggests an enhancement of hepatic fatty acid metabolism, i.e., in their transport, activation, or beta-oxidation. These findings imply that the protection by glycine against elevated BP might be attributed to its effect in increasing fatty acid oxidation, reducing intra-abdominal fat accumulation and circulating NEFA, which have been proposed as links between obesity and hypertension.

  3. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, E.; Bdikin, I.; Ivanov, M.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-01

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  4. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    SciTech Connect

    Seyedhosseini, E. Ivanov, M.; Bdikin, I.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  5. Electron attachment to amino acid clusters in helium nanodroplets: Glycine, alanine, and serine

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Denifl, S.; Märk, T. D.; Ellis, A. M.; Scheier, P.

    2010-06-01

    The first detailed study of electron attachment to amino acid clusters is reported. The amino acids chosen for investigation were glycine, alanine, and serine. Clusters of these amino acids were formed inside helium nanodroplets, which provide a convenient low temperature (0.37 K) environment for growing noncovalent clusters. When subjected to low energy (2 eV) electron impact the chemistry for glycine and alanine clusters was found to be similar. In both cases, parent cluster anions were the major products, which contrasts with the corresponding monomers in the gas phase, where the dehydrogenated products ([AAn-H]-, where AA=amino acid monomer) dominate. Serine clusters are different, with the major product being the parent anion minus an OH group, an outcome presumably conferred by the facile loss of an OH group from the β carbon of serine. In addition to the bare parent anions and various fragment anions, helium atoms are also observed attached to both the parent anion clusters and the dehydrogenated parent anion clusters. Finally, we present the first anion yield spectra of amino acid clusters from doped helium nanodroplets as a function of incident electron energy.

  6. Effect of folic acid and glycine supplementation on embryo development and folate metabolism during early pregnancy in pigs.

    PubMed

    Guay, F; Matte, J J; Girard, C L; Palin, M F; Giguère, A; Laforest, J P

    2002-08-01

    The present work aimed to determine if different levels of prolificacy either by parity or by genetic origin are linked to folate metabolism. Nulliparous Yorkshire-Landrace (YL) and multiparous YL, and multiparous Meishan-Landrace (ML) sows were randomly assigned to two treatments: 0 ppm or 15 ppm folic acid+0.6% glycine. Supplements were given from the estrus before mating until slaughter on d 25 of gestation. At slaughter, embryo and endometrial tissues were collected to determine concentrations of DNA, protein, and homocysteine. Allantoic fluid samples were also collected to determine concentrations of folates, vitamin B12 and amino acids. Blood samples were taken at first estrus, at mating, and on d 8, 16, and 25 of gestation to determine serum concentrations of folates, vitamin B12, and relative total folate binding capacity (TFBC). Over the entire experiment, multiparous YL sows had higher average serum concentrations of folates than nulliparous YL sows (P < 0.05) but had similar serum concentrations of relative TFBC. Concentrations of folates and relative TFBC averaged higher in ML measured over the entire experiment than in multiparous YL sows (P < 0.05). Concentrations of serum vitamin B12 were higher in multiparous YL than in ML sows or YL nulliparous sows (P < 0.05) over the entire experiment. In allantoic fluid, folates, vitamin B12, and essential amino acids contents were significantly lower in ML than in YL multiparous sows (P < 0.05). The folic acid+glycine supplement increased concentrations of serum folates, but the increase was more marked in nulliparous YL sows (nulliparous x folic acid+glycine, P < 0.05). The folic acid+glycine supplement had no effect on litter size and embryo survival, but it tended to increase embryo DNA in multiparous YL sows (P = 0.06) but not in ML and nulliparous YL sows. Homocysteine was decreased by folic acid+glycine supplement in embryos from all sows, but in endometrium, the folic acid+glycine effect was dependent on

  7. First report for voltammetric determination of methyldopa in the presence of folic acid and glycine.

    PubMed

    Molaakbari, Elahe; Mostafavi, Ali; Beitollahi, Hadi

    2014-03-01

    In this study, a carbon paste electrode modified with TiO2 nanoparticles and ferrocene monocarboxylic acid (FM) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of methyldopa in the presence of folic acid and glycine. The peak potentials recorded in a phosphate buffer solution (PBS) of pH7.0 were 325, 750 and 880 mV vs. Ag/AgCl/KCl (3.0M) for methyldopa, folic acid and glycine, respectively. Under the optimum pH of 7.0, the oxidation of methyldopa occurred at a potential about 160 mV less positive than that of the unmodified carbon paste electrode (CPE). The response of catalytic current with methyldopa concentration showed a linear relation in the range from 2.0×10(-7) to 1.0×10(-4)M with a detection limit of 8.0 (± 0.2)×10(-8)M.

  8. FORMATION OF GLYCINE ON ULTRAVIOLET-IRRADIATED INTERSTELLAR ICE-ANALOG FILMS AND IMPLICATIONS FOR INTERSTELLAR AMINO ACIDS

    SciTech Connect

    Lee, Chang-Woo; Kim, Joon-Ki; Moon, Eui-Seong; Kang, Heon; Minh, Y. C.

    2009-05-20

    We report the synthesis of glycine on interstellar ice-analog films composed of water, methylamine (MA), and carbon dioxide under irradiation of ultraviolet (UV) photons. Analysis of the UV-irradiated ice films by in situ mass spectrometric methods revealed glycine and other isomers as photochemical products. Deuterium-labeling experiments were conducted to determine the structures of the photoproducts and to examine their formation pathways. The reactions occur via photocleavages of C-H and N-H bonds in MA, followed by subsequent reactions of the nascent H atom with CO{sub 2}, leading to the formation of HOCO and then to glycine and carbamic acid. The photochemical synthesis of glycine occurs efficiently at the ice surfaces, and the competing photosynthesis and photodestruction processes can reach a steady-state kinetic balance at an extended UV exposure, maintaining a substantial population level of glycine. The observation suggests that interstellar amino acids can be created on ice grains, and that they can also be stored in the ices by maintaining a kinetic balance under interstellar UV irradiation. As such, the transport of amino acids in interstellar space may be possible without depleting the net abundance of amino acids in the ices but rather increasing the structural diversity of the molecules.

  9. Na sup + -glycine cotransport in canalicular liver plasma membrane vesicles

    SciTech Connect

    Moseley, R.H.; Ballatori, N.; Murphy, S.M. Yale Univ. School of Medicine, New Haven, CT Univ. of Rochester School of Medicine and Dentistry, NY )

    1988-08-01

    By use of purified rat canalicular liver plasma membrane (cLPM) vesicles, the present study determined the driving forces for glycine transport across this membrane domain. Initial rates of ({sup 3}H)glycine uptake in cLPM vesicles were stimulated by an inwardly directed Na{sup +} gradient but not by a K{sup +} gradient. Na{sup +} gradient-dependent uptake of glycine demonstrated cation specificity for Na{sup +}, dependence on extravesicular Cl{sup {minus}}, stimulation by an intravesicular-negative membrane potential, and inhibition by dissipation of the Na{sup +} gradient with gramicidin D. Na{sup +} gradient-dependent glycine cotransport also demonstrated greater sensitivity to inhibition by sarcosine than 2-(methylamino)-isobutyric acid. Accelerated exchange diffusion of ({sup 3}H)glycine was demonstrated in the presence of Na{sup +} when cLPM vesicles were preloaded with glycine but not with L-alanine or L-proline. Substrate velocity analysis of net Na{sup +}-dependent ({sup 3}H)glycine uptake over the range of amino acid concentrations from 5 {mu}M to 5 mM demonstrated two saturable transport systems, one of high capacity and low affinity and one of low capacity and comparatively high affinity. These results indicate that, in addition to previously described neutral and anionic amino acid transport systems, Na{sup +} gradient-dependent glycine transport mechanisms are present on the canalicular domain of the liver plasma membrane. These canalicular reabsorptive mechanisms may serve to reclaim some of the glycine generated within the canalicular lumen from the intrabiliary hydrolysis of glutathione.

  10. Inhibition of corneal neovascularization with a nutrient mixture containing lysine, proline, ascorbic acid, and green tea extract.

    PubMed

    Shakiba, Yadollah; Mostafaie, Ali

    2007-10-01

    Corneal neovascularization is a significant, sight-threatening complication of many ocular surface disorders. Various growth factors and proteinases are involved in corneal neovascularization. The data supporting a causal role for vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are extensive. Inhibition of VEGF and MMPs is a main strategy for treating corneal neovascularization. Several findings have shown that corneal neovascularization can be reduced by using anti-VEGF and anti-MMPs agents. Efficacy of a nutrient mixture (NM) containing lysine, proline, ascorbic acid, and green tea extract has been demonstrated for reducing VEGF and MMPs secretion by various cells. Moreover, NM can inhibit endothelial cell migration and capillary tube formation. We herein note that topical application of NM is potentially useful for inhibiting corneal neovascularization and restoration of corneal clarity. Further investigations in animal models are needed to place NM alongside corneal neovascularization therapeutics.

  11. Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline

    PubMed Central

    Jensen, Katrine Tarp; Löbmann, Korbinian; Rades, Thomas; Grohganz, Holger

    2014-01-01

    Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared by ball milling and investigated for solid state characteristics, stability and the dissolution rate enhancement of NAP. All co-amorphous mixtures were stable at room temperature and 40 °C for a minimum of 84 days. PRO acted as a stabilizer for the co-amorphous system, including NAP–TRP, through enhancing the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly soluble amino acid, PRO, improved the dissolution rate of NAP from the ternary co-amorphous systems in combination with either TRP or ARG. In conclusion, both the solubility of the amino acid and potential interactions between the molecules are critical parameters to consider in the development of co-amorphous formulations. PMID:25025400

  12. Synthesis of ω-Oxo Amino Acids and trans-5-Substituted Proline Derivatives Using Cross-Metathesis of Unsaturated Amino Acids.

    PubMed

    Salih, Nabaz; Adams, Harry; Jackson, Richard F W

    2016-09-16

    A range of 7-oxo, 8-oxo, and 9-oxo amino acids, analogues of 8-oxo-2-aminodecanoic acid, one of the key components of the cyclic tetrapeptide apicidin, have been prepared by a three-step process involving copper-catalyzed allylation of serine-, aspartic acid-, and glutamic acid-derived organozinc reagents, followed by cross-metathesis of the resulting terminal alkenes with unsaturated ketones and hydrogenation. The intermediate 7-oxo-5-enones underwent a highly diastereoselective (dr ≥96:4) acid-catalyzed aza-Michael reaction to give trans-2,5-disubstituted pyrrolidines, 5-substituted proline derivatives. The aza-Michael reaction was first observed when the starting enones were allowed to stand in solution in deuterochloroform but can be efficiently promoted by catalytic amounts of dry HCl. PMID:27529354

  13. Genetics Home Reference: glycine encephalopathy

    MedlinePlus

    ... a molecule called glycine. This molecule is an amino acid , which is a building block of proteins. Glycine ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health ...

  14. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  15. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  16. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers.

    PubMed

    Garde-Cerdán, T; López, R; Portu, J; González-Arenzana, L; López-Alfaro, I; Santamaría, P

    2014-11-15

    The aim of this work was to study the influence of foliar application of different nitrogen sources on grape amino acid content. The nitrogen sources applied to Tempranillo grapevines were proline, phenylalanine, urea, and two commercial nitrogen fertilisers, both without and with amino acids in their formulations. All treatments were applied at veraison and one week later. Proline treatment did not affect the must nitrogen composition. However, phenylalanine and urea foliar application enhanced the plants' synthesis of most of the amino acids, producing similar effects. In addition, the spray of commercial nitrogen fertilisers over leaves also induced a rise in grape amino acid concentrations regardless of the presence or absence of amino acids in their formulation. The most effective treatments were phenylalanine and urea followed by nitrogen fertilisers. This finding is of oenological interest for improved must nitrogen composition, ensuring better fermentation kinetics and most likely enhancing wine quality.

  17. Germination of Candida albicans induced by proline.

    PubMed Central

    Dabrowa, N; Taxer, S S; Howard, D H

    1976-01-01

    Blastospores of Candida albicans germinated in proline-biotin-buffer medium incubated at 37 C. Certain other amino acids in the glatamate, asparate, and pyruvate families also fostered germinaton but generally to a lesser extent than did proline. L-Cysteine, D-proline, and certain structural analogues of L-proline inhibited proline-stimualted germination. The concentration of phosphate and glucose was crucial to amino acid-stimulated germination of C. albicans. Clinical isolates and stock cultures varied in their response to the germ tube-inducing activity of proline or other amino acids. The proline-buffer medium cannot be used in a diagnostic test for production of germ tubes by isolates of yeasts. PMID:5375

  18. A theoretical study of medium effects on the structure of the glycine analogue aminomethylphosphonic acid.

    PubMed

    Benbrahim, Nasséra; Rahmouni, Ali; Ruiz-López, Manuel F

    2008-09-28

    alpha-Aminophosphonic acids are analogues of natural alpha-aminoacids and very promising agents for use in various pharmaceutical applications. However, in contrast to the numerous theoretical investigations on the structure of natural alpha-aminoacids, only very few studies on alpha-aminophosphonic acids have been performed. In the present work, we report a detailed investigation of the simplest compound, the glycine analogue aminomethylphosphonic acid (AMPA), by means of quantum mechanical calculations at the B3LYP/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) and MP2/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) levels. We focus on the structure of the neutral species looking at the evolution of non-ionized and ionized forms from gas phase to non-polar solvents and aqueous media. Continuum and discrete-continuum solvent models have been employed to account for the effects of the environment. The discussion is centered on: (1) the geometry and relative stability of possible conformers in gas phase and aqueous solution, (2) the free energy of tautomerization in different media, (3) the role of hydrogen bonds in liquid water, and (4) the free energy of transfer from water to a hydrophobic solvent such as cyclohexane. Systematic comparison between AMPA and Gly is performed. Though both systems exhibit many similarities, some important differences have also been found that may be explained, at least in part, by the higher acidity of phosphonic acids compared to carboxylic acids. In particular, in solvents lacking hydrogen-bond formation capability, Gly derivatives should mainly exist as non-ionized molecules while the equivalent AMPA derivatives should adopt a zwitterionic structure in media with dielectric constant above 10. This might have significant environmental or biological consequences that will need to be addressed.

  19. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.

    PubMed

    Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U

    2009-06-01

    Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water. PMID:19269267

  20. Altered Glycine Decarboxylation Inhibition in Isonicotinic Acid Hydrazide-Resistant Mutant Callus Lines and in Regenerated Plants and Seed Progeny

    PubMed Central

    Zelitch, Israel; Berlyn, Mary B.

    1982-01-01

    Isonicotinic acid hydrazide (INH), an inhibitor of the photorespiratory pathway blocking the conversion of glycine to serine and CO2, has been used as a selective agent to obtain INH-resistant tobacco (Nicotiana tabacum) callus cells. Of 22 cell lines that were INH-resistant, none were different from wild-type cells in their ability to take up [3H]INH or to oxidize INH to isonicotinic acid. In 7 of the 22 cell lines, INH resistance was associated with decreased inhibition of NAD-dependent glycine decarboxylation activity in isolated mitochondrial preparations. In the cell line that was most extensively investigated (I 24), this biochemical phenotype (exhibiting a 3-fold higher Ki with INH) was observed in leaf mitochondria of regenerated plants and of plants produced from them by self-fertilization. After crosses between resistant and sensitive plants, the decreased inhibition of glycine decarboxylation was observed among F2 and backcross progeny only in those plants previously identified as INH-resistant by callus growth tests. In contrast, in siblings identified as INH-sensitive, glycine decarboxylation was inhibited by INH at the wild-type level. This demonstration of the transfer of an altered enzyme property from callus to regenerated plants and through seed progeny fulfills an important requirement for the use of somatic cell genetics to produce biochemical mutants of higher plants. PMID:16662158

  1. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  2. DL-β-Aminobutyric Acid-Induced Resistance in Soybean against Aphis glycines Matsumura (Hemiptera: Aphididae)

    PubMed Central

    Zhong, Yunpeng; Wang, Biao; Yan, Junhui; Cheng, Linjing; Yao, Luming; Xiao, Liang; Wu, Tianlong

    2014-01-01

    Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA. PMID:24454805

  3. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    PubMed

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  4. Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain

    PubMed Central

    Sareddy, Gangadhara R.; Zhang, Quanguang; Wang, Ruimin; Scott, Erin; Zou, Yi; O'Connor, Jason C.; Chen, Yidong; Dong, Yan; Vadlamudi, Ratna K.; Brann, Darrell

    2015-01-01

    17-β estradiol (E2) has been implicated as neuroprotective in a variety of neurodegenerative disorders. However, the underlying mechanism remains unknown. Here, we provide genetic evidence, using forebrain-specific knockout (FBKO) mice, that proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), an estrogen receptor coregulator protein, is essential for the extranuclear signaling and neuroprotective actions of E2 in the hippocampal CA1 region after global cerebral ischemia (GCI). E2-mediated extranuclear signaling (including activation of extracellular signal-regulated kinase and Akt) and antiapoptotic effects [such as attenuation of JNK signaling and increase in phosphorylation of glycogen synthase kinase-3β (GSK3β)] after GCI were compromised in PELP1 FBKO mice. Mechanistic studies revealed that PELP1 interacts with GSK3β, E2 modulates interaction of PELP1 with GSK3β, and PELP1 is a novel substrate for GSK3β. RNA-seq analysis of control and PELP1 FBKO mice after ischemia demonstrated alterations in several genes related to inflammation, metabolism, and survival in PELP1 FBKO mice, as well as a significant reduction in the activation of the Wnt/β-catenin signaling pathway. In addition, PELP1 FBKO studies revealed that PELP1 is required for E2-mediated neuroprotection and for E2-mediated preservation of cognitive function after GCI. Collectively, our data provide the first direct in vivo evidence, to our knowledge, of an essential role for PELP1 in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain. PMID:26627258

  5. Metabolism of Proline, Glutamate, and Ornithine in Proline Mutant Root Tips of Zea mays (L.)

    PubMed Central

    Dierks-Ventling, Christa; Tonelli, Chiara

    1982-01-01

    In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis. PMID:16662144

  6. Role of proline under changing environments

    PubMed Central

    Hayat, Shamsul; Hayat, Qaiser; Alyemeni, Mohammed Nasser; Wani, Arif Shafi; Pichtel, John; Ahmad, Aqil

    2012-01-01

    When exposed to stressful conditions, plants accumulate an array of metabolites, particularly amino acids. Amino acids have traditionally been considered as precursors to and constituents of proteins, and play an important role in plant metabolism and development. A large body of data suggests a positive correlation between proline accumulation and plant stress. Proline, an amino acid, plays a highly beneficial role in plants exposed to various stress conditions. Besides acting as an excellent osmolyte, proline plays three major roles during stress, i.e., as a metal chelator, an antioxidative defense molecule and a signaling molecule. Review of the literature indicates that a stressful environment results in an overproduction of proline in plants which in turn imparts stress tolerance by maintaining cell turgor or osmotic balance; stabilizing membranes thereby preventing electrolyte leakage; and bringing concentrations of reactive oxygen species (ROS) within normal ranges, thus preventing oxidative burst in plants. Reports indicate enhanced stress tolerance when proline is supplied exogenously at low concentrations. However, some reports indicate toxic effects of proline when supplied exogenously at higher concentrations. In this article, we review and discuss the effects of exogenous proline on plants exposed to various abiotic stresses. Numerous examples of successful application of exogenous proline to improve stress tolerance are presented. The roles played by exogenous proline under varying environments have been critically examined and reviewed. PMID:22951402

  7. Dye-linked D-amino acid dehydrogenase from the thermophilic bacterium Rhodothermus marinus JCM9785: characteristics and role in trans-4-hydroxy-L-proline catabolism.

    PubMed

    Satomura, Takenori; Ishikura, Masaru; Koyanagi, Takashi; Sakuraba, Haruhiko; Ohshima, Toshihisa; Suye, Shin-ichiro

    2015-05-01

    A gene from the thermophilic Gram-negative bacterium Rhodothermus marinus JCM9785, encoding a dye-linked D-amino acid dehydrogenase homologue, was overexpressed in Escherichia coli, and its product was purified and characterized. The expressed enzyme was a highly thermostable dye-linked D-amino acid dehydrogenase that retained more than 80% of its activity after incubation for 10 min at up to 70 °C. When enzyme-catalyzed dehydrogenation of several D-amino acids was carried out using 2,6-dichloroindophenol as the electron acceptor, D-phenylalanine was the most preferable substrate among the D-amino acids tested. Immediately upstream of the dye-linked D-amino acid dehydrogenase gene (dadh) was a gene encoding a 4-hydroxyproline 2-epimerase homologue (hypE). That gene was successfully expressed in E. coli, and the gene product exhibited strong 4-hydroxyproline 2-epimerase activity. Reverse transcription PCR and quantitative real-time PCR showed that the six genes containing the dadh and hypE genes were arranged in an operon and were required for catabolism of trans-4-hydroxy-L-proline in R. marinus. This is the first description of a dye-linked D-amino acid dehydrogenase (Dye-DADH) with broad substrate specificity involved in trans-4-hydroxy-L-proline catabolism. PMID:25472442

  8. Variable clinical manifestations of a glycine to glutamic acid substitution of the COL3A1 gene at residue 736

    SciTech Connect

    Pope, F.M.; Narcisi, P.; Richards, A.J.

    1994-09-01

    Glycine substitutions at the 3{prime} end of the COL3A1 gene generally produce a characteristic clinical phenotype including acrogeria and severe vascular fragility. Here we report a three generation British family in which the propositus presented with aneurysms of the groins. He, his mother, sister and elder daughter all had the external clinical phenotype of vascular EDS IV whilst another daughter and nephew were clinically normal. Cultured skin fibroblasts from the propositus and his clinically affected relatives poorly secreted normal and overmodified collagen III species. Normal components of secreted proteins predominated whilst overmodified molecules were prominent in intracellular material. Surprisingly the normal children also secreted less collagen type III than expected (though more than their clinically abnormal relatives). cDNA from bases 2671 to 3714 were amplified as four overlapping PCR fragments and analysed by DGGE. The region between 2671 and 3015 was heterozygous. Sequencing showed a mutation of glycine to glutamic acid at residue 736. This mutation created an extra Apa 1 restriction site which was suitable for family studies. These showed inheritance of the mutant gene by both vascular and non-vascular clinical phenotypes. This family therefore illustrates that replacement of glycine to glutamic acid at position 736 produces variable clinical and biochemical phenotypes ranging from easily recognizable vascular EDS IV with very poor collagen secretion to an EDS III-like picture and with less severe protein disturbance. The reasons for these differences are at present unexplained.

  9. The DNA replication inhibitor microcin B17 is a forty-three-amino-acid protein containing sixty percent glycine.

    PubMed

    Davagnino, J; Herrero, M; Furlong, D; Moreno, F; Kolter, R

    1986-11-01

    Microcin B17 is a low-molecular-weight protein that inhibits DNA replication in a number of enteric bacteria. It is produced by bacterial strains which harbor a 70-kilobase plasmid called pMccB17. Four plasmid genes (named mcbABCD) are required for its production. The product of the mcbA gene was identified by labelling minicells. The mcbA gene product was slightly larger when a mutation in any of the other three production genes was present. This indicates that these genes are involved in processing the primary mcbA product to yield the active molecule. The mcbA gene product predicted from the nucleotide sequence has 69 amino acids including 28 glycine residues. Microcin B17 was extracted from the cells by boiling in 100 mM acetic acid, 1 mM EDTA, and purified to homogeneity in a single step by high-performance liquid chromatography through a C18 column. The N-terminal amino acid sequence and amino acid composition demonstrated that mcbA is the structural gene for microcin B17. The active molecule is a processed product lacking the first 26 N-terminal residues. The 43 remaining residues include 26 glycines. While microcin B17 is an exported protein, the cleaved N-terminal peptide does not have the characteristic properties of a "signal sequence", which suggests that it is secreted by a mechanism different from that used by most secreted proteins of E. coli.

  10. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading.

    PubMed

    Loayza-Puch, Fabricio; Rooijers, Koos; Buil, Levi C M; Zijlstra, Jelle; Oude Vrielink, Joachim F; Lopes, Rui; Ugalde, Alejandro Pineiro; van Breugel, Pieter; Hofland, Ingrid; Wesseling, Jelle; van Tellingen, Olaf; Bex, Axel; Agami, Reuven

    2016-02-25

    Tumour growth and metabolic adaptation may restrict the availability of certain amino acids for protein synthesis. It has recently been shown that certain types of cancer cells depend on glycine, glutamine, leucine and serine metabolism to proliferate and survive. In addition, successful therapies using L-asparaginase-induced asparagine deprivation have been developed for acute lymphoblastic leukaemia. However, a tailored detection system for measuring restrictive amino acids in each tumour is currently not available. Here we harness ribosome profiling for sensing restrictive amino acids, and develop diricore, a procedure for differential ribosome measurements of codon reading. We first demonstrate the functionality and constraints of diricore using metabolic inhibitors and nutrient deprivation assays. Notably, treatment with L-asparaginase elicited both specific diricore signals at asparagine codons and high levels of asparagine synthetase (ASNS). We then applied diricore to kidney cancer and discover signals indicating restrictive proline. As for asparagine, this observation was linked to high levels of PYCR1, a key enzyme in proline production, suggesting a compensatory mechanism allowing tumour expansion. Indeed, PYCR1 is induced by shortage of proline precursors, and its suppression attenuated kidney cancer cell proliferation when proline was limiting. High PYCR1 is frequently observed in invasive breast carcinoma. In an in vivo model system of this tumour, we also uncover signals indicating restrictive proline. We further show that CRISPR-mediated knockout of PYCR1 impedes tumorigenic growth in this system. Thus, diricore has the potential to reveal unknown amino acid deficiencies, vulnerabilities that can be used to target key metabolic pathways for cancer treatment. PMID:26878238

  11. Experimental and theoretical enthalpies of formation of glycine-based sulfate/bisulfate amino acid ionic liquids.

    PubMed

    Zhu, Jing-Fang; He, Ling; Zhang, Lei; Huang, Ming; Tao, Guo-Hong

    2012-01-12

    The experimental and theoretical enthalpies of formation of several structural-similar glycine-based sulfate/bisulfate amino acid ionic liquids including glycine sulfate (Gly(2)SO(4), 1), glycine bisulfate (GlyHSO(4), 2), N,N-dimethylglycine sulfate ([DMGly](2)SO(4), 3), N,N-dimethylglycine bisulfate ([DMGly]HSO(4), 4), N,N-dimethylglycine methyl ester sulfate ([DMGlyC(1)](2)SO(4), 5), N,N-dimethylglycine methyl ester bisulfate ([DMGlyC(1)]HSO(4), 6), N,N,N-trimethylglycine methyl ester sulfate ([TMGlyC(1)](2)SO(4), 7), and N,N,N-trimethylglycine methyl ester bisulfate ([TMGlyC(1)]HSO(4), 8) were studied. Their experimental enthalpies of formation were obtained from the corresponding energies of combustion determined by the bomb calorimetry method. The enthalpies of formation of these amino acid ionic liquids are in the range from -1406 kJ mol(-1) to -1128 kJ mol(-1). Systematic theoretical study on these amino acid ionic liquids were performed by quantum chemistry calculation using the Gaussian03 suite of programs. The geometric optimization and the frequency analyses are carried out using the B3LYP method with the 6-31+G** basis set. Their calculated enthalpies of formation were derived from the single point energies carried out with the HF/6-31+G**, B3LYP/6-31+G**, B3LYP/6-311++G**, and MP2/6-311++G** level of theory, respectively. The relevance of experimental and calculated enthalpies of formation was studied. The calculated enthalpies of formation are in good agreement with their experimental data in less than 3% error. PMID:22148242

  12. Characterization of a factor IX variant with a glycine207 to glutamic acid mutation.

    PubMed

    Lin, S W; Lin, C N; Hamaguchi, N; Smith, K J; Shen, M C

    1994-09-15

    Factor IXTaipei9 is a factor IX variant from a hemophilia B patient with reduced levels of circulating protein molecules (cross-reacting material reduced, CRM). This variant contained a glycine (Gly) to glutamic acid (Glu) substitution at the 207th codon of mature factor IX. The functional consequences of the Gly-->Glu mutation in factor IXTaipei9 (IXG207E) were characterized in this study. Plasma-derived IXG207E exhibited a mobility similar to that of normal factor IX on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its specific activity was estimated to be 3.5% that of the purified normal factor IX in a one-stage partial thromboplastin time assay (aPTT). Cleavage of factor IXG207E by factor XIa or factor VIIa-tissue factor complex appeared to be normal. When the calcium-dependent conformational change was examined by monitoring quenching of intrinsic fluorescence, both normal factor IX and IXG207E exhibited equivalent intrinsic fluorescence quenching. Activated factor IXG207E (IXaG207E) also binds antithrombin III equally as well as normal factor IXa. However, aberrant binding of the active site probe p-aminobenzamidine was observed for factor XIa-activated factor IXG207E, indicating that the active site pocket of the heavy chain of factor IXaG207E was abnormal. Moreover, the rate of activation of factor X by factor IXaG207E, as measured in a purified system using chromogenic substrates, was estimated to be 1/40 of that of normal factor IXa. A computer-modeled heavy-chain structure of factor IXa predicts a hydrophobic environment surrounding Gly-207 and this Gly forms a hydrogen bound to the active site serine-365. The molecular mechanism of the Gly-->Glu mutation in factor IXTaipei9 might result in the alteration of the microenvironment of the active site pocket which renders the active site serine-365 inaccessible to its substrate. PMID:7915915

  13. Proline: Mother Nature;s cryoprotectant applied to protein crystallography

    SciTech Connect

    Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.; Singh, Harkewal; Srivastava, Dhiraj; Tanner, John J.

    2012-09-05

    L-Proline is one of Mother Nature's cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that L-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6-8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0-3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that L-proline is an effective cryoprotectant for protein crystallography.

  14. Suppression of human cervical cancer cell lines Hela and DoTc2 4510 by a mixture of lysine, proline, ascorbic acid, and green tea extract.

    PubMed

    Roomi, M W; Ivanov, V; Kalinovsky, T; Niedzwiecki, A; Rath, M

    2006-01-01

    Cervical cancer, the second most common cancer in women, once metastasized, leads to poor prognosis. We investigated the antitumor effect of a nutrient mixture (NM) containing lysine, proline, arginine, ascorbic acid, and green tea extract on human cervical cancer cells Hela (CCL-2) and DoTc2 4510 by measuring cell proliferation (MTT assay), modulation of matrix metalloproteinases (MMP)-2 and MMP-9) expression (gelatinase zymography), and cancer cell invasive potential (Matrigel). NM showed significant antiproliferative effect on CCL-2 and DoTc2 4510 cancer cells. The NM inhibited CCL-2 expression of MMP-2 and MMP-9 in a dose-dependent fashion, with virtual total inhibition of MMP-2 at 1000 microg/mL and MMP-9 at 500 microg/mL NM. Untreated DoTc2 4510 cells showed MMP-9 expression, which was enhanced with phorbol 12-myristate 13-acetate treatment. NM inhibited MMP-9 expression in a dose-dependent fashion, with virtual inhibition at 500 microg/mL. Invasion of human cervical cancer cells CCL-2 and DoTc2 4510 through Matrigel decreased in a dose-dependent fashion, with 100% inhibition at 500 microg/mL NM (P < 0.0001) and 1000 microg/mL NM (P < 0.0001), respectively. Our results suggest that the mixture of lysine, proline, arginine, ascorbic acid, and green tea extract has potential in the treatment of cervical cancer by inhibiting critical steps in cancer development and spread.

  15. Low Temperature Effects on Soybean (Glycine max [L.] Merr. cv. Wells) Free Amino Acid Pools during Germination 1

    PubMed Central

    Duke, Stanley H.; Schrader, Larry E.; Miller, Marna Geyer; Niece, Ronald L.

    1978-01-01

    The free amino acid concentrations in cotyledons and axes of soybean (Glycine max [L.] Merr. cv. Wells) seedlings were determined by automated single column analysis after germination at 10 and 23 C. After 5 days germination at 10 C, glutamate and aspartate were in high concentration in both cotyledons and axes (38 and 24% of total free amino acids recovered, respectively), whereas the concentrations of their amide derivatives, asparagine and glutamine, were low in cotyledons (4.4%) and high in axes (21%). In contrast, after 5 days germination at 23 C, asparagine and glutamine accounted for 22 and 45% of total free amino acids in cotyledons and axes respectively, and aspartate and glutamate concentrations were low. The activities of glutamine synthetase and asparagine synthetase were considerably lower in tissues from the 10 C treatment than those from the 23 C treatment. Aspartate and glutamate concentrations were nearly equal in all but one sample. Both glutamate oxaloacetate transaminase and glutamate dehydrogenase activities were much higher in axis tissues at 23 C as compared to 10 C. Arrhenius plots of axis glutamate oxaloacetate transaminase and glutamate dehydrogenase activities were biphasic and triphasic, respectively, with energies of activation for both increasing with low temperature. Energies of activation were identical for glutamate oxaloacetate transaminase from 10 and 23 C treatments but much higher for glutamate dehydrogenase from 23 C-treated axes. This indicates a difference in enzyme complement for glutamate dehydrogenase with the two treatments. Hydrolysis of free amino acid sample (basic fraction) aliquots showed large quantities of peptides in 23 C-treated axes at 2 days, while few or no peptides were found in the 10 C treatment. Amino acid residues most prevalent in peptides were aspartate, threonine, serine, glutamate, and glycine. PMID:16660575

  16. Characterisation of L-alanine and glycine absorption across the gut of an ancient vertebrate.

    PubMed

    Glover, Chris N; Bucking, Carol; Wood, Chris M

    2011-08-01

    This study utilised an in vitro technique to characterise absorption of two amino acids across the intestinal epithelium of Pacific hagfish, Eptatretus stoutii. Uptake of L-alanine and glycine conformed to Michaelis-Menten kinetics. An uptake affinity (K(m); substrate concentration required to attain a 50% uptake saturation) of 7.0 mM and an uptake capacity (J (max)) of 83 nmol cm(-2) h(-1) were described for L-alanine. The K(m) and J(max) for glycine were 2.2 mM and 11.9 nmol cm(-2) h(-1), respectively. Evidence suggested that the pathways of L-alanine and glycine absorption were shared, and sodium dependent. Further analysis indicated that glycine uptake was independent of luminal pH and proline, but a component of uptake was significantly impaired by 100-fold excesses of threonine or asparagine. The presence of a short-term (24 h) exposure to waterborne glycine, similar in nature to that which may be expected to occur when feeding inside an animal carcass, had no significant impact on gastrointestinal glycine uptake. This may indicate a lack of cross talk between absorptive epithelia. These results are the first published data to describe gastrointestinal uptake of an organic nutrient in the oldest extant vertebrate and may provide potential insight into the evolution of nutrient transport systems.

  17. Energetics of proline transport in corn mitochondria

    SciTech Connect

    Elthon, T.E.; Stewart, C.R.; Bonner, W.D. Jr.

    1984-08-01

    The mechanism of proline entry into the matrix region of isolated corn mitochondria (Zea mays L. Mo17 x B73) was investigated by measuring osmotically induced changes of mitochondrial size (changes in A/sub 520/) in combination with oxygen uptake measurements. Using NADH oxidation to generate the electrochemical gradient, we have determined that proline transport is stereospecific and that it can be inhibited by the proline analog L-thiazolidine-4-carboxylic acid. The energetics of proline transport was investigated by measuring the effects of FCCP (p-trifluoromethoxycarbonyl cyanide phenylhydrazone) and valinomycin on mitochondrial swelling and substrate oxidation. Proline transport and resulting oxidation were found to be partially dependent upon the energy of the electrochemical gradient. At low proline concentrations, entry was found to be primarily independent of the gradient (based on insensitivity to FCCP), whereas at higher proline concentrations a gradient-dependent mechanism became involved. Results with valimomycin indicated that proline transport and oxidation are dependent upon the pH potential across the membrane rather than the electrical (membrane) potential.

  18. The importance of glutamate, glycine, and {gamma}-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    SciTech Connect

    Fitsanakis, Vanessa A.; Aschner, Michael . E-mail: michael.aschner@vanderbilt.edu

    2005-05-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and {gamma}-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb.

  19. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  20. Proline: Mother Nature’s cryoprotectant applied to protein crystallography

    SciTech Connect

    Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.; Singh, Harkewal; Srivastava, Dhiraj; Tanner, John J.

    2012-08-01

    The amino acid l-proline is shown to be a good cryoprotectant for protein crystals. Four examples are provided; the range of proline used for cryoprotection is 2.0–3.0 M. l-Proline is one of Mother Nature’s cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that l-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6–8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0–3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that l-proline is an effective cryoprotectant for protein crystallography.

  1. Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder

    SciTech Connect

    Peng Tianyou . E-mail: typeng@whu.edu.cn; Liu Xun; Dai Ke; Xiao Jiangrong; Song Haibo

    2006-09-14

    Nanocrystalline alumina powders were prepared by combustion synthesis using glycine as fuel and nitrate as an oxidizer. The effect of the pH values in the precursor solutions on crystallite sizes, surface areas and morphologies of the synthesized alumina powder has been investigated by X-ray diffractometry, thermal analysis, nitrogen adsorption-desorption, and transmission electron microscopy. With decreasing the pH values in the precursor solutions, the obtained materials could be modified from segregated nanoparticles (pH 10.5) to aggregates of nanoparticles (pH 6.0), and finally to a flaky morphology (pH 2.5). The rates of decomposition, the interaction of coordination as well as the hydrogen bonding of the glycine and the Al-hydroxides species at different pH values were found to be responsible for the generation of flake and/or segregated nanoparticles during auto-ignition reactions. The as-prepared combustion ashes were converted into pure nanocrystalline alumina after calcination at elevated temperatures. The specific surface areas of the products calcined at 800 deg. C ranged from 96 to 39 m{sup 2}/g with the pH decreased from 10.5 to 2.5.

  2. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures.

  3. In vitro release control of ketoprofen from pH-sensitive gels consisting of poly(acryloyl- L-proline methyl ester) and saturated fatty acid sodium salts

    NASA Astrophysics Data System (ADS)

    Negishi, M.; Hiroki, A.; Miyajima, M.; Yoshida, M.; Asano, M.; Katakai, R.

    1999-06-01

    The effect of saturated fatty acid sodium salts (C n), sodium laurate (C 12), sodium myristate (C 14), sodium palmitate (C 16), and sodium stearate (C 18), on the swelling of poly(acryloyl- L-proline methyl ester) (A-ProOMe) gel was investigated in different pH solutions. The C n-loaded gels collapsed in a buffer solution with pH 3.0, while they expanded in a buffer solution with pH 6.5. This effect was strongly influenced by the number of methylene units in C n, as the threshold for causing this sensitivity existed between C 12 and C 14. On the other hand, a pulsatile release of ketoprofen occurred when the gel was cycled in buffer solutions between pH 3.0 and pH 6.5. This behavior may be attributable to the surface-regulated mechanism.

  4. Penultimate proline in neuropeptides.

    PubMed

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  5. Growth, Optical, Dielectric and Ferroelectric Properties of Non-Linear Optical Single Crystal: Glycine-Phthalic Acid

    NASA Astrophysics Data System (ADS)

    Suresh, Sagadevan

    2016-07-01

    Single crystals of glycine-phthalic acid (GPA) were grown by slow evaporation process using aqueous solution. X-ray diffraction analysis was used to examine its cell structure and it was found that the GPA crystal corresponded to the orthorhombic system. To identify absorption range and cut-off wavelength for the GPA crystal, UV-visible spectrum was recorded. UV-visible spectroscopy was used to study the optical constants such as the refractive index, the extinction coefficient, electrical susceptibility, and optical conductivity. As a function of different frequencies and temperatures, the dielectric constant and the dielectric loss were examined. The electrical properties like plasma energy, Penn gap, Fermi energy, and polarizability were determined for the analysis of the second harmonic generation (SHG). Using the Kurtz powder technique, the SHG of the GPA crystal was studied. Investigations relating to hysteresis were carried out to ascertain the ferroelectric nature of the material.

  6. Growth, Optical, Dielectric and Ferroelectric Properties of Non-Linear Optical Single Crystal: Glycine-Phthalic Acid

    NASA Astrophysics Data System (ADS)

    Suresh, Sagadevan

    2016-11-01

    Single crystals of glycine-phthalic acid (GPA) were grown by slow evaporation process using aqueous solution. X-ray diffraction analysis was used to examine its cell structure and it was found that the GPA crystal corresponded to the orthorhombic system. To identify absorption range and cut-off wavelength for the GPA crystal, UV-visible spectrum was recorded. UV-visible spectroscopy was used to study the optical constants such as the refractive index, the extinction coefficient, electrical susceptibility, and optical conductivity. As a function of different frequencies and temperatures, the dielectric constant and the dielectric loss were examined. The electrical properties like plasma energy, Penn gap, Fermi energy, and polarizability were determined for the analysis of the second harmonic generation (SHG). Using the Kurtz powder technique, the SHG of the GPA crystal was studied. Investigations relating to hysteresis were carried out to ascertain the ferroelectric nature of the material.

  7. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.

    PubMed Central

    Møller, Michael T N; Samari, Hamid R; Fengsrud, Monica; Strømhaug, Per E; øStvold, Anne C; Seglen, Per O

    2003-01-01

    Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels

  8. Effect of folic acid plus glycine supplement on uterine prostaglandin and endometrial granulocyte-macrophage colony-stimulating factor expression during early pregnancy in pigs.

    PubMed

    Guay, Frédéric; Matte, J Jacques; Girard, Christiane L; Palin, Marie-France; Giguère, Alain; Laforest, Jean-Paul

    2004-01-15

    The objective was to determine the effects of folic acid+glycine supplement on uterine metabolism of prostaglandin and mRNA expression of endometrial granulocyte-macrophage colony-stimulating factor (GM-CSF) in nulliparous (NYL) and multiparous Yorkshire-Landrace (YL) sows, and in multiparous Meishan-Landrace sows (ML). In each of these three groups, sows were randomly assigned to two treatments: 15 ppm folic acid+0.6% glycine or no supplement. The dietary supplement was given from the estrus before mating to slaughter on Day 25 of pregnancy. At slaughter, endometrial tissue was collected to determine endometrial expression levels of GM-CSF mRNA, cyclooxygenase-1 (COX1) and -2 (COX2) and to evaluate in vitro endometrial secretion of prostaglandin E2 (PGE2) secretion. Allantoic fluid samples were also collected to determine the concentration of PGE2, prostaglandin F2alpha (PGF2alpha), estradiol-17beta (E2), progesterone (P4), and transforming-growth factor-beta2 (TGF-beta2). The allantoic contents of PGF2alpha, E2 and P4, and endometrial in vitro secretion of PGE2 were not significantly influenced by the folic acid+glycine supplement. The folic acid+glycine supplement tended (P<0.07) to increase allantoic content of PGE2 and TGF-beta2 in all sows and increased (P<0.05) endometrial expression of COX2, especially in NYL sows. The endometrial expression of COX1 was decreased (P<0.05) by folic acid+glycine supplement, especially in multiparous YL sows. The allantoic contents of PGE2 and PGF2alpha were not significantly affected by sow type. However, NYL sows had higher (P<0.05) endometrial in vitro secretion of PGE2 and allantoic content of P4 than multiparous YL and ML sows. The allantoic content of E2 was also higher (P<0.05) in NYL sows than in multiparous ML sows only. The allantoic content of TGF-beta2 was lower (P<0.05) in multiparous ML than in multiparous YL only sows. Finally, in YL and NYL sows, folic acid+glycine supplement decreased (P<0.05) the endometrial

  9. Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzyl)pyridine (NBP) in vitro and binding to DNA in the rat.

    PubMed

    Meier, I; Shephard, S E; Lutz, W K

    1990-05-01

    In a colorimetric assay using 4-(p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester (= precursors C) were 0.08, 1.4 and less than or equal to 0.2, respectively, expressed in terms of the pH-dependent k2 rate constant of the equation dNOC/dt = k2.[C].[nitrite]2. The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min, respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated alpha-amino acids to bind to DNA in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed immediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells.

  10. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations.

    PubMed

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J

    2016-03-15

    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  11. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    PubMed

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality.

  12. Water deficit-induced changes in abscisic acid, growth polysomes, and translatable RNA in soybean hypocotyls. [Glycine max L

    SciTech Connect

    Bensen, R.J.; Boyer, J.S.; Mullet, J.E. )

    1988-01-01

    Soybean seedlings (Glycine max L.) were germinated and dark-grown in water-saturated vermiculite for 48 hours, then transferred either to water-saturated vermiculite or to low water potential vermiculite. A decrease in growth rate was detectable within 0.8 hour post-transfer to low water potential vermiculite. A fourfold increase in the abscisic acid content of the elongating region was observed within 0.5 hour. At 24 hours post-transfer, hypocotyl elongation was severely arrested and abscisic acid reached its highest measured level. A comparison of the polyA{sup +} RNA populations isolated at 24 hours post-transfer from the elongating region of water-saturated and low water potential vermiculite-grown seedlings was made by two-dimensional polyacrylamide gel analysis of in vitro translation products. It revealed both increases and decreases in the relative amounts of a number of translation products. Rewatering seedlings grown in low water potential vermiculite at 24 hours post-transfer led to a total recovery in growth rate within 0.5 hour, while abscisic acid in the elongating hypocotyl region required 1 to 2 hours to return to uninduced levels. Application of 1.0 millimolar {+-} abscisic acid to well-watered seedlings resulted in a 48% reduction in hypocotyl growth rate during the first 2 hours after treatment. Plants treated with abscisic acid for 24 hours had a lower polysome content than control plants. However, hypocotyl growth inhibition in abscisic acid-treated seedlings preceded the decline in polysome content.

  13. Syn-Selective Synthesis of β-Branched α-Amino Acids by Alkylation of Glycine-Derived Imines with Secondary Sulfonates.

    PubMed

    Lou, Sha; McKenna, Grace M; Tymonko, Steven A; Ramirez, Antonio; Benkovics, Tamas; Conlon, David A; González-Bobes, Francisco

    2015-10-16

    A syn-selective synthesis of β-branched α-amino acids has been developed based on the alkylation of glycine imine esters with secondary sulfonates. The potassium counterion for the enolate, the solvent, and the leaving group on the electrophile were key levers to maximize the diasteroselectivity of the alkylation. The optimized conditions enabled a straightforward preparation of a number of β-branched α-amino acids that can be challenging to obtain.

  14. On the Split Personality of Penultimate Proline

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Shi, Liuqing; Fuller, Daniel R.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2015-03-01

    The influence of the position of the amino acid proline in polypeptide sequences is examined by a combination of ion mobility spectrometry-mass spectrometry (IMS-MS), amino acid substitutions, and molecular modeling. The results suggest that when proline exists as the second residue from the N-terminus (i.e., penultimate proline), two families of conformers are formed. We demonstrate the existence of these families by a study of a series of truncated and mutated peptides derived from the 11-residue peptide Ser1-Pro2-Glu3-Leu4-Pro5-Ser6-Pro7-Gln8-Ala9-Glu10-Lys11. We find that every peptide from this sequence with a penultimate proline residue has multiple conformations. Substitution of Ala for Pro residues indicates that multiple conformers arise from the cis- trans isomerization of Xaa1-Pro2 peptide bonds as Xaa-Ala peptide bonds are unlikely to adopt the cis isomer, and examination of spectra from a library of 58 peptides indicates that ~80% of sequences show this effect. A simple mechanism suggesting that the barrier between the cis- and trans-proline forms is lowered because of low steric impedance is proposed. This observation may have interesting biological implications as well, and we note that a number of biologically active peptides have penultimate proline residues.

  15. Transporter-associated currents in the gamma-aminobutyric acid transporter GAT-1 are conditionally impaired by mutations of a conserved glycine residue.

    PubMed

    Zhou, Yonggang; Kanner, Baruch I

    2005-05-27

    To determine whether glycine residues play a role in the conformational changes during neurotransmitter transport, we have analyzed site-directed mutants of the gamma-aminobutyric acid (GABA) transporter GAT-1 in a domain containing three consecutive glycines conserved throughout the sodium- and chloride-dependent neurotransmitter transporter family. Only cysteine replacement of glycine 80 resulted in the complete loss of [(3)H]GABA uptake, but oocytes expressing this mutant exhibited the sodium-dependent transient currents thought to reflect a charge-moving conformational change. When sodium was removed and subsequently added back, the transients by G80C did not recover, as opposed to wild type, where recovery was almost complete. Remarkably, the transients by G80C could be restored after exposure of the oocytes to either GABA or a depolarizing pre-pulse. These treatments also resulted in a full recovery of the transients by the wild type. Whereas in wild type lithium leak currents are observed after prior sodium depletion, this was not the case for the glycine 80 mutants unless GABA was added or the oocytes were subjected to a depolarizing pre-pulse. Thus, glycine 80 appears essential for conformational transitions in GAT-1. When this residue is mutated, removal of sodium results in "freezing" the transporter in one conformation from which it can only exit by compensatory changes induced by GABA or depolarization. Our results can be explained by a model invoking two outward-facing states of the empty transporter and a defective transition between these states in the glycine 80 mutants.

  16. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max.

    PubMed

    Cheng, Lin; Yuan, Hong-Yu; Ren, Ren; Zhao, Shi-Qi; Han, Ya-Peng; Zhou, Qi-Ying; Ke, Dan-Xia; Wang, Ying-Xiang; Wang, Lei

    2016-01-01

    Amino acid transporters (AATs) play important roles in transporting amino acid across cellular membranes and are essential for plant growth and development. To date, the AAT gene family in soybean (Glycine max L.) has not been characterized. In this study, we identified 189 AAT genes from the entire soybean genomic sequence, and classified them into 12 distinct subfamilies based upon their sequence composition and phylogenetic positions. To further investigate the functions of these genes, we analyzed the chromosome distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns of the 189 AAT genes in soybean. We found that a large number of AAT genes in soybean were expanded via gene duplication, 46 and 36 GmAAT genes were WGD/segmental and tandemly duplicated, respectively. Further comprehensive analyses of the expression profiles of GmAAT genes in various stages of vegetative and reproductive development showed that soybean AAT genes exhibited preferential or distinct expression patterns among different tissues. Overall, our study provides a framework for further analysis of the biological functions of AAT genes in either soybean or other crops.

  17. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max

    PubMed Central

    Cheng, Lin; Yuan, Hong-Yu; Ren, Ren; Zhao, Shi-Qi; Han, Ya-Peng; Zhou, Qi-Ying; Ke, Dan-Xia; Wang, Ying-Xiang; Wang, Lei

    2016-01-01

    Amino acid transporters (AATs) play important roles in transporting amino acid across cellular membranes and are essential for plant growth and development. To date, the AAT gene family in soybean (Glycine max L.) has not been characterized. In this study, we identified 189 AAT genes from the entire soybean genomic sequence, and classified them into 12 distinct subfamilies based upon their sequence composition and phylogenetic positions. To further investigate the functions of these genes, we analyzed the chromosome distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns of the 189 AAT genes in soybean. We found that a large number of AAT genes in soybean were expanded via gene duplication, 46 and 36 GmAAT genes were WGD/segmental and tandemly duplicated, respectively. Further comprehensive analyses of the expression profiles of GmAAT genes in various stages of vegetative and reproductive development showed that soybean AAT genes exhibited preferential or distinct expression patterns among different tissues. Overall, our study provides a framework for further analysis of the biological functions of AAT genes in either soybean or other crops. PMID:27148336

  18. Structural Biology of Proline Catabolism

    PubMed Central

    2009-01-01

    Summary The proline catabolic enzymes proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase catalyze the 4-electron oxidation of proline to glutamate. These enzymes play important roles in cellular redox control, superoxide generation, apoptosis and cancer. In some bacteria, the two enzymes are fused into the bifunctional enzyme, proline utilization A. Here we review the three-dimensional structural information that is currently available for proline catabolic enzymes. Crystal structures have been determined for bacterial monofunctional proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase, as well as the proline dehydrogenase and DNA-binding domains of proline utilization A. Some of the functional insights provided by analyses of these structures are discussed, including substrate recognition, catalytic mechanism, biochemical basis of inherited proline catabolic disorders and DNA recognition by proline utilization A. PMID:18369526

  19. The glycine deportation system and its pharmacological consequences☆

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2013-01-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800 mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  20. A novel role for proline in plant floral nectars

    NASA Astrophysics Data System (ADS)

    Carter, Clay; Shafir, Sharoni; Yehonatan, Lia; Palmer, Reid G.; Thornburg, Robert

    2006-02-01

    Plants offer metabolically rich floral nectar to attract visiting pollinators. The composition of nectar includes not only sugars, but also amino acids. We have examined the amino acid content of the nectar of ornamental tobacco and found that it is extremely rich (2 mM) in proline. Because insect pollinators preferentially utilize proline during the initial phases of insect flight and can reportedly taste proline, we determined whether honeybees showed a preference for synthetic nectars rich in proline. We therefore established an insect preference test and found that honeybees indeed prefer nectars rich in the amino acid proline. To determine whether this was a general phenomenon, we also examined the nectars of two insect-pollinated wild perennial species of soybean. These species also showed high levels of proline in their nectars demonstrating that plants often produce proline-rich floral nectar. Because insects such as honeybees prefer proline-rich nectars, we hypothesize that some plants offer proline-rich nectars as a mechanism to attract visiting pollinators.

  1. Interactions in L-phenylalanine/L-leucine/L-glutamic Acid/L-proline + 2 M aqueous NaCl/2 M NaNO3 systems at different temperatures

    NASA Astrophysics Data System (ADS)

    Riyazuddeen, Imran Khan; Afrin, Sadaf

    2012-12-01

    Density (ρ) and speed of sound ( u) in 2 M aqueous NaCl and 2 M NaNO3 solutions of amino acids: L-phenylalanine, L-leucine, L-glutamic acid, and L-proline have been measured for several molal concentrations of amino acids at different temperatures. The ρ and u data have been used to calculate the values of isothermal compressibility and internal pressure at different temperatures. The trends of variations of κ T and P i with an increase in molal concentration of amino acid and temperature have been discussed in terms of solute-solvent and solute-solute interactions in the systems.

  2. Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats

    PubMed Central

    Yang, Jing; Wang, Wei; Yong, Zheng; Mi, Weidong; Zhang, Hong

    2015-01-01

    Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signals. The objective of this study was to investigate the effects of increasing dosage of propofol on the release of glutamate (Glu), γ-aminobutyric acid (GABA) and glycine (Gly) in the spinal dorsal horn. Materials and Methods: The efflux of Glu, GABA or Gly in the spinal dorsal horn of rats was detected using transverse spinal microdialysis under an awake condition and various depths of propofol anesthesia. The infusion rates of propofol were, in order, 400 µg/(kg·min), 600 µg/(kg·min) and 800 µg/(kg·min), with a 20 min infusion period being maintained at each infusion rate. Results: Propofol decreased the glutamate efflux within spinal dorsal horn in a dose-dependent manner, and the maximum decrease was 56.8 ± 6.0% at high-dose propofol infusion producing immobility. The inhibitory GABA and Gly efflux was also decreased about 15–20% at low-dose propofol infusion only producing sedation, but did not continue to drop with higher doses of propofol. Conclusion: Propofol decreased both excitatory and inhibitory amino acids efflux in spinal dorsal horn, and the preferential suppression of the excitatory amino acid might be associated with the analgesic effect of propofol. PMID:26557972

  3. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.

    PubMed Central

    Burbaum, J. J.; Schimmel, P.

    1992-01-01

    Although partial or complete three-dimensional structures are known for three Class I aminoacyl-tRNA synthetases, the amino acid-binding sites in these proteins remain poorly characterized. To explore the methionine binding site of Escherichia coli methionyl-tRNA synthetase, we chose to study a specific, randomly generated methionine auxotroph that contains a mutant methionyl-tRNA synthetase whose defect is manifested in an elevated Km for methionine (Barker, D.G., Ebel, J.-P., Jakes, R.C., & Bruton, C.J., 1982, Eur. J. Biochem. 127, 449-457), and employed the polymerase chain reaction to sequence this mutant synthetase directly. We identified a Pro 14 to Ser replacement (P14S), which accounts for a greater than 300-fold elevation in Km for methionine and has little effect on either the Km for ATP or the kcat of the amino acid activation reaction. This mutation destabilizes the protein in vivo, which may partly account for the observed auxotrophy. The altered proline is found in the "signature sequence" of the Class I synthetases and is conserved. This sequence motif is 1 of 2 found in the 10 Class I aminoacyl-tRNA synthetases and, in the known structures, it is in the nucleotide-binding fold as part of a loop between the end of a beta-strand and the start of an alpha-helix. The phenotype of the mutant and the stability and affinity for methionine of the wild-type and mutant enzymes are influenced by the amino acid that is 25 residues beyond the C-terminus of the signature sequence.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304356

  4. Mutating a Conserved Proline Residue within the Trimerization Domain Modifies Na+ Binding to Excitatory Amino Acid Transporters and Associated Conformational Changes*

    PubMed Central

    Hotzy, Jasmin; Schneider, Nicole; Kovermann, Peter; Fahlke, Christoph

    2013-01-01

    Excitatory amino acid transporters (EAATs) are crucial for glutamate homeostasis in the mammalian central nervous system. They are not only secondary active glutamate transporters but also function as anion channels, and different EAATs vary considerably in glutamate transport rates and associated anion current amplitudes. A naturally occurring mutation, which was identified in a patient with episodic ataxia type 6 and that predicts the substitution of a highly conserved proline at position 290 by arginine (P290R), was recently shown to reduce glutamate uptake and to increase anion conduction by hEAAT1. We here used voltage clamp fluorometry to define how the homologous P259R mutation modifies the functional properties of hEAAT3. P259R inverts the voltage dependence, changes the sodium dependence, and alters the time dependence of hEAAT3 fluorescence signals. Kinetic analysis of fluorescence signals indicate that P259R decelerates a conformational change associated with sodium binding to the glutamate-free mutant transporters. This alteration in the glutamate uptake cycle accounts for the experimentally observed changes in glutamate transport and anion conduction by P259R hEAAT3. PMID:24214974

  5. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  6. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-( sup 15 M)-proline followed by sup 15 N NMR

    SciTech Connect

    Heyser, J.W.; Chacon, M.J. )

    1989-04-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-({sup 15}N)-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by {sup 15}N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of {sup 15}N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed.

  7. Incorporation of glycine-2-C-14 in acid-insoluble proteins of rat bones and teeth during hypokinesia and administration of thyrocalcitonine

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stekolnikov, L. I.; Uglova, N. N.; Potkin, V. Y.

    1979-01-01

    A forced limitation of the motor activity in rats (from 5 to 60 days) results in reduced incorporation of glycine 2-C14 in the total acid insoluble proteins of limb bones and its increase in the teeth and mandibular-maxillary bones. Daily administration of five micrograms of thyrocalcitonine together with polyvinylpyrrolidone normalizes the protein metabolism in the bone tissues during the 40 days of experimentation.

  8. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-01

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory.

  9. Proline-rich Sequence Recognition

    PubMed Central

    Schlundt, Andreas; Sticht, Jana; Piotukh, Kirill; Kosslick, Daniela; Jahnke, Nadin; Keller, Sandro; Schuemann, Michael; Krause, Eberhard; Freund, Christian

    2009-01-01

    The tumor maintenance protein Tsg101 has recently gained much attention because of its involvement in endosomal sorting, virus release, cytokinesis, and cancerogenesis. The ubiquitin-E2-like variant (UEV) domain of the protein interacts with proline-rich sequences of target proteins that contain P(S/T)AP amino acid motifs and weakly binds to the ubiquitin moiety of proteins committed to sorting or degradation. Here we performed peptide spot analysis and phage display to refine the peptide binding specificity of the Tsg101 UEV domain. A mass spectrometric proteomics approach that combines domain-based pulldown experiments, binding site inactivation, and stable isotope labeling by amino acids in cell culture (SILAC) was then used to delineate the relative importance of the peptide and ubiquitin binding sites. Clearly “PTAP” interactions dominate target recognition, and we identified several novel binders as for example the poly(A)-binding protein 1 (PABP1), Sec24b, NFκB2, and eIF4b. For PABP1 and eIF4b the interactions were confirmed in the context of the corresponding full-length proteins in cellular lysates. Therefore, our results strongly suggest additional roles of Tsg101 in cellular regulation of mRNA translation. Regulation of Tsg101 itself by the ubiquitin ligase TAL (Tsg101-associated ligase) is most likely conferred by a single PSAP binding motif that enables the interaction with Tsg101 UEV. Together with the results from the accompanying article (Kofler, M., Schuemann, M., Merz, C., Kosslick, D., Schlundt, A., Tannert, A., Schaefer, M., Lührmann, R., Krause, E., and Freund, C. (2009) Proline-rich sequence recognition: I. Marking GYF and WW domain assembly sites in early spliceosomal complexes. Mol. Cell. Proteomics 8, 2461–2473) on GYF and WW domain pathways our work defines major proline-rich sequence-mediated interaction networks that contribute to the modular assembly of physiologically relevant protein complexes. PMID:19542561

  10. The primary structures of six human salivary acidic proline-rich proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f).

    PubMed Central

    Hay, D I; Bennick, A; Schlesinger, D H; Minaguchi, K; Madapallimattam, G; Schluckebier, S K

    1988-01-01

    Human glandular salivary secretions contain several acidic proline-rich phosphoproteins (PRPs). These proteins have important biological functions related to providing a protective environment for the teeth, and appear to possess other activities associated with modulation of adhesion of bacteria to oral surfaces. These functions and activities depend on the primary structures of the PRPs. Previously determined amino acid sequences of two 150-residue molecules, PRP-1 and PRP-2, and two related 106-residue proteins, PRP-3 and PRP-4, indicated that residue 4 was Asn in PRP-1 and PRP-3, and Asp in PRP-2 and PRP-4, and position 50 was Asn in all four proteins. Recent data from cDNA sequence studies and further structural studies, however, showed that the previously proposed sequences cannot be completely correct. The present work has shown that the protein previously designated as PRP-1 actually consisted of two positional isomers, PIF-s, which has Asn and Asp at positions 4 and 50 respectively, and authentic PRP-1, which has the reverse arrangement. The same isomerism is present in the smaller proteins, PIF-f and PRP-3. Since the isomeric pairs have identical compositions and charges, their presence was not previously detected. Also, by using a more highly purified preparation, it has been found that position 50 in PRP-2 and PRP-4 is Asp, rather than Asn previously reported. These new findings for the six PRPs define their complete primary structures, which are now consistent with those proposed for PRP-1 and PIF-s from cDNA data, and are also consistent with the chromatographic and electrophoretic behaviours of the six PRPs and their derived peptides. These corrected structures are important for understanding the biological functions and activities of these unusual proteins. Images Fig. 1. Fig. 4. Fig. 5. PMID:3196309

  11. Role of proline and GABA in sexual reproduction of angiosperms.

    PubMed

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance.

  12. Role of proline and GABA in sexual reproduction of angiosperms

    PubMed Central

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  13. Proline metabolism and transport in maize seedlings at low water potential.

    PubMed

    Raymond, Marjorie J; Smirnoff, Nicholas

    2002-06-01

    The growing zone of maize seedling primary roots accumulates proline at low water potential. Endosperm removal and excision of root tips rapidly decreased the proline pool and greatly reduced proline accumulation in root tips at low water potential. Proline accumulation was not restored by exogenous amino acids. Labelling root lips with [14C]glutamate and [14C]proline showed that the rate of proline utilization (oxidation and protein synthesis) exceeded the rate of biosynthesis by five-fold at high and low water potentials. This explains the reduction in the proline pool following root and endosperm excision and the inability to accumulate proline at low water potential. The endosperm is therefore the source of the proline that accumulates in the root tips of intact seedlings. Proline constituted 10% of the amino acids released from the endosperm. [14C]Proline was transported from the scutellum to other parts of the seedling and reached the highest concentration in the root tip. Less [14C]proline was transported at low water potential but because of the lower rate of protein synthesis and oxidation, more accumulated as proline in the root tip. Despite the low biosynthesis capacity of the roots, the extent of proline accumulation in relation to water potential is precisely controlled by transport and utilization rate.

  14. Thermodynamic and conformational study of proline stereoisomers.

    PubMed

    Santos, Ana Filipa L O M; Notario, Rafael; Ribeiro da Silva, Manuel A V

    2014-08-28

    Amino acids play fundamental roles both as building blocks of proteins and as intermediates in metabolism. Proline, one of the 20 natural amino acids, has a primordial function in enzymes, peptide hormones, and proteins. The energetic characterization of these molecules provides information concerning stability and reactivity and has great importance in understanding the activity and behavior of larger molecules containing these structures as fragments. In the present work, parallel experimental and computational studies have been performed. The experimental studies have been based on calorimetric and effusion techniques, from which the enthalpy of formation in the crystalline phase and the enthalpy of sublimation of the sterioisomers L-, D-, and the DL-mixture of proline have been derived. Additionally, vapor pressure measurements have also enabled the determination of the entropies and Gibbs energies of sublimation, at T = 298.15 K. From the former results, the experimental standard (p(o) = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, of L-proline, D-proline, and DL-proline have been calculated as -388.6 ± 2.3, -391.9 ± 2.0, and -391.5 ± 2.4 kJ·mol(-1), respectively. A computational study at the G3 and G4 levels has been carried out. Conformational analysis has been done and the enthalpy of formation of proline as well as other intrinsic properties such as acidity, basicity, adiabatic ionization enthalpy, electron and proton affinities, and bond dissociation enthalpies have been calculated. There is a very good agreement between calculated and experimental values, when they are available.

  15. Effects of hydrostatic pressure and temperature on the uptake and respiration of amino acids by a facultatively psychrophilic marine bacterium.

    NASA Technical Reports Server (NTRS)

    Paul, K. L.; Morita, R. Y.

    1971-01-01

    Studies of pressure and temperature effects on glutamic acid transport and utilization indicated that hydrostatic pressure and low temperature inhibit glutamate transport more than glutamate respiration. The effects of pressure on transport were reduced at temperatures near the optimum. Similar results were obtained for glycine, phenylalanine, and proline. Pressure effects on the transport systems of all four amino acids were reversible to some degree. Both proline and glutamic acid were able to protect their transport proteins against pressure damage. The data presented indicate that the uptake of amino acids by cells under pressure is inhibited, which is the cause of their inability to grow under pressure.

  16. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.).

    PubMed

    Lan, Tu; You, Jiangfeng; Kong, Lingnan; Yu, Miao; Liu, Minghui; Yang, Zhenming

    2016-01-01

    Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean plant. We also investigated the activity of antioxidative enzymes in Al-exposed soybean roots. Root elongation was severally inhibited when the roots were exposed to 30 μM Al. The Al-induced inhibition of root elongation was ameliorated by Ca(2+) and SA but aggravated by Ca(2+) channel inhibitor (VP), CaM antagonists (TFP), Ca(2+) chelator (EGTA), and SA biosynthesis inhibitor (PAC). Furthermore, 1.0 mM CaCl2 and 10 μM SA reduced the accumulation of Al in roots, but their inhibitors stimulated the accumulation of Al in roots. Citrate secretion from these roots increased with the addition of either 1.0 mM CaCl2 or 10 μM SA but did not increase significantly when treated with higher Ca(2+) concentration. Enzymatic analysis showed that Ca(2+) and SA stimulated the activities of superoxidase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in Al-treated roots. In addition, SA restored the inhibition of Ca(2+) inhibitors on root elongation and Al content. Thus, both Ca(2+) and SA contribute to Al tolerance in soybean. Furthermore, Ca(2+) supplements rapidly increased Al-induced accumulation of free-SA or conjugated SA (SAG), while Ca(2+) inhibitors delayed the accumulation of SA for more than 8 h. Within 4 h of treatment, SA increased cytosolic Ca(2+) concentration in Al-treated roots, and upregulated the expression of four genes that possibly encode calmodulin-like (CML) proteins. These findings indicate that SA is involved in Ca(2+)-mediated signal transduction pathways in Al tolerance.

  17. The folding and stability of rhodanese are influenced by the replacement of glutamic acid 17 in the NH2-terminal helix by proline but not by glutamine.

    PubMed

    Luo, G X; Horowitz, P M

    1993-05-15

    Two site-directed mutants of the enzyme rhodanese which replace glutamic acid 17 with either glutamine (E17Q) or with proline (E17P) were produced and purified. Both mutants displayed specific activities similar to the wild type enzyme. E17Q was equivalent to the wild type enzyme in all assayed characteristics, except that the mutant had slightly more solvent exposure of hydrophobic surfaces. Results with E17Q suggest that the charge on Glu17 is not required for helix stabilization, nor is its titration required for the low pH structural transitions seen previously. In contrast, E17P was significantly different from the wild type enzyme. For example, E17P had (a) higher exposure of hydrophobic surfaces in the unperturbed state; (b) considerably lower stability to perturbation by urea; (c) easier exposure of organized hydrophobic surfaces on initial unfolding, even though denaturation to the final disorganized state was the same as for the wild type; (d) the ability to refold without assistants but with lower yields and somewhat slower folding; and (e) similar susceptibility to trypsin and evidence of a new clip site closer to the NH2 terminus. However, E17P and the wild type enzyme had very similar recoveries with chaperonin-assisted refolding, and the chaperonin protein groEL had a very similar ability to suppress unassisted refolding. These results indicate that changes in the NH2-terminal sequence can have dramatic effects on the stability of rhodanese and on its ability to be refolded in the absence of assistants. They further suggest that interactions with chaperonins do not rely exclusively on the detailed conformation at the NH2 terminus. A model that incorporates observations here includes step(s) in which the NH2-terminal sequence folds onto the NH2-terminal domain late in the folding process after the protein had adopted a near native conformation.

  18. The Proline Regulatory Axis and Cancer

    PubMed Central

    Phang, James Ming; Liu, Wei; Hancock, Chad; Christian, Kyle J.

    2012-01-01

    Studies in metabolism and cancer have characterized changes in core pathways involving glucose and glutamine, emphasizing the provision of substrates for building cell mass. But recent findings suggest that pathways previously considered peripheral may play a critical role providing mechanisms for cell regulation. Several of these mechanisms involve the metabolism of non-essential amino acids, for example, the channeling of glycolytic intermediates into the serine pathway for one-carbon transfers. Historically, we proposed that the proline biosynthetic pathway participated in a metabolic interlock with glucose metabolism. The discovery that proline degradation is activated by p53 directed our attention to the initiation of apoptosis by proline oxidase/dehydrogenase. Now, however, we find that the biosynthetic mechanisms and the metabolic interlock may depend on the pathway from glutamine to proline, and it is markedly activated by the oncogene MYC. These findings add a new dimension to the proline regulatory axis in cancer and present attractive potential targets for cancer treatment. PMID:22737668

  19. Connecting proline metabolism and signaling pathways in plant senescence

    PubMed Central

    Zhang, Lu; Becker, Donald F.

    2015-01-01

    The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen species (ROS) due to proline oxidation being coupled to the respiratory electron transport chain. Considerable research has been devoted to understand how plants exploit proline metabolism in response to abiotic and biotic stress. Here, we review potential mechanisms by which proline metabolism influences plant senescence, namely in the petal and leaf. Recent studies of petal senescence suggest proline content is manipulated to meet energy demands of senescing cells. In the flower and leaf, proline metabolism may influence ROS signaling pathways that delay senescence progression. Future studies focusing on the mechanisms by which proline metabolic shifts occur during senescence may lead to novel methods to rescue crops under stress and to preserve post-harvest agricultural products. PMID:26347750

  20. Different Type 1 Fimbrial Genes and Tropisms of Commensal and Potentially Pathogenic Actinomyces spp. with Different Salivary Acidic Proline-Rich Protein and Statherin Ligand Specificities

    PubMed Central

    Li, Tong; Khah, Massoud Kheir; Slavnic, Snjezana; Johansson, Ingegerd; Strömberg, Nicklas

    2001-01-01

    Actinomyces spp. exhibit type 1 fimbria-mediated adhesion to salivary acidic proline-rich proteins (PRPs) and statherin ligands. Actinomyces spp. with different animal and tissue origins belong to three major adhesion types as relates to ligand specificity and type 1 fimbria genes. (i) In preferential acidic-PRP binding, strains of Actinomyces naeslundii genospecies 1 and 2 from human and monkey mouths displayed at least three ligand specificities characterized by preferential acidic-PRP binding. Slot blot DNA hybridization showed seven highly conserved type 1 fimbria genes (orf1- to -6 and fimP) in genospecies 1 and 2 strains, except that orf5 and orf3 were divergent in genospecies 1. (ii) In preferential statherin binding, oral Actinomyces viscosus strains of rat and hamster origin (and strain 19246 from a human case of actinomycosis) bound statherin preferentially. DNA hybridization and characterization of the type 1 fimbria genes from strain 19246 revealed a homologous gene cluster of four open reading frames (orfA to -C and fimP). Bioinformatics suggested sortase (orfB, orf4, and part of orf5), prepilin peptidase (orfC and orf6), fimbria subunit (fimP), and usher- and autotransporter-like (orfA and orf1 to -3) functions. Those gene regions corresponding to orf3 and orf5 were divergent, those corresponding to orf2, orf1, and fimP were moderately conserved, and those corresponding to orf4 and orf6 were highly conserved. Restriction fragment length polymorphism analyses using a fimP probe separated human and monkey and rat and hamster strains into phylogenetically different groups. (iii) In statherin-specific binding, strains of A. naeslundii genospecies 1 from septic and other human infections displayed a low-avidity binding to statherin. Only the orf4 and orf6 gene regions were highly conserved. Finally, rat saliva devoid of statherin bound bacterial strains avidly irrespective of ligand specificity, and specific antisera detected either type 1, type 2, or both

  1. Proline metabolism and cancer: emerging links to glutamine and collagen

    PubMed Central

    Phang, James M.; Liu, Wei; Hancock, Chad N.; Fischer, Joseph W.

    2015-01-01

    Purpose of review Proline metabolism impacts a number of regulatory targets in both animals and plants and is especially important in cancer. Glutamine, a related amino acid, is considered second in importance only to glucose as a substrate for tumors. But proline and glutamine are interconvertible and linked in their metabolism. In animals, proline and glutamine have specific regulatory functions and their respective physiologic sources. A comparison of the metabolism of proline and glutamine would help us understand the importance of these two nonessential amino acids in cancer metabolism. Recent findings The regulatory functions of proline metabolism proposed 3 decades ago have found relevance in many areas. For cancer, these functions play a role in apoptosis, autophagy and in response to nutrient and oxygen deprivation. Importantly, proline-derived reactive oxygen species served as a driving signal for reprogramming. This model has been applied by others to metabolic regulation for the insulin-prosurvival axis, induction of adipose triglyceride lipase for lipid metabolism and regulation of embryonic stem cell development. Of special interest, modulatory proteins such as parkinson protein 7 and oral cancer overexpressed 1 interact with pyrroline-5-carboxylate reductase, a critical component of the proline regulatory axis. Although the interconvertibility of proline and glutamine has been long established, recent findings showed that the proto-oncogene, cellular myelocytomatosis oncogene, upregulates glutamine utilization (glutaminase) and routes glutamate to proline biosynthesis (pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductases). Additionally, collagen, which contains large amounts of proline, may be metabolized to serve as a reservoir for proline. This metabolic relationship as well as the new regulatory targets of proline metabolism invites an elucidation of the differential effects of these nonessential amino acids and their production

  2. Proline and hydroxyproline metabolism: implications for animal and human nutrition.

    PubMed

    Wu, Guoyao; Bazer, Fuller W; Burghardt, Robert C; Johnson, Gregory A; Kim, Sung Woo; Knabe, Darrell A; Li, Peng; Li, Xilong; McKnight, Jason R; Satterfield, M Carey; Spencer, Thomas E

    2011-04-01

    Proline plays important roles in protein synthesis and structure, metabolism (particularly the synthesis of arginine, polyamines, and glutamate via pyrroline-5-carboxylate), and nutrition, as well as wound healing, antioxidative reactions, and immune responses. On a per-gram basis, proline plus hydroxyproline are most abundant in collagen and milk proteins, and requirements of proline for whole-body protein synthesis are the greatest among all amino acids. Therefore, physiological needs for proline are particularly high during the life cycle. While most mammals (including humans and pigs) can synthesize proline from arginine and glutamine/glutamate, rates of endogenous synthesis are inadequate for neonates, birds, and fish. Thus, work with young pigs (a widely used animal model for studying infant nutrition) has shown that supplementing 0.0, 0.35, 0.7, 1.05, 1.4, and 2.1% proline to a proline-free chemically defined diet containing 0.48% arginine and 2% glutamate dose dependently improved daily growth rate and feed efficiency while reducing concentrations of urea in plasma. Additionally, maximal growth performance of chickens depended on at least 0.8% proline in the diet. Likewise, dietary supplementation with 0.07, 0.14, and 0.28% hydroxyproline (a metabolite of proline) to a plant protein-based diet enhanced weight gains of salmon. Based on its regulatory roles in cellular biochemistry, proline can be considered as a functional amino acid for mammalian, avian, and aquatic species. Further research is warranted to develop effective strategies of dietary supplementation with proline or hydroxyproline to benefit health, growth, and development of animals and humans.

  3. Laboratory simulation of ultraviolet irradiation from the Sun on amino acids. III. irradiation of glycine-tyrosine

    NASA Astrophysics Data System (ADS)

    Scappini, F.; Capobianco, M. L.; Casadei, F.; Zamboni, R.

    2009-04-01

    The effects of near ultraviolet (UV) radiation on water solutions of tyrosine and glycine-tyrosine are investigated using a broadband xenon lamp in the region 200-800 nm. These experiments form a contribution in the laboratory simulation of the solar irradiation on the building blocks of life with regard to the origin of life. Results are presented showing the photodecomposition of tyrosine and glycine-tyrosine, at different concentrations, against UV doses. The analysis of the irradiated solutions is carried out by spectroscopic and analytical techniques. The findings of our laboratory simulations are used to constrain the early stages of the life emerging process.

  4. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  5. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans

    PubMed Central

    Glynn, Erin L.; Piner, Lucy W.; Huffman, Kim M.; Slentz, Cris A.; Elliot-Penry, Lorraine; AbouAssi, Hiba; White, Phillip J.; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga R.; Stevens, Robert D.; Porter Starr, Kathryn N.; Bales, Connie W.; Volpi, Elena; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.

    2016-01-01

    Aims/hypotheses Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. Methods Whole-body leucine turnover, IS by hyperinsulinaemic–euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). Results IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. Conclusions/interpretation A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. Trial registration Clinicaltrials.gov NCT01786941 PMID:26254576

  6. Formation and stability of the enolates of N-protonated proline methyl ester and proline zwitterion in aqueous solution: a nonenzymatic model for the first step in the racemization of proline catalyzed by proline racemase.

    PubMed

    Williams, Glenn; Maziarz, E Peter; Amyes, Tina L; Wood, Troy D; Richard, John P

    2003-07-15

    Rate constants for the hydrolysis of L-proline methyl ester to form proline and methanol in D(2)O buffered at neutral pD and 25 degrees C and the deuterium enrichment of the proline product determined by electrospray ionization mass spectrometry are reported. The data give k(DO) = 5.3 +/- 0.5 M(-1) s(-1) as the second-order rate constant for carbon deprotonation of N-protonated proline methyl ester by deuterioxide ion in D(2)O at 25 degrees C and I = 1.0 (KCl). The data provide good estimates of carbon acidities of pK(a) = 21 for N-protonated proline methyl ester and pK(a) = 29 for proline zwitterion in water and of the second-order rate constant k(HO) = 4.5 x 10(-5) M(-1) s(-1) for carbon deprotonation of proline zwitterion by hydroxide ion at 25 degrees C. There is no detectable acceleration of the deprotonation of N-protonated proline methyl ester by the Brønsted base 3-quinuclidinone in water, and it is not clear that such Brønsted catalysis would make a significant contribution to the rate acceleration for deprotonation of bound proline at proline racemase. A comparison of the first-order rate constants k(HO)[HO(-)] = 4.5 x 10(-11) s(-1) for deprotonation of free proline zwitterion in water at pH 8 and k(cat) = 2600 s(-1) for deprotonation of proline bound to the active site of proline racemase at pH 8 shows that the enzymatic rate acceleration for proline racemase is ca. 10(13)-fold. This corresponds to a 19 kcal/mol stabilization of the transition state for deprotonation of the enzyme-bound carbon acid substrate by interaction with the protein catalyst. It is suggested that (1) much of the rate acceleration of the enzymatic over the nonenzymatic reaction in water may result from transfer of the substrate proline zwitterion from the polar solvent water to a nonpolar enzyme active site and (2) the use of thiol anions rather than oxygen anions as Brønsted bases at this putative nonpolar enzyme active site may be favored, because of the smaller energetic

  7. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis

    PubMed Central

    Pitzschke, Andrea; Xue, Hui; Persak, Helene; Datta, Sneha; Seifert, Georg J.

    2016-01-01

    Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions. PMID:26771603

  8. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  9. The Sodium/Proline Transporter PutP of Helicobacter pylori

    PubMed Central

    Rivera-Ordaz, Araceli; Bracher, Susanne; Sarrach, Sannia; Li, Zheng; Shi, Lei; Quick, Matthias; Hilger, Daniel; Haas, Rainer; Jung, Heinrich

    2013-01-01

    Helicobacter pylori is cause of chronic gastritis, duodenal ulcer and gastric carcinoma in humans. L-proline is a preferred energy source of the microaerophilic bacterium. Previous analyses revealed that HpputP and HpputA, the genes that are predicted to play a central role in proline metabolism as they encode for the proline transporter and proline dehydrogenase, respectively, are essential for stomach colonization. Here, the molecular basis of proline transport in H. pylori by HpPutP was investigated experimentally for the first time. Measuring radiolabeled substrate transport in H. pylori and E. coli heterologously expressing HpputP as well as in proteoliposomes reconstituted with HpPutP, we demonstrate that the observed proline transport in H. pylori is mediated by HpPutP. HpPutP is specific and exhibits a high affinity for L-proline. Notably, L-proline transport is exclusively dependent on Na+ as coupling ion, i.e., Na+/L-proline symport, reminiscent to the properties of PutP of E. coli even though H. pylori lives in a more acidic environment. Homology model-based structural comparisons and substitution analyses identified amino acids crucial for function. HpPutP-catalyzed proline uptake was efficiently inhibited by the known proline analogs 3,4-dehydro-D,L-proline and L-azetidine-2-carboxylic acid. PMID:24358297

  10. Efficacy of proline in the treatment of menopause

    PubMed Central

    Nam, Sun-Young; Yoou, Myoung-Schook

    2016-01-01

    The amino acids in the placenta have multiple functions; however, the therapeutic effects of proline remain poorly for relief postmenopausal symptoms. The aim of present study was to evaluate the effects of proline in the treatment of menopause using in vitro and in vivo models. We assessed the therapeutic effects and regulatory mechanisms of proline by using MCF-7 estrogen-dependent cells, MG63 osteoblast cells, and ovariectomized mice model. An in vivo study was carried out in eight-week-old sham and ovariectomized group. The ovariectomized mouse was further subdivided into two groups administered orally with 17β-estradiol or proline (10 mg/kg/day) for eight weeks. Proline significantly increased cell proliferation and Ki-67 levels in MCF-7 cells and enhanced cell proliferation, alkaline phosphatase activity, extracellular signal-regulated kinase phosphorylation, and glutamyl-prolyl-tRNA synthetase activation in MG63 cells. The estrogen receptor-β and estrogen-response elements luciferase activity were significantly increased by proline in MCF-7 and MG63 cells. In ovariectomized mice, oral administration of proline (10 mg/kg/day) for eight weeks significantly reduced body and vaginal weights. Proline also significantly increased serum estradiol and alkaline phosphatase levels, whereas serum luteinizing hormone was decreased by proline. In addition, detailed microcomputed tomography analysis showed that the proline notably enhanced bone mineral density, trabecular bone volume, and trabecular number in ovariectomized mice. Those findings implied that proline can be a promising candidate for the treatment of menopause. PMID:26830682

  11. Cyanobacteria produce N-(2-aminoethyl)glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on Earth.

    PubMed

    Banack, Sandra Anne; Metcalf, James S; Jiang, Liying; Craighead, Derek; Ilag, Leopold L; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth.

  12. Cyanobacteria Produce N-(2-Aminoethyl)Glycine, a Backbone for Peptide Nucleic Acids Which May Have Been the First Genetic Molecules for Life on Earth

    PubMed Central

    Banack, Sandra Anne; Metcalf, James S.; Jiang, Liying; Craighead, Derek; Ilag, Leopold L.; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth. PMID:23145061

  13. Proline Modulates the Trypanosoma cruzi Resistance to Reactive Oxygen Species and Drugs through a Novel D, L-Proline Transporter

    PubMed Central

    Sayé, Melisa; Miranda, Mariana R.; di Girolamo, Fabio; de los Milagros Cámara, María; Pereira, Claudio A.

    2014-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, has a metabolism largely based on the consumption of glucose and proline. This amino acid is essential for host cells infection and intracellular differentiation. In this work we identified a proline transporter (TcAAAP069) by yeasts complementation assays and overexpression in Trypanosoma cruzi epimastigotes. TcAAAP069 is mono-specific for proline but presents an unusual feature; the lack of stereospecificity, because it is competitively inhibited by the D- enantiomer. Parasites overexpressing TcAAAP069 have an increased intracellular proline concentration, 2.6-fold higher than controls, as a consequence of a higher proline transport rate. Furthermore, augmented proline concentration correlates with an improved resistance to trypanocidal drugs and also to reactive oxygen species including hydrogen peroxide and nitric oxide, emulating natural physiological situations. The IC50s for nifurtimox, benznidazole, H2O2 and NO. were 125%, 68%, 44% and 112% higher than controls, respectively. Finally, proline metabolism generates a higher concentration (48%) of ATP in TcAAAP069 parasites. Since proline participates on essential energy pathways, stress and drug resistance responses, these results provide a novel target for the development of new drugs for the treatments for Chagas' disease. PMID:24637744

  14. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  15. Uptake of proline by the scutellum of germinating barley grain

    SciTech Connect

    Vaeisaenen, E.; Sopanen, T.

    1986-04-01

    Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar L-(/sup 14/C)proline at an initial rate of about 6.5 micromoles gram/sup -1/ fresh weight hour/sup -1/ (pH 5, 30/sup 0/C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via carrier-mediated active transport. All of the 19 L-amino acids tested at 10 millimolar concentration inhibited the mediated uptake of 1 millimolar proline, the inhibitions varying from 18 to 76%. By studying how large a fraction of the mediated uptake was inhibitable by asparagine, alanine, glutamine, and leucine, the mediated uptake was shown to be due to three components. Two of these are most probably attributable to the two nonspecific uptake systems proposed earlier to act in the uptake of glutamine and leucine. The third component was not inhibited by glutamine, asparagine, or alanine, but was inhibited by unlabeled proline and leucine. The uptake by this system was apparently carrier-mediated active transport. D-Proline inhibited this system as strongly as L-proline. Nine of the 16 L-amino tested at 50 millimolar concentrations did not inhibit the uptake of 1 millimolar proline by this system. Valine, leucine, isoleucine, and the basic amino acids were inhibitory, but in spite of this, they did not appear to be taken up by this system. It seems therefore that in addition to two nonspecific amino acid uptake systems the scutella have an uptake system which is specific for proline. It is likely that this proline-specific system accounts for the bulk of proline uptake in a germinating grain.

  16. Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid.

    PubMed

    Eipper, B A; Mains, R E; Glembotski, C C

    1983-08-01

    An enzymatic activity capable of producing an alpha-amidated peptide product from its glycine-extended precursor has been identified in secretory granules of rat anterior, intermediate, and neural pituitary and bovine intermediate pituitary. High levels of endogenous inhibitors of this alpha-amidation activity have also been found in tissue homogenates. The alpha-amidation activity is totally inhibited by addition of divalent metal ion chelators such as diethyldithiocarbamate, o-phenanthroline, and EDTA; alpha-amidation activity is restored to above control levels upon addition of copper. The alpha-amidation reaction requires the presence of molecular oxygen. Of the various cofactors tested, ascorbic acid was the most potent stimulator of alpha-amidation. The alpha-amidation activity has a neutral pH optimum and is primarily soluble following several cycles of freezing and thawing. Kinetic studies with the bovine intermediate pituitary granule-associated activity demonstrated a linear Lineweaver-Burk plot when D-Tyr-Val-Gly was the varied substrate; the apparent Km and Vmax varied with the concentration of ascorbic acid. The substrate specificity of the alpha-amidation activity appears to be quite broad; the conversion of D-Tyr-Val-Gly into D-Tyr-Val-NH2 is inhibited by the addition of a variety of glycine-extended peptides.

  17. Low-temperature phase transition in glycine-glutaric acid co-crystals studied by single-crystal X-ray diffraction, Raman spectroscopy and differential scanning calorimetry.

    PubMed

    Zakharov, Boris A; Losev, Evgeniy A; Kolesov, Boris A; Drebushchak, Valeri A; Boldyreva, Elena V

    2012-06-01

    The occurrence of a first-order reversible phase transition in glycine-glutaric acid co-crystals at 220-230 K has been confirmed by three different techniques - single-crystal X-ray diffraction, polarized Raman spectroscopy and differential scanning calorimetry. The most interesting feature of this phase transition is that every second glutaric acid molecule changes its conformation, and this fact results in the space-group symmetry change from P2(1)/c to P1. The topology of the hydrogen-bonded motifs remains almost the same and hydrogen bonds do not switch to other atoms, although the hydrogen bond lengths do change and some of the bonds become inequivalent.

  18. Substrate channeling in proline metabolism

    PubMed Central

    Arentson, Benjamin W.; Sanyal, Nikhilesh; Becker, Donald F.

    2012-01-01

    Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism. PMID:22201749

  19. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  20. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  1. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  2. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  3. Glycine and Diglycine as Possible Catalytic Factors in the Prebiotic Evolution of Peptides

    NASA Astrophysics Data System (ADS)

    Plankensteiner, Kristof; Righi, Alessandro; Rode, Bernd M.

    2002-06-01

    Mutual catalytic effects within the Salt-Induced Peptide Formation (SIPF) Reaction might be one little puzzle piece in the complicated process of the formation of complex peptidic systems and their chemical evolution on the prebiotic earth. The catalytic effects of glycine and diglycine on the formation of dipeptides from mixed amino acid systems in the SIPF Reaction was investigated for systems with leucine, proline, valine and aspartic acid and showed to result in a significant increase of the yield of the majority of the produced dipeptides. The results of the experiments strongly confirm previous theories on the catalytic mechanism and show the ability of the SIPF Reaction to produce a very diverse set of peptide products with relevance to the formation of a biosphere.

  4. Comparative aspects of tissue glutamine and proline metabolism.

    PubMed

    Bertolo, Robert F; Burrin, Douglas G

    2008-10-01

    The cellular metabolism of glutamine and proline are closely interrelated, because they can be interconverted with glutamate and ornithine via the mitochondrial pathway involving pyrroline-5-carboxylate (P5C). In adults, glutamine and proline are converted via P5C to citrulline in the gut, then citrulline is converted to arginine in the kidney. In neonates, arginine is a semiindispensable amino acid and is synthesized from proline completely in the gut; because of low P5C synthase activity, glutamine is not an important precursor for neonatal arginine synthesis. Thus, splanchnic metabolism of glutamine and proline is important, because both amino acids serve as key precursors for arginine synthesis with some developmental differences. Studies investigating splanchnic extraction demonstrate that about two-thirds of dietary glutamine and almost all dietary glutamate are extracted on first pass and the vast majority is oxidized in the gut. This capacity to extract glutamine and glutamate appears to be very large, so diets high in glutamine or glutamate probably have little impact on circulating concentrations and consequent potential toxicity. In contrast, it appears that very little proline is extracted by the gut and liver, at least in the neonate, which may result in hyperprolinemia and potential toxicity. Therefore, the upper limits of safe dietary intake for glutamine and proline, and other amino acids, appear to be substantially different depending on the extent of first-pass splanchnic extraction and irreversible catabolism.

  5. Glycine fluxes in squid giant axons.

    PubMed

    Caldwell, P C; Lea, T J

    1978-05-01

    1. The influx of a number of amino acids into squid giant axons has been studied. Particular emphasis has been placed on glycine and to a lesser extent glutamate. 2. To facilitate the study of the uptake of 14C-labelled amino acids a technique was devised in which the 14C taken up was measured directly in the intact axon with a glass scintillator fibre. This technique gave results similar to the usual technique in which the axoplasm was extruded for the assay of radioactivity. 3. The changes in glycine influx with extracellular glycine concentration suggests that two saturating components are present, one with high affinity and one with low affinity. 4. The glycine influx does not seem normally to be sensitive to the removal of extracellular sodium by replacement with choline. A Na-sensitive component appeared, however, after a period of immersion in artificial sea water. There was also some depression of glycine influx if Na were replaced by Li. 5. Glutamate uptake was greatly reduced by removal of extracellular Na in confirmation of work by Baker & Potashner (1973). Orthophosphate uptake was also greatly reduced by removal of extracellular Na. 6. CN reversibly inhibited glycine uptake after a delay, indicating that part of the uptake mechanism may require ATP. 7. 14C-labelled glycine injected into squid axons was found not to exchange to any serious extent with other compounds over periods of a few hours. The glycine efflux could therefore be studied. This was found to be markedly increased by extracellular glycine and by certain other neutral amino acids applied extracellularly in the artificial sea water. 8. The enhanced glycine efflux in extracellular glycine was not affected by ouabain and CN. 9. It is suggested that glycine uptake in squid axons involves two components. One is sensitive to CN and ouabain and probably derives energy from ATP break-down. The other is probably an ATP independent exchange diffusion system in which other amino acids as well as

  6. Application of hexafluoroacetone as protecting and activating reagent in amino acid and peptide chemistry.

    PubMed

    Burger, K; Rudolph, M; Fehn, S; Worku, A; Golubev, A

    1995-06-01

    Using hexafluoroacetone as protecting and activating reagent, multifunctional amino acids like aspartic acid can be functionalized regioselectively. This strategy offers i.a. a two-step synthesis for aspartame and preparatively simple access to multifunctional natural and unnatural amino acids, like 4-oxo-L-amino acids, 5-diazo-4-oxo-L-amino acids, 4-substituted L-proline derivatives and various heterocyclic L-amino acids. On application of this strategy to amino diacetic acid N-substituted glycines become readily available.

  7. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    SciTech Connect

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayon, Victor M.; Largo, Antonio

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the higher energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  8. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  9. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen.

  10. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications.

    PubMed

    Takagi, Hiroshi

    2008-11-01

    Proline is an important amino acid in terms of its biological functions and biotechnological applications. In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. However, it has been shown that proline levels are not increased under various stress conditions in the yeast Saccharomyces cerevisiae cells. Proline is believed to serve multiple functions in vitro such as protein and membrane stabilization, lowering the T (m) of DNA, and scavenging of reactive oxygen species, but the mechanisms of these functions in vivo are poorly understood. Yeast cells biosynthesize proline from glutamate in the cytoplasm via the same pathway found in bacteria and plants and also convert excess proline to glutamate in the mitochondria. Based on the fact that proline has stress-protective activity, S. cerevisiae cells that accumulate proline were constructed by disrupting the PUT1 gene involved in the degradation pathway and by expressing the mutant PRO1 gene encoding the feedback inhibition-less sensitive gamma-glutamate kinase to enhance the biosynthetic activity. The engineered yeast strains successfully showed enhanced tolerance to many stresses, including freezing, desiccation, oxidation, and ethanol. However, the appropriate cellular level and localization of proline play pivotal roles in the stress-protective effect. These results indicate that the increased stress protection is observed in yeast cells under the artificial condition of proline accumulation. Proline is expected to contribute to yeast-based industries by improving the production of frozen dough and alcoholic beverages or breakthroughs in bioethanol production. PMID:18802692

  11. Formation of peptides from amino acids by single or multiple additions of ATP to suspensions of nucleoproteinoid microparticles

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1981-01-01

    The synthesis of peptides from individual amino acids or pairs of amino acids and ATP in the presence of catalysis by nucleoproteinoid microparticles is investigated. Experiments were performed with suspensions formed from the condensation of lysine-rich and acidic proteinoids with polyadenylic acid, to which were added glycine, phenylalanine, proline, lysine or glycine-phenylalanine mixtures, and ATP either at once or serially. Peptide yields are found to be greatest for equal amounts of acidic and basic proteinoids. The addition of imidazole is found to alter the preference of glycine-phenylalanine mixtures to form mixed heteropeptides rather than homopeptides. A rapid ATP decay in the peptide synthesis reaction is observed, and a greater yield is obtained for repeated small additions than for a single addition of ATP. The experimental system has properties similar to modern cells, and represents an organizational unit ready for the evolution of associated biochemical pathways.

  12. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    PubMed

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.

  13. The effect of an arginine-glycine-aspartic acid peptide and hyaluronate synthetic matrix on epithelialization of meshed skin graft interstices.

    PubMed

    Cooper, M L; Hansbrough, J F; Polarek, J W

    1996-01-01

    Keratinocytes and fibroblasts interact with proteins of the extracellular matrix such as fibronectin and vitronectin through RGD (arginine-glycine-aspartic acid) cell-attachment sequences. This study evaluated the ability of a provisional synthetic matrix composed of an RGD peptide and hyaluronic acid to accelerate the epithelialization of the interstices of meshed, human, split-thickness skin when placed on full-thickness wounds of athymic mice. Full-thickness skin defects, sparing the panniculus carnosus, were created on athymic mice and 3:1 meshed, human skin was placed on them. The grafts had four central, isolated interstices, which epithelialized by migration of human keratinocytes. Conditions were either the addition to the wound of the synthetic matrix or a matrix of hyaluronic acid alone. The time to closure of the graft interstices was decreased (p < 0.02) in the wounds treated with the RGD peptide-hyaluronic acid provisional matrix. The resultant epithelium of the closed interstices was significantly thicker 8 days after surgery for the RGD-treated wounds. Basement membrane proteins (laminin and type IV collagen) were also found to be present at the dermoepidermal junction earlier in the RGD-treated wounds. These results imply that use of the RGD peptide conjugate to effect cell-matrix interactions may have clinical significance in the field of wound healing.

  14. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    PubMed

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone. PMID:25510614

  15. Low-proline environments impair growth, proline transport and in vivo survival of Staphylococcus aureus strain-specific putP mutants.

    PubMed

    Schwan, William R; Wetzel, Keith J; Gomez, Timothy S; Stiles, Melissa A; Beitlich, Brian D; Grunwald, Sandra

    2004-04-01

    Staphylococcus aureus is a common cause of disease in humans, particularly in hospitalized patients. This species needs to import several amino acids to survive, including proline. Previously, it was shown that an insertion mutation in the high-affinity proline uptake gene putP in strain RN6390 affected proline uptake by the bacteria as well as reducing their ability to survive in vivo. To further delineate the effect of the putP mutation on growth of S. aureus strain RN6390, a proline uptake assay that spanned less than 1 min was done to measure transport. An eightfold difference in proline levels was observed between the wild-type strain and the high-affinity proline transport mutant strain after 15 s, indicating that the defect was only in proline transport and not a combination of proline transport, metabolism and accumulation that would have been assessed with longer assays. A putP mutant of S. aureus strain RN4220 was then grown in minimal medium with different concentrations of proline. When compared to the wild-type strain, the putP mutant strain was significantly growth impaired when the level of proline was decreased to 1.74 microM. An assessment of proline concentrations in mouse livers and spleens showed proline concentrations of 7.5 micromol per spleen and 88.4 micromol per liver. To verify that the effects on proline transport and bacterial survival were indeed caused solely by a mutation in putP, the putP mutation was complemented by cloning a full-length putP gene on a plasmid that replicates in S. aureus. Complementation of the putP mutant strains restored proline transport, in vitro growth in low-proline medium, and in vivo survival within mice. These results show that the mutation in putP led to attenuated growth in low-proline media and by corollary low-proline murine organ tissues due to less efficient transport of proline into the bacteria.

  16. Free amino acid profiling in the giant puffball mushroom (Calvatia gigantea) using UPLC-MS/MS.

    PubMed

    Kıvrak, İbrahim; Kıvrak, Şeyda; Harmandar, Mansur

    2014-09-01

    Wild edible and medicinal mushroom, Calvatia gigantea, was quantitatively analyzed for the determination of its free amino acids using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The concentrations of total free amino acids, essential and non-essential amino acids were 199.65 mg/100 g, 113.69 mg/100 g, and 85.96 mg/100 g in C. gigantea, respectively. This study showed that C. gigantea, so called a giant puffball mushroom, has free amino acids content. The essential amino acids: tryptophan, isoleucine, valine, phenylalanine, leucine, threonine, lysine, histidine, methionine, and the non-essential amino acids: tyrosine, 4-hyrdroxy proline, arginine, proline, glycine, serine, alanine, glutamine, glutamic acid, aspargine, aspartic acid were detected.

  17. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  18. Structural Basis for the Inactivation of Thermus thermophilus Proline Dehydrogenase by N-Propargylglycine†‡

    PubMed Central

    White, Tommi A.; Johnson, William H.; Whitman, Christian P.; Tanner, John J.

    2009-01-01

    The flavoenzyme proline dehydrogenase catalyzes the first step of proline catabolism, the oxidation of proline to pyrroline-5-carboxylate. Here we report the first crystal structure of an irreversibly inactivated proline dehydrogenase. The 1.9 Å resolution structure of Thermus thermophilus proline dehydrogenase inactivated by the mechanism-based inhibitor N-propargylglycine shows that N5 of the flavin cofactor is covalently connected to the ε-amino group of Lys99 via a 3-carbon linkage, consistent with the mass spectral analysis of the inactivated enzyme. The isoalloxazine ring has a butterfly angle of 25°, which suggests that the flavin cofactor is reduced. Two mechanisms can account for these observations. In both, N-propargylglycine is oxidized to N-propargyliminoglycine. In one mechanism, this α,β-unsaturated iminium compound is attacked by the N5 atom of the now reduced flavin to produce a 1,4-addition product. Schiff base formation between Lys99 and the imine of the 1,4-addition product releases glycine and links the enzyme to the modified flavin. In the second mechanism, hydrolysis of N-propargyliminoglycine yields propynal and glycine. A 1,4-addition reaction with propynal coupled with Schiff base formation between Lys99 and the carbonyl group tethers the enzyme to the flavin via a 3-carbon chain. The presumed non-enzymatic hydrolysis of N-propargyliminoglycine and the subsequent rebinding of propynal to the enzyme make the latter mechanism less likely. PMID:18426222

  19. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  20. Growth, structural, optical and mechanical studies on acid mixed glycine metal salt (GABN) crystal as potential NLO material

    NASA Astrophysics Data System (ADS)

    Khandpekar, Mahendra M.; Dongare, Shailesh S.; Patil, Shirish B.; Pati, Shankar P.

    2012-03-01

    Transparent crystals of α-glycine with ammonium nitrate and barium nitrate (GABN) have been grown from aqueous solution by slow evaporation technique at room temperature. Crystals of size 11 × 7 × 4 mm 3 have been obtained in about 3-4 weeks time. The solubility of GABN has been determined in water. The grown crystal belongs to orthorhombic system with cell parameters a = 7.317 A.U, b = 12.154 A.U and c = 5.468 A.U with a unit cell volume 486.35 (A.U) 3. The presence of chemical components/groups has been identified by CHN, EDAX and NMR analysis. Comparative IR and Raman studies indicate a molecule with a lack of centre of symmetry. A wide transparency window useful for optoelectronic applications is indicated by the UV Studies. Using a Nd-YAG laser (1064 nm), the optical second harmonic generation (SHG) conversion efficiency of GABN is found to be 1.406 times of that of standard KDP. On exposure to light the GABN crystals are found to exhibit negative photoconductivity. I-V characteristics, SEM studies, dielectrics studies, and Vickers micro hardness measurement have been carried out.

  1. Rapid method for proline determination in grape juice and wine.

    PubMed

    Long, Danfeng; Wilkinson, Kerry L; Poole, Kate; Taylor, Dennis K; Warren, Tristan; Astorga, Alejandra M; Jiranek, Vladimir

    2012-05-01

    Proline is typically the most abundant amino acid present in grape juice and wine. The amount present is influenced by viticultural and winemaking factors and can be of diagnostic importance. A method for rapid routine quantitation of proline would therefore be of benefit for wine researchers and the industry in general. Colorimetric determination utilizing isatin as a derivatizing agent has previously been applied to plant extracts, biological fluids, and protein hydrolysates. In the current study, this method has been successfully adapted to grape juice and wine and proved to be sensitive to milligram per liter amounts of proline. At sugar concentrations above 60 g/L, interference from the isatin-proline reaction was observed, such that proline concentrations were considerably underestimated in grape juice and dessert wine. However, the method was robust for the analysis of fermentation samples and table wines. Results were within ±10% agreement with data generated from typical HPLC-based analyses. The isatin method is therefore considered suitable for the routine analysis required to support research into the utilization or release of proline by yeast during fermentation. PMID:22480274

  2. The induction of free proline accumulation by endogenous ABA in Arabidopsis thaliana during drought

    SciTech Connect

    Gottlieb, M.L.; Bray, E.A. )

    1991-05-01

    Endogenous levels of abscisic acid (ABA) and free proline increase in response to drought stress. Exogenous ABA has been shown to induce proline accumulation, suggesting that ABA triggers the amino acid response. To determine if endogenous ABA induces free proline accumulation, increases in ABA and proline during drought stress were compared between wild type (WT), ABA-insensitive (abi) and ABA-deficient (aba) mutants of Arabidopsis thaliana. If elevated levels of endogenous ABA signal the proline response, then the mutants would not be expected to accumulate proline during stress. abi should be unable to respond to increased levels of endogenous ABA, while aba should be unable to accumulate sufficient ABA to elicit a proline response. Drought-stressed three week old shoots of WT, abi, and aba exhibited different patterns of endogenous ABA accumulation, but similar patterns of proline accumulation over 24 hours. Although the patterns of endogenous ABA accumulation differed, maximum levels were similar in WT and abi, but aba produced approximately 25% less. However, free proline accumulated in all three plant lines. abi exhibited a greater, more rapid increase in free proline over that in either WT or aba. aba, however, showed the same pattern and levels of accumulation as that in WT. Since free proline accumulated to at least similar levels in both WT and mutants, regardless of the levels of ABA accumulation, it may be that only a small endogenous ABA accumulation is required for proline accumulation. Alternatively, endogenous ABA may not be the direct signal for the proline response during drought stress.

  3. Involvement of the β3-α3 loop of the Proline Dehydrogenase Domain in Allosteric Regulation of Membrane Association of Proline Utilization A†,‡

    PubMed Central

    Zhu, Weidong; Haile, Ashley M.; Singh, Ranjan K.; Larson, John D.; Smithen, Danielle; Chan, Jie Y.; Tanner, John J.; Becker, Donald F.

    2013-01-01

    Proline utilization A (PutA) from Escherichia coli is a membrane-associated trifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate and moonlights as a transcriptional regulator. As a regulatory protein, PutA represses transcription of the put regulon, which contains the genes encoding PutA and the proline transporter PutP. The binding of proline to the proline dehydrogenase active site and the subsequent reduction of the flavin induces high affinity membrane association of PutA and relieves repression of the put regulon, thereby causing PutA to switch from its regulatory to its enzymatic role. Here, we present evidence suggesting that residues of the β3-α3 loop of the proline dehydrogenase domain (βα)8 barrel are involved in proline-mediated allosteric regulation of PutA-membrane binding. Mutation of the conserved residues Asp370 and Glu372 in the β3-α3 loop abrogates the ability of proline to induce functional membrane association. Both in vitro lipid/membrane binding assays and in vivo cell-based assays demonstrate that mutagenesis of Asp370 (D370N/A) or Glu372 (E372A) dramatically impedes PutA functional switching. The crystal structures of the proline dehydrogenase domain mutants PutA86-630D370N and PutA86-630D370A complexed with the proline analog L-tetrahydro-2-furoic acid show that the mutations cause only minor perturbations to the active site but no major structural changes, suggesting that the lack of proline response is not due to a failure of the mutated active sites to correctly bind the substrate. Rather, these results suggest that the β3-α3 loop may be involved in transmitting the status of the proline dehydrogenase active site and flavin redox state to the distal membrane association domain. PMID:23713611

  4. A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate.

    PubMed

    Ostrander, Elizabeth L; Larson, John D; Schuermann, Jonathan P; Tanner, John J

    2009-02-10

    Proline dehydrogenase (PRODH) catalyzes the oxidation of l-proline to Delta-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-l-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insight into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analogue l-tetrahydro-2-furoic acid were determined at resolutions of 1.75, 1.90, and 1.85 A, respectively. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline 3-fold and decreases the specificity for proline by factors of 20 (Y540S) and 50 (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding the substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate.

  5. A Conserved Active Site Tyrosine Residue of Proline Dehydrogenase Helps Enforce the Preference for Proline over Hydroxyproline as the Substrate

    SciTech Connect

    Ostrander, E.L.; Larson, J.D.; Schuermann, J.P.; Tanner, J.J.

    2009-03-02

    Proline dehydrogenase (PRODH) catalyzes the oxidation of L-proline to {Delta}-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-L-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insight into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analogue L-tetrahydro-2-furoic acid were determined at resolutions of 1.75, 1.90, and 1.85 {angstrom}, respectively. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline 3-fold and decreases the specificity for proline by factors of 20 (Y540S) and 50 (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding the substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate.

  6. Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Liang, Xinwen; Dickman, Martin B; Becker, Donald F

    2014-10-01

    The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP(+)/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted.

  7. Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max.

    PubMed

    Alekseeva, A A; Kargov, I S; Kleimenov, S Yu; Savin, S S; Tishkov, V I

    2015-01-01

    Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.

  8. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  9. Effects of glycine-arginine-α-ketoisocaproic acid supplementation in college-age trained females during multi-bouts of resistance exercise.

    PubMed

    Wax, Benjamin; Hilton, Laura; Vickers, Brad; Gilliland, Katherine; Conrad, Mandy

    2013-03-01

    Glycine-arginine-α-ketoisocaproic acid (GAKIC) has been proposed to increase anaerobic high-intensity exercise performance in male subjects. However, the effects of GAKIC ingestion in female subjects have not been studied. Therefore, the purpose of this study was to investigate the effects of GAKIC supplementation on total load volume (i.e., mass lifted) and metabolic parameters during repeated bouts of submaximal leg extensions in college-age females. Nine resistance-trained females participated in a randomized, counterbalanced, double blind study. Subjects were randomly assigned to placebo or GAKIC (10.2 g) and performed six sets of 50% of one repetition maximum leg extensions (two legs simultaneously) to failure. One week later, subjects ingested the other supplement and performed the same exercise protocol. Furthermore, blood lactic acid, blood glucose, and heart rate were also measured preexercise and 5 s after the completion of the exercise protocol (postexercise). GAKIC supplementation significantly increased leg extension total load volume (GAKIC = 1721.7 ± 479.9 kg; placebo = 1479.1 ± 396.8 kg, p < .01). Heart rate and blood lactic acid were significantly increased (p < .01 for both measures) postexercise compared to preexercise, but were not significantly different between GAKIC and placebo (p = .40 for heart rate; p = .88 for lactic acid). Blood glucose was significantly decreased (p = .03) postexercise compared to preexercise, but was not significantly different (p = .78) between GAKIC and placebo. Collectively, these findings suggest that GAKIC increased lower body resistance performance in trained college-age females; however, these findings are not necessarily generalizable.

  10. Spectroscopic investigations of humic-like acids formed via polycondensation reactions between glycine, catechol and glucose in the presence of natural zeolites

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu

    2010-10-01

    Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.

  11. Proline induced disruption of the structure and dynamics of water.

    PubMed

    Yu, Dehong; Hennig, Marcus; Mole, Richard A; Li, Ji Chen; Wheeler, Cheryl; Strässle, Thierry; Kearley, Gordon J

    2013-12-21

    We use quasi-elastic neutron scattering spectroscopy to study the diffusive motion of water molecules at ambient temperature as a function of the solute molar fraction of the amino acid, proline. We validate molecular dynamics simulations against experimental quasielastic neutron scattering data and then use the simulations to reveal, and understand, a strong dependence of the translational self-diffusion coefficient of water on the distance to the amino acid molecule. An analysis based on the juxtaposition of water molecules in the simulation shows that the rigidity of proline imposes itself on the local water structure, which disrupts the hydrogen-bond network of water leading to an increase in the mean lifetime of hydrogen bonds. The net effect is some distortion of the proline molecule and a slowing down of the water mobility. PMID:24177249

  12. Effect of Cooking on Isoflavones, Phenolic Acids, and Antioxidant Activity in Sprouts of Prosoy Soybean (Glycine max).

    PubMed

    Kumari, Shweta; Chang, Sam K C

    2016-07-01

    Soy sprouts possess health benefits and is required to be cooked before consumption. The effects of cooking on the phenolic components and antioxidant properties of soy sprouts with different germination days were investigated. A food-grade cultivar Prosoy with a high protein content was germinated for 1, 2, 3, 5, and 7 d and cooked till palatable for 20, 20, 5, 5, and 7 min, respectively. Total phenolic content (TPC), total flavonoids content (TFC), condensed tannins content (CTC), individual phenolic acids, isoflavones, DPPH, ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) of raw and cooked sprouts were measured. Cooking caused significant losses in phenolic content and antioxidant activities, and maximum loss was on day 3 > 5 > 7, including TPC (32%, 23%, and 15%), TFC (50%, 44%, and 20%), CTC (73%, 47%, and 12%), DPPH (31%, 15%, and 5%), FRAP (34%, 25%, and 1%), and ORAC (34%, 22%, 32%), respectively. Cooking caused significant losses in most individual phenolic acid, benzoic group, cinnamic group, total phenolic composition, individual isoflavones, and total isoflavones. The losses of phenolic acids such as gallic, protocatechuic, hydroxybenzoic, syringic, chlorogenic, or sinapic acids during cooking were not compensated by the increases in trihydroxybenzoic, vanillic or coumaric acids on certain days of germination. Cooking caused minimal changes in phenolic acid composition of day 1 and 2 sprouts compared to 3, 5, and 7 d sprouts. PMID:27258930

  13. [Analysis of roots of soybean (Glycine max Merrill) treated with exogenous citric acid plus short-time aluminum stress by direct determination of FTIR spectrum].

    PubMed

    Jin, Ting-Ting; Liu, Peng; Zhang, Zhi-Xiang; Xu, Gen-Di; Zhao, Li-Li

    2009-02-01

    In the present study, 19 soybean (Glycine max L.) cultivars were analyzed and found to differ considerably in aluminum (Al) resistance. The cultivars Zhechun No. 2 (Al-resistant) and Zhechun No. 3 (Al-sensitive) were selected for further analysis. Experiments were performed with plants grown in full nutrient solution for 30 days. Fourier transform infrared spectrometry (FTIR) with OMNI-sampler was applied to the direct determination of different varieties of soybean root tissues, treated with aluminum in a dose-and time-dependent manner plus exogenous citric acid. Then the characteristic absorption peaks of spectra were analyzed and some differences in the FTIR spectra among samples were found from the comparison of the spectra. Results showed that the intensity and the shape of absorption peaks of their FTIR spectra exhibited some differences between different kinds of soybean and different treatment, especially around 1 057, 1 602, 2 927 and 3 292 cm(-1), which mainly reflected the content variety of protein, glucide, nucleic acid and so on. Thus it could be concluded that the effect of aluminum stress and existence of exogenous citric acid did not change the component of chemical substance in soybean roots, although the content of certain substance varied. The two dimensional discriminates analysis chart was drawn by the ratio of area at 2 927 cm(-1) to that at 3297 cm(-1) as the abscissa vs the ratio of area at 1 057 cm(-1) to that at 1 602 cm(-1) as the vertical, to discover the difference between the treatment of aluminum plus exogenous citric acid and that of single aluminum. Result indicates that the difference in the shape of absorption peaks of FTIR spectra became smaller and that presumed the content variety with different treatment was not remarkable under the condition of exogenous citric acid, especially in Zhechun No 3. From all mentioned above it is made clear that exogenous citric acid could really ameliorate distinctly the effect of aluminum on

  14. Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils.

    PubMed

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B; Brand, Willi A; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A J; Sauer, Peter E; Sessions, Alex L; Werner, Roland A

    2016-04-19

    An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies. PMID:26974360

  15. Differential neuroprotective effects of the NMDA receptor-associated glycine site partial agonists 1-aminocyclopropanecarboxylic acid (ACPC) and D-cycloserine in lithium-pilocarpine status epilepticus.

    PubMed

    Peterson, Steven L; Purvis, Rebecca S; Griffith, James W

    2004-09-01

    The status epilepticus (SE) induced in rats by lithium-pilocarpine (Li-pilo) shares many common features with soman-induced SE including a glutamatergic phase that is inhibited by NMDA antagonists. The present study determined whether 1-aminocyclopropanecarboxylic acid (ACPC) or D-cycloserine (DCS), both partial agonists of the strychnine-insensitive glycine site on the NMDA receptor ionophore complex, exerted anticonvulsant or neuroprotectant activity in Li-pilo SE. ACPC or DCS were administered either immediately following pilocarpine (exposure treatment) or 5 min after the onset of SE as determined by ECoG activity. SE was allowed to proceed for 3 h before termination with propofol. The rats were sacrificed 24 h following pilocarpine administration. Neither drug had an effect on the latency to seizure onset or the duration of seizure activity. ACPC administered 5 min after SE onset produced significant neuroprotection in cortical regions, amygdala and CA1 of the hippocampus. In contrast, when administered as exposure treatment ACPC enhanced the neural damage in the thalamus and CA3 of the hippocampus suggesting the neuropathology in those regions is mediated by a different subset of NMDA receptors. DCS had no neuroprotectant activity in Li-pilo SE but exacerbated neuronal damage in the thalamus. Neither drug affected the cholinergic convulsions but both had differential effects on neural damage. This suggests that the SE-induced seizure activity and subsequent neuronal damage involve independent mechanisms.

  16. Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Sharma, Poonam; Gill, Sarvajeet Singh; Kaur, Harpreet; Mushtaq, Ruquia

    2015-10-01

    Jasmonic acid (JA) is a very young candidate of plant growth regulators which is being explored for various antistress properties. Present study deals with the hypothesis that JA can modulate antioxidant mechanism of higher plants with tight regulation of biomembrane peroxidation, making plants tolerant to toxic Ni(2+). 2 mM NiCl2 as a source of Ni(2+) appeared as sub lethal dose for the growth of 15 days old Glycine max seedlings. Exogenous application of 1 μM and 1 nM JA prior to NiCl2 exposure, made seedlings of Glycine max more tolerant to Ni(2+)stress as compared to control untreated seedlings. Regulatory inhibition of MDA and H2O2 production by JA with or without Ni(2+) treatment made plants more resistant to Ni(2+) stress which may be associated with ameliorative activity of antioxidant enzymes system composed of SOD, POD, CAT and APOX. Ascorbate, a secondary metabolite synthesized from D-glucose act as an antioxidant in plant cells. Many fold enhancements in AsA content of Ni(2+) treated seedlings supplemented with different concentrations of JA was observed. Significant improvement in AsA levels by JA with or without Ni(2+) stress may involve two aspects, either denovo synthesis level regulation of AsA or recycling of AsA from an oxidized form. Improvement in total protein content showed the uplift modulation of transcriptional machinery by JA which was also maintained under Ni(2+) stress. Photosynthetic pigments as total chl, chl a and b showed inhibition in presence of Ni(2+) stress which was not found much effective under JA supplementation as compared to control. Present findings revealed that although JA was not helpful for protection of photosynthetic pigments but it modulates the other machinery of plants significantly including various antioxidants positively, while tightly inhibiting stress related processes responsible for lipid peroxidation to make plants tolerant to Ni(2+) stress.

  17. Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Sharma, Poonam; Gill, Sarvajeet Singh; Kaur, Harpreet; Mushtaq, Ruquia

    2015-10-01

    Jasmonic acid (JA) is a very young candidate of plant growth regulators which is being explored for various antistress properties. Present study deals with the hypothesis that JA can modulate antioxidant mechanism of higher plants with tight regulation of biomembrane peroxidation, making plants tolerant to toxic Ni(2+). 2 mM NiCl2 as a source of Ni(2+) appeared as sub lethal dose for the growth of 15 days old Glycine max seedlings. Exogenous application of 1 μM and 1 nM JA prior to NiCl2 exposure, made seedlings of Glycine max more tolerant to Ni(2+)stress as compared to control untreated seedlings. Regulatory inhibition of MDA and H2O2 production by JA with or without Ni(2+) treatment made plants more resistant to Ni(2+) stress which may be associated with ameliorative activity of antioxidant enzymes system composed of SOD, POD, CAT and APOX. Ascorbate, a secondary metabolite synthesized from D-glucose act as an antioxidant in plant cells. Many fold enhancements in AsA content of Ni(2+) treated seedlings supplemented with different concentrations of JA was observed. Significant improvement in AsA levels by JA with or without Ni(2+) stress may involve two aspects, either denovo synthesis level regulation of AsA or recycling of AsA from an oxidized form. Improvement in total protein content showed the uplift modulation of transcriptional machinery by JA which was also maintained under Ni(2+) stress. Photosynthetic pigments as total chl, chl a and b showed inhibition in presence of Ni(2+) stress which was not found much effective under JA supplementation as compared to control. Present findings revealed that although JA was not helpful for protection of photosynthetic pigments but it modulates the other machinery of plants significantly including various antioxidants positively, while tightly inhibiting stress related processes responsible for lipid peroxidation to make plants tolerant to Ni(2+) stress. PMID:26600682

  18. Differentiation of Malassezia furfur and Malassezia sympodialis by glycine utilization.

    PubMed

    Murai, T; Nakamura, Y; Kano, R; Watanabe, S; Hasegawa, A

    2002-06-01

    The genus Malassezia has been revised to include six lipophilic species and one nonlipophilic species. These Malassezia species have been investigated to differentiate their morphological and physiological characteristics. However, assimilation of amino acids as a nitrogen source by these species was not well elucidated. In the present study, isolates of Malassezia species were examined with a glycine medium (containing 7-266 mmol glycine, 7.4 mmol KH(2)PO(4), 4.1 mmol MgSO(4)7H(2)O, 29.6 mmol thiamine, 0.5% Tween-80 and 2% agar) and a modified Dixon glycine medium (0.6% peptone, 3.6% malt extract, 2% ox-bile, 1% Tween-40, 0.2% glycerol, 0.2% oleic acid, 7 mmol glycine and 2% agar). All M. furfur isolates developed on the glycine medium, assimilating glycine at concentrations of at least 7 mmol l(-1). However, the other six Malassezia species were unable to grow on the glycine medium. Also, many colonies of M. furfur grew rapidly, within 2-3 days on the modified Dixon glycine medium, although the other six species showed slow and poor development. From these results, it was suggested that M. furfur might be able to utilize glycine as a single nitrogen source, which the other Malassezia species could not. Therefore, glycine medium was recommended for the differentiation of M. furfur from other species of Malassezia.

  19. High-resolution high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry characterization of a new isoform of human salivary acidic proline-rich proteins named Roma-Boston Ser22(Phos) → Phe variant

    PubMed Central

    Iavarone, Federica; D’Alessandro, Alfredo; Tian, Na; Cabras, Tiziana; Messana, Irene; Helmerhorst, Eva J.; Oppenheim, Frank G.; Castagnola, Massimo

    2015-01-01

    During a survey of human saliva by a top-down reversed-phase high-performance liquid chromatography with electrospray ionization mass spectrometry approach, two proteins eluting at 27.4 and 28.4 min, with average masses of 15 494 ± 1 and 11 142 ± 1 Da, were detected in a subject from Boston. The Δmass value (4352 Da) of the two proteins was similar to the difference in mass values between intact (150 amino acids, [a.a.]) and truncated acidic proline-rich proteins (aPRPs; 106 a.a.) suggesting an a.a. substitution in the first 106 residues resulting in a strong reduction in polarity, since under the same experimental conditions aPRPs eluted at ~22.5 min (intact) and 23.5 min (truncated forms). Manual inspection of the high-resolution high-performance liquid chromatography with electrospray ionization tandem mass spectra of the truncated isoform showed the replacement of the phosphorylated Ser-22 in PRP-3 with a Phe residue. Inspection of the tandem mass spectra of the intact isoform confirmed the substitution, which is allowed by the code transition TCT→TTT and is in agreement with the dramatic increase in elution time. The isoform was also detected in two other subjects, one from Boston (unrelated to the previous) and one from Rome. For this reason we propose to name this variant PRP-1 (PRP-3) RB (Roma-Boston) Ser22(phos)→Phe. PMID:24771659

  20. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties.

  1. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties. PMID:19323582

  2. Na-dependent L-proline transport by eel intestinal brush-border membrane vesicles

    SciTech Connect

    Vilella, S.; Ahearn, G.A.; Cassano, G.; Storelli, C. University of Hawaii at Manoa, Honolulu )

    1988-10-01

    L-({sup 3}H)proline uptake by brush-border membrane vesicles prepared from intestinal mucosa of the European eel, Anguilla anguilla, was stimulated by a transmembrane Na gradient (out > in.) Kinetic analysis of L-proline influx, under short-circuited membrane potential conditions, indicated the presence of an apparent single Na-dependent carrier process and a nonsaturable transfer component with an apparent diffusional permeability (P) of 1.53 {plus minus} 0.35 {mu}l{center dot}mg protein{sup {minus}1}{center dot}min{sup {minus}1}. An imposed transmembrane potential (inside negative) increased apparent L-proline binding affinity (lowered K{sub app}) without appreciably altering maximal amino acid influx (J{sub max}). Hill analysis of L-proline influx over a wide range of external Na concentrations indicated a 1:1 stoichiometry for Na-proline cotransport. Use of amino acid inhibitors of L-proline influx suggested that L-proline transfer may occur by either a classical Na-dependent A System with a wide substrate specificity or by the combination of Na-dependent PHE (phenylalanine preferring) and IMINO (proline, {alpha}-methylaminoisobutyric acid preferring) Systems.

  3. Amino acids, fatty acids and sterols profile of some marine organisms from Portuguese waters.

    PubMed

    Pereira, David M; Valentão, Patrícia; Teixeira, Natércia; Andrade, Paula B

    2013-12-01

    Marine organisms have been increasingly regarded as good sources of new drugs for human therapeutics and also as nutrients for human diet. The amino acids, fatty acids and sterols profiles of the widely consumed echinoderms Paracentrotus lividus Lamarck (sea urchin), Holothuria forskali Chiaje (sea cucumber), the gastropod molluscs Aplysia fasciata Poiret and Aplysia punctata Cuvier (sea hares), from Portuguese waters, were established by GC-MS analysis. Overall, 10 amino acids, 14 fatty acids and 4 sterols were determined. In general, all species presented the 10 amino acids identified, with the exceptions of H. forskali, in which no glycine, proline, trans-4-hydroxy-proline or phenylalanine were found, and of A. fasciata which did not contain proline. Unsaturated fatty acids were predominant compounds, with those from the ω-6 series, being in higher amounts than their ω-3 homologues, and cholesterol being the main sterol. The amino acids, fatty acids and sterols qualitative and quantitative composition of A. fasciata, A. punctata and H. forskali is reported here for the first time.

  4. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ingredients: sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and dextrose 44.0 grams. (b)...

  5. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans.

    PubMed

    Teulier, Loïc; Weber, Jean-Michel; Crevier, Julie; Darveau, Charles-A

    2016-07-13

    Bees are thought to be strict users of carbohydrates as metabolic fuel for flight. Many insects, however, have the ability to oxidize the amino acid proline at a high rate, which is a unique feature of this group of animals. The presence of proline in the haemolymph of bees and in the nectar of plants led to the hypothesis that plants may produce proline as a metabolic reward for pollinators. We investigated flight muscle metabolism of hymenopteran species using high-resolution respirometry performed on permeabilized muscle fibres. The muscle fibres of the honeybee, Apis mellifera, do not have a detectable capacity to oxidize proline, as those from the migratory locust, Locusta migratoria, used here as an outgroup representative. The closely related bumblebee, Bombus impatiens, can oxidize proline alone and more than doubles its respiratory capacity when proline is combined with carbohydrate-derived substrates. A distant wasp species, Vespula vulgaris, exhibits the same metabolic phenotype as the bumblebee, suggesting that proline oxidation is common in hymenopterans. Using a combination of mitochondrial substrates and inhibitors, we further show that in B. impatiens, proline oxidation provides reducing equivalents and electrons directly to the electron transport system. Together, these findings demonstrate that some bee and wasp species can greatly enhance the oxidation of carbohydrates using proline as fuel for flight. PMID:27412285

  6. Synthesis and carbonic anhydrase inhibitory properties of amino acid - coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties.

    PubMed

    Küçükbay, F Zehra; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid-coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs > 50 μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92 nM and 1.19 μM for hCA IV, and between 0.11 and 0.79 μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.

  7. Functional specialization in proline biosynthesis of melanoma.

    PubMed

    De Ingeniis, Jessica; Ratnikov, Boris; Richardson, Adam D; Scott, David A; Aza-Blanc, Pedro; De, Surya K; Kazanov, Marat; Pellecchia, Maurizio; Ronai, Ze'ev; Osterman, Andrei L; Smith, Jeffrey W

    2012-01-01

    Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of (13)C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis.

  8. Functional Specialization in Proline Biosynthesis of Melanoma

    PubMed Central

    Richardson, Adam D.; Scott, David A.; Aza-Blanc, Pedro; De, Surya K.; Kazanov, Marat; Pellecchia, Maurizio; Ronai, Ze'ev; Osterman, Andrei L.; Smith, Jeffrey W.

    2012-01-01

    Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of 13C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis. PMID:23024808

  9. Molecular dynamics simulations of glycine crystal-solution interface

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumik; Briesen, Heiko

    2009-11-01

    Glycine is an amino acid that has several applications in the pharmaceutical industry. Hence, growth of α-glycine crystals through solution crystallization is an important process. To gain a fundamental understanding of the seeded growth of α-glycine from aqueous solution, the (110) face of α-glycine crystal in contact with a solution of glycine in water has been simulated with molecular dynamics. The temporal change in the location of the interface of the α-glycine crystal seed has been characterized by detecting a density gradient. It is found that the α-glycine crystal dissolves with time at a progressively decreasing rate. Diffusion coefficients of glycine adjacent to (110) face of α-glycine crystal have been calculated at various temperatures (280, 285, 290, 295, and 300 K) and concentrations (3.6, 4.5, and 6.0 mol/l) and compared to that in the bulk solution. In order to gain a fundamental insight into the nature of variation in such properties at the interface and the bulk, the formation of hydrogen bonds at various temperatures and concentrations has been investigated. It is found that the nature of interaction between various atoms of glycine molecules, as characterized by radial distribution functions, can provide interesting insight into the formation of hydrogen bonds that in turn affect the diffusion coefficients at the interface.

  10. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  11. Influence of amino acid specificities on the molecular and supramolecular organization of glycine-rich elastin-like polypeptides in water.

    PubMed

    Salvi, Anna M; Moscarelli, Pasquale; Satriano, Giuseppina; Bochicchio, Brigida; Castle, James E

    2011-10-01

    Elastin-like polypeptides adopt complex supramolecular structures, showing either a hydrophobic or a hydrophilic surface, depending on their surrounding environment and the supporting substrate. The preferred organization is important in many situations ranging from biocompatibility to bio-function. Here we compare the n-repeat pentamer LeuGlyGlyValGly (n = 7) with the analogue ValGlyGlyValGly (n = 5), as water suspensions and as deposits on silicon substrates. These sequences contain the repeat XxxGlyGlyZzzGly (Xxx, Zzz = Val, Leu) motif belonging to the hydrophobic glycine-rich domain of elastin and represent a simplified model from which to obtain information on molecular interactions functional to elastin itself. The compounds studied differ only by the presence of the -CH(2)- spacer in the Leu moiety and thus the work was aimed at revealing the influence of this spacer element on self assembly. Both polypeptides were studied under identical conditions, using combined techniques, to identify differences in their conformational states both at molecular (CD, FTIR) and supramolecular (XPS, AFM) levels. By these means, together with a Congo Red spectroscopic assay of β-sheet formation in water, a clear correlation between amino acid sequences (sequence specificity) and their kinetics and ordering of aggregation has emerged. The novel outcomes of this work are from the supplementary measurements, made to augment the AFM and XPS studies, showing that the significant step in the self assembly of both polypeptides takes place in the liquid phase and from the finding that the substitution of Val by Leu in the first position of the pentapeptide effectively inhibits the formation of amyloidal fibers. PMID:21509743

  12. Glycine Ablation during Comet/Meteoroid Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Mckay, Christopher P.; Borucki, William J.

    2004-01-01

    Amino acids and other organic compounds important to the chemistry of life are thought to have been delivered to early Earth by asteroids and comets. The survivability of such compounds upon high speed entry is not well understood. If molecular processing occurs during entry, the nature of the new molecules produced by such processing is also an open question. To address this question, we have initiated a study of the ablation of glycine, the simplest amino acid, upon the high speed entry of a comet or meteoroid into an atmosphere. The study assumes glycine is distributed on the surface of the comet/meteoroid. The high speed impact creates electrons, ions, and radicals in the atmosphere that react with the surface and either desorb glycine or break it up. The ablation process is studied as a function of entry speed and atmospheric composition. The AURORA code from the commercially available software package CHEMKIN is used in the study.

  13. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  14. Purine and glycine metabolism by purinolytic clostridia.

    PubMed Central

    Dürre, P; Andreesen, J R

    1983-01-01

    Cell extracts of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum converted purine, hypoxanthine, 2-hydroxypurine, 6,8-dihydroxypurine, and uric acid into xanthine by the shortest possible route. Adenine was transformed to xanthine only by C. purinolyticum, whereas the other two species formed 6-amino-8-hydroxypurine, which was neither deaminated nor hydroxylated further. 8-Hydroxypurine was formed from purine by all three species. Xanthine dehydrogenase activity was constitutively expressed by C. purinolyticum. Due to the lability of the enzyme activity, comparative studies could not be done with a purified preparation. All enzymes reported to be involved in formiminoglycine metabolism of C. acidiurici and C. cylindrosporum were present in C. purinolyticum. However, glycine was reduced directly to acetate in all three species, as indicated by radiochemical data and by the detection of glycine reductase in cell extracts of C. cylindrosporum and C. purinolyticum. The expression of glycine reductase and the high ratio of glycine fermented to uric acid present points to an energetic advantage for the glycine reductase system, which is expressed when selenium compounds are added to the growth media. PMID:6833177

  15. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny.

    PubMed

    Kavi Kishor, Polavarapu B; Hima Kumari, P; Sunita, M S L; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  16. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

    PubMed Central

    Kavi Kishor, Polavarapu B.; Hima Kumari, P.; Sunita, M. S. L.; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  17. Elimination of self-association as the source of the thermodynamic nonideality in aqueous proline solutions.

    PubMed

    Jones, G P; Paleg, L G; Winzor, D J

    1994-09-28

    The effect of high concentrations of proline on the diffusion coefficient of water has been examined to assess the extent to which the resulting thermodynamic nonideality could be explained on the statistical-mechanical basis of excluded volume. In fact, such a space-filling role not only accounts for the proline concentration-dependence of the diffusion coefficient of water but it also accounts for the nonideality of proline in freezing point depression and isopiestic measurements. These findings refute the conclusion (Schobert, B. and Tschesche, H. (1978) Biochim. Biophys. Acta 541, 270-277) that the stabilization of enzyme structure by high concentrations of proline stems from self-association of the imino acid via intermolecular hydrogen bonding; and thereby support the concept that the protective effect of proline on enzyme stability must reside mainly in its action as an inert, space-filling solute. PMID:7918580

  18. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-12-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.

  19. Amino Acid and Vitamin Requirements of Several Bacteroides Strains

    PubMed Central

    Quinto, Grace

    1966-01-01

    Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins. PMID:16349673

  20. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  1. Differential laser-induced perturbation Raman spectroscopy: a comparison with Raman spectroscopy for analysis and classification of amino acids and dipeptides

    NASA Astrophysics Data System (ADS)

    Oztekin, Erman K.; Smith, Sarah E.; Hahn, David W.

    2015-04-01

    Differential-laser induced perturbation spectroscopy (DLIPS) is a new spectral analysis technique for classification and identification, with key potential applications for analysis of complex biomolecular systems. DLIPS takes advantage of the complex ultraviolet (UV) laser-material interactions based on difference spectroscopy by coupling low intensity UV laser perturbation with a traditional spectroscopy probe. Here, we quantify the DLIPS performance using a Raman scattering probe in classification of basic constituents of collagenous tissues, namely, the amino acids glycine, L-proline, and L-alanine, and the dipeptides glycine-glycine, glycine-alanine and glycine-proline and compare the performance to a traditional Raman spectroscopy probe via several multivariate analyses. We find that the DLIPS approach yields an ˜40% improvement in discrimination among these tissue building blocks. The effects of the 193-nm perturbation laser are further examined by assessing the photodestruction of targeted material molecular bonds. The DLIPS method with a Raman probe holds promise for future tissue diagnosis, either as a stand-alone technique or as part of an orthogonal biosensing scheme.

  2. Enhancement of anthraquinone production in Morinda citrifolia cell suspension cultures after stimulation of the proline cycle with two proline analogs.

    PubMed

    Quevedo, Carla V; Perassolo, María; Giulietti, Ana M; Rodríguez Talou, Julián

    2012-03-01

    Synthesis of anthraquinones (AQs) involves the shikimate and 2-C-methyl-D-erythritol 4-phosphate pathways. The proline cycle is linked to the pentose phosphate pathway (PPP) to generate NADPH needed in the first steps of this pathway. The effect of two proline analogs, azetidine-2-carboxylic acid (A2C) and thiazolidine-4-carboxylic acid (T4C), were evaluated in Morinda citrifolia suspension cultures. Both analogs gave higher proline accumulation after 6 and 10 days (68 and 179% after 6 days with A2C at 25 and 50 μM, respectively, and 111% with T4C added at 100 μM). Induction of the proline cycle increased the AQ content after 6 days (~40% for 50 μM A2C and 100 μM T4C). Whereas A2C (50 μM) increased only AQ production, T4C also enhanced total phenolics. However, no induction of the PPP was observed with any of the treatments. This pathway therefore does not limit the supply of carbon skeletons to secondary metabolic pathways.

  3. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides

    PubMed Central

    Liu, Wei; Hancock, Chad N.; Fischer, Joseph W.; Harman, Meredith; Phang, James M.

    2015-01-01

    The metabolism of the nonessential amino acid proline contributes to tumor metabolic reprogramming. Previously we showed that MYC increases proline biosynthesis (PB) from glutamine. Here we show MYC increases the expression of the enzymes in PB at both protein and mRNA levels. Blockade of PB decreases tumor cell growth and energy production. Addition of Δ1-pyrroline-5-carboxylate (P5C) or proline reverses the effects of P5C synthase knockdown but not P5C reductases knockdown. Importantly, the reversal effect of proline was blocked by concomitant proline dehydrogenase/oxidase (PRODH/POX) knockdown. These findings suggest that the important regulatory contribution of PB to tumor growth derives from metabolic cycling between proline and P5C rather than product proline or intermediate P5C. We further document the critical role of PB in maintaining pyridine nucleotide levels by connecting the proline cycle to glycolysis and to the oxidative arm of the pentose phosphate pathway. These findings establish a novel function of PB in tumorigenesis, linking the reprogramming of glucose, glutamine and pyridine nucleotides, and may provide a novel target for antitumor therapy. PMID:26598224

  4. Amino acids in dew - origin and seasonal variation

    NASA Astrophysics Data System (ADS)

    Scheller, Edwin

    At two sites in the Armenhof district, 10 km east of Fulda, Germany, dew samples were collected from June 1996 to June 1997 and investigated for free and protein-bound amino acids. On account of the high pollen content, at the beginning of June 1996 and in May 1997 total amino acid concentrations were 53-390 μmol l -1, in one sample 922 μmol l -1. At other times the concentration in dew was 8-164 μmol l -1. On 4 and 5 June 1996 the diluted free amino acid fraction (DFAA) of the total hydrolysed amino acids (THAA) at both sites amounted to 35-44% and was predominantly arginine, proline and glutamine/glutamate. Likewise on 11 March 1997 the fraction of DFAA was found to be 39.5% with extremely high arginine and proline fractions. At other times the DFAA-fraction was in the range 14-26%. From July 1996 to June 1997 the amino acid concentrations in the vapours rising from a meadow were also measured and it ranged from 8 to 51 μmol l -1. From July to October 1996 the amino acid composition in the hydrolysates of dew samples and meadow vapours collected overnight were almost identical. The DFAA fraction in the condensation water collected overnight from the meadow varied from 18 to 40%. From 4 to 6 June 1996, on 11 and 13 March 1997 and in the period 16-20 May 1997, the amino acid distribution in dew showed much variation. The percentage fraction of arginine and proline in the hydrolysate increased greatly, whereas that of glycine and serine decreased. The large increase in proline and arginine in hydrolysate is attributable solely to the large amounts of free arginine and proline. This effect occurred in both 1996 and 1997 over several days at both sites at any one time and therefore appears confirmed.

  5. Conformation of a Group 2 Late Embryogenesis Abundant Protein from Soybean. Evidence of Poly (l-Proline)-type II Structure1

    PubMed Central

    Soulages, Jose L.; Kim, Kangmin; Arrese, Estela L.; Walters, Christina; Cushman, John C.

    2003-01-01

    Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic, glycine-rich proteins found in plants, algae, fungi, and bacteria known collectively as hydrophilins that are preferentially expressed in response to dehydration or hyperosmotic stress. Group 2 LEA (dehydrins or responsive to abscisic acid) proteins are postulated to stabilize macromolecules against damage by freezing, dehydration, ionic, or osmotic stress. However, the structural and physicochemical properties of group 2 LEA proteins that account for such functions remain unknown. We have analyzed the structural properties of a recombinant form of a soybean (Glycine max) group 2 LEA (rGmDHN1). Differential scanning calorimetry of purified rGmDHN1 demonstrated that the protein does not display a cooperative unfolding transition upon heating. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein is in a largely hydrated and unstructured conformation in solution. However, ultraviolet absorption and circular dichroism measurements collected at different temperatures showed that the protein exists in equilibrium between two extended conformational states: unordered and left-handed extended helical or poly (l-proline)-type II structures. It is estimated that 27% of the residues of rGmDHN1 adopt or poly (l-proline)-type II-like helical conformation at 12°C. The content of extended helix gradually decreases to 15% as the temperature is increased to 80°C. Studies of the conformation of the protein in solution in the presence of liposomes, trifluoroethanol, and sodium dodecyl sulfate indicated that rGmDHN1 has a very low intrinsic ability to adopt α-helical structure and to interact with phospholipid bilayers through amphipathic α-helices. The ability of the protein to remain in a highly extended conformation at low temperatures could constitute the basis of the functional role of GmDHN1 in the prevention of freezing, desiccation, ionic, or osmotic

  6. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria

    PubMed Central

    Tait, G. H.

    1970-01-01

    1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems. PMID:5476725

  7. Preparation and pH stability of ferrous glycinate liposomes.

    PubMed

    Ding, Baomiao; Xia, Shuqin; Hayat, Khizar; Zhang, Xiaoming

    2009-04-01

    Ferrous glycinate liposomes were prepared by reverse phase evaporation method. The effects of cholesterol, Tween 80, ferrous glycinate concentration, hydrating medium, pH of hydrating medium, and sonication strength on the encapsulation efficiency of liposomes were investigated. Encapsulation efficiency was significantly influenced by the different technique parameters. Ferrous glycinate liposomes might be obtained with high encapsulation efficiency of 84.80% under the conditions of optimized technique parameters. The zeta potential and average particle size of liposomes in the hydrating medium of pH 7.0 were 9.6 mV and 559.2 nm, respectively. The release property of ferrous glycinate liposomes in vitro was investigated in simulated gastrointestinal juice. A small amount of ferrous glycinate was released from liposomes in the first 4 h in simulated gastrointestinal juice. The mean diameters of liposomes increased from 559.2 to 692.9, 677.8, and 599.3 nm after incubation in simulated gastrointestinal juice of pH 1.3, 7.5, and 7.5 in the presence of bile salts, respectively. Results showed that the stability of ferrous glycinate in strong acid environment was greatly improved by encapsulation in liposomes, which protected ferrous glycinate from disrupting the extracapsular environment by lipid bilayer. The bioavailability of ferrous glycinate, as the iron source for biological activity including hemoglobin formation, may be increased. The ferrous glycinate liposomes may be a kind of promising iron fortifier. PMID:19253959

  8. Actinomyces naeslundii Displays Variant fimP and fimA Fimbrial Subunit Genes Corresponding to Different Types of Acidic Proline-Rich Protein and β-Linked Galactosamine Binding Specificity

    PubMed Central

    Hallberg, K.; Holm, C.; Öhman, U.; Strömberg, N.

    1998-01-01

    Actinomyces naeslundii genospecies 1 and 2 bind to acidic proline-rich proteins (APRPs) and statherin via type 1 fimbriae and to β-linked galactosamine (GalNAcβ) structures via type 2 fimbriae. In addition, A. naeslundii displays two types of binding specificity for both APRPs-statherin and GalNAcβ, while Actinomyces odontolyticus binds to unknown structures. To study the molecular basis for these binding specificities, DNA fragments spanning the entire or central portions of fimP (type 1) and fimA (type 2) fimbrial subunit genes were amplified by PCR from strains of genospecies 1 and 2 and hybridized with DNA from two independent collections of oral Actinomyces isolates. Isolates of genospecies 1 and 2 and A. odontolyticus, but no other Actinomyces species, were positive for hybridization with fimP and fimA full-length probes irrespective of binding to APRPs and statherin, GalNAcβ, or unknown structures. Isolates of genospecies 1 and 2, with deviating patterns of GalNAcβ1-3Galα-O-ethyl-inhibitable coaggregation with Streptococcus oralis Ss34 and MPB1, were distinguished by a fimA central probe from genospecies 1 and 2, respectively. Furthermore, isolates of genospecies 1 and 2 displaying preferential binding to APRPs over statherin were positive with a fimP central probe, while a genospecies 2 strain with the opposite binding preference was not. The sequences of fimP and fimA central gene segments were highly conserved among isolates with the same, but diversified between those with a variant, binding specificity. In conclusion, A. naeslundii exhibits variant fimP and fimA genes corresponding to diverse APRP and GalNAcβ specificities, respectively, while A. odontolyticus has a genetically related but distinct adhesin binding specificity. PMID:9712794

  9. Proline dehydrogenase is essential for proline protection against hydrogen peroxide induced cell death

    PubMed Central

    Natarajan, Sathish Kumar; Zhu, Weidong; Liang, Xinwen; Zhang, Lu; Demers, Andrew J.; Zimmerman, Matthew C.; Simpson, Melanie A.; Becker, Donald F.

    2012-01-01

    Proline metabolism has an underlying role in apoptotic signaling that impacts tumorigenesis. Proline is oxidized to glutamate in the mitochondria with the rate limiting step catalyzed by proline dehydrogenase (PRODH). PRODH expression is inducible by p53 leading to increased proline oxidation, reactive oxygen species (ROS) formation, and induction of apoptosis. Paradoxical to its role in apoptosis, proline also protects cells against oxidative stress. Here we explore the mechanism of proline protection against hydrogen peroxide stress in melanoma WM35 cells. Treatment of WM35 cells with proline significantly increased cell viability, diminished oxidative damage of cellular lipids and proteins, and retained ATP and NADPH levels after exposure to hydrogen peroxide. Inhibition or siRNA-mediated knockdown of PRODH abolished proline protection against oxidative stress whereas knockdown of Δ1-pyrroline-5-carboxylate reductase, a key enzyme in proline biosynthesis, had no impact on proline protection. Potential linkages between proline metabolism and signaling pathways were explored. The combined inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 eliminated proline protection. A significant increase in Akt activation was observed in proline treated cells after hydrogen peroxide stress along with a corresponding increase in the phosphorylation of the fork head transcription factor class O3a (FoxO3a). The role of PRODH in proline mediated protection was validated in the prostate carcinoma cell line, PC3. Knockdown of PRODH in PC3 cells attenuated phosphorylated levels of Akt and FoxO3a and decreased cell survival during hydrogen peroxide stress. The results provide evidence that PRODH is essential in proline protection against hydrogen peroxide mediated cell death and that proline/PRODH helps activate Akt in cancer cells. PMID:22796327

  10. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  11. Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes

    PubMed Central

    Williams, D. Bart; Zhaorigetu, Siqin; Khalil, Shadi; Wan, Guanghua; Valle, David

    2009-01-01

    Proline metabolism in mammals involves two other amino acids, glutamate and ornithine, and five enzymatic activities, Δ1-pyrroline-5-carboxylate (P5C) reductase (P5CR), proline oxidase, P5C dehydrogenase, P5C synthase and ornithine-δ-aminotransferase (OAT). With the exception of OAT, which catalyzes a reversible reaction, the other 4 enzymes are unidirectional, suggesting that proline metabolism is purpose-driven, tightly regulated, and compartmentalized. In addition, this tri-amino-acid system also links with three other pivotal metabolic systems, namely the TCA cycle, urea cycle, and pentose phosphate pathway. Abnormalities in proline metabolism are relevant in several diseases: six monogenic inborn errors involving metabolism and/or transport of proline and its immediate metabolites have been described. Recent advances in the Human Genome Project, in silico database mining techniques, and research in dissecting the molecular basis of proline metabolism prompted us to utilize functional genomic approaches to analyze human genes which encode proline metabolic enzymes in the context of gene structure, regulation of gene expression, mRNA variants, protein isoforms, and single nucleotide polymorphisms. PMID:18506409

  12. Relative utilization of serine and glycine by chicks.

    PubMed

    Featherston, W R

    1975-01-01

    Studies were conducted on the relative utilizaiton of glycine and serine by chicks fed basal crystalline amino acid diets devoid of these amino acids. The crystalline amino acid mixture was fed at one and three times the requirement levels, thereby stimulating uric acid synthesis at differing rates. In addition, 5 per cent L-glutamine replaced L-glutamic acid on an isonitrogenous basis in three diets containing normal levels of amino acids in the second study. Chicks fed diets devoid of glycine and serine grew less rapidly and less efficiently than chicks fed diets containing either serine or glycine plus serine. These decreases were roughly the same whether the diet contained normal or high levels of amino acids. Serine was as efficient as glycine in supporting chick growth and feed efficiency regardless of whether diets containing normal or high levels of amino acids were fed. Chicks fed diets containing high levels of amino acids grew approximately 81 per cent as rapidly, but 24 per cent more efficiently, than chicks fed normal levels of amino acids, and excreted approximately twice the amount of uric acid per gram of nitrogen consumed. In spite of increased uric acid excretion by chicks fed the high amino acid diets, the dietary void in glycine and serine was no more detrimental to chick growth or feed efficiency than that noted when normal levels of amino acids were fed. Feeding 5 per cent L-glutamine rather than L-glutamic acid in the diet containing normal levels of amino acids had little effect on weight gain, feed efficiency or uric acid excretion. The absence of cystine from the amino acid mixture used in the third study did not have a marked influence on the relative utilization of glycine and serine by the chick. PMID:1169769

  13. [Free amino acids of hemolymph of marine isopods, Sphaeroma hookers Sphaeroma serratum (Flabellifera) and Idotea balthica (Valvifera)].

    PubMed

    Charmantier, G; Charmantier, M; Voss-Foucart, M F; Jeuniaux, C

    1976-12-01

    The total concentration of the free amino acids in the hemolymph is higher (about twice the amount in three species of marine Isopods (Sphaeroma hookeri, S. serratum and Idotea balthica) than in Decapods. In the three species so far studied, the proportions of glycine and taurine are always rather high. In the Sphaeromatidae, serine is the most concentrated amino acid while the proline concentration is comparatively low. The situation is reversed in Idotea balthica. In Crustaceans, the free amino acid composition of the hemolymph thus appears, both quantitatively and qualitatively, to be a biochemical character of marine Isopods when compared to Oniscoids Isopods and to Decapods.

  14. Proline-based Phosphoramidite Reagents for the Reductive Ligation of S-Nitrosothiols

    PubMed Central

    Xian, Ming

    2015-01-01

    S-Nitrosothiols have many biological implications but are rarely used in organic synthesis. In this work we report the development of proline-based phosphoramidite substrates that can effectively convert S-nitrosothiols to proline-based sulfenamides through a reductive ligation process. A unique property of this method is that the phosphine oxide moiety on the ligation products can be readily removed under acidic conditions. In conjugation with the facile preparation of S-nitrosothiols (RSNO) from the corresponding thiols (RSH), this method provides a new way to prepare proline-based sulfenamides from simple thiol starting materials. PMID:26758493

  15. Diastereoselective Synthesis of 5-Heteroaryl-Substituted Prolines Useful for Controlling Peptide-Bond Geometry.

    PubMed

    Ali, Rafat; Singh, Gajendra; Singh, Shalini; Ampapathi, Ravi Sankar; Haq, Wahajul

    2016-06-17

    A versatile diastereoselective Friedel-Crafts alkylation reaction of heteroaryl systems with a cyclic enecarbamate for the preparation of 5-heteroaryl-substituted proline analogues in good yields has been developed. These heterocyclic tethered cyclic amino acid building blocks constitute important structural motifs in many biologically active molecules. The impact of the substitution on proline cis/trans isomerization was explored by carrying out solution conformational studies by NMR on 5-furanyl-substituted proline-containing peptides. Conformational analysis revealed that the peptide bond is constrained in an exclusively trans conformation. PMID:27228427

  16. Selenazolidine: a selenium containing proline surrogate in peptide science.

    PubMed

    Cordeau, E; Cantel, S; Gagne, D; Lebrun, A; Martinez, J; Subra, G; Enjalbal, C

    2016-09-14

    In the search for new peptide ligands containing selenium in their sequences, we investigated l-4-selenazolidine-carboxylic acid (selenazolidine, Sez) as a proline analog with the chalcogen atom in the γ-position of the ring. In contrast to proteinogenic selenocysteine (Sec) and selenomethionine (SeMet), the incorporation within a peptide sequence of such a non-natural amino acid has never been studied. There is thus a great interest in increasing the possibility of selenium insertion within peptides, especially for sequences that do not possess a sulfur containing amino acid (Cys or Met), by offering other selenated residues suitable for peptide synthesis protocols. Herein, we have evaluated selenazolidine in Boc/Bzl and Fmoc/tBu strategies through the synthesis of a model tripeptide, both in solution and on a solid support. Special attention was paid to the stability of the Sez residue in basic conditions. Thus, generic protocols have been optimized to synthesize Sez-containing peptides, through the use of an Fmoc-Xxx-Sez-OH dipeptide unit. As an example, a new analog of the vasopressin receptor-1A antagonist was prepared, in which Pro was replaced with Sez [3-(4-hydroxyphenyl)-propionyl-d-Tyr(Me)-Phe-Gln-Asn-Arg-Sez-Arg-NH2]. Both proline and such pseudo-proline containing peptides exhibited similar pharmacological properties and endopeptidase stabilities indicating that the presence of the selenium atom has minimal functional effects. Taking into account the straightforward handling of Sez as a dipeptide building block in a conventional Fmoc/tBu SPPS strategy, this result suggested a wide range of potential uses of the Sez amino acid in peptide chemistry, for instance as a viable proline surrogate as well as a selenium probe, complementary to Sec and SeMet, for NMR and mass spectrometry analytical purposes. PMID:27506250

  17. Elimination of amino acids in acute renal failure.

    PubMed

    Druml, W; Bürger, U; Kleinberger, G; Lenz, K; Laggner, A

    1986-01-01

    Plasma amino acid concentrations and the elimination of parenterally administered amino acids were investigated in 12 patients with nonhypercatabolic acute renal failure. A distinctive plasma amino acid pattern could be observed: plasma concentrations of phenylalanine and methionine were increased, those of valine and leucine decreased. Of the nonessential amino acids, cystine, taurine und tyrosine had elevated but none of them reduced plasma concentrations. The elimination of amino acids was evaluated in a monocompartment model after bolus injection of an amino acid solution containing essential and nonessential amino acids. Pharmacokinetic parameters of 17 amino acids were calculated. The mean elimination half-time was raised by 25%. The elimination half-time of phenylalanine, methionine, glutamic acid, proline and ornithine was increased. Histidine was the only amino acid with--however insignificantly--accelerated elimination from the intravascular compartment. The total clearance rate and total transfer rate was not altered (107 and 97% of normal, respectively). The clearance of threonine, lysine, serine, glycine and histidine was increased, of valine, phenylalanine, glutamic acid and to a minor degree of methionine was decreased. The transfer rate of methionine, lysine, glycine was elevated, of valine, aspartic acid, glutamic acid and ornithine reduced. The demonstration of these pronounced alterations of amino acid elimination in acute renal failure may have major consequences in parenteral amino acid therapy.

  18. The thermodynamic activity of proline in ternary solutions of different water potentials.

    PubMed

    Pahlich, E; Stadermann, T

    1984-06-01

    The particular colligative properties of proline caused us to investigate the thermodynamic activity of this amino acid in detail. The dependence of the activity coefficients γ of proline (γ = thermodynamic activity/molality) on the pH of the solutions, the composition of the solution and the water potential has been measured. The results show that the activity coefficient of proline varies according to the solute milieu. The most pronounced alterations of the activity coefficient could be observed in polyethylene glycol solutions in contrast to KCl- and saccharose solutions where the effect was less distinct. The results described provide a basis for discussing water stress induced metabolic alterations in terms of thermodynamic entities. Changed rates of proline metabolizing sequences and changed ratios of the vacuole/extravacuole distribution of this amino acid in stressed and un-stressed plants may partially be explained by thermodynamic causes.

  19. Stereoselective Synthesis of Quaternary Proline Analogues

    PubMed Central

    Calaza, M. Isabel

    2009-01-01

    This review describes available methods for the diastereoselective and asymmetric synthesis of quaternary prolines. The focus is on the preparation of α-functionalized prolines with the pyrrolidine moiety not embedded in a polycyclic frame. The diverse synthetic approaches are classified according to the bond which is formed to complete the quaternary skeleton. PMID:19655047

  20. STRUCTURE AND KINETICS OF MONOFUNCTIONAL PROLINE DEHYDROGENASE FROM THERMUS THERMOPHILUS

    PubMed Central

    White, Tommi A.; Krishnan, Navasona; Becker, Donald F.; Tanner, John J.

    2009-01-01

    Proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria, but are fused into bifunctional enzymes known as Proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0 Å resolution structure of Thermus thermophilus PRODH reveals a distorted (βα)8 barrel catalytic core domain and a hydrophobic α-helical domain located above the carboxyl terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent exposed compared to PutA due to a 4-Å shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify 9 conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is −75 mV and the kinetic parameters for proline are Km=27 mM and kcat=13 s−1. 3,4-dehydro-L-proline was found to be an efficient substrate and L-tetrahydro-2-furoic acid is a competitive inhibitor (KI=1.0 mM). Finally, we demonstrate that T. thermophilus PRODH reacts with O2 producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs. PMID:17344208

  1. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels

  2. SELECTIVE INHIBITION OF PROLINE-INDUCED PIGMENTATION IN WASHED CELLS OF SERRATIA MARCESCENS.

    PubMed

    BLIZZARD, J L; PETERSON, G E

    1963-05-01

    Blizzard, John L. (University of Houston, Houston, Texas) and G. E. Peterson. Selective inhibition of proline-induced pigmentation in washed cells of Serratia marcescens. J. Bacteriol. 85:1136-1140. 1963.-Streptomycin, chloramphenicol, and tetracyclines inhibited the synthesis of prodigiosin by Serratia marcescens strain D1. This occurred at concentrations of the antibiotic too low to inhibit the growth of the organism in either agar media or broth cultures. Nonpigmented cells were produced in broth by either adding streptomycin or incubating at 37 C. After being washed and resuspended in aqueous saline containing either casein hydrolysate, l-proline, or a glycine-succinate mixture and incubated at 27 C for 24 hr, these cells formed pigment. The appearance of pigment was preceded by a lag period of 10 hr. Prodigiosin production by these washed suspensions of cells was completely inhibited by either streptomycin or glucose, or by incubation at 37 C instead of 27 C. Even though pigmentation by washed-cell suspensions was induced by proline, the utilization of proline was not affected by streptomycin or glucose, or by incubation at 37 C. To block pigmentation completely, streptomycin had to be added to proline-supplemented cells before they were 10 hr old. Addition of the antibiotic after the end of the induction period caused either partial or no inhibition of pigment production. Streptomycin caused an increase in the endogenous respiration of S. marcescens but failed to affect the constitutive enzymes that oxidize glucose. The possible relationships of these phenomena are discussed. Weil (1952) reported that low concentrations of chloramphenicol and certain tetracyclines inhibit the synthesis of prodigiosin while permitting growth by Serratia marcescens. He noted the potential value to "mode-of-action" studies of an organism having certain functions selectively inhibited by antibiotics. We confirmed Weil's (1952) observations and found that streptomycin at low

  3. Allosteric modulation of glycine receptors

    PubMed Central

    Yevenes, Gonzalo E; Zeilhofer, Hanns Ulrich

    2011-01-01

    Inhibitory (or strychnine sensitive) glycine receptors (GlyRs) are anion-selective transmitter-gated ion channels of the cys-loop superfamily, which includes among others also the inhibitory γ-aminobutyric acid receptors (GABAA receptors). While GABA mediates fast inhibitory neurotransmission throughout the CNS, the action of glycine as a fast inhibitory neurotransmitter is more restricted. This probably explains why GABAA receptors constitute a group of extremely successful drug targets in the treatment of a wide variety of CNS diseases, including anxiety, sleep disorders and epilepsy, while drugs specifically targeting GlyRs are virtually lacking. However, the spatially more restricted distribution of glycinergic inhibition may be advantageous in situations when a more localized enhancement of inhibition is sought. Inhibitory GlyRs are particularly relevant for the control of excitability in the mammalian spinal cord, brain stem and a few selected brain areas, such as the cerebellum and the retina. At these sites, GlyRs regulate important physiological functions, including respiratory rhythms, motor control, muscle tone and sensory as well as pain processing. In the hippocampus, RNA-edited high affinity extrasynaptic GlyRs may contribute to the pathology of temporal lobe epilepsy. Although specific modulators have not yet been identified, GlyRs still possess sites for allosteric modulation by a number of structurally diverse molecules, including alcohols, neurosteroids, cannabinoids, tropeines, general anaesthetics, certain neurotransmitters and cations. This review summarizes the present knowledge about this modulation and the molecular bases of the interactions involved. PMID:21557733

  4. Comparative 4f-4f absorption spectral study for the interactions of Nd(III) with some amino acids: Preliminary thermodynamics and kinetic studies of interaction of Nd(III):glycine with Ca(II)

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Bendangsenla, N.; David Singh, Th.; Sumitra, Ch.; Rajmuhon Singh, N.; Indira Devi, M.

    2012-02-01

    Spectral analysis of Nd(III) complexes with some amino acids viz.; glycine, L-alanine, L-phenylalanine and L-aspartic acid in the presence and absence of Ca 2+ was carried out in some organic solvents; CH 3OH, CH 3CN, DMF and dioxane using comparative absorption spectra of 4f-4f transitions. The study was carried out by evaluating various energy interaction parameters like Slator-Condon ( Fk), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding parameter ( b1/2), percent-covalency ( δ) by applying partial and multiple regression analysis. The values of oscillator strength ( Pobs) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been calculated. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( Pobs) and Tλ values, reveal the mode of binding with the different ligands. Kinetic studies for the complexation of Nd(III):glycine:Ca(II) have also been discussed at different temperatures in DMF medium and from it the values of activation energy ( Ea) and thermodynamic parameters like Δ H°, Δ S° and Δ G° for the complexation are evaluated.

  5. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.

    PubMed

    Saibi, Walid; Feki, Kaouthar; Yacoubi, Ines; Brini, Faiçal

    2015-08-01

    Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions.

  6. Proline transport and osmotic stress response in Escherichia coli K-12.

    PubMed Central

    Grothe, S; Krogsrud, R L; McClellan, D J; Milner, J L; Wood, J M

    1986-01-01

    Proline is accumulated in Escherichia coli via two active transport systems, proline porter I (PPI) and PPII. In our experiments, PPI was insensitive to catabolite repression and was reduced in activity twofold when bacteria were subjected to amino acid-limited growth. PPII, which has a lower affinity for proline than PPI, was induced by tryptophan-limited growth. PPII activity was elevated in bacteria that were subjected to osmotic stress during growth or the transport measurement. Neither PPI nor uptake of serine or glutamine was affected by osmotic stress. Mutation proU205, which was similar in genetic map location and phenotype to other proU mutations isolated in E. coli and Salmonella typhimurium, influenced the sensitivity of the bacteria to the toxic proline analogs azetidine-2-carboxylate and 3,4-dehydroproline, the proline requirements of auxotrophs, and the osmoprotective effect of proline. This mutation did not influence proline uptake via PPI or PPII. A very low uptake activity (6% of the PPII activity) observed in osmotically stressed bacteria lacking PPI and PPII was not observed when the proU205 lesion was introduced. PMID:3514577

  7. Leptoglycin: a new Glycine/Leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae).

    PubMed

    Sousa, Juliana C; Berto, Raquel F; Gois, Elicélia A; Fontenele-Cardi, Nauíla C; Honório, José E R; Konno, Katsuhiro; Richardson, Michael; Rocha, Marcos F G; Camargo, Antônio A C M; Pimenta, Daniel C; Cardi, Bruno A; Carvalho, Krishnamurti M

    2009-07-01

    Antimicrobial peptides are components of innate immunity that is the first-line defense against invading pathogens for a wide range of organisms. Here, we describe the isolation, biological characterization and amino acid sequencing of a novel neutral Glycine/Leucine-rich antimicrobial peptide from skin secretion of Leptodactylus pentadactylus named leptoglycin. The amino acid sequence of the peptide purified by RP-HPLC (C(18) column) was deduced by mass spectrometric de novo sequencing and confirmed by Edman degradation: GLLGGLLGPLLGGGGGGGGGLL. Leptoglycin was able to inhibit the growth of Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli and Citrobacter freundii with minimal inhibitory concentrations (MICs) of 8 microM, 50 microM, and 75 microM respectively, but it did not show antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis), yeasts (Candida albicans and Candida tropicalis) and dermatophytes fungi (Microsporum canis and Trichophyton rubrum). No hemolytic activity was observed at the 2-200 microM range concentration. The amino acid sequence of leptoglycin with high level of glycine (59.1%) and leucine (36.4%) containing an unusual central proline suggests the existence of a new class of Gly/Leu-rich antimicrobial peptides. Taken together, these results suggest that this natural antimicrobial peptide could be a tool to develop new antibiotics. PMID:19298834

  8. Glycine receptors are functionally expressed on bullfrog retinal cone photoreceptors.

    PubMed

    Ge, L-H; Lee, S-C; Liu, J; Yang, X-L

    2007-04-25

    Using immunocytochemical and whole cell recording techniques, we examined expression of glycine receptors on bullfrog retinal cone photoreceptors. Immunofluorescence double labeling experiments conducted on retinal sections and isolated cell preparations showed that terminals and inner segments of cones were immunoreactive to both alpha1 and beta subunits of glycine receptors. Moreover, application of glycine induced a sustained inward current from isolated cones, which increased in amplitude in a dose-dependent manner, with an EC50 (concentration of glycine producing half-maximal response) of 67.3+/-4.9 microM, and the current was blocked by the glycine receptor antagonist strychnine, but not 5,7-dichlorokynurenic acid (DCKA) of 200 microM, a blocker of the glycine recognition site at the N-methyl-D-aspartate (NMDA) receptor. The glycine-induced current reversed in polarity at a potential close to the calculated chloride equilibrium potential, and the reversal potential was changed as a function of the extracellular chloride concentration. These results suggest that strychnine-sensitive glycine receptors are functionally expressed in bullfrog cones, which may mediate signal feedback from glycinergic interplexiform cells to cones in the outer retina. PMID:17346892

  9. Photorespiratory Glycine Metabolism in Corn Leaf Discs 1

    PubMed Central

    Marek, Laura F.; Stewart, Cecil R.

    1983-01-01

    The total glycine pool in Zea mays L. Mo17×B73 leaf discs was measured after steady state photosynthesis in 50%, 21% and 1% O2. The glycine pool was a function of O2 concentration; it was largest in 50% O2 and smallest in 1% O2. Incubation of discs with methyl hydroxybutynoic acid in 21% O2 in the light caused an accumulation of carbon in glycolate. This accumulation was O2 sensitive, as subsequent photosynthetic periods in 50%, 21%, and 1% O2 resulted in the largest glycolate pool in 50% O2 and the smallest in 1% O2. At the same time, the O2-dependent increase in the glycine pool was eliminated. After untreated leaf discs reached steady state photosynthesis in 21% O2, measurements made subsequently in darkness, or in 1% O2 in the light, showed that the glycine pool decreased. On the basis of these results, we conclude that a major portion of the total glycine pool in corn is an intermediate in the photorespiratory glycolate pathway. Considering both the rate of decay of the glycine pool in the dark and the rate of decay of the glycine pool after changing from 21% to 1% O2, we conclude that this glycine pool is turning over slowly. PMID:16663158

  10. Proline-poor hydrophobic domains modulate the assembly and material properties of polymeric elastin.

    PubMed

    Muiznieks, Lisa D; Reichheld, Sean E; Sitarz, Eva E; Miao, Ming; Keeley, Fred W

    2015-10-01

    Elastin is a self-assembling extracellular matrix protein that provides elasticity to tissues. For entropic elastomers such as elastin, conformational disorder of the monomer building block, even in the polymeric form, is essential for elastomeric recoil. The highly hydrophobic monomer employs a range of strategies for maintaining disorder and flexibility within hydrophobic domains, particularly involving a minimum compositional threshold of proline and glycine residues. However, the native sequence of hydrophobic elastin domain 30 is uncharacteristically proline-poor and, as an isolated polypeptide, is susceptible to formation of amyloid-like structures comprised of stacked β-sheet. Here we investigated the biophysical and mechanical properties of multiple sets of elastin-like polypeptides designed with different numbers of proline-poor domain 30 from human or rat tropoelastins. We compared the contributions of these proline-poor hydrophobic sequences to self-assembly through characterization of phase separation, and to the tensile properties of cross-linked, polymeric materials. We demonstrate that length of hydrophobic domains and propensity to form β-structure, both affecting polypeptide chain flexibility and cross-link density, play key roles in modulating elastin mechanical properties. This study advances the understanding of elastin sequence-structure-function relationships, and provides new insights that will directly support rational approaches to the design of biomaterials with defined suites of mechanical properties.

  11. A Conserved Active Site Tyrosine Residue of Proline Dehydrogenase Helps Enforce the Preference for Proline over Hydroxyproline as the Substrate†,‡

    PubMed Central

    Ostrander, Elizabeth L.; Larson, John D.; Schuermann, Jonathan P.; Tanner, John J.

    2009-01-01

    Proline dehydrogenase (PRODH) catalyzes the oxidation of L-proline to Delta-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-L-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insights into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analog L-tetrahydro-2-furoic acid were determined at resolutions of 1.75 Å, 1.90 Å and 1.85 Å. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline three-fold and decreases the specificity for proline by factors of twenty (Y540S) and fifty (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate. PMID:19140736

  12. Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism

    SciTech Connect

    Camilloni, Carlo; Sahakyan, Aleksander B.; Holliday, Michael; Isern, Nancy G.; Zhang, Fengli; Eisenmesser, Elan Z.; Vendruscolo, Michele

    2014-07-15

    Proline isomerization is a ubiquitous process that plays a key role in the folding of proteins and in the regulation of their functions1-3. Different families of enzymes, known as peptidyl-prolyl isomerases (PPIases), catalyse this reaction, which involves the interconversion between the cis and trans isomers of the Nterminal amide bond of the amino acid proline2,3. A complete description of the mechanisms by which these enzymes function, however, has remained elusive. Here, we show that cyclophilin A, one of the most common PPIases4, provides a catalytic environment that acts on the substrate through an electrostatic lever mechanism. In this mechanism, the electrostatic field in the catalytic site turns the electric dipole associated with the carboxylic group of the amino acid preceding the proline in the substrate, thus causing the rotation of the peptide bond between the two residues. This mechanism resulted from the analysis of an ensemble of conformations populated by cyclophilin A during the enzymatic reaction using a combination of NMR measurements, molecular dynamics simulations and density functional theory calculations. We anticipate that this approach will be helpful in elucidating whether the electrostatic lever mechanism that we describe is common to other PPIases, and more generally to characterise other enzymatic processes.

  13. Proline inhibits aggregation during protein refolding.

    PubMed Central

    Samuel, D.; Kumar, T. K.; Ganesh, G.; Jayaraman, G.; Yang, P. W.; Chang, M. M.; Trivedi, V. D.; Wang, S. L.; Hwang, K. C.; Chang, D. K.; Yu, C.

    2000-01-01

    The in vitro refolding of hen egg-white lysozyme is studied in the presence of various osmolytes. Proline is found to prevent aggregation during protein refolding. However, other osmolytes used in this study fail to exhibit a similar property. Experimental evidence suggests that proline inhibits protein aggregation by binding to folding intermediate(s) and trapping the folding intermediate(s) into enzymatically inactive, "aggregation-insensitive" state(s). However, elimination of proline from the refolded protein mixture results in significant recovery of the bacteriolytic activity. At higher concentrations (>1.5 M), proline is shown to form loose, higher-order molecular aggregate(s). The supramolecular assembly of proline is found to possess an amphipathic character. Formation of higher-order aggregates is believed to be crucial for proline to function as a protein folding aid. In addition to its role in osmoregulation under water stress conditions, the results of this study hint at the possibility of proline behaving as a protein folding chaperone. PMID:10716186

  14. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana.

    PubMed

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2014-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  15. Proline Dehydrogenase Regulates Redox State and Respiratory Metabolism in Trypanosoma cruzi

    PubMed Central

    Paes, Lisvane Silva; Suárez Mantilla, Brian; Zimbres, Flávia Menezes; Pral, Elisabeth Mieko Furusho; Diogo de Melo, Patrícia; Tahara, Erich B.; Kowaltowski, Alicia J.; Elias, Maria Carolina; Silber, Ariel Mariano

    2013-01-01

    Over the past three decades, L-proline has become recognized as an important metabolite for trypanosomatids. It is involved in a number of key processes, including energy metabolism, resistance to oxidative and nutritional stress and osmoregulation. In addition, this amino acid supports critical parasite life cycle processes by acting as an energy source, thus enabling host-cell invasion by the parasite and subsequent parasite differentiation. In this paper, we demonstrate that L-proline is oxidized to Δ1-pyrroline-5-carboxylate (P5C) by the enzyme proline dehydrogenase (TcPRODH, E.C. 1.5.99.8) localized in Trypanosoma cruzi mitochondria. When expressed in its active form in Escherichia coli, TcPRODH exhibits a Km of 16.58±1.69 µM and a Vmax of 66±2 nmol/min mg. Furthermore, we demonstrate that TcPRODH is a FAD-dependent dimeric state protein. TcPRODH mRNA and protein expression are strongly upregulated in the intracellular epimastigote, a stage which requires an external supply of proline. In addition, when Saccharomyces cerevisiae null mutants for this gene (PUT1) were complemented with the TcPRODH gene, diminished free intracellular proline levels and an enhanced sensitivity to oxidative stress in comparison to the null mutant were observed, supporting the hypothesis that free proline accumulation constitutes a defense against oxidative imbalance. Finally, we show that proline oxidation increases cytochrome c oxidase activity in mitochondrial vesicles. Overall, these results demonstrate that TcPRODH is involved in proline-dependant cytoprotection during periods of oxidative imbalance and also shed light on the participation of proline in energy metabolism, which drives critical processes of the T. cruzi life cycle. PMID:23894476

  16. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    PubMed Central

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2015-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  17. Catalysis of Dialanine Formation by Glycine in the Salt-Induced Peptide Formation Reaction.

    NASA Astrophysics Data System (ADS)

    Suwannachot, Yuttana; Rode, Bernd M.

    1998-02-01

    Mutual catalysis of amino acids in the salt-induced peptide formation (SIPF) reaction is demonstrated for the case of glycine/alanine. The presence of glycine enhances dialanine formation by a factor up to 50 and enables dialanine formation at much lower alanine concentrations. The actual amounts of glycine play an important role for this catalytic effect, the optimal glycine concentration is 1/8 of the alanine concentration. The mechanism appears to be based on the formation of the intermediate Gly-Ala-Ala tripeptide, connected to one coordination site of copper(II) ion, and subsequent hydrolysis to dialanine and glycine.

  18. Essential dietary amino acids for growth of larvae of the yellow mealworm, Tenebrio molitor L.

    PubMed

    Davis, G R

    1975-08-01

    Larvae of the yellow mealworm, Tenebrio molitor L., have been used to evaluate nutritional quality of proteins and protein isolates. However, such investigations have been complicated by lack of knowledge of dietary requirements of the larvae. To determine essential dietary amino acids for growth of Tenebrio molitor, single amino acids were deleted from the amino acid mixture of the diet. Diets were maintained isonitrogenous with supplementary glycine and, in the case of deleted glycine, with glutamic acid. Growth, as measured by gain in weight, and survival were observed over a 4-week period at 27 plus or minus 0.25 degrees and 65 plus or minus 5% relative humidity. The results indicate that larvae of Tenebrio molitor require a dietary source of the same 10 amino acids essential for growth in rats, other vertebrates, and some protozoa. They also showed that serine, tyrosine, glutamic acid, and possibly glycine were dispensable for growth in this insect. Alanine, cystine, proline, and aspartic acid appeared semidispensable. Survival over the 4-week experimental period was unaffected by deleting amino acids from the diet. The results are discussed in relation to amino acid requirements of other insects and to suggested improvement of the diet of the present investigation.

  19. Glycine and Glycine Receptor Signalling in Non-Neuronal Cells

    PubMed Central

    den Eynden, Jimmy Van; Ali, Sheen Saheb; Horwood, Nikki; Carmans, Sofie; Brône, Bert; Hellings, Niels; Steels, Paul; Harvey, Robert J.; Rigo, Jean-Michel

    2009-01-01

    Glycine is an inhibitory neurotransmitter acting mainly in the caudal part of the central nervous system. Besides this neurotransmitter function, glycine has cytoprotective and modulatory effects in different non-neuronal cell types. Modulatory effects were mainly described in immune cells, endothelial cells and macroglial cells, where glycine modulates proliferation, differentiation, migration and cytokine production. Activation of glycine receptors (GlyRs) causes membrane potential changes that in turn modulate calcium flux and downstream effects in these cells. Cytoprotective effects were mainly described in renal cells, hepatocytes and endothelial cells, where glycine protects cells from ischemic cell death. In these cell types, glycine has been suggested to stabilize porous defects that develop in the plasma membranes of ischemic cells, leading to leakage of macromolecules and subsequent cell death. Although there is some evidence linking these effects to the activation of GlyRs, they seem to operate in an entirely different mode from classical neuronal subtypes. PMID:19738917

  20. Accurate determination of the amino acid content of selected feedstuffs.

    PubMed

    Rutherfurd, Shane M

    2009-01-01

    The accurate determination of the amino acid content is important. In the present study, a least-squares non-linear regression model of the amino acid content determined over multiple hydrolysis times was used to accurately determine the content of amino acids in five different feedstuffs. These values were compared with 24-h hydrolysis values determined for the same feedstuffs. Overall, approximately two-thirds of the amino acids determined in this study (aspartic acid, threonine, glutamic acid, proline, glycine, alanine, leucine, tyrosine, phenylalanine and arginine) using 24-h hydrolysis were in good agreement (<3% difference). When examined across feedstuffs, the concentration of serine was underestimated by the 24-h hydrolysis method by 4.8%, while the concentrations of histidine and lysine were overestimated by 3.9% and 3.1%, respectively.

  1. Proline transport by brush-border membrane vesicles of lobster antennal glands

    SciTech Connect

    Behnke, R.D.; Wong, R.K.; Huse, S.M.; Reshkin, S.J.; Ahearn, G.A. )

    1990-02-01

    Purified brush-border membrane vesicles (BBMV) of lobster antennal gland labyrinth and bladder were separately formed by a magnesium precipitation technique. L-(3H)proline uptake was stimulated by a transmembrane NaCl gradient (outside (o) greater than inside (i)) to a greater extent in BBMV from labyrinth than those from the bladder. Detailed study of the labyrinth proline-transport processes revealed a specific dependence on NaCl, with negligible stimulatory effects by NaSCN, Na-gluconate, or KCl. A transmembrane proton gradient (o greater than i) was without stimulatory effect on proline transport. A transmembrane potential difference alone, in the presence of equilibrated NaCl and L-(3H)proline, led to net influx of the labeled amino acid, suggesting that the uptake process was electrogenic and capable of bringing about the net transfer of positive charge to the vesicle interior. Although a transmembrane Na gradient alone, in the presence of equilibrated Cl and L-(3H)proline, was able to bring about the net influx of the amino acid, a transmembrane Cl gradient alone under Na- and L-(3H)proline-equilibrated conditions was not, suggesting that only the Na gradient could energize the carrier process through cotransport, while the anion served an essential activating role. Proline influx by these vesicles occurred by the combination of at least one saturable Michaelis-Menten carrier system (apparent Kt = 0.37 mM; apparent JM = 1.19 nmol.mg protein-1.10 s-1) and apparent diffusion (P = 0.33 nmol.mg protein-1.10 s-1.mM-1). Static head analysis of the transport process suggested a cotransport stoichiometry of 2 Na:1 proline with essential activation by Cl ion.

  2. Glycine enhanced separation of Co(II) and Ni(II) with bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) by liquid-liquid extraction and supported liquid membranes

    SciTech Connect

    Reichley-Yinger, L.; Danesi, P.R.

    1985-01-01

    The extraction behavior of Co and Ni ions from aqueous nitrate solution containing glycine, and their separation by liquid-liquid extraction and supported liquid membranes (SLMs) has been studied. The separation factor between the two metals is greatly enhanced by the presence of glycine. The enhancement is due to the preferential complexation of the Ni ions by glycine. The conditional equilibrium constants of the extraction reactions and the SLM permeability coefficients have been measured. The results indicate that metal glycinate complexes are not extracted and that in presence of glycine very clean Co-Ni separation can be obtained in a single SLM pass.

  3. Investigation of cis/trans proline isomerism in a multiply occurring peptide fragment from human salivary proline-rich glycoprotein.

    PubMed

    Loomis, R E; Gonzalez, M; Loomis, P M

    1991-11-01

    The solution-state conformations of eight proline-containing peptide fragments found in human salivary proline-rich glycoprotein (PRG) were investigated in 2 x distilled water (treated with metal ion chelating resin) using 13C-nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. The peptide sequences and acronyms were as follows: PRG9-2 = NH2-G(1)-P(2)-CONH2, PRG9-3 = NH2-G(1)P(2)-P(3)-CONH2, PRG9-4 = NH2-G(1)-P(2)-P(3)-P(4)-CONH2, PRG9-5 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-CONH2, PRG9-6 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-CONH2, PRG9-7 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-CONH2, PRG9-8 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-CONH2 and PRG9-9 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-P(9)-CONH2. Sequence-specific resonance assignments from the 13C-NMR spectra indicated that the trans proline isomer dominated the conformations of the peptides. CD results clearly showed the presence of the poly-L-proline II helix as the major conformation in PRG9-3----PRG9-5, supplemented by beta- and/or gamma-turns in PRG9-6----PRG9-9. These data suggest that in "metal free" water, native PRG could contain several small poly-L-proline II helices along with beta- and/or gamma-turns. Since proline is the major amino acid present in native PRG, these localized conformations may contribute to PRG's global conformation and act as a primary force in determining its biological activities.

  4. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    SciTech Connect

    White, Tommi A.; Tanner, John J.

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  5. Two proline porters in Escherichia coli K-12.

    PubMed Central

    Stalmach, M E; Grothe, S; Wood, J M

    1983-01-01

    Escherichia coli mutants defective at putP and putA lack proline transport via proline porter I and proline dehydrogenase activity, respectively. They retain a proline uptake system (proline porter II) that is induced during tryptophan-limited growth and are sensitive to the toxic L-proline analog, 3,4-dehydroproline. 3,4-Dehydroproline-resistant mutants derived from a putP putA mutant lack proline porter II. Auxotrophic derivatives derived from putP+ or putP bacteria can grow if provided with proline at low concentration (25 microM); those derived from the 3,4-dehydroproline-resistant mutants require high proline for growth (2.5 mM). We conclude that E. coli, like Salmonella typhimurium, possesses a second proline porter that is inactivated by mutations at the proP locus. PMID:6355059

  6. cDNA cloning and deduced amino acid sequence of a major, glycine-rich cuticular protein from the coleopteran Tenebrio molitor. Temporal and spatial distribution of the transcript during metamorphosis.

    PubMed

    Charles, J P; Bouhin, H; Quennedey, B; Courrent, A; Delachambre, J

    1992-06-15

    In Coleoptera, the elytra (forewings), with a very hard and thick cuticle, protect the membranous and delicate hindwings against mechanical stress. We have isolated and characterized a cDNA encoding a major cuticle protein in Tenebrio molitor, named ACP-20. The deduced amino acid sequence is roughly tripartite, with two terminal glycine-rich domains and a central region showing pronounced similarities with some other hard cuticle proteins. Northern blot and in situ hybridization analyses reveal that ACP-20 gene expression is developmentally regulated since transcript accumulation occurs only in epidermal regions synthesizing hard cuticle and is restricted to the period of preecdysial adult cuticle deposition. Moreover, application of a juvenile hormone analogue prevents the appearance of the transcript, indicating that juvenile hormone, a key molecule involved in the control of insect metamorphosis, negatively regulates the expression of the ACP-20 gene.

  7. Adaptation of an L-Proline Adenylation Domain to Use 4-Propyl-L-Proline in the Evolution of Lincosamide Biosynthesis

    PubMed Central

    Kadlčík, Stanislav; Kučera, Tomáš; Chalupská, Dominika; Gažák, Radek; Koběrská, Markéta; Ulanová, Dana; Kopecký, Jan; Kutejová, Eva; Najmanová, Lucie; Janata, Jiří

    2013-01-01

    Clinically used lincosamide antibiotic lincomycin incorporates in its structure 4-propyl-L-proline (PPL), an unusual amino acid, while celesticetin, a less efficient related compound, makes use of proteinogenic L-proline. Biochemical characterization, as well as phylogenetic analysis and homology modelling combined with the molecular dynamics simulation were employed for complex comparative analysis of the orthologous protein pair LmbC and CcbC from the biosynthesis of lincomycin and celesticetin, respectively. The analysis proved the compared proteins to be the stand-alone adenylation domains strictly preferring their own natural substrate, PPL or L-proline. The LmbC substrate binding pocket is adapted to accomodate a rare PPL precursor. When compared with L-proline specific ones, several large amino acid residues were replaced by smaller ones opening a channel which allowed the alkyl side chain of PPL to be accommodated. One of the most important differences, that of the residue corresponding to V306 in CcbC changing to G308 in LmbC, was investigated in vitro and in silico. Moreover, the substrate binding pocket rearrangement also allowed LmbC to effectively adenylate 4-butyl-L-proline and 4-pentyl-L-proline, substrates with even longer alkyl side chains, producing more potent lincosamides. A shift of LmbC substrate specificity appears to be an integral part of biosynthetic pathway adaptation to the PPL acquisition. A set of genes presumably coding for the PPL biosynthesis is present in the lincomycin - but not in the celesticetin cluster; their homologs are found in biosynthetic clusters of some pyrrolobenzodiazepines (PBD) and hormaomycin. Whereas in the PBD and hormaomycin pathways the arising precursors are condensed to another amino acid moiety, the LmbC protein is the first functionally proved part of a unique condensation enzyme connecting PPL to the specialized amino sugar building unit. PMID:24386435

  8. Glycine lithium nitrate crystals

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, R.; Hernández-Paredes, J.; Medrano-Pesqueira, T.; Esparza-Ponce, H. E.; Jesús-Castillo, S.; Rodriguez-Mijangos, R.; Terpugov, V. S.; Alvarez-Ramos, M. E.; Duarte-Möller, A.

    Crystals of glycine lithium nitrate with non-linear optical properties have been grown in a solution by slow evaporation at room temperature. The crystal shows a good thermal stability from room temperature to 175 °C where the crystal begins to degrade. This property is desirable for future technological applications. Also, a good performance on the second harmonic generation was found, characterizing the emitted dominant wavelength by a customized indirect procedure using luminance and chromaticity measured data based on the CIE-1931 standard. Additionally, the 532 nm signal was detected by using a variant to the Kurtz and Perry method.

  9. Functional characterization of a Glycine soja Ca(2+)ATPase in salt-alkaline stress responses.

    PubMed

    Sun, Mingzhe; Jia, Bowei; Cui, Na; Wen, Yidong; Duanmu, Huizi; Yu, Qingyue; Xiao, Jialei; Sun, Xiaoli; Zhu, Yanming

    2016-03-01

    It is widely accepted that Ca(2+)ATPase family proteins play important roles in plant environmental stress responses. However, up to now, most researches are limited in the reference plants Arabidopsis and rice. The function of Ca(2+)ATPases from non-reference plants was rarely reported, especially its regulatory role in carbonate alkaline stress responses. Hence, in this study, we identified the P-type II Ca(2+)ATPase family genes in soybean genome, determined their chromosomal location and gene architecture, and analyzed their amino acid sequence and evolutionary relationship. Based on above results, we pointed out the existence of gene duplication for soybean Ca(2+)ATPases. Then, we investigated the expression profiles of the ACA subfamily genes in wild soybean (Glycine soja) under carbonate alkaline stress, and functionally characterized one representative gene GsACA1 by using transgenic alfalfa. Our results suggested that GsACA1 overexpression in alfalfa obviously increased plant tolerance to both carbonate alkaline and neutral salt stresses, as evidenced by lower levels of membrane permeability and MDA content, but higher levels of SOD activity, proline concentration and chlorophyll content under stress conditions. Taken together, for the first time, we reported a P-type II Ca(2+)ATPase from wild soybean, GsACA1, which could positively regulate plant tolerance to both carbonate alkaline and neutral salt stresses.

  10. A common periodic table of codons and amino acids.

    PubMed

    Biro, J C; Benyó, B; Sansom, C; Szlávecz, A; Fördös, G; Micsik, T; Benyó, Z

    2003-06-27

    A periodic table of codons has been designed where the codons are in regular locations. The table has four fields (16 places in each) one with each of the four nucleotides (A, U, G, C) in the central codon position. Thus, AAA (lysine), UUU (phenylalanine), GGG (glycine), and CCC (proline) were placed into the corners of the fields as the main codons (and amino acids) of the fields. They were connected to each other by six axes. The resulting nucleic acid periodic table showed perfect axial symmetry for codons. The corresponding amino acid table also displaced periodicity regarding the biochemical properties (charge and hydropathy) of the 20 amino acids and the position of the stop signals. The table emphasizes the importance of the central nucleotide in the codons and predicts that purines control the charge while pyrimidines determine the polarity of the amino acids. This prediction was experimentally tested.

  11. Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs.

    PubMed

    Savio, L E B; Vuaden, F C; Kist, L W; Pereira, T C; Rosemberg, D B; Bogo, M R; Bonan, C D; Wyse, A T S

    2013-10-10

    Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism. PMID:23867765

  12. Cometary Glycine Detected in Samples Returned by Stardust

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the or igin of these compounds could not be firmly established. Here, we pre sent the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardu st-returned foil samples measured by gas chromatography-mass spectrom etry coupled with isotope ratio mass spectrometry. The Delta C-13 value for glycine of +29 +/- ? 6%: strongly suggests an extraterrestrial origin For glycine, while the Delta C-13 value for EACA of -25 +/-2 % indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid.

  13. Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria.

    PubMed

    Wood, J M

    1988-12-01

    Proline is utilized by all organisms as a protein constituent. It may also serve as a source of carbon, energy and nitrogen for growth or as an osmoprotectant. The molecular characteristics of the proline transport systems which mediate the multiple functions of proline in the Gram negative enteric bacteria, Escherichia coli and Salmonella typhimurium, are now becoming apparent. Recent research on those organisms has provided both protocols for the genetic and biochemical characterization of the enzymes mediating proline transport and molecular probes with which the degree of homology among the proline transport systems of archaebacteria, eubacteria and eukaryotes can be assessed. This review has provided a detailed summary of recent research on proline transport in E. coli and S. typhimurium; the properties of other organisms are cited primarily to illustrate the generality of those observations and to show where homologous proline transport systems might be expected to occur. The characteristics of proline transport in eukaryotic microorganisms have recently been reviewed (Horak, 1986). PMID:3072423

  14. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  15. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  16. DETECTABILITY OF GLYCINE IN SOLAR-TYPE SYSTEM PRECURSORS

    SciTech Connect

    Jiménez-Serra, Izaskun; Testi, Leonardo; Caselli, Paola; Viti, Serena E-mail: ltesti@eso.org E-mail: sv@star.ucl.ac.uk

    2014-06-01

    Glycine (NH{sub 2}CH{sub 2}COOH) is the simplest amino acid relevant to life. Its detection in the interstellar medium is key to understanding the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has been extensively searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant to the study of pre-biotic chemistry in young solar system analogs. We present one-dimensional spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapor has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (∼0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ∼10{sup –4} with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility of detecting glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.

  17. Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli.

    PubMed Central

    Wengender, P A; Miller, K J

    1995-01-01

    The important food-borne pathogen Staphylococcus aureus is distinguished by its ability to grow at low water activity values. Previous work in our laboratory and by others has revealed that proline accumulation via transport is an important osmoregulatory strategy employed by this bacterium. Furthermore, proline uptake by this bacterium has been shown to be mediated by two distinct transport systems: a high-affinity system and a low-affinity system (J.-H. Bae, and K. J. Miller, Appl. Environ. Microbiol. 58:471-475, 1992; D. E. Townsend and B. J. Wilkinson, J. Bacteriol. 174:2702-2710, 1992). In the present study, we report the cloning of the high-affinity proline transport system of S. aureus by functional expression in an Escherichia coli host. The sequence of the staphylococcal proline permease gene was predicted to encode a protein of 497 amino acids which shares 49% identity with the PutP high-affinity proline permease of E. coli. Analysis of hydropathy also indicated a common overall structure for these proteins. PMID:7887605

  18. Vibrational spectroscopy of bacteriorhodopsin mutants: Evidence for the interaction of proline-186 with the retinylidene chromophore

    SciTech Connect

    Rothschild, K.J.; He, Y.W.; Mogi, T.; Marti, T.; Stern, L.J.; Khorana, H.G. )

    1990-06-26

    Fourier-transform infrared difference spectroscopy has been used to study the role of the three membrane-embedded proline residues, Pro-50, Pro-91, and Pro-186, in the structure and function of bacteriorhodopsin. All three prolines were replaced by alanine and glycine; in addition, Pro-186 was changed to valine. Difference spectra were recorded for the bR----K and bR----M photoreactions of each of these mutants and compared to those of wild-type bacteriorhodopsin. Only substitutions of Pro-186 caused significant perturbations in the frequency of the C = C and C - C stretching modes of the retinylidene chromophore. In addition, these substitutions reduced bands in the amide I and II region associated with secondary structural changes and altered signals assigned to the adjacent Tyr-185. Pro-186----Val caused the largest alterations, producing a second species similar to bR548 and nearly blocking chromophore isomerization at 78 K but not at 250 K. These results are consistent with a model of the retinal binding site in which Pro-186 and Tyr-185 are located in direct proximity to the chromophore and may be involved in linking chromophore isomerization to protein structural changes. Evidence is also found that Pro-50 may be structurally active during the bR----K transition and that substitution of this residue by glycine preserves the normal protein structural changes during the photocycle.

  19. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  20. A DFT study of adsorption of glycine onto the surface of BC2N nanotube

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Azmoodeh, Zivar; Javan, Masoud Bezi; Lemeski, E. Tazikeh; Karami, Leila

    2016-10-01

    A theoretical study of structure and the energy interaction of amino acid glycine (NH2CH2COOH) with BC2N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC2N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC2N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  1. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  2. Baicalin Activates Glycine and γ-Aminobutyric Acid Receptors on Substantia Gelatinosa Neurons of the Trigeminal Subsnucleus Caudalis in Juvenile Mice.

    PubMed

    Yin, Hua; Bhattarai, Janardhan Prasad; Oh, Sun Mi; Park, Soo Joung; Ahn, Dong Kuk; Han, Seong Kyu

    2016-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1-3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation

  3. Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K12.

    PubMed

    Milner, J L; Grothe, S; Wood, J M

    1988-10-15

    Proline porter II is rapidly activated when nongrowing bacteria are subjected to a hyperosmotic shift (Grothe, S., Krogsrud, R. L., McClellan, D. J., Milner, J. L., and Wood, J. M. (1986) J. Bacteriol. 166, 253-259). Proline porter II was active in membrane vesicles prepared from bacteria grown under optimal conditions, nutritional stress, or osmotic stress. That activity was: (i) dependent on the presence of the energy sources phenazine methosulphate plus ascorbate or D-lactate; (ii) observed only when a hyperosmotic shift accompanied the transport measurement; (iii) inhibited by glycine betaine in a manner analogous to that observed in whole cells; and (iv) eliminated by lesions in proP. Membrane vesicles were able to transport serine but not glutamine and serine transport was reduced by the hyperosmotic shift. In whole cells, proline porter II activity was supported by glucose and by D-lactate in a strain defective for proline porters I and III and the F1F0-ATPase. Glucose energized proline uptake was eliminated by carbonyl cyanide m-chlorophenylhydrazone and KCN as was serine uptake. These results suggested that proline porter II was respiration-dependent and probably ion-linked. Activation of proline porter II in whole cells by sucrose or NaCl was sustained over 30 min, whereas activation by glycerol was transient. Proline porter II was activated by NaCl and sucrose with a half-time of approximately 1 min in both whole cells and membrane vesicles. Thus, activation of proline porter II was reversible. It occurred at a rate comparable to that of K+ influx and much more rapid than the genetic regulatory responses that follow a hyperosmotic shift. PMID:3049595

  4. Free amino acids in atmospheric particulate matter of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  5. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines.

  6. The γ-Aminobutyrate Permease GabP Serves as the Third Proline Transporter of Bacillus subtilis

    PubMed Central

    Zaprasis, Adrienne; Hoffmann, Tamara; Stannek, Lorena; Gunka, Katrin; Commichau, Fabian M.

    2014-01-01

    PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates. PMID:24142252

  7. Reaction behaviors of glycine under super- and subcritical water conditions.

    PubMed

    Alargov, Dimitar K; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water--250, 300, 350, 374, and 400 degrees C--were performed at 22.2 and 40.0 MPa. At 350 degrees C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 degrees C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system. PMID:11889913

  8. Reaction Behaviors of Glycine under Super- and Subcritical Water Conditions

    NASA Astrophysics Data System (ADS)

    Alargov, Dimitar K.; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water - 250, 300, 350, 374, and 400 °C - were performed at 22.2 and 40.0 MPa. At 350 °C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 °C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system.

  9. Alpha-amylase from germinating soybean (Glycine max) seeds--purification, characterization and sequential similarity of conserved and catalytic amino acid residues.

    PubMed

    Kumari, Arpana; Singh, Vinay Kumar; Fitter, Jörg; Polen, Tino; Kayastha, Arvind M

    2010-10-01

    Starch hydrolyzing amylase from germinated soybeans seeds (Glycine max) has been purified 400-fold to electrophoretic homogeneity with a final specific activity of 384 units/mg. SDS-PAGE of the final preparation revealed a single protein band of 100 kDa, whereas molecular mass was determined to be 84 kDa by MALDI-TOF and gel filtration on Superdex-200 (FPLC). The enzyme exhibited maximum activity at pH 5.5 and a pI value of 4.85. The energy of activation was determined to be 6.09 kcal/mol in the temperature range 25-85 degrees C. Apparent Michaelis constant (K(m)((app))) for starch was 0.71 mg/mL and turnover number (k(cat)) was 280 s(-1) in 50 mM sodium acetate buffer, pH 5.5. Thermal inactivation studies at 85 degrees C showed first-order kinetics with rate constant (k) equal to 0.0063 min(-1). Soybean alpha-amylase showed high specificity for its primary substrate starch. High similarity of soybean alpha-amylase with known amylases suggests that this alpha-amylase belongs to glycosyl hydrolase family 13. Cereal alpha-amylases have gained importance due to their compatibility for biotechnological applications. Wide availability and easy purification protocol make soybean as an attractive alternative for plant alpha-amylase. Soybean can be used as commercially viable source of alpha-amylase for various industrial applications. PMID:20655076

  10. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine1[W][OA

    PubMed Central

    Díaz-Sánchez, Ángel G.; González-Segura, Lilian; Mújica-Jiménez, Carlos; Rudiño-Piñera, Enrique; Montiel, Carmina; Martínez-Castilla, León P.; Muñoz-Clares, Rosario A.

    2012-01-01

    Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant Km(BAL) increases and Vmax/Km(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the Vmax/Km(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants. PMID:22345508

  11. Analysis of the free amino acid content in pollen of nine Asteraceae species of known allergenic activity.

    PubMed

    Mondal, A K; Parui, S; Mandal, S

    1998-01-01

    The study reports the free amino acid composition of the pollen of nine members of the family Asteraceae, i.e. Ageratum conyzoides L., Blumea oxyodonta DC., Eupatorium odoratum L., Gnaphalium indicum L., Mikania scandens Willd., Parthenium hysterophorus L., Spilanthes acmella Murr., Vernonia cinerea (L.) Lees. and Xanthium strumarium L. by thin layer chromatography. The amino acid content was found to vary from 0.5-4.0% of the total dry weight. Fourteen amino acids were identified, among which amino-n-butyric acid, aspartic acid and proline were present in almost all pollen samples. The other major amino acids present in free form included arginine, cystine, glutamic acid, glycine, isoleucine, leucine, methionine, ornithine, tryptophan and tyrosine. PMID:9852488

  12. [Effects of low molecular organic acids on nitrogen accumulation, nodulation, and nitrogen fixation of soybean (Glycine max L.) under phosphorus deficiency stress].

    PubMed

    Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Yan, Jun; Li, Xiao-Hui

    2009-05-01

    A greenhouse sand culture experiment was conducted to study the effects of citric acid, oxalic acid, malic acid, and their mixture on the nitrogen accumulation, nodulation, and nitrogen fixation of soybean. After the application of test low molecular weight organic acids, the nitrogen accumulation in the aboveground part of soybean decreased by 17.6%-44.9% at seedling stage, 29.8%-88.4% at flowering stage, 9.18%-69.6% at podding stage, and 2.21%-41.7% at maturing stage). In the meanwhile, the nodule number, nitrogenase activity, and leghemoglobin content decreased by 11.4%-59.6%, 80.5%-91.7%, and 11.9%-59.9%, respectively, resulting in a significant decrease (9.71%-64.5%) of nitrogen fixation of soybean, compared with the control. The inhibitory effect of test low molecular weight organic acids increased with their increasing concentration. Oxalic acid had a higher inhibitory effect than citric acid and malic acid, and the mixture of the three organic acids had an enhanced inhibitory effect.

  13. Growth medium-dependent glycine incorporation into the peptidoglycan of Caulobacter crescentus.

    PubMed

    Takacs, Constantin N; Hocking, Jason; Cabeen, Matthew T; Bui, Nhat Khai; Poggio, Sebastian; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2013-01-01

    The peptidoglycan (PG) is a macromolecular component of the bacterial cell wall that maintains the shape and integrity of the cell. The PG of Caulobacter crescentus, unlike that of many other Gram-negative bacteria, has repeatedly been shown to contain significant amounts of glycine. This compositional peculiarity has been deemed an intrinsic characteristic of this species. By performing a comprehensive qualitative and quantitative analysis of the C. crescentus PG by high-performance liquid chromatography (HPLC) and mass spectrometry (MS), we show here that glycine incorporation into the C. crescentus PG depends on the presence of exogenous glycine in the growth medium. High levels of glycine were detected at the fifth position of the peptide side chains of PG isolated from C. crescentus cells grown in the complex laboratory medium PYE or in defined medium (M2G) supplemented with casamino acids or glycine alone. In contrast, glycine incorporation was undetectable when cells were grown in M2G medium lacking glycine. Remarkably, glycine incorporation into C. crescentus peptidoglycan occurred even in the presence of low millimolar to sub-millimolar concentrations of free glycine. High glycine content in the PG had no obvious effects on growth rates, mode of PG incorporation or cell morphology. Hence, the C. crescentus PG is able to retain its physiological functions in cell growth and morphogenesis despite significant alterations in its composition, in what we deem to be unprecedented plasticity.

  14. [Properties of post-proline cleaving enzymes from Tenebrio molitor].

    PubMed

    Goptar', I A; Kulemzina, I A; Filippova, I Iu; Lysogorskaia, E N; Oksenoĭt, E S; Zhuzhikov, D P; Dunaevskiĭ, Ia E; Belozerskiĭ, M A; Elpidina, E N

    2008-01-01

    Two post-proline cleaving enzymes PRE1 and PRE2 with molecular masses of 101 and 62 kDa, respectively, capable of hydrolyzing Z-AlaAlaPro-pNA were isolated for the first time from the midgut of the flour beetle Tenebrio molitor and characterized. PRE1 is active only in acidic media, with a maximum at pH 5.6, whereas PRE2, both in acidic and alkaline media with a maximum at pH 7.9. Using inhibitory analysis, both PRE1 and PRE2 were shown to belong to serine peptidases. Some data indicate that a Cys residue is located close to the PRE2 active site. Z-Pro-prolinal, a specific inhibitor of prolyl oligopeptidases, inhibits completely PRE2 and partially PRE1. The substrate specificities of the isolated enzymes were studied. It was shown that Z-AlaAla-Pro-pNA was the best substrate for PRE1, and Z-AlaPro-pNA, for PRE2. The combination of the studied properties allowed characterization of PRE2 as a prolyl oligopeptidase.

  15. 21 CFR 582.5650 - Proline.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Proline. 582.5650 Section 582.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  16. 21 CFR 582.5650 - Proline.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Proline. 582.5650 Section 582.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  17. 21 CFR 582.5650 - Proline.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Proline. 582.5650 Section 582.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  18. Mode of Action of Glycine on the Biosynthesis of Peptidoglycan

    PubMed Central

    Hammes, W.; Schleifer, K. H.; Kandler, O.

    1973-01-01

    The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to

  19. Determination of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in Food Products Containing Cyanobacteria by Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry: Single-Laboratory Validation.

    PubMed

    Glover, W Broc; Baker, Teesha C; Murch, Susan J; Brown, Paula N

    2015-01-01

    A single-laboratory validation study was completed for the determination of β-N-methylamino-L-alanine (BMAA), N-(2-aminoethyl)glycine (AEG), and 2,4-diaminobutyric acid (DAB) in bulk natural health product supplements purchased from a health food store in Canada. BMAA and its isomers were extracted with acid hydrolysis to free analytes from protein association. Acid was removed with the residue evaporated to dryness and reconstituted with derivatization using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Fluor). Chromatographic separation and detection were achieved using RP ultra-performance LC coupled to a tandem mass spectrometer operated in multiple reaction monitoring mode. Data from biological samples were evaluated for precision and accuracy across different days to ensure repeatability. Accuracy was assessed by spike recovery of biological samples using varying amino acid concentrations, with an average recovery across all samples of 108.6%. The analytical range was found to be 764-0.746 ng/mL prior to derivatization, thereby providing a linear range compatible with potentially widely varying analyte concentrations in commercial health food products. Both the U. S. Food and Drug Administration (FDA) and U. S. Pharmacopeia definitions were evaluated for determining method limits, with the FDA approach found to be most suitable having an LOD of 0.187 ng/mL and LLOQ of 0.746 ng/mL. BMAA in the collected specimens was detected at concentrations lower than 1 μg/g, while AEG and DAB were found at concentrations as high as 100 μg/g. Finding these analytes, even at low concentrations, has potential public health significance and suggests a need to screen such products prior to distribution. The method described provides a rapid, accurate, and precise method to facilitate that screening process. PMID:26651568

  20. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats.

    PubMed

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M; Lam, Tony K T; Gutiérrez-Juárez, Roger

    2013-04-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well. PMID:23274895

  1. Changes in amino acids and lipids during embryogenesis of European lobster, Homarus gammarus (Crustacea: Decapoda).

    PubMed

    Rosa, R; Calado, R; Andrade, A M; Narciso, L; Nunes, M L

    2005-02-01

    We studied the amino acid and lipid dynamics during embryogenesis of Homarus gammarus. Major essential amino acids (EAA) in the last stage of embryonic development were arginine, lysine and leucine; major nonessential amino acids (NEAA) were glutamic acid, aspartic acid, valine and glycine. The highest percent of utilization occurred in respect to EAA (27.8%), mainly due to a significant decrease (p<0.05) of methionine (38.3%) and threonine (36.0%). NEAA also decreased significantly (p<0.05, 11.4%), namely serine (38.1%), tyrosine (26.4%) and glutamic acid (25.7%). In contrast, the free amino acid content increased significantly (p<0.05) during embryonic development, especially the free nonessential amino acids (FNEAA). In the last stage, the most abundant FNEAA were glycine, proline, alanine and taurine, and the major free essential amino acids (FEAA) were arginine, lysine and leucine. Lipid content decreased significantly (p<0.05) during embryonic development. A substantial decrease in all neutral lipid classes was observed (>80% of utilization). Major fatty acids were 16:0, 18:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:5n-3 and 22:6n-3. Unsaturated (UFA) and saturated fatty acids (SFA) were used up at similar rates (76.5% and 76.3%, respectively). Within UFA, monounsaturates (MUFA) were consumed more than polyunsaturates (PUFA) (82.9% and 67.5%, respectively). PMID:15649771

  2. Modulation of N-methyl-d-aspartate receptor function by glycine transport

    PubMed Central

    Bergeron, Richard; Meyer, Torsten M.; Coyle, Joseph T.; Greene, Robert W.

    1998-01-01

    The recent discovery of glycine transporters in both the central nervous system and the periphery suggests that glycine transport may be critical to N-methyl-d-aspartate receptor (NMDAR) function by controlling glycine concentration at the NMDAR modulatory glycine site. Data obtained from whole-cell patch–clamp recordings of hippocampal pyramidal neurons, in vitro, demonstrated that exogenous glycine and glycine transporter type 1 (GLYT1) antagonist selectively enhanced the amplitude of the NMDA component of a glutamatergic excitatory postsynaptic current. The effect was blocked by 2-amino-5-phosphonovaleric acid and 7-chloro-kynurenic acid but not by strychnine. Thus, the glycine-binding site was not saturated under the control conditions. Furthermore, GLYT1 antagonist enhanced NMDAR function during perfusion with medium containing 10 μM glycine, a concentration similar to that in the cerebrospinal fluid in vivo, thereby supporting the hypothesis that the GLYT1 maintains subsaturating concentration of glycine at synaptically activated NMDAR. The enhancement of NMDAR function by specific GLYT1 antagonism may be a feasible target for therapeutic agents directed toward diseases related to hypofunction of NMDAR. PMID:9861038

  3. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  4. Densely Substituted L-Proline Esters as Catalysts for Asymmetric Michael Additions of Ketones to Nitroalkenes.

    PubMed

    Ruiz-Olalla, Andrea; Retamosa, María de Gracia; Cossío, Fernando P

    2015-06-01

    Homochiral methyl 4-aminopyrrolidine-2-carboxylates are readily obtained by means of asymmetric (3 + 2) cycloadditions between azomethine ylides and nitroalkenes, followed by catalytic hydrogenation of the intermediate 4-nitro cycloadducts. These 4-aminopyrrolidine-2-carboxylate esters belong to the L-series of natural amino acids and catalyze asymmetric Michael additions of ketones to nitroalkenes. However, the enantioselectivity observed with these novel unnatural organocatalysts is opposite to that obtained with L-proline. Since both 4-nitro and 4-amino L-proline esters are efficient organocatalysts of aldol reactions, these results permit to modulate asymmetric quimioselective aldol and conjugate addition reactions.

  5. HR-MAS NMR metabolomics of 'Swingle' citrumelo rootstock genetically modified to overproduce proline.

    PubMed

    de Oliveira, Caroline S; Carlos, Eduardo F; Vieira, Luiz G E; Lião, Luciano M; Alcantara, Glaucia B

    2014-08-01

    The accumulation of proline is a typical physiological response to abiotic stresses in higher plants. 'Swingle' citrumelo, an important rootstock for citrus production, has been modified with a mutated Δ(1)-pyrroline-5-carboxylate synthetase gene (VaP5CSF129A) linked to the cauliflower mosaic virus 35S promoter to induce the overproduction of free proline. This paper presents a comparative metabolomic study of nontransgenic versus transgenic 'Swingle' citrumelo plants with high endogenous proline. (1)H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and multivariate analysis showed significant differences in some metabolites between the nontransgenic and transgenic leaves and roots. The overproduction of proline has reduced the sucrose content in transgenic leaves, revealing a metabolic cost for these plants. In roots, the high level of free proline acts for the adjustment of cation-anion balance, causing the reduction of acetic acid content. The same sucrose level in roots indicates that they can be considered as sucrose sink. Similar behavior may be waited for fruits produced on transgenic rootstock.

  6. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2004-12-14

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  7. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-07-15

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  8. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-04-29

    Increasing the concentration of prolines such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that overexpress glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramnate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  9. Developmental aspects of proline transport in rat renal brush border membranes.

    PubMed

    Medow, M S; Roth, K S; Goldmann, D R; Ginkinger, K; Hsu, B Y; Segal, S

    1986-10-01

    Proline uptake by rat renal brush border membrane vesicles from animals 7 days of age and older has been examined to delineate developmental changes in membrane function that may underlie the physiological hyperprolinuria of young animals. Although the two proline transport systems normally present in adult membranes were found in membranes from young animals, the proline "overshoot" resulting from a sodium ion gradient is minimal and increases with age of the animal from which the membranes were isolated. This is associated with a severalfold faster entry of 22Na into vesicles of the 7-day-old animal compared to entry into membranes prepared from adult kidneys. The very rapid dissipation of the sodium gradient thus diminishing the driving force for transmembrane proline movement may explain the changes in proline overshoot observed in membranes from young animals. The altered sodium permeability is consistent with the fact that young animals have a generalized inability to reabsorb other amino acids whose transport is known to be sodium gradient stimulated. PMID:3463985

  10. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  11. Glycine reduces cadmium-induced teratogenic damage in mice.

    PubMed

    Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Chamorro-Cevallos, Germán

    2007-01-01

    The effect of glycine in preventing cadmium (Cd) teratogenicity in mice was studied. Cadmium chloride (CdCl2) was administered subcutaneously at 1, 2 or 4 mg/kg doses on gestation days (GD) 7, 8 and 9. Glycine was given ad libitum (in the drinking water) from GD0 through GD18 (the day when animals were killed), as a 1% and 2% drinking water solution. Cd and nucleic acid concentrations in embryos were determined. The most common finding seen after CdCl2 4 mg/kg exposure was exencephaly. The incidence of this malformation was significantly reduced in mice receiving 2% glycine while fetal Cd significantly decreased as compared to cadmium-treated positive control animals. Increased nucleic acid levels were seen in the same embryos. In glycine non-supplemented mice given CdCl2 4 mg/kg, embryonic lipid peroxidation proved to be increased. In conclusion, lipid peroxidation was associated with cadmium-induced teratogenicity, and glycine inhibited the cadmium-induced effect by inhibiting placental transport of cadmium. However, further detailed studies are needed to establish the mechanism(s) of action.

  12. Chemical composition and amino acid profiles of goose muscles from native Polish breeds.

    PubMed

    Okruszek, A; Woloszyn, J; Haraf, G; Orkusz, A; Werenska, M

    2013-04-01

    The aim of the study was to compare the chemical and amino acid composition of breast (pectoralis major) and thigh (biceps femoris) muscles in 17-wk-old geese from 2 Polish conservative flocks: Rypińska (Ry, n = 20) and Garbonosa (Ga, n = 20). The geese were fed ad libitum during the experimental period on the same complete feed. Genotypes affected the moisture and fat content of breast and thigh meat. The Ga geese were characterized by higher moisture as well as lower fat lipid content compared with the Ry breast and thigh muscles. The amino acid proportions of meat proteins depended on the goose flock and type of muscles, where significant differences were found. The proteins of Ga breast muscles contained more glutamic acid, glycine, lysine, tryptophan, histidine, and methionine, and less aspartic acid, proline, serine, leucine, valine, phenyloalanine, tyrosine, and threonine than the Ry geese (P ≤ 0.05). The proteins of Ry thigh muscles were characterized by higher content of proline, serine, and essential amino acids (without lysine and methionine) and lower glutamic and asparagine acid, alanine, and glycine compared with the Ga flock. According to the Food and Agriculture Organization of the United Nations/World Health Organization (1991) standard, tryptophan was the amino acid limiting the nutritional value of meat proteins of Ry breast muscles (amino acid score for tryptophan = 90%). Except for tryptophan, the meat proteins of the investigated raw materials contained more essential amino acids than the standard. The total content of essential amino acids for all investigated muscles was also higher (52.51 to 55.54%) than the standard (33.90%). It is evident that muscle protein from both flocks of geese have been characterized by high nutritional value. The values of the essential amino acid index of breast muscle proteins were similar in both flocks.

  13. Addition of amino acids and dipeptides to fullerene C{sub 60} giving rise to monoadducts

    SciTech Connect

    Romanova, V.S.; Tsyryapkin, V.A.; Vol`pin, M.E.

    1994-12-01

    The authors have developed a general method for the direct addition of amino acids and dipeptides of various structures to fullerene C{sub 60}. In all cases the addition involves the amino group. The reaction proceeds when the solutions of fullerene and an amino acid (or dipeptide) are mixed at 50-100 {degrees}C. The fullerene derivatives of the following amino acids and dipeptides have been obtained: glycine, p-aminobenzoic acid, {omega}-aminocaproic acid, L-proline, L-alanine, L-alanyl-Lalanine, D,L-alanyl-D,L-alanine, glycyl-L-valine. The adduct of methyl L-ananinate with C{sub 60} was also prepared.

  14. Assessment of Fatty Acid Profile and Seed Mineral Nutrients of Two Soybean (Glycine max L.) Cultivars Under Elevated Ultraviolet-B: Role of ROS, Pigments and Antioxidants.

    PubMed

    Choudhary, Krishna Kumar; Agrawal, Shashi Bhushan

    2016-01-01

    Current scenarios under global climate change envisage a considerable increase in ultraviolet B (UV-B) radiation in near future which may affect the productivity and yield quality of major agricultural crops. Present investigation was conducted to examine various defense strategies adopted against elevated UV-B (ambient + 7.2 kJ m-(2) day-(1) ) and their impact on seed nutrients, content and quality of oil including fatty acid profile of two soybean cultivars (JS-335 and PS-1042). Elevated UV-B (eUV-B) exposure leads toward higher unsaturation of fatty acids and changes in other oil quality parameters (acid, iodine and saponification value) indicated that eUV-B favored the synthesis of long-chain fatty acids with fewer carboxylic acid groups, making the oil rancid, with undesirable flavor and low nutritional value. The effect was more severe in JS-335 as compared to PS-1042. Negative effects were also seen on nutrients of soybean seeds. Adverse effects resulted due to insufficient quenching of ROS (superoxide radical and hydrogen peroxide) by the defense system and thus unable to overcome the imposed oxidative stress. Credit of better performance by PS-1042 against eUV-B may be given to the adoption of efficient defense strategies like higher wax deposition, increase in lignin and flavonoids (quercetin and kaempferol) contents. PMID:26489397

  15. Validation and application of an improved method for the rapid determination of proline in grape berries.

    PubMed

    Rienth, Markus; Romieu, Charles; Gregan, Rebecca; Walsh, Caroline; Torregrosa, Laurent; Kelly, Mary T

    2014-04-16

    A rapid and sensitive method is presented for the determination of proline in grape berries. Following acidification with formic acid, proline is derivatized by heating at 100 °C for 15 min with 3% ninhydrin in dimethyl sulfoxide, and the absorbance, which is stable for at least 60 min, is read at 520 nm. The method was statistically validated in the concentration range from 2.5 to 15 mg/L, giving a repeatability and intermediate precision of generally <3%; linearity was determined using the lack of fit test. Results obtained with this method concurred (r = 0.99) with those obtained for the same samples on an amino acid analyzer. In terms of sample preparation, a simple dilution (5-20-fold) is required, and sugars, primary amino acids, and anthocyanins were demonstrated not to interfere, as the latter are bleached by ninhydrin under the experimental conditions. The method was applied to the study of proline accumulation in the fruits of microvines grown in phytotrons, and it was established that proline accumulation and concentrations closely resemble those of field-grown macrovines. PMID:24617570

  16. Oxidation of Proline and Glutamate by Mitochondria of the Inflorescence of Voodoo Lily (Sauromatum guttatum) 1

    PubMed Central

    Skubatz, Hanna; Meeuse, Bastiaan J. D.; Bendich, Arnold J.

    1989-01-01

    In appendices of Sauromatum guttatum that are developing thermogenicity, mitochondria isolated from successive developmental stages of the inflorescence show an increase in the oxidation rates of proline and glutamate. A similar rise in the oxidation rates of these compounds is observed in mitochondria obtained from the spathe, a nonthermogenic organ of the inflorescence. Changes in oxidative metabolism were also observed in mitochondria isolated from sections of immature appendix treated with salicylic acid (SA) at 0.69 microgram per gram fresh weight indicating that they are induced by SA. At that concentration, however, SA has no effect on oxygen consumption by mitochondria in the presence of glutamate, proline, or malate. Furthermore, oxygen uptake by mitochondria in the presence of proline or glutamate is partially sensitive to salicylhydroxamic acid (SHAM) at concentrations greater than 2 millimolar when in the presence of 1 millimolar KCN. For NADH, succinate, and malate a high capacity of the alternative (cyanide-resistant) pathway is found that is completely sensitive to SHAM at 1.5 to 4 millimolar. The increase in the mitochondrial capacity to oxidize either amino acid is also found in four other Araceae species including both thermogenic and nonthermogenic ones. After anthesis, the rates of proline and glutamate oxidation decline. Images Figure 1 PMID:16667065

  17. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake.

  18. Proteomic Analysis of Glycine Receptor β Subunit (GlyRβ)-interacting Proteins

    PubMed Central

    del Pino, Isabel; Koch, Dennis; Schemm, Rudolf; Qualmann, Britta; Betz, Heinrich; Paarmann, Ingo

    2014-01-01

    Glycine receptors (GlyRs) mediate inhibitory neurotransmission in spinal cord and brainstem. They are clustered at inhibitory postsynapses via a tight interaction of their β subunits (GlyRβ) with the scaffolding protein gephyrin. In an attempt to isolate additional proteins interacting with GlyRβ, we performed pulldown experiments with rat brain extracts using a glutathione S-transferase fusion protein encompassing amino acids 378–455 of the large intracellular loop of GlyRβ as bait. This identified syndapin I (SdpI) as a novel interaction partner of GlyRβ that coimmunoprecipitates with native GlyRs from brainstem extracts. Both SdpI and SdpII bound efficiently to the intracellular loop of GlyRβ in vitro and colocalized with GlyRβ upon coexpression in COS-7 cells. The SdpI-binding site was mapped to a proline-rich sequence of 22 amino acids within the intracellular loop of GlyRβ. Deletion and point mutation analysis disclosed that SdpI binding to GlyRβ is Src homology 3 domain-dependent. In cultured rat spinal cord neurons, SdpI immunoreactivity was found to partially colocalize with marker proteins of inhibitory and excitatory synapses. When SdpI was acutely knocked down in cultured spinal cord neurons by viral miRNA expression, postsynaptic GlyR clusters were significantly reduced in both size and number. Similar changes in GlyR cluster properties were found in spinal cultures from SdpI-deficient mice. Our results are consistent with a role of SdpI in the trafficking and/or cytoskeletal anchoring of synaptic GlyRs. PMID:24509844

  19. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors. PMID:26083951

  20. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors.

  1. Liquid chromatography/electrospray ionization/isotopic dilution mass spectrometry analysis of n-(phosphonomethyl) glycine and mass spectrometry analysis of aminomethyl phosphonic acid in environmental water and vegetation matrixes.

    PubMed

    Grey, L; Nguyen, B; Yang, P

    2001-01-01

    A liquid chromatography/electrospray/mass spectrometry (LC/ES/MS) method was developed for the analysis of glyphosate (n-phosphonomethyl glycine) and its metabolite, aminomethyl phosphonic acid (AMPA) using isotope-labelled glyphosate as a method surrogate. Optimized parameters were achieved to derivatize glyphosate and AMPA using 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer prior to a reversed-phase LC analysis. Method spike recovery data obtained using laboratory and real world sample matrixes indicated an excellent correlation between the recovery of the native and isotope-labelled glyphosate. Hence, the first performance-based, isotope dilution MS method with superior precision, accuracy, and data quality was developed for the analysis of glyphosate. There was, however, no observable correlation between the isotope-labelled glyphosate and AMPA. Thus, the use of this procedure for the accurate analysis of AMPA was not supported. Method detection limits established using standard U.S. Environmental Protection Agency protocol were 0.06 and 0.30 microg/L, respectively, for glyphosate and AMPA in water matrixes and 0.11 and 0.53 microg/g, respectively, in vegetation matrixes. Problems, solutions, and the method performance data related to the analysis of chlorine-treated drinking water samples are discussed. Applying this method to other environmental matrixes, e.g., soil, with minimum modifications is possible, assuring accurate, multimedia studies of glyphosate concentration in the environment and the delivery of useful multimedia information for regulatory applications.

  2. Amino acid suppression of taurine-sensitive chemosensory neurons.

    PubMed

    Gleeson, R A; Ache, B W

    1985-05-27

    Single unit recordings from chemoreceptors on the antennule of the spiny lobster revealed a population of taurine-sensitive cells whose response is suppressed when taurine is presented in mixture with certain amino acids. A synthetic mixture of 21 amino acids plus betaine, which mimics the composition of a natural food stimulus (crab muscle tissue) and itself contains taurine, totally and reversibly blocked the taurine response of this group of receptor cells. An analysis of the contribution to this suppression by the six major components (based on concentration) in the mixture revealed partial or complete inhibitory activity by five of the compounds. In a sample group of the inhibited cells, mean percent suppression of the taurine response was 99% for glycine and L-arginine, 98% for L-glutamine, 60% for L-alanine and 43% for L-proline. Both glycine and alanine in binary mixture with taurine caused a right-shift in the concentration-response function for taurine, suggesting a competitive mechanism of suppression. pA2 values determined from these data yielded 4.17 for glycine and 3.55 for alanine. These results suggest that the processing of chemical information in quality and/or intensity coding of natural stimulus mixtures can be tempered by interactions of the components at the receptor-cell level, and possibly at the receptor-sites themselves.

  3. Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino.

    PubMed

    Takanaga, Hitomi; Mackenzie, Bryan; Suzuki, Yoshiro; Hediger, Matthias A

    2005-03-11

    Amino acid homeostasis depends on specific amino acid transport systems, many of which have been characterized at the molecular level. However, the classical System IMINO, defined as the Na+-dependent proline transport activity that escapes inhibition by alanine, had not been identified at the molecular level. We report here the functional characteristics and tissue distribution of Sodium/Imino-acid Transporter 1 (SIT1), which exhibits the properties of classical System IMINO. SIT1, the product of the slc6a20 gene, is a member of the SLC6 Na+- and Cl--dependent neurotransmitter transporter family whose function has remained unknown. When expressed in Xenopus oocytes, rat SIT1 mediated the uptake of imino acids such as proline (K0.5 approximately 0.2 mM) and pipecolate, as well as N-methylated amino acids (e.g. MeAIB, sarcosine). SIT1-mediated proline transport was pH-independent and insensitive to inhibition by alanine or lysine. Proline transport was Na+-dependent, Cl--stimulated, and voltage-dependent. Li+, but not H+, could substitute for Na+. Human SIT1 also functioned as a Na+-dependent proline transporter. Rat SIT1 mRNA was expressed in epithelial cells of duodenum, jejunum, ileum, stomach, cecum, colon, and kidney proximal tubule S 3 segments. SIT1 mRNA was also expressed in the choroid plexus, microglia, and meninges of the brain and in the ovary. Previous reports have documented the marked urinary hyperexcretion of proline in newborn rodents and man. We found that SIT1 was dramatically up-regulated in the kidneys of 3-day-old mice, accounting for the maturation of proline reabsorption in the mouse. The human slc6a20 gene coding SIT1 is an appropriate target for investigation of hereditary forms of iminoaciduria in man.

  4. Gustatory responsiveness to the 20 proteinogenic amino acids in the spider monkey (Ateles geoffroyi).

    PubMed

    Larsson, Jenny; Maitz, Anna; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2014-03-29

    The gustatory responsiveness of four adult spider monkeys to the 20 proteinogenic amino acids was assessed in two-bottle preference tests of brief duration (1min). We found that Ateles geoffroyi responded with significant preferences for seven amino acids (glycine, l-proline, l-alanine, l-serine, l-glutamic acid, l-aspartic acid, and l-lysine) when presented at a concentration of 100mM and/or 200mM and tested against water. At the same concentrations, the animals significantly rejected five amino acids (l-tryptophan, l-tyrosine, l-valine, l-cysteine, and l-isoleucine) and were indifferent to the remaining tastants. Further, the results show that the spider monkeys discriminated concentrations as low as 0.2mM l-lysine, 2mM l-glutamic acid, 10mM l-proline, 20mM l-valine, 40mM glycine, l-serine, and l-aspartic acid, and 80mM l-alanine from the alternative stimulus, with individual animals even scoring lower threshold values. A comparison between the taste qualities of the proteinogenic amino acids as described by humans and the preferences and aversions observed in the spider monkeys suggests a fairly high degree of agreement in the taste quality perception of these tastants between the two species. A comparison between the taste preference thresholds obtained with the spider monkeys and taste detection thresholds reported in human subjects suggests that the taste sensitivity of A. geoffroyi for the amino acids tested here might match that of Homo sapiens. The results support the assumption that the taste responses of spider monkeys to proteinogenic amino acids might reflect an evolutionary adaptation to their frugivorous and thus protein-poor diet. PMID:24480073

  5. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    PubMed

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-01

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors.

  6. How the Glycine and GABA Receptors Were Purified

    PubMed Central

    2012-01-01

    Purification by Affinity Chromatography of the Glycine Receptor of Rat Spinal Cord (Pfeiffer, F., Graham, D., and Betz, H. (1982) J. Biol. Chem. 257, 9389–9393) A γ-Aminobutyric Acid/Benzodiazepine Receptor Complex of Bovine Cerebral Cortex (Sigel, E., Stephenson, F. A., Mamalaki, C., and Barnard, E. A. (1983) J. Biol. Chem. 258, 6965–6971) PMID:23180805

  7. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  8. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    SciTech Connect

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-05-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. /sup 14/CO/sub 2/ production from the catabolism of /sup 14/C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. /sup 14/CO/sub 2/ formation from (1-/sup 14/C)- and (2-/sup 14/C)glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate.

  9. 75 FR 66352 - Glycine From the People's Republic of China: Initiation of Antidumping Anti-circumvention Inquiry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... sweetener/taste enhancer, a buffering agent, re-absorbable amino acid, chemical intermediate, and a metal... and Chiyuen International Trading Ltd., a manufacturer in the PRC of amino acetic acid (i.e., glycine... China (PRC). See Antidumping Duty Order: Glycine from People's Republic of China, 60 FR 16116 (March...

  10. Mutation of asparagine 52 to glycine promotes the alkaline form of iso-1-cytochrome c and causes loss of cooperativity in acid unfolding.

    PubMed

    Baddam, Saritha; Bowler, Bruce E

    2006-04-11

    The kinetics and thermodynamics of the alkaline and acid conformational transitions of a Lys 79 --> Ala/Asn 52 --> Gly (A79G52) variant of iso-1-cytochrome c are studied. The Lys 79 --> Ala mutation is designed to limit heme ligation in the alkaline conformer to Lys 73. The Asn 52 --> Gly mutation is intended to shift the population of the alkaline conformer to physiological pH based on the hierarchical nature of the cooperative substructures of this protein. The midpoint pH for formation of the alkaline conformer is approximately 7.45. The kinetics for the alkaline conformational transition of the A79G52 variant are consistent with the ionization constant, pK(H), for the trigger group controlling formation of the alkaline conformer being approximately 9.5. This pK(H) is low for alkaline conformers involving lysine-heme ligation but is consistent with the pK(a) of the highest of three ionizable groups which modulate formation of the histidine-heme alkaline conformer of a His 73 variant of iso-1-cytochrome c [Martinez, R. E., and Bowler, B. E. (2004) J. Am. Chem. Soc. 126, 6751-6758]. The acid transition of the A79G52 variant is split into two phases. Both the Lys 79 --> Ala and Asn 52 --> Gly mutations are expected to affect the buried hydrogen bond network of cytochrome c, suggesting that this network is an important modulator of the acid unfolding of cytochrome c. PMID:16584196

  11. Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal-Organic Frameworks.

    PubMed

    Gutov, Oleksii V; Molina, Sonia; Escudero-Adán, Eduardo C; Shafir, Alexandr

    2016-09-12

    The synthesis of zirconium metal-organic frameworks (Zr MOFs) modulated by various amino acids, including l-proline, glycine, and l-phenylalanine, is shown to be a straightforward approach toward functional-group incorporation and particle-size control. High yields in Zr-MOF synthesis are achieved by employing 5 equivalents of the modulator at 120 °C. At lower temperatures, the method provides a series of Zr MOFs with increased particle size, including many suitable for single-crystal X-ray diffraction studies. Furthermore, amino acid modulators can be incorporated at defect sites in Zr MOFs with an amino acid/ligand ratio of up to 1:1, depending on the ligand structure and reaction conditions. The MOFs obtained through amino acid modulation exhibit an improved CO2 -capture capacity relative to nonfunctionalized materials. PMID:27482849

  12. Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal-Organic Frameworks.

    PubMed

    Gutov, Oleksii V; Molina, Sonia; Escudero-Adán, Eduardo C; Shafir, Alexandr

    2016-09-12

    The synthesis of zirconium metal-organic frameworks (Zr MOFs) modulated by various amino acids, including l-proline, glycine, and l-phenylalanine, is shown to be a straightforward approach toward functional-group incorporation and particle-size control. High yields in Zr-MOF synthesis are achieved by employing 5 equivalents of the modulator at 120 °C. At lower temperatures, the method provides a series of Zr MOFs with increased particle size, including many suitable for single-crystal X-ray diffraction studies. Furthermore, amino acid modulators can be incorporated at defect sites in Zr MOFs with an amino acid/ligand ratio of up to 1:1, depending on the ligand structure and reaction conditions. The MOFs obtained through amino acid modulation exhibit an improved CO2 -capture capacity relative to nonfunctionalized materials.

  13. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  14. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.

    PubMed

    Moxley, Michael A; Becker, Donald F

    2012-01-10

    The multifunctional proline utilization A (PutA) flavoenzyme from Escherichia coli catalyzes the oxidation of proline to glutamate in two reaction steps using separate proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains. Here, the kinetic mechanism of PRODH in PutA is studied by stopped-flow kinetics to determine microscopic rate constants for the proline:ubiquinone oxidoreductase mechanism. Stopped-flow data for proline reduction of the flavin cofactor (reductive half-reaction) and oxidation of reduced flavin by CoQ(1) (oxidative half-reaction) were best-fit by a double exponential from which maximum observable rate constants and apparent equilibrium dissociation constants were determined. Flavin semiquinone was not observed in the reductive or oxidative reactions. Microscopic rate constants for steps in the reductive and oxidative half-reactions were obtained by globally fitting the stopped-flow data to a simulated mechanism that includes a chemical step followed by an isomerization event. A microscopic rate constant of 27.5 s(-1) was determined for proline reduction of the flavin cofactor followed by an isomerization step of 2.2 s(-1). The isomerization step is proposed to report on a previously identified flavin-dependent conformational change [Zhang, W. et al. (2007) Biochemistry 46, 483-491] that is important for PutA functional switching but is not kinetically relevant to the in vitro mechanism. Using CoQ(1), a soluble analogue of ubiquinone, a rate constant of 5.4 s(-1) was obtained for the oxidation of flavin, thus indicating that this oxidative step is rate-limiting for k(cat) during catalytic turnover. Steady-state kinetic constants calculated from the microscopic rate constants agree with the experimental k(cat) and k(cat)/K(m) parameters.

  15. The puckering free-energy surface of proline

    NASA Astrophysics Data System (ADS)

    Wu, Di

    2013-03-01

    Proline has two preferred puckering states, which are often characterized by the pseudorotation phase angle and amplitude. Although proline's five endocyclic torsion angles can be utilized to calculate the phase angle and amplitude, it is not clear if there is any direct correlation between each torsion angle and the proline-puckering pathway. Here we have designed five proline puckering pathways utilizing each torsion angle χj (j = 1˜5) as the reaction coordinate. By examining the free-energy surfaces of the five puckering pathways, we find they can be categorized into two groups. The χ2 pathway (χ2 is about the Cβ—Cγ bond) is especially meaningful in describing proline puckering: it changes linearly with the puckering amplitude and symmetrically with the phase angle. Our results show that this conclusion applies to both trans and cis proline conformations. We have also analyzed the correlations of proline puckering and its backbone torsion angles ϕ and ψ. We show proline has preferred puckering states at the specific regions of ϕ, ψ angles. Interestingly, the shapes of ψ-χ2 free-energy surfaces are similar among the trans proline in water, cis proline in water and cis proline in the gas phase, but they differ substantially from that of the trans proline in the gas phase. Our calculations are conducted using molecular simulations; we also verify our results using the proline conformations selected from the Protein Data Bank. In addition, we have compared our results with those calculated by the quantum mechanical methods.

  16. Ion chromatographic analysis of selected free amino acids and cations to investigate the change of nitrogen metabolism by herbicide stress in soybean (glycine max).

    PubMed

    Jia, M; Keutgen, N; Matsuhashi, S; Mitzuniwa, C; Ito, T; Fujimura, T; Hashimoto, S

    2001-01-01

    A simple and reliable method for the determination of NH4+, K+, Na+, aspartic acid, asparagine, glutamine, and alanine by ion chromatography has been developed. It is suitable for monitoring changes of nitrogen metabolism in soybean because it can accurately measure concentrations o asparagine and NH4+, two key substances for nitrogen storage and transport in this plant species Analysis of asparagine distribution in soybean indicated that higher levels (up to 18.4 micromol g(-1) of fresh mass) occur in stems and lower levels in roots (2.0 micromol g(-1) of fresh mass) and leaves (1.6 micromol g(-1) of fresh mass). When the herbicide metsulfuron-methyl (0.5, 5, and 50 ppb) was applied via the nutrient solution to the root system, asparagine concentrations increased 3-6 times in stems roots, and leaves. Metsulfuron-methyl is known to impair the synthesis of branched amino acids and, in consequence, protein synthesis. Thus, nitrogen consumption was limited, leading to ar accumulation of asparagine. The possible use of this physiological response in agricultural practice to identify herbicide stress in soybean and to detect low-level residues of sulfonylurea herbicides ir the soil is discussed.

  17. Compartmentalization of amino acids in surfactant aggregates - Partitioning between water and aqueous micellar sodium dodecanoate and between hexane and dodecylammonium propionate trapped water in hexane

    NASA Technical Reports Server (NTRS)

    Fendler, J. H.; Nome, F.; Nagyvary, J.

    1975-01-01

    The partitioning of amino acids (glycine, alanine, leucine, phenylalanine, histidine, aspartic acid, glutamic acid, lysine, isoleucine, threonine, serine, valine, proline, arginine) in aqueous and nonaqueous micellar systems was studied experimentally. Partitioning from neat hexane into dodecylammonium propionate trapped water in hexane was found to be dependent on both electrostatic and hydrophobic interactions, which implies that the interior of dodecylammonium propionate aggregates is negatively charged and is capable of hydrogen bonding in addition to providing a hydrophobic environment. Unitary free energies of transfer of amino acid side chains from hexane to water were determined and solubilities of amino acids in neat hexane substantiated the amino acid hydrophobicity scale. The relevance of the experiments to prebiotic chemistry was examined.

  18. Determination of de novo synthesized amino acids in cellular proteins revisited by 13C NMR spectroscopy.

    PubMed

    Flögel, U; Willker, W; Leibfritz, D

    1997-04-01

    13C nuclear magnetic resonance spectroscopy was used to determine the absolute amounts to de novo synthesized amino acids in both the perchloric acid extracts and the hydrolyzed protein fractions of F98 glioma cells incubated for 2 h with 5 mmol/l [U-13C]glucose. 13C NMR spectra of the hydrolyzed protein fraction revealed a marked incorporation of 13C-labelled alanine, aspartate and glutamate into the proteins of F98 cells within the incubation period. Additionally, small amounts of 13C-labelled glycine, proline and serine could unambiguously be identified in the protein fraction. Astonishingly, approximately equal amounts of 13C-labelled glutamate and aspartate were incorporated into the cellular proteins, although the cytosolic steady-state concentration of aspartate was below 13C NMR detectability. Hypertonic stress decreased the incorporation of 13C-labelled amino acids into the total protein, albeit their cytosolic concentrations were increased, which reflects an inhibition of protein synthesis under these conditions. On the other hand, hypotonic stress increased the amount of 13C-labelled proline incorporated into the cellular proteins even though the cytosolic concentration of 13C-labelled proline was largely decreased. Apparently, hypoosmotic conditions stimulate the synthesis of proteins or peptides with a high proline content. The results show that already after 2 h of incubation with [U-13C]glucose there is a pronounced flux of 13C label into the cellular proteins, which is usually disregarded if cytosolic fluids are examined only. This means that calculations of metabolic fluxes based on 13C NMR spectroscopic data obtained from perchloric acid extracts of cells or tissues and also from in vivo measurements consider only the labelled 'NMR visible' cytosolic metabolites, which may have to be corrected for fast label flowing off into other compartments.

  19. L-Proline nutrition and catabolism in Staphylococcus saprophyticus.

    PubMed

    Deutch, Charles E

    2011-05-01

    Staphylococcus saprophyticus strains ATCC 15305, ATCC 35552, and ATCC 49907 were found to require L-proline but not L-arginine for growth in a defined culture medium. All three strains could utilize L-ornithine as a proline source and contained L-ornithine aminotransferase and Δ(1)-pyrroline-5-carboxylate reductase activities; strains ATCC 35552 and ATCC 49907 could use L-arginine as a proline source and had L-arginase activity. The proline requirement also could be met by L-prolinamide, L-proline methyl ester, and the dipeptides L-alanyl-L-proline and L-leucyl-L-proline. The bacteria exhibited L-proline degradative activity as measured by the formation of Δ(1)-pyrroline-5-carboxylate. The specific activity of proline degradation was not affected by addition of L-proline or NaCl but was highest in strain ATCC 49907 after growth in Mueller-Hinton broth. A membrane fraction from this strain had L-proline dehydrogenase activity as detected both by reaction of Δ(1)-pyrroline-5-carboxylate with 2-aminobenzaldehyde (0.79 nmol min(-1) mg(-1)) and by the proline-dependent reduction of p-iodonitrotetrazolium (20.1 nmol min(-1) mg(-1)). A soluble fraction from this strain had Δ(1)-pyrroline-5-carboxylate dehydrogenase activity (88.8 nmol min(-1) mg(-1)) as determined by the NAD(+)-dependent oxidation of DL-Δ(1)-pyrroline-5-carboxylate. Addition of L-proline to several culture media did not increase the growth rate or final yield of bacteria but did stimulate growth during osmotic stress. When grown with L: -ornithine as the proline source, S. saprophyticus was most susceptible to the proline analogues L-azetidine-2-carboylate, 3,4-dehydro-DL-proline, DL-thiazolidine-2-carboxylate, and L-thiazolidine-4-carboxylate. These results indicate that proline uptake and metabolism may be a potential target of antimicrobial therapy for this organism.

  20. Proline-Directed Androgen Receptor Phosphorylation

    PubMed Central

    Gao, Yanfei; Chen, Shaoyong

    2015-01-01

    The androgen receptor (AR) has been identified for decades and mediates essential steroid functions. Like most of biological molecules, AR functional activities are modulated by post-translational modifications. This review is focused on the reported activities and significance of AR phosphorylation, with particular emphasis on proline-directed serine/threonine phosphorylation that occurs predominantly on the receptor. The marked enrichment of AR phosphorylation in the most diverse N-terminal domain suggests that targeting AR phosphorylation can be synergistic to antagonizing the C-terminal domain by clinical antiandrogens. PMID:25866551

  1. Cryobiological Characteristics of L-proline in Mammalian Oocyte Cryopreservation

    PubMed Central

    Zhang, Lu; Xue, Xu; Yan, Jie; Yan, Li-Ying; Jin, Xiao-Hu; Zhu, Xiao-Hui; He, Zhi-Zhu; Liu, Jing; Li, Rong; Qiao, Jie

    2016-01-01

    Background: L-proline is a natural, nontoxic cryoprotectant that helps cells and tissues to tolerate freezing in a variety of plants and animals. The use of L-proline in mammalian oocyte cryopreservation is rare. In this study, we explored the cryobiological characteristics of L-proline and evaluated its protective effect in mouse oocyte cryopreservation. Methods: The freezing property of L-proline was detected by Raman spectroscopy and osmometer. Mature oocytes obtained from 8-week-old B6D2F1 mice were vitrified in a solution consisting various concentration of L-proline with a reduced proportion of dimethyl sulfoxide (DMSO) and ethylene glycol (EG), comparing with the control group (15% DMSO and 15% EG without L-proline). The survival rate, 5-methylcytosine (5-mC) expression, fertilization rate, two-cell rate, and blastocyst rate in vitro were assessed by immunofluorescence and in vitro fertilization. Data were analyzed by Chi-square test. Results: L-proline can penetrate the oocyte membrane within 1 min. The osmotic pressure of 2.00 mol/L L-proline mixture is similar to that of the control group. The survival rate of the postthawed oocyte in 2.00 mol/L L-proline combining 7.5% DMSO and 10% EG is significantly higher than that of the control group. There is no difference of 5-mC expression between the L-proline combination groups and control. The fertilization rate, two-cell rate, and blastocyst rate in vitro from oocyte vitrified in 2.00 mol/L L-proline combining 7.5% DMSO and 10% EG solution are similar to that of control. Conclusions: It indicated that an appropriate concentration of L-proline can improve the cryopreservation efficiency of mouse oocytes with low concentrations of DMSO and EG, which may be applicable to human oocyte vitrification. PMID:27503023

  2. Glycine modulates membrane potential, cell volume, and phagocytosis in murine microglia.

    PubMed

    Komm, Barbara; Beyreis, Marlena; Kittl, Michael; Jakab, Martin; Ritter, Markus; Kerschbaum, Hubert H

    2014-08-01

    Phagocytes form engulfment pseudopodia at the contact area with their target particle by a process resembling cell volume (CV) regulatory mechanisms. We evaluated whether the osmoregulatory active neutral amino acid glycine, which contributes to CV regulation via activation of sodium-dependent neutral amino acid transporters (SNATs) improves phagocytosis in isotonic and hypertonic conditions in the murine microglial cell line BV-2 and primary microglial cells (pMG). In BV-2 cells and pMG, RT-PCR analysis revealed expression of SNATs (Slc38a1, Slc38a2), but not of GlyRs (Glra1-4). In BV-2 cells, glycine (5 mM) led to a rapid Na(+)-dependent depolarization of membrane potential (V mem). Furthermore, glycine increased CV by about 9%. Visualizing of phagocytosis of polystyrene microspheres by scanning electron microscopy revealed that glycine (1 mM) increased the number of BV-2 cells containing at least one microsphere by about 13%. Glycine-dependent increase in phagocytosis was suppressed by the SNAT inhibitor α-(methylamino)isobutyric acid (MeAIB), by replacing extracellular Na(+) with choline, and under hypertonic conditions, but not by the GlyR antagonist strychnine or the GlyR agonist taurine. Interestingly, hypertonicity-induced suppression of phagocytosis was rescued by glycine. These findings demonstrate that glycine increases phagocytosis in iso- and hypertonic conditions by activation of SNATs.

  3. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  4. Effects of varying sulphate and nitrogen supply on DMSP and glycine betaine levels in Spartina anglica

    NASA Astrophysics Data System (ADS)

    Mulholland, M. M.; Otte, M. L.

    2000-08-01

    The relationship between sulphate, dimethylsulphoniopropionate (DMSP), and glycine betaine concentrations as well as the interaction with nitrogen supply in Spartina anglica Hubbard was investigated. Several studies have already shown that nitrogen affects levels of DMSP and glycine betaine in Spartina. It has further been suggested that sulphate is important to the growth of the salt marsh grass Spartina. We hypothesised that DMSP might be involved in a high sulphur requirement. It was further hypothesised that the effect of sulphate would depend on nitrogen supply. S. anglica shoots were treated with a range of nutrient solutions containing four different sulphate treatments, 0, 80, 800 or 1600 μM and two different nitrogen levels, 0 or 2 mM ammonium nitrate. Plant parts were analysed for DMSP and glycine betaine, as well as total nitrogen and total sulphur. Plants were analysed for proline as well but levels were very low or non-detectable and patterns were not consistent. Total sulphur was affected by both the nitrogen and sulphate treatments while total nitrogen was affected by the nitrogen treatments only. Sulphate had no effect on growth (leaf length or biomass), but nitrogen increased growth of S. anglica shoots. Levels of DMSP and glycine betaine were unaffected by increased sulphate supply. Nitrogen significantly decreased concentrations of DMSP and glycine betaine. However, due to increased biomass production, total amounts of DMSP and glycine betaine per plant were significantly higher in the 2 mM nitrogen treatments. The data suggest that pools of DMSP in roots and stems are more important than previously thought.

  5. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE

    SciTech Connect

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  6. Amino Acid Intakes Are Associated With Bone Mineral Density and Prevalence of Low Bone Mass in Women: Evidence From Discordant Monozygotic Twins.

    PubMed

    Jennings, Amy; MacGregor, Alexander; Spector, Tim; Cassidy, Aedín

    2016-02-01

    Although a higher protein intake, particularly from vegetable sources, has been shown to be associated with higher bone mineral density (BMD) the relative impact of specific amino acids on BMD and risk of osteoporosis remains to be determined. Mechanistic research suggests that a number of specific amino acids, including five nonessential amino acids--alanine, arginine, glutamic acid, glycine, and proline--may play a role in bone health, principally through improved production of insulin and insulin-like growth factor 1 and the synthesis of collagen and muscle protein. However to date, no previous studies have examined the associations between habitual intake of amino acids and direct measures of BMD and prevalence of osteoporosis or osteopenia, and no studies have examined this relationship in discordant identical twin-pairs. In these analyses of female monozygotic twin-pairs discordant for amino acid intake (n = 135), twins with higher intakes of alanine and glycine had significantly higher BMD at the spine than their co-twins with within-pair differences in spine-BMD of 0.012 g/cm(2) (SE 0.01; p = 0.039) and 0.014 g/cm(2) (SE 0.01; p = 0.026), respectively. Furthermore, in cross-sectional multivariable analyses of 3160 females aged 18 to 79 years, a higher intake of total protein was significantly associated with higher DXA-measured BMD at the spine (quartile Q4 to quartile Q1: 0.017 g/cm(2), SE 0.01, p = 0.035) and forearm (Q4 to Q1: 0.010 g/cm(2), SE 0.003, p = 0.002). Intake of six amino acids (alanine, arginine, glutamic acid, leucine, lysine, and proline) were associated with higher BMD at the spine and forearm with the strongest association observed for leucine (Q4 to Q1: 0.024 g/cm(2), SE 0.01, p = 0.007). When intakes were stratified by protein source, vegetable or animal, prevalence of osteoporosis or osteopenia was 13% to 19% lower comparing extreme quartiles of vegetable intake for five amino acids (not glutamic acid or proline). These data provide

  7. Glutamine synthetase in the phloem plays a major role in controlling proline production

    PubMed Central

    Brugiere, N; Dubois, F; Limami, AM; Lelandais, M; Roux, Y; Sangwan, RS; Hirel, B

    1999-01-01

    To inhibit expression specifically in the phloem, a 274-bp fragment of a cDNA (Gln1-5) encoding cytosolic glutamine synthetase (GS1) from tobacco was placed in the antisense orientation downstream of the cytosolic Cu/Zn superoxide dismutase promoter of Nicotiana plumbaginifolia. After Agrobacterium-mediated transformation, two transgenic N. tabacum lines exhibiting reduced levels of GS1 mRNA and GS activity in midribs, stems, and roots were obtained. Immunogold labeling experiments allowed us to verify that the GS protein content was markedly decreased in the phloem companion cells of transformed plants. Moreover, a general decrease in proline content in the transgenic plants in comparison with wild-type tobacco was observed when plants were forced to assimilate large amounts of ammonium. In contrast, no major changes in the concentration of amino acids used for nitrogen transport were apparent. A (15)NH(4)(+)-labeling kinetic over a 48-hr period confirmed that in leaves of transgenic plants, the decrease in proline production was directly related to glutamine availability. After 2 weeks of salt treatment, the transgenic plants had a pronounced stress phenotype, consisting of wilting and bleaching in the older leaves. We conclude that GS in the phloem plays a major role in regulating proline production consistent with the function of proline as a nitrogen source and as a key metabolite synthesized in response to water stress. PMID:10521528

  8. Stable nitrogen isotopes in essential versus non-essential amino acids of different plankton size fractions.

    PubMed

    Loick, Natalie; Gehre, Matthias; Voss, Maren

    2007-12-01

    The stable nitrogen isotope values (delta(15)N) of the essential amino acid (EAA) leucine and the delta(15)N values of six non-essential amino acids (NEAAs) from plankton size fractions from the South China Sea (SCS) were analysed. Data from the SCS were collected during two cruises in July 2003 and 2004 onboard of RV Nghien Cuu Bien. The delta(15)N values of alanine, aspartic acid, glutamic acid and leucine increased with size at all sites. The delta(15)N of glycine did not increase with size, the delta(15)N of tyrosine increased with size only at offshore stations and the delta(15)N of proline increased with size only at inshore stations. We found highly significant correlations between the delta(15)N ratios of leucine to the delta(15)N ratios of glutamic acid, proline, alanine, tyrosine and aspartic acid at oligotrophic sites of enhanced nitrogen fixation. In contrast thereto these correlations were less distinct or absent at more eutrophic sites of low nitrogen fixation. A comparison with an independent data set from the tropical North Atlantic revealed intriguing similar patterns. We interpret these patterns as result of the connected metabolism of EAA and NEAA in zooplankton at sites of nitrogen limitation.

  9. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.

    PubMed Central

    Bonaventure, J; Cohen-Solal, L; Ritvaniemi, P; Van Maldergem, L; Kadhom, N; Delezoide, A L; Maroteaux, P; Prockop, D J; Ala-Kokko, L

    1995-01-01

    Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing

  10. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.

    PubMed

    Bonaventure, J; Cohen-Solal, L; Ritvaniemi, P; Van Maldergem, L; Kadhom, N; Delezoide, A L; Maroteaux, P; Prockop, D J; Ala-Kokko, L

    1995-05-01

    Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing

  11. Investigation of the adsorption of amino acids on Pd(1 1 1): A density functional theory study

    NASA Astrophysics Data System (ADS)

    James, Joanna N.; Han, Jeong Woo; Sholl, David S.

    2014-05-01

    Density functional theory calculations have been used to study the adsorption of glycine, alanine, norvaline, valine, proline, cysteine, and serine on Pd(1 1 1). Most amino acids except cysteine adsorb onto the surface in a tridentate fashion through a nitrogen atom and both oxygen atoms. For cysteine, an additional bond is formed with the surface due to the strong affinity of the sulfur atom, resulting in a significantly larger adsorption energy. The adsorption patterns of amino acids we examined are supported by the shifts in vibrational frequencies associated with NHH and COO. The adsorption strength of amino acids depends on how much the molecules deform during the adsorption process. Understanding the adsorption of amino acids on Pd(1 1 1) provides fundamental information for future consideration of the interactions between their derivatives or more complicated biomolecules and metal surfaces.

  12. The development and amino acid binding ability of nano-materials based on azo derivatives: theory and experiment.

    PubMed

    Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang

    2014-05-01

    Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine.

  13. l-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti

    PubMed Central

    Chen, Siyun; White, Catharine E.; diCenzo, George C.; Zhang, Ye; Stogios, Peter J.; Savchenko, Alexei

    2016-01-01

    ABSTRACT Sinorhizobium meliloti forms N2-fixing root nodules on alfalfa, and as a free-living bacterium, it can grow on a very broad range of substrates, including l-proline and several related compounds, such as proline betaine, trans-4-hydroxy-l-proline (trans-4-l-Hyp), and cis-4-hydroxy-d-proline (cis-4-d-Hyp). Fourteen hyp genes are induced upon growth of S. meliloti on trans-4-l-Hyp, and of those, hypMNPQ encodes an ABC-type trans-4-l-Hyp transporter and hypRE encodes an epimerase that converts trans-4-l-Hyp to cis-4-d-Hyp in the bacterial cytoplasm. Here, we present evidence that the HypO, HypD, and HypH proteins catalyze the remaining steps in which cis-4-d-Hyp is converted to α-ketoglutarate. The HypO protein functions as a d-amino acid dehydrogenase, converting cis-4-d-Hyp to Δ1-pyrroline-4-hydroxy-2-carboxylate, which is deaminated by HypD to α-ketoglutarate semialdehyde and then converted to α-ketoglutarate by HypH. The crystal structure of HypD revealed it to be a member of the N-acetylneuraminate lyase subfamily of the (α/β)8 protein family and is consistent with the known enzymatic mechanism for other members of the group. It was also shown that S. meliloti can catabolize d-proline as both a carbon and a nitrogen source, that d-proline can complement l-proline auxotrophy, and that the catabolism of d-proline is dependent on the hyp cluster. Transport of d-proline involves the HypMNPQ transporter, following which d-proline is converted to Δ1-pyrroline-2-carboxylate (P2C) largely via HypO. The P2C is converted to l-proline through the NADPH-dependent reduction of P2C by the previously uncharacterized HypS protein. Thus, overall, we have now completed detailed genetic and/or biochemical characterization of 9 of the 14 hyp genes. IMPORTANCE Hydroxyproline is abundant in proteins in animal and plant tissues and serves as a carbon and a nitrogen source for bacteria in diverse environments, including the rhizosphere, compost, and the mammalian gut

  14. Biosynthesis of the osmoprotectant ectoine, but not glycine betaine, is critical for survival of osmotically stressed Vibrio parahaemolyticus cells.

    PubMed

    Ongagna-Yhombi, Serge Y; Boyd, E Fidelma

    2013-08-01

    Vibrio parahaemolyticus is a halophile present in marine and estuarine environments, ecosystems characterized by fluctuations in salinity and temperature. One strategy to thrive in such environments is the synthesis and/or uptake of compatible solutes. The V. parahaemolyticus genome contains biosynthesis systems for both ectoine and glycine betaine, which are known to act as compatible solutes in other species. We showed that V. parahaemolyticus had a 6% NaCl tolerance when grown in M9 minimal medium with 0.4% glucose (M9G) with a >5-h lag phase. By using (1)H nuclear magnetic resonance spectroscopy ((1)H-NMR) analysis, we determined that cells synthesized ectoine and glutamate in a NaCl-dependent manner. The most effective compatible solutes as measured by a reduction in lag-phase growth in M9G with 6% NaCl (M9G 6% NaCl) were in the order glycine betaine > choline > proline = glutamate > ectoine. However, V. parahaemolyticus could use glutamate or proline as the sole carbon source, but not ectoine or glycine betaine, which suggests that these are bona fide compatible solutes. Expression analysis showed that the ectA and betA genes were more highly expressed in log-phase cells, and expression of both genes was induced by NaCl up-shock. Under all conditions examined, the ectA gene was more highly expressed than the betA gene. Analysis of in-frame deletions in betA and ectB and in a double mutant showed that the ectB mutant was defective for growth, and this defect was rescued by the addition of glycine betaine, proline, ectoine, and glutamate, indicating that these compounds are compatible solutes for this species. The presence of both synthesis systems was the predominant distribution pattern among members of the Vibrionaceae family, suggesting this is the ancestral state.

  15. Biosynthesis of the Osmoprotectant Ectoine, but Not Glycine Betaine, Is Critical for Survival of Osmotically Stressed Vibrio parahaemolyticus Cells

    PubMed Central

    Ongagna-Yhombi, Serge Y.

    2013-01-01

    Vibrio parahaemolyticus is a halophile present in marine and estuarine environments, ecosystems characterized by fluctuations in salinity and temperature. One strategy to thrive in such environments is the synthesis and/or uptake of compatible solutes. The V. parahaemolyticus genome contains biosynthesis systems for both ectoine and glycine betaine, which are known to act as compatible solutes in other species. We showed that V. parahaemolyticus had a 6% NaCl tolerance when grown in M9 minimal medium with 0.4% glucose (M9G) with a >5-h lag phase. By using 1H nuclear magnetic resonance spectroscopy (1H-NMR) analysis, we determined that cells synthesized ectoine and glutamate in a NaCl-dependent manner. The most effective compatible solutes as measured by a reduction in lag-phase growth in M9G with 6% NaCl (M9G 6% NaCl) were in the order glycine betaine > choline > proline = glutamate > ectoine. However, V. parahaemolyticus could use glutamate or proline as the sole carbon source, but not ectoine or glycine betaine, which suggests that these are bona fide compatible solutes. Expression analysis showed that the ectA and betA genes were more highly expressed in log-phase cells, and expression of both genes was induced by NaCl up-shock. Under all conditions examined, the ectA gene was more highly expressed than the betA gene. Analysis of in-frame deletions in betA and ectB and in a double mutant showed that the ectB mutant was defective for growth, and this defect was rescued by the addition of glycine betaine, proline, ectoine, and glutamate, indicating that these compounds are compatible solutes for this species. The presence of both synthesis systems was the predominant distribution pattern among members of the Vibrionaceae family, suggesting this is the ancestral state. PMID:23770911

  16. [Resorption and incorporation of radioactive labeled amino acids during administration of various protein carriers in rats. 1. Resorption of 14C leucine and 3H glycine after intragastric administration].

    PubMed

    Zimmer, M; Bergner, H; Simon, O

    1975-07-01

    Male Albino rats (90-100 g) were fed ad libitum (with limited periods of feeding) for 14 days. The diets were adjusted to a crude protein content of 10%. Powdered whole egg, fish meal, yeast and gelatine were used as protein sources. Additionally, one group of rats was fed a protein-free diet. On the 15th day of experiment the rats were fed a test diet at a level of 2 g per 100 g of body weight. 2 hrs after that the rats received 25 muCi of 3H glycine and 5 muCi of 14C-L-Leucine per 100 g of body weight administered by way of intragastric infusion. It was found that a large proportion of the radioactive amino acids were absorbed as early as after 0.5 hr. The highest rate of absorption was observed in animals fed dietary proteins of poor quality or a protein free diet, so that in animals receiving a gelatine diet or a protein-free diet only 68.4% or 56.4% of the administered amount of 14C activity were detected inside the gastro intestinal tract after 0.5 hr. Analogous data for the 3H activity were 52.4% and 25.3%. Maximum absorption occurred after 3-7 hrs. Following this the level of radioactivity in the intestinal contents again increased reaching a peak value after 14-24 hrs; in the case of 14C activity this peak value amounted to 25.4% of the administered dose in animals fed the gelatine diet and 32.8% in the group receiving the protein-free diet. It was established that the major proportion of the resecreted amount of 14C activity was present in leucine. Until 72 hrs after the intake of 14C activity the level of radioactivity was again found to decline, a processes which was induced by processes occurring in the large intestines. Moreover, evidence was obtained in confirmation of previous findings, indicating that the composition of faecal amino acids was constant and unaffected by dietary proteins.

  17. Acquisition of Raman spectra of amino acids using portable instruments: Outdoor measurements and comparison

    NASA Astrophysics Data System (ADS)

    Culka, A.; Jehlička, J.; Edwards, H. G. M.

    2010-12-01

    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation.

  18. [Free amino acids of hemolymph during pubertal molting and senescence in Spaeroma serratum (Isopoda, Flabellifera].

    PubMed

    Charmantier, G; Voss-Foucart, M F; Trilles, J P; Jeuniaux, Ch

    1975-08-01

    In Sphaeroma serratum, the amino-acidemia is high (about 120 mg/100 ml) during the intermolt stages. The relative proportions of the different free amino acids show only slight differences in young males and senescent ones. At the time of the puberty molt, the total amino-acids concentration (including taurine) of the hemolymph increases sharply during premolt (up to 267 mg/100 ml), falls after ecdysis (down to 97 mg/100 ml and then rises up to the level of the intermolt stage. These variations are due not only to concentration or dilution of the whole hemolymph constituents, but also to specific modifications of the concentration of some of the free amino-acids with respect to the others. These variations of the amino-acidemia, mainly those of serine, proline, glycine, alanine and of the amine taurine, could play a definite role in increasing the osmotic pressure of the hemolymph during premolt, as a preparation to ecdysis.

  19. Proline as chiral auxiliary for the economical asymmetric synthesis of ruthenium(II) polypyridyl complexes.

    PubMed

    Fu, Chen; Wenzel, Marianne; Treutlein, Elisabeth; Harms, Klaus; Meggers, Eric

    2012-09-17

    A straightforward method for the synthesis of virtually enantiomerically pure ruthenium(II) polypyridyl complexes [Ru(pp)(pp')(pp")](PF(6))(2), pp = bidentate polypyridyl has been developed. The synthesis draws from the readily available racemic starting material cis-[Ru(pp)(pp')Cl(2)] and the natural amino acids l- or d-proline and relies on a dynamic asymmetric transformation under thermodynamic control.

  20. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens

    PubMed Central

    Qamar, Aarzoo; Mysore, Kirankumar S.; Senthil-Kumar, Muthappa

    2015-01-01

    Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R)-gene-mediated and non-host resistance against invading pathogens. Proline dehydrogenase and delta-ornithine amino transferase-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS) and hypersensitive response (HR)-associated cell death. Recently HR, a form of programmed cell death (PCD), has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr) gene or a non-host pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection. PMID:26217357

  1. Synthesis of new gold(I) thiolates containing amino acid moieties with potential biological interest.

    PubMed

    Gutiérrez, Alejandro; Bernal, Javier; Villacampa, M Dolores; Cativiela, Carlos; Laguna, Antonio; Gimeno, M Concepción

    2013-06-01

    The reaction of the gold(I) complex [Au(SpyCOOH)(PPh3)], which contains nicotinic acid thiolate, with several amino acid esters such as glycine methyl ester or the enantiomerically pure L isomers of alanine methyl ester, phenylalanine methyl ester, valine methyl ester, methionine methyl ester, and proline methyl ester produces the gold(I) derivatives with the new thiolate containing amino acid ester ligands [Au{SpyCONHCH(R)COOMe}(PPh3)]. The reaction of these amino acid ester derivatives with LiOH in methanol and acidification with KHSO4 until pH 3-4 afford the corresponding acids, which are water-soluble species. These amino acid compounds can be further coupled with other amines, such as, for example, isopropylamine, to give the corresponding amide derivatives. The species with glycine methyl ester and valine methyl ester have been characterized by X-ray crystallography, showing, in the second case, only one of the enantiomers, which proves that retention of the configuration after reaction occurs.

  2. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.

    PubMed

    Taylor, Nicolas L; Day, David A; Millar, A Harvey

    2002-11-01

    A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.

  3. AMINO ACIDS AND HEMOGLOBIN PRODUCTION IN ANEMIA

    PubMed Central

    Whipple, G. H.; Robscheit-Robbins, F. S.

    1940-01-01

    Certain individual amino acids when given to standard anemic dogs cause an increase in new hemoglobin production. Occasional negative experiments are recorded. Glycine, glutamic acid, aspartic acid, cystine, histidine, phenylalanine, and proline when given in 1 gm. doses daily for 2 weeks, increase hemoglobin output on the average 23 to 25 gm. above the control level. This reaction amounts to 25 to 30 per cent of the new hemoglobin produced by the feeding of 300 gm. liver daily for 2 weeks—a standard liver test. Alanine, valine, isoleucine, and arginine in the same dosage increase the hemoglobin output on the average 13 to 17 gm. per 2 weeks over the control level. Leucine, methionine, lysine, tryptophane, and tyrosine fall in a middle group with hemoglobin output of about 20 gm. Isovaleric acid, β-hydroxybutyric acid, glutaric acid, and asparagine have shown positive effects and the butyrate is unusually potent for hemoglobin production (Table 2). The isomeric and dl-synthetic forms of the amino acids are as effectively utilized in this reaction as are the natural forms. PMID:19870982

  4. Cluster of genes controlling proline degradation in Salmonella typhimurium.

    PubMed Central

    Ratzkin, B; Roth, J

    1978-01-01

    A cluster of genes essential for degradation of proline to glutamate (put) is located between the pyrC and pyrD loci at min 22 of the Salmonella chromosome. A series of 25 deletion mutants of this region have been isolated and used to construct a fine-structure map of the put genes. The map includes mutations affecting the proline degradative activities, proline oxidase and pyrroline-5-carboxylic dehydrogenase. Also included are mutations affecting the major proline permease and a regulatory mutation that affects both enzyme and permease production. The two enzymatic activities appear to be encoded by a single gene (putA). The regulatory mutation maps between the putA gene and the proline permease gene (putP). PMID:342507

  5. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    PubMed

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-01

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  6. Effects of Rhizobacteria on Soybean Cyst Nematode, Heterodera glycines

    PubMed Central

    Tian, Honglin; Riggs, Robert D.

    2000-01-01

    Rhizobacteria were isolated from the rhizoplane and rhizosphere of soybean plants from fields in Arkansas and tested for their effect on numbers of soybean cyst nematode (Heterodera glycines). In initial greenhouse tests in heat-treated silt loam soil, 138 of the 201 bacterial isolates tested had no influence on numbers of cysts and eggs + second-stage juveniles (J2) of H. glycines, 36 reduced (suppressive isolates) and 27 increased (enhancing isolates) numbers of cysts and (or) eggs + J2 when compared to the controls (P ≤ 0.05). When 20 suppressive and five enhancing isolates were retested in the same soil, the results were highly variable and inconclusive. The 25 isolates were then evaluated in vitro for their effects on eggs and J2 of H. glycines. No clear relationship was detected between the inhibition of egg hatch or immobilization of J2 in vitro and antagonistic activity toward nematodes in vivo. Amendment of the soil with 0.1% (w/w) peptone or casein hydrolysate did not improve the effects of suppressive isolates on numbers of H. glycines. Nineteen of the 25 isolates were identified based on analysis of fatty acid methyl esters, and they are in 11 different genera. PMID:19270992

  7. Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae.

    PubMed

    Villas-Bôas, Silas Granato; Kesson, Mats; Nielsen, Jens

    2005-05-01

    Glyoxylate biosynthesis in Saccharomyces cerevisiae is traditionally mainly ascribed to the reaction catalyzed by isocitrate lyase (Icl), which converts isocitrate to glyoxylate and succinate. However, Icl is generally reported to be repressed by glucose and yet glyoxylate is detected at high levels in S. cerevisiae extracts during cultivation on glucose. In bacteria there is an alternative pathway for glyoxylate biosynthesis that involves a direct oxidation of glycine. Therefore, we investigated the glycine metabolism in S. cerevisiae coupling metabolomics data and (13)C-isotope-labeling analysis of two reference strains and a mutant with a deletion in a gene encoding an alanine:glyoxylate aminotransferase. The strains were cultivated on minimal medium containing glucose or galactose, and (13)C-glycine as sole nitrogen source. Glyoxylate presented (13)C-labeling in all cultivation conditions. Furthermore, glyoxylate seemed to be converted to 2-oxovalerate, an unusual metabolite in S. cerevisiae. 2-Oxovalerate can possibly be converted to 2-oxoisovalerate, a key precursor in the biosynthesis of branched-chain amino acids. Hence, we propose a new pathway for glycine catabolism and glyoxylate biosynthesis in S. cerevisiae that seems not to be repressed by glucose and is active under both aerobic and anaerobic conditions. This work demonstrates the great potential of coupling metabolomics data and isotope-labeling analysis for pathway reconstructions.

  8. Metachromatic staining patterns of basic proline-rich proteins from rat and human saliva in sodium dodecyl sulfate-polyacrylamide gels

    SciTech Connect

    Humphreys-Beher, M.G.; Wells, D.J.

    1984-10-01

    A series of basic proteins, rich in proline, were isolated from the salivary secretions of humans and rats. These proteins underwent metachromasia after staining with Coomassie brilliant blue R-250 in sodium dodecyl sulfate-polyacrylamide gels. The technique of destaining gels in several changes of 10% acetic acid after a 30-min staining period is a rapid method of general utility for the identification of proline-rich proteins from total cell lysates from other sources besides saliva.

  9. Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions.

    PubMed

    Albert, Benjamin; Le Cahérec, Françoise; Niogret, Marie-Françoise; Faes, Pascal; Avice, Jean-Christophe; Leport, Laurent; Bouchereau, Alain

    2012-08-01

    Large amounts of nitrogen (N) fertilizers are used in the production of oilseed rape. However, as low-input methods of crop management are introduced crops will need to withstand temporary N deficiency. In temperate areas, oilseed rape will also be affected by frequent drought periods. Here we evaluated the physiological and metabolic impact of nitrate limitation on the oilseed rape response to water deprivation. Different amounts of N fertilizer were applied to plants at the vegetative stage, which were then deprived of water and rehydrated. Both water and N depletion accelerated leaf senescence and reduced leaf development. N-deprived plants exhibited less pronounced symptoms of wilting during drought, probably because leaves were smaller and stomata were partially closed. Efficiency of proline production, a major stress-induced diversion of nitrogen metabolism, was assessed at different positions along the whole plant axis and related to leaf developmental stage and water status indices. Proline accumulation, preferentially in younger leaves, accounted for 25-85% of the free amino acid pool. This was mainly due to a better capacity for proline synthesis in fully N-supplied plants whether they were subjected to drought or not, as deduced from the expression patterns of the proline metabolism BnP5CS and BnPDH genes. Although less proline accumulated in the oldest leaves, a significant amount was transported from senescing to emerging leaves. Moreover, during rehydration proline was readily recycled. Our results therefore suggest that proline plays a significant role in leaf N remobilization and in N use efficiency in oilseed rape. PMID:22526495

  10. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  11. Mlp24 (McpX) of Vibrio cholerae implicated in pathogenicity functions as a chemoreceptor for multiple amino acids.

    PubMed

    Nishiyama, So-ichiro; Suzuki, Daisuke; Itoh, Yasuaki; Suzuki, Kazuho; Tajima, Hirotaka; Hyakutake, Akihiro; Homma, Michio; Butler-Wu, Susan M; Camilli, Andrew; Kawagishi, Ikuro

    2012-09-01

    The chemotaxis of Vibrio cholerae, the causative agent of cholera, has been implicated in pathogenicity. The bacterium has more than 40 genes for methyl-accepting chemotaxis protein (MCP)-like proteins (MLPs). In this study, we found that glycine and at least 18 L-amino acids, including serine, arginine, asparagine, and proline, serve as attractants to the classical biotype strain O395N1. Based on the sequence comparison with Vibrio parahaemolyticus, we speculated that at least 17 MLPs of V. cholerae may mediate chemotactic responses. Among them, Mlp24 (previously named McpX) is required for the production of cholera toxin upon mouse infection. mlp24 deletion strains of both classical and El Tor biotypes showed defects in taxis toward several amino acids, which were complemented by the expression of Mlp24. These amino acids enhanced methylation of Mlp24. Serine, arginine, asparagine, and proline were shown to bind directly to the periplasmic fragment of Mlp24. The structural information of its closest homolog, Mlp37, predicts that Mlp24 has two potential ligand-binding pockets per subunit, the membrane distal of which was suggested, by mutational analyses, to be involved in sensing of amino acids. These results suggest that Mlp24 is a chemoreceptor for multiple amino acids, including serine, arginine, and asparagine, which were previously shown to stimulate the expression of several virulence factors, implying that taxis toward a set of amino acids plays critical roles in pathogenicity of V. cholerae.

  12. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  13. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV-100 GeV

    NASA Astrophysics Data System (ADS)

    Ahmadi, Morteza; Lunscher, Nolan; Yeow, John T. W.

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10-200 keV and 1-20 MeV) in which X-ray imaging and radiotherapy machines work.

  14. Cometary Glycine Detected in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.

    2010-01-01

    In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.

  15. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins

    PubMed Central

    Strnad, Pavel; Usachov, Valentyn; Debes, Cedric; Gräter, Frauke; Parry, David A. D.; Omary, M. Bishr

    2011-01-01

    Keratins (Ks) consist of central α-helical rod domains that are flanked by non-α-helical head and tail domains. The cellular abundance of keratins, coupled with their selective cell expression patterns, suggests that they diversified to fulfill tissue-specific functions although the primary structure differences between them have not been comprehensively compared. We analyzed keratin sequences from many species: K1, K2, K5, K9, K10, K14 were studied as representatives of epidermal keratins, and compared with K7, K8, K18, K19, K20 and K31, K35, K81, K85, K86, which represent simple-type (single-layered or glandular) epithelial and hair keratins, respectively. We show that keratin domains have striking differences in their amino acids. There are many cysteines in hair keratins but only a small number in epidermal keratins and rare or none in simple-type keratins. The heads and/or tails of epidermal keratins are glycine and phenylalanine rich but alanine poor, whereas parallel domains of hair keratins are abundant in prolines, and those of simple-type epithelial keratins are enriched in acidic and/or basic residues. The observed differences between simple-type, epidermal and hair keratins are highly conserved throughout evolution. Cysteines and histidines, which are infrequent keratin amino acids, are involved in de novo mutations that are markedly overrepresented in keratins. Hence, keratins have evolutionarily conserved and domain-selectively enriched amino acids including glycine and phenylalanine (epidermal), cysteine and proline (hair), and basic and acidic (simple-type epithelial), which reflect unique functions related to structural flexibility, rigidity and solubility, respectively. Our findings also support the importance of human keratin ‘mutation hotspot’ residues and their wild-type counterparts. PMID:22215855

  16. New salts of amino acids with dimeric cations

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2010-10-01

    Among salts of amino acids there are compounds with the composition 2A..HX, which consist of dimeric A...A+ cations with short symmetric or asymmetric hydrogen bonds between zwitter-ionic and protonated moieties. These species are materials liable to undergo phase transitions or possess interesting nonlinear optical properties. Here, we report the preparation of 20 new salts with dimeric cations from aqueous solutions, including compounds of glycine, betaine, β- alanine, L-alanine, L-phenylalanine, L-threonine, L-valine, L-leucine and L-proline, with BF4-, ClO4-, Cl-, Br-, HSeO3-, and HC2O4-; as anions. The prepared salts are characterized by IR and Raman spectroscopy. Some of them are grown in form of good quality single crystals, which allowed the determination of their crystal structure.

  17. SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation.

    PubMed

    Pang, Shanshan; Lynn, Dana A; Lo, Jacqueline Y; Paek, Jennifer; Curran, Sean P

    2014-10-06

    Mechanisms that coordinate different metabolic pathways, such as glucose and lipid, have been recognized. However, a potential interaction between amino acid and lipid metabolism remains largely elusive. Here we show that during starvation of Caenorhabditis elegans, proline catabolism is coupled with lipid metabolism by SKN-1. Mutation of alh-6, a conserved proline catabolic enzyme, accelerates fat mobilization, enhances the expression of genes involved in fatty acid oxidation and reduces survival in response to fasting. This metabolic coordination is mediated by the activation of the transcription factor SKN-1/Nrf2, possibly due to the accumulation of the alh-6 substrate P5C, and also requires the transcriptional co-regulator MDT-15. Constitutive activation of SKN-1 induces a similar transcriptional response, which protects animals from fat accumulation when fed a high carbohydrate diet. In human cells, an orthologous alh-6 enzyme, ALDH4A1, is also linked to the activity of Nrf2, the human orthologue of SKN-1, and regulates the expression of lipid metabolic genes. Our findings identify a link between proline catabolism and lipid metabolism, and uncover a physiological role for SKN-1 in metabolism.

  18. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines. PMID:26521810

  19. Functional importance of motif I of pseudouridine synthases: mutagenesis of aligned lysine and proline residues.

    PubMed

    Spedaliere, C J; Hamilton, C S; Mueller, E G

    2000-08-01

    On the basis of sequence alignments, the pseudouridine synthases were grouped into four families that share no statistically significant global sequence similarity, though some common sequence motifs were discovered [Koonin, E. V. (1996) Nucleic Acids. Res. 24, 2411-2415; Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762]. We have investigated the functional significance of these alignments by substituting the nearly invariant lysine and proline residues in Motif I of RluA and TruB, pseudouridine synthases belonging to different families. Contrary to our expectations, the altered enzymes display only very mild kinetic impairment. Substitution of the aligned lysine and proline residues does, however, reduce structural stability, consistent with a temperature sensitive phenotype that results from substitution of the cognate proline residue in Cbf5p, a yeast homologue of TruB [Zerbarjadian, Y., King, T., Fournier, M. J., Clarke, L., and Carbon, J. (1999) Mol. Cell. Biol. 19, 7461-7472]. Together, our data support a functional role for Motif I, as predicted by sequence alignments, though the effect of substituting the highly conserved residues was milder than we anticipated. By extrapolation, our findings also support the assignment of pseudouridine synthase function to certain physiologically important eukaryotic proteins that contain Motif I, including the human protein dyskerin, alteration of which leads to the disease dyskeratosis congenita.

  20. Glycine and L-carnitine therapy in 3-methylcrotonyl-CoA carboxylase deficiency.

    PubMed

    Rutledge, S L; Berry, G T; Stanley, C A; van Hove, J L; Millington, D

    1995-01-01

    Genetic deficiency of 3-methylcrotonyl-CoA carboxylase (3-MCC) is a rare inborn error of leucine metabolism producing an organic acidaemia. With accumulation of 3-methylcrotonyl-CoA, there is increased production of 3-hydroxyisovaleric acid, the glycine conjugate (3-methylcrotonylglycine), and the carnitine conjugate (3-hydroxyisovalerylcarnitine). The conjugates represent endogenous detoxification products. We studied excretion rates of these conjugates at baseline and with glycine and carnitine therapy in an 8-year-old girl with 3-MCC deficiency. Her preadmission diet was continued. Plasma and urine samples were obtained after 24 h of each of the following: L-carnitine 100 mg/kg per day and glycine 100, 175 and 250 mg/kg per day. Plasma and urinary carnitine levels were reduced by 80% and 50%, respectively with abnormal urinary excretion patterns. These normalized with carnitine therapy. Acylcarnitine excretion increased with carnitine therapy. The glycine conjugate, 3-methylcrotonylglycine (3-MCG), was the major metabolite excreted at all times and its excretion increased with glycine therapy. Clearly, in 3-MCC deficiency the available glycine and carnitine pools are not sufficient to meet the potential for conjugation of accumulated metabolites, suggesting a possible therapeutic role for glycine and carnitine therapy in this disorder.

  1. Activation-induced structural change in the GluN1/GluN3A excitatory glycine receptor

    SciTech Connect

    Balasuriya, Dilshan; Takahashi, Hirohide; Srivats, Shyam; Edwardson, J. Michael

    2014-08-08

    Highlights: • We studied the response of the GluN1/GluN3A excitatory glycine receptor to activation. • GluN1 and GluN3A subunits interacted within transfected cells. • The GluN1/GluN3A receptor was functionally active. • Glycine or D-serine caused a ∼1 nm height reduction in bilayer-integrated receptors. • This height reduction was abolished by the glycine antagonist DCKA. - Abstract: Unlike GluN2-containing N-methyl-D-aspartate (NMDA) receptors, which require both glycine and glutamate for activation, receptors composed of GluN1 and GluN3 subunits are activated by glycine alone. Here, we used atomic force microscopy (AFM) imaging to examine the response to activation of the GluN1/GluN3A excitatory glycine receptor. GluN1 and GluN3A subunits were shown to interact intimately within transfected tsA 201 cells. Isolated GluN1/GluN3A receptors integrated into lipid bilayers responded to addition of either glycine or D-serine, but not glutamate, with a ∼1 nm reduction in height of the extracellular domain. The height reduction in response to glycine was abolished by the glycine antagonist 5,7-dichlorokynurenic acid. Our results represent the first demonstration of the effect of activation on the conformation of this receptor.

  2. About the detectability of glycine in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Pilmé, J.; Ellinger, Y.; Ceccarelli, C.

    2011-08-01

    Context. Glycine, the simplest of aminoacids, has been found in several carbonaceous meteorites. It remains unclear, however, wether glycine is formed in the interstellar medium (ISM) and therefore available everywhere in the Universe. For this reason, radioastronomers have searched for many years unsuccessfully to detect glycine in the ISM. Aims: We provide possible guidelines to optimize the return of these searches. Since, for most of the species observed so far in the ISM, the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle (MEP)), we assess whether neutral glycine is the best molecule to search for or whether one of its isomers/conformers or ionic, protonated, or zwitterionic derivatives would have a higher probability of being detected. Methods: The question of the relative stability of these different species is addressed by means of quantum density functional theory (DFT) simulations within the hybrid B3LYP formalism. Each fully optimized structure is verified as a stationary point by means of a vibrational analysis. A comprehensive screening of 32 isomers/conformers of the C2H5O2N chemical formula (neutral, negative, and positive ions together with the corresponding protonated species and the possible zwitterionic structures) is carried out. In the sensitive case of the neutral compounds, more accurate relative energies were obtained by means of high level post Hartree-Fock coupled cluster calculations with large basis sets (CCSD(T)/cc-pVQZ). Results: We find that neutral glycine is not the most stable isomer and, therefore, probably not the most abundant one, which might explain why it has escaped detection so far. We find instead that N-methyl carbamic acid and methyl carbamate are the two most stable isomers and, therefore, probably the two most abundant ones. Among the non-neutral forms, we found that glycine is the most stable isomer only if protonated or zwitterionic if present in interstellar

  3. Expression of beta-keratin mRNAs and proline uptake in epidermal cells of growing scales and pad lamellae of gecko lizards.

    PubMed

    Alibardi, Lorenzo; Toni, Mattia; Dalla Valle, Luisa

    2007-07-01

    Beta-keratins form a large part of the proteins contained in the hard beta layer of reptilian scales. The expression of genes encoding glycine-proline-rich beta-keratins in normal and regenerating epidermis of two species of gecko lizards has been studied by in situ hybridization. The probes localize mRNAs in differentiating oberhautchen and beta cells of growing scales and in modified scales, termed pad lamellae, on the digits of gecko lizards. In situ localization at the ultrastructural level shows clusters of gold particles in the cytoplasm among beta-keratin filaments of oberhautchen and beta cells. They are also present in the differentiating elongation or setae of oberhautchen cells present in pad lamellae. Setae allow geckos to adhere and climb vertical surfaces. Oberhautchen and beta cells also incorporate tritiated proline. The fine localization of the beta-keratin mRNAs and the uptake of proline confirms the biomolecular data that identified glycine-proline-rich beta-keratin in differentiating beta cells of gecko epidermis. The present study also shows the presence of differentiating and metabolically active cells in both inner and outer oberhautchen/beta cells at the base of the outer setae localized at the tip of pad lamellae. The addition of new beta and alpha cells to the corneous layer near the tip of the outer setae explains the anterior movement of the setae along the apical free-margin of pad lamellae. The rapid replacement of setae ensures the continuous usage of the gecko's adhesive devices, the pad lamellae, during most of their active life.

  4. A Sensitive VLA Search for Small-Scale Glycine Emission Toward OMC-1

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Pedelty, J. A.; Snyder, L. E.; Jewell, P. R.; Lovas, F. J.; Palmer, Patrick; Liu, S.-Y.

    2002-01-01

    We have conducted a deep Q-band (lambda-7 mm) search with the Very Large Array (VLA) toward OMC-1 for the lowest energy conformation (conformer I) of glycine (NH2CH2COOH) in four rotational transitions: the 6(sub 15)- 5(sub 14), 6(sub 24)-5(sub 23), 7(sub 17- 6(sub 16), and 7(sub 07)-6(sub 06). Our VLA observations sample the smallest-scale structures to date in the search for glycine toward OMC-1. No glycine emission features were detected. Thus if glycine exists in OMC-1, either it is below our detection limit, or it is more spatially extended than other large molecules in this source, or it is primarily in its high energy form (conformer II). Our VLA glycine fractional abundance limits in OMC-1 are comparable to those determined from previous IRAM 30m measurements -- somewhat better or worse depending on the specific source model -- and the entire approximately 1 foot primary beam of the VLA was searched while sensitive to an areal spatial scale approximately 150 times smaller than the 24 inch beam of the IRAM single-element telescope. In the course of this work, we detected and imaged the 4(sub 14)-3(sub 13) A and E transitions of methyl formate (HCOOCH3) and also the 2(sub 02) - 1(sub 01) transition of formic acid (HCOOH). Since formic acid is a possible precursor to glycine, our glycine limits and formic acid results provide a constraint on this potential formation chemistry route for glycine in OMC-1.

  5. Dietary requirements of "nutritionally non-essential amino acids" by animals and humans.

    PubMed

    Wu, Guoyao; Wu, Zhenlong; Dai, Zhaolai; Yang, Ying; Wang, Weiwei; Liu, Chuang; Wang, Bin; Wang, Junjun; Yin, Yulong

    2013-04-01

    Amino acids are necessary for the survival, growth, development, reproduction and health of all organisms. They were traditionally classified as nutritionally essential or non-essential for mammals, birds and fish based on nitrogen balance or growth. It was assumed that all "non-essential amino acids (NEAA)" were synthesized sufficiently in the body to meet the needs for maximal growth and health. However, there has been no compelling experimental evidence to support this assumption over the past century. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and protect its mucosal integrity. Therefore, based on new research findings, NEAA should be taken into consideration in revising the classical "ideal protein" concept and formulating balanced diets to improve protein accretion, food efficiency, and health in animals and humans.

  6. Determination of glycine in biofluid by hydrophilic interaction chromatography coupled with tandem mass spectrometry and its application to the quantification of glycine released by embryonal carcinoma stem cells.

    PubMed

    Tang, Ya-Bin; Teng, Lin; Sun, Fan; Wang, Xiao-Lin; Peng, Liang; Cui, Yong-Yao; Hu, Jin-Jia; Luan, Xin; Zhu, Liang; Chen, Hong-Zhuan

    2012-09-15

    Because glycine plays a prominent role in living creatures, an accurate and precise quantitative analysis method for the compound is needed. Herein, a new approach to analyze glycine by hydrophilic interaction chromatography (HILIC) coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) was developed. This method avoids the use of derivatization and/or ion-pairing reagents. N-methyl-D-aspartate (NMDA) is used as the internal standard (IS). The mobile phase for the isocratic elution consisted of 10 mM ammonium formate in acetonitrile-water (70:30, v/v, adjusted to pH 2.8 with formic acid), and a flow rate of 250 μL/min was used. Two microliters of sample was injected for analysis. The signal was monitored in the positive multiple reaction monitoring (MRM) mode. The total run time was 5 min. The dynamic range was 40-2000 ng/mL for glycine in the biological matrix. The LLOQ (lower limit of quantification) of this method was 40 ng/mL (80 pg on column). The validated method was applied to determine the dynamic release of glycine from P19 embryonal carcinoma stem cells (ECSCs). Glycine spontaneously released from the ECSCs into the intercellular space gradually increased from 331.02±60.36 ng/mL at 2 min in the beginning to 963.52±283.80 ng/mL at 60 min and 948.27±235.09 ng/mL at 120 min, finally reaching a plateau, indicating that ECSCs consecutively release glycine until achieving equilibration between the release and the reuptake of the compound; on the contrary, the negative control NIH/3T3 embryonic fibroblast cells did not release glycine. This finding will help to improve our understanding of the novel effects of neurotransmitters, including glycine, on non-neural systems. PMID:22906796

  7. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae)

    NASA Astrophysics Data System (ADS)

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-04-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  8. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae).

    PubMed

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-12-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation. PMID:27107771

  9. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae).

    PubMed

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-12-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  10. New Insight on the Synthesis of Neurotoxins Domoic Acid and Kainic Acid.

    PubMed

    Mollica, Adriano; Costante, Roberto; Stefanucci, Azzurra; Novellino, Ettore

    2015-01-01

    Mono or di-substituted prolines, namely proline chimeras of natural or synthetic origin, carry the side chain of other specific amino acids on the pyrrolidine ring. Thus, proline chimeras are useful tools for a wide range of chemical and biological applications as chiral synthons or building blocks for peptidomimetic design. We focused our attention on domoic acid and kainic acid and we report here a concise and up to date review on their stereoselective and asymmetric syntheses.

  11. Glycine transporter 1 is a target for the treatment of epilepsy.

    PubMed

    Shen, Hai-Ying; van Vliet, Erwin A; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-12-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the synaptic availability of glycine is largely under control of glycine transporter 1 (GlyT1). Since epilepsy is a disorder of disrupted network homeostasis affecting the equilibrium of various neurotransmitters and neuromodulators, we hypothesized that changes in hippocampal GlyT1 expression and resulting disruption of glycine homeostasis might be implicated in the pathophysiology of epilepsy. Using two different rodent models of temporal lobe epilepsy (TLE)--the intrahippocampal kainic acid model of TLE in mice, and the rat model of tetanic stimulation-induced TLE--we first demonstrated robust overexpression of GlyT1 in the hippocampal formation, suggesting dysfunctional glycine signaling in epilepsy. Overexpression of GlyT1 in the hippocampal formation was corroborated in human TLE samples by quantitative real time PCR. In support of a role of dysfunctional glycine signaling in the pathophysiology of epilepsy, both the genetic deletion of GlyT1 in hippocampus and the GlyT1 inhibitor LY2365109 increased seizure thresholds in mice. Importantly, chronic seizures in the mouse model of TLE were robustly suppressed by systemic administration of the GlyT1 inhibitor LY2365109. We conclude that GlyT1 overexpression in the epileptic brain constitutes a new target for therapeutic intervention, and that GlyT1 inhibitors constitute a new class of antiictogenic drugs. These findings are of translational value since GlyT1 inhibitors are already in clinical development to treat cognitive symptoms in schizophrenia.

  12. Glycine transporter 1 is a target for the treatment of epilepsy.

    PubMed

    Shen, Hai-Ying; van Vliet, Erwin A; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-12-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the synaptic availability of glycine is largely under control of glycine transporter 1 (GlyT1). Since epilepsy is a disorder of disrupted network homeostasis affecting the equilibrium of various neurotransmitters and neuromodulators, we hypothesized that changes in hippocampal GlyT1 expression and resulting disruption of glycine homeostasis might be implicated in the pathophysiology of epilepsy. Using two different rodent models of temporal lobe epilepsy (TLE)--the intrahippocampal kainic acid model of TLE in mice, and the rat model of tetanic stimulation-induced TLE--we first demonstrated robust overexpression of GlyT1 in the hippocampal formation, suggesting dysfunctional glycine signaling in epilepsy. Overexpression of GlyT1 in the hippocampal formation was corroborated in human TLE samples by quantitative real time PCR. In support of a role of dysfunctional glycine signaling in the pathophysiology of epilepsy, both the genetic deletion of GlyT1 in hippocampus and the GlyT1 inhibitor LY2365109 increased seizure thresholds in mice. Importantly, chronic seizures in the mouse model of TLE were robustly suppressed by systemic administration of the GlyT1 inhibitor LY2365109. We conclude that GlyT1 overexpression in the epileptic brain constitutes a new target for therapeutic intervention, and that GlyT1 inhibitors constitute a new class of antiictogenic drugs. These findings are of translational value since GlyT1 inhibitors are already in clinical development to treat cognitive symptoms in schizophrenia. PMID:26302655

  13. Plant-Induced Hatching of Eggs of the Soybean Cyst Nematode Heterodera glycines.

    PubMed

    Tefft, P M; Bone, L W

    1985-07-01

    Root diffusate from soybean plants caused greater hatching of Heterodera glycines eggs during vegetative growth of the host, but the activity declined with plant senescence. Chelation of the root diffusate with ethylenediamine tetraacetic acid (EDTA) significantly increased hatching activity for H. glycines eggs. Diffusate from leafless plants caused little hatching, whereas treatment of intact plants with the growth regulators gibberellin and kinetin had no effect on the hatching activity of root diffusate. Treating H. glycines eggs with zinc chloride and root diffusate reduced egg hatching from zinc chloride alone. Levels of zinc in the root diffusate were insufficient to induce egg hatch, based on analysis by atomic absorption spectrophotometry. The enzymatic activity of leucine aminopeptidase in H. glycines eggs was not altered by treatment with chelated or nonchelated root diffusate.

  14. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  15. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  16. 75 FR 62141 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... glycine from China (60 FR 16116). Following first five-year reviews by Commerce and the Commission... from China (65 FR 45752). Following second five-year reviews by Commerce and the Commission, effective... glycine from China (70 FR 69316). The Commission is now conducting a third review to determine...

  17. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability

    SciTech Connect

    Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine; Drummer, Heidi E.; Poumbourios, Pantelis . E-mail: apoumbourios@burnet.edu.au

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.

  18. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability.

    PubMed

    Wilson, Kirilee A; Maerz, Anne L; Bär, Séverine; Drummer, Heidi E; Poumbourios, Pantelis

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Bär, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function. PMID:17577584

  19. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  20. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  1. Differential laser-induced perturbation Raman spectroscopy: a comparison with Raman spectroscopy for analysis and classification of amino acids and dipeptides.

    PubMed

    Oztekin, Erman K; Smith, Sarah E; Hahn, David W

    2015-04-01

    Differential-laser induced perturbation spectroscopy (DLIPS) is a new spectral analysis technique for classification and identification, with key potential applications for analysis of complex biomolecular systems. DLIPS takes advantage of the complex ultraviolet (UV) laser–material interactions based on difference spectroscopy by coupling low intensity UV laser perturbation with a traditional spectroscopy probe. Here, we quantify the DLIPS performance using a Raman scattering probe in classification of basic constituents of collagenous tissues, namely, the amino acids glycine, L-proline, and L-alanine, and the dipeptides glycine–glycine, glycine–alanine and glycine–proline and compare the performance to a traditional Raman spectroscopy probe via several multivariate analyses. We find that the DLIPS approach yields an ~40% improvement in discrimination among these tissue building blocks. The effects of the 193-nm perturbation laser are further examined by assessing the photodestruction of targeted material molecular bonds. The DLIPS method with a Raman probe holds promise for future tissue diagnosis, either as a stand-alone technique or as part of an orthogonal biosensing scheme.

  2. Proline improves copper tolerance in chickpea (Cicer arietinum).

    PubMed

    Singh, Vijeta; Bhatt, Indu; Aggarwal, Anjali; Tripathi, Bhumi Nath; Munjal, Ashok Kumar; Sharma, Vinay

    2010-09-01

    The present study suggests the involvement of proline in copper tolerance of four genotypes of Cicer arietinum (chickpea). Based on the data of tolerance index and lipid peroxidation, the order for copper tolerance was as follows: RSG 888 > CSG 144 > CSG 104 > RSG 44 in the selected genotypes. The basis of differential copper tolerance in chickpea genotypes was characterized by analyzing, antioxidant enzymes (superoxide dismutase, ascorbated peroxidase and catalase), phytochelatins, copper uptake, and proline accumulation. Chickpea genotypes showed stimulated superoxide dismutase activity at all tested concentrations of copper, but H(2)O(2) decomposing enzymes especially; ascorbate peroxidase did not increase with 25 and 50 microM copper treatments. Catalase activity, however, increased at lower copper concentrations but failed to stimulate at 50 microM copper. Such divergence in responses of these enzymes minimizes their importance in protecting chickpea against copper stress. The sensitive genotypes showed greater enhancement of phytochelatins than that of tolerant genotypes. Hence, the possibility of phytochelatins in improving copper tolerance in the test plant is also excluded. Interestingly, the order of proline accumulation in the chickpea genotypes (RSG 888 > CSG 144 > CSG 104 > RSG 44) was exactly similar to the order of copper tolerance. Based on hyperaccumulation of proline in tolerant genotype (RSG 44) and the reduction and improvement of lipid peroxidation and tolerance index, respectively, by proline pretreatment, we conclude that hyperaccumulation of proline improves the copper tolerance in chickpea.

  3. On the evolutionary significance of the size and planarity of the proline ring

    NASA Astrophysics Data System (ADS)

    Behre, Jörn; Voigt, Roland; Althöfer, Ingo; Schuster, Stefan

    2012-10-01

    Proline is a proteinogenic amino acid in which the side chain forms a ring, the pyrrolidine ring. This is a five-membered ring made up of four carbons and one nitrogen. Here, we study the evolutionary significance of this ring size. It is shown that the size of the pyrrolidine ring has the advantage of being nearly planar and strain-free, based on a general mathematical assertion saying that the angular sum of a polygon is maximum if it is planar and convex. We also provide a sketch of the proof to this assertion. The optimality of the ring size of proline can be derived from a triangle inequality for angles. Quasi-planarity is physiologically significant because it allows an easier and evolutionarily old type of fit into binding grooves of proteins with which proline-rich proteins interact. Finally, we present a comparison with other planar, nearly planar and non-planar biomolecules such as neurotransmitters, hormones and toxins, involving, for example, aromatic rings, cyclopentanone and 1,3-dioxole.

  4. Roles of conserved proline and glycosyltransferase motifs of EmbC in biosynthesis of lipoarabinomannan.

    PubMed

    Berg, Stefan; Starbuck, James; Torrelles, Jordi B; Vissa, Varalakshmi D; Crick, Dean C; Chatterjee, Delphi; Brennan, Patrick J

    2005-02-18

    D-Arabinans, composed of D-arabinofuranose (D-Araf), dominate the structure of mycobacterial cell walls in two settings, as part of lipoarabinomannan (LAM) and arabinogalactan, each with markedly different structures and functions. Little is known of the complexity of their biosynthesis. beta-D-Arabinofuranosyl-1-monophosphoryldecaprenol is the only known sugar donor. EmbA, EmbB, and EmbC, products of the paralogous genes embA, embB, and embC, the sites of resistance to the anti-tuberculosis drug ethambutol (EMB), are the only known implicated enzymes. EmbA and -B apparently contribute to the synthesis of arabinogalactan, whereas EmbC is reserved for the synthesis of LAM. The Emb proteins show no overall similarity to any known proteins beyond Mycobacterium and related genera. However, functional motifs, equivalent to a proline-rich motif of several bacterial polysaccharide co-polymerases and a superfamily of glycosyltransferases, were found. Site-directed mutagenesis in glycosyltransferase superfamily C resulted in complete ablation of LAM synthesis. Point mutations in three amino acids of the proline motif of EmbC resulted in marked reduction of LAM-arabinan synthesis and accumulation of an unknown intermediate and of the known precursor lipomannan. Yet the pattern of the differently linked d-Araf units observed in wild type LAM-arabinan was largely retained in the proline motif mutants. The results allow for the presentation of a unique model of arabinan synthesis. PMID:15546869

  5. Cis–Trans Isomerizations of Proline Residues are Key to Bradykinin Conformations

    PubMed Central

    Pierson, Nicholas A.; Chen, Liuxi; Russell, David H.; Clemmer, David E.

    2013-01-01

    A recent ion mobility – mass spectrometry (IM–MS) study of the nonapeptide bradykinin (BK, amino acid sequence Arg1–Pro2–Pro3–Gly4–Phe5–Ser6–Pro7–Phe8–Arg9) found evidence for 10 populations of conformations that depend upon the solution composition [J. Am. Chem. Soc. 2011, 133, 13810]. Here, the role of the three proline residues (Pro2, Pro3, and Pro7) in establishing these conformations is investigated using a series of seven analogue peptides in which combinations of alanine residues are substituted for prolines. IM–MS distributions of the analogue peptides, when compared to the distribution for bradykinin, indicate the multiple structures are associated with different combinations of cis and trans forms of the three proline residues. These data are used to assign the structures to different peptide populations that are observed under various solution conditions. The assignments also show the connectivity between structures when collisional activation is used to convert one state into another. PMID:23373819

  6. Biosynthesis of prodigiosin by non-proliferating wild-type Serratia marcescens and mutants deficient in catabolism of alanine, histidine, and proline.

    PubMed

    Lim, D V; Qadri, S M; Nichols, C; Williams, R P

    1977-01-01

    Mutants of Serratia marcescens Nima, designated as Aut, Hut, or Put, did not utilize L-alanine, L-histidine, or L-proline, respectively, as a sole carbon source but did utilize other amino acids or glycerol as carbon sources. The bacteria were permeable to alanine, histidine, and proline but lacked the enzymes responsible for degradation of these amino acids. The Aut mutant contained no L-alanine dehydrogenase activity, whereas the Hut and Put mutants contained only 7 and 4% of the histidase and proline oxidase activities, respectively, found in the wild-type strain. Rates of oxygen uptake and protein synthesis were significantly lower when the mutants were incubated in the presence of amino acids they could not degrade. Studies of L-[14C]alanine, L-[14C]histidine, and L-[14C]proline incorporation into prodigiosin synthesized by these mutants and the wild-type strain revealed that proline was incorporated intact, whereas all of alanine except the carboxyl group was incorporated into the pigment molecule. Histidine did not enter prodigiosin directly. These data suggested that the presence of unique biosynthetic pathways, independent of primary metabolism, leads to formation of prodigiosin from specific amino acids.

  7. Solubility calculations of branched and linear amino acids using lattice cluster theory

    NASA Astrophysics Data System (ADS)

    Fischlschweiger, Michael; Enders, Sabine; Zeiner, Tim

    2014-09-01

    In this work, the activity coefficients and the solubility of amino acids in water were calculated using the lattice cluster theory (LCT) combined with the extended chemical association lattice model allowing self-association as well as cross-association. This permits the study of the influence of the amino acids structure on the thermodynamic properties for the first time. By the used model, the activity coefficient and solubilities of the investigated fourteen amino acids (glycine, alanine, γ-aminobutyric acid, dl-valine, dl-threonine, dl-methionine, l-leucine, l-glutamic acid, l-proline, hydroxyproline, histidine, l-arginine, α-amino valeric acid) could be described in good accordance with experimental data. In the case of different α-amino acids, but different hydrocarbon chains, the same interaction energy parameter can be used within the LCT. All studied amino acids could be modelled using the same parameter for the description of the amino acid association properties. The formed cross-associates contain more amino acids than expressed by the overall mole fraction of the solution. Moreover, the composition of the cross-associates depends on temperature, where the amount of amino acids increases with increasing temperature.

  8. Determination of dansylated amino acids and biogenic amines in Cannonau and Vermentino wines by HPLC-FLD.

    PubMed

    Tuberoso, Carlo Ignazio Giovanni; Congiu, Francesca; Serreli, Gabriele; Mameli, Stefano

    2015-05-15

    Free amino acids (AA) and biogenic amines (BA) were quantified for the first time in Cannonau and Vermentino wines, the two most popular "Controlled Designation of Origin" wines from Sardinia (Italy). An analytical method for the simultaneous determination of AA and BA was developed, using selective derivatization with dansyl chloride followed by HPLC with fluorescence detection. Thirty-two compounds were identified in the wines analysed. High levels of AA were found, with proline being the most abundant with average levels of 1244 ± 398 and 1008 ± 281 mg/L in Cannonau and Vermentino wines, respectively. BA were detected at average concentrations <10mg/L, except putrescine which reached 20.5 ± 10.2mg/L in Cannonau wines. Histamine was never detected in any Vermentino wines. γ-Aminobutyric acid, 4-hydroxyproline, glycine, leucine+isoleucine and putrescine proved to be useful for differentiating Cannonau wines from Vermentino wines.

  9. Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana.

    PubMed

    Cabassa-Hourton, Cécile; Schertl, Peter; Bordenave-Jacquemin, Marianne; Saadallah, Kaouthar; Guivarc'h, Anne; Lebreton, Sandrine; Planchais, Séverine; Klodmann, Jennifer; Eubel, Holger; Crilat, Emilie; Lefebvre-De Vos, Delphine; Ghelis, Thanos; Richard, Luc; Abdelly, Chedly; Carol, Pierre; Braun, Hans-Peter; Savouré, Arnould

    2016-09-01

    Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain. PMID:27303048

  10. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds.

    PubMed

    Kumar, Pradeep; Dwivedi, Namrata

    2013-02-19

    The search for new and efficient ways to synthesize optically pure compounds is an active area of research in organic synthesis. Asymmetric catalysis provides a practical, cost-effective, and efficient method to create a variety of complex natural products containing multiple stereocenters. In recent years, chemists have become more interested in using small organic molecules to catalyze organic reactions. As a result, organocatalysis has emerged both as a promising strategy and as an alternative to catalysis with expensive proteins or toxic metals. One of the most successful and widely studied secondary amine-based organocatalysts is proline. This small molecule can catalyze numerous reactions such as the aldol, Mannich, Michael addition, Robinson annulation, Diels-Alder, α-functionalization, α-amination, and α-aminoxylation reactions. Catalytic and enantioselective α-oxygenation of carbonyl compounds is an important reaction to access a variety of useful building blocks for bioactive molecules. Proline catalyzed α-aminoxylation using nitrosobenzene as oxygen source, followed by in situ reduction, gives enantiomerically pure 1,2-diol. This molecule can then undergo a variety of organic reactions. In addition, proline organocatalysis provides access to an assortment of biologically active natural products including mevinoline (a cholesterol lowering drug), tetrahydrolipstatin (an antiobesity drug), R(+)-α-lipoic acid, and bovidic acid. In this Account, we present an iterative organocatalytic approach to synthesize both syn- and anti-1,3-polyols, both enantio- and stereoselectively. This method is primarily based on proline-catalyzed sequential α-aminoxylation and Horner-Wadsworth-Emmons (HWE) olefination of aldehyde to give a γ-hydroxy ester. In addition, we briefly illustrate the broad application of our recently developed strategy for 1,3-polyols, which serve as valuable, enantiopure building blocks for polyketides and other structurally diverse and

  11. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  12. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    PubMed

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  13. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress.

    PubMed

    Zouari, Mohamed; Ben Ahmed, Chedlia; Elloumi, Nada; Bellassoued, Khaled; Delmail, David; Labrousse, Pascal; Ben Abdallah, Ferjani; Ben Rouina, Bechir

    2016-06-01

    Proline plays an important role in plant response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effectiveness of exogenous proline (10 and 20 mM) in alleviating cadmium induced inhibitory effects in young olive plants (Olea europaea L. cv. Chemlali) exposed to two Cd levels (10 and 30 mg CdCl2 kg(-1) soil). The Cd treatment induced substantial accumulation of Cd in both root and leaf tissues and a decrease in gas exchange, photosynthetic pigments contents, uptake of essential elements (Ca, Mg and K) and plant biomass. Furthermore, an elevation of antioxidant enzymes activities (superoxide dismutase, catalase, glutathione peroxydase) and proline content in association with relatively high amounts of hydrogen peroxide, thiobarbituric acid reactive substances and electrolyte leakage were observed. Interestingly, the application of exogenous proline alleviated the oxidative damage induced by Cd accumulation. In fact, Cd-stressed olive plants treated with proline showed an increase of antioxidant enzymes activities, photosynthetic activity, nutritional status, plant growth and oil content of olive fruit. Generally, it seems that proline supplementation alleviated the deleterious effects of young olive plants exposed to Cd stress. PMID:26946284

  14. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic binding protein 2 from tobacco

    PubMed Central

    Huang, Jun; Jones, Bryan J.; Kazlauskas, Romas J.

    2015-01-01

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. As a model α/β-hydrolase, we investigated a plant esterase, salicylic acid binding protein 2 (SABP2). SABP2 shows typical stability to urea (unfolding free energy 6.9±1.5 kcal/mol) and to heat inactivation (T1/215 min 49.2±0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homolog or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1) and E215P (+0.9). Introducing proline in the cap domain did not (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/215 min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P-S70P ΔT1/215 min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases. PMID:26110207

  15. Relative hydrophobicity between the phases and partition of cytochrome-c in glycine ionic liquids aqueous two-phase systems.

    PubMed

    Wu, Changzeng; Wang, Jianji; Li, Zhiyong; Jing, Jun; Wang, Huiyong

    2013-08-30

    In this work, glycine ionic liquids tetramethylammonium glycine ([N1111][Gly]), tetraethylammonium glycine ([N2222][Gly]), tetra-n-butylammonium glycine ([N4444][Gly]), tetra-n-butylphosphonium glycine ([P4444][Gly]) and tetra-n-pentylammonium glycine ([N5555][Gly]) were synthesized and used to prepare aqueous two-phase systems (ATPSs) in the presence of K2HPO4. Binodal curves of such ATPSs and partition coefficients of a series of dinitrophenylated (DNP) amino acids in these ATPSs were determined at 298.15K to understand the effect of cationic structure of the ionic liquids on the phase-forming ability of glycine ionic liquids, relative hydrophobicity between the phases in the ionic liquids ATPSs, and polarity of the ionic liquids-rich phases. With the attempt to correlate the relative hydrophobicity of the phases in the ATPSs with their extraction capability for proteins, partition coefficients of cytochrome-c in the ATPSs were also determined. It was shown that partition coefficients of cytochrome-c were in the range from 2.83 to 20.7 under the studied pH conditions. Then, hydrophobic interactions between cytochrome-c and the ionic liquid are suggested to be the main driving force for the preferential partition of cytochrome-c in the glycine ionic liquid-rich phases of the ATPSs. Result derived from polarity of the ionic liquids-rich phases supports this mechanism.

  16. Hormone-fuel concentrations in anephric subjects. Effect of hemodialysis (with special reference to amino acids).

    PubMed Central

    Ganda, O P; Aoki, T T; Soeldner, J S; Morrison, R S; Cahill, G F

    1976-01-01

    Arterial blood concentrations of insulin, glucagon, and various substrates were determined in six anephric subjects in the postabsorptive state and immediately after hemodialysis. Plasma glucose and serum insulin concentrations were normal, and declined during dialysis. Plasma glucagon was elevated and remained unchanged. There was moderate hypertriglyceridemia before dialysis, but this decreased significantly after administration of heparin just before the start of dialysis, and at the end of dialysis was lowered further into the normal range. Comparison of postabsorptive whole blood concentrations of amino acids with those in normal, healthy adults revealed striking differences. Glutamine, proline, citrulline, glycine and both 1- and 3-methyl-histidines were increased, while serine, glutamate, tyrosine, lysine, and branched-chain amino acids were decreased. The glycine/serine ratio was elevated to 300% and tyrosine/phenylalanine ratio was lowered to 60% of normal. To investigate the potential role of blood cells in amino acid transport, the distribution of individual amino acids in plasma and blood cell compartments was studied. Despite a markedly diminished blood cell mass (mean hematocrit, 20.6 +/- 1.4%), there was no significant decrease in the fraction of most amino acids present in the cell compartment, and this was explained by increases of several amino acids in cellular water. None were decreased. Furthermore, during dialysis, whole blood and plasma amino acids declined by approximately 30% and 40%, respectively, whereas no significant change was observed in the cell compartment. Alanine was the only amino acid whose concentration declined in the cells as well as in plasma. The results indicate (a) significant alterations in the concentrations of hormones and substrates in patients on chronic, intermittent hemodialysis; (b) removal of amino acids during hemodialysis, predominantly from the plasma compartment, with no significant change in cell content

  17. The effects of interactions between proline and carbon nanostructures on organocatalysis in the Hajos-Parrish-Eder-Sauer-Wiechert reaction

    NASA Astrophysics Data System (ADS)

    Rance, G. A.; Khlobystov, A. N.

    2014-09-01

    The non-covalent interactions of S-(-)-proline with the surfaces of carbon nanostructures (fullerene, nanotubes and graphite) change the nucleophilic-electrophilic and acid-base properties of the amino acid, thus tuning its activity and selectivity in the organocatalytic Hajos-Parrish-Eder-Sauer-Wiechert (HPESW) reaction. Whilst our spectroscopy and microscopy measurements show no permanent covalent bonding between S-(-)-proline and carbon nanostructures, a systematic investigation of the catalytic activity and selectivity of the organocatalyst in the HPESW reaction demonstrates a clear correlation between the pyramidalisation angle of carbon nanostructures and the catalytic properties of S-(-)-proline. Carbon nanostructures with larger pyramidalisation angles have a stronger interaction with the nitrogen atom lone pair of electrons of the organocatalyst, thereby simultaneously decreasing the nucleophilicity and increasing the acidity of the organocatalyst. These translate into lower conversion rates but higher selectivities towards the dehydrated product of Aldol addition.The non-covalent interactions of S-(-)-proline with the surfaces of carbon nanostructures (fullerene, nanotubes and graphite) change the nucleophilic-electrophilic and acid-base properties of the amino acid, thus tuning its activity and selectivity in the organocatalytic Hajos-Parrish-Eder-Sauer-Wiechert (HPESW) reaction. Whilst our spectroscopy and microscopy measurements show no permanent covalent bonding between S-(-)-proline and carbon nanostructures, a systematic investigation of the catalytic activity and selectivity of the organocatalyst in the HPESW reaction demonstrates a clear correlation between the pyramidalisation angle of carbon nanostructures and the catalytic properties of S-(-)-proline. Carbon nanostructures with larger pyramidalisation angles have a stronger interaction with the nitrogen atom lone pair of electrons of the organocatalyst, thereby simultaneously decreasing the

  18. Composition of amino acids in feed ingredients for animal diets.

    PubMed

    Li, Xilong; Rezaei, Reza; Li, Peng; Wu, Guoyao

    2011-04-01

    Dietary amino acids (AA) are crucial for animal growth, development, reproduction, lactation, and health. However, there is a scarcity of information regarding complete composition of "nutritionally nonessential AA" (NEAA; those AA which can be synthesized by animals) in diets. To provide a much-needed database, we quantified NEAA (including glutamate, glutamine, aspartate, and asparagine) in feed ingredients for comparison with "nutritionally essential AA" (EAA; those AA whose carbon skeletons cannot be formed by animals). Except for gelatin and feather meal, animal and plant ingredients contained high percentages of glutamate plus glutamine, branched-chain AA, and aspartate plus asparagine, which were 10-32, 15-25, and 8-14% of total protein, respectively. In particular, leucine and glutamine were most abundant in blood meal and casein (13% of total protein), respectively. Notably, gelatin, feather meal, fish meal, meat and bone meal, and poultry byproduct had high percentages of glycine, proline plus hydroxyproline, and arginine, which were 10-35, 9.6-35, and 7.2-7.9% of total protein, respectively. Among plant products, arginine was most abundant in peanut meal and cottonseed meal (14-16% of total protein), whereas corn and sorghum had low percentages of cysteine, lysine, methionine, and tryptophan (0.9-3% of total protein). Overall, feed ingredients of animal origin (except for gelatin) are excellent sources of NEAA and EAA for livestock, avian, and aquatic species, whereas gelatin provides highest amounts of arginine, glycine, and proline plus hydroxyproline. Because casein, corn, soybean, peanut, fish, and gelatin are consumed by children and adults, our findings also have important implications for human nutrition.

  19. Plant growth, metabolism and adaptation in relation to stress conditions. XXVII. Can ascorbic acid modify the adverse effects of NaCl and mannitol on amino acids, nucleic acids and protein patterns in Vicia faba seedlings?

    PubMed

    Younis, M E; Hasaneen, M N A; Kazamel, A M S

    2009-03-01

    The adverse effects of either NaCl or mannitol on amino acids, protein patterns and nucleic acids in Vicia faba seeds were investigated. The exogenous addition of 4 mM ascorbic acid to the stressing media in which the broad bean seeds were germinated in combination with either the ionic (NaCl) or osmotic (mannitol) stressor induced significant protective changes in the total amount and in the relative composition of amino acids in general and in proline, glycine, glutamic, aspartic, alanine and serine in particular. It also induced changes in nucleic acids (RNA and DNA) content. These changes occurred throughout the entire period of the experiments (12 days). Separate administration of NaCl or mannitol enhanced the occurrence of particular novel proteins that were not detected in control bean seeds (water medium). Protein banding patterns of broad bean seedlings treated with NaCl or mannitol in combination with 4 mM ascorbic acid showed different de novo protein bands, with different molecular weights, at different stages of seedlings growth, with lower levels or a nearly complete absence of the major stress proteins. The pattern of changes for amino acids and nucleic acids and the range of protein bands extracted from the variously treated broad bean seedlings indicate a positive role of ascorbic acid in the alleviation of the damage effects induced by NaCl and mannitol. The importance of this role in the stress tolerance of broad beans is discussed.

  20. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  1. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress

    PubMed Central

    2013-01-01

    Background Heavy metal pollution in crop fields is one of the major issues in sustainable agriculture production. To improve crop growth and reduce the toxic effects of metals is an ideal strategy. Understanding the resilience of gibberellins producing endophytic fungi associated with crop plants in metal contaminated agriculture fields could be an important step towards reducing agrochemical pollutions. In present study, it was aimed to screen and identify metal resistant endophyte and elucidate its role in rescuing crop plant growth and metabolism during metal stress. Results Fungal endophyte, Penicillium funiculosum LHL06, was identified to possess higher growth rate in copper (Cu) and cadmium contaminated mediums as compared to other endophytes (Metarhizium anisopliae, Promicromonospora sp. and Exophiala sp.). P. funiculosum had high biosorption potential toward copper as compared to cadmium. An endophyte-metal-plant interaction was assessed by inoculating the host Glycine max L. plants with P. funiculosum during Cu (100 μM) stress. The Cu application adversely affected the biomass, chlorophyll and total protein content of non-inoculated control plants. The control plants unable to synthesis high carbon, hydrogen and nitrogen because the roots had lower access to phosphorous, potassium, sulphur and calcium during Cu treatment. Conversely, P. funiculosum-association significantly increased the plant biomass, root physiology and nutrients uptake to support higher carbon, hydrogen and nitrogen assimilation in shoot. The metal-removal potential of endophyte-inoculated plants was significantly higher than control as the endophyte-association mediated the Cu uptake via roots into shoots. The symbiosis rescued the host-plant growth by minimizing Cu-induced electrolytic leakage and lipid peroxidation while increasing reduces glutathione activities to avoid oxidative stress. P. funiculosum-association synthesized higher quantities of proline and glutamate as compared

  2. Susceptibility to dental caries and the salivary proline-rich proteins.

    PubMed

    Levine, Martin

    2011-01-01

    Early childhood caries affects 28% of children aged 2-6 in the US and is not decreasing. There is a well-recognized need to identify susceptible children at birth. Caries-free adults neutralize bacterial acids in dental biofilms better than adults with severe caries. Saliva contains acidic and basic proline-rich proteins (PRPs) which attach to oral streptococci. The PRPs are encoded within a small region of chromosome 12. An acidic PRP allele (Db) protects Caucasian children from caries but is more common in African Americans. Some basic PRP allelic phenotypes have a three-fold greater frequency in caries-free adults than in those with severe caries. Early childhood caries may associate with an absence of certain basic PRP alleles which bind oral streptococci, neutralize biofilm acids, and are in linkage disequilibrium with Db in Caucasians. The encoding of basic PRP alleles is updated and a new technology for genotyping them is described. PMID:22190937

  3. Susceptibility to Dental Caries and the Salivary Proline-Rich Proteins

    PubMed Central

    Levine, Martin

    2011-01-01

    Early childhood caries affects 28% of children aged 2–6 in the US and is not decreasing. There is a well-recognized need to identify susceptible children at birth. Caries-free adults neutralize bacterial acids in dental biofilms better than adults with severe caries. Saliva contains acidic and basic proline-rich proteins (PRPs) which attach to oral streptococci. The PRPs are encoded within a small region of chromosome 12. An acidic PRP allele (Db) protects Caucasian children from caries but is more common in African Americans. Some basic PRP allelic phenotypes have a three-fold greater frequency in caries-free adults than in those with severe caries. Early childhood caries may associate with an absence of certain basic PRP alleles which bind oral streptococci, neutralize biofilm acids, and are in linkage disequilibrium with Db in Caucasians. The encoding of basic PRP alleles is updated and a new technology for genotyping them is described. PMID:22190937

  4. Pitiprolamide, a proline-rich dolastatin 16 analogue from the marine cyanobacterium Lyngbya majuscula from Guam.

    PubMed

    Montaser, Rana; Abboud, Khalil A; Paul, Valerie J; Luesch, Hendrik

    2011-01-28

    An unusual cyclic depsipeptide, pitiprolamide (1), was isolated from the marine cyanobacterium Lyngbya majuscula collected at Piti Bomb Holes, Guam. The structure was deduced using NMR, MS, X-ray crystallography, and enantioselective HPLC-MS techniques. Remarkably, proline represents half of the residues forming pitiprolamide (1). Other distinctive features include a 4-phenylvaline (dolaphenvaline, Dpv) moiety initially found in dolastatin 16 and the rare 2,2-dimethyl-3-hydroxyhexanoic acid (Dmhha) unit condensed in a unique sequence in one single molecule. Pitiprolamide (1) showed weak cytotoxic activity against HCT116 colon and MCF7 breast cancer cell lines, as well as weak antibacterial activities against Mycobacterium tuberculosis and Bacillus cereus.

  5. Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina.

    PubMed

    Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G

    2013-01-25

    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing.

  6. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  7. A Didactic Experience of Statistical Analysis for the Determination of Glycine in a Nonaqueous Medium Using ANOVA and a Computer Program

    ERIC Educational Resources Information Center

    Santos-Delgado, M. J.; Larrea-Tarruella, L.

    2004-01-01

    The back-titration methods are compared statistically to establish glycine in a nonaqueous medium of acetic acid. Important variations in the mean values of glycine are observed due to the interaction effects between the analysis of variance (ANOVA) technique and a statistical study through a computer software.

  8. Growth inhibition by exogenous proline and its metabolism in saltgrass (Distichlis spicata) suspension cultures.

    PubMed

    Rodriguez, M M; Heyser, J W

    1988-08-01

    The growth of Distichlis spicata suspension cultures in LS medium without NaCl was inhibited 54% by 2 mM proline. In medium containing 260 mM NaCl, 10 mM proline inhibited growth by only 22%. The uptake and metabolism of 10 mM L-[1-(13)C] proline was followed by (13)C NMR and ninhydrin analyses of suspensions cultured in the presence of 0 or 260 mM NaCl. Uptake of 85 to 92% of the exogenous proline occurred within 72 h in all media. In 10 mM proline and no NaCl, cellular proline reached a maximm of 51.5 μmoles/g FW compared to 1.9 μmoles/g FW in suspensions not grown on proline. In medium containing 260 mM NaCl and proline, cellular proline reached 59-65 μmoles/g FW compared to 30-40 μmoles/g FW in controls grown without proline. The (13)C-label in the proline-C1 was either retained in proline or disappeared, presumably released as carbon dioxide, by catabolism through the TCA cycle. Since no metabolite of (13)C-proline was detected by NMR, proline was considered to be the molecule which inhibited the suspension culture growth.

  9. Genetics of Amino Acid Taste and Appetite.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  10. Standard thermodynamic functions of complex formation between Cu2+ and glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2013-05-01

    Heat effects of the interaction of copper(II) solutions with aminoacetic acid (glycine) are measured by the direct calorimetry at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 against a background of potassium nitrate. Standard enthalpy values for reactions of the formation of aminoacetic acid copper complexes in aqueous solutions are obtained using an equation with a single individual parameter by extrapolating it to zero ionic strength. The standard thermodynamic characteristics of complex formation in the Cu2+-glycine system are calculated. It is shown that glycine-like coordination is most likely in Cu(II) complexes with L-asparagine, L-glutamine, and L-valine.

  11. Amino acids in the rhizosphere: from plants to microbes.

    PubMed

    Moe, Luke A

    2013-09-01

    Often referred to as the "building blocks of proteins", the 20 canonical proteinogenic amino acids are ubiquitous in biological systems as the functional units in proteins. Sometimes overlooked are their varying additional roles that include serving as metabolic intermediaries, playing structural roles in bioactive natural products, acting as cosubstrates in enzymatic transformations, and as key regulators of cellular physiology. Amino acids can also serve as biological sources of both carbon and nitrogen and are found in the rhizosphere as a result of lysis or cellular efflux from plants and microbes and proteolysis of existing peptides. While both plants and microbes apparently prefer to take up nitrogen in its inorganic form, their ability to take up and use amino acids may confer a selective advantage in certain environments where organic nitrogen is abundant. Further, certain amino acids (e.g., glutamate and proline) and their betaines (e.g., glycine betaine) serve as compatible solutes necessary for osmoregulation in plants and microbes and can undergo rapid cellular flux. This ability is of particular importance in an ecological niche such as the rhizosphere, which is prone to significant variations in solute concentrations. Amino acids are also shown to alter key phenotypes related to plant root growth and microbial colonization, symbiotic interactions, and pathogenesis in the rhizosphere. This review will focus on the sources, transport mechanisms, and potential roles of the 20 canonical proteinogenic amino acids in the rhizosphere.

  12. Glycine-Glomus-Rhizobium Symbiosis

    PubMed Central

    Bethlenfalvay, Gabor J.; Brown, Milford S.; Mihara, Keiko L.; Stafford, Alan E.

    1987-01-01

    Soybean (Glycine max [L.] Merr.) plants were nodulated (Bradyrhizobium japonicum) and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or left uncolonized. All plants were grown unstressed for 21 days initially. After this period, some VAM and non-VAM plants were exposed to four 8-day drought cycles while others were kept well watered. Drought cycles were terminated by rewatering when soil moisture potentials reached −1.2 megapascal. Nodule development and activity, transpiration, leaf conductance, leaf and root parameters including fresh and dry weight, and N and P nutrition of VAM plants and of non-VAM, P-fed plants grown under the same controlled conditions were compared. All parameters, except N content, were greater in VAM plants than in P-fed, non-VAM plants when under stress. The opposite was generally true in the unstressed comparisons. Transpiration and leaf conductance were significantly greater in stressed VAM than in non-VAM plants during the first half of the final stress cycle. Values for both VAM and non-VAM plants decreased linearly with time during the cycle and converged at a high level of stress (−1.2 megapascal). Effects of VAM fungi on the consequences of drought stress relative to P nutrition and leaf gas exchange are discussed in the light of these findings and those reported in the literature. PMID:16665641

  13. Revised Backbone-Virtual-Bond-Angle Potentials to Treat the l- and d-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field

    PubMed Central

    2015-01-01

    Continuing our effort to introduce d-amino-acid residues in the united residue (UNRES) force field developed in our laboratory, in this work the Cα ··· Cα ··· Cα backbone-virtual-bond-valence-angle (θ) potentials for systems containing d-amino-acid residues have been developed. The potentials were determined by integrating the combined energy surfaces of all possible triplets of terminally blocked glycine, alanine, and proline obtained with ab initio molecular quantum mechanics at the MP2/6-31G(d,p) level to calculate the corresponding potentials of mean force (PMFs). Subsequently, analytical expressions were fitted to the PMFs to give the virtual-bond-valence potentials to be used in UNRES. Alanine represented all types of amino-acid residues except glycine and proline. The blocking groups were either the N-acetyl and N′,N′-dimethyl or N-acetyl and pyrrolidyl group, depending on whether the residue next in sequence was an alanine-type or a proline residue. A total of 126 potentials (63 symmetry-unrelated potentials for each set of terminally blocking groups) were determined. Together with the torsional, double-torsional, and side-chain-rotamer potentials for polypeptide chains containing d-amino-acid residues determined in our earlier work (Sieradzan et al. J. Chem. Theory Comput., 2012, 8, 4746), the new virtual-bond-angle (θ) potentials now constitute the complete set of physics-based potentials with which to run coarse-grained simulations of systems containing d-amino-acid residues. The ability of the extended UNRES force field to reproduce thermodynamics of polypeptide systems with d-amino-acid residues was tested by comparing the experimentally measured and the calculated free energies of helix formation of model KLALKLALxxLKLALKLA peptides, where x denotes any d- or l- amino-acid residue. The obtained results demonstrate that the UNRES force field with the new potentials reproduce the changes of free energies of helix formation upon d

  14. Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions: implications for understanding its crystallization and polymorphism.

    PubMed

    Huang, Jun; Stringfellow, Thomas C; Yu, Lian

    2008-10-22

    Glycine, the simplest amino acid, is described as existing as hydrogen-bonded cyclic dimers in supersaturated aqueous solutions and, as a result, crystallizing in a centrosymmetric polymorph (polymorph alpha) for which the dimer can be viewed as the building unit, in favor of other polymorphs of polar structures. In exhibiting this relation between polymorphic selectivity and self-association in solution, glycine is thought to illustrate a general principle. We measured the freezing-point depression of glycine-water up to 30% supersaturation and found that glycine exists mainly as monomers, not dimers, and that the dimer stability constant K D is smaller than 0.1 kg of H 2O/mol if the observed osmotic abnormality is attributed to dimerization. We also revisited a report cited as evidence for glycine dimerization: the slowdown of glycine diffusion with solution age. Pulsed gradient spin-echo NMR spectroscopy was used in place of the previous method of Gouy interferometry to avoid perturbations to sloution structure caused by the interdiffusion between two solutions of different concentrations. No aging effect was observed on glycine diffusion up to 24% supersaturation after five days. The solute size calculated from diffusivity, viscosity, and the Stokes-Einstein relation showed no increase with concentration or solution age. We conclude that glycine exists in supersaturated aqueous solutions mainly as monomers, not dimers, and remains so upon aging. This result does not invalidate the theories of how pH and additives affect glycine's polymorphic preference, because they begin with the assumption that alpha glycine is the preferred polymorph under normal conditions, but requires a new explanation for that assumption itself. PMID:18816054

  15. N-[[(Mercaptoacetyl)amino]benzoyl]glycines as mucolytic agents.

    PubMed

    Martin, T A; Comer, W T

    1985-07-01

    m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series. PMID:4009614

  16. N-[[(Mercaptoacetyl)amino]benzoyl]glycines as mucolytic agents.

    PubMed

    Martin, T A; Comer, W T

    1985-07-01

    m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series.

  17. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well. PMID:26369758

  18. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  19. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    NASA Astrophysics Data System (ADS)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  20. Influence of NaCl on Growth, Proline, and Phosphoenolpyruvate Carboxylase Levels in Mesembryanthemum crystallinum Suspension Cultures 1

    PubMed Central

    Thomas, John C.; De Armond, Richard L.; Bohnert, Hans J.

    1992-01-01

    The facultative halophyte Mesembryanthemum crystallinum responds to salt stress by increasing the levels of phosphoenolpyruvate carboxylase (PEPCase) and other enzymes associated with Crassulacean acid metabolism. A more common response to salt stress in sensitive and tolerant species, including M. crystallinum, is the accumulation of proline. We have established M. crystallinum suspension cultures to investigate whether both these salt-induced responses occur at the cellular level. Leaf-and root-derived cultures maintain 5% of the total soluble amino acids as proline. Cell culture growth slows upon addition of 400 millimolar NaCl, and proline levels increase to 40% of the total soluble amino acids. These results suggest a functional salt-stress and response program in Mesembryanthemum cells. Suspension cultures grown with or without 400 millimolar NaCl have PEPCase levels that compare with those from roots and unstressed leaves. The predominant protein cross-reacting with an anti-PEPCase antibody corresponds to 105 kilodaltons (apparent molecular mass), whereas a second species of approximately 110 kilodaltons is present at low levels. In salt-stressed leaves, the 110 kilodalton protein is more prevalent. Levels of mRNA for both ppc1 (salt stress induced in leaves) and ppc2 (constitutive) genes in salt-treated suspensions cultures are equal to unstressed leaves, and only twice the levels found in untreated suspension cultures. Whereas cells accumulate proline in response to NaCl, PEPCase protein amounts remain similar in salt-treated and untreated cultures. The induction upon salt stress of the 110 kilodalton PEPCase protein and other Crassulacean acid metabolism enzymes in organized tissues is not observed in cell culture and may depend on tissue-dependent or photoautotrophy-dependent programs. ImagesFigure 4Figure 5 PMID:16668687

  1. Organic foliar Milstop shows efficacy against soybean aphid (Aphis glycines) on soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) has been produced in the United States since 1765. Soybean aphids (Aphis glycines Matsumura) were first detected on soybean in the United States in 2000 and now cause an estimated yield loss of up to US$4.9 billion annually. Organic soybean producers have few insecti...

  2. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring.

    PubMed

    Lu, Yonghai; Lam, Honming; Pi, Erxu; Zhan, Qinglei; Tsai, Sauna; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-09-11

    Metabolomics is developing as an important functional genomics tool for understanding plant systems' response to genetic and environmental changes. Here, we characterized the metabolic changes of cultivated soybean C08 (Glycine max L. Merr) and wild soybean W05 (Glycine soja Sieb.et Zucc.) under salt stress using MS-based metabolomics, in order to reveal the phenotypes of their eight hybrid offspring (9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590). Total small molecule extracts of soybean seedling leaves were profiled by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-Fourier transform mass spectrometry (LC-FT/MS). We found that wild soybean contained higher amounts of disaccharides, sugar alcohols, and acetylated amino acids than cultivated soybean, but with lower amounts of monosaccharides, carboxylic acids, and unsaturated fatty acids. Further investigations demonstrated that the ability of soybean to tolerate salt was mainly based on synthesis of compatible solutes, induction of reactive oxygen species (ROS) scavengers, cell membrane modifications, and induction of plant hormones. On the basis of metabolic phenotype, the salt-tolerance abilities of 9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590 were discriminated. Our results demonstrated that MS-based metabolomics provides a fast and powerful approach to discriminate the salt-tolerance characteristics of soybeans.

  3. Molecular cloning and characterization of a putative proline dehydrogenase gene in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Lü, Dong; Guo, Wen-Chao; Ahmat, Tursun; Yang, Lu; Mu, Li-Li; Li, Guo-Qing

    2014-04-01

    Leptinotarsa decemlineata adults exhibit a season-dependent activity. In spring, post-diapause beetles often fly a long distance from overwintering sites to potato fields. In summer and autumn, the flight ability is sharply reduced. Proline is the main energy substrate of L. decemlineata during flight and proline dehydrogenase (ProDH) catalyzes the first step in proline catabolism. Here we identified a putative LdProDH gene; it had three cDNA isoforms which shared the same 5'UTR and coding region, but differed in the lengths of 3'UTRs (515, 1 092 and 1 242 bp for isoforms-1, -2 and -3, respectively). LdProDH encoded a 616 amino acid protein that showed high sequence similarity to ProDH-like proteins from other insect species. LdProDH was expressed in the third and fourth instars larvae and adults, but not in pupae. Dietary ingestion of bacterially expressed LdProDH-dsRNA by adults significantly decreased its messenger RNA (mRNA) level, and caused an elevation of free proline content in the hemolymph. Further observation revealed that three canonical polyadenylation signals (AATAAA) were tandemly located in the 3'UTR of isoform-3. The first, second and third polyadenylation sites gave rise to isoforms-1, -2 and -3, respectively. Analysis of the genomic DNA uncovered that the three isoforms resulted from alternative polyadenylation. The mRNA level of isoform-1, which expressed at low levels in pre-diapause adults, became abundant in post-diapause beetles. It is indicated that the LdProDH expression is fine-tuned through 3'UTR to control proline catabolism for the season-dependent activity of L. decemlineata adults. PMID:23956209

  4. Identification and Characterization of Bifunctional Proline Racemase/Hydroxyproline Epimerase from Archaea: Discrimination of Substrates and Molecular Evolution

    PubMed Central

    Watanabe, Seiya; Tanimoto, Yoshiaki; Nishiwaki, Hisashi; Watanabe, Yasuo

    2015-01-01

    Proline racemase (ProR) is a member of the pyridoxal 5’-phosphate-independent racemase family, and is involved in the Stickland reaction (fermentation) in certain clostridia as well as the mechanisms underlying the escape of parasites from host immunity in eukaryotic Trypanosoma. Hydroxyproline epimerase (HypE), which is in the same protein family as ProR, catalyzes the first step of the trans-4-hydroxy-L-proline metabolism of bacteria. Their substrate specificities were previously considered to be very strict, in spite of similarities in their structures and catalytic mechanisms, and no racemase/epimerase from the ProR superfamily has been found in archaea. We here characterized the ProR-like protein (OCC_00372) from the hyperthermophilic archaeon, Thermococcus litoralis (TlProR). This protein could reversibly catalyze not only the racemization of proline, but also the epimerization of 4-hydroxyproline and 3-hydroxyproline with similar kinetic constants. Among the four (putative) ligand binding sites, one amino acid substitution was detected between TlProR (tryptophan at the position of 241) and natural ProR (phenylalanine). The W241F mutant showed a significant preference for proline over hydroxyproline, suggesting that this (hydrophobic and bulky) tryptophan residue played an importance role in the recognition of hydroxyproline (more hydrophilic and bulky than proline), and substrate specificity for hydroxyproline was evolutionarily acquired separately between natural HypE and ProR. A phylogenetic analysis indicated that such unique broad substrate specificity was derived from an ancestral enzyme of this superfamily. PMID:25786142

  5. Molecular cloning and characterization of a putative proline dehydrogenase gene in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Lü, Dong; Guo, Wen-Chao; Ahmat, Tursun; Yang, Lu; Mu, Li-Li; Li, Guo-Qing

    2014-04-01

    Leptinotarsa decemlineata adults exhibit a season-dependent activity. In spring, post-diapause beetles often fly a long distance from overwintering sites to potato fields. In summer and autumn, the flight ability is sharply reduced. Proline is the main energy substrate of L. decemlineata during flight and proline dehydrogenase (ProDH) catalyzes the first step in proline catabolism. Here we identified a putative LdProDH gene; it had three cDNA isoforms which shared the same 5'UTR and coding region, but differed in the lengths of 3'UTRs (515, 1 092 and 1 242 bp for isoforms-1, -2 and -3, respectively). LdProDH encoded a 616 amino acid protein that showed high sequence similarity to ProDH-like proteins from other insect species. LdProDH was expressed in the third and fourth instars larvae and adults, but not in pupae. Dietary ingestion of bacterially expressed LdProDH-dsRNA by adults significantly decreased its messenger RNA (mRNA) level, and caused an elevation of free proline content in the hemolymph. Further observation revealed that three canonical polyadenylation signals (AATAAA) were tandemly located in the 3'UTR of isoform-3. The first, second and third polyadenylation sites gave rise to isoforms-1, -2 and -3, respectively. Analysis of the genomic DNA uncovered that the three isoforms resulted from alternative polyadenylation. The mRNA level of isoform-1, which expressed at low levels in pre-diapause adults, became abundant in post-diapause beetles. It is indicated that the LdProDH expression is fine-tuned through 3'UTR to control proline catabolism for the season-dependent activity of L. decemlineata adults.

  6. Exclusive Use of trans-Editing Domains Prevents Proline Mistranslation*

    PubMed Central

    Vargas-Rodriguez, Oscar; Musier-Forsyth, Karin

    2013-01-01

    Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to cognate tRNAs. Although the accuracy of this process is critical for overall translational fidelity, similar sizes of many amino acids provide a challenge to ARSs. For example, prolyl-tRNA synthetases (ProRSs) mischarge alanine and cysteine onto tRNAPro. Many bacterial ProRSs possess an alanine-specific proofreading domain (INS) but lack the capability to edit Cys-tRNAPro. Instead, Cys-tRNAPro is cleared by a single-domain homolog of INS, the trans-editing YbaK protein. A global bioinformatics analysis revealed that there are six types of “INS-like” proteins. In addition to INS and YbaK, four additional single-domain homologs are widely distributed throughout bacteria: ProXp-ala (formerly named PrdX), ProXp-x (annotated as ProX), ProXp-y (annotated as YeaK), and ProXp-z (annotated as PA2301). The last three are domains of unknown function. Whereas many bacteria encode a ProRS containing an INS domain in addition to YbaK, many other combinations of INS-like proteins exist throughout the bacterial kingdom. Here, we focus on Caulobacter crescentus, which encodes a ProRS with a truncated INS domain that lacks catalytic activity, as well as YbaK and ProXp-ala. We show that C. crescentus ProRS can readily form Cys- and Ala-tRNAPro, and deacylation studies confirmed that these species are cleared by C. crescentus YbaK and ProXp-ala, respectively. Substrate specificity of C. crescentus ProXp-ala is determined, in part, by elements in the acceptor stem of tRNAPro and further ensured through collaboration with elongation factor Tu. These results highlight the diversity of approaches used to prevent proline mistranslation and reveal a novel triple-sieve mechanism of editing that relies exclusively on trans-editing factors. PMID:23564458

  7. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes

    PubMed Central

    Carvajal-González, Alexander; Leite, M. Isabel; Waters, Patrick; Woodhall, Mark; Coutinho, Ester; Balint, Bettina; Lang, Bethan; Pettingill, Philippa; Carr, Aisling; Sheerin, Una-Marie; Press, Raomand; Lunn, Michael P.; Lim, Ming; Maddison, Paul; Meinck, H.-M.; Vandenberghe, Wim

    2014-01-01

    The clinical associations of glycine receptor antibodies have not yet been described fully. We identified prospectively 52 antibody-positive patients and collated their clinical features, investigations and immunotherapy responses. Serum glycine receptor antibody endpoint titres ranged from 1:20 to 1:60 000. In 11 paired samples, serum levels were higher than (n = 10) or equal to (n = 1) cerebrospinal fluid levels; there was intrathecal synthesis of glycine receptor antibodies in each of the six pairs available for detailed study. Four patients also had high glutamic acid decarboxylase antibodies (>1000 U/ml), and one had high voltage-gated potassium channel-complex antibody (2442 pM). Seven patients with very low titres (<1:50) and unknown or alternative diagnoses were excluded from further study. Three of the remaining 45 patients had newly-identified thymomas and one had a lymphoma. Thirty-three patients were classified as progressive encephalomyelitis with rigidity and myoclonus, and two as stiff person syndrome; five had a limbic encephalitis or epileptic encephalopathy, two had brainstem features mainly, two had demyelinating optic neuropathies and one had an unclear diagnosis. Four patients (9%) died during the acute disease, but most showed marked improvement with immunotherapies. At most recent follow-up, (2–7 years, median 3 years, since first antibody detection), the median modified Rankin scale scores (excluding the four deaths) decreased from 5 at maximal severity to 1 (P < 0.0001), but relapses have occurred in five patients and a proportion are on reducing steroids or other maintenance immunotherapies as well as symptomatic treatments. The glycine receptor antibodies activated complement on glycine receptor-transfected human embryonic kidney cells at room temperature, and caused internalization and lysosomal degradation of the glycine receptors at 37°C. Immunoglobulin G antibodies bound to rodent spinal cord and brainstem co-localizing with

  8. Localization of post-proline cleaving peptidases in Tenebrio molitor larval midgut.

    PubMed

    Goptar, Irina A; Filippova, Irina Yu; Lysogorskaya, Elena N; Oksenoit, Elena S; Vinokurov, Konstantin S; Zhuzhikov, Dmitry P; Bulushova, Natalja V; Zalunin, Igor A; Dunaevsky, Yakov E; Belozersky, Mikhail A; Oppert, Brenda; Elpidina, Elena N

    2008-03-01

    Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in Tenebrio molitor larval midgut with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activity at pH 5.3, and was located mainly in the more acidic anterior midgut lumen. The dynamics of PPCP1 activity and the total activity of soluble digestive peptidases in the course of food digestion were similar, suggesting that the enzyme participates in protein digestion. PPCP2 is a nondigestive soluble tissue enzyme evenly distributed along the midgut. An increase in the activity of PPCP2 was observed in buffers of pH 5.6-8.6 and was maximal at pH 7.4. The sensitivity of PPCP2 to inhibitors and the effect of pH are similar to prolyl oligopeptidases with a cysteine residue near the substrate binding site.

  9. Nazarov cyclization of dienylaziridines: synthesis of cyclopentadienyl/hydrinedienyl/indenyl glycines.

    PubMed

    Sudhakar, Gangarajula; Reddy, Karla Janardhan; Nanubolu, Jagadesh Babu

    2015-09-01

    Cyclopentadienyl, hydrinedienyl, and indenyl glycines were synthesized using dienylaziridines as Nazarov cyclization precursors for the first time. Several substrates were synthesized to demonstrate the compatibility of this reaction. Asymmetric synthesis of these amino acids was also developed to show the additional scope of this method. PMID:26203635

  10. 77 FR 73426 - Glycine From the People's Republic of China: Final Partial Affirmative Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... of purity and is used as a sweetener/taste enhancer, a buffering agent, reabsorbable amino acid... Antidumping Duty Order: Glycine From the People's Republic of China, 60 FR 16116 (March 29, 1995) (Order... Order and Initiation of Scope Inquiry, 77 FR 21532 (April 10, 2012) (Preliminary Determination)....

  11. 76 FR 57951 - Glycine From the People's Republic of China: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... and is used as a sweetener/taste enhancer, a buffering agent, reabsorbable amino acid, chemical... Antidumping Duty Order: Glycine From the People's Republic of China, 60 FR 16116 (March 29, 1995). On October... of Five-Year (``Sunset'') Review, 75 FR 60731 (October 1, 2010). As a result of this sunset...

  12. 77 FR 21532 - Glycine From the People's Republic of China: Preliminary Partial Affirmative Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... of purity and is used as a sweetener/taste enhancer, a buffering agent, reabsorbable amino acid...: Glycine From the People's Republic of China, 60 FR 16116 (March 29, 1995) (Order). DATES: Effective Date... FR 16640 (March 28, 2008) (Indian Investigation) and accompanying Issues and Decision Memorandum...

  13. Monthly changes of glycogen, lipid and free amino acid of oyster

    NASA Astrophysics Data System (ADS)

    Zhicui, Zhang; Changhu, Xue; Xin, Gao; Zhaojie, Li; Qi, Wang

    2006-07-01

    Monthly difference of the chemical composition of oyster cultured along the eastern coast of Shandong Province was analyzed. The components analyzed included glycogen, fatty acid and free amino acid (FAA). The content of glycogen was high in January and March (2.89 and 2.82 g(100g)-1 on average, respectively) and low in October (2.07 g(100g)-1 on avarage). The low content of neutral lipids in October reflected a relatively poor nutritional value of oyster (1.42 g(100 g)-1 on average). The main fatty acids of oyster were palmitic acid (16:0), oleic acid (18:1), eicosapentaenoic acid (EPA, 20: 5ω-3) and docosahexaenoic acid (DHA, 22:6ω-3). The major FAAs of oyster were Taurine, Glutamicacid, Glycin, Alanine, Arginine and Proline. Taurine was the most abundant FAA with its content ranging from 603 mg (100g)-1 to 1139 mg(100g)-1. The high contents of glycogen, polyunsaturated fatty acid and FAA showed that oyster cultured along the eastern coast of Shandong Province was nutritionally good in January and March.

  14. Changes in tissue free amino acid pools in growing chickens fed thermally treated vetch diets.

    PubMed

    Fernández-Fígares, I; Nieto, R; Aguilera, J F; Lachica, M

    2014-04-01

    A three-day assay was developed to evaluate the effect of autoclaving on protein quality of vetch as an alternative to classical growth methods. Male chickens (n = 10/diet) were given approximately isonitrogenous diets based on raw or autoclaved vetch for 3 days. Samples of plasma, muscle and liver were obtained for free amino acid analysis. Heating vetch depressed growth (11.9 vs. 23.2 g/d; p < 0.05). Plasma methionine and histidine increased (0.05 < p < 0.06), while gluconeogenic amino acids tended to decrease (p < 0.10) after heating. Muscle free amino acids did not change except for a trend to increased methionine (p = 0.06) in birds fed autoclaved vetch. In liver, most essential amino acids, glycine, proline and tyrosine increased markedly with heated vetch diet. Correlations between plasma and muscle free amino acids were poor compared with those between plasma and liver free amino acids. Liver free amino acid pool was more sensitive than muscle or plasma pool to amino acid inflow modifications after vetch heating.

  15. Combined supplementation of carbohydrate, alanine, and proline is effective in maintaining blood glucose and increasing endurance performance during long-term exercise in mice.

    PubMed

    Nogusa, Yoshihito; Mizugaki, Ami; Hirabayashi-Osada, Yuri; Furuta, Chie; Ohyama, Kana; Suzuki, Katsuya; Kobayashi, Hisamine

    2014-01-01

    Carbohydrate supplementation is extremely important during prolonged exercise because it maintains blood glucose levels during later stages of exercise. In this study, we examined whether maintaining blood glucose levels by carbohydrate supplementation could be enhanced during long-term exercise by combining this supplementation with alanine and proline, which are gluconeogenic amino acids, and whether such a combination would affect exercise endurance performance. Male C57BL/6J mice were orally administered either maltodextrin (1.25 g/kg) or maltodextrin (1.0 g/kg) with alanine (0.225 g/kg) and proline (0.025 g/kg) 15 min before running for 170 min. Combined supplementation of maltodextrin, alanine, and proline induced higher blood glucose levels than isocaloric maltodextrin alone during the late exercise phase (100-170 min). The hepatic glycogen content of mice administered maltodextrin, alanine, and proline was higher than that of mice ingesting maltodextrin alone 60 min after beginning exercise, but the glycogen content of the gastrocnemius muscle showed no difference. We conducted a treadmill running test to determine the effect of alanine and proline on endurance performance. The test showed that running time to exhaustion of mice that were supplemented with maltodextrin (2.0 g/kg) was longer than that of mice that were supplemented with water alone. Maltodextrin supplementation (1.0 g/kg) with alanine (0.9 g/kg) and proline (0.1 g/kg) further increased running time to exhaustion compared to maltodextrin alone (2.0 g/kg). These results indicate that combined supplementation of carbohydrate, alanine, and proline is effective for maintaining blood glucose and hepatic glycogen levels and increasing endurance performance during long-term exercise in mice.

  16. Ir-Spectroscopy of Glycine and its Complexes with Water in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Letzner, M.; Grün, S. A.; Schwaab, G.; Havenith, M.

    2011-06-01

    Glycine is the smallest amino acid, and therefore it is of special interest as a model and starting point for theoretical and experimental studies. Whereas the crystalline form of glycine consists of zwitterions NH_3+-CH_2-COO-, gas phase glycine is known to exist in the nonionized form NH_2-CH_2-COOH. The interaction between glycine and water has been widely studied using a large variety of theoretical methods. Depending on the theoretical level used, a stabilisation of the zwitterionic form is predicted for complexes containing from 2 to 7 water molecules. In low-temperature Ar matrices a set of characteristic IR absorption bands for the zwitterionic form has been observed. The higher stoichiometry complexes (glycine)\\cdots(H_2O)_n with n larger than 3 are demonstrated to be zwitterionic H-bonded complexes. The multitude of conformations expected for these glycine-water complexes makes a combination of low temperature and high resolution spectroscopy essential. We want to use the advantages of our experiment to investigate glycine and its complexes with water in helium-nanodroplets at ultracold temperatures in the range from 3000-3800 Cm-1. Our measurements were carried out using a high power IR-OPO (cw: 2.7 W) as radiation source and a helium nanodroplet spectrometer. Helium-nanodroplets are formed by expansion of helium at 55 bar through a 5 μm nozzle which is kept at a temperature of 16 K. The status of the project is presented. P.-G. Jönsson et al., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 1827 (1972) G. Junk et al., J. Am. Chem. Soc. 85, 839 (1963) R. Ramaekers et al., J. Chem. Phys., 120 (2004)

  17. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    NASA Astrophysics Data System (ADS)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  18. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests.

    PubMed

    Warren, C R; Adams, P R

    2007-03-01

    A central assumption of ecosystem N cycling has been that organic N must be converted to inorganic N to be available for plant uptake, but this has been questioned by recent studies. We examined uptake of nitrate, ammonium and the amino acid glycine in three species from Eucalyptus obliqua L'Her. wet forest in Tasmania, south-eastern Australia, to test the hypothesis that all three species can take up glycine, and to compare rates of glycine uptake with rates of uptake of nitrate and ammonium uptake. The alternative hypothesis that species vary in their preference for nitrate, ammonium and glycine ("niche differentiation") was also examined. Measurements were made on the canopy dominant Eucalyptus obliqua, and two rain forest tree species found in the understory or as sub-dominants of the canopy, Nothofagus cunninghamii (Hook.) Oerst. and Phyllocladus aspleniifolius (Labill.) Hook.f. Nitrogen uptake was examined in situ with attached roots placed in uptake solutions containing equimolar concentrations (100 micromol l(-1)) of (15)N-nitrate, (15)N-ammonium and 2-(13)C(2) (15)N-glycine. Species did not differ in their preference for different forms of N (species x N form interaction, P > 0.05), and thus there was no evidence of niche differentiation. In all species, rates of uptake were highest for ammonium (11 +/- 5 micromol g(DM) (-1) h(-1); mean +/- SD, n = 108), uptake of glycine occurred at less than half this rate (4.4 +/- 2.6 micromol g(DM) (-1) h(-1)), whereas uptake of nitrate occurred at one-tenth of this rate (0.9 +/- 1.2 micromol g(DM) (-1) h(-1)). The strong positive relationship between (15)N and (13)C uptake indicated that at least 72% of glycine-N was taken up intact. These findings indicate the potential for considerable uptake of organic N in the field.

  19. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  20. Proline-rich sequences that bind to Src homology 3 domains with individual specificities.

    PubMed Central

    Alexandropoulos, K; Cheng, G; Baltimore, D

    1995-01-01

    To study the binding specificity of Src homology 3 (SH3) domains, we have screened a mouse embryonic expression library for peptide fragments that interact with them. Several clones were identified that express fragments of proteins which, through proline-rich binding sites, exhibit differential binding specificity to various SH3 domains. Src-SH3-specific binding uses a sequence of 7 aa of the consensus RPLPXXP, in which the N-terminal arginine is very important. The SH3 domains of the Src-related kinases Fyn, Lyn, and Hck bind to this sequence with the same affinity as that of the Src SH3. In contrast, a quite different proline-rich sequence from the Btk protein kinase binds to the Fyn, Lyn, and Hck SH3 domains, but not to the Src SH3. Specific binding of the Abl SH3 requires a longer, more proline-rich sequence but no arginine. One clone that binds to both Src and Abl SH3 domains through a common site exhibits reversed binding orientation, in that an arginine indispensable for binding to all tested SH3 domains occurs at the C terminus. Another clone contains overlapping yet distinct Src and Abl SH3 binding sites. Binding to the SH3 domains is mediated by a common PXXP amino acid sequence motif present on all ligands, and specificity comes about from other interactions, often ones involving arginine. The rules governing in vivo usage of particular sites by particular SH3 domains are not clear, but one binding orientation may be more specific than another. Images Fig. 1 Fig. 2 Fig. 3 PMID:7536925

  1. Metabolic Shift of Escherichia coli under Salt Stress in the Presence of Glycine Betaine

    PubMed Central

    Metris, A.; George, S. M.; Mulholland, F.; Carter, A. T.

    2014-01-01

    An important area of food safety focuses on bacterial survival and growth in unfavorable environments. In order to understand how bacteria adapt to stresses other than nutrient limitation in batch cultures, we need to develop mechanistic models of intracellular regulation and metabolism under stress. We studied the growth of Escherichia coli in minimal medium with added salt and different osmoprotectants. To characterize the metabolic efficiency with a robust parameter, we identified the optical density (OD) values at the inflection points of measured “OD versus time” growth curves and described them as a function of glucose concentration. We found that the metabolic efficiency parameter did not necessarily follow the trend of decreasing specific growth rate as the salt concentration increased. In the absence of osmoprotectant, or in the presence of proline, the metabolic efficiency decreased with increasing NaCl concentration. However, in the presence of choline or glycine betaine, it increased between 2 and 4.5% NaCl before declining at 5% NaCl and above. Microarray analysis of the transcriptional network and proteomics analysis with glycine betaine in the medium indicated that between 4.5 and 5% NaCl, the metabolism switched from aerobic to fermentative pathways and that the response to osmotic stress is similar to that for oxidative stress. We conclude that, although the growth rate appeared to decrease smoothly with increasing NaCl, the metabolic strategy of cells changed abruptly at a threshold concentration of NaCl. PMID:24858086

  2. Metabolic shift of Escherichia coli under salt stress in the presence of glycine betaine.

    PubMed

    Metris, A; George, S M; Mulholland, F; Carter, A T; Baranyi, J

    2014-08-01

    An important area of food safety focuses on bacterial survival and growth in unfavorable environments. In order to understand how bacteria adapt to stresses other than nutrient limitation in batch cultures, we need to develop mechanistic models of intracellular regulation and metabolism under stress. We studied the growth of Escherichia coli in minimal medium with added salt and different osmoprotectants. To characterize the metabolic efficiency with a robust parameter, we identified the optical density (OD) values at the inflection points of measured "OD versus time" growth curves and described them as a function of glucose concentration. We found that the metabolic efficiency parameter did not necessarily follow the trend of decreasing specific growth rate as the salt concentration increased. In the absence of osmoprotectant, or in the presence of proline, the metabolic efficiency decreased with increasing NaCl concentration. However, in the presence of choline or glycine betaine, it increased between 2 and 4.5% NaCl before declining at 5% NaCl and above. Microarray analysis of the transcriptional network and proteomics analysis with glycine betaine in the medium indicated that between 4.5 and 5% NaCl, the metabolism switched from aerobic to fermentative pathways and that the response to osmotic stress is similar to that for oxidative stress. We conclude that, although the growth rate appeared to decrease smoothly with increasing NaCl, the metabolic strategy of cells changed abruptly at a threshold concentration of NaCl.

  3. Development of 2′-substituted (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine analogues as potent N-methyl-d-aspartic acid receptor agonists

    PubMed Central

    Risgaard, Rune; Nielsen, Simon D.; Hansen, Kasper B.; Jensen, Christina M.; Nielsen, Birgitte; Traynelis, Stephen F.; Clausen, Rasmus P.

    2013-01-01

    A series of 2′-substituted analogues of the selective NMDA receptor ligand (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine ((S)-CCG-IV) have been designed, synthesized and pharmacologically characterized. The design was based on a docking study hypothesizing that substituents in the 2′-position would protrude into a region where differences among the NMDA receptor GluN2 subunits exist. Various synthetic routes were explored, and two different routes provided a series of alkyl-substituted analogues. Pharmacological characterization revealed that these compounds are NMDA receptor agonists and that potency decreases with increasing size of the alkyl groups. Variations in agonist activity are observed at the different recombinant NMDA receptor subtypes. This study demonstrates that it is possible to introduce substituents in the 2′-position of (S)-CCG-IV while maintaining agonist activity and that variation among NMDA receptor subtypes may be achieved by probing this region of the receptor. PMID:23614571

  4. Proline-induced inhibition of glutamate release in hippocampal area CA1.

    PubMed

    Cohen, S M; Nadler, J V

    1997-09-26

    Concentrations of proline typical of human CSF have been shown to potentiate transmission at Schaffer collateral-commissural synapses on CA1 pyramidal cells of the rat hippocampus. This study tested the hypothesis that proline enhances excitatory synaptic transmission by increasing glutamate release. Two concentrations of proline were used: a concentration typical of normal human CSF (3 microM) and a concentration typical of CSF in persons with the genetic disorder hyperprolinemia type II (30 microM). Continuous exposure of hippocampal slices to either concentration of proline potentiated Schaffer collateral-commissural synaptic transmission. Proline shifted the plot of field EPSP slope against fiber volley amplitude upward. Contrary to the original hypothesis, neither concentration of proline reduced paired-pulse facilitation; 30 microM proline enhanced paired-pulse facilitation, whereas 3 microM proline had no effect. In line with its enhancement of paired-pulse facilitation, 30 microM proline reduced both the K+-evoked release of glutamate and aspartate from CA1 slices and the release of glutamate and aspartate from CA1 synaptosomes evoked by 4-aminopyridine. These results suggest that the proline-induced potentiation of Schaffer collateral-commissural synaptic transmission probably involves a postsynaptic, rather than a presynaptic, mechanism. Concentrations of proline normally found in human CSF little affect glutamate release. However, proline-induced inhibition of glutamate release may contribute to the neuropsychiatric disorders associated with hyperprolinemia type II.

  5. Antidepressants modulate glycine action in rat hippocampus

    PubMed Central

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-01-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  6. Glycine decarboxylase controls photosynthesis and plant growth.

    PubMed

    Timm, Stefan; Florian, Alexandra; Arrivault, Stephanie; Stitt, Mark; Fernie, Alisdair R; Bauwe, Hermann

    2012-10-19

    Photorespiration makes oxygenic photosynthesis possible by scavenging 2-phosphoglycolate. Hence, compromising photorespiration impairs photosynthesis. We examined whether facilitating photorespiratory carbon flow in turn accelerates photosynthesis and found that overexpression of the H-protein of glycine decarboxylase indeed considerably enhanced net-photosynthesis and growth of Arabidopsis thaliana. At the molecular level, lower glycine levels confirmed elevated GDC activity in vivo, and lower levels of the CO(2) acceptor ribulose 1,5-bisphosphate indicated higher drain from CO(2) fixation. Thus, the photorespiratory enzyme glycine decarboxylase appears as an important feed-back signaller that contributes to the control of the Calvin-Benson cycle and hence carbon flow through both photosynthesis and photorespiration.

  7. Antidepressants modulate glycine action in rat hippocampus.

    PubMed

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-12-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  8. Glycine as a regulator of tryptophan-dependent pigment synthesis in Malassezia furfur.

    PubMed

    Barchmann, Thorsten; Hort, Wiebke; Krämer, Hans-Joachim; Mayser, Peter

    2011-01-01

    The effects of the addition of different amino nitrogens on growth, morphology and secondary metabolism of Malassezia furfur were investigated. After primary culture on Dixon agar, M. furfur CBS 1878 was transferred into a fluid medium together with the nitrogen sources, glycine (Gly) or tryptophan (Trp), or a combination of both. Growth was measured by means of a direct cell counting method and pigment synthesis was photometrically assessed. Addition of glycine resulted in an exponential increase in biomass, but not in pigment production. Tryptophan as the sole nitrogen source caused distinct brown staining of the medium, without increasing biomass. Simultaneous equimolar addition of both amino acids resulted in an initial increase in biomass as a sign of preferential metabolism of glycine, followed by a growth plateau and pigment production which, caused by higher biomass, occurred more rapidly than after addition of tryptophan alone. The yeast-cell morphology changed from round to oval. Addition of glycine to the tryptophan-containing liquid culture stopped pigment formation with simultaneous growth induction. These in vitro on-off phenomena depending on the nitrogen source might be significant in the pathogenesis of pityriasis versicolor: hyperhidrosis followed by preferential consumption of individual nitrogen sources such as glycine with exponential growth and thereafter transamination of tryptophan and TRP-dependent pigment synthesis. PMID:19702622

  9. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.).

    PubMed

    Zouari, M; Ben Ahmed, Ch; Zorrig, W; Elloumi, N; Rabhi, M; Delmail, D; Ben Rouina, B; Labrousse, P; Ben Abdallah, F

    2016-06-01

    The ability of exogenous compatible solutes, such as proline, to counteract cadmium (Cd) inhibitory effects in young date palm plants (Phoenix dactylifera L. cv Deglet Nour) was investigated. Two-year-old date palm plants were subjected for five months at different Cd stress levels (0, 10 and 30 mg CdCl2 kg(-1) soil) whether supplied or not with exogenous proline (20mM) added through the irrigation water. Different levels of Cd stress altered plant growth, gas exchanges and chlorophyll content as well as water status, but at different extent among them. In contrast, an increase of antioxidant enzymes activities of Cd-treated plants in association with high amounts of proline content, hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and electrolyte leakage (EL) were observed. Interestingly, exogenous proline mitigated the adverse effects of Cd on young date palm. Indeed, it alleviated the oxidative damage induced by Cd accumulation and established better levels of plant growth, water status and photosynthetic activity. Moreover, proline-treated plants showed high antioxidant enzymes activities (superoxide dismutase, catalase and glutathione peroxydase) in roots and leaves as compared to Cd-treated plants. PMID:26901506

  10. Oligo-Glycine Synthesis in an Aqueous Solution of Glycine Under Oxidative Conditions

    NASA Astrophysics Data System (ADS)

    Yamagata, Yukio; Yamashita, Atsunori; Inomata, Katsuhiko

    1980-03-01

    Di-and tri-glycine were synthesized in 1M aqueous solution of glycine by bubbling for 90 hr with oxygen discharged in the path from an oxygen cylinder. The peptides were also produced by an incubation at 37°C of 2M glycine solution prepared with 75% hydrogen peroxide, and the yields were traced for 200 days. The final yields were about 0.25% and 0.01% for di-and tri-glycine, respectively. The solution at 166 days of incubation was applied to a Sephadex G 10 column, and the fractions around the top of the chromatogram were found to increase the intensity of ninhydrin color about 4˜5 times after hydrolysis, indicating an existence of oligo-glycine. The solutions of 1M glycine and 0.5M diglycine prepared with 30% hydrogen peroxide were incubated at 37°C for 38 days, and di-and tetra-glycine were detected in the yields of 0.12% and 0.33%, respectively.

  11. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function.

    PubMed

    Wilson, Kirilee A; Bär, Séverine; Maerz, Anne L; Alizon, Marc; Poumbourios, Pantelis

    2005-04-01

    Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment. PMID:15767455

  12. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity.

    PubMed

    Astafieva, Alexandra A; Enyenihi, Atim A; Rogozhin, Eugene A; Kozlov, Sergey A; Grishin, Eugene V; Odintsova, Tatyana I; Zubarev, Roman A; Egorov, Tsezi A

    2015-09-01

    Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications. PMID:26259198

  13. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity.

    PubMed

    Astafieva, Alexandra A; Enyenihi, Atim A; Rogozhin, Eugene A; Kozlov, Sergey A; Grishin, Eugene V; Odintsova, Tatyana I; Zubarev, Roman A; Egorov, Tsezi A

    2015-09-01

    Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications.

  14. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.

    PubMed

    Mohapatra, Sridev; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C

    2010-04-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra x maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and gamma-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.

  15. Virulent Hessian fly larvae manipulate the free amino acid content of host wheat plants.

    PubMed

    Saltzmann, Kurt D; Giovanini, Marcelo P; Zheng, Cheng; Williams, Christie E

    2008-11-01

    Gall-forming insects induce host plants to form specialized structures (galls) that provide immature life stages of the insect access to host plant nutrients and protection from natural enemies. Feeding by larvae of the Hessian fly (Mayetiola destructor Say) causes susceptible host wheat plants to produce a gall-like nutritive tissue that supports larval growth and development. To determine if changes in host plant free amino acid levels are associated with virulent Biotype L Hessian fly larval feeding, we quantified free amino acid levels in crown tissues of susceptible Newton wheat plants 1, 4, and 7 days after Hessian fly egg hatch. Hessian fly-infested susceptible plants were more responsive than resistant plants or uninfested controls, showing higher concentrations of alanine, glutamic acid, glycine, phenylalanine, proline, and serine 4 days after egg hatch. This 4-day post-hatch time point corresponds to the maturation of nutritive tissue cells in susceptible plants and the onset of rapid larval growth. By 7 days after egg hatch, when virulent second instars are actively feeding on the contents of nutritive tissue cells, the aromatic amino acids phenylalanine and tyrosine were more abundant compared to uninfested controls, but the levels of other free amino acids were no longer elevated. Changes in free amino acid abundance described in this report were associated with increased levels of mRNA encoded by wheat genes involved in amino acid synthesis and transport.

  16. Developmental and Hormonal Regulation of Genes Coding for Proline-Rich Proteins in Female Inflorescences and Kernels of Maize1

    PubMed Central

    Josè-Estanyol, Matilde; Puigdomènech, Pere

    1998-01-01

    The pattern of expression of two genes coding for proteins rich in proline, HyPRP (hybrid proline-rich protein) and HRGP (hydroxyproline-rich glycoprotein), has been studied in maize (Zea mays) embryos by RNA analysis and in situ hybridization. mRNA accumulation is high during the first 20 d after pollination, and disappears in the maturation stages of embryogenesis. The two genes are also expressed during the development of the pistillate spikelet and during the first stages of embryo development in adjacent but different tissues. HyPRP mRNA accumulates mainly in the scutellum and HRGP mRNA mainly in the embryo axis and the suspensor. The two genes appear to be under the control of different regulatory pathways during embryogenesis. We show that HyPRP is repressed by abscisic acid and stress treatments, with the exception of cold treatment. In contrast, HRGP is affected positively by specific stress treatments. PMID:9490753

  17. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    PubMed

    Cao, Huihui; Ke, Tao; Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was char