Science.gov

Sample records for acid promotes cell

  1. Ferulic acid promoting apoptosis in human osteosarcoma cell lines

    PubMed Central

    Zhang, Xu-dong; Wu, Qiang; Yang, Shu-hua

    2017-01-01

    Objective: To explore the promoting apoptosis and antitumor activities of ferulic acid (FA) in human osteosarcoma and its potential mechanism. Methods: The SaOS-2 and MG63 osteosarcoma cell lines were opted to experiment and these cells were, respectively, cultured with various concentrations of FA (0 μM, 10 μM, 20 μM, 40 μM) for 72 hours at 37°C. The viabilities of the FA treated cells were monitored by MTT. Apoptosis cells were evaluated using annexin V/PI by flow cytometry. Apoptosis proteins caspase-3, procaspase-3, Bcl-2 and Bax were detected by western blot. Expressions of apoptotic genes Bcl-2 and Bax were quantified by qPCR. Results: The cell viabilities were critically declined in the concentration-dependent manner in FA groups (P < 0.01). The apoptosis cells were increased proportionately with the concentration of FA (P < 0.05). The procaspase-3 protein contents, and Bcl-2 mRNA and protein contents were significantly decreased while caspase-3 protein contents, and Bax mRNA and protein contents were concomitantly increased in the concentration-dependent manner in FA groups (P < 0.05). The response to FA by the SaOS-2 osteosarcoma cell was similar with the MG63 osteosarcoma cell (P > 0.05). Conclusion: Ferulic acid could significantly descend osteosarcoma cell viability through the promoting apoptosis pathway in which FA activates both caspase-3 and Bax and inactivates Bcl-2. PMID:28367185

  2. Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression

    PubMed Central

    Peppicelli, Silvia; Bianchini, Francesca; Toti, Alessandra; Laurenzana, Anna; Fibbi, Gabriella; Calorini, Lido

    2015-01-01

    Mesenchymal stem cells (MSC) participate to tumor stroma development and several evidence suggests that they play a role in facilitating cancer progression. Because melanoma often shows extracellular pH low enough to influence host cell as tumor cell behavior, the aim of this study is to elucidate whether acidity affects cross talk between MSC and melanoma cells to disclose new liaisons promoting melanoma progression, and to offer new therapeutic opportunities. We found that MSC grown in a low pH medium (LpH-MSC) stimulate melanoma xenografts more than MSC grown in a standard pH medium. LpH-MSC express a higher level of TGFβ that is instrumental of epithelial-to-mesenchymal transition (EMT)-like phenotype induction in melanoma cells. LpH-MSC profile also shows a switching to an oxidative phosphorylation metabolism that was accompanied by a forced glycolytic pathway of melanoma cells grown in LpH-MSC-conditioned medium. Metformin, an inhibitor of mitochondrial respiratory chain was able to reconvert oxidative metabolism and abrogate TGFβ expression in LpH-MSC. In addition, esomeprazole, a proton pump inhibitor activated in acidosis, blocked TGFβ expression in LpH-MSC through the downregulation of IkB. Both agents, metformin and esomeprazole, inhibited EMT profile in melanoma cells grown in LpH-MSC medium, and reduced glycolytic markers. Thus, acidosis of tumor microenvironment potentiates the pro-tumoral activity of MSC and orchestrates for a new potential symbiosis, which could be target to limit melanoma progression. PMID:26496168

  3. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid.

    PubMed

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-10-31

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.

  4. Uric Acid Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Bone Mesenchymal Stem Cells.

    PubMed

    Li, Hui-Zhang; Chen, Zhi; Hou, Cang-Long; Tang, Yi-Xing; Wang, Fei; Fu, Qing-Ge

    2015-08-01

    To investigate the effect of uric acid on the osteogenic and adipogenic differentiation of human bone mesenchymal stem cells (hBMSCs). The hBMSCs were isolated from bone marrow of six healthy donors. Cell morphology was observed by microscopy and cell surface markers (CD44 and CD34) of hBMSCs were analyzed by immunofluorescence. Cell morphology and immunofluorescence analysis showed that hBMSCs were successfully isolated from bone marrow. The number of hBMSCs in uric acid groups was higher than that in the control group on day 3, 4, and 5. Alizarin red staining showed that number of calcium nodules in uric acid groups was more than that of the control group. Oil red-O staining showed that the number of red fat vacuoles decreased with the increased concentration of uric acid. In summary, uric acid could promote the proliferation and osteogenic differentiation of hBMSCs while inhibit adipogenic differentiation of hBMSCs.

  5. Oleic acid promotes the expression of neural markers in differentiated human endometrial stem cells.

    PubMed

    Kojour, Maryam Ali Mohammadie; Ebrahimi-Barough, Somayeh; Kouchesfehani, Homa Mohseni; Jalali, Hanieh; Ebrahim, Mohammah Hosein Karbalaie

    2017-01-01

    Variety of neurodegenerative diseases in humans are caused by loss of cells along with loss of function and disability. Cell replacement therapy is a potential strategy to cure neurodegenerative diseases. Mesenchymal stem cells are pluripotent non-hematopoietic cells that can be isolated from numerous tissues. Human endometrial-derived stem cell (hEnSC) are the abundant and easy available source with no immunological response, for cell replacement therapy. In the nervous system, where fatty acids are found in huge amounts, they participate in its development and maintenance throughout life. Oleic acid is a kind of the saturated fatty acids which plays crucial role in brain development. Oleic acid released by astrocytes is used by neurons for the synthesis of phospholipids and is specifically incorporated into growth cones. Human endometrial-derived stem cells in the third passage were divided into 3 groups including: control, sham (cultured in full differentiation medium without oleic acid) and experimental group (cultured in full differentiation medium with oleic acid) to differentiate over a 18-day period. Data from Real-Time PCR showed that mRNA levels of NF and β-TUBULIN were increased significantly (p<0.05) in oleic acid treated cells in comparison to control and sham groups. Immunocytochemistry analysis of Chat and NF expression also showed the same results. The present study clearly demonstrates that oleic acid promotes neural differentiation of hEnSC through regulation of gene expression.

  6. Cholic acid functionalized star poly(DL-lactide) for promoting cell adhesion and proliferation.

    PubMed

    Fu, Hui-Li; Zou, Tao; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2007-01-01

    Cholic acid functionalized star poly(DL-lactide) was synthesized through the ring-opening polymerization of DL-lactide initiated by cholic acid. The properties and cell behaviour of the cholic acid functionalized star poly(DL-lactide) were investigated as compared with linear poly(DL-lactide)s with different molecular weights and a star poly(DL-lactide) initiated by glycerol. In comparison to linear poly(DL-lactide)s, the cholic acid functionalized star poly(DL-lactide) had better wettability and slightly higher surface energy. The cell adhesion and proliferation on different materials were evaluated using two types of cells, 3T3 mouse fibroblasts and ECV304 human endothelial cells. Compared with the linear poly(DL-lactide)s, the cholic acid functionalized star poly(DL-lactide) showed obviously improved property for cell adhesion. The cell proliferation on the cholic acid functionalized star poly(DL-lactide) was also enhanced. The improvement in cell proliferation was not so significant as compared with the improvement in cell adhesion. This modification strategy provides an effective and simple way to promote cell attachment and growth in tissue engineering.

  7. EAAT3 promotes amino acid transport and proliferation of porcine intestinal epithelial cells.

    PubMed

    Ye, Jin-Ling; Gao, Chun-Qi; Li, Xiang-Guang; Jin, Cheng-Long; Wang, Dan; Shu, Gang; Wang, Wen-Ce; Kong, Xiang-Feng; Yao, Kang; Yan, Hui-Chao; Wang, Xiu-Qi

    2016-06-21

    Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation.

  8. EAAT3 promotes amino acid transport and proliferation of porcine intestinal epithelial cells

    PubMed Central

    Jin, Cheng-long; Wang, Dan; Shu, Gang; Wang, Wen-ce; Kong, Xiang-feng; Yao, Kang; Yan, Hui-chao; Wang, Xiu-qi

    2016-01-01

    Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation. PMID:27231847

  9. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells.

    PubMed

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-09-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells.

  10. Perfluorooctanoic acid (PFOA) acts as a tumor promoter on Syrian hamster embryo (SHE) cells.

    PubMed

    Jacquet, N; Maire, M A; Rast, C; Bonnard, M; Vasseur, P

    2011-08-01

    Perfluorooctane sulfonate (PFOS) (C(8)F(17)SO(3)) and perfluorooctanoic acid (PFOA) (C(8)HF(15)O(2)) are synthetic chemicals widely used in industrial applications for their hydrophobic and oleophobic properties. They are persistent, bioaccumulative, and toxic to mammalian species. Their widespread distribution on earth and contamination of human serum raised concerns about long-term side effects. They are suspected to be carcinogenic through a nongenotoxic mode of action, a mechanism supported by recent findings that PFOS induced cell transformation but no genotoxicity in Syrian hamster embryo (SHE) cells. In the present study, we evaluated carcinogenic potential of PFOA using the cell transformation assay on SHE cells. The chemical was applied alone or in combination with a nontransformant concentration of benzo[a]pyrene (BaP, 0.4 μM) in order to detect PFOA ability to act as tumor initiator or tumor promoter. The results showed that PFOA tested alone in the range 3.7 × 10(-5) to 300 μM did not induce SHE cell transformation frequency in a 7-day treatment. On the other side, the combination BaP/PFOA induced cell transformation at all PFOA concentrations tested, which revealed synergistic effects. No genotoxicity of PFOA on SHE cells was detected using the comet assay after 5 and 24 h of exposure. No significant increase in DNA breakage was found in BaP-initiated cells exposed to PFOA in a 7-day treatment. The whole results showed that PFOA acts as a tumor promoter and a nongenotoxic carcinogen. Cell transformation in initiated cells was observed at concentrations equivalent to the ones found in human serum of nonoccupationally and occupationally exposed populations. An involvement of PFOA in increased incidence of cancer recorded in occupationally exposed population cannot be ruled out.

  11. Retinoic Acid Can Exacerbate T Cell Intrinsic TLR2 Activation to Promote Tolerance

    PubMed Central

    Nguyen, Vivien; Pearson, Kandyce; Kim, Jee-Hyun; Kamdar, Karishma; DePaolo, R. William

    2015-01-01

    The contribution of vitamin A to immune health has been well established. However, recent evidence indicates that its active metabolite, retinoic acid (RA), has the ability to promote both tolerogenic and inflammatory responses. While the outcome of RA-mediated immunity is dependent upon the immunological status of the tissue, the contribution of specific innate signals influencing this response have yet to be delineated. Here, we found that treatment with RA can dampen inflammation during intestinal injury. Importantly, we report a novel and unexpected requirement for TLR2 in RA-mediated suppression. Our data demonstrate that RA treatment enhances TLR2-dependent IL-10 production from T cells and this, in turn, potentiates T regulatory cell (TREG) generation without the need for activation of antigen presenting cells. These data also suggest that combinatorial therapy using RA and TLR2 ligands may be advantageous in the design of therapies to treat autoimmune or inflammatory disease. PMID:25826367

  12. Promoter Analysis of the Human Ascorbic Acid Transporters SVCT1 & 2: Mechanisms of Adaptive Regulation in Liver Epithelial Cells

    PubMed Central

    Reidling, Jack C.; Rubin, Stanley A.

    2010-01-01

    Ascorbic acid, the active form of vitamin C, is a vital antioxidant in the human liver, yet the molecular mechanisms involved in the regulation of ascorbic acid transporters (hSVCT1 and hSVCT2) in liver cells are poorly understood. Therefore, we characterized the minimal promoter regions of hSVCT1 & 2 in cultured human liver epithelial cells (HepG2) and examined the effects of ascorbic acid deprivation and supplementation on activity and regulation of the transport systems. Identified minimal promoters required for basal activity were found to include multiple cis-regulatory elements, whereas mutational analysis demonstrated that HNF-1 sites in the hSVCT1 promoter and KLF/Sp1 sites in the hSVCT2 promoter were essential for activities. When cultured in ascorbic acid deficient or supplemented media, HepG2 cells demonstrated significant (P < 0.01) and specific reciprocal changes in [14C]-Ascorbic acid uptake, and in hSVCT1 mRNA and protein levels as well as hSVCT1 promoter activity. However, no significant changes in hSVCT2 expression or promoter activity were observed during ascorbic acid deficient or supplemented conditions. We mapped the ascorbic acid responsive region in the hSVCT1 promoter and determined that HNF-1 sites are important for the adaptive regulation response. The results of these studies further characterize the hSVCT1 and 2 promoters, establish that ascorbic acid uptake by human liver epithelial cells is adaptively regulated, and show that transcriptional mechanisms via HNF-1 in the hSVCT1 promoter may, in part, be involved in this regulation. PMID:20471816

  13. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    PubMed Central

    Wichmann, Heidi; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2016-01-01

    The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP), produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA), a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2). Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells. PMID:27164116

  14. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway

    PubMed Central

    Wang, Yuqiang; Cao, Qing; Sang, Tiantian; Liu, Fang; Chen, Shuyan

    2015-01-01

    Acidic fibroblast growth factor (FGF1) has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs). The Forkhead homeobox type O transcription factors (FOXOs), a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a) or a GFP control (Ad-GFP). FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future. PMID:26061278

  15. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells.

    PubMed

    Oström, Maria; Loffler, Kelly A; Edfalk, Sara; Selander, Lars; Dahl, Ulf; Ricordi, Camillo; Jeon, Jongmin; Correa-Medina, Mayrin; Diez, Juan; Edlund, Helena

    2008-07-30

    The identification of secreted factors that can selectively stimulate the generation of insulin producing beta-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based beta-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of beta-cells during normal pancreatic development such putative factors may be identified. In the mouse, beta-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of beta-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when beta-cells are generated. We also provide evidence that RA induces the generation of Ngn3(+) endocrine progenitor cells and stimulates their further differentiation into beta-cells by activating a program of cell differentiation that recapitulates the normal temporal program of beta-cell differentiation.

  16. Salvianolic acid B regulates gene expression and promotes cell viability in chondrocytes.

    PubMed

    Yang, Xiaohong; Liu, Shaojie; Li, Siming; Wang, Pengzhen; Zhu, Weicong; Liang, Peihong; Tan, Jianrong; Cui, Shuliang

    2017-02-28

    Articular chondrocytes reside in lacunae distributed in cartilage responsible for the remodelling of the tissue with limited ability of damage repairing. The in vitro expanded chondrocytes enhanced by factors/agents to obtain large numbers of cells with strengthened phenotype are essential for successful repair of cartilage lesions by clinical cell implantation therapies. Because the salvianolic acid B (Sal B), a major hydrophilic therapeutic agent isolated from Salvia miltiorrhiza, has been widely used to treat diseases and able to stimulate activity of cells, this study examines the effects of Sal B on passaged chondrocytes. Chondrocytes were treated with various concentrations of Sal B in monolayer culture, their morphological properties and changes, and mitochondrial membrane potential were analysed using microscopic analyses, including cellular biochemical staining and confocal laser scanning microscopy. The proteins were quantified by BCA and Western blotting, and the transcription of genes was detected by qRT-PCR. The passaged chondrocytes treated with Sal B showed strengthened cellular synthesis and stabilized mitochondrial membrane potential with upregulated expression of the marker genes for chondrocyte phenotype, Col2-α1, Acan and Sox9, the key Wnt signalling molecule β-catenin and paracrine cytokine Cytl-1. The treatments using CYTL-1 protein significantly increased expression of Col2-α1 and Acan with no effect on Sox9, indicating the paracrine cytokine acts on chondrocytes independent of SOX9. Sal B has ultimately promoted cell growth and enhanced chondrocyte phenotype. The chondrocytes treated with pharmaceutical agent and cytokine in the formulated medium for generating large number of differentiated chondrocytes would facilitate the cell-based therapies for cartilage repair.

  17. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity.

    PubMed

    Liu, Xin; Wang, Yuan; Cao, Zhen; Dou, Ce; Bai, Yun; Liu, Chuan; Dong, Shiwu; Fei, Jun

    2017-02-16

    This study sought to explore the effect of staphylococcal lipoteichoic acid (LTA) on autophagy in mouse mesenchymal stem cells (MSCs), and then influence osteogenesis through the change of autophagy. C3H10T1/2 cells were induced by osteogenic medium with the treatment of LTA at different concentrations (1, 5, 10 μg/mL); 3-methyladenine (3-MA) were used as the autophagy inhibitor, and rapamycin (rapamycin, Rap) were used to activate autophagy; the effects on osteogenesis were detected by alkaline phosphatase staining, alizarin red staining, real-time quantitative PCR, and western blotting; autophagic activity was investigated by the expression of LC3-Ⅱand p62 proteins. Compared with control group, the expression of osteogenesis markers was significantly up-regulated with the LTA treatment on the mRNA and protein level; the positive rate of alkaline phosphatase was enhanced in the LTA groups; and the formation of calcium nodules was increased simultaneously. The expression of LC3-Ⅱ protein was increased in LTA groups, while the expression of p62 protein was decreased. Inhibition of autophagy significantly reduced the effect of LTA on osteogenesis of MSCs; the promotion of LTA on osteogenic differentiation was further enhanced when adding rapamycin to activate autophagic activity. It provides new insight of prevention and treatment for bone infection.

  18. Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration.

    PubMed

    Shiozaki, Kazuhiro; Takahashi, Kohta; Hosono, Masahiro; Yamaguchi, Kazunori; Hata, Keiko; Shiozaki, Momo; Bassi, Rosaria; Prinetti, Alessandro; Sonnino, Sandro; Nitta, Kazuo; Miyagi, Taeko

    2015-05-01

    The plasma membrane-associated sialidase NEU3 plays crucial roles in regulation of transmembrane signaling, and its aberrant up-regulation in various cancers contributes to malignancy. However, it remains uncertain how NEU3 is naturally activated and locates to plasma membranes, because of its Triton X-100 requirement for the sialidase activity in vitro and its often changing subcellular location. Among phospholipids examined, we demonstrate that phosphatidic acid (PA) elevates its sialidase activity 4 to 5 times at 50 μM in vitro at neutral pH and promotes translocation to the cell surface and cell migration through Ras-signaling in HeLa and COS-1 cells. NEU3 was found to interact selectively with PA as assessed by phospholipid array, liposome coprecipitation, and ELISA assays and to colocalize with phospholipase D (PLD) 1 in response to epidermal growth factor (EGF) or serum stimulation. Studies using tagged NEU3 fragments with point mutations identified PA- and calmodulin (CaM)-binding sites around the N terminus and confirmed its participation in translocation and catalytic activity. EGF induced PLD1 activation concomitantly with enhanced NEU3 translocation to the cell surface, as assessed by confocal microscopy. These results suggest that interactions of NEU3 with PA produced by PLD1 are important for regulation of transmembrane signaling, this aberrant acceleration probably promoting malignancy in cancers.

  19. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway

    PubMed Central

    AMONYINGCHAROEN, SUMET; SURIYO, TAWIT; THIANTANAWAT, APINYA; WATCHARASIT, PIYAJIT; SATAYAVIVAD, JUTAMAAD

    2015-01-01

    Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract and its occurrence is associated with chronic cholestasis which causes an elevation of bile acids in the liver and bile duct. The present study aimed to investigate the role and mechanistic effect of bile acids on the CCA cell growth. Intrahepatic CCA cell lines, RMCCA-1 and HuCCA-1, were treated with bile acids and their metabolites to determine the growth promoting effect. Cell viability, cell cycle analysis, EdU incorporation assays were conducted. Intracellular signaling proteins were detected by western immunoblotting. Among eleven forms of bile acids and their metabolites, only taurolithocholic acid (TLCA) concentration dependently (1–40 μM) increased the cell viability of RMCCA-1, but not HuCCA-1 cells. The cell cycle analysis showed induction of cells in the S phase and the EdU incorporation assay revealed induction of DNA synthesis in the TLCA-treated RMCCA-1 cells. Moreover, TLCA increased the phosphorylation of EGFR, ERK 1/2 and also increased the expression of cyclin D1 in RMCCA-1 cells. Furthermore, TLCA-induced RMCCA-1 cell growth could be inhibited by atropine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, AG 1478, a specific EGFR inhibitor, or U 0126, a specific MEK 1/2 inhibitor. These results suggest that TLCA induces CCA cell growth via mAChR and EGFR/EKR1/2 signaling pathway. Moreover, the functional presence of cholinergic system plays a certain role in TLCA-induced CCA cell growth. PMID:25815516

  20. Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea.

    PubMed

    Chen, Jialin; Lan, Jie; Liu, Dongle; Backman, Ludvig J; Zhang, Wei; Zhou, Qingjun; Danielson, Patrik

    2017-03-09

    High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved. © Stem Cells Translational Medicine 2017.

  1. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha

    PubMed Central

    Hall, J.A.; Cannons, J.L.; Grainger, J.R.; Santos, L.M. Dos; Hand, T.W.; Naik, S.; Wohlfert, E.A.; Chou, D.B.; Oldenhove, G.; Robinson, M.; Grigg, M.E.; Kastenmayer, R.; Schwartzberg, P.L.; Belkaid, Y.

    2012-01-01

    SUMMARY Vitamin A and its metabolite, retinoic acid (RA), have recently been implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we show that RA is also required to elicit proinflammatory CD4+ helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) is the critical mediator of these effects. Strikingly, antagonism of RAR signaling and deficiency in RARα(Rara−/−) results in a cell autonomous CD4+ T cell activation defect. Altogether, these findings reveal a fundamental role for the RA/RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses. PMID:21419664

  2. Lipid Rafts Promote trans Fatty Acid-Induced Inflammation in Human Umbilical Vein Endothelial Cells.

    PubMed

    Pan, Yao; Liu, Benxin; Deng, Zeyuan; Fan, Yawei; Li, Jing; Li, Hongyan

    2017-01-01

    The effects of two fatty acids, oleic acid (OLA) and elaidic acid (ELA) on normal human umbilical vein endothelial cells (HUVEC) and non-rafts HUVEC were investigated in this study. The expression levels of inflammatory cytokines (ICAM-1, VCAM-1 and IL-6) were analyzed. Western blot was used to analyze the expression levels of inflammation-related proteins (NF-κB, ERK1/2) and toll-like receptors 4 (TLR4). The results showed that the levels of nuclear translocation of NF-κB p65 and phosphorylated ERK1/2 were significantly decreased only in non-lipid rafts cells pretreated with trans fatty acid (TFA). The expression of TLR4 in the ELA-treated normal cells was higher than that in non-lipid rafts HUVEC. When the lipid rafts was destroyed by methyl-β-cyclodextrin, the levels of nuclear translocation of NF-κB p65, phosphorylated ERK1/2 and TLR4 were decreased significantly. Therefore, lipid rafts may be involved in TFA induced-inflammation in HUVEC through blocking the inflammatory signal pathway. Lipid rafts might be a platform for specific receptors such as TLR4 for TFA to activate the pro-inflammation on cell membranes.

  3. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.

    PubMed

    Su, Ke; Wang, Chun-Fang; Zhang, Ying; Cai, Yu-Jie; Zhang, Yan-Yan; Zhao, Qian

    2016-08-01

    Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and

  4. Retinoic acid promotes the proliferation of primordial germ cell-like cells differentiated from mouse skin-derived stem cells in vitro.

    PubMed

    Tan, Hui; Wang, Jun-Jie; Cheng, Shun-Feng; Ge, Wei; Sun, Yuan-Chao; Sun, Xiao-Feng; Sun, Rui; Li, Lan; Li, Bo; Shen, Wei

    2016-02-01

    Skin-derived stem cells (SDSCs) have the potential to differentiate into gametes and are a potential resource for research and clinical applications. Sufficient amount of primordial germ cells (PGCs) is an important requirement for successful differentiation of SDSCs into gametes in vitro. Retinoic acid (RA), a vitamin A-derived small lipophilic molecule, promotes the growth of PGCs in vivo; however, the role of RA on the proliferation of PGC-like cells (PGCLCs) derived from SDSCs remains unknown. In this study, SDSCs were induced to differentiate into the embryoid body and cocultured with mouse fibroblasts to form PGCLCs. The proliferation of PGCLCs with the presence of various concentrations of RA was investigated in vitro. Immunofluorescence labeling showed that the 5-Bromo-2-deoxyUridine-positive ratio of PGCLCs was increased after the cells were treated with 5-μM RA, and flow cytometry results showed that the number of cells in the S phase was increased significantly. The messenger RNA expression levels of cell cycle-related genes, CCND1 and CDK2, were also increased. Furthermore, RA effectively promoted the external proliferation of endogenous PGCs when 11.5-days postcoitum fetal mouse genital ridges were cultured in vitro. In conclusion, 5-μM RA promoted the proliferation of SDSCs-derived PGCLCs and endogenous PGCs. Our study will provide a valuable model system for studying the differentiation of stem cells into gametes in vitro.

  5. Selenite promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells

    PubMed Central

    Misra, Sougat; Selvam, Arun Kumar; Wallenberg, Marita; Ambati, Aditya; Matolcsy, András; Magalhaes, Isabelle; Lauter, Gilbert; Björnstedt, Mikael

    2016-01-01

    Selective targeting of the PML/RARα oncoprotein demonstrates a successful molecular targeted therapy in acute promyelocytic leukemia (APL) with a typical t(15:17) chromosomal translocation. The zinc-thiolate coordination is critical for structural stability of zinc finger proteins, including the PML moiety of PML/RARα. Based on the known interaction of redox-active selenium compounds with thiolate ligands of zinc, we herein have investigated the abrogatory effects of selenite alone or in combination with all-trans retinoic acid on PML/RARα and the possible effects on differentiation in these cells. At pharmacological concentrations, selenite inhibited the proliferation and survival of APL originated NB4 cells. In combination with ATRA, it potentiated the differentiation of NB4 cells without any differentiating effects of its own as a single agent. Concordant with our hypothesis, PML/RARα oncoprotein expression was completely abrogated by selenite. Increased expression of RAR, PU.1 and FOXO3A transcription factors in the combined treatment suggested the plausible basis for increased differentiation in these cells. We show that selenite at clinically achievable dose targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemic cells in combination with ATRA. The present investigation reveals the hitherto unknown potential of selenite in targeted abrogation of PML/RARα in APL cells with prospective therapeutic value. PMID:27732960

  6. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival

    PubMed Central

    Rice, Dennis S.; Calandria, Jorgelina M.; Gordon, William C.; Jun, Bokkyoo; Zhou, Yongdong; Gelfman, Claire M.; Li, Songhua; Jin, Minghao; Knott, Eric J.; Chang, Bo; Abuin, Alex; Issa, Tawfik; Potter, David; Platt, Kenneth A.; Bazan, Nicolas G.

    2015-01-01

    The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells’ functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1−/− mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1−/− mice. RPE-rich eyecup cultures from AdipoR1−/− reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity. PMID:25736573

  7. Retinoic Acid Regulates Calcium Signaling to Promote Mouse Ovarian Granulosa Cell Proliferation.

    PubMed

    Demczuk, Michael; Huang, Huiya; White, Carl; Kipp, Jingjing L

    2016-09-01

    Normal development of ovarian follicles is critical for female reproduction and endocrine function. We have identified retinoic acid (RA) and the RA-degrading enzyme CYP26B1 as regulators of ovarian follicle development and showed that RA and a CYP26 inhibitor stimulated ovarian granulosa cell proliferation. The mechanism underpinning RA-dependent proliferation, however, is not known. The current study was designed to examine the role of intracellular calcium (Ca(2+)) signaling in mediating the effects of RA on primary mouse granulosa cell proliferation. In single-cell Ca(2+) imaging experiments, treatment of cultured granulosa cells with RA increased the steady-state Ca(2+) content of the endoplasmic reticulum (ER) stores. This correlated with increased store-operated Ca(2+) entry (SOCE) and enhanced inositol 1,4,5-trisphosphate receptor (IP3R)-dependent Ca(2+) release. In proliferation assays, RA treatment or Cyp26b1 knockdown stimulated proliferation, whereas Cyp26b1 overexpression inhibited proliferation. When RA was given together with 2-aminoethoxydiphenylborane (2-APB), a blocker of IP3R-dependent ER Ca(2+) release and SOCE, with xestospongin C, a selective IP3R- receptor antagonist, or with 3,5-bis (trifluoromethyl)pyrazole (BTP-2), a specific SOCE blocker, the stimulatory effect of RA on cell proliferation was abolished. Further investigation showed that treatment with 2-APB or BTP-2 inhibited RA induction of RA response element (RARE) activation in granulosa cells, confirming an important role for Ca(2+) signaling in mediating RA actions. Overall, these data support a model in which RA regulates ovarian follicle development by stimulating granulosa cell proliferation and that this stimulatory effect is at least in part driven by the modulation of Ca(2+) signaling.

  8. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells.

    PubMed

    Lewinska, Anna; Adamczyk-Grochala, Jagoda; Kwasniewicz, Ewa; Deregowska, Anna; Wnuk, Maciej

    2017-02-17

    Plant-derived pentacyclic triterpenotids with multiple biological activities are considered as promising candidates for cancer therapy and prevention. However, their mechanisms of action are not fully understood. In the present study, we have analyzed the effects of low dose treatment (5-20 µM) of ursolic acid (UA) and betulinic acid (BA) on breast cancer cells of different receptor status, namely MCF-7 (ER(+), PR(+/-), HER2(-)), MDA-MB-231 (ER(-), PR(-), HER2(-)) and SK-BR-3 (ER(-), PR(-), HER2(+)). UA-mediated response was more potent than BA-mediated response. Triterpenotids (5-10 µM) caused G0/G1 cell cycle arrest, an increase in p21 levels and SA-beta-galactosidase staining that was accompanied by oxidative stress and DNA damage. UA (20 µM) also diminished AKT signaling that affected glycolysis as judged by decreased levels of HK2, PKM2, ATP and lactate. UA-induced energy stress activated AMPK that resulted in cytotoxic autophagy and apoptosis. UA-mediated elevation in nitric oxide levels and ATM activation may also account for AMPK activation-mediated cytotoxic response. Moreover, UA-promoted apoptosis was associated with decreased pERK1/2 signals and the depolarization of mitochondrial membrane potential. Taken together, we have shown for the first time that UA at low micromolar range may promote its anticancer action by targeting glycolysis in phenotypically distinct breast cancer cells.

  9. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    SciTech Connect

    Yonezawa, Tomo Haga, Satoshi; Kobayashi, Yosuke; Katoh, Kazuo; Obara, Yoshiaki

    2008-03-21

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca{sup 2+} concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.

  10. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter.

  11. Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters.

    PubMed

    Yamashita, Hiroko; Misawa, Takashi; Oba, Makoto; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2017-03-15

    Cell-penetrating peptides (CPP) have attracted many scientists' attention as intracellular delivery tools due to their high cargo molecule transportation efficiency and low cytotoxicity. Therefore, in many research fields CPP, such as HIV-Tat and oligoarginine (Rn), are used to deliver hydrophilic drugs and biomolecules, including proteins, DNA, and RNA. We designed four types of CPP that contained cationic α,α-disubstituted amino acids (Api(C2Gu) and Api(C4Gu)) as helical promoters; i.e., 1-4 [FAM-β-Ala-(l-Arg-l-Arg-Xaa)3-(Gly)3-NH2 (1: Xaa=Api(C2Gu), 2: Xaa=Api(C4Gu)), 3: FAM-β-Ala-(l-Arg)8-Api(C2Gu)-(Gly)3-NH2, and 4: FAM-β-Ala-(l-Arg)5-Api(C2Gu)-(l-Arg)2-Api(C2Gu)-(Gly)3-NH2], and investigated their preferred secondary structures and cell membrane-penetrating ability. As a result, we found that the permeation efficiency of the CPP was affected by the number of helical promoters in their sequences. Specially, peptide 1, which contained three Api(C2Gu) residues, formed a stable helical structure and passed through the cell membrane more efficiently than the other peptides. Moreover, it was demonstrated that the spatial arrangement of the peptides' side chains also influenced their permeability and the helical stabilization of their main chains.

  12. CAP-D3 Promotes Bacterial Clearance in Human Intestinal Epithelial Cells by Repressing Expression of Amino Acid Transporters

    PubMed Central

    Kemp, Jacqueline R.; Nickerson, Kourtney P.; Deutschman, Emily; Kim, Yeojung; West, Gail; Sadler, Tammy; Stylianou, Eleni; Krokowski, Dawid; Hatzoglou, Maria; de la Motte, Carol; Rubin, Brian P.; Fiocchi, Claudio

    2015-01-01

    BACKGROUND & AIMS Defects in colonic epithelial barrier defenses are associated with ulcerative colitis (UC). The proteins that regulate bacterial clearance in the colonic epithelium have not been completely identified. The chromosome-associated protein D3 (dCAP-D3), regulates responses to bacterial infection. We examined whether CAP-D3 promotes bacterial clearance in human colonic epithelium. METHODS Clearance of Salmonella or adherent-invasive Escherichia coli LF82 was assessed by gentamycin protection assays in HT-29 and Caco-2 cells expressing small hairpin RNAs against CAP-D3. We used immunoblot assays to measure levels of CAP-D3 in colonic epithelial cells from patients with UC and healthy individuals (controls). RNA sequencing identified genes activated by CAP-D3. We analyzed the roles of CAP-D3 target genes in bacterial clearance using gentamycin protection and immunofluorescence assays and studies with pharmacologic inhibitors. RESULTS CAP-D3 expression was reduced in colonic epithelial cells from patients with active UC. Reduced CAP-D3 expression decreased autophagy and impaired intracellular bacterial clearance by HT-29 and Caco-2 colonic epithelial cells. Lower levels of CAP-D3 increased transcription of genes encoding SLC7A5 and SLC3A2, whose products heterodimerize to form an amino acid transporter in HT-29 cells following bacterial infection; levels of SLC7A5–SLC3A2 were increased in tissues from patients with UC, compared with controls. Reduced CAP-D3 in HT-29 cells resulted in earlier recruitment of SLC7A5 to Salmonella-containing vacuoles, increased activity of mTORC1, and increased survival of bacteria. Inhibition of SLC7A5–SLC3A2 or mTORC1 activity rescued the bacterial clearance defects of CAP-D3– deficient cells. CONCLUSIONS CAP-D3 downregulates transcription of genes that encode amino acid transporters (SLC7A5 and SLC3A2) to promote bacterial autophagy by colon epithelial cells. Levels of CAP-D3 protein are reduced in patients with

  13. Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways.

    PubMed

    Lin, Jiumao; Chen, Youqin; Wei, Lihui; Shen, Aling; Sferra, Thomas J; Hong, Zhenfeng; Peng, Jun

    2013-10-01

    The development of colorectal cancer (CRC) is strongly correlated with the aberrant activation of multiple intracellular signaling transduction cascades including STAT3, ERK, JNK and p38 pathways which usually function redundantly. In addition, crosstalk between these pathways forms a complicated signaling network that is regulated by compensatory mechanisms. Therefore, most of the currently used and single-target-based antitumor agents might not always be therapeutically effective. Moreover, long-term use of these agents often generates drug resistance. These problems highlight the urgent need for the development of novel anticancer chemotherapies. Ursolic acid (UA) is a major active compound present in many medicinal herbs that have long been used for the clinical treatment of CRC. Although previous studies have demonstrated an antitumor effect for UA, the precise mechanisms of its tumoricidal activity are not well understood. In the present study, using CRC mouse xenograft model and the HT-29 human colon carcinoma cell line, we evaluated the efficacy of UA against tumor growth in vivo and in vitro and investigated the underlying molecular mechanisms. We found that UA inhibits cancer growth without apparent toxicity. Furthermore, UA significantly suppresses the activation of several CRC-related signaling pathways and alters the expression of critical target genes. These molecular effects lead to the induction of apoptosis and inhibition of cellular proliferation. These data demonstrate that UA possesses a broad range of anticancer activities due to its ability to affect multiple intracellular targets, suggesting that UA could be a novel multipotent therapeutic agent for cancer treatment.

  14. Promotion of PDT efficacy by bile acids

    NASA Astrophysics Data System (ADS)

    Castelli, Michelle; Reiners, John, Jr.; Kessel, David

    2003-06-01

    We had previously described the use of relatively hydrophobic bile acids, notably UDCA (ursodeoxycholate) for the promotion of the apoptotic response to photodynamic therapy. Further study revealed that this effect occurred only when the target for photodamage was the anti-apoptotic protein Bcl-2. The efficacy of lysosomal photodamage, leading to a cleavage of the protein Bid, was not influenced by UDCA. Moreover, the apoptotic cell death resulting from treatment of cells with the non-peptidic Bcl-2 inhibitor HA 14-1 was also promoted by UDCA. These results are consistent with the proposal that the pro-apoptotic effects of UDCA are directed against Bcl-2, promoting inactivation by HA 14-1 or photodamage.

  15. Carfilzomib combined with suberanilohydroxamic acid (SAHA) synergistically promotes endoplasmic reticulum stress in non-small cell lung cancer cell lines

    PubMed Central

    Hanke, Neale T.; Garland, Linda L.; Baker, Amanda F.

    2015-01-01

    Purpose The endoplasmic reticulum (ER) stress response is a therapeutic target for pharmacologic intervention in cancer cells. We hypothesized that combining carfilzomib (CFZ), a proteasome inhibitor, and vorinostat (SAHA), a histone deacetylase (HDAC) inhibitor, would synergistically activate ER stress in non-small cell lung cancer (NSCLC) cell lines resulting in enhanced anti-tumor activity. Methods Five NSCLC cell lines were treated with CFZ, SAHA, or the combination and cell proliferation measured using the MTT assay. Calcusyn software was utilized to determine the combination index as a measure of synergy. Cell viability and cytotoxicity were measured using trypan blue exclusion, CellTiter and CytoTox assays. Western blot was used to measure markers of apoptosis, ER stress, and oxidative stress related proteins. Reactive oxygen species (ROS) was measured using the fluorophore CM-H2DCFDA. Results Synergistic activity was observed for all cell lines following 48 and 72 hours of combined treatment. H520 and A549 cell lines were used to assess viability and apoptosis. In both cell lines, increased death and cleaved caspase-3 was observed following combination treatment as compared with single agent treatments. Combination therapy was associated with upregulation of ER stress regulated proteins including activating transcription factor 4, GRP78/BiP, and C/EBP homologous protein. Both cell lines also showed increased ROS and the oxidative stress-related protein, heat shock protein 70. Conclusion Combining proteasome inhibition with HDAC inhibition enhances ER stress which may contribute to the synergistic anti-cancer activity observed in NSCLC cell lines. Further pre-clinical and clinical studies of CFZ + SAHA in NSCLC are warranted. PMID:26385374

  16. Addition of Ascorbic Acid to the Extracellular Environment Activates Lipoplexes of a Ferrocenyl Lipid and Promotes Cell Transfection

    PubMed Central

    Aytar, Burcu S.; Muller, John P. E.; Golan, Sharon; Hata, Shinichi; Takahashi, Hiro; Kondo, Yukishige; Talmon, Yeshayahu; Abbott, Nicholas L.; Lynn, David M.

    2011-01-01

    The level of cell transfection mediated by lipoplexes formed using the ferrocenyl lipid bis(11-ferrocenylundecyl)dimethylammonium bromide (BFDMA) depends strongly on the oxidation state of the two ferrocenyl groups of the lipid (reduced BFDMA generally mediates high levels of transfection, but oxidized BFDMA mediates very low levels of transfection). Here, we report that it is possible to chemically transform inactive lipoplexes (formed using oxidized BFMDA) to “active” lipoplexes that mediate high levels of transfection by treatment with the small-molecule reducing agent ascorbic acid (vitamin C). Our results demonstrate that this transformation can be conducted in cell culture media and in the presence of cells by addition of ascorbic acid to lipoplex-containing media in which cells are growing. Treatment of lipoplexes of oxidized BFDMA with ascorbic acid resulted in lipoplexes composed of reduced BFDMA, as characterized by UV/vis spectrophotometry, and lead to activated lipoplexes that mediated high levels of transgene expression in the COS-7, HEK 293T/17, HeLa, and NIH 3T3 cell lines. Characterization of internalization of DNA by confocal microscopy and measurements of the zeta potentials of lipoplexes suggested that these large differences in cell transfection result from (i) differences in the extents to which these lipoplexes are internalized by cells and (ii) changes in the oxidation state of BFDMA that occur in the extracellular environment (i.e., prior to internalization of lipoplexes by cells). Characterization of lipoplexes by small-angle neutron scattering (SANS) and by cryogenic transmission electron microscopy (cryo-TEM) revealed changes in the nanostructures of lipoplexes upon the addition of ascorbic acid, from aggregates that were generally amorphous, to aggregates with a more extensive multilamellar nanostructure. The results of this study provide guidance for the design of redox-active lipids that could lead to methods that enable spatial

  17. Inhibitory effect of α-lipoic acid on thioacetamide-induced tumor promotion through suppression of inflammatory cell responses in a two-stage hepatocarcinogenesis model in rats.

    PubMed

    Fujii, Yuta; Segawa, Risa; Kimura, Masayuki; Wang, Liyun; Ishii, Yuji; Yamamoto, Ryuichi; Morita, Reiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2013-09-25

    To investigate the protective effect of α-lipoic acid (a-LA) on the hepatocarcinogenic process promoted by thioacetamide (TAA), we used a two-stage liver carcinogenesis model in N-diethylnitrosamine (DEN)-initiated and TAA-promoted rats. We examined the modifying effect of co-administered a-LA on the liver tissue environment surrounding preneoplastic hepatocellular lesions, with particular focus on hepatic macrophages and the mechanism behind the decrease in apoptosis of cells surrounding preneoplastic hepatocellular lesions during the early stages of hepatocellular tumor promotion. TAA increased the number and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of proliferating and apoptotic cells in the liver. Co-administration with a-LA suppressed these effects. TAA also increased the numbers of ED2(+), cyclooxygenase-2(+), and heme oxygenase-1(+) hepatic macrophages as well as the number of CD3(+) lymphocytes. These effects were also suppressed by a-LA. Transcript levels of some inflammation-related genes were upregulated by TAA and downregulated by a-LA in real-time RT-PCR analysis. Outside the GST-P(+) foci, a-LA reduced the numbers of apoptotic cells, active caspase-8(+) cells and death receptor (DR)-5(+) cells. These results suggest that hepatic macrophages producing proinflammatory factors may be activated in TAA-induced tumor promotion. a-LA may suppress tumor-promoting activity by suppressing the activation of these macrophages and the subsequent inflammatory responses. Furthermore, a-LA may suppress tumor-promoting activity by suppressing the DR5-mediated extrinsic pathway of apoptosis and the subsequent regeneration of liver cells outside GST-P(+) foci.

  18. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate.

    PubMed

    Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta

    2016-12-27

    A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.

  19. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARa epigenetic mechanism of mammary epithelial cell fate

    PubMed Central

    Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta

    2016-01-01

    A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA. PMID:27894085

  20. 9-cis-retinoic acid promotes cell adhesion through integrin dependent and independent mechanisms across immune lineages.

    PubMed

    Whelan, Jarrett T; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L; Lingo, Joshuah D; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C

    2013-05-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866 and U937. Due to the prominent role of integrin receptors in mediating immune cell adhesion, we sought to evaluate if cell adhesion was integrin-dependent. By employing a variety of integrin antagonist including function-blocking antibodies and EDTA, we establish that 9-cis-RA prompts immune cell adhesion through established integrin receptors in addition to a novel integrin-independent process. The novel integrin-independent adhesion required the presence of retinoid and was attenuated by treatment with synthetic corticosteroids. Finally, we demonstrate that 9-cis-RA treatment of primary murine B-cells induces ex vivo adhesion that persists in the absence of integrin function. Our study is the first to demonstrate that 9-cis-RA influences immune cell adhesion through at least two functionally distinct mechanisms.

  1. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60

    SciTech Connect

    Sato, Tomonobu; Okumura, Fumihiko; Iguchi, Akihiro; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  2. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines

    PubMed Central

    Cipriani, Sabrina; Marchianò, Silvia; Marino, Elisabetta; Zampella, Angela; Rende, Mario; Mosci, Paolo; Distrutti, Eleonora; Donini, Annibale; Fiorucci, Stefano

    2016-01-01

    GPBAR1 (also known as TGR5) is a bile acid activated receptor expressed in several adenocarcinomas and its activation by secondary bile acids increases intestinal cell proliferation. Here, we have examined the expression of GPBAR1 in human gastric adenocarcinomas and investigated whether its activation promotes the acquisition of a pro-metastatic phenotype. By immunohistochemistry and RT-PCR analysis we found that expression of GPBAR1 associates with advanced gastric cancers (Stage III-IV). GPBAR1 expression in tumors correlates with the expression of N-cadherin, a markers of epithelial-mesenchymal transition (EMT) (r=0.52; P<0.01). Expression of GPBAR1, mRNA and protein, was detected in cancer cell lines, with MKN 45 having the higher expression. Exposure of MKN45 cells to GPBAR1 ligands, TLCA, oleanolic acid or 6-ECDCA (a dual FXR and GPBAR1 ligand) increased the expression of genes associated with EMT including KDKN2A, HRAS, IGB3, MMP10 and MMP13 and downregulated the expression of CD44 and FAT1 (P<0.01 versus control cells). GPBAR1 activation in MKN45 cells associated with EGF-R and ERK1 phosphorylation. These effects were inhibited by DFN406, a GPBAR1 antagonist, and cetuximab. GPBAR1 ligands increase MKN45 migration, adhesion to peritoneum and wound healing. Pretreating MKN45 cells with TLCA increased propensity toward peritoneal dissemination in vivo. These effects were abrogated by cetuximab. In summary, we report that GPBAR1 is expressed in advanced gastric cancers and its expression correlates with markers of EMT. GPBAR1 activation in MKN45 cells promotes EMT. These data suggest that GPBAR1 antagonist might have utility in the treatment of gastric cancers. PMID:27409173

  3. Retinoic acid promotes mouse splenic B cell surface IgG expression and maturation stimulated by CD40 and IL-4

    PubMed Central

    Chen, Qiuyan; Ross, A Catharine

    2008-01-01

    Retinoic acid (RA) increases antibody production in vivo but its role in B-cell activation is unclear. In a model of purified mouse splenic B cells stimulated by CD40 coreceptor (as a surrogate of T cell co-stimulation), IL-4, a principal Th-2 cytokine, and ligation of the B-cell antigen receptor, CD40 engagement or IL-4 alone induced B-cell activation indicated by increased Igγ1 germline transcripts, cell proliferation, and surface (s)IgG1 expression, while triple stimulation with the combination of anti-CD40/IL-4/anti-μ synergized to heighten B-cell activation. Although RA was growth inhibitory for anti-CD40-activated B cells, RA increased the proportion of B cells that had more differentiated phenotypes, such as expression of higher level of activation-induced deaminase, Blimp-1, CD138/syndecan-1 and sIgG1. Overall, RA can promote B-cell maturation at the population level by increasing the number of sIgG1 and CD138 expressing cells, which may be related to the potentiation of humoral immunity in vivo. PMID:18082674

  4. Cross-talk between lysophosphatidic acid receptor 1 and tropomyosin receptor kinase A promotes lung epithelial cell migration.

    PubMed

    Nan, Ling; Wei, Jianxin; Jacko, Anastasia M; Culley, Miranda K; Zhao, Jing; Natarajan, Viswanathan; Ma, Haichun; Zhao, Yutong

    2016-02-01

    Lysophosphatidic acid (LPA) is a bioactive lysophospholipid, which plays a crucial role in the regulation of cell proliferation, migration, and differentiation. LPA exerts its biological effects mainly through binding to cell-surface LPA receptors (LPA1-6), which belong to the G protein-coupled receptor (GPCR) family. Recent studies suggest that cross-talk between receptor tyrosine kinases (RTKs) and GPCRs modulates GPCRs-mediated signaling. Tropomyosin receptor kinase A (TrkA) is a RTK, which mediates nerve growth factor (NGF)-induced biological functions including cell migration in neuronal and non-neuronal cells. Here, we show LPA1 transactivation of TrkA in murine lung epithelial cells (MLE12). LPA induced tyrosine phosphorylation of TrkA in both time- and dose-dependent manners. Down-regulation of LPA1 by siRNA transfection attenuated LPA-induced phosphorylation of TrkA, suggesting a cross-talk between LPA1 and TrkA. To investigate the molecular regulation of the cross-talk, we focused on the interaction between LPA1 and TrkA. We found that LPA induced interaction between LPA1 and TrkA. The LPA1/TrkA complex was localized on the plasma membrane and in the cytoplasm. The C-terminus of LPA1 was identified as the binding site for TrkA. Inhibition of TrkA attenuated LPA-induced phosphorylation of TrkA and LPA1 internalization, as well as lung epithelial cell migration. These studies provide a molecular mechanism for the transactivation of TrkA by LPA, and suggest that the cross-talk between LPA1 and TrkA regulates LPA-induced receptor internalization and lung epithelial cell migration.

  5. Nuclear Raf-1 kinase regulates the CXCR5 promoter by associating with NFATc3 to drive retinoic acid-induced leukemic cell differentiation.

    PubMed

    Geil, Wendy M; Yen, Andrew

    2014-02-01

    Novel functions of signaling molecules have been revealed in studies of cancer stem cells. Retinoic acid (RA) is an embryonic morphogen and stem cell regulator that controls the differentiation of a patient-derived leukemic cell line, HL-60, which is composed of progenitor cells with bipotent myelo-monocytic differentiation capability. RA treatment of HL-60 cells causes unusually long-lasting mitogen-activated protein kinase signaling, with the cells exhibiting the beginning of G0 cell cycle arrest and functional differentiation by 48 h after treatment with RA. This event coincides with the nuclear translocation of Raf-1, phosphorylated at serine 621. The present study shows how the novel localization of Raf-1 to the nucleus results in transcriptional changes that contribute to the differentiation of HL-60 cells induced by RA. We find that nuclear pS621 Raf-1 associates with NFATc3 near its cognate binding site in the promoter of CXCR5, a gene that must be up-regulated to drive RA-induced differentiation. NFATc3 becomes immunoprecipitable with anti-phosphoserine serum, and CXCR5 is transcriptionally up-regulated upon RA-induced differentiation. Inhibiting the pS621 Raf-1/NFATc3 association with PD98059 inhibits these processes and cripples RA-induced differentiation. In this novel paradigm for Raf-1 and RA function, Raf-1 has a role in driving the nuclear signaling of RA-induced differentiation of leukemic progenitor cells.

  6. Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway.

    PubMed

    Yan, Dehong; Yang, Quan; Shi, Maohua; Zhong, Limei; Wu, Changyou; Meng, Tao; Yin, Huiyong; Zhou, Jie

    2013-11-01

    Polyunsaturated fatty acids (PUFAs) exert immunosuppressive effects that could prove beneficial in clinical therapies for certain autoimmune and inflammatory disorders. However, the mechanism of PUFA-mediated immunosuppression is far from understood. Here, we provide evidence that PUFAs enhance the accumulation of myeloid-derived suppressor cells (MDSCs), a negative immune regulator. PUFA-induced MDSCs have a more potent suppressive effect on T-cell responses than do control MDSCs. These observations were found both in cultured mouse bone marrow cells in vitro and in vivo in mice fed diets enriched in PUFAs. The enhanced suppressive activity of MDSCs by PUFAs administration was coupled with a dramatic induction of nicotinamide adenine dinucleo- tide phosphate oxidase subunit p47(phox) and was dependent on reactive oxygen species (ROS) production. Mechanistic studies revealed that PUFAs mediate its effects through JAK-STAT3 signaling. Inhibition of STAT3 phosphorylation by JAK inhibitor JSI-124 almost completely abrogated the effects of PUFAs on MDSCs. Moreover, the effects of PUFAs on MDSCs and the underlying mechanisms were confirmed in tumor-bearing mice. In summary, this study sheds new light on the immune modulatory role of PUFAs, and demonstrates that MDSCs expansion may mediate the effects of PUFAs on the immune system.

  7. Excessive feedback of Cyp26a1 promotes cell non-autonomous loss of retinoic acid signaling

    PubMed Central

    Rydeen, Ariel; Voisin, Norine; D’Aniello, Enrico; Ravisankar, Padmapriyadarshini; Devignes, Claire-Sophie; Waxman, Joshua S.

    2015-01-01

    Teratogenic levels of retinoic acid (RA) signaling can cause seemingly contradictory phenotypes indicative of both increases and decreases of RA signaling. However, the mechanisms underlying these contradictory phenotypes are not completely understood. Here, we report that using a hyperactive RA receptor to enhance RA signaling in zebrafish embryos leads to defects associated with gain and loss of RA signaling. While the gain-of-function phenotypes arise from an initial increase in RA signaling, using genetic epistasis analysis we found that the loss-of-function phenotypes result from a clearing of embryonic RA that requires a rapid and dramatic increase in cyp26a1 expression. Thus, the sensitivity of cyp26a1 expression to increased RA signaling causes an overcompensation of negative feedback and loss of embryonic RA signaling. Additionally, we used blastula transplantation experiments to test if Cyp26a1, despite its cellular localization, can limit RA exposure to neighboring cells. We find that enhanced Cyp26a1 expression limits RA signaling in the local environment, thus providing the first direct evidence that Cyp26 enzymes can have cell non-autonomous consequences on RA levels within tissues. Therefore, our results provide novel insights into the teratogenic mechanisms of RA signaling and the cellular mechanisms by which Cyp26a1 expression can shape a RA gradient. PMID:26116175

  8. Short-term ursolic acid promotes skeletal muscle rejuvenation through enhancing of SIRT1 expression and satellite cells proliferation.

    PubMed

    Bakhtiari, Nuredin; Hosseinkhani, Saman; Soleimani, Masoud; Hemmati, Roohullah; Noori-Zadeh, Ali; Javan, Mohammad; Tashakor, Amin

    2016-03-01

    Ursolic acid (UA) is a triterpenoid compound, which exerts its influences on the skeletal muscles. However, the mechanisms underlying these effects are still unclear. In this study, muscle satellite cells were isolated and purified by high-throughput pre-plating method (∼>60%) from 10 days old mice skeletal muscles. Evaluation of paired-box 7 (Pax7) expressions then confirmed the purification. Treatment of the cells with UA showed that UA up-regulated SIRT1 (∼35 folds) and overexpressed PGC-1α (∼175 folds) gene significantly. Moreover, the number of muscle satellite cells, which accompanied by initiation of neomyogenesis in the animal skeletal muscles, was increased (∼3.4 times). We also evaluated UA-mediated changes in the cellular energy status in the skeletal muscles. The results revealed that in the UA-treated mice, ATP and ADP contents in the various skeletal muscle tissue types, including: Gastrocnemius (Gas), Tibialis Anterior (Tib) and Gluteus Maximus (Glu) have been significantly decreased (P≤0.001); 2.2, 3.2, 2 times for ATP, and 9.6, 35.7, 11.6 times for ADP, respectively; however to compensate this process mitochondrial biogenesis occurred (12.33%±1.5 times). Furthermore, a rise in ATP/ADP ratio was observed 2.5, 4.5, 2.05 times for Gas, Tib and Glu muscles, respectively (P≤0.001). Alternatively, UA enhanced the expression of myoglobin (∼2 folds) in concert with remodeling of glycolytic muscle fibers to mainly fast IIA (∼30%) and slow-twitch (∼4%) types as well. Finally, our study indicated that UA indirectly mimicked beneficial effects of short-term calorie restriction and exercise (fast-oxidative) by directing the skeletal muscle composition toward oxidative metabolism.

  9. Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery.

    PubMed

    Lee, Cheng-Hung; Lin, Yu-Huang; Chang, Shang-Hung; Tai, Chun-Der; Liu, Shih-Jung; Chu, Yen; Wang, Chao-Jan; Hsu, Ming-Yi; Chang, Hung; Chang, Gwo-Jyh; Hung, Kuo-Chun; Hsieh, Ming-Jer; Lin, Fen-Chiung; Hsieh, I-Chang; Wen, Ming-Shien; Huang, Yenlin

    2014-01-01

    Incomplete endothelialization, blood cell adhesion to vascular stents, and inflammation of arteries can result in acute stent thromboses. The systemic administration of acetylsalicylic acid decreases endothelial dysfunction, potentially reducing thrombus, enhancing vasodilatation, and inhibiting the progression of atherosclerosis; but, this is weakened by upper gastrointestinal bleeding. This study proposes a hybrid stent with biodegradable nanofibers, for the local, sustained delivery of acetylsalicylic acid to injured artery walls. Biodegradable nanofibers are prepared by first dissolving poly(D,L)-lactide-co-glycolide and acetylsalicylic acid in 1,1,1,3,3,3-hexafluoro-2-propanol. The solution is then electrospun into nanofibrous tubes, which are then mounted onto commercially available bare-metal stents. In vitro release rates of pharmaceuticals from nanofibers are characterized using an elution method, and a highperformance liquid chromatography assay. The experimental results suggest that biodegradable nanofibers release high concentrations of acetylsalicylic acid for three weeks. The in vivo efficacy of local delivery of acetylsalicylic acid in reducing platelet and monocyte adhesion, and the minimum tissue inflammatory reaction caused by the hybrid stents in treating denuded rabbit arteries, are documented. The proposed hybrid stent, with biodegradable acetylsalicylic acid-loaded nanofibers, substantially contributed to local, sustained delivery of drugs to promote re-endothelialization and reduce thrombogenicity in the injured artery. The stents may have potential applications in the local delivery of cardiovascular drugs. Furthermore, the use of hybrid stents with acetylsalicylic acid-loaded nanofibers that have high drug loadings may provide insight into the treatment of patients with high risk of acute stent thromboses.

  10. Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells

    PubMed Central

    Gruber, Sabrina; Hendrikx, Tim; Tsiantoulas, Dimitrios; Ozsvar-Kozma, Maria; Göderle, Laura; Mallat, Ziad; Witztum, Joseph L.; Shiri-Sverdlov, Ronit; Nitschke, Lars; Binder, Christoph J.

    2016-01-01

    Summary Atherosclerosis is initiated and sustained by hypercholesterolemia, which results in the generation of oxidized LDL (OxLDL) and other metabolic byproducts that trigger inflammation. Specific immune responses have been shown to modulate the inflammatory response during atherogenesis. The sialic acid-binding immunoglobulin-like lectin G (Siglec-G) is a negative regulator of the functions of several immune cells, including myeloid cells and B-1 cells. Here, we show that deficiency of Siglec-G in atherosclerosis-prone mice inhibits plaque formation and diet-induced hepatic inflammation. We further demonstrate that selective deficiency of Siglec-G in B cells alone is sufficient to mediate these effects. Levels of B-1 cell-derived natural IgM with specificity for OxLDL were significantly increased in the plasma and peritoneal cavity of Siglec-G-deficient mice. Consistent with the neutralizing functions of OxLDL-specific IgM, Siglec-G-deficient mice were protected from OxLDL-induced sterile inflammation. Thus, Siglec-G promotes atherosclerosis and hepatic inflammation by suppressing protective anti-inflammatory effector functions of B cells. PMID:26947073

  11. Long interspersed nucleotide acid element-1 ORF-1 protein promotes proliferation and invasion of human colorectal cancer LoVo cells through enhancing ETS-1 activity.

    PubMed

    Li, M Y; Zhu, M; Feng, F; Cai, F Y; Fan, K C; Jiang, H; Wang, Z Q; Linghu, E Q

    2014-04-14

    The human proto-oncogene long interspersed nucleotide acid element-1 (LINE-1) open reading frame-1 protein (ORF-1p) is involved in the progress of several cancers. The transcription factor ETS-1 can mediate the transcription of some downstream genes that play specific roles in the regulation of cancerous cell invasion and metastasis. In this study, the effects of LINE-1 ORF-1p on ETS-1 activity and on the proliferation and invasion of human colorectal cancer LoVo cells were investigated. Results showed that the overexpression of LINE-1 ORF-1p enhanced the transcription of ETS-1 downstream genes and increased their protein levels, and downregulation of the LINE-1 ORF-1p level by small interfering RNA (siRNA) reduced the transcriptional activation of ETS-1. In addition, overexpression of LINE-1 ORF-1p promoted LoVo cell proliferation and anchor-independent growth, and a knockdown of the LINE-1 protein level by siRNA reduced the proliferation and anchor-independent growth ability of LoVo cells. In vivo data revealed that LINE-1 ORF-1p overexpression increased LoVo tumor growth in nude mice, whereas the siRNA knockdown of endogenous LINE-1 ORF-1p expression decreased LoVo cell growth in nude mice. Therefore, LINE- 1 ORF-1p could promote LoVo cell proliferation and invasion both in vitro and in vivo, indicating that it might be a useful molecular target for the treatment of human colorectal cancer.

  12. Valproic acid (VPA) promotes the epithelial mesenchymal transition of hepatocarcinoma cells via transcriptional and post-transcriptional up regulation of Snail.

    PubMed

    Wu, Lei; Feng, Hua; Hu, Jinhua; Tian, Xiangguo; Zhang, Chunqing

    2016-12-01

    Due to the low cost and favorable safety profile, valproic acid (VPA) has been considered as a potential candidate drug for therapy of various cancers. Our present study revealed that VPA, at the concentration (1mM) which has no effect on cell proliferation, can significantly increase the in vitro migration and invasion of hepatocarcinoma (HCC) HepG2 and Huh7 cells via induction of epithelial mesenchymal transition (EMT). VPA treatment can significantly increase the mRNA and protein expression of Snail, the key transcription factor of EMT. While knockdown of Snail can abolish VPA induced EMT of HCC cells. It suggested that Snail is essential for VPA induced EMT of HCC cells. VPA treatment also increased the phosphorylation of NF-κB p65. BAY 11-7082, the inhibitor of NF-κB, can significantly abolish VPA induced up regulation of Snail mRNA. Furthermore, VPA can increase the protein expression of Snail since 1h treatment via up regulation of half-lives of Snail protein. The increased protein stabilization of Snail can be attributed to VPA induced phosphorylation of Akt and GSK-3β. Collectively, our present study revealed that VPA can promote the EMT of HCC cells via up regulation of Snail through activation of NF-κB and Akt/GSK-3β signals.

  13. Immune cell promotion of metastasis

    PubMed Central

    Kitamura, Takanori; Qian, Bin-Zhi; Pollard, Jeffrey W.

    2015-01-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells. PMID:25614318

  14. Multi-porous electroactive poly(L-lactic acid)/polypyrrole composite micro/nano fibrous scaffolds promote neurite outgrowth in PC12 cells.

    PubMed

    Yu, Qiaozhen; Xu, Shuiling; Zhang, Kuihua; Shan, Yongming

    2013-01-05

    In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0-10.0 μA for about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.

  15. An Lysophosphatidic Acid Receptors 1 and 3 Axis Governs Cellular Senescence of Mesenchymal Stromal Cells and Promotes Growth and Vascularization of Multiple Myeloma.

    PubMed

    Kanehira, Masahiko; Fujiwara, Tohru; Nakajima, Shinji; Okitsu, Yoko; Onishi, Yasushi; Fukuhara, Noriko; Ichinohasama, Ryo; Okada, Yoshinori; Harigae, Hideo

    2017-03-01

    Mesenchymal stromal cells (MSCs) are multipotent progenitor cells and there is much interest in how MSCs contribute to the regulation of the tumor microenvironment. Whether MSCs exert a supportive or suppressive effect on tumor progression is still controversial, but is likely dependent on a variety of factors that are tumor-type dependent. Multiple myeloma (MM) is characterized by growth of malignant plasma cells in the bone marrow. It has been shown that the progression of MM is governed by MSCs, which act as a stroma of the myeloma cells. Although stroma is created via mutual communication between myeloma cells and MSCs, the mechanism is poorly understood. Here we explored the role of lysophosphatidic acid (LPA) signaling in cellular events where MSCs were converted into either MM-supportive or MM-suppressive stroma. We found that myeloma cells stimulate MSCs to produce autotaxin, an indispensable enzyme for the biosynthesis of LPA, and LPA receptor 1 (LPA1) and 3 (LPA3) transduce opposite signals to MSCs to determine the fate of MSCs. LPA3-silenced MSCs (siLPA3-MSCs) exhibited cellular senescence-related phenotypes in vitro, and significantly promoted progression of MM and tumor-related angiogenesis in vivo. In contrast, siLPA1-MSCs showed resistance to cellular senescence in vitro, and efficiently delayed progression of MM and tumor-related angiogenesis in vivo. Consistently, anti-MM effects obtained by LPA1-silencing in MSCs were completely reproduced by systemic administration of Ki6425, an LPA1 antagonist. Collectively, our results indicate that LPA signaling determines the fate of MSCs and has potential as a therapeutic target in MM. Stem Cells 2017;35:739-753.

  16. Promoting effect of arachidonic acid supplementation on N-methyl-N-nitrosourea-induced pancreatic acinar cell hyperplasia in young Lewis rats.

    PubMed

    Yoshizawa, Katsuhiko; Uehara, Norihisa; Kimura, Ayako; Emoto, Yuko; Kinoshita, Yuichi; Yuri, Takashi; Takada, Hideho; Moriguchi, Toru; Hamazaki, Tomohito; Tsubura, Airo

    2013-01-01

    Arachidonic acid (AA) is naturally found in human breast milk. AA, together with docosahexaenoic acid, is commonly added as a functional food ingredient to commercial infant formula worldwide, in accordance with the international standard of Codex Alimentarius. However, few studies have been performed that are concerned with the possible carcinogenic effects of AA supplementation during neonatal life. The effect of dietary AA supplementation in dams, during gestation and lactation, was investigated in N-methyl-N-nitrosourea (MNU)-induced preneoplastic lesions in the exocrine pancreas of young Lewis rats. Dams were fed either an AA (2.0% AA) or a basal (<0.01% AA) diet. On postnatal day 0 (at birth), male and female pups received a single intraperitoneal injection of either 35 mg/kg MNU or vehicle. The morphology and proliferating activity of the exocrine pancreas were examined by proliferative cell nuclear antigen immunohistochemistry 7, 14, 21, 28 and/or 60 days post-MNU. Histopathologically, acinar cell hyperplasia (ACH) occurred in the MNU-treated groups 60 days after MNU injection, irrespecitive of whether the rats had been fed an AA diet. Morphometrically, the number and area of ACH per 1 mm(2) in MNU-treated rats increased significantly in the AA diet-fed rats, compared with basal diet-fed rats. The number of proliferative cell nuclear antigen-positive acinar cells in both the normal and hyperplastic areas of MNU-treated rats increased significantly in the AA diet-fed rats. In conclusion, providing dams with an AA-rich diet during gestation and lactation promotes MNU-induced pancreatic ACH in young Lewis rats.

  17. Arsenic sulfide promotes apoptosis in retinoid acid resistant human acute promyelocytic leukemic NB4-R1 cells through downregulation of SET protein.

    PubMed

    Tian, Yuwang; Liu, Yanfeng; He, Pengcheng; Liu, Feng; Zhou, Naicen; Cheng, Xiaoyan; Shi, Lili; Zhu, Huachao; Zhao, Jing; Wang, Yuan; Zhang, Mei

    2014-01-01

    Tetra-arsenic tetra-sulfide (As4S4) is an arsenic compound with anti-tumor activity, especially in acute promyelocytic leukemia (APL) that are resistant to retinoic acid (RA). Although recent studies revealed that the therapeutic action of As4S4 is closely associated with the induction of cellular apoptosis, the exact molecular mechanism of action of As4S4 in RA-resistant APL remains to be clarified. In this study, we found that As4S4-induced apoptosis was accompanied by reduced mRNA and protein expression of SET gene in RA-resistant NB4-R1 cells. Moreover, RNAi knockdown of SET gene further promoted As4S4-induced apoptosis, while SET over-expression inhibited it, suggesting that As4S4 induces apoptosis through the reduction of SET protein in NB4-R1 cells. We also demonstrated that the knockdown of SET gene resulted in the upregulation of protein phosphatase 2 (PP2A) expression and the downregulation of promyelocytic leukemia and retinoic acid receptor α fusion gene (PML-RARα) expression, which were enhanced by As4S4 treatments. By contrast, over-expression of SET gene resulted in PP2A downregulation and PML-RARα upregulation, which were abolished by As4S4 pretreatment. Since PP2A is a pro-apoptotic factor and PMLRARα is an anti-apoptotic factor, our results suggest that As4S4-induced apoptosis in NB4-R1 cells is through the downregulation of SET protein expression, which in turn increases PP2A and reduces PML-RARα expressions to lead to cell apoptosis.

  18. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells.

    PubMed

    Deng, Fuxue; Lei, Han; Hu, Yunfeng; He, Linjing; Fu, Hang; Feng, Rui; Feng, Panpan; Huang, Wei; Wang, Xi; Chang, Jing

    2016-03-01

    There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10(-1) μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state.

  19. Blueberry diet derived 3-(3-hydroxyphenyl) propionic acid (PPA) suppresses osteoblastic cell senescence to promote bone accretion in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A blueberry (BB) supplemented diet has been previously shown to significantly stimulate bone formation in rapidly growing male and female rodents. Phenolic acids (PAs) are metabolites derived from polyphenols found in fruits and vegetables as a result of the actions of gut bacteria, and the levels o...

  20. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.

    PubMed

    Zhenyukh, Olha; Civantos, Esther; Ruiz-Ortega, Marta; Sánchez, Maria Soledad; Vázquez, Clotilde; Peiró, Concepción; Egido, Jesús; Mas, Sebastián

    2017-03-01

    Leucine, isoleucine and valine are essential aminoacids termed branched-chain amino acids (BCAA) due to its aliphatic side-chain. In several pathological and physiological conditions increased BCAA plasma concentrations have been described. Elevated BCAA levels predict insulin resistance development. Moreover, BCAA levels higher than 2mmol/L are neurotoxic by inducing microglial activation in maple syrup urine disease. However, there are no studies about the direct effects of BCAA in circulating cells. We have explored whether BCAA could promote oxidative stress and pro-inflammatory status in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. In cultured PBMCs, 10mmol/L BCAA increased the production of reactive oxygen species (ROS) via both NADPH oxidase and the mitochondria, and activated Akt-mTOR signalling. By using several inhibitors and activators of these molecular pathways we have described that mTOR activation by BCAA is linked to ROS production and mitochondrial dysfunction. BCAA stimulated the activation of the redox-sensitive transcription factor NF-κB, which resulted in the release of pro-inflammatory molecules, such as interleukin-6, tumor necrosis factor-α, intracellular adhesion molecule-1 or CD40L, and the migration of PBMCs. In conclusion, elevated BCAA blood levels can promote the activation of circulating PBMCs, by a mechanism that involving ROS production and NF-κB pathway activation. These data suggest that high concentrations of BCAA could exert deleterious effects on circulating blood cells and therefore contribute to the pro-inflammatory and oxidative status observed in several pathophysiological conditions.

  1. Altered Tumor-Cell Glycosylation Promotes Metastasis

    PubMed Central

    Häuselmann, Irina; Borsig, Lubor

    2014-01-01

    Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompass aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor-cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor-cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors – lectins. In this review, we will discuss current concepts how tumor-cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins, and selectins. Siglecs are present on virtually all hematopoietic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor-cell survival. Selectins are vascular adhesion receptors that promote tumor-cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis, and aid to develop clinical strategies to prevent metastasis. PMID:24592356

  2. Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake

    PubMed Central

    Hasegawa, Yasushi; Nakagawa, Erina; Kadota, Yukiya; Kawaminami, Satoshi

    2017-01-01

    Objective Adipose tissue plays a key role in the development of obesity and diabetes. We previously reported that lignosulfonic acid suppresses the rise in blood glucose levels through the inhibition of α-glucosidase activity and intestinal glucose absorption. The purpose of this study is to examine further biological activities of lignosulfonic acid. Methods In this study, we examined the effect of lignosulfonic acid on differentiation of 3T3-L1 cells. Results While lignosulfonic acid inhibited proliferation (mitotic clonal expansion) after induction of differentiation, lignosulfonic acid significantly increased the size of accumulated lipid droplets in the cells. Semi-quantitative reverse transcription polymerase chain reaction analysis showed that lignosulfonic acid increased the expression of the adipogenic transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ), leading to increased glucose transporter 4 (Glut-4) expression and 2-deoxyglucose uptake in differentiated 3T3-L1 cells. Additionally, feeding lignosulfonic acid to diabetic KK-Ay mice suppressed increase of blood glucose level. Conclusion Lignosulfonic acid may be useful as a functional anti-diabetic component of food. PMID:27383805

  3. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  4. Role of Arachidonic Acid in Promoting Hair Growth

    PubMed Central

    Munkhbayar, Semchin; Jang, Sunhyae; Cho, A-Ri; Choi, Soon-Jin; Shin, Chang Yup; Eun, Hee Chul; Kim, Kyu Han

    2016-01-01

    Background Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. Objective This study investigated the effect of AA on hair growth by using in vivo and in vitro models. Methods The effect of AA on human dermal papilla cells (hDPCs) and hair shaft elongation was evaluated by MTT assay and hair follicle organ culture, respectively. The expression of various growth and survival factors in hDPCs were investigated by western blot or immunohistochemistry. The ability of AA to induce and prolong anagen phase in C57BL/6 mice was analyzed. Results AA was found to enhance the viability of hDPCs and promote the expression of several factors responsible for hair growth, including fibroblast growth factor-7 (FGF-7) and FGF-10. Western blotting identified the role of AA in the phosphorylation of various transcription factors (ERK, CREB, and AKT) and increased expression of Bcl-2 in hDPCs. In addition, AA significantly promoted hair shaft elongation, with increased proliferation of matrix keratinocytes, during ex vivo hair follicle culture. It was also found to promote hair growth by induction and prolongation of anagen phase in telogen-stage C57BL/6 mice. Conclusion This study concludes that AA plays a role in promoting hair growth by increasing the expression of growth factors in hDPCs and enhancing follicle proliferation and survival. PMID:26848219

  5. Schwann cell proliferation and differentiation that is induced by ferulic acid through MEK1/ERK1/2 signalling promotes peripheral nerve remyelination following crush injury in rats

    PubMed Central

    Zhu, Xiaoyan; Li, Kun; Guo, Xin; Wang, Jian; Xiang, Yang

    2016-01-01

    Schwann cell proliferation and differentiation is critical for the remyelination of injured peripheral nerves. Ferulic acid (FA) is a widely used antioxidant agent with neuroprotective properties. However, the potentially beneficial effects of FA on Schwann cells are unknown. Therefore, the present study was designed to examine the effects of FA on Schwann cell proliferation and differentiation. By using the cultured primary Schwann cells and proliferation assay, the results identified that FA was capable of increasing Schwann cell proliferation and expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) in vitro. It was also observed that the beneficial effect of FA treatment on Schwann cells was mainly dependent on the activation of MEK1/ERK1/2 signalling. Furthermore, FA was intraperitoneally administered to rats with sciatic nerve crush injury, and the results revealed an increase in Schwann cell proliferation and differentiation, while the MAG and MBP expression levels in sciatic nerves were markedly upregulated following FA administration. In conclusion, the current results demonstrate that Schwann cell proliferation and differentiation is induced by FA through MEK1/ERK1/2 signalling and that FA may accelerate injured peripheral nerve remyelination. PMID:27588110

  6. Trans fatty acids exacerbate dextran sodium sulphate-induced colitis by promoting the up-regulation of macrophage-derived proinflammatory cytokines involved in T helper 17 cell polarization.

    PubMed

    Okada, Y; Tsuzuki, Y; Sato, H; Narimatsu, K; Hokari, R; Kurihara, C; Watanabe, C; Tomita, K; Komoto, S; Kawaguchi, A; Nagao, S; Miura, S

    2013-12-01

    Numerous reports have shown that a diet containing large amounts of trans fatty acids (TFAs) is a major risk factor for metabolic disorders. Although recent studies have shown that TFAs promote intestinal inflammation, the underlying mechanisms are unknown. In this study, we examined the effects of dietary fat containing TFAs on dextran sodium sulphate (DSS)-induced colitis. C57 BL/6 mice were fed a diet containing 1·3% TFAs (mainly C16:1, C18:1, C18:2, C20:1, C20:2 and C22:1), and then colitis was induced with 1·5% DSS. Colonic damage was assessed, and the mRNA levels of proinflammatory cytokines and major regulators of T cell differentiation were measured. The TFA diet reduced survival and exacerbated histological damage in mice administered DSS compared with those fed a TFA-free diet. The TFA diet significantly elevated interleukin (IL)-6, IL-12p40, IL-23p19 and retinoic acid-related orphan receptor (ROR)γt mRNA levels in the colons of DSS-treated animals. Moreover, IL-17A mRNA levels were elevated significantly by the TFA diet, with or without DSS treatment. We also examined the expression of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and peritoneal macrophages. These cells were exposed to TFAs (linoelaidic acid or elaidic acid) with or without LPS and the mRNA levels of various cytokines were measured. IL-23p19 mRNA levels were increased significantly by TFAs in the absence of LPS. Cytokine expression was also higher in LPS-stimulated cells exposed to TFAs than in unexposed LPS-stimulated cells. Collectively, our results suggest that TFAs exacerbate colonic inflammation by promoting Th17 polarization and by up-regulating the expression of proinflammatory cytokines in the inflamed colonic mucosa.

  7. Gremlin-mediated decrease in bone morphogenetic protein signaling promotes aristolochic acid-induced epithelial-to-mesenchymal transition (EMT) in HK-2 cells.

    PubMed

    Li, Yi; Wang, Zihua; Wang, Shuai; Zhao, Jinghong; Zhang, Jingbo; Huang, Yunjian

    2012-07-16

    Ingestion of aristolochic acid (AA) is associated with the development of aristolochic acid nephropathy (AAN), which is characterized by progressive tubulointerstitial fibrosis, chronic renal failure and urothelial cancer. Our previous study showed that bone morphogenetic protein-7 (BMP-7) could attenuate AA-induced epithelial-to-mesenchymal transition (EMT) in human proximal tubule epithelial cells (PTEC). However, how gremlin (a BMP-7 antagonist) antagonizes the BMP-7 action in PTEC remained unsolved. The aim of the current study was to investigate the role of gremlin in AA-induced EMT in PTEC (HK-2 cells). HK-2 cells were treated with AA (10 μmol/L) for periods up to 72 h. Cell viability was determined by tetrazolium dye (MTT) assay. Morphological changes were assessed by phase-contrast microscopy. Markers of EMT, including E-cadherin and α-smooth muscle actin (α-SMA) were detected by indirect immunofluorescence stains. The BMP-7 and gremlin mRNA and protein expression in HK-2 cells were analyzed by quantitative real-time PCR (real-time RT-PCR) and western blotting after exposure to AA. The level of phosphorylated Smad1/5/8, a marker of BMP-7 activity, was also determined by western blot analysis. Cells were transfected with gremlin siRNA to determine the effects of gremlin knockdown on markers of EMT following treatment with AA. Our results indicated that AA-induced EMT was associated with acquisition of fibroblast-like cell shape, loss of E-cadherin, and increases of alpha-SMA and collagen type I. Interestingly, exposure of HK-2 cells to 10 μmol/L AA increased the mRNA and protein expression of gremlin in HK-2 cells. This increase was in parallel with a decrease in BMP-7 expression and a down-regulation of phosphorylated Smad1/5/8 protein levels. Moreover, transfection with siRNA to gremlin was able to recover BMP-7 signaling activity, and attenuate EMT-associated phenotypic changes induced by AA. Together, these observations strongly suggest that gremlin

  8. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells.

    PubMed

    Xu, H F; Luo, J; Zhao, W S; Yang, Y C; Tian, H B; Shi, H B; Bionaz, M

    2016-01-01

    Sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) is known to be the master regulator of lipid homeostasis in mammals, including milk fat synthesis. The major role of SREBP1 in controlling milk fat synthesis has been demonstrated in bovine mammary epithelial cells. Except for a demonstrated role in controlling the expression of FASN, a regulatory role of SREBP1 on milk fat synthesis is very likely, but has not yet been demonstrated in goat mammary epithelial cells (GMEC). To explore the regulatory function of SREBP1 on de novo fatty acids and triacylglycerol synthesis in GMEC, we overexpressed the mature form of SREBP1 (active NH2-terminal fragment) in GMEC using a recombinant adenovirus vector (Ad-nSREBP1), with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and infected the GMEC for 48 h. In infected cells, we assessed the expression of 20 genes related to milk fat synthesis using real time-quantitative PCR, the protein abundance of SREBP1 and FASN by Western blot, the production of triacylglycerol, and the fatty acid profile. Expression of SREBF1 was modest in mammary compared with the other tissues in dairy goats but its expression increased approximately 30-fold from pregnancy to lactation. The overexpression of the mature form of SREBP1 was confirmed by >200-fold higher expression of SREBF1 in Ad-nSREBP1 compared with Ad-GFP. We observed no changes in amount of the precursor form of SREBP1 protein but a >10-fold increase of the mature form of SREBP1 protein with Ad-nSREBP1. Compared with Ad-GFP cells (control), Ad-nSREBP1 cells had a significant increase in expression of genes related to long-chain fatty acid activation (ACSL1), transport (FABP3), desaturation (SCD1), de novo synthesis of fatty acids (ACSS2, ACLY, IDH1, ACACA, FASN, and ELOVL6), and transcriptional factors (NR1H3 and PPARG). We observed a >10-fold increase in expression of INSIG1 but SCAP was downregulated by Ad-nSREBP1. Among genes related to

  9. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells

    PubMed Central

    Wang, Zhongshan; Wu, Guangsheng; Feng, Zhihong; Bai, Shizhu; Dong, Yan; Wu, Guofeng; Zhao, Yimin

    2015-01-01

    Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration. PMID:26604744

  10. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  11. Chicoric Acid Ameliorates Lipopolysaccharide-Induced Oxidative Stress via Promoting the Keap1/Nrf2 Transcriptional Signaling Pathway in BV-2 Microglial Cells and Mouse Brain.

    PubMed

    Liu, Qian; Hu, Yaya; Cao, Youfang; Song, Ge; Liu, Zhigang; Liu, Xuebo

    2017-01-18

    As a major nutraceutical component of a typical Mediterranean vegetable chicory, chicoric acid (CA) has been well-documented due to its excellent antioxidant and antiobesity bioactivities. In the current study, the effects of CA on lipopolysaccharide (LPS)-stimulated oxidative stress in BV-2 microglia and C57BL/6J mice and the underlying molecular mechanisms were investigated. Results demonstrated that CA significantly reversed LPS-elicited cell viability decrease, mitochondrial dysfunction, activation of NFκB and MAPK stress pathways, and inflammation responses via balancing cellular redox status. Furthermore, molecular modeling study demonstrated that CA could insert into the pocket of Keap1 and up-regulated Nrf2 signaling and, thus, transcriptionally regulate downstream expressions of antioxidant enzymes including HO-1 and NQO-1 in both microglial cells and ip injection of LPS-treated mouse brain. These results suggested that CA attenuated LPS-induced oxidative stress via mediating Keap1/Nrf2 transcriptional pathways and downstream enzyme expressions, which indicated that CA has great potential as a nutritional preventive strategy in oxidative stress-related neuroinflammation.

  12. The use of dipeptide derivatives of 5-aminolaevulinic acid promotes their entry to tumor cells and improves tumor selectivity of photodynamic therapy.

    PubMed

    Di Venosa, Gabriela; Vallecorsa, Pablo; Giuntini, Francesca; Mamone, Leandro; Batlle, Alcira; Vanzuli, Silvia; Juarranz, Angeles; MacRobert, Alexander J; Eggleston, Ian M; Casas, Adriana

    2015-02-01

    The use of endogenous protoporphyrin IX generated after administration of 5-aminolaevulinic acid (ALA) has led to many applications in photodynamic therapy (PDT). However, the bioavailability of ALA is limited by its hydrophilic properties and limited cell uptake. A promising approach to optimize the efficacy of ALA-PDT is to deliver ALA in the form of prodrugs to mask its hydrophilic nature. The aim of this work was to evaluate the potential of two ALA dipeptide derivatives, N-acetyl terminated leucinyl-ALA methyl ester (Ac-Leu-ALA-Me) and phenylalanyl-ALA methyl ester (Ac-Phe-ALA-Me), for their use in PDT of cancer, by investigating the generation of protoporphyrin IX in an oncogenic cell line (PAM212-Ras), and in a subcutaneous tumor model. In our in vitro studies, both derivatives were more effective than ALA in PDT treatment, at inducing the same protoporphyrin IX levels but at 50- to 100-fold lower concentrations, with the phenylalanyl derivative being the most effective. The efficient release of ALA from Ac-Phe-ALA-Me appears to be consistent with the reported substrate and inhibitor preferences of acylpeptide hydrolase. In vivo studies revealed that topical application of the peptide prodrug Ac-Phe-ALA-Me gave greater selectivity than with ALA itself, and induced tumor photodamage, whereas systemic administration improved ALA-induced porphyrin generation in terms of equivalent doses administered, without induction of toxic effects. Our data support the possibility of using particularly Ac-Phe-ALA-Me both for topical treatment of basal cell carcinomas and for systemic administration. Further chemical fine-tuning of this prodrug template should yield additional compounds for enhanced ALA-PDT with potential for translation to the clinic.

  13. Kinetic resolution of racemic carboxylic acids through asymmetric protolactonization promoted by chiral phosphonous acid diester.

    PubMed

    Sakuma, Masayuki; Sakakura, Akira; Ishihara, Kazuaki

    2013-06-07

    Chiral phosphonium salts induce the kinetic resolution of racemic α-substituted unsaturated carboxylic acids through asymmetric protolactonization. Both the lactones and the recovered carboxylic acids are obtained with high enantioselectivities and high S (= kfast/kslow) values. Asymmetric protolactonization also leads to the desymmetrization of achiral carboxylic acids. Notably, chiral phosphonous acid diester not only induced the enantioselectivity but also promoted protolactonization.

  14. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis.

    PubMed

    Xie, Guoxiang; Wang, Xiaoning; Huang, Fengjie; Zhao, Aihua; Chen, Wenlian; Yan, Jingyu; Zhang, Yunjing; Lei, Sha; Ge, Kun; Zheng, Xiaojiao; Liu, Jiajian; Su, Mingming; Liu, Ping; Jia, Wei

    2016-10-15

    Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis.

  15. Acid adaptation promotes survival of Salmonella spp. in cheese.

    PubMed Central

    Leyer, G J; Johnson, E A

    1992-01-01

    Salmonella typhimurium was adapted to acid by exposure to hydrochloric acid at pH 5.8 for one to two doublings. Acid-adapted cells had increased resistance to inactivation by organic acids commonly present in cheese, including lactic, propionic, and acetic acids. Recovery of cells during the treatment with organic acids was increased 1,000-fold by inclusion of 0.1% sodium pyruvate in the recovery medium. Acid-adapted S. typhimurium cells survived better than nonadapted cells during a milk fermentation by a lactic acid culture. Acid-adapted cells also showed enhanced survival over a period of two months in cheddar, Swiss, and mozzarella cheeses kept at 5 degrees C. Acid adaptation was found in Salmonella spp., including Salmonella enteritidis, Salmonella choleraesuis subsp. choleraesuis serotype heidelberg, and Salmonella choleraesuis subsp. choleraesuis serotype javiana, associated with food poisoning. These observations support the theory that acid adaptation is an important survival mechanism enabling Salmonella spp. to persist in fermented dairy products and possibly other acidic food products. PMID:1622286

  16. Targeting cancer cells with folic acid-iminoboronate fluorescent conjugates.

    PubMed

    Cal, Pedro M S D; Frade, Raquel F M; Chudasama, Vijay; Cordeiro, Carlos; Caddick, Stephen; Gois, Pedro M P

    2014-05-25

    Herein we present the synthesis of fluorescent 2-acetylbenzeneboronic acids that undergo B-N promoted conjugation with lysozyme and N-(2-aminoethyl) folic acid (EDA-FA), generating conjugates that are selectively recognized and internalized by cancer cells that over-express folic acid receptors.

  17. Tetra-arsenic tetra-sulfide (As4S 4) promotes apoptosis in retinoid acid -resistant human acute promyelocytic leukemic NB4-R1 cells through downregulation of SET protein.

    PubMed

    Liu, Yanfeng; He, Pengcheng; Liu, Feng; Zhou, Naicen; Cheng, Xiaoyan; Shi, Lili; Zhu, Huachao; Zhao, Jing; Wang, Yuan; Zhang, Mei

    2014-04-01

    Tetra-arsenic tetra-sulfide (As4S4) is an arsenic compound with antitumor activity, especially in acute promyelocytic leukemia (APL) that are resistant to retinoic acid (RA). Although recent studies have revealed that the therapeutic action of As4S4 is closely associated with the induction of cellular apoptosis, the exact molecular mechanism underlying this action in RA-resistant APL remains to be clarified. In this study, we found that As4S4-induced apoptosis was accompanied by reduced mRNA and protein expression of SET gene in RA-resistant NB4-R1 cells. Moreover, RNAi knockdown of SET gene further promoted As4S4-induced apoptosis, while SET overexpression recovered the cell viability, suggesting that As4S4 induces apoptosis through the reduction of SET protein in NB4-R1 cells. We also observed that the knockdown of SET gene resulted in the upregulation of protein phosphatase 2 (PP2A) expression and the downregulation of promyelocytic leukemia and retinoic acid receptor α fusion gene (PML-RARα) expression, which were enhanced by As4S4 treatments. By contrast, overexpression of SET gene resulted in PP2A downregulation and PML-RARα upregulation, which were abolished by As4S4 pretreatment. Since PP2A is a proapoptotic factor and PML-RARα is an antiapoptotic factor, our results suggest that As4S4-induced apoptosis in RA-resistant NB4-R1 cells is through the downregulation of SET protein expression, which, in turn, increases PP2A and reduces PML-RARα expressions to lead to cell apoptosis.

  18. Characterization of the human MSX-1 promoter and an enhancer responsible for retinoic acid induction.

    PubMed

    Shen, R; Chen, Y; Huang, L; Vitale, E; Solursh, M

    1994-01-01

    Previous studies have shown that the expression of some human HOX genes can be induced by retinoic acid (RA) in cultured embryonal carcinoma (EC) cells. However, the mechanisms for the regulation of HOX gene expression by RA are still unclear. We have examined the effects of RA on the human MSX-1 (formerly named HOX-7) gene expression in cultured EC cells (NT2/D1). Furthermore, we have cloned and characterized the human MSX-1 promoter and analyzed the activities of the promoter in response to RA. Our results demonstrate that transcription of human MSX-1 is activated by RA in cultured EC cells. This activation is dose and time responsive. The MSX-1 promoter was shown to be TATA-box independent and able to promote transcription in RA-treated EC cells. DNase-I footprinting studies revealed protection of several GAGA factor binding sites and an NF-kappa B site upstream to the transcription start site by nuclear extracts prepared from EC cells. A downstream sequence was differentially protected by the nuclear extract from RA treated cells. This differential binding of the sequence with the nuclear extract was further confirmed by gel shift assays. This sequence confers to a heterologous promoter with the ability to respond to RA induction. Point mutation within this DNA fragment abolished the binding of the fragment to the nuclear extract and the response of this element in a heterologous promoter to RA induction. Deletion of this enhancer element together with the adjacent NF-kappa B and GAGA sites abolished the ability of the promoter to direct transcription in RA-treated EC cells. However, removal of a downstream DNA fragment from the promoter endowed the promoter with the ability to direct transcription in RA-untreated cells. Taken together, both positive and negative regulatory cis-elements are involved in the regulation of the MSX-1 promoter and coordinate to control the gene expression.

  19. Mast cells promote melanoma colonization of lungs.

    PubMed

    Öhrvik, Helena; Grujic, Mirjana; Waern, Ida; Gustafson, Ann-Marie; Ernst, Nancy; Roers, Axel; Hartmann, Karin; Pejler, Gunnar

    2016-10-18

    Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre- R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre- R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre- R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.

  20. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

  1. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    SciTech Connect

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  2. Promotion of Hepatocarcinogenesis by Perfluoroalkyl Acids in Rainbow Trout

    PubMed Central

    Benninghoff, Abby D.; Orner, Gayle A.; Buchner, Clarissa H.; Hendricks, Jerry D.; Duffy, Aaron M.; Williams, David E.

    2012-01-01

    Previously, we reported that perfluorooctanoic acid (PFOA) promotes liver cancer in a manner similar to that of 17β-estradiol (E2) in rainbow trout. Also, other perfluoroalkyl acids (PFAAs) are weakly estrogenic in trout and bind the trout liver estrogen receptor. The primary objective of this study was to determine whether multiple PFAAs enhance hepatic tumorigenesis in trout, an animal model that represents human insensitivity to peroxisome proliferation. A two-stage chemical carcinogenesis model was employed in trout to evaluate PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctane sulfonate (PFOS), and 8:2 fluorotelomer alcohol (8:2FtOH) as complete carcinogens or promoters of aflatoxin B1 (AFB1)- and/or N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced liver cancer. A custom trout DNA microarray was used to assess hepatic transcriptional response to these dietary treatments in comparison with E2 and the classic peroxisome proliferator, clofibrate (CLOF). Incidence, multiplicity, and size of liver tumors in trout fed diets containing E2, PFOA, PFNA, and PFDA were significantly higher compared with AFB1-initiated animals fed control diet, whereas PFOS caused a minor increase in liver tumor incidence. E2 and PFOA also enhanced MNNG-initiated hepatocarcinogenesis. Pearson correlation analyses, unsupervised hierarchical clustering, and principal components analyses showed that the hepatic gene expression profiles for E2 and PFOA, PFNA, PFDA, and PFOS were overall highly similar, though distinct patterns of gene expression were evident for each treatment, particularly for PFNA. Overall, these data suggest that multiple PFAAs can promote liver cancer and that the mechanism of promotion may be similar to that of E2. PMID:21984479

  3. Promotion of hepatocarcinogenesis by perfluoroalkyl acids in rainbow trout.

    PubMed

    Benninghoff, Abby D; Orner, Gayle A; Buchner, Clarissa H; Hendricks, Jerry D; Duffy, Aaron M; Williams, David E

    2012-01-01

    Previously, we reported that perfluorooctanoic acid (PFOA) promotes liver cancer in a manner similar to that of 17β-estradiol (E2) in rainbow trout. Also, other perfluoroalkyl acids (PFAAs) are weakly estrogenic in trout and bind the trout liver estrogen receptor. The primary objective of this study was to determine whether multiple PFAAs enhance hepatic tumorigenesis in trout, an animal model that represents human insensitivity to peroxisome proliferation. A two-stage chemical carcinogenesis model was employed in trout to evaluate PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctane sulfonate (PFOS), and 8:2 fluorotelomer alcohol (8:2FtOH) as complete carcinogens or promoters of aflatoxin B(1) (AFB(1))- and/or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced liver cancer. A custom trout DNA microarray was used to assess hepatic transcriptional response to these dietary treatments in comparison with E2 and the classic peroxisome proliferator, clofibrate (CLOF). Incidence, multiplicity, and size of liver tumors in trout fed diets containing E2, PFOA, PFNA, and PFDA were significantly higher compared with AFB(1)-initiated animals fed control diet, whereas PFOS caused a minor increase in liver tumor incidence. E2 and PFOA also enhanced MNNG-initiated hepatocarcinogenesis. Pearson correlation analyses, unsupervised hierarchical clustering, and principal components analyses showed that the hepatic gene expression profiles for E2 and PFOA, PFNA, PFDA, and PFOS were overall highly similar, though distinct patterns of gene expression were evident for each treatment, particularly for PFNA. Overall, these data suggest that multiple PFAAs can promote liver cancer and that the mechanism of promotion may be similar to that of E2.

  4. Promotion of cell proliferation using atmospheric-pressure radical source

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Okachi, Masashi; Koizumi, Takayoshi; Oh, Jun-Seok; Hashizume, Hiroshi; Murata, Tomiyasu; Hori, Masaru

    2016-09-01

    In this study, we have focused on the effects of neutral radicals on cell proliferation and treated budding yeasts and mouse fibroblast cells in solutions using neutral radical source, which can selectively supply neutral radicals without charged species and optical emissions. The activation and inactivation effects of neutral oxygen or nitrogen-oxide radicals on cells were investigated using a cell count and a colony count method, respectively. The radical densities supplied from the radical source were measured using VUVAS and UVAS. Based on the measurements of free residual chloride and hydrogen peroxide concentrations in the solutions treated with radicals, we have investigated their effects on the activation and the inactivation. From these results, we have concluded that the main factor for the inactivation in PBS solutions is due to the hypochlorous acid generated in the PBS irradiated with oxygen radicals. On the other hand, we have found that the main factor for the promotion is not the hypochlorous acid but other radicals. This work was partly supported by MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1511021), JSPS KAKENHI Grant Numbers 26286072 and project for promoting Research Center in Meijo University.

  5. Prostate cancer derived prostatic acid phosphatase promotes an osteoblastic response in the bone microenvironment

    PubMed Central

    Larson, Sandy R.; Chin, Jessica; Zhang, Xiaotun; Brown, Lisha G.; Coleman, Ilsa M.; Lakely, Bryce; Tenniswood, Martin; Corey, Eva; Nelson, Peter S.; Vessella, Robert L.

    2014-01-01

    Approximately 90 % of patients who die of prostate cancer (PCa) have bone metastases, often promoting osteoblastic lesions. We observed that 88 % of castration-resistant PCa (CRPC) bone metastases express prostatic acid phosphatase (PAP), a soluble secreted protein expressed by prostate epithelial cells in predominately osteoblastic (n = 18) or osteolytic (n = 15) lesions. Additionally, conditioned media (CM) of an osteoblastic PCa xenograft LuCaP 23.1 contained significant levels of PAP and promoted mineralization in mouse and human calvaria-derived cells (MC3T3-E1 and HCO). To demonstrate that PAP promotes mineralization, we stimulated MC3T3-E1 cells with PAP and observed increased mineralization, which could be blocked with the specific PAP inhibitor, phosphonic acid. Furthermore, the mineralization promoted by LuCaP 23.1 CM was also blocked by phosphonic acid, suggesting PAP is responsible for the mineralization promoting activity of LuCaP 23.1. In addition, gene expression arrays comparing osteoblastic to osteolytic CRPC (n = 14) identified betacellulin (BTC) as a gene upregulated during the osteoblastic response in osteoblasts during new bone formation. Moreover, BTC levels were increased in bone marrow stromal cells in response to LuCaP 23.1 CM in vitro. Because new bone formation does occur in osteoblastic and can occur in osteolytic CRPC bone metastases, we confirmed by immunohistochemistry (n = 36) that BTC was highly expressed in osteoblasts involved in new bone formation occurring in both osteoblastic and osteolytic sites. These studies suggest a role for PAP in promoting the osteoblastic reaction in CRPC bone metastases and identify BTC as a novel downstream protein expressed in osteoblasts during new bone formation. PMID:24242705

  6. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    SciTech Connect

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica . E-mail: monica.hecht@med.uni-goettingen.de

    2005-05-13

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation.

  7. Inhibition of Cervical Cancer by Promoting IGFBP7 Expression Using Ellagic Acid from Pomegranate Peel

    PubMed Central

    Guo, Hongjun; Zhang, Dongya; Fu, Qingrui

    2016-01-01

    Background The aim of this study was to explore the mechanism by which cervical cancer is inhibited by promoting IGFBP7 expression using ellagic acid from pomegranate peel extract. Material/Methods HeLa cells were divided into 6 groups: control group (NC), blank control group (BL), and IGFBP7 overexpression group (IGFBP7), and 2.5 uM, 5. 0 uM, and 10.0 uM ellagic acid-treated groups. The cell proliferation ability was detected and the degree of invasion in the 6 groups was measured by Transwell assay. The expression levels of IGFBP7 and AKT/mTOR in the 6 groups of cells were detected by RT-PCR technique. Results Compared with NC and BL groups, The IGFBP7 gene expressions of the IGFPB7 and ellagic acid-treated groups were significantly increased (P<0.05). There was a dose-effect dependence in the ellagic acid-treated groups. The invasion ability of the IGFBP7 group and ellagic acid-treated groups was significantly lower than that of NC and BL groups in HeLa cells (P<0.05). The apoptosis rate of the IGFBP7 group and ellagic acid-treated groups was significantly higher than that of the NC and BL groups in HeLa cells (P<0.05). AKT and mTOR mRNA and protein expressions of the IGFBP7 group and ellagic acid-treated groups were significantly lower than that of the NC and BL groups (P<0.05). There was a dose-effect dependence in the ellagic acid-treated groups. Conclusions The ellagic acid in pomegranate peel extract can inhibit the AKT/mTOR signaling pathway by enhancing the expression level of IGFBP7, which can inhibit the HeLa cells in cervical cancer. PMID:27941714

  8. Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires

    PubMed Central

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth. PMID:25237816

  9. Promoting cell proliferation using water dispersible germanium nanowires.

    PubMed

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve; Ryan, Kevin M; Kiely, Patrick A

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  10. Amino acids promote human blastocyst development in vitro.

    PubMed

    Devreker, F; Hardy, K; Van den Bergh, M; Vannin, A S; Emiliani, S; Englert, Y

    2001-04-01

    Supplementation of culture media with amino acids has been shown to benefit preimplantation embryo development in several species. This randomized study analysed the in-vitro development of human embryos obtained after IVF in the presence or absence of a combination of amino acids from the 2- to 4-cell stage to the blastocyst stage. A total of 129 human embryos was randomly distributed between three serum-free chemically defined sequential media: (i) glucose-free Earle's balanced salt solution (EBSS) with glutamine (Gln) prior to morula stage, supplemented with glucose for blastocyst formation; (ii) glucose-free EBSS with glutamine and non-essential amino acids (AA) for cleavage stage development, and supplemented with all 20 AA for blastocyst formation (Earle's+AA); and (iii) a sequential commercial medium containing amino acids (K-SCIM). Embryos were individually cultured for successive periods of 24 h. On day 6 of development, blastocysts were differentially labelled and the numbers of trophectoderm and inner cell mass cells, mitoses and dead cells were examined. Blastocyst development was similar for the three sequential media. The mixture of AA significantly increased total blastocyst cell numbers from 61.8 +/- 4.2 with Earle's+Gln to 99.3 +/- 8.4 with Earle's+AA and 100.2 +/- 9.4 with K-SCIM (P = 0.005). This increase was present in both the trophectoderm and inner cell mass lineages (P < 0.02). Furthermore, the dead cell index was significantly lower with Earle's+AA (P = 0.047).

  11. The Campylobacter jejuni Ferric Uptake Regulator Promotes Acid Survival and Cross-Protection against Oxidative Stress

    PubMed Central

    Askoura, Momen; Sarvan, Sabina; Couture, Jean-François

    2016-01-01

    Campylobacter jejuni is a prevalent cause of bacterial gastroenteritis in humans worldwide. The mechanisms by which C. jejuni survives stomach acidity remain undefined. In the present study, we demonstrated that the C. jejuni ferric uptake regulator (Fur) plays an important role in C. jejuni acid survival and acid-induced cross-protection against oxidative stress. A C. jejuni Δfur mutant was more sensitive to acid than the wild-type strain. Profiling of the acid stimulon of the C. jejuni Δfur mutant allowed us to uncover Fur-regulated genes under acidic conditions. In particular, Fur was found to upregulate genes involved in flagellar and cell envelope biogenesis upon acid stress, and mutants with deletions of these genes were found to be defective in surviving acid stress. Interestingly, prior acid exposure of C. jejuni cross-protected against oxidative stress in a catalase (KatA)- and Fur-dependent manner. Western blotting and reverse transcription-quantitative PCR revealed increased expression of KatA upon acid stress. Electrophoretic mobility shift assays (EMSAs) demonstrated that the binding affinity between Fur and the katA promoter is reduced in vitro under conditions of low pH, rationalizing the higher levels of expression of katA under acidic conditions. Strikingly, the Δfur mutant exhibited reduced virulence in both human epithelial cells and the Galleria mellonella infection model. Altogether, this is the first study showing that, in addition to its role in iron metabolism, Fur is an important regulator of C. jejuni acid responses and this function cross-protects against oxidative stress. Moreover, our results clearly demonstrate Fur's important role in C. jejuni pathogenesis. PMID:26883589

  12. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  13. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids

    PubMed Central

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M.

    2016-01-01

    ABSTRACT Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789

  14. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2.

    PubMed

    Xu, Yi; Yang, Xiaoyu; Zhao, Pinjing; Yang, Zhongyu; Yan, Changhui; Guo, Bin; Qian, Steven Y

    2016-07-01

    Cyclooxygenase (COX), commonly overexpressed in cancer cells, is a major lipid peroxidizing enzyme that metabolizes polyunsaturated fatty acids (ω-3s and ω-6s). The COX-catalyzed free radical peroxidation of arachidonic acid (ω-6) can produce deleterious metabolites (e.g. 2-series prostaglandins) that are implicated in cancer development. Thus, COX inhibition has been intensively investigated as a complementary therapeutic strategy for cancer. However, our previous study has demonstrated that a free radical-derived byproduct (8-hydroxyoctanoic acid) formed from COX-catalyzed peroxidation of dihomo-γ-linolenic acid (DGLA, the precursor of arachidonic acid) can inhibit colon cancer cell growth. We thus hypothesize that the commonly overexpressed COX in cancer (~90% of colon cancer patients) can be taken advantage to suppress cell growth by knocking down delta-5-desaturase (D5D, a key enzyme that converts DGLA to arachidonic acid). In addition, D5D knockdown along with DGLA supplement may enhance the efficacy of chemotherapeutic drugs. After knocking down D5D in HCA-7 colony 29 cells and HT-29 cells (human colon cancer cell lines with high and low COX levels, respectively), the antitumor activity of DGLA was significantly enhanced along with the formation of a threshold range (~0.5-1.0μM) of 8-hydroxyoctanoic acid. In contrast, DGLA treatment did not inhibit cell growth when D5D was not knocked down and only limited amount of 8-hydroxyoctanoic acid was formed. D5D knockdown along with DGLA treatment also enhanced the cytotoxicities of various chemotherapeutic drugs, including 5-fluorouracil, regorafenib, and irinotecan, potentially through the activation of pro-apoptotic proteins, e.g. p53 and caspase 9. For the first time, we have demonstrated that the overexpressed COX in cancer cells can be utilized in suppressing cancer cell growth. This finding may provide a new option besides COX inhibition to optimize cancer therapy. The outcome of this translational

  15. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2

    PubMed Central

    Xu, Yi; Yang, Xiaoyu; Zhao, Pinjing; Yang, Zhongyu; Yan, Changhui; Guo, Bin; Qian, Steven Y.

    2016-01-01

    Cyclooxygenase (COX), commonly overexpressed in cancer cells, is a major lipid peroxidizing enzyme that metabolizes polyunsaturated fatty acids (ω-3s and ω-6s). The COX-catalyzed free radical peroxidation of arachidonic acid (ω-6) can produce deleterious metabolites (e.g. 2-series prostaglandins) that are implicated in cancer development. Thus, COX inhibition has been intensively investigated as a complementary therapeutic strategy for cancer. However, our previous study has demonstrated that a free radical-derived by product (8-hydroxyoctanoic acid) formed from COX-catalyzed peroxidation of dihomo-γ-linolenic acid (DGLA, the precursor of arachidonic acid) can inhibit colon cancer cell growth. We thus hypothesize that the commonly overexpressed COX in cancer (~90% of colon cancer patients) can be taken advantage to suppress cell growth by knocking down delta-5-desaturase (D5D, a key enzyme that converts DGLA to arachidonic acid). In addition, D5D knockdown along with DGLA supplement may enhance the efficacy of chemotherapeutic drugs. After knocking down D5D in HCA-7 colony 29 cells and HT-29 cells (human colon cancer cell lines with high and low COX levels, respectively), the antitumor activity of DGLA was significantly enhanced along with the formation of a threshold range (~0.5–1.0 µM) of 8-hydroxyoctanoic acid. In contrast, DGLA treatment did not inhibit cell growth when D5D was not knocked down and only limited amount of 8-hydroxyoctanoic acid was formed. D5D knockdown along with DGLA treatment also enhanced the cytotoxicities of various chemotherapeutic drugs, including 5-fluorouracil, regorafenib, and irinotecan, potentially through the activation of pro-apoptotic proteins, e.g. p53 and caspase 9. For the first time, we have demonstrated that the overexpressed COX in cancer cells can be utilized in suppressing cancer cell growth. This finding may provide a new option besides COX inhibition to optimize cancer therapy. The outcome of this translational

  16. Phosphorylation of histone H3 is functionally linked to retinoic acid receptor β promoter activation

    PubMed Central

    Lefebvre, Bruno; Ozato, Keiko; Lefebvre, Philippe

    2002-01-01

    Ligand-dependent transcriptional activation of retinoic acid receptors (RARs) is a multistep process culminating in the formation of a multimeric co-activator complex on regulated promoters. Several co-activator complexes harbor an acetyl transferase activity, which is required for retinoid-induced transcription of reporter genes. Using murine P19 embryonal carcinoma cells, we examined the relationship between histone post-translational modifications and activation of the endogenous RARβ2 promoter, which is under the control of a canonical retinoic acid response element and rapidly induced upon retinoid treatment. While histones H3 and H4 were constitutively acetylated at this promoter, retinoid agonists induced a rapid phosphorylation at Ser10 of histone H3. A retinoid antagonist, whose activity was independent of co-repressor binding to RAR, could oppose this agonist-induced H3 phosphorylation. Since such post-translational modifications were not observed at several other promoters, we conclude that histone H3 phosphorylation may be a molecular signature of the activated, retinoid-controlled mRARβ2 gene promoter. PMID:11897660

  17. Astrocyte-derived phosphatidic acid promotes dendritic branching.

    PubMed

    Zhu, Yan-Bing; Gao, Weizhen; Zhang, Yongbo; Jia, Feng; Zhang, Hai-Long; Liu, Ying-Zi; Sun, Xue-Fang; Yin, Yuhua; Yin, Dong-Min

    2016-02-17

    Astrocytes play critical roles in neural circuit formation and function. Recent studies have revealed several secreted and contact-mediated signals from astrocytes which are essential for neurite outgrowth and synapse formation. However, the mechanisms underlying the regulation of dendritic branching by astrocytes remain elusive. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphatidic acid (PA) and choline, has been implicated in the regulation of neurite outgrowth. Here we showed that knockdown of PLD1 selectively in astrocytes reduced dendritic branching of neurons in neuron-glia mixed culture. Further studies from sandwich-like cocultures and astrocyte conditioned medium suggested that astrocyte PLD1 regulated dendritic branching through secreted signals. We later demonstrated that PA was the key mediator for astrocyte PLD1 to regulate dendritic branching. Moreover, PA itself was sufficient to promote dendritic branching of neurons. Lastly, we showed that PA could activate protein kinase A (PKA) in neurons and promote dendritic branching through PKA signaling. Taken together, our results demonstrate that astrocyte PLD1 and its lipid product PA are essential regulators of dendritic branching in neurons. These results may provide new insight into mechanisms underlying how astrocytes regulate dendrite growth of neurons.

  18. Subcutaneous Adipocytes Promote Melanoma Cell Growth by Activating the Akt Signaling Pathway

    PubMed Central

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-01-01

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt. PMID:25228694

  19. Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli.

    PubMed

    Martin, Robert G; Rosner, Judah L

    2011-01-01

    Three paralogous transcriptional activators MarA, SoxS, and Rob, activate > 40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13.

  20. Fatty acids identified in the Burmese python promote beneficial cardiac growth.

    PubMed

    Riquelme, Cecilia A; Magida, Jason A; Harrison, Brooke C; Wall, Christopher E; Marr, Thomas G; Secor, Stephen M; Leinwand, Leslie A

    2011-10-28

    Burmese pythons display a marked increase in heart mass after a large meal. We investigated the molecular mechanisms of this physiological heart growth with the goal of applying this knowledge to the mammalian heart. We found that heart growth in pythons is characterized by myocyte hypertrophy in the absence of cell proliferation and by activation of physiological signal transduction pathways. Despite high levels of circulating lipids, the postprandial python heart does not accumulate triglycerides or fatty acids. Instead, there is robust activation of pathways of fatty acid transport and oxidation combined with increased expression and activity of superoxide dismutase, a cardioprotective enzyme. We also identified a combination of fatty acids in python plasma that promotes physiological heart growth when injected into either pythons or mice.

  1. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    PubMed

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-03

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  2. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    PubMed Central

    Yaacob, Nik Soriani; Nengsih, Agustine; Norazmi, Mohd. Nor

    2013-01-01

    Tualang honey (TH) is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM), in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-)responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects. PMID:23476711

  3. [Metabolism of Yarrowia lipolytica grown on ethanol under conditions promoting the production of alpha-ketoglutaric and citric acids: a comparative study of the central metabolism enzymes].

    PubMed

    Il'chenko, A P; Cherniavskaia, O G; Shishkanova, N V; Finogenova, T V

    2002-01-01

    A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.

  4. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  5. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    PubMed

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA.

  6. An alternative retinoic acid-responsive Stra6 promoter regulated in response to retinol deficiency.

    PubMed

    Laursen, Kristian B; Kashyap, Vasundhra; Scandura, Joseph; Gudas, Lorraine J

    2015-02-13

    Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low.

  7. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    PubMed

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  8. TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance

    PubMed Central

    Li, Wenjing; Yang, Xiaoyan; Zheng, Tao; Xing, Shasha; Wu, Yaogong; Bian, Fang; Wu, Guangjie; Li, Ye; Li, Juyi; Bai, Xiangli; Wu, Dan; Jia, Xiong; Wang, Ling; Zhu, Lin; Jin, Si

    2017-01-01

    Persistent elevation of plasma TNF-α is a marker of low grade systemic inflammation. Palmitic acid (PA) is the most abundant type of saturated fatty acid in human body. PA is bound with albumin in plasma and could not pass through endothelial barrier freely. Albumin-bound PA has to be transported across monolayer endothelial cells through intracellular transcytosis, but not intercellular diffusion. In the present study, we discovered that TNF-α might stimulate PA transcytosis across cardiac microvascular endothelial cells, which further impaired the insulin-stimulated glucose uptake by cardiomyocytes and promoted insulin resistance. In this process, TNF-α-stimulated endothelial autophagy and NF-κB signaling crosstalk with each other and orchestrate the whole event, ultimately result in increased expression of fatty acid transporter protein 4 (FATP4) in endothelial cells and mediate the increased PA transcytosis across microvascular endothelial cells. Hopefully the present study discovered a novel missing link between low grade systemic inflammation and insulin resistance. PMID:28304381

  9. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion.

    PubMed

    Li, Zhuo; Hung, Cher; Paterson, Reay G; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J; Lamb, Robert A; He, Biao

    2015-10-06

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.

  10. Ascorbic acid transport into cultured pituitary cells

    SciTech Connect

    Cullen, E.I.; May, V.; Eipper, R.A.

    1986-05-01

    An amidating enzyme designated peptidyl-glycine ..cap alpha..-amidating monooxygenase (PAM) has been studied in a variety of tissues and is dependent on molecular oxygen and stimulated by copper and ascorbic acid. To continue investigating the relationship among cellular ascorbic acid concentrations, amidating ability, and PAM activity, the authors studied ascorbic acid transport in three cell preparations that contain PAM and produce amidated peptides: primary cultures of rat anterior and intermediate pituitary and mouse AtT-20 tumor cells. When incubated in 50 ..mu..M (/sup 14/C)ascorbic acid all three cell preparations concentrated ascorbic acid 20- to 40-fold, producing intracellular ascorbate concentrations of 1 to 2 mM, based on experimentally determined cell volumes. All three cell preparations displayed saturable ascorbic acid uptake with half-maximal initial rates occurring between 9 and 18 ..mu..M ascorbate. Replacing NaCl in the uptake buffer with choline chloride significantly diminished ascorbate uptake in all three preparations. Ascorbic acid efflux from these cells was slow, displaying half-lives of 7 hours. Unlike systems that transport dehydroascorbic acid, the transport system for ascorbic acid in these cells was not inhibited by glucose. Thus, ascorbate is transported into pituitary cells by a sodium-dependent, active transport system.

  11. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.

  12. Evaluation of the Initiation/Promotion Potential of CTFE Trimer Acid

    DTIC Science & Technology

    1990-11-01

    Chlorotrifluoroethylene Trimer Acid Hepatocarcinogenesis 43 Initiation Perhalogenated Fatty Acid 16. PRICE CODE Peroxisome Proliferator Promotion 17...peroxisomal proliferation. Several peroxisome proliferators have been shown to inhibit mitochondrial fatty acid oxidation in rat liver (Bone et al., 1982...in the fatty acid oxidase system (Harrison et al., 1988). These findings and the fact that mammals can oxidize n-alkanes to the corresponding fatty

  13. Regulation of Stearoyl Coenzyme A Desaturase 1 Gene Promoter in Bovine Mammary Cells.

    PubMed

    di Martino, O; Troiano, A; Addi, L; Guarino, A; Calabrò, S; Tudisco, R; Murru, N; Cutrignelli, M I; Infascelli, F; Calabrò, V

    2015-01-01

    Stearoyl-Coenzyme A desaturase 1 (SCD1) belongs to the fatty acid family of desaturases. In lactating ruminants, the SCD1 protein is highly expressed in the mammary gland and is relevant for the fatty acid composition of milk and dairy products. Bovine mammary epithelial cells (BME-UV1), cultured in vitro, have been proposed as a model to reproduce the biology of the mammary gland. The present study was designed to investigate the responsiveness of bovine SCD1 promoter to serum, insulin, oleic acid, and NFY transcription factor in BME-UV1 cells. A luciferase-based reporter assay was used to monitor the transcriptional activity of the SCD1 promoter region in BME-UV1 cells treated or not with insulin and/or oleic acid. The level of endogenous SCD1 mRNA was evaluated by Real time PCR. Insulin (20 ng/mL) induced a 2.0 to 2.5-fold increase of SCD1 promoter activity. Additionally, the effect of insulin was inhibited by oleic acid, serum components, and NFY enforced expression. Serum and NFY showed no synergistic or additive effect on SCD1 promoter activity suggesting that they repress SCD1 transcription through the same responsive element.

  14. Recombinant sialidase NanA (rNanA) cleaves α2-3 linked sialic acid of host cell surface N-linked glycoprotein to promote Edwardsiella tarda infection.

    PubMed

    Chigwechokha, Petros Kingstone; Tabata, Mutsumi; Shinyoshi, Sayaka; Oishi, Kazuki; Araki, Kyosuke; Komatsu, Masaharu; Itakura, Takao; Shiozaki, Kazuhiro

    2015-11-01

    Edwardsiella tarda is one of the major pathogenic bacteria affecting both marine and freshwater fish species. Sialidase NanA expressed endogenously in E. tarda is glycosidase removing sialic acids from glycoconjugates. Recently, the relationship of NanA sialidase activity to E. tarda infection has been reported, however, the mechanism with which sialidase NanA aids the pathogenicity of E. tarda remained unclear. Here, we comprehensively determined the biochemical properties of NanA towards various substrates in vitro to provide novel insights on the potential NanA target molecule at the host cell. GAKS cell pretreated with recombinant NanA showed increased susceptibility to E. tarda infection. Moreover, sialidase inhibitor treated E. tarda showed a significantly reduced ability to infect GAKS cells. These results indicate that NanA-induced desialylation of cell surface glycoconjugates is essential for the initial step of E. tarda infection. Among the natural substrates, NanA exhibited the highest activity towards 3-sialyllactose, α2-3 linked sialic acid carrying sialoglycoconjugates. Supporting this finding, intact GAKS cell membrane exposed to recombinant NanA showed changes of glycoconjugates only in α2-3 sialo-linked glycoproteins, but not in glycolipids and α2-6 sialo-linked glycoproteins. Lectin staining of cell surface glycoprotein provided further evidence that α2-3 sialo-linkage of the N-linked glycoproteins was the most plausible target of NanA sialidase. To confirm the significance of α2-3 sialo-linkage desialylation for E. tarda infection, HeLa cells which possessed lower amount of α2-3 sialo-linkage glycoprotein were used for infection experiment along with GAKS cells. As a result, infection of HeLa cells by E. tarda was significantly reduced when compared to GAKS cells. Furthermore, E. tarda infection was significantly inhibited by mannose pretreatment suggesting that the bacterium potentially recognizes and binds to mannose or mannose containing

  15. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  16. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  17. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids

    PubMed Central

    Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran

    2014-01-01

    Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induced obesity, steatohepatitis and insulin resistance. Mechanistically, we found that Mfge8 coordinates fatty acid uptake through αvβ3 integrin– and αvβ5 integrin–dependent phosphorylation of Akt by phosphatidylinositide-3 kinase and mTOR complex 2, leading to translocation of Cd36 and Fatp1 from cytoplasmic vesicles to the cell surface. Collectively, our results imply a role for Mfge8 in regulating the absorption and storage of dietary fats, as well as in the development of obesity and its complications. PMID:24441829

  18. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    PubMed

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  19. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1.

    PubMed

    Maynes, J T; Bateman, K S; Cherney, M M; Das, A K; Luu, H A; Holmes, C F; James, M N

    2001-11-23

    Protein phosphatase-1 (PP1) plays a key role in dephosphorylation in numerous biological processes such as glycogen metabolism, cell cycle regulation, smooth muscle contraction, and protein synthesis. Microorganisms produce a variety of inhibitors of PP1, which include the microcystin class of inhibitors and okadaic acid, the latter being the major cause of diarrhetic shellfish poisoning and a powerful tumor promoter. We have determined the crystal structure of the molecular complex of okadaic acid bound to PP1 to a resolution of 1.9 A. This structure reveals that the acid binds in a hydrophobic groove adjacent to the active site of the protein and interacts with basic residues within the active site. Okadaic acid exhibits a cyclic structure, which is maintained via an intramolecular hydrogen bond. This is reminiscent of other macrocyclic protein phosphatase inhibitors. The inhibitor-bound enzyme shows very little conformational change when compared with two other PP1 structures, except in the inhibitor-sensitive beta12-beta13 loop region. The selectivity of okadaic acid for protein phosphatases-1 and -2A but not PP-2B (calcineurin) may be reassessed in light of this study.

  20. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species.

    PubMed

    Zhu, Yuan; Mahaney, James; Jellison, Jody; Cao, Jinzhen; Gressler, Julia; Hoffmeister, Dirk; Goodell, Barry

    2017-03-01

    This study aims to clarify the role of variegatic acid (VA) in fungal attack by Serpula lacrymans, and also the generation and scavenging of reactive oxygen species (ROS) by the fungus. VA promotes a mediated Fenton reaction to generated ROS after oxalate solubilizes oxidized forms of iron. The fungal extracellular matrix (ECM) β-glucan scavenged ROS, and we propose this as a mechanism to protect the fungal hyphae while ROS generation is promoted to deconstruct the lignocellulose cell wall. A relatively high pH (4.4) also favored Fe(III) transfer from oxalate to VA as opposed to a lower pH (2.2) conditions, suggesting a pH-dependent Fe(III) transfer to VA employed by S. lacrymans. This permits ROS generation within the higher pH of the cell wall, while limiting ROS production near the fungal hyphae, while β-glucan from the fungal ECM scavenges ROS in the more acidic environments surrounding the fungal hyphae.

  1. CELL PENETRATION BY ACIDS : VI. THE CHLOROACETIC ACIDS.

    PubMed

    Crozier, W J

    1922-09-20

    Measurements of the penetration of tissue from Chromodoris zebra are believed to show that a determining factor in penetration involves the establishment of a critical pH (near 3.5) in relation to superficial cell proteins. The rapidity with which this state is produced depends upon acid strength, and upon some property of the acid influencing the speed of absorption; hence it is necessary to compare acids within groups of chemical relationship. The actual speed of penetration observed with any acid is dependent upon two influences: preliminary chemical combination with the outer protoplasm, followed by diffusion. The variation of the temperature coefficient of penetration velocity with the concentration of acid, and the effect of size (age) of individual providing the tissue sample agree in demonstrating the significant part played by diffusion. In comparing different acids, however, their mode of chemical union with the protoplasm determines the general order of penetrating ability.

  2. Retinol Promotes In Vitro Growth of Proximal Colon Organoids through a Retinoic Acid-Independent Mechanism

    PubMed Central

    Nibe, Yoichi; Akiyama, Shintaro; Matsumoto, Yuka; Nozaki, Kengo; Fukuda, Masayoshi; Hayashi, Ayumi; Mizutani, Tomohiro; Oshima, Shigeru; Watanabe, Mamoru; Nakamura, Tetsuya

    2016-01-01

    Retinol (ROL), the alcohol form of vitamin A, is known to control cell fate decision of various types of stem cells in the form of its active metabolite, retinoic acid (RA). However, little is known about whether ROL has regulatory effects on colonic stem cells. We examined in this study the effect of ROL on the growth of murine normal colonic cells cultured as organoids. As genes involved in RA synthesis from ROL were differentially expressed along the length of the colon, we tested the effect of ROL on proximal and distal colon organoids separately. We found that organoid forming efficiency and the expression level of Lgr5, a marker gene for colonic stem cells were significantly enhanced by ROL in the proximal colon organoids, but not in the distal ones. Interestingly, neither retinaldehyde (RAL), an intermediate product of the ROL-RA pathway, nor RA exhibited growth promoting effects on the proximal colon organoids, suggesting that ROL-dependent growth enhancement in organoids involves an RA-independent mechanism. This was confirmed by the observation that an inhibitor for RA-mediated gene transcription did not abrogate the effect of ROL on organoids. This novel role of ROL in stem cell maintenance in the proximal colon provides insights into the mechanism of region-specific regulation for colonic stem cell maintenance. PMID:27564706

  3. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    PubMed Central

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy. PMID:25206862

  4. Chlamydia pneumoniae promotes dysfunction of pancreatic beta cells.

    PubMed

    Rodriguez, Annette R; Plascencia-Villa, Germán; Witt, Colleen M; Yu, Jieh-Juen; José-Yacamán, Miguel; Chambers, James P; Perry, George; Guentzel, M Neal; Arulanandam, Bernard P

    2015-06-01

    The human pathogen Chlamydia pneumoniae has been implicated in chronic inflammatory diseases including type 2 diabetes. Therefore, we designed a study to evaluate pancreatic beta cells and mast cells during chlamydial infection. Our study revealed that C. pneumoniae infected mast cells significantly (p<0.005) decreased beta cell ATP and insulin production, in contrast to uninfected mast cells co-cultured with beta cells. Infected mast cells exhibited pyknotic nuclei and active caspase-3 and caspase-1 expression. Additionally, ex vivo analyses of tissues collected from C. pneumoniae infected mice showed increased interleukin-1β production in splenocytes and pancreatic tissues as was observed with in vitro mast cell-beta cell co-cultures during C. pneumoniae infection. Notably, infected mast cells promoted beta cell destruction. Our findings reveal the negative effect of C. pneumoniae on mast cells, and the consequential impact on pancreatic beta cell function and viability.

  5. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy.

    PubMed

    Matsuzawa, Yu; Oshima, Shigeru; Takahara, Masahiro; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Kobayashi, Masanori; Nibe, Yoichi; Nozaki, Kengo; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Ma, Averil; Watanabe, Mamoru

    2015-01-01

    Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.

  6. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong

    2016-05-01

    We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  7. Phosphoric acid fuel cell platinum use study

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  8. Increasing Stem Cell Dose Promotes Posttransplant Immune Reconstitution.

    PubMed

    Xu, Ning; Shen, Sylvie; Dolnikov, Alla

    2017-01-16

    Umbilical cord blood (UCB) transplantation can provide a successful therapeutic option for patients that have no suitable related donor. UCB transplantation is often limited by the relatively small hematopoietic stem cell (HSC) numbers in UCB especially for adult recipients. Early neutrophil and platelet engraftment correlates with the stem cell numbers in UCB transplant. Compared to other HSC sources, immune reconstitution following UCB transplant is slower and complicated by increased frequency of opportunistic infections. The effect of HSC numbers in UCB transplant on immune reconstitution was not thoroughly examined. Using immunocompromised mice transplanted with purified UCB CD34+ stem cells, we have demonstrated that increasing the numbers of CD34+ cells in the transplant promotes hematopoietic and immune reconstitution. At early stages posttransplant, high stem cell dose generated relatively more B cells, while lower dose generated more myeloid and T cells. Thus, the size of the stem cell graft appears to modulate the differentiation potential of infused stem cells. In addition, increasing stem cell dose in the transplant improved CD8+ T cell development and delayed late memory T cell skewing in expense of naive T cells highlighting the importance of HSC dose to maintain the pool of naive T cells able to develop strong immune responses. Transplantation of ex vivo expanded CD34+ cells did not promote, but rather delayed immune reconstitution suggesting the loss of primitive lymphoid precursor cells during ex vivo expansion.

  9. Activation of the dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing's disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation.

    PubMed

    Occhi, Gianluca; Regazzo, Daniela; Albiger, Nora Maria; Ceccato, Filippo; Ferasin, Sergio; Scanarini, Massimo; Denaro, Luca; Cosma, Chiara; Plebani, Mario; Cassarino, Maria Francesca; Mantovani, Giovanna; Stalla, Günter K; Pecori Giraldi, Francesca; Paez-Pareda, Marcelo; Scaroni, Carla

    2014-09-01

    Cushing's disease (CD) is a rare condition in which hypercortisolemia is secondary to excessive ACTH release from a pituitary corticotroph adenoma. CD is associated with significant morbidity and mortality, and a safe therapy that effectively targets the pituitary tumor is still lacking. Retinoic acid (RA) and dopamine agonists (DAs) have recently been considered as monotherapy in CD patients, and satisfactory results have been reported, albeit in a limited number of patients. Given the permissive role of RA on the dopamine receptor type-2 (DRD2), the aim of the present study was to see whether a combination of 9-cis RA and the DA bromocriptine (Br) might represent a possible treatment for CD. Here we show that 9-cis RA induces a functional DRD2 in the pituitary corticotroph cell line AtT20, and increases cell sensitivity to Br via a mechanism only partially related to corticotroph-to-melanotroph transdifferentiation. In addition, 9-cis RA and Br act synergistically to modulate cell viability, with favorable implications for clinical use. In nearly 45% of corticotropinoma-derived primary cultures, the combined administration of 9-cis RA and Br lowered the steady-state level of the ACTH precursor proopiomelanocortin (POMC) more efficiently than either of the drugs alone. In conclusion, the effects of a combination of 9-cis RA and Br on ACTH synthesis/secretion and cell viability in AtT20, and on POMC transcriptional activity in human corticotropinomas might represent a suitable starting point for assessing the potential of this treatment regimen for ACTH-secreting pituitary adenomas. This study thus has potentially important implications for novel therapeutic approaches to CD.

  10. Collective cell movement promotes synchronization of coupled genetic oscillators.

    PubMed

    Uriu, Koichiro; Morelli, Luis G

    2014-07-15

    Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.

  11. Collective Cell Movement Promotes Synchronization of Coupled Genetic Oscillators

    PubMed Central

    Uriu, Koichiro; Morelli, Luis G.

    2014-01-01

    Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns. PMID:25028893

  12. Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells.

    PubMed Central

    Deb, S; Jackson, C T; Subler, M A; Martin, D W

    1992-01-01

    Wild-type p53 has recently been shown to repress transcription from several cellular and viral promoters. Since p53 mutations are the most frequently reported genetic defects in human cancers, it becomes important to study the effects of mutations of p53 on promoter functions. We, therefore, have studied the effects of wild-type and mutant human p53 on the human proliferating-cell nuclear antigen (PCNA) promoter and on several viral promoters, including the herpes simplex virus type 1 UL9 promoter, the human cytomegalovirus major immediate-early promoter-enhancer, and the long terminal repeat promoters of Rous sarcoma virus and human T-cell lymphotropic virus type I. HeLa cells were cotransfected with a wild-type or mutant p53 expression vector and a plasmid containing a chloramphenicol acetyltransferase reporter gene under viral (or cellular) promoter control. As expected, expression of the wild-type p53 inhibited promoter function. Expression of a p53 with a mutation at any one of the four amino acid positions 175, 248, 273, or 281, however, correlated with a significant increase of the PCNA promoter activity (2- to 11-fold). The viral promoters were also activated, although to a somewhat lesser extent. We also showed that activation by a mutant p53 requires a minimal promoter containing a lone TATA box. A more significant increase (25-fold) in activation occurs when the promoter contains a binding site for the activating transcription factor or cyclic AMP response element-binding protein. Using Saos-2 cells that do not express p53, we showed that activation by a mutant p53 was a direct enhancement. The mutant forms of p53 used in this study are found in various cancer cells. The activation of PCNA by mutant p53s may indicate a way to increase cell proliferation by the mutant p53s. Thus, our data indicate a possible functional role for the mutants of p53 found in cancer cells in activating several important loci, including PCNA. Images PMID:1356162

  13. PML(NLS(-)) inhibits cell apoptosis and promotes proliferation in HL-60 cells.

    PubMed

    Gao, Yuan-Mei; Zhong, Liang; Zhang, Xi; Hu, Xiu-Xiu; Liu, Bei-Zhong

    2013-01-01

    Promyelocytic leukemia (PML) is a cell-growth suppressor, and PML-retinoic acid receptor α (PML-RARα) is known as a fusion gene of acute promyelocytic leukemia (APL). Studies have reported that neutrophil elastase(NE) cleaved bcr-1-derived PML-RARα in early myeloid cells leading to the removal of nuclear localization signal (NLS) from PML. The resultant PML without NLS named PML(NLS(-)). PML(NLS(-)) mainly locates and functions in the cytoplasm. PML(NLS(-)) may act in different ways from PML, but its biological characteristics have not been reported. In this study, the PML (NLS(-)) was silenced with shRNA [HL-60/pPML(NLS(-))-shRNA] and over-expressed by preparation of recombinant adenovirus [HL-60/pAd-PML(NLS(-))]. The mRNA and protein expression of PML(NLS(-)) were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect apoptotic cells. The transcription of BCL-2, BAX and C-MYC was detected in HL-60/pAd-PML(NLS(-)) cells. Our results showed that compared to the control group, the expression of PML(NLS(-)) was significantly reduced in the HL-60/pPML(NLS(-))-shRNA cells, and increased significantly in the HL-60/pAd-PML(NLS(-)) cells. The proliferation was significantly inhibited in the HL-60/pPML(NLS(-))-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-PML(NLS(-)) cells treated with 60 μmol/L emodin. FCM revealed the apoptosis increased in HL-60/pPML(NLS(-))-shRNA cells, and decreased in the HL-60/pAd-PML(NLS(-)) cells. The expression of BAX decreased significantly, while that of BCL-2 and C-MYC increased significantly in HL-60/ pAd-PML(NLS(-)) cells. Down-regulation of PML(NLS(-)) expression inhibits the proliferation and induces the apoptosis of HL-60 cells. On the contrary, over-expression of PML(NLS(-)) promotes the proliferation and reduce the emodin-induced apoptosis of HL-60 cells.

  14. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc.

  15. Tumor promotion by depleting cells of protein kinase C delta.

    PubMed Central

    Lu, Z; Hornia, A; Jiang, Y W; Zang, Q; Ohno, S; Foster, D A

    1997-01-01

    Tumor-promoting phorbol esters activate, but then deplete cells of, protein kinase C (PKC) with prolonged treatment. It is not known whether phorbol ester-induced tumor promotion is due to activation or depletion of PKC. In rat fibroblasts overexpressing the c-Src proto-oncogene, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent growth and other transformation-related phenotypes. The appearance of transformed phenotypes induced by TPA in these cells correlated not with activation but rather with depletion of expressed PKC isoforms. Consistent with this observation, PKC inhibitors also induced transformed phenotypes in c-Src-overexpressing cells. Bryostatin 1, which inhibited the TPA-induced down-regulation of the PKCdelta isoform specifically, blocked the tumor-promoting effects of TPA, implicating PKCdelta as the target of the tumor-promoting phorbol esters. Consistent with this hypothesis, expression of a dominant negative PKCdelta mutant in cells expressing c-Src caused transformation of these cells, and rottlerin, a protein kinase inhibitor with specificity for PKCdelta, like TPA, caused transformation of c-Src-overexpressing cells. These data suggest that the tumor-promoting effect of phorbol esters is due to depletion of PKCdelta, which has an apparent tumor suppressor function. PMID:9154841

  16. Carbocisteine promotes phagocytosis of apoptotic cells by alveolar macrophages.

    PubMed

    Inoue, Masako; Ishibashi, Yuji; Nogawa, Hisashi; Yasue, Tokutaro

    2012-02-29

    Clearance of apoptotic cells, so-called efferocytosis, by alveolar macrophages (AMs) is important for lung homeostasis and is impaired in pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease and asthma. Carbocisteine, a mucoregulatory drug, corrects the contents of fucose in airway mucus and has anti-inflammatory properties in airway inflammation. Thus, we conducted the present study to better understand the anti-inflammatory properties of carbocisteine. First, we induced airway inflammation in mice with lipopolysaccharide intratracheally. Carbocisteine significantly decreased neutrophil numbers in bronchoalveolar lavage fluid at the resolution phase of inflammation, implying the promotion of neutrophil clearance. Then, we investigated whether carbocisteine would enhance the efferocytosis by AMs isolated from mice and found that this drug promoted not only the phagocytosis but also the binding of apoptotic cells to AMs in vitro. Furthermore, carbocisteine decreased the fucose residues stained with fluorescent fucose-binding lectin, Lens culinaris agglutinin, on the cell surface of AMs. We found here that removing fucose residues from cell surfaces of AMs by fucosidase markedly enhanced both the binding and phagocytosis of apoptotic cells. Finally, AMs from mice orally given carbocisteine also promoted both the binding and phagocytosis ex vivo similarly to in vitro. These results suggest that carbocisteine could promote the clearance of apoptotic cells by AMs in airway. In addition, the present findings suggest that the binding and phagocytosis of apoptotic cells may be modulated by fucose residues on the cell surface of AMs.

  17. Surface tailoring of poly(DL-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth.

    PubMed

    Ji, Jian; Zhu, Huiguang; Shen, Jiacong

    2004-05-01

    The ligand-tethered poly(ethylene oxide-propylene oxide-ethylene oxide) (PEO-PPO-PEO) triblock copolymer was explored to engineer poly(DL-lactic acid) (PDL-LA) material to promote cell attachment and growth. The PEO-PPO-PEO was activated by methyl sulfonyl chloride and the amino acid, and peptide were attached. By blending the PDL-LA with the ligand-tethered PEO-PPO-PEO derivatives, the surface of modified PDL-LA film was investigated by ATR-FTIR, XPS and contact angle. The chondrocytes test on different PDL-LA films indicated that the PEO-PPO-PEO amino acid and RGD derivatives modified PDL-LA films could promote chondrocyte attachment and growth. This simple surface treatment method may have potentials for tissue engineering and other biomedical applications.

  18. trans-Activation of a globin promoter in nonerythroid cells.

    PubMed Central

    Evans, T; Felsenfeld, G

    1991-01-01

    We show that expression in fibroblasts of a single cDNA, encoding the erythroid DNA-binding protein Eryf1 (GF-1, NF-E1), very efficiently activates transcription of a chicken alpha-globin promoter, trans-Activation in these cells occurred when Eryf1 bound to a single site within a minimal globin promoter. In contrast, efficient activation in erythroid cells required multiple Eryf1 binding sites. Our results indicate that mechanisms exist that are capable of modulating the trans-acting capabilities of Eryf1 in a cell-specific manner, without affecting DNA binding. The response of the minimal globin promoter to Eryf1 in fibroblasts was at least as great as for optimal constructions in erythroid cells. Therefore, the assay provides a very simple and sensitive system with which to study gene activation by a tissue-specific factor. Images PMID:1990287

  19. Perfluorodecanoic acid stimulates NLRP3 inflammasome assembly in gastric cells

    PubMed Central

    Zhou, Xiangyu; Dong, Tianyi; Fan, Ziyan; Peng, Yanping; Zhou, Rongbin; Wang, Xiaqiong; Song, Ning; Han, Mingyong; Fan, Bingbing; Jia, Jihui; Liu, Shili

    2017-01-01

    Perfluorodecanoic acid (PFDA), a perfluorinated carboxylic acid, presents in the environment and accumulates in human blood and organs, but its association with tumor promotion are not clear. Given that inflammation plays a significant role in the development of gastric malignancies, we evaluated the effects of PFDA on activation of the inflammasome and inflammation regulation in the gastric cell line AGS. When added to cell cultures, PFDA significantly stimulated IL-1β and IL18 secretion and their mRNA levels compared with control cells. By RT-PCR and western-blot we found that up-regulation of NLRP3 were associated with promotion of IL-1β and IL-18 production. Then expression variation of cIAP1/2, c-Rel and p52 were analyzed, the results demonstrated raised mRNA expression in all the tested genes concomitant with enhanced inflammasome activity after exposure to PFDA. Assays with cIAP2 siRNA and NFκB reporter provided additional evidence that these genes were involved in PFDA-induced inflammasome assembly. Furthermore, increased secretion of IL-1β and IL-18 were detected in stomach of PFDA-treated mice, disorganized alignment of epithelial cells and inflammatory cell infiltration were also observed in the stomach tissues upon PFDA treatment. This study reports for the first time that PFDA regulates inflammasome assembly in human cells and mice tissues. PMID:28367997

  20. TP508 accelerates fracture repair by promoting cell growth over cell death

    SciTech Connect

    Li Xinmin; Wang Hali; Touma, Edward; Qi Yuchen; Rousseau, Emma; Quigg, Richard J.; Ryaby, James T.

    2007-12-07

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD Clontech{sup TM} Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-{kappa}B, PDGF, PI3K/AKT, PTEN, and ERK/MAPK.

  1. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    SciTech Connect

    Duncan, Henry F.; Smith, Anthony J.; Fleming, Garry J.P.; Cooper, Paul R.

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  2. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    PubMed Central

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  3. The Enrichment of Survivin in Exosomes from Breast Cancer Cells Treated with Paclitaxel Promotes Cell Survival and Chemoresistance

    PubMed Central

    Kreger, Bridget T.; Johansen, Eric R.; Cerione, Richard A.; Antonyak, Marc A.

    2016-01-01

    The generation and release of membrane-enclosed packets from cancer cells, called extracellular vesicles (EVs), play important roles in propagating transformed phenotypes, including promoting cell survival. EVs mediate their effects by transferring their contents, which include specific proteins and nucleic acids, to target cells. However, how the cargo and function of EVs change in response to different stimuli remains unclear. Here, we discovered that treating highly aggressive MDAMB231 breast cancer cells with paclitaxel (PTX), a chemotherapy that stabilizes microtubules, causes them to generate a specific class of EV, namely exosomes, that are highly enriched with the cell survival protein and cancer marker, Survivin. Treating MDAMB231 cells with a variety of other chemotherapeutic agents, and inhibitors that block cell growth and survival, did not have the same effect as PTX, with the exception of nocodazole, another inhibitor of microtubule dynamics. Exosomes isolated from PTX-treated MDAMB231 cells strongly promoted the survival of serum-starved and PTX-treated fibroblasts and SKBR3 breast cancer cells, an effect that was ablated when Survivin was knocked-down from these vesicles using siRNA. These findings underscore how the enrichment of a specific cargo in exosomes promotes cell survival, as well as can potentially serve as a marker of PTX resistance. PMID:27941677

  4. Maternal bile acid transporter deficiency promotes neonatal demise

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-ze; Frank, Matthew W.; Calabrese, Christopher; Krausz, Kristopher W.; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O.; Gonzalez, Frank J.; Schuetz, John D.

    2015-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition. PMID:26416771

  5. Differential effects of deoxycholic acid versus selenium metabolite methylselenol on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: A typical part of the Western diet is a high fat intake that leads to increased levels of fecal bile acids, and these bile acids, primarily deoxycholic acid (DCA) in humans, have been believed to be tumor promoters of colon cancer. The cell growth inhibition induced by bile acid deoxyc...

  6. Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw.

    PubMed

    Imman, Saksit; Arnthong, Jantima; Burapatana, Vorakan; Champreda, Verawat; Laosiripojana, Navadol

    2014-11-01

    In this study, effects of homogeneous acid and alkali promoters on efficiency and selectivity of LHW pretreatment of rice straw were studied. The presences of acid (0.25%v/v H2SO4, HCl, H3PO4, and oxalic acid) and alkali (0.25 w/v NaOH) efficiently promoted hydrolysis of hemicellulose, improved enzymatic digestibility of the solids, and lower the required LHW temperature. Oxalic acid was a superior promoter under the optimal LHW conditions at 160 °C, leading to the highest glucose yield from enzymatic hydrolysis (84.2%) and the lowest formation of furans. Combined with hydrolyzed glucose in the liquid, this resulted in the maximal 91.6% glucose recovery from the native rice straw. This was related to changes in surface area and crystallinity of pretreated biomass. The results showed efficiency of external promoters on increasing sugar recovery and saving energy in LHW pretreatment.

  7. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  8. Promoting justice in stem cell intellectual property.

    PubMed

    Regenberg, Alan; Mathews, Debra J H

    2011-11-01

    According to the World Trade Organization, intellectual property rights are "rights given to persons over the creations of their minds. They usually give the creator an exclusive right over the use of his/her creation for a certain period of time." The rationale behind intellectual property rights is to offer a quid pro quo, between creators and the public, intended to spur innovation. Inventors gain exclusivity (and an opportunity for profits) in exchange for publicly disclosing details about their creations. The public gains free access to information - information that can then be used to support further innovation. Innovation is seen as an inherent good in this context, as it can lead to the development of things people need (e.g., treatments for disease, green energy technologies or a better mousetrap). Exclusive rights to intellectual property are managed via patents and licenses, with patenting being primarily regulated at the national level. Intellectual property rights are the dominant mechanism used in innovation policy, particularly in science. However, myriad modifications and alternatives to intellectual property rights have been proposed and utilized, including patent pooling, intellectual property exchanges and clearing houses, innovation prizes and open-source licenses. The challenges related to competing models of innovation policy present in a fairly consistent manner across most fields of science. However, this paper will focus exclusively on intellectual property rights and models of innovation policy in the context of stem cell science. It is not that the issues themselves are unique in this context, but rather that there are a series of factors that make a discussion of intellectual property rights and models of innovation policy particularly important in the context of stem cell science.

  9. Combined impact of pH and organic acids on iron uptake by Caco-2 cells.

    PubMed

    Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas

    2003-12-17

    Previous studies have shown that organic acids have an impact on both Fe(II) and Fe(III) uptake in Caco-2 cell. However, to what extent this effect is correlated with the anion of organic acids per se, or with the resulting decrease in pH, has not yet been clarified. Therefore, we studied the effect of five organic acids (tartaric, succinic, citric, oxalic, and propionic acid) on the absorption of Fe(II) and Fe(III) in Caco-2 cells and compared this with sample solutions without organic acids but set to equivalent pH by HCl. The results showed that the mechanisms behind the enhancing effect of organic acids differed for the two forms of iron. For ferric iron the organic acids promoted uptake both by chelation and by lowering the pH, whereas for ferrous iron the promoting effect was caused only by the lowered pH.

  10. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    SciTech Connect

    Pawelec, K. M. E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E.; Wardale, R. J. E-mail: jw626@cam.ac.uk

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  11. Acid detection by taste receptor cells.

    PubMed

    DeSimone, J A; Lyall, V; Heck, G L; Feldman, G M

    2001-12-01

    Sourness is a primary taste quality that evokes an innate rejection response in humans and many other animals. Acidic stimuli are the unique sources of sour taste so a rejection response may serve to discourage ingestion of foods spoiled by acid producing microorganisms. The investigation of mechanisms by which acids excite taste receptor cells (TRCs) is complicated by wide species variability and within a species, apparently different mechanisms for strong and weak acids. The problem is further complicated by the fact that the receptor cells are polarized epithelial cells with different apical and basolateral membrane properties. The cellular mechanisms proposed for acid sensing in taste cells include, the direct blockage of apical K(+) channels by protons, an H(+)-gated Ca(2+) channel, proton conduction through apical amiloride-blockable Na(+) channels, a Cl(-) conductance blocked by NPPB, the activation of the proton-gated channel, BNC-1, a member of the Na(+) channel/degenerin super family, and by stimulus-evoked changes in intracellular pH. Acid-induced intracellular pH changes appear to be similar to those reported in other mammalian acid-sensing cells, such as type-I cells of the carotid body, and neurons found in the ventrolateral medulla, nucleus of the solitary tract, the medullary raphe, and the locus coceuleus. Like type-I carotid body cells and brainstem neurons, isolated TRCs demonstrate a linear relationship between intracellular pH (pH(i)) and extracellular pH (pH(o)) with slope, DeltapH(i)/DeltapH(o) near unity. Acid-sensing cells also appear to regulate pH(i) when intracellular pH changes occur under iso-extracellular pH conditions, but fail to regulate their pH when pH(i) changes are induced by decreasing extracellular pH. We shall discuss the current status of proposed acid-sensing taste mechanisms, emphasizing pH-tracking in receptor cells.

  12. Acidic Chitinase Limits Allergic Inflammation and Promotes Intestinal Nematode Expulsion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acidic mammalian chitinase (AMCase) is stereotypically induced during mammalian immune responses to helminths and allergens—yet, its precise role in immunity and inflammation is unclear. Here we show that in the lung, genetic ablation of AMCase failed to diminish type 2 inflammation against helmint...

  13. Deoxycholic Acid and Selenium Metabolite Methylselenol Exert Common and Distinct Effects on Cell Cycle, Apoptosis, and MAP Kinase Pathway in HCT116 Human Colon Cancer Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acid deoxycholic acid (DCA) is a known tumor promoter in colon tumor development. The cell growth inhibition induced by DCA may cause compensatory hyperproliferation of colonic epithelial cells and provide selection for subpopulations of cells resistant to DCA’s inhibitory effect. These survivi...

  14. Solid Acid Based Fuel Cells

    DTIC Science & Technology

    2007-11-02

    superprotonic solid acids with elements such as P, As, Si and Ge, which have greater affinities to oxygen , we anticipate that the reduction reaction will be...bulk material consisted of an apatite phase (hexagonal symmetry) of variable composition, LixLa10-x(SiO4)6O3-x, with excess lithium residing in the...in Tables 1 and 2, indicate that this compound is a rather conventional apatite with fixed stoichiometry, LiLa9(SiO4)6O2 (x = 1). Such a result is

  15. Synthesis of cyclopropyl-substituted furans by brønsted Acid promoted cascade reactions.

    PubMed

    Clark, J Stephen; Romiti, Filippo; Hogg, Kirsten F; Hamid, Malai Haniti S A; Richter, Sven C; Boyer, Alistair; Redman, Joanna C; Farrugia, Louis J

    2015-05-04

    Chloroacetic acid promotes an efficient and diastereoselective intramolecular cascade reaction of electron-deficient ynenones to deliver products featuring a 2,3,5-trisubstituted furan bearing a fused cyclopropyl substituent at the 5-position. Synthetically relevant polycyclic building blocks featuring rings of various sizes and heteroatoms have been synthesized in high yield using this mild acid-catalyzed reaction.

  16. Method for promoting specific alignment of short oligonucleotides on nucleic acids

    DOEpatents

    Studier, F. William; Kieleczawa, Jan; Dunn, John J.

    1996-01-01

    Disclosed is a method for promoting specific alignment of short oligonucleotides on a nucleic acid polymer. The nucleic acid polymer is incubated in a solution containing a single-stranded DNA-binding protein and a plurality of oligonucleotides which are perfectly complementary to distinct but adjacent regions of a predetermined contiguous nucleotide sequence in the nucleic acid polymer. The plurality of oligonucleotides anneal to the nucleic acid polymer to form a contiguous region of double stranded nucleic acid. Specific application of the methods disclosed include priming DNA synthesis and template-directed ligation.

  17. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  18. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  19. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion

    PubMed Central

    Westcott, Jill M.; Prechtl, Amanda M.; Maine, Erin A.; Dang, Tuyen T.; Esparza, Matthew A.; Sun, Han; Zhou, Yunyun; Xie, Yang; Pearson, Gray W.

    2015-01-01

    Tumor cells can engage in a process called collective invasion, in which cohesive groups of cells invade through interstitial tissue. Here, we identified an epigenetically distinct subpopulation of breast tumor cells that have an enhanced capacity to collectively invade. Analysis of spheroid invasion in an organotypic culture system revealed that these “trailblazer” cells are capable of initiating collective invasion and promote non-trailblazer cell invasion, indicating a commensal relationship among subpopulations within heterogenous tumors. Canonical mesenchymal markers were not sufficient to distinguish trailblazer cells from non-trailblazer cells, suggesting that defining the molecular underpinnings of the trailblazer phenotype could reveal collective invasion-specific mechanisms. Functional analysis determined that DOCK10, ITGA11, DAB2, PDFGRA, VASN, PPAP2B, and LPAR1 are highly expressed in trailblazer cells and required to initiate collective invasion, with DOCK10 essential for metastasis. In patients with triple-negative breast cancer, expression of these 7 genes correlated with poor outcome. Together, our results indicate that spontaneous conversion of the epigenetic state in a subpopulation of cells can promote a transition from in situ to invasive growth through induction of a cooperative form of collective invasion and suggest that therapeutic inhibition of trailblazer cell invasion may help prevent metastasis. PMID:25844900

  20. β-Lactoglobulin Influences Human Immunity and Promotes Cell Proliferation

    PubMed Central

    Tai, Chun San; Chen, Yi Yun

    2016-01-01

    β-Lactoglobulin (LG) is suspected to enhance or modulate human immune responses. Moreover, LG is also hypothesized to increase human cell proliferation. However, these potential functions of LG have not been directly or thoroughly addressed. In this study, we demonstrated that LG is a potent stimulator of cell proliferation using a hybridoma cell (a splenocyte fused with a myeloma cell) model. LG's ability to promote cell proliferation was lost when the protein is denatured. To further investigate the influence of LG's conformation on cell proliferation, we chemically modified LG by either carboxymethylation (CM) or acetylation and observed significantly reduced cell proliferation when the protein structure was altered. Furthermore, we proved that LG enhances cell proliferation via receptor-mediated membrane IgM receptor. These data indicated that nondenatured LG is the major component in milk that modulates cell proliferation. Collectively, our study showed that LG plays a key role in enhancing immune responses by promoting cell proliferation through IgM receptor. PMID:27957499

  1. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling

    PubMed Central

    Kloth, Karen J.; Wiegers, Gerrie L.; Busscher-Lange, Jacqueline; van Haarst, Jan C.; Kruijer, Willem; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.

    2016-01-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae. The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA–SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291

  2. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    SciTech Connect

    Oka, Naoki; Soeda, Akio . E-mail: ccd29400@nyc.odn.ne.jp; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-08-31

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.

  3. Metabolic pathways promoting cancer cell survival and growth.

    PubMed

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  4. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-05

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry.

  5. Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase and Promotes Its Cleavage in Arabidopsis *

    PubMed Central

    Kim, Sang-Chul; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) is a class of lipid messengers involved in a variety of physiological processes. To understand how PA mediates cell functions in plants, we used a PA affinity membrane assay to isolate PA-binding proteins from Camelina sativa followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) was identified to bind to PA, and detailed analysis was carried out subsequently using GAPC1 and GAPC1 from Arabidopsis. The PA and GAPC binding was abolished by the cation zinc whereas oxidation of GAPCs promoted the PA binding. PA had little impact on the GAPC catalytic activity in vitro, but the PA treatment of Arabidopsis seedlings induced proteolytic cleavage of GAPC2 and inhibited Arabidopsis seedling growth. The extent of PA inhibition was greater in GAPC-overexpressing than wild-type seedlings, but the greater PA inhibition was abolished by application of zinc to the seedling. The PA treatment also reduced the expression of genes involved in PA synthesis and utilization, and the PA-reduced gene expression was partially recovered by zinc treatment. These data suggest that PA binds to oxidized GAPDH and promotes its cleavage and that the PA and GAPC interaction may provide a signaling link coordinating carbohydrate and lipid metabolism. PMID:23504314

  6. Polysulfide promotes neuroblastoma cell differentiation by accelerating calcium influx.

    PubMed

    Koike, Shin; Shibuya, Norihiro; Kimura, Hideo; Ishii, Kazuyuki; Ogasawara, Yuki

    2015-04-10

    Polysulfides are a typical type of bound sulfur, which is physiologically stable form of sulfur species, derived from the hydrogen sulfide (H2S) that is generated endogenously in cells. We previously reported that bound sulfur protects neuronal cells from oxidative injury. In the present study, we demonstrated that polysulfides inhibited cell growth and promoted neurite outgrowth in mouse neuroblastoma Neuro2A (N2A) cells. However, Na2S showed no effect on neurite outgrowth in N2A cells. Furthermore, 2-APB and SKF96365, which are typical transient receptor potential (TRP) channel inhibitors, suppressed the neurite outgrowth induced by Na2S4. These new findings suggest that bound sulfur could induce neurite outgrowth and cell differentiation of N2A cells by accelerating calcium influx.

  7. Stabilizing platinum in phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Remick, R. J.

    1981-10-01

    A carbon substrate for use in fabricating phosphoric acid fuel cell cathodes was modified by catalytic oxidation to stabilize the platinum catalyst by retarding the sintering of small platinum crystallites. Results of 100-hour operational tests confirmed that the rate of platinum surface area loss observed on catalytically oxidized supports was less than that observed with unmodified supports of the same starting material. Fuel cell electrodes fabricated from Vulcan XC-72R, which was modified by catalytic in a nitric oxide atmosphere, produced low platium sintering rates and high activity for the reduction of oxygen in the phosphoric acid environment.

  8. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  9. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid

    PubMed Central

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-01-01

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036

  10. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid.

    PubMed

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-02-06

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA(+) cells. Also, increases in haematocrit and CD71(-)/Ter119(+) erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34(+)/CD117(-) cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions.

  11. Inhibitory effect of some triterpenes from cacti on 32Pi-incorporation into phospholipids of HeLa cells promoted by 12-O-tetradecanoylphorbol-13-acetate.

    PubMed

    Kinoshita, K; Yang, Y; Koyama, K; Takahashi, K; Nishino, H

    1999-05-01

    Seventeen triterpenes isolated from cacti and the 10 derivatives were examined for the inhibition of tumor promoter-induced effects in vitro, such as stimulation of 32Pi-incorporation into phospholipids of cultured cells. Betulinic acid (1), cochalic acid (15), erythrodiol (16), oleanolic acid (21) and queretaroic acid (24) inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated 32Pi-incorporation into phospholipids of the cultured cells.

  12. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization.

    PubMed

    Maity, Gargi; Mehta, Smita; Haque, Inamul; Dhar, Kakali; Sarkar, Sandipto; Banerjee, Sushanta K; Banerjee, Snigdha

    2014-05-16

    The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration and tumor angiogenesis. Mechanistically, we find that pancreatic cancer cell secreted CCN1/Cyr61 matricellular protein rewires the microenvironment to promote endothelial cell migration and tumor angiogenesis. This event can be overcome by Sonic Hedgehog (SHh) antibody treatment. Collectively, these studies identify a novel CCN1 signaling program in pancreatic cancer cells which activates SHh through autocrine-paracrine circuits to promote endothelial cell migration and tumor angiogenesis and suggests that CCN1 signaling of pancreatic cancer cells is vital for the regulation of tumor angiogenesis. Thus CCN1 signaling could be an ideal target for tumor vascular disruption in pancreatic cancer.

  13. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    PubMed

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  14. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-02-20

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.

  15. Epidermal cell proliferation and promoting ability of phorbol esters.

    PubMed

    Slaga, T J; Scribner, J D; Viaje, A

    1976-11-01

    Dose-response relationships on the abilities of several phorbol ester tumor promoters to promote skin tumors after 7,12-dimethylbenz[a]anthracene initiation and to bring about edema, inflammation, and epidermal hyperplasia were determined in female Charles River CD-1 mice. The promoting ability of the potent synthetic promoter, phorbol-12,13-dioctanoate (PdiC8), was determined over a dose range of 0.1-10 mug/application. Administration of PdiC8 two times weekly at dosages of 4, 6, 8, and 10 mug gave little variation in tumor response. A dose-dependent tumor response occurred at doses of 1-4 mug PdiC8. Only 1 papilloma was observed when PdiC8 was given twice weekly at a dose of 0.1 or 0.5 mug. A similar dose-response relation was observed for the ability of PdiC8 to stimulate epidermal hyperplasia. Investigations of other phorbol esters revealed an excellent correlation between their promoting ability and their ability to induce epidermal hyperplasia; however, that was not the case for compounds outside the phorbol ester series (i.e., acetic acid, cantharidin, and ethylphenylpropiolate).

  16. Amino Acid Transport into Cultured Tobacco Cells

    PubMed Central

    Harrington, H. Michael; Henke, Randolph R.

    1981-01-01

    Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two Km values for lysine. System I (Km ≃ 5 × 10−6 molar; Vmax ≃ 180 nanomoles per gram fresh weight per hour) and system II (Km ≃ 10−4 molar; Vmax ≃ 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for Ki similar to the respective Km values. These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells. PMID:16661678

  17. Artificial restriction DNA cutters to promote homologous recombination in human cells.

    PubMed

    Katada, Hitoshi; Komiyama, Makoto

    2011-02-01

    Homologous recombination is almost the only way to modify the genome in a predetermined fashion, despite its quite low frequency in mammalian cells. It has been already reported that the frequency of this biological process can be notably increased by inducing a double strand break (DSB) at target site. This article presents completely chemistry-based artificial restriction DNA cutter (ARCUT) for the promotion of homologous recombination in human cells. This cutter is composed of Ce(IV)/EDTA complex (molecular scissors) and two strands of peptide nucleic acid (PNA), and contains no proteins. Its scission site in the genome is determined simply by Watson-Crick rule so that ARCUT for desired homologous recombination is easily and straightforwardly designed and synthesized. The site-specificity of the scission is high enough to cut human genome at one target site. The DSB induced by this cutter is satisfactorily recognized by the repair system in human cells and promotes the targeted homologous recombination.

  18. Senescent stromal-derived osteopontin promotes preneoplastic cell growth.

    PubMed

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A

    2009-02-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies showing that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole-genome transcriptional profiling and compared senescent fibroblasts with their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNA interference did not affect senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, showing that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we show that OPN is expressed in senescent stroma within preneoplastic lesions that arise following 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate treatment of mice, suggesting that stromal-derived OPN-mediated signaling events affect neoplastic progression.

  19. Senescent Stromal-Derived Osteopontin Promotes Preneoplastic Cell Growth

    PubMed Central

    Pazolli, Ermira; Luo, Xianmin; Brehm, Sarah; Carbery, Kelly; Chung, Jun-Jae; Prior, Julie L.; Doherty, Jason; Demehri, Shadmehr; Salavaggione, Lorena; Piwnica-Worms, David; Stewart, Sheila A.

    2008-01-01

    Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies demonstrating that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole genome transcriptional profiling and compared senescent fibroblasts to their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNAi did not impact senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, demonstrating that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we demonstrate that OPN is expressed in senescent stroma within preneoplastic lesions that arise following DMBA/TPA treatment of mice, suggesting that stromal-derived OPN-mediated signaling events impact neoplastic progression. PMID:19155301

  20. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  1. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target

    PubMed Central

    Gilbert, Hamish T. J.; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M.; Hoyland, Judith A.

    2016-01-01

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration. PMID:27853274

  2. MRG15 activates the cdc2 promoter via histone acetylation in human cells

    SciTech Connect

    Pena, AndreAna N.; Tominaga, Kaoru; Pereira-Smith, Olivia M.

    2011-07-01

    Chromatin remodeling is required for transcriptional activation and repression. MRG15 (MORF4L1), a chromatin modulator, is a highly conserved protein and is present in complexes containing histone acetyltransferases (HATs) as well as histone deacetylases (HDACs). Loss of expression of MRG15 in mice and Drosophila results in embryonic lethality and fibroblast and neural stem/progenitor cells cultured from Mrg15 null mouse embryos exhibit marked proliferative defects when compared with wild type cells. To determine the role of MRG15 in cell cycle progression we performed chromatin immunoprecipitation with an antibody to MRG15 on normal human fibroblasts as they entered the cell cycle from a quiescent state, and analyzed various cell cycle gene promoters. The results demonstrated a 3-fold increase in MRG15 occupancy at the cdc2 promoter during S phase of the cell cycle and a concomitant increase in acetylated histone H4. H4 lysine 12 was acetylated at 24 h post-serum stimulation while there was no change in acetylation of lysine 16. HDAC1 and 2 were decreased at this promoter during cell cycle progression. Over-expression of MRG15 in HeLa cells activated a cdc2 promoter-reporter construct in a dose-dependent manner, whereas knockdown of MRG15 resulted in decreased promoter activity. In order to implicate HAT activity, we treated cells with the HAT inhibitor anacardic acid and determined that HAT inhibition results in loss of expression of cdc2 mRNA. Further, chromatin immunoprecipitation with Tip60 localizes the protein to the same 110 bp stretch of the cdc2 promoter pulled down by MRG15. Additionally, we determined that cotransfection of MRG15 with the known associated HAT Tip60 had a cooperative effect in activating the cdc2 promoter. These results suggest that MRG15 is acting in a HAT complex involving Tip60 to modify chromatin via acetylation of histone H4 at the cdc2 promoter to activate transcription.

  3. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells.

    PubMed

    Catalano, Maria G; Fortunati, Nicoletta; Pugliese, Mariateresa; Costantino, Lucia; Poli, Roberta; Bosco, Ornella; Boccuzzi, Giuseppe

    2005-03-01

    Poorly differentiated thyroid carcinoma is an aggressive human cancer that is resistant to conventional therapy. Histone deacetylase inhibitors are a promising class of drugs, acting as antiproliferative agents by promoting differentiation, as well as inducing apoptosis and cell cycle arrest. Valproic acid (VPA), a class I selective histone deacetylase inhibitor widely used as an anticonvulsant, promotes differentiation in poorly differentiated thyroid cancer cells by inducing Na(+)/I(-) symporter and increasing iodine uptake. Here, we show that it is also highly effective at suppressing growth in poorly differentiated thyroid cancer cell lines (N-PA and BHT-101). Apoptosis induction and cell cycle arrest are the underlying mechanisms of VPA's effect on cell growth. It induces apoptosis by activating the intrinsic pathway; caspases 3 and 9 are activated but not caspase 8. Cell cycle is selectively arrested in G(1) and is associated with the increased expression of p21 and the reduced expression of cyclin A. Both apoptosis and cell cycle arrest are induced by treatment with 1 mm VPA, a dose that promotes cell redifferentiation and that is slightly above the serum concentration reached in patients treated for epilepsy. These multifaceted properties make VPA of clinical interest as a new approach to treating poorly differentiated thyroid cancer.

  4. Impaired DNA replication within progenitor cell pools promotes leukemogenesis.

    PubMed

    Bilousova, Ganna; Marusyk, Andriy; Porter, Christopher C; Cardiff, Robert D; DeGregori, James

    2005-12-01

    Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism.

  5. Muc1 promotes migration and lung metastasis of melanoma cells

    PubMed Central

    Wang, Xiaoli; Lan, Hongwen; Li, Jun; Su, Yushu; Xu, Lijun

    2015-01-01

    Early stages of melanoma can be successfully treated by surgical resection of the tumor, but there is still no effective treatment once it is progressed to metastatic phases. Although growing family of both melanoma metastasis promoting and metastasis suppressor genes have been reported be related to metastasis, the molecular mechanisms governing melanoma metastatic cascade are still not completely understood. Therefore, defining the molecules that govern melanoma metastasis may aid the development of more effective therapeutic strategies for combating melanoma. In the present study, we found that muc1 is involved in the metastasis of melanoma cells and demonstrated that muc1 disruption impairs melanoma cells migration and metastasis. The requirement of muc1 in the migration of melanoma cells was further confirmed by gene silencing in vitro. In corresponding to this result, over-expression of muc1 significantly promoted the migratory of melanoma cells. Moreover, down-regulation of muc1 expression strikingly inhibits melanoma cellular metastasis in vivo. Finally, we found that muc1 promotes melanoma migration through the protein kinase B (Akt) signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma. PMID:26609470

  6. Overexpression of ankyrin1 promotes pancreatic cancer cell growth

    PubMed Central

    Omura, Noriyuki; Mizuma, Masamichi; MacGregor, Anne; Hong, Seung-Mo; Ayars, Michael; Almario, Jose Alejandro; Borges, Michael; Kanda, Mitsuro; Li, Ang; Vincent, Audrey; Maitra, Anirban; Goggins, Michael

    2016-01-01

    The methylation status of a promoter influences gene expression and aberrant methylation during tumor development has important functional consequences for pancreatic and other cancers. Using methylated CpG island amplification and promoter microarrays, we identified ANK1 as hypomethylated in pancreatic cancers. Expression analysis determined ANK1 as commonly overexpressed in pancreatic cancers relative to normal pancreas. ANK1 was co-expressed with miR-486 in pancreatic cancer cells. Stable knockdown of ANK1 in the pancreatic cancer cell line AsPC1 led to changes in cell morphology, and decreases in colony formation. Stable knockdown of ANK1 also marked reduced the growth of tumors in athymic nude mice. Among patients undergoing pancreaticoduodenectomy, those with pancreatic cancers expressing ANK1 had a poorer prognosis than those without ANK1 expression. These findings indicate a role for ANK1 overexpression in mediating pancreatic cancer tumorigenicity. PMID:27144336

  7. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy

    PubMed Central

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S.; Corey, Eva; Snyder, Linda A.; Vessella, Robert L.; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis. PMID:26090669

  8. Omeprazole Blocks STAT6 Binding to the Eotaxin-3 Promoter in Eosinophilic Esophagitis Cells

    PubMed Central

    Zhang, Xi; Cheng, Edaire; Huo, Xiaofang; Yu, Chunhua; Zhang, Qiuyang; Pham, Thai H.; Wang, David H.; Spechler, Stuart J.; Souza, Rhonda F.

    2012-01-01

    Background Patients who have esophageal eosinophilia without gastroesophageal reflux disease (GERD) nevertheless can respond to proton pump inhibitors (PPIs), which can have anti-inflammatory actions independent of effects on gastric acid secretion. In esophageal cell cultures, omeprazole has been reported to inhibit Th2 cytokine-stimulated expression of eotaxin-3, an eosinophil chemoattractant contributing to esophageal eosinophilia in eosinophilic esophagitis (EoE). The objective of this study was to elucidate molecular mechanisms underlying PPI inhibition of IL-4-stimulated eotaxin-3 production by esophageal cells. Methods/Findings Telomerase-immortalized and primary cultures of esophageal squamous cells from EoE patients were treated with IL-4 in the presence or absence of acid-activated omeprazole or lansoprazole. We measured eotaxin-3 protein secretion by ELISA, mRNA expression by PCR, STAT6 phosphorylation and nuclear translocation by Western blotting, eotaxin-3 promoter activation by an exogenous reporter construct, and STAT6, RNA polymerase II, and trimethylated H3K4 binding to the endogenous eotaxin-3 promoter by ChIP assay. Omeprazole in concentrations ≥5 µM significantly decreased IL-4-stimulated eotaxin-3 protein secretion and mRNA expression. Lansoprazole also blocked eotaxin-3 protein secretion. Omeprazole had no effect on eotaxin-3 mRNA stability or on STAT6 phosphorylation and STAT6 nuclear translocation. Rather, omeprazole blocked binding of IL-4-stimulated STAT6, RNA polymerase II, and trimethylated H3K4 to the eotaxin-3 promoter. Conclusions/Significance PPIs, in concentrations achieved in blood with conventional dosing, significantly inhibit IL-4-stimulated eotaxin-3 expression in EoE esophageal cells and block STAT6 binding to the promoter. These findings elucidate molecular mechanisms whereby patients with Th2 cytokine-driven esophageal eosinophilia can respond to PPIs, independent of effects on gastric acid secretion. PMID:23185525

  9. CXCL7 promotes proliferation and invasion of cholangiocarcinoma cells.

    PubMed

    Guo, Qian; Jian, Zhixiang; Jia, Baoqing; Chang, Liang

    2017-02-01

    CXCL7 is an important chemoattractant cytokine, which signals through binding to its receptor CXCR2. Recent studies have demonstrated that the CXCL7/CXCR2 signaling plays a promoting role in several common malignancies, including lung, renal, colon, and breast cancer. However, the regulatory role of CXCL7, in cholangiocarcinoma, as well as the underlying mechanism, has not been previously reported. Herein, we found more positive expression of CXCL7 in cholangiocarcinoma tissues compared to adjacent non-tumor tissues. High CXCL7 expression was significantly correlated with poor differentiation, lymph node metastasis, vascular invasion and advanced clinical stage, but was not associated with age, gender, or tumor size. Besides, the expression of CXCL7 was significantly associated with the Ki67 expression, but not associated with CA199, AFP, or P53 expression in cholangiocarcinoma. Moreover, the overall survival of cholangiocarcinoma patients with high CXCL7 expression was significantly shorter than those with low CXCL7 expression. In vitro study indicated that CXCL7 and CXCR2 were also positively expressed in several common cholangiocarcinoma cell lines, including HuCCT1, HuH28, QBC939, EGI-1, OZ and WITT. SiRNA-induced inhibition of CXCL7 significantly reduced the proliferation and invasion of QBC939 cells. On the contrary, overexpression of CXCL7 markedly promoted these malignant phenotypes of QBC939 cells. Of note, the conditioned medium of CXCL7-overexpresing human hepatic stellate cells could also promote the proliferation and invasion of QBC939 cells, suggesting that CXCL7 may also play an oncogenic role in cholangiocarcinoma in a paracrine-dependent manner, not only in an autocrine-dependent manner. Molecular assay data suggested that the AKT signaling pathway was involved in the CXCL7-mediated malignant phenotypes of QBC939 cells. In summary, our study suggests that CXCL7 plays a promoting role in regulating the growth and metastasis of cholangiocarcinoma.

  10. Aqueous Trifluoromethane Sulfonic Acid Fuel Cells.

    DTIC Science & Technology

    1981-02-01

    Development of Low Tempera- ture Acid Electrolytes," National Fuel Cell Seminar, Bethesda, MD, June 1979. 8 George, M. and Januszkiewicz , S., "New Materials...Department 2- K US Department of Energy (1) LaVerne, CA 91750 ATTN: Mr. Gary Voelker 20 Massachusetts Avenue, NW Union Carbide Corporation (1) Washington, DC

  11. The reorientation of cell nucleus promotes the establishment of front-rear polarity in migrating fibroblasts.

    PubMed

    Maninová, Miloslava; Klímová, Zuzana; Parsons, J Thomas; Weber, Michael J; Iwanicki, Marcin P; Vomastek, Tomáš

    2013-06-12

    The establishment of cell polarity is an essential step in the process of cell migration. This process requires precise spatiotemporal coordination of signaling pathways that in most cells create the typical asymmetrical profile of a polarized cell with nucleus located at the cell rear and the microtubule organizing center (MTOC) positioned between the nucleus and the leading edge. During cell polarization, nucleus rearward positioning promotes correct microtubule organizing center localization and thus the establishment of front-rear polarity and directional migration. We found that cell polarization and directional migration require also the reorientation of the nucleus. Nuclear reorientation is manifested as temporally restricted nuclear rotation that aligns the nuclear axis with the axis of cell migration. We also found that nuclear reorientation requires physical connection between the nucleus and cytoskeleton mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex. Nuclear reorientation is controlled by coordinated activity of lysophosphatidic acid (LPA)-mediated activation of GTPase Rho and the activation of integrin, FAK (focal adhesion kinase), Src, and p190RhoGAP signaling pathway. Integrin signaling is spatially induced at the leading edge as FAK and p190RhoGAP are predominantly activated or localized at this location. We suggest that integrin activation within lamellipodia defines cell front, and subsequent FAK, Src, and p190RhoGAP signaling represents the polarity signal that induces reorientation of the nucleus and thus promotes the establishment of front-rear polarity.

  12. Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration

    PubMed Central

    Gatzka, Martina; Treiber, Nicolai; Schneider, Lars A.; Mulaw, Medhanie A.; Lucas, Tanja; Kochanek, Stefan; Dummer, Reinhard; Levesque, Mitchell P.; Wlaschek, Meinhard; Scharffetter-Kochanek, Karin

    2016-01-01

    Aging is associated with a rising incidence of cutaneous squamous cell carcinoma (cSCC), an aggressive skin cancer with the potential for local invasion and metastasis. Acquisition of a senescence-associated secretory phenotype (SASP) in dermal fibroblasts has been postulated to promote skin cancer progression in elderly individuals. The underlying molecular mechanisms are largely unexplored. We show that Chemerin, a previously unreported SASP factor released from senescent human dermal fibroblasts, promotes cSCC cell migration, a key feature driving tumor progression. Whereas the Chemerin abundance is downregulated in malignant cSCC cells, increased Chemerin transcripts and protein concentrations are detected in replicative senescent fibroblasts in vitro and in the fibroblast of skin sections from old donors, indicating that a Chemerin gradient is built up in the dermis of elderly. Using Transwell® migration assays, we show that Chemerin enhances the chemotaxis of different cSCC cell lines. Notably, the Chemerin receptor CCRL2 is remarkably upregulated in cSCC cell lines and human patient biopsies. Silencing Chemerin in senescent fibroblasts or the CCRL2 and GPR1 receptors in the SCL-1 cSCC cell line abrogates the Chemerin-mediated chemotaxis. Chemerin triggers the MAPK cascade via JNK and ERK1 activation, whereby the inhibition impairs the SASP- or Chemerin-mediated cSCC cell migration. Taken together, we uncover a key role for Chemerin, as a major factor in the secretome of senescent fibroblasts, promoting cSCC cell migration and possibly progression, relaying its signals through CCRL2 and GPR1 receptors with subsequent MAPK activation. These findings might have implications for targeted therapeutic interventions in elderly patients. PMID:27907906

  13. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells.

    PubMed

    Hu, Deqing; Garruss, Alexander S; Gao, Xin; Morgan, Marc A; Cook, Malcolm; Smith, Edwin R; Shilatifard, Ali

    2013-09-01

    Promoters of many developmentally regulated genes, in the embryonic stem cell state, have a bivalent mark of H3K27me3 and H3K4me3, proposed to confer precise temporal activation upon differentiation. Although Polycomb repressive complex 2 is known to implement H3K27 trimethylation, the COMPASS family member responsible for H3K4me3 at bivalently marked promoters was previously unknown. Here, we identify Mll2 (KMT2b) as the enzyme catalyzing H3K4 trimethylation at bivalentlymarked promoters in embryonic stem cells. Although H3K4me3 at bivalent genes is proposed to prime future activation, we detected no substantial defect in rapid transcriptional induction after retinoic acid treatment in Mll2-depleted cells. Our identification of the Mll2 complex as the COMPASS family member responsible for H3K4me3 marking bivalent promoters provides an opportunity to reevaluate and experimentally test models for the function of bivalency in the embryonic stem cell state and in differentiation.

  14. REN: a novel, developmentally regulated gene that promotes neural cell differentiation.

    PubMed

    Gallo, Rita; Zazzeroni, Francesca; Alesse, Edoardo; Mincione, Claudia; Borello, Ugo; Buanne, Pasquale; D'Eugenio, Roberta; Mackay, Andrew R; Argenti, Beatrice; Gradini, Roberto; Russo, Matteo A; Maroder, Marella; Cossu, Giulio; Frati, Luigi; Screpanti, Isabella; Gulino, Alberto

    2002-08-19

    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation.

  15. TERT promoter mutations are frequent in cutaneous basal cell carcinoma and squamous cell carcinoma.

    PubMed

    Griewank, Klaus G; Murali, Rajmohan; Schilling, Bastian; Schimming, Tobias; Möller, Inga; Moll, Iris; Schwamborn, Marion; Sucker, Antje; Zimmer, Lisa; Schadendorf, Dirk; Hillen, Uwe

    2013-01-01

    Activating mutations in the TERT promoter were recently identified in up to 71% of cutaneous melanoma. Subsequent studies found TERT promoter mutations in a wide array of other major human cancers. TERT promoter mutations lead to increased expression of telomerase, which maintains telomere length and genomic stability, thereby allowing cancer cells to continuously divide, avoiding senescence or apoptosis. TERT promoter mutations in cutaneous melanoma often show UV-signatures. Non-melanoma skin cancer, including basal cell carcinoma and squamous cell carcinoma, are very frequent malignancies in individuals of European descent. We investigated the presence of TERT promoter mutations in 32 basal cell carcinomas and 34 cutaneous squamous cell carcinomas using conventional Sanger sequencing. TERT promoter mutations were identified in 18 (56%) basal cell carcinomas and in 17 (50%) cutaneous squamous cell carcinomas. The recurrent mutations identified in our cohort were identical to those previously described in cutaneous melanoma, and showed a UV-signature (C>T or CC>TT) in line with a causative role for UV exposure in these common cutaneous malignancies. Our study shows that TERT promoter mutations with UV-signatures are frequent in non-melanoma skin cancer, being present in around 50% of basal and squamous cell carcinomas and suggests that increased expression of telomerase plays an important role in the pathogenesis of these tumors.

  16. Endothelial cell promotion of early liver and pancreas development.

    PubMed

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  17. Yangjing Capsule Extract Promotes Proliferation of GC-1 Spg Cells

    PubMed Central

    Wang, Zhiqiang; Jin, Baofang; Zhang, Xindong; Cui, Yugui; Sun, Dalin; Gao, Chao

    2014-01-01

    Objective. To investigate the effect of Yangjing Capsule (YC) extract on proliferation of GC-1 spermatogonia (spg) cells and the mechanism. Methods. GC-1 spg cells were treated with 0.01, 0.1, and 1 mg/mL YC extract. MTT assay was performed to detect the cell viability. Flow cytometry was used to measure the cell cycle and apoptosis of GC-1 spg cells. Real-time PCR and western blot were applied to determine the mRNA and protein expression of Oct-4 and Plzf. Gfrα1 knockdown and LY294002 (PI3K inhibitor) were applied to explore the underlying mechanism. Results. After 48 h treatment of YC, the viability of GC-1 spg cells increased significantly and the ratio of apoptotic cells reduced significantly. The increased mRNA and protein expression of Oct-4 and Plzf suggested YC promoted self-renewal of GC-1 spg cells. Both Gfrα1 siRNAs and LY294002 treatments held back YC extract's stimulation effects on mRNA and protein expression of Oct-4 and Plzf and consequently inhibited the proliferation of GC-1 spg cells induced by YC extract. Conclusion. YC extract could stimulate the proliferation of GC-1 spg cells. Partly via Gfrα1, YC extract is able to trigger the activation of PI3K pathway and finally lead to self-renewal of GC-1 spg cells. PMID:24817900

  18. Hydroxycitric acid does not promote inflammation or liver toxicity

    PubMed Central

    Clouatre, Dallas L; Preuss, Harry G

    2013-01-01

    Garcinia cambogia extract (GC) with its active component consisting of hydroxycitric acid (HCA) is widely utilized for weight loss. Various HCA salts are available, including calcium, magnesium, potassium and mixtures of these. Experimentally, these salts exhibit different properties with some, but not all, improving glucose tolerance and blood pressure. Recently, obesity-prone C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without GC (1%, w/w) for 16 wk. The active arm reduced visceral fat, adipocyte size and serum glucose, yet purportedly also exhibited hepatic collagen accumulation, lipid peroxidation and increased mRNA levels of genes related to oxidative stress. The latter findings are at odds with a large body of animal and human studies that have been conducted on the safety and efficacy of HCA. This literature shows HCA to be protective against the liver toxicity associated with ethanol and dexamethasone administration, and to maintain serum aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase at near normal levels. In both animal and clinical literature, elevated intakes of HCA per se have not led to signs of inflammation or hepatotoxicity. The compound has been found to reduce markers of inflammation in brain, intestines, kidney and serum. PMID:24307814

  19. Multi-input regulation and logic with T7 promoters in cells and cell free systems

    SciTech Connect

    Iyer, Sukanya; Karig, David K; Norred, Sarah E; Simpson, Michael L; Doktycz, Mitchel John

    2014-01-01

    Engineered gene circuits offer an opportunity to harness biological systems for biotechnological and biomedical applications. However, reliance on host E. coli promoters for the construction of circuit elements, such as logic gates, makes implementation of predictable, independently functioning circuits difficult. In contrast, T7 promoters offer a simple orthogonal expression system for use in a variety of cellular backgrounds and even in cell free systems. Here we develop a T7 promoter system that can be regulated by two different transcriptional repressors for the construction of a logic gate that functions in cells and in cell free systems. We first present LacI repressible T7lacO promoters that are regulated from a distal lac operator site for repression. We next explore the positioning of a tet operator site within the T7lacO framework to create T7 promoters that respond to tet and lac repressors and realize an IMPLIES gate. Finally, we demonstrate that these dual input sensitive promoters function in a commercially available E. coli cell-free protein expression system. Together, our results contribute to the first demonstration of multi-input regulation of T7 promoters and expand the utility of T7 promoters in cell based as well as cell-free gene circuits.

  20. Tumor promoters alter the temporal program of adenovirus replication in human cells.

    PubMed Central

    Fisher, P B; Young, C S; Weinstein, I B; Carter, T H

    1981-01-01

    In this study we evaluated the effect of phorbol ester tumor promoters on the kinetics of adenovirus type 5 (Ad5) replication in human cells. When added at the time of infection, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) accelerated the appearance of an early virus antigen (72,000-molecular-weight [72K] deoxyribonucleic acid-binding protein), the onset of viral deoxyribonucleic acid synthesis, and the production of infectious virus. The appearance of an Ad5-specific cytopathic effect (CPE) was also accelerated in infected cultures exposed to TPA, whereas phorbol, 4 alpha-phorbol-12,13-didecanoate and 4-OmeTPA, which are inactive as tumor promoters, were ineffective in inducing this morphological change. The acceleration of the CPE seen in TPA-treated Ad5-infected cells was not caused by TPA induction of the protease plasminogen activator, since the protease inhibitors leupeptin and antipain do not inhibit the earlier onset of this CPE and, in contrast, epidermal growth factor, which induces plasminogen activator in HeLa cells, does not induce an earlier CPE. Evidence for a direct effect of TPA on viral gene expression was obtained by analyzing viral messenger ribonucleic acid (mRNA) synthesis. TPA accelerated the appearance of mRNA from all major early regions of Ad5, transiently stimulated the accumulation of region III mRNA, and accelerated the appearance of late Ad5 mRNA. Thus, TPA altered the temporal program of Ad5 mRNA production and accelerated the appearance of at least some Ad5-specific polypeptides during lytic infection of human cells. These effects presumably explain the earlier onset of the Ad5-specific CPE in TPA-treated cells and may have relevance to the effects of TPA on viral gene expression in nonpermissive cells carrying integrated viral deoxyribonucleic acid sequences. Images PMID:6965103

  1. Tumor promoters alter the temporal program of adenovirus replication in human cells.

    PubMed

    Fisher, P B; Young, C S; Weinstein, I B; Carter, T H

    1981-04-01

    In this study we evaluated the effect of phorbol ester tumor promoters on the kinetics of adenovirus type 5 (Ad5) replication in human cells. When added at the time of infection, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) accelerated the appearance of an early virus antigen (72,000-molecular-weight [72K] deoxyribonucleic acid-binding protein), the onset of viral deoxyribonucleic acid synthesis, and the production of infectious virus. The appearance of an Ad5-specific cytopathic effect (CPE) was also accelerated in infected cultures exposed to TPA, whereas phorbol, 4 alpha-phorbol-12,13-didecanoate and 4-OmeTPA, which are inactive as tumor promoters, were ineffective in inducing this morphological change. The acceleration of the CPE seen in TPA-treated Ad5-infected cells was not caused by TPA induction of the protease plasminogen activator, since the protease inhibitors leupeptin and antipain do not inhibit the earlier onset of this CPE and, in contrast, epidermal growth factor, which induces plasminogen activator in HeLa cells, does not induce an earlier CPE. Evidence for a direct effect of TPA on viral gene expression was obtained by analyzing viral messenger ribonucleic acid (mRNA) synthesis. TPA accelerated the appearance of mRNA from all major early regions of Ad5, transiently stimulated the accumulation of region III mRNA, and accelerated the appearance of late Ad5 mRNA. Thus, TPA altered the temporal program of Ad5 mRNA production and accelerated the appearance of at least some Ad5-specific polypeptides during lytic infection of human cells. These effects presumably explain the earlier onset of the Ad5-specific CPE in TPA-treated cells and may have relevance to the effects of TPA on viral gene expression in nonpermissive cells carrying integrated viral deoxyribonucleic acid sequences.

  2. Phytosphingosine promotes megakaryocytic differentiation of myeloid leukemia cells.

    PubMed

    Han, Sang Hee; Kim, Jusong; Her, Yerim; Seong, Ikjoo; Park, Sera; Bhattarai, Deepak; Jin, Guanghai; Lee, Kyeong; Chung, Gukhoon; Hwang, Sungkee; Bae, Yun Soo; Kim, Jaesang

    2015-12-01

    We report that phytosphingosine, a sphingolipid found in many organisms and implicated in cellular signaling, promotes megakaryocytic differentiation of myeloid leukemia cells. Specifically, phytosphingosine induced several hallmark changes associated with megakaryopoiesis from K562 and HEL cells including cell cycle arrest, cell size increase and polyploidization. We also confirmed that cell type specific markers of megakaryocytes, CD41a and CD42b are induced by phytosphingosine. Phospholipids with highly similar structures were unable to induce similar changes, indicating that the activity of phytosphingosine is highly specific. Although phytosphingosine is known to activate p38 MAPK-mediated apoptosis, the signaling mechanisms involved in megakaryopoiesis appear to be distinct. In sum, we present another model for dissecting molecular details of megakaryocytic differentiation which in large part remains obscure.

  3. Phytosphingosine promotes megakaryocytic differentiation of myeloid leukemia cells

    PubMed Central

    Han, Sang Hee; Kim, Jusong; Her, Yerim; Seong, Ikjoo; Park, Sera; Bhattarai, Deepak; Jin, Guanghai; Lee, Kyeong; Chung, Gukhoon; Hwang, Sungkee; Bae, Yun Soo; Kim, Jaesang

    2015-01-01

    We report that phytosphingosine, a sphingolipid found in many organisms and implicated in cellular signaling, promotes megakaryocytic differentiation of myeloid leukemia cells. Specifically, phytosphingosine induced several hallmark changes associated with megakaryopoiesis from K562 and HEL cells including cell cycle arrest, cell size increase and polyploidization. We also confirmed that cell type specific markers of megakaryocytes, CD41a and CD42b are induced by phytosphingosine. Phospholipids with highly similar structures were unable to induce similar changes, indicating that the activity of phytosphingosine is highly specific. Although phytosphingosine is known to activate p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis, the signaling mechanisms involved in megakaryopoiesis appear to be distinct. In sum, we present another model for dissecting molecular details of megakaryocytic differentiation which in large part remains obscure. [BMB Reports 2015; 48(12): 691-695] PMID:26077028

  4. T cell intrinsic roles of autophagy in promoting adaptive immunity

    PubMed Central

    Walsh, Craig M.; Bell, Bryan D.

    2010-01-01

    Autophagy, an ancient cellular response where autophagic vacuoles are formed within the cytosol, is induced in response to a variety of cellular insults, including growth factor or nutrient withdrawal, organelle damage and misfolded proteins. Autophagy is rapidly induced in T lymphocytes following antigenic stimulation and blockade of autophagic signaling greatly reduces T cell clonal expansion, suggesting that autophagy is primarily involved in promoting T cell survival. In contrast, a recently identified negative feedback loop involving FADD and caspase-8, limits the level of autophagy in T cells. Failure to activate caspase-8 during T cell mitogenesis leads to hyperactive autophagy and cellular death through a programmed necrotic mechanism. These findings suggest that crosstalk between these cellular processes is essential for T cell activation and homeostasis. PMID:20392618

  5. Hormonal control of somatic embryo development from cultured cells of caraway: interactions of abscisic Acid, zeatin, and gibberellic Acid.

    PubMed

    Ammirato, P V

    1977-04-01

    The effects of abscisic acid, zeatin, and gibberellic acid on the development of somatic embryos from cultured cells of caraway (Carum carvi L.) were observed.Somatic embryos complete development on a basal medium without exogenous hormones, but some are subject to developmental abnormalities including malformed cotyledons and accessory embryos. Both zeatin and gibberellic acid, especially in combination, stimulate growth and increase the frequency of aberrant forms. Zeatin causes the formation of multiple shoots, leafy and abnormal cotyledons, and in the dark, enlarged hypocotyls; gibberellic acid effects root elongation, polycotyledony, and some callus formation. In contrast, abscisic acid, at concentrations which do not inhibit embryo maturation, selectively suppresses abnormal proliferations. With abscisic acid, and especially in the dark, a high percentage of embryos complete development with two fleshy cotyledons on unelongated axes free of accessory embryos.In the light, zeatin eliminates abscisic acid inhibition while gibberellic acid only partially counters its effect, promoting elongated radicles and green rather than white cotyledons. In the dark, zeatin in combination with abscisic acid stimulates extensive callusing. Gibberellic acid does not reverse the effects of abscisic acid but rather enhances them and can counter the disruptive effects of zeatin.The results demonstrate that the balance between abscisic acid on the one hand and zeatin and gibberellic acid on the other can effectively control somatic embryo development and either disrupt or ensure normal maturation.

  6. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    SciTech Connect

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  7. Stearidonic acid, a plant-based dietary fatty acid, enhances the chemosensitivity of canine lymphoid tumor cells.

    PubMed

    Pondugula, Satyanarayana R; Ferniany, Glennie; Ashraf, Farah; Abbott, Kodye L; Smith, Bruce F; Coleman, Elaine S; Mansour, Mahmoud; Bird, R Curtis; Smith, Annette N; Karthikeyan, Chandrabose; Trivedi, Piyush; Tiwari, Amit K

    2015-05-15

    Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma.

  8. Wnt-11 overexpression promoting the invasion of cervical cancer cells.

    PubMed

    Wei, Heng; Wang, Ning; Zhang, Yao; Wang, Shizhuo; Pang, Xiaoao; Zhang, Shulan

    2016-09-01

    Wnt-11 is a positive regulator of the Wnt signaling pathway, which plays a crucial role in carcinogenesis. However, Wnt-11 expression in cervical cancer has not been well investigated. The aim of this study was to investigate the role of Wnt-11 in cervical tumor proliferation and invasion. This study examined 24 normal cervical squamous epithelia, 29 cervical intraepithelial neoplasia (CIN), and 78 cervical cancer samples. The expression of Wnt-11 was investigated by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction analysis. The expression of the high-risk human papilloma virus (HR-HPV) E6 oncoprotein was also investigated by immunohistochemistry. In addition, the expression of Wnt-11, HR-HPV E6, JNK-1, phosphorylated JNK-1(P-JNK1), and β-catenin was examined by western blot analysis following Wnt-11 knockdown or overexpression in HeLa or SiHa cells, respectively. The promotion of cervical cancer cell proliferation and invasion was investigated using the cell counting kit-8 and Matrigel invasion assay, respectively. Wnt-11 and HR-HPV E6 expression increased in a manner that corresponded with the progression of cervical cancer and was significantly correlated with the International Federation of Gynecology and Obstetrics cancer stage, lymph node metastasis, tumor size, and HPV infection. Wnt-11 protein expression was positively associated with HR-HPV E6 protein expression in all 78 cervical cancer samples (P < 0.001). Furthermore, Wnt-11 was positively associated with P-JNK1 expression and promoted cervical cancer cell proliferation and invasion. These observations suggest that the increased Wnt-11 expression observed in cervical cancer cells may lead to the phosphorylation and activation of JNK-1 and significantly promote tumor cell proliferation and cell migration/invasion through activation of the Wnt/JNK pathway. Consequently, Wnt-11 may serve as a novel target for cervical cancer therapy.

  9. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  10. Steroid signaling promotes stem cell maintenance in the Drosophila testis.

    PubMed

    Li, Yijie; Ma, Qing; Cherry, Christopher M; Matunis, Erika L

    2014-10-01

    Stem cell regulation by local signals is intensely studied, but less is known about the effects of hormonal signals on stem cells. In Drosophila, the primary steroid twenty-hydroxyecdysone (20E) regulates ovarian germline stem cells (GSCs) but was considered dispensable for testis GSC maintenance. Male GSCs reside in a microenvironment (niche) generated by somatic hub cells and adjacent cyst stem cells (CySCs). Here, we show that depletion of 20E from adult males by overexpressing a dominant negative form of the Ecdysone receptor (EcR) or its heterodimeric partner ultraspiracle (usp) causes GSC and CySC loss that is rescued by 20E feeding, uncovering a requirement for 20E in stem cell maintenance. EcR and USP are expressed, activated and autonomously required in the CySC lineage to promote CySC maintenance, as are downstream genes ftz-f1 and E75. In contrast, GSCs non-autonomously require ecdysone signaling. Global inactivation of EcR increases cell death in the testis that is rescued by expression of EcR-B2 in the CySC lineage, indicating that ecdysone signaling supports stem cell viability primarily through a specific receptor isoform. Finally, EcR genetically interacts with the NURF chromatin-remodeling complex, which we previously showed maintains CySCs. Thus, although 20E levels are lower in males than females, ecdysone signaling acts through distinct cell types and effectors to ensure both ovarian and testis stem cell maintenance.

  11. Extracellular cleavage of E-cadherin promotes epithelial cell extrusion.

    PubMed

    Grieve, Adam G; Rabouille, Catherine

    2014-08-01

    Epithelial cell extrusion and subsequent apoptosis is a key mechanism to prevent the accumulation of excess cells. By contrast, when driven by oncogene expression, apical cell extrusion is followed by proliferation and represents an initial step of tumorigenesis. E-cadherin (E-cad), the main component of adherens junctions, has been shown to be essential for epithelial cell extrusion, but its mechanistic contribution remains unclear. Here, we provide clear evidence that cell extrusion can be driven by the cleavage of E-cad, both in a wild-type and an oncogenic environment. We first show that CDC42 activation in a single epithelial cell results in its efficient matrix metalloproteinase (MMP)-sensitive extrusion through MEK signalling activation and this is supported by E-cad cleavage. Second, using an engineered cleavable form of E-cad, we demonstrate that, by itself, truncation of extracellular E-cad at the plasma membrane promotes apical extrusion. We propose that extracellular cleavage of E-cad generates a rapid change in cell-cell adhesion that is sufficient to drive apical cell extrusion. Whereas in normal epithelia, extrusion is followed by apoptosis, when combined with active oncogenic signalling, it is coupled to cell proliferation.

  12. Amino acid pools in cultured muscle cells.

    PubMed

    Low, R B; Stirewalt, W S; Rittling, S R; Woodworth, R C

    1984-01-01

    Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships--in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.

  13. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons.

    PubMed

    Gregorio, Josh; Meller, Stephan; Conrad, Curdin; Di Nardo, Anna; Homey, Bernhard; Lauerma, Antti; Arai, Naoko; Gallo, Richard L; Digiovanni, John; Gilliet, Michel

    2010-12-20

    Plasmacytoid dendritic cells (pDCs) are specialized type I interferon (IFN-α/β)-producing cells that express intracellular toll-like receptor (TLR) 7 and TLR9 and recognize viral nucleic acids in the context of infections. We show that pDCs also have the ability to sense host-derived nucleic acids released in common skin wounds. pDCs were found to rapidly infiltrate both murine and human skin wounds and to transiently produce type I IFNs via TLR7- and TLR9-dependent recognition of nucleic acids. This process was critical for the induction of early inflammatory responses and reepithelization of injured skin. Cathelicidin peptides, which facilitate immune recognition of released nucleic acids by promoting their access to intracellular TLR compartments, were rapidly induced in skin wounds and were sufficient but not necessary to stimulate pDC activation and type I IFN production. These data uncover a new role of pDCs in sensing tissue damage and promoting wound repair at skin surfaces.

  14. Stress-induced cleavage of Myc promotes cancer cell survival

    PubMed Central

    Conacci-Sorrell, Maralice; Ngouenet, Celine; Anderson, Sarah; Brabletz, Thomas; Eisenman, Robert N.

    2014-01-01

    Evasion of apoptosis is critical in Myc-induced tumor progression. Here we report that cancer cells evade death under stress by activating calpain-mediated proteolysis of Myc. This generates Myc-nick, a cytoplasmic, transcriptionally inactive cleavage product of Myc. We found conversion of Myc into Myc-nick in cell lines and tissues derived from multiple cancers. In colon cancer, the production of Myc-nick is enhanced under stress conditions such as hypoxia and nutrient deprivation. Under these conditions, ectopic expression of Myc-nick promotes anchorage-independent growth and cell survival at least in part by promoting autophagy. Myc-nick also delays colon cancer cell death after treatment with chemotherapeutic drugs such as etoposide, cisplatin, and imatinib. Furthermore, colon cancer cells expressing a cleavage-resistant form of Myc undergo extensive apoptosis but are rescued by overexpression of Myc-nick. We also found that ectopic expression of Myc-nick results in the induction of the actin-bundling protein fascin, formation of filopodia, and increased cell motility—all mediators of tumor metastasis. Myc-nick-induced survival, autophagy, and motility require Myc box II (MBII), a region of Myc-nick that recruits acetyltransferases that in turn modify cytoplasmic proteins, including α-tubulin and ATG3. Our results suggest that Myc-nick-induced survival and motility contribute to colon cancer progression and metastasis. PMID:24696454

  15. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells.

    PubMed

    Keerthivasan, Shilpa; Aghajani, Katayoun; Dose, Marei; Molinero, Luciana; Khan, Mohammad W; Venkateswaran, Vysak; Weber, Christopher; Emmanuel, Akinola Olumide; Sun, Tianjao; Bentrem, David J; Mulcahy, Mary; Keshavarzian, Ali; Ramos, Elena M; Blatner, Nichole; Khazaie, Khashayarsha; Gounari, Fotini

    2014-02-26

    The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become proinflammatory and tumor-promoting. These properties were directly linked with their expression of RORγt (retinoic acid-related orphan receptor-γt), the signature transcription factor of T(H)17 cells. We report that Wnt/β-catenin signaling in T cells promotes expression of RORγt. Expression of β-catenin was elevated in T cells, including Tregs, of patients with colon cancer. Genetically engineered activation of β-catenin in mouse T cells resulted in enhanced chromatin accessibility in the proximity of T cell factor-1 (Tcf-1) binding sites genome-wide, induced expression of T(H)17 signature genes including RORγt, and promoted T(H)17-mediated inflammation. Strikingly, the mice had inflammation of small intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. On the basis of these findings, we conclude that activation of Wnt/β-catenin signaling in effector T cells and/or Tregs is causatively linked with the imprinting of proinflammatory properties and the promotion of colon cancer.

  16. High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells.

    PubMed

    Pellis, Linette; Dommels, Yvonne; Venema, Dini; Polanen, Ab van; Lips, Esther; Baykus, Hakan; Kok, Frans; Kampman, Ellen; Keijer, Jaap

    2008-04-01

    Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, methylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and other micronutrients involved in the folate-methionine cycle. In addition to higher intracellular folate levels, HT29 cells at 100 ng folic acid/ml displayed faster growth and higher metabolic activity. cDNA microarray analysis indicated an effect on cell turnover and Fe metabolism. We fully confirmed these effects at the physiological level. At 100 ng/ml, cell assays showed higher proliferation and apoptosis, while gene expression analysis and a lower E-cadherin protein expression indicated decreased differentiation. These results are in agreement with the promoting effect of folic acid supplementation on established colorectal neoplasms. The lower expression of genes related to Fe metabolism at 100 ng folic acid/ml was confirmed by lower intracellular Fe levels in the cells exposed to folic acid at 100 ng/ml. This suggests an effect of folate on Fe metabolism.

  17. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    PubMed

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

  18. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    SciTech Connect

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing Wang, Zehua

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  19. Probiotics promote endocytic allergen degradation in gut epithelial cells

    SciTech Connect

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  20. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  1. Role of neural precursor cells in promoting repair following stroke

    PubMed Central

    Dibajnia, Pooya; Morshead, Cindi M

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention. Two broad approaches to stem cell-based therapies have been taken: the transplantation of exogenous stem cells, and the activation of endogenous neural stem and progenitor cells (together termed neural precursors). Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results. Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate, migrate and differentiate into mature neurons in the uninjured adult brain. Studies have revealed that these neural precursor cell behaviours can be activated following stroke, whereby neural precursors will expand in number, migrate to the infarct site and differentiate into neurons. However, this innate response is insufficient to lead to functional recovery, making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery. Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain. PMID:23064725

  2. Relative efficacy of organic acids and antibiotics as growth promoters in broiler chicken

    PubMed Central

    Bagal, Vikrant Laxman; Khatta, Vinod Kumar; Tewatia, Bachu Singh; Sangwan, Sandeep Kumar; Raut, Subhash Shamrao

    2016-01-01

    Aim: The objective of this study was to evaluate the effect of organic acids as replacer to antibiotics in their various combinations on feed consumption, body weight gain, and feed conversion ratio (FCR) in broiler chicks during different phases of growth. Materials and Methods: Antibiotics and organic acids were incorporated into boiler feed in different combinations to form 10 maize based test diets (T1 to T10). Each test diet was offered to four replicates of 10 birds each constituting a total of 400 birds kept for 45 days. Results: Significantly better effect in terms of body weight gain from supplementation of 1% citric acid and 1% citric acid along with antibiotic was observed throughout the entire study, whereas the effect of tartaric acid supplementation was similar to control group. Citric acid (1%) along with antibiotic supplementation showed highest feed intake during the experimental period. Significantly better FCR was observed in groups supplemented with 1% citric acid and 1% citric acid along with antibiotic followed by antibiotic along with organic acids supplemented group. Conclusion: Growth performance of birds in terms of body weight, body weight gain, and FCR improved significantly in 1% citric acid which was significantly higher than antibiotic supplemented group. 1% citric acid can effectively replace antibiotic growth promoter (chlortetracycline) without affecting growth performance of birds. PMID:27182133

  3. A Village-Based Intervention: Promoting Folic Acid Use among Rural Chinese Women

    PubMed Central

    Lin, Qian; Yang, Lina; Li, Fang; Qin, Hong; Li, Mingzhi; Chen, Jihua; Deng, Jing; Hu, Xiangying

    2017-01-01

    Background: Folic acid supplementation is effective in reducing the risk of neural tube defects (NTDs). However, the use of folic acid is low among rural women in China. Nutrition education can provide information about folic acid and encourage its use. The primary objective of this study was to test the effectiveness of a village-based nutrition intervention on folic acid use among rural women. Methods: Sixty villages were randomly selected using multiple-stage sampling and were divided into control and intervention groups. The intervention included nutritional education at village clinics, written materials, and text messages (SMS). Folic acid use knowledge and behavior was assessed at baseline and after the intervention. Results: Self-reported compliance with folic acid supplement use increased from 17.0%–29.2% at baseline to 41.7%–59.2% one year post-intervention. During the same period, the folic acid knowledge score in the intervention group increased from 3.07 to 3.65, significantly higher than the control group (3.11 to 3.35). Multivariate binary logistic regression showed that the women who received folic acid education and SMS intervention were more likely to comply with folic acid supplement recommendations. Conclusions: The results indicated that an integrated village-based folic acid education intervention may be an effective way of promoting folic acid use for the prevention of NTDs in rural women. PMID:28230798

  4. Methylene blue promotes quiescence of rat neural progenitor cells.

    PubMed

    Xie, Luokun; Choudhury, Gourav R; Wang, Jixian; Park, Yong; Liu, Ran; Yuan, Fang; Zhang, Chun-Li; Yorio, Thomas; Jin, Kunlin; Yang, Shao-Hua

    2014-01-01

    Neural stem cell-based treatment holds a new therapeutic opportunity for neurodegenerative disorders. Here, we investigated the effect of methylene blue on proliferation and differentiation of rat neural progenitor cells (NPCs) both in vitro and in vivo. We found that methylene blue inhibited proliferation and promoted quiescence of NPCs in vitro without affecting committed neuronal differentiation. Consistently, intracerebroventricular infusion of methylene blue significantly inhibited NPC proliferation at the subventricular zone (SVZ). Methylene blue inhibited mTOR signaling along with down-regulation of cyclins in NPCs in vitro and in vivo. In summary, our study indicates that methylene blue may delay NPC senescence through enhancing NPCs quiescence.

  5. Different effects of bile acids, ursodeoxycholic acid and deoxycholic acid, on cell growth and cell death in human colonic adenocarcinoma cells.

    PubMed

    Shiraki, Katsuya; Ito, Takeshi; Sugimoto, Kazushi; Fuke, Hiroyuki; Inoue, Tomoko; Miyashita, Kazumi; Yamanaka, Takenari; Suzuki, Masahiro; Nabeshima, Kazuo; Nakano, Takeshi; Takase, Koujiro

    2005-10-01

    Secondary bile acids have been implicated as an important etiological factor in colorectal cancer. We investigated the effects of ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) on the growth and cytotoxicity in HT29 human colonic adenocarcinoma cells. Proliferation assay, cell cycle analysis and cell death characterization by bile acids were performed. Both UDCA and DCA reduced their proliferation rate of HT29 over 48 h in a concentration- and time-dependent manner compared with control cultures. In terms of cell cycle effects, however, UDCA induced G2/M arrest, while DCA induced G1 arrest in a concentration- and time-dependent manner. As for the effects of each bile acid on cell toxicity, UDCA induced early apoptosis and DCA induced both early apoptosis and necrosis. Bile acids play an important role in regulating cell survival and cell death in colon adenocarcinoma cells.

  6. Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe.

    PubMed

    Cornago, M; Garcia-Alberich, C; Blasco-Angulo, N; Vall-Llaura, N; Nager, M; Herreros, J; Comella, J X; Sanchis, D; Llovera, M

    2014-10-02

    Glioblastoma multiforme is resistant to conventional anti-tumoral treatments due to its infiltrative nature and capability of relapse; therefore, research efforts focus on characterizing gliomagenesis and identifying molecular targets useful on therapy. New therapeutic strategies are being tested in patients, such as Histone deacetylase inhibitors (HDACi) either alone or in combination with other therapies. Here two HDACi included in clinical trials have been tested, suberanilohydroxamic acid (SAHA) and valproic acid (VPA), to characterize their effects on glioma cell growth in vitro and to determine the molecular changes that promote cancer cell death. We found that both HDACi reduce glioma cell viability, proliferation and clonogenicity. They have multiple effects, such as inducing the production of reactive oxygen species (ROS) and activating the mitochondrial apoptotic pathway, nevertheless cell death is not prevented by the pan-caspase inhibitor Q-VD-OPh. Importantly, we found that HDACi alter cell cycle progression by decreasing the expression of G2 checkpoint kinases Wee1 and checkpoint kinase 1 (Chk1). In addition, HDACi reduce the expression of proteins involved in DNA repair (Rad51), mitotic spindle formation (TPX2) and chromosome segregation (Survivin) in glioma cells and in human glioblastoma multiforme primary cultures. Therefore, HDACi treatment causes glioma cell entry into mitosis before DNA damage could be repaired and to the formation of an aberrant mitotic spindle that results in glioma cell death through mitotic catastrophe-induced apoptosis.

  7. Epigenetic modulators promote mesenchymal stem cell phenotype switches.

    PubMed

    Alexanian, Arshak R

    2015-07-01

    Discoveries in recent years have suggested that some tissue specific adult stem cells in mammals might have the ability to differentiate into cell types from different germ layers. This phenomenon has been referred to as stem cell transdifferentiation or plasticity. Despite controversy, the current consensus holds that transdifferentiation does occur in mammals, but only within a limited range. Understanding the mechanisms that underlie the switches in phenotype and development of the methods that will promote such type of conversions can open up endless possibilities for regenerative medicine. Epigenetic control contributes to various processes that lead to cellular plasticity and DNA and histone covalent modifications play a key role in these processes. Recently, we have been able to convert human mesenchymal stem cells (hMSCs) into neural-like cells by exposing cells to epigenetic modifiers and neural inducing factors. The goal of this study was to investigate the stability and plasticity of these transdifferentiated cells. To this end, neurally induced MSCs (NI-hMSCs) were exposed to adipocyte inducing factors. Grown for 24-48 h in fat induction media NI-hMSCs reversed their morphology into fibroblast-like cells and regained their proliferative properties. After 3 weeks approximately 6% of hMSCs differentiated into multilocular or plurivacuolar adipocyte cells that demonstrated by Oil Red O staining. Re-exposure of these cultures or the purified adipocytes to neural induction medium induced the cells to re-differentiate into neuronal-like cells. These data suggest that cell plasticity can be manipulated by the combination of small molecule modulators of chromatin modifying enzymes and specific cell signaling pathways.

  8. Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling

    PubMed Central

    2010-01-01

    Background Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE), although its function is still unknown. Results Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs) of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1)- and microtubule-associated protein (MAP)2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA) is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RAR)β without altering RARα or RARγ. In

  9. From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion.

    PubMed

    Trosko, James E

    2006-11-01

    Carcinogenesis is characterized by "initiation," "promotion," and "progression" phases. The "stem cell theory" and "de-differentiation" theories are used to explain the origin of cancer. Growth control for stem cells, which lack functional gap junctional intercellular communication (GJIC), involves negative soluble or niche factors, while for progenitor cells, it involves GJIC. Tumor promoters, hormones, and growth factors inhibit GJIC reversibly. Oncogenes stably inhibit GJIC. Cancer cells, which lack growth control and the ability to terminally differentiate and to apoptose, lack GJIC. The Oct3/4 gene, a POU (Pit-Oct-Unc) family of transcription factors was thought to be expressed only in embryonic stem cells and in tumor cells. With the availability of normal adult human stem cells, tests for the expression of Oct3/4 gene and the stem cell theory in human carcinogenesis became possible. Human breast, liver, pancreas, kidney, mesenchyme, and gastric stem cells, HeLa and MCF-7 cells, and canine tumors were tested with antibodies and polymerase chain reaction (PCR) primers for Oct3/4. Adult human breast stem cells, immortalized nontumorigenic and tumor cell lines, but not the normal differentiated cells, expressed Oct3/4. Adult human differentiated cells lose their Oct-4 expression. Oct3/4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that normal adult stem cells and cancer stem cells maintain expression of Oct3/4, consistent with the stem cell hypothesis of carcinogenesis. These Oct-4 positive cells might represent the "cancer stem cells." A strategy to target "cancer stem cells" is to suppress the Oct-4 gene in order to cause the cells to differentiate.

  10. Recent advances in amino acid production by microbial cells.

    PubMed

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  11. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1981-01-01

    The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.

  12. FUEL CELL ELECTRODES FOR ACID MEDIA

    DTIC Science & Technology

    fuel cell electrodes for acid media. Activated carbon electrodes were prepared, wetproofed with paraffin or Teflon, and catalyzed with platinum. The wetproofing agent was applied by immersion or electrodeposition and the catalyst applied by chemical decomposition of H2P+Cl6 solutions. Half cell studies with hydrogen anodes and oxygen (air) cathodes showed that electrochemical performance is essentially the same for paraffin and Teflontreated electrodes; however, the life of the Teflon-treated electrodes under equal conditions of load is greater than that for

  13. Properties of synthetic ferrihydrite as an amino acid adsorbent and a promoter of peptide bond formation.

    PubMed

    Matrajt, G; Blanot, D

    2004-03-01

    Ferrihydrite, an iron oxide hydroxide, is found in all kinds of environments, from hydrothermal hot springs to extraterrestrial materials. It has been shown that this material is nanoporous, and because of its high surface area, it has outstanding adsorption properties and in some cases catalysis properties. In this work we studied the adsorption properties of ferrihydrite with respect to amino acids. Samples of pure ferrihydrite were synthesised and exposed to solutions of amino acids including both proteinaceous and non-proteinaceous species. These experiments revealed important characteristics of this mineral as both an adsorbent of amino acids and a promoter of peptide bond formation.

  14. Expression of Beta-Defensin 131 Promotes an Innate Immune Response in Human Prostate Epithelial Cells.

    PubMed

    Kim, Jung Hoon; Kim, Kyeoung-Hwa; Kim, Hae Jong; Lee, Jaehyouk; Myung, Soon Chul

    2015-01-01

    Previously, using the Illumina HumanHT-12 microarray we found that β-defensin 131 (DEFB131), an antimicrobial peptide, is upregulated in the human prostate epithelial cell line RWPE-1 upon stimulation with lipoteichoic acid (LTA; a gram-positive bacterial component), than that in the untreated RWPE-1 cells. In the current study, we aimed to investigate the role of DEFB131 in RWPE-1 cells during bacterial infection. We examined the intracellular signaling pathways and nuclear responses in RWPE-1 cells that contribute to DEFB131 gene induction upon stimulation with LTA. Chromatin immunoprecipitation was performed to determine whether NF-κB directly binds to the DEFB131 promoter after LTA stimulation in RWPE-1 cells. We found that DEFB131 expression was induced by LTA stimulation through TLR2 and p38MAPK/NF-κB activation, which was evident in the phosphorylation of both p38MAPK and IκBα. We also found that SB203580 and Bay11-7082, inhibitors of p38MAPK and NF-κB, respectively, suppressed LTA-induced DEFB131 expression. The chromatin immunoprecipitation assay showed that NF-κB directly binds to the DEFB131 promoter, suggesting that NF-κB is a direct regulator, and is necessary for LTA-induced DEFB131 expression in RWPE-1 cells. Interestingly, with DEFB131 overexpression in RWPE-1 cells, the accumulation of mRNA and protein secretion of cytokines (IL-1α, IL-1β, IL-6, and IL-12α) and chemokines (CCL20, CCL22, and CXCL8) were significantly enhanced. In addition, DEFB131-transfected RWPE-1 cells markedly induced chemotactic activity in THP-1 monocytes. We concluded that DEFB131 induces cytokine and chemokine upregulation through the TLR2/NF-κB signaling pathway in RWPE-1 cells during bacterial infection and promotes an innate immune response.

  15. Expression of Beta-Defensin 131 Promotes an Innate Immune Response in Human Prostate Epithelial Cells

    PubMed Central

    Kim, Hae Jong; Lee, Jaehyouk; Myung, Soon Chul

    2015-01-01

    Previously, using the Illumina HumanHT-12 microarray we found that β-defensin 131 (DEFB131), an antimicrobial peptide, is upregulated in the human prostate epithelial cell line RWPE-1 upon stimulation with lipoteichoic acid (LTA; a gram-positive bacterial component), than that in the untreated RWPE-1 cells. In the current study, we aimed to investigate the role of DEFB131 in RWPE-1 cells during bacterial infection. We examined the intracellular signaling pathways and nuclear responses in RWPE-1 cells that contribute to DEFB131 gene induction upon stimulation with LTA. Chromatin immunoprecipitation was performed to determine whether NF-κB directly binds to the DEFB131 promoter after LTA stimulation in RWPE-1 cells. We found that DEFB131 expression was induced by LTA stimulation through TLR2 and p38MAPK/NF-κB activation, which was evident in the phosphorylation of both p38MAPK and IκBα. We also found that SB203580 and Bay11-7082, inhibitors of p38MAPK and NF-κB, respectively, suppressed LTA-induced DEFB131 expression. The chromatin immunoprecipitation assay showed that NF-κB directly binds to the DEFB131 promoter, suggesting that NF-κB is a direct regulator, and is necessary for LTA-induced DEFB131 expression in RWPE-1 cells. Interestingly, with DEFB131 overexpression in RWPE-1 cells, the accumulation of mRNA and protein secretion of cytokines (IL-1α, IL-1β, IL-6, and IL-12α) and chemokines (CCL20, CCL22, and CXCL8) were significantly enhanced. In addition, DEFB131-transfected RWPE-1 cells markedly induced chemotactic activity in THP-1 monocytes. We concluded that DEFB131 induces cytokine and chemokine upregulation through the TLR2/NF-κB signaling pathway in RWPE-1 cells during bacterial infection and promotes an innate immune response. PMID:26649771

  16. Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells.

    PubMed

    Morita, T; Takeda, K; Okumura, K

    1990-03-01

    Using Chinese hamster ovary K1 cells, chromosomal aberration tests were carried out with formic acid, acetic acid and lactic acid, and the relationship between the pH of the medium and the clastogenic activity was examined. The medium used was Ham's F12 supplemented with 17 mM NaHCO3 and 10% fetal calf serum. All of these acids induced chromosomal aberrations at the initial pH of ca. 6.0 or below (about 10-14 mM of each acid) both with and without S9 mix. Exposure of cells to about pH 5.7 or below (about 12-16 mM of each acid) was found to be toxic. When the culture medium was first acidified with each of these acids and then neutralized to pH 6.4 or pH 7.2 with NaOH, no clastogenic activity was observed. Using F12 medium supplemented with 34 mM NaHCO3 as a buffer, no clastogenic activity was observed at doses up to 25 mM of these acids (initial pH 5.8-6.0). However, it was found that about 10% of the cells had aberrations at pH 5.7 or below (27.5-32.5 mM of each acid). Furthermore, when 30 mM HEPES was used as a buffer, chromosomal aberrations were not induced at doses up to 20 mM formic acid and acetic acid (initial pH 7.0-7.1), and at doses up to 30 mM lactic acid (initial pH 6.6). In the initial pH range of 6.4-6.7 (25-32.5 mM of each acid), chromosomal aberrations were observed. The above results show that these acids themselves are non-clastogenic, and the pseudo-positive reactions attributable to non-physiological pH could be eliminated by either neutralization of the treatment medium or enhancement of the buffering ability.

  17. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  18. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    PubMed

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope.

  19. 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells.

    PubMed

    Chen, Li; Zhang, Lishan; Xian, Guozhe; Lv, Yinping; Lin, Yanliang; Wang, Yibing

    2017-03-18

    25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase in various organs and is involved in many processes, including lipid metabolism, inflammation and the immune response. However, the role of 25-HC in the migration and invasion of lung adenocarcinoma (ADC) cells remains largely unknown. In this study, we demonstrated that 0.1 μM 25-HC promoted ADC cell migration and invasion without affecting cell proliferation, especially after coculture with THP1-derived macrophages. Further investigation showed that 0.1 μM 25-HC significantly stimulated interleukin-1β (IL-1β) secretion in a coculture system and increased the expression of LXR and Snail. IL-1β also mimicked the effect of 25-HC. LXR knockdown notably blocked the 25-HC-induced Snail expression, migration and invasion in both the monoculture system and the coculture system, but it did not impact the effect of IL-1β, which suggested that IL-1β functioned in an LXR-independent manner. These results suggested that 25-HC promoted ADC cell migration and invasion in an LXR-dependent manner in the monoculture system but that in the coculture system, the 25-HC-induced IL-1β secretion enhanced the effect of 25-HC in an LXR-independent manner.

  20. Senescence from glioma stem cell differentiation promotes tumor growth

    PubMed Central

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs’ role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. PMID:26775840

  1. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent.

    PubMed

    Wu, Xue; Wang, Guixue; Tang, Chaojun; Zhang, Dechuan; Li, Zhenggong; Du, Dingyuan; Zhang, Zhengcai

    2011-09-01

    This study is designed to make a novel cell seeding stent and to evaluate reendothelialization and anti-restenosis after the stent implantation. In comparison with cell seeding stents utilized in previous studies, Mesenchymal stem cells (MSCs) have advantages on promoting of issue repair. Thus it was employed to improve the reendothelialization effects of endovascular stent in present work. MSCs were isolated by density gradient centrifugation and determined as CD29(+) CD44(+) CD34(-) cells by immunofluorescence and immunocytochemistry; gluten and polylysine coated stents were prepared by ultrasonic atomization spray, and MSCs seeded stents were made through rotation culture according to the optimized conditions that were determined in previous studies. The results from animal experiments, in which male New Zealand white rabbits were used, show that the reendothelialization of MSCs coated stents can be completed within one month; in comparison with 316L stainless steel stents (316L SS stents) and gluten and polylysine coated stents, the intimal hyperplasia and in-stent restenosis are significantly inhibited by MSCs coated stents. Endovascular stent seeded with MSCs promotes reendothelialization and inhibits the intimal hyperplasia and in-stent restenosis compared with the 316L SS stents and the gluten and polylysine coated stents.

  2. World wide IFC phosphoric acid fuel cell implementation

    SciTech Connect

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  3. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    SciTech Connect

    Feng, Ying; Yang, Shi-gao; Du, Xue-ting; Zhang, Xi; Sun, Xiao-xia; Zhao, Min; Sun, Gui-yuan; Liu, Rui-tian

    2009-12-25

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  4. Neural crest cell-derived VEGF promotes embryonic jaw extension

    PubMed Central

    Wiszniak, Sophie; Mackenzie, Francesca E.; Anderson, Peter; Kabbara, Samuela; Ruhrberg, Christiana; Schwarz, Quenten

    2015-01-01

    Jaw morphogenesis depends on the growth of Meckel’s cartilage during embryogenesis. However, the cell types and signals that promote chondrocyte proliferation for Meckel’s cartilage growth are poorly defined. Here we show that neural crest cells (NCCs) and their derivatives provide an essential source of the vascular endothelial growth factor (VEGF) to enhance jaw vascularization and stabilize the major mandibular artery. We further show in two independent mouse models that blood vessels promote Meckel’s cartilage extension. Coculture experiments of arterial tissue with NCCs or chondrocytes demonstrated that NCC-derived VEGF promotes blood vessel growth and that blood vessels secrete factors to instruct chondrocyte proliferation. Computed tomography and X-ray scans of patients with hemifacial microsomia also showed that jaw hypoplasia correlates with mandibular artery dysgenesis. We conclude that cranial NCCs and their derivatives provide an essential source of VEGF to support blood vessel growth in the developing jaw, which in turn is essential for normal chondrocyte proliferation, and therefore jaw extension. PMID:25922531

  5. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation.

    PubMed

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-02-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IkappaBalpha phosphorylation, which is necessary for nuclear factor kappaB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.

  6. Mannoproteins from Cryptococcus neoformans Promote Dendritic Cell Maturation and Activation

    PubMed Central

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-01-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IκBα phosphorylation, which is necessary for nuclear factor κB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi. PMID:15664921

  7. EBI2 augments Tfh cell fate by promoting interaction with IL2-quenching dendritic cells

    PubMed Central

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G.

    2016-01-01

    T follicular helper (Tfh) cells are a CD4 T cell subset that is important for supporting plasma cell and germinal center (GC) responses1,2. The initial induction of Tfh cell properties occurs within the first few days following activation by antigen recognition on dendritic cells (DCs), though how DCs promote this cell-fate decision is not fully understood1,2. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR51,2, the guidance receptor promoting the earlier localization of activated T cells at the B cell follicle–T zone interface has been unclear3–5. Here we show that the G-protein coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) mediate positioning of activated CD4 T cells at the follicle–T zone interface. In this location they interact with activated DCs and are exposed to Tfh cell-promoting ICOS ligand. IL2 is a cytokine that has multiple influences on T cell fate, including negative regulation of Tfh cell differentiation6–10. We demonstrate that activated DCs in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL2 receptor α chain, and quenching T cell-derived IL2. Mice lacking EBI2 in T cells or CD25 in DCs have reduced Tfh cells and mount defective T cell-dependent plasma cell and GC responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for DC-derived CD25 in controlling IL2 availability and T cell differentiation. PMID:27147029

  8. Phosphoric acid impurities in phosphoric acid fuel cell electrolytes. 2: Effects on the oxygen reduction reaction at platinum electrodes

    SciTech Connect

    Sugishima, Noboru; Hinatsu, J.T.; Foulkes, F.R. . Dept. of Chemical Engineering and Applied Chemistry)

    1994-12-01

    The effects of phosphorus acid additions on the oxygen reduction reaction at platinum electrodes in concentrated phosphoric acid were studied. The oxygen reduction currents decreased, and the Tafel slopes became more negative upon the addition of small concentrations of phosphorus acid. In addition,the phosphorus acid oxidation current tended to complete with the oxygen reduction current. These effects became more pronounced at higher phosphorus acid concentrations and at higher temperatures. Upon the addition of phosphorus acid the number of electrons involved in the oxygen reduction reaction decreased from a value close to four to a value approaching two, suggesting promotion of a two-electron reduction to peroxide. Therefore, in studies of the electrochemical reduction of oxygen in hot concentrated phosphoric acid or in fuel cell systems using hot concentrated phosphoric acid as electrolyte, it is recommended that precautions be taken against the inadvertent formation of the phosphorus acid. The removal of phosphorus acid from concentrated phosphoric acid by repeated potential cycling at 100 mV/s between + 0.5 and +1.50 V (vs. dynamic hydrogen electrode) was demonstrated.

  9. Biotin-Avidin Based Universal Cell-Matrix Interaction for Promoting Three-Dimensional Cell Adhesion.

    PubMed

    Dou, Xiao-Qiu; Zhang, Jia; Feng, Chuanliang

    2015-09-23

    To promote cell adhesion in three-dimensional (3D) extracellular matrix (ECM) is crucial for avoiding cell anoikis, which is one of the most important issues for fundamental cell biology. Herein, a biotin-avidin based universal cell-matrix interaction for different types of cells is developed in order to achieve the promoted adhesion in 3D ECM. For the purpose, biotinylated nanofibrous hydrogels are constructed by coassembling 1,4-benzyldicarboxamide (C2) based non-biotinylated and biotinylated supramolecular gelators. The used cells are modified by avidin (AV-cells) through biotinylating cells and then interacting with avidin. After in situ encapsulating AV-cells in the hydrogels, the adhered amount can be increased by tens of percent even with adding several percentages of the biotinylated C2 gelators in the coassembly due to the specific biotin-avidin interaction. Reverse transcription polymerase chain reaction (RT-PCR) confirms that AV-cells can proliferate without varying gene expression and denaturation. Compared with the interaction between RGD and cells, this avidin-biotin interaction should be much more universal and it is feasible to be employed to promote cell adhesion for most types of cells in 3D matrix.

  10. Specific binding of phorbol ester tumor promoters to intact primary epidermal cells from Sencar mice

    SciTech Connect

    Solanki, V.; Slaga, T.J.

    1981-04-01

    The binding of (20-/sup 3/H)phorbol 12,13-dibutyrate ((/sup 3/H)PDB) to intact living epidermal cells in monolayer culture was characterized. At 37/sup 0/C, the maximum specific (/sup 3/H)PDB binding (binding displaceable by 30 ..mu..M unlabeled PDB) was attained in 15 to 20 min and was followed by a rapid decrease (down regulation) of radioactivity bound to the cells. The activity lost by the cells during this decrease was found in the incubation medium. Prior exposure of cells to phorbol 12-myristate 13-acetate (PMA; 12-O-tetradecanoylphorbol 13-acetate) but not to phorbol for 2 h at 37/sup 0/C caused approx. 55% reduction in the number of measurable binding sites for (/sup 3/H)PDB. The down regulation was temperature sensitive; there was no loss of radioactivity after 1 h at 4/sup 0/C. The specific binding of (/sup 3/H)PDB at 4/sup 0/C reached equilibrium in 15 to 20 min and was saturable and freely reversible. At equilibrium, epidermal cells contained 1.2 x 10/sup 5/ binding sites per cell, and binding sites had a K/sub D/ of 10 nM. Specificity of binding was shown by the observation that the biologically active phorbol esters PMA and 12-deoxyphorbol 13-decanoate inhibited the binding, whereas the inactive parent compound phorbol and the nonphorbol tumor promoter anthralin did not have any effect. The abilities of these compounds to inhibit (/sup 3/H)PDB binding directly correlates with their tumor promoting activities. Epidermal cells exposed to retinoic acid or fluocinolone acetonide for 24 h had similar (/sup 3/H)PDB binding characteristics as untreated cells suggesting that inhibition of tumor promotion induced by these compounds is not mediated through alterations in the phorbol ester binding sites.

  11. Specific binding of phorbol ester tumor promoters to intact primary epidermal cells from Sencar mice.

    PubMed Central

    Solanki, V; Slaga, T J

    1981-01-01

    The binding of [20-3H]phorbol 12,13-dibutyrate ([3H]PDB) to intact living epidermal cells in monolayer culture was characterized. At 37 degrees C, the maximum specific [3H]PDB binding (binding displaceable by 30 microM unlabeled PDB) was attained in 15--20 min and was followed by a rapid decrease (down regulation) of radioactivity bound to the cells. The activity lost by the cells during this decrease was found in the incubation medium. Prior exposure of cells to phorbol 12-myristate 13-acetate (PMA; 12-O-tetradecanoylphorbol 13-acetate) but not to phorbol for 2 hr at 37 degrees C caused approximately 55% reduction in the number of measurable binding sites for [3H]PDB. The down regulation was temperature sensitive; there was no loss of radioactivity after 1 hr at 4 degrees C. The specific binding of [3H]PDB at 4 degrees C reached equilibrium in 15--20 min and was saturable and freely reversible. At equilibrium, epidermal cells contained 1.2 x 10(5) binding sites per cell, and binding sites had a KD of 10 nM. Specificity of binding was shown by the observation that the biologically active phorbol esters PMA and 12-deoxyphorbol 13-decanoate inhibited the binding, whereas the inactive parent compound phorbol and the nonphorbol tumor promoter anthralin did not have any effect. The abilities of these compounds to inhibit [3H]PDB binding directly correlates with their tumor promoting activities. Epidermal cells exposed to retinoic acid or fluocinolone acetonide for 24 hr had similar [3H]PDB binding characteristics as untreated cells suggesting that inhibition of tumor promotion induced by these compounds is not mediated through alterations in the phorbol ester binding sites. PMID:6941309

  12. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells.

    PubMed

    Berod, Luciana; Friedrich, Christin; Nandan, Amrita; Freitag, Jenny; Hagemann, Stefanie; Harmrolfs, Kirsten; Sandouk, Aline; Hesse, Christina; Castro, Carla N; Bähre, Heike; Tschirner, Sarah K; Gorinski, Nataliya; Gohmert, Melanie; Mayer, Christian T; Huehn, Jochen; Ponimaskin, Evgeni; Abraham, Wolf-Rainer; Müller, Rolf; Lochner, Matthias; Sparwasser, Tim

    2014-11-01

    Interleukin-17 (IL-17)-secreting T cells of the T helper 17 (TH17) lineage play a pathogenic role in multiple inflammatory and autoimmune conditions and thus represent a highly attractive target for therapeutic intervention. We report that inhibition of acetyl-CoA carboxylase 1 (ACC1) restrains the formation of human and mouse TH17 cells and promotes the development of anti-inflammatory Foxp3(+) regulatory T (Treg) cells. We show that TH17 cells, but not Treg cells, depend on ACC1-mediated de novo fatty acid synthesis and the underlying glycolytic-lipogenic metabolic pathway for their development. Although TH17 cells use this pathway to produce phospholipids for cellular membranes, Treg cells readily take up exogenous fatty acids for this purpose. Notably, pharmacologic inhibition or T cell-specific deletion of ACC1 not only blocks de novo fatty acid synthesis but also interferes with the metabolic flux of glucose-derived carbon via glycolysis and the tricarboxylic acid cycle. In vivo, treatment with the ACC-specific inhibitor soraphen A or T cell-specific deletion of ACC1 in mice attenuates TH17 cell-mediated autoimmune disease. Our results indicate fundamental differences between TH17 cells and Treg cells regarding their dependency on ACC1-mediated de novo fatty acid synthesis, which might be exploited as a new strategy for metabolic immune modulation of TH17 cell-mediated inflammatory diseases.

  13. Bidirectional Promoter Engineering for Single Cell MicroRNA Sensors in Embryonic Stem Cells.

    PubMed

    Sladitschek, Hanna L; Neveu, Pierre A

    2016-01-01

    MicroRNAs have emerged as important markers and regulators of cell identity. Precise measurements of cellular miRNA levels rely traditionally on RNA extraction and thus do not allow to follow miRNA expression dynamics at the level of single cells. Non-invasive miRNA sensors present an ideal solution but they critically depend on the performance of suitable ubiquitous promoters that reliably drive expression both in pluripotent and differentiated cell types. Here we describe the engineering of bidirectional promoters that drive the expression of precise ratiometric fluorescent miRNA sensors in single mouse embryonic stem cells (mESCs) and their differentiated derivatives. These promoters are based on combinations of the widely used CAG, EF1α and PGK promoters as well as the CMV and PGK enhancers. miR-142-3p, which is known to be bimodally expressed in mESCs, served as a model miRNA to gauge the precision of the sensors. The performance of the resulting miRNA sensors was assessed by flow cytometry in single stable transgenic mESCs undergoing self-renewal or differentiation. EF1α promoters arranged back-to-back failed to drive the robustly correlated expression of two transgenes. Back-to-back PGK promoters were shut down during mESC differentiation. However, we found that a back-to-back arrangement of CAG promoters with four CMV enhancers provided both robust expression in mESCs undergoing differentiation and the best signal-to-noise for measurement of miRNA activity in single cells among all the sensors we tested. Such a bidirectional promoter is therefore particularly well suited to study the dynamics of miRNA expression during cell fate transitions at the single cell level.

  14. A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells

    PubMed Central

    Sompallae, Ramakrishna; Hofmann, Oliver; Maher, Christopher A.; Gedye, Craig; Behren, Andreas; Vitezic, Morana; Daub, Carsten O.; Devalle, Sylvie; Caballero, Otavia L.; Carninci, Piero; Hayashizaki, Yoshihide; Lawlor, Elizabeth R.; Cebon, Jonathan; Hide, Winston

    2013-01-01

    PROM1 is the gene encoding prominin-1 or CD133, an important cell surface marker for the isolation of both normal and cancer stem cells. PROM1 transcripts initiate at a range of transcription start sites (TSS) associated with distinct tissue and cancer expression profiles. Using high resolution Cap Analysis of Gene Expression (CAGE) sequencing we characterize TSS utilization across a broad range of normal and developmental tissues. We identify a novel proximal promoter (P6) within CD133+ melanoma cell lines and stem cells. Additional exon array sampling finds P6 to be active in populations enriched for mesenchyme, neural stem cells and within CD133+ enriched Ewing sarcomas. The P6 promoter is enriched with respect to previously characterized PROM1 promoters for a HMGI/Y (HMGA1) family transcription factor binding site motif and exhibits different epigenetic modifications relative to the canonical promoter region of PROM1. PMID:24194746

  15. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis

    PubMed Central

    Zambirinis, Constantinos P.; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H.; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D.; Tuveson, David

    2015-01-01

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685

  16. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    PubMed

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis.

  17. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    PubMed

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N; Suga, Shigeru; Kobayashi, Tetsu; Fujisawa, Takao; Taguchi, Osamu; Gabazza, Esteban C

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  18. SIRT1 promotes metastasis of human osteosarcoma cells

    PubMed Central

    Zhang, Ning; Xie, Tao; Xian, Miao; Wang, Yi-Jie; Li, Heng-Yuan

    2016-01-01

    Pulmonary metastasis is the leading cause of mortality in patients with osteosarcoma; however, the underlying mechanism remains unclear. The NAD+-dependent deacetylase, sirtuin 1 (SIRT1), has been reported to play a key role in carcinogenesis through deacetylation of important regulatory proteins. Here, we report that SIRT1 promotes osteosarcoma metastasis by regulating the expression of metastatic-associated genes. The SIRT1 protein was significantly upregulated in most primary osteosarcoma tumours, compared with normal tissues, and the SIRT1 expression level may be coupled with metastatic risk in patients with osteosarcoma. Moreover, the results of cell migration and wound-healing assays further suggested that higher expression of SIRT1 promoted invasive activity of osteosarcoma cells. Importantly, downregulating SIRT1 with shRNA inhibited the migration ability of osteosarcoma cells in vitro and suppressed tumour lung metastasis in mice. Finally, a gene expression analysis showed that knockdown of SIRT1 profoundly activated translation of its downstream pathway, particularly at migration and invasion. In summary, high levels of SIRT1 may be a biomarker for a high metastatic rate in osteosarcoma patients; inhibiting SIRT1 could be a potent therapeutic intervention for these patients. PMID:27793039

  19. SIRT1 promotes metastasis of human osteosarcoma cells.

    PubMed

    Zhang, Ning; Xie, Tao; Xian, Miao; Wang, Yi-Jie; Li, Heng-Yuan; Ying, Mei-Dan; Ye, Zhao-Ming

    2016-11-29

    Pulmonary metastasis is the leading cause of mortality in patients with osteosarcoma; however, the underlying mechanism remains unclear. The NAD+-dependent deacetylase, sirtuin 1 (SIRT1), has been reported to play a key role in carcinogenesis through deacetylation of important regulatory proteins. Here, we report that SIRT1 promotes osteosarcoma metastasis by regulating the expression of metastatic-associated genes. The SIRT1 protein was significantly upregulated in most primary osteosarcoma tumours, compared with normal tissues, and the SIRT1 expression level may be coupled with metastatic risk in patients with osteosarcoma. Moreover, the results of cell migration and wound-healing assays further suggested that higher expression of SIRT1 promoted invasive activity of osteosarcoma cells. Importantly, downregulating SIRT1 with shRNA inhibited the migration ability of osteosarcoma cells in vitro and suppressed tumour lung metastasis in mice. Finally, a gene expression analysis showed that knockdown of SIRT1 profoundly activated translation of its downstream pathway, particularly at migration and invasion. In summary, high levels of SIRT1 may be a biomarker for a high metastatic rate in osteosarcoma patients; inhibiting SIRT1 could be a potent therapeutic intervention for these patients.

  20. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.

    PubMed

    Lindemans, Caroline A; Calafiore, Marco; Mertelsmann, Anna M; O'Connor, Margaret H; Dudakov, Jarrod A; Jenq, Robert R; Velardi, Enrico; Young, Lauren F; Smith, Odette M; Lawrence, Gillian; Ivanov, Juliet A; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L; O'Rourke, Kevin P; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas E; Nieuwenhuis, Edward E; Shroyer, Noah F; Liu, Chen; Kolesnick, Richard; van den Brink, Marcel R M; Hanash, Alan M

    2015-12-24

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.

  1. Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Xu, Xianju; Liang, Jinfeng; Chi, Bo; Xu, Hong

    2014-07-01

    Plant growth can reportedly be promoted by poly(γ-glutamic acid) (γ-PGA). However, the underlying mechanism is unknown. To reveal the mechanism of γ-PGA, we designed an experiment that investigated the effect of γ-PGA on the nitrogen metabolism of Chinese cabbage hydroponic cultured at different calcium (Ca) levels and varied exogenous Ca(2+) inhibitors. The results showed that nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase, and glutamate dehydrogenase activities in leaves and roots were obviously enhanced by γ-PGA at the normal Ca(2+) level (4.0 mM). Meanwhile, γ-PGA increased the content of total nitrogen, soluble protein, and soluble amino acids in leaves. However, the promotional effect of γ-PGA on fresh weight weakened when Ca(2+) was inadequate. Moreover, γ-PGA not only induced the influx of extracellular Ca(2+) and Ca(2+) in organelles into cytoplasm, but also increased the Ca(2+)-ATPase level to modify Ca(2+) homeostasis in plant cells. In addition, exogenous Ca(2+) inhibitors significantly suppressed the γ-PGA-mediated promotion of cytoplasmic free Ca(2+) level, calmodulin (CaM) content, GS and glutamate dehydrogenase activities. In summary, γ-PGA accelerated the nitrogen metabolism of plants through the Ca(2+)/CaM signaling pathway, thereby improving the growth of the plant.

  2. Evaluation of organic acids as fuel cell electrolytes

    SciTech Connect

    Ahmad, J.; Nguyen, T.H.; Foley, R.T.

    1981-11-01

    The electrochemical behavior of methanesulfonic acid, ethanesulfonic acid, and sulfoacetic acid as fuel cell electrolytes was studied in half-cell at various temperatures. The rate of the electro-oxidation of hydrogen at 115/degree/C was very high in methanesulfonic acid. The rate of the electro-oxidation of propane in all three acids was low even at 135/degree/C. Further, there is evidence for adsorption of these acids on the platinum electrode. It is concluded that anhydrous sulfonic acids are not good electrolytes; water solutions are required. Sulfonic acids containing unprotected carbon-hydrogen bonds are adsorbed on platinum and probably decompose during electrolysis. 9 refs.

  3. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  4. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  5. Somatic cell encystment promotes abscission in germline stem cells following a regulated block in cytokinesis.

    PubMed

    Lenhart, Kari F; DiNardo, Stephen

    2015-07-27

    In many tissues, the stem cell niche must coordinate behavior across multiple stem cell lineages. How this is achieved is largely unknown. We have identified delayed completion of cytokinesis in germline stem cells (GSCs) as a mechanism that regulates the production of stem cell daughters in the Drosophila testis. Through live imaging, we show that a secondary F-actin ring is formed through regulation of Cofilin activity to block cytokinesis progress after contractile ring disassembly. The duration of this block is controlled by Aurora B kinase. Additionally, we have identified a requirement for somatic cell encystment of the germline in promoting GSC abscission. We suggest that this non-autonomous role promotes coordination between stem cell lineages. These findings reveal the mechanisms by which cytokinesis is inhibited and reinitiated in GSCs and why such complex regulation exists within the stem cell niche.

  6. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  7. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation.

    PubMed

    Gustafsson Sheppard, Nina; Jarl, Lisa; Mahadessian, Diana; Strittmatter, Laura; Schmidt, Angelika; Madhusudan, Nikhil; Tegnér, Jesper; Lundberg, Emma K; Asplund, Anna; Jain, Mohit; Nilsson, Roland

    2015-10-13

    Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism.

  8. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation

    PubMed Central

    Gustafsson Sheppard, Nina; Jarl, Lisa; Mahadessian, Diana; Strittmatter, Laura; Schmidt, Angelika; Madhusudan, Nikhil; Tegnér, Jesper; Lundberg, Emma K.; Asplund, Anna; Jain, Mohit; Nilsson, Roland

    2015-01-01

    Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism. PMID:26461067

  9. Live-cell Imaging of Pol II Promoter Activity to Monitor Gene expression with RNA IMAGEtag reporters

    SciTech Connect

    Shin, Ilchung; Ray, Judhajeet; Gupta, Vinayak; Ilgu, Muslum; Beasley, Jonathan; Bendickson, Lee; Mehanovic, Samir; Kraus, George A.; Nilsen-Hamilton, Marit

    2014-04-20

    We describe a ribonucleic acid (RNA) reporter system for live-cell imaging of gene expression to detect changes in polymerase II activity on individual promoters in individual cells. The reporters use strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags) that can be expressed from a promoter of choice. For imaging, the cells are incubated with their ligands that are separately conjugated with one of the FRET pair, Cy3 and Cy5. The IMAGEtags were expressed in yeast from the GAL1, ADH1 or ACT1 promoters. Transcription from all three promoters was imaged in live cells and transcriptional increases from the GAL1 promoter were observed with time after adding galactose. Expression of the IMAGEtags did not affect cell proliferation or endogenous gene expression. Advantages of this method are that no foreign proteins are produced in the cells that could be toxic or otherwise influence the cellular response as they accumulate, the IMAGEtags are short lived and oxygen is not required to generate their signals. The IMAGEtag RNA reporter system provides a means of tracking changes in transcriptional activity in live cells and in real time.

  10. Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation.

    PubMed

    Li, Ling; Qin, Jun; Feng, Qiang; Tang, Hao; Liu, Rong; Xu, Liqing; Chen, Zhinan

    2011-01-01

    While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO-TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P < 0.001). Heparin also exhibited a cell aggregation elimination role at all concentrations (P < 0.001). Furthermore, heparin promoted cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 10(4) cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P < 0.001) both occurring at 250 μg/ml heparin. When agitated, cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO-TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.

  11. Hydrogel Surfaces to Promote Attachment and Spreading of Endothelial Progenitor Cells

    PubMed Central

    Camci-Unal, Gulden; Nichol, Jason William; Bae, Hojae; Tekin, Halil; Bischoff, Joyce; Khademhosseini, Ali

    2011-01-01

    Endothelialization of artificial vascular grafts is a challenging process in cardiovascular tissue engineering. Functionalized biomaterials could be promising candidates to promote endothelialization in repair of cardiovascular injuries. The purpose of this study was to synthesize hyaluronic acid (HA) and heparin based hydrogels that could promote adhesion and spreading of endothelial progenitor cells (EPCs). We report that the addition of heparin into HA-based hydrogels provides an attractive surface for EPCs promoting spreading and the formation of an endothelial monolayer on the hydrogel surface. To increase EPC adhesion and spreading, we covalently immobilized CD34 antibody (Ab) on HA-heparin hydrogels using standard EDC/NHS amine coupling strategies. We found that EPC adhesion and spreading on CD34 Ab immobilized HA-heparin hydrogels was significantly higher than their nonmodified analogs. Once adhered, EPCs spread and formed an endothelial layer on both nonmodified and CD34 Ab modified HA-heparin hydrogels after 3 days of culture. We did not observe significant adhesion and spreading when heparin was not included in the control hydrogels. In addition to EPCs, we also used human umbilical cord vein endothelial cells (HUVECs), which adhered and spread on HA-heparin hydrogels. Macrophages exhibited significantly less adhesion compared to EPCs on the same hydrogels. This composite material could possibly be used to develop surface coatings for artificial cardiovascular implants, due to its specificity for EPC and endothelial cells on an otherwise non-thrombogenic surface. PMID:22223475

  12. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain.

    PubMed

    Ryu, Sun; Lee, Seung-Hoon; Kim, Seung U; Yoon, Byung-Woo

    2016-02-01

    Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2'-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen NeuN, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2'-deoxyuridine-positive ⁄ anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke.

  13. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells

    PubMed Central

    Pérez-Escuredo, Jhudit; Dadhich, Rajesh K; Dhup, Suveera; Cacace, Andrea; Van Hée, Vincent F; De Saedeleer, Christophe J; Sboarina, Martina; Rodriguez, Fabien; Fontenille, Marie-Joséphine; Brisson, Lucie; Porporato, Paolo E; Sonveaux, Pierre

    2016-01-01

    ABSTRACT Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning the relationship between oxidative lactate metabolism and glutamine metabolism. Using SiHa and HeLa human cancer cells, this study reports that intracellular lactate signaling promotes glutamine uptake and metabolism in oxidative cancer cells. It depends on the uptake of extracellular lactate by monocarboxylate transporter 1 (MCT1). Lactate first stabilizes hypoxia-inducible factor-2α (HIF-2α), and HIF-2α then transactivates c-Myc in a pathway that mimics a response to hypoxia. Consequently, lactate-induced c-Myc activation triggers the expression of glutamine transporter ASCT2 and of glutaminase 1 (GLS1), resulting in improved glutamine uptake and catabolism. Elucidation of this metabolic dependence could be of therapeutic interest. First, inhibitors of lactate uptake targeting MCT1 are currently entering clinical trials. They have the potential to indirectly repress glutaminolysis. Second, in oxidative cancer cells, resistance to glutaminolysis inhibition could arise from compensation by oxidative lactate metabolism and increased lactate signaling. PMID:26636483

  14. PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth

    PubMed Central

    Montal, Emily; Dewi, Ruby; Bhalla, Kavita; Ou, Lihui; Hwang, Bor Jang; Ropell, Ashley; Gordon, Chris; Liu, Wan-Ju; DeBerardinis, Ralph J.; Sudderth, Jessica; Twaddel, William; Boros, Lazlo; Shroyer, Kenneth; Duraisamy, Sekhar; Drapkin, Ronny; Powers, R. Scott; Rohde, Jason M.; Boxer, Matthew B.; Wong, Kwok-Kin; Girnun, Geoffrey D

    2015-01-01

    Summary Phosphoenolpyruvate carboxykinase (PEPCK) is well known for its role in gluconeogenesis. However, PEPCK is also a key regulator of TCA cycle flux. The TCA cycle integrates glucose, amino acid and lipid metabolism depending on cellular needs. In addition, biosynthetic pathways crucial to tumor growth require the TCA cycle for the processing of glucose and glutamine derived carbons. We show here an unexpected role for PEPCK in promoting cancer cell proliferation in vitro and in vivo by increasing glucose and glutamine utilization toward anabolic metabolism. Unexpectedly, PEPCK also increased the synthesis of ribose from non-carbohydrate sources, such as glutamine, a phenomenon not previously described. Finally, we show that the effects of PEPCK on glucose metabolism and cell proliferation are in part mediated via activation of mTORC1. Taken together, these data demonstrate a role for PEPCK that links metabolic flux and anabolic pathways to cancer cell proliferation. PMID:26481663

  15. Clomipramine causes osteoporosis by promoting osteoclastogenesis via E3 ligase Itch, which is prevented by Zoledronic acid

    PubMed Central

    Li, Xing; Sun, Wen; Li, Jinbo; Wang, Mengmeng; Zhang, Hengwei; Pei, Lingpeng; Boyce, Brendan F.; Wang, Zhiyu; Xing, Lianping

    2017-01-01

    Patients taking antidepressants, including Clomipramine (CLP), have an increased risk of osteoporotic fracture. However, the effects of CLP on bone metabolism are unknown. Here, we demonstrate that WT mice treated with CLP for 2 weeks had significantly reduced trabecular bone volume and cortical bone thickness, associated with increased osteoclast (OC) numbers, but had no change in osteoblast numbers or bone formation rate. Bone marrow cells from CLP-treated mice had normal OC precursor frequency, but formed significantly more OCs when they were cultured with RANKL and M-CSF. CLP promoted OC formation and bone resorption and expression of OC-associated genes. CLP-induced bone loss was prevented by Zoledronic acid. At the molecular level, CLP inhibited the activity of the ubiquitin E3 ligase Itch. CLP did not promote OC formation from bone marrow cells of Itch−/− mice in vitro nor induce bone loss in Itch−/− mice. Our findings indicate that CLP causes bone loss by enhancing Itch-mediated osteoclastogenesis, which was prevented by Zoledronic acid. Thus, anti-resorptive therapy could be used to prevent bone loss in patients taking antidepressants, such as CLP. PMID:28145497

  16. Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway.

    PubMed

    Mishra, Sudha; Vinayak, Manjula

    2013-02-01

    Protein Kinase C (PKC) isozymes are key components involved in cell proliferation and their over activation leads to abnormal tumor growth. PKC follows signalling pathway by activation of downstream gene NF-kB and early transcription factor c-Myc. Over activation of NF-kB and c-Myc gene are also linked with unregulated proliferation of cancer cells. Therefore any agent which can inhibit the activation of Protein kinase C, NF-kB and c-Myc may be useful in reducing cancer progression. To investigate this hypothesis we have tested the effect of ellagic acid on these genes in Dalton's lymphoma bearing (DL). The role of ellagic acid was also tested in regulation of tumor suppressor gene Transforming growth factor-β1 (TGF-β1). DL mice were treated with three different doses (40, 60 and 80 mg/kg body weight) of ellagic acid. Ascites cells of mice were used for the experiments. Ellagic acid administration to DL mice decreased oxidative stress by reducing lipid peroxidation. Ellagic acid also down regulates the expression of classical isozymes of PKC i.e. PKCα, PKCβ, and PKCγ as well as activity of total PKC and NF-kB, indicating its antitumor action. The anticarcinogenic action of ellagic acid was also confirmed by up regulation of TGF-β1 and down regulation of c-Myc. Lymphoma prevention by ellagic acid is further supported by decrease in cell proliferation, cell viability, ascites fluid accumulation and increase in life span of DL mice. All these findings suggest that ellagic acid prevents the cancer progression by down regulation of PKC signaling pathway leading to cell proliferation.

  17. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    PubMed

    Huang, Yan; Das, Arun Kr; Yang, Qi-Yuan; Zhu, Mei-Jun; Du, Min

    2012-01-01

    Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis

  18. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid.

    PubMed

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina

    2014-11-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.

  19. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  20. Polysialic acid in human neuroblastoma cells

    SciTech Connect

    Livingston, B.D.; Jacobs, J.; Shaw, G.W.; Glick, M.C.; Troy, F.A.

    1987-05-01

    Prokaryotic-derived probes that specifically detect ..cap alpha..-2,8-linked polysialic acid (PSA) units on embryonic neural cell adhesion molecules (N-CAM) were used to show that membrane glycoproteins (GPs) from metastatic human neuroblastoma cells (CHP-134) also contain these unique carbohydrate moieties. This conclusion was based on the following evidence: (1) membranes from CHP-134 cells served as an exogenous acceptor of (/sup 14/C)NeuNAc units in an E. coli K1 sialyltransferase (ST) assay. The bacterial ST is specific for the transfer of (/sup 14/C)NeuNAc to exogenous acceptors containing at least 3 sialyl units (DP3); (2) in SDS-PAGE, the (/sup 14/C)NeuNAc-labeled CHP-134 membranes showed a major peak of radioactivity that was polydisperse. N-CAM shows a similar Mr heterogeneity; (3) treatment of the high Mr CHP-134 product with Endo-N-acetylneuraminidase (Endo-N) released the (/sup 14/C)NeuNAc label as a DP4. Endo-N is specific for hydrolysing ..cap alpha..-2,8-linked PSA chains containing a minimum of 5 sialyl residues; (4) treatment of the DP4 with sialidase converted the label to (/sup 14/C)NeuNAc, thus proving the tetramer contained sialic acid; (5) CHP-134 cells were labeled in vivo with (/sup 3/H)GlcN. A glycopeptide fraction representing ca. 1% of the (/sup 3/H)GlcN incorporated was isolated. Based on Endo-N sensitivity, this glycopeptide contained at least 15-20% of the (/sup 3/H)GlcN label as PSA. Endo-N digestion of the (/sup 3/H)-labeled glycopeptide released (/sup 3/H)-DP4. These results suggest that the surface expression of PSA-containing GPs may be important in neuroblastoma metastasis.

  1. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    PubMed

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches.

  2. Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells.

    PubMed

    Zhang, Lian-Jun; Chen, Bo; Feng, Xin-Lei; Ma, Hua-Gang; Sun, Li-Lan; Feng, Yan-Min; Liang, Gui-Jin; Cheng, Shun-Feng; Li, Lan; Shen, Wei

    2015-01-01

    In mammals, ontogenesis starts from a fusion of spermatozoon and oocyte, which are produced by reductive nuclear division of a diploid germ cell in a specialised but complex biological process known as meiosis. However, little is known about the mechanism of meiotic initiation in germ cells, although many factors may be responsible for meiosis both in male and female gonads. In this study, 11.5 days post coitum (dpc) female fetal mouse genital ridges were cultured in vitro with exposure to Brefeldin A (BFA) for 6h, and the changes in meiosis were detected. Synaptonemal-complex analysis implied that BFA played a positive role in meiosis initiation and this hypothesis was confirmed by quantitative PCR of meiosis-specific genes: stimulated by retinoic acid gene 8 (Stra8) and deleted in a zoospermia-like (DAZL). At the same time, mRNA expression of retinoic acid synthetase (Raldh2) and retinoic acid (RA) receptors increased in female gonads with in vitro exposure to BFA. Transplanting genital ridges treated with BFA into the kidney capsule of immunodeficient mice demonstrated that the development capacity of female germ cells was normal, while formation of primordial follicles was seen to be a result of accelerated meiosis after exposure to BFA. In conclusion, the study indicated that BFA stimulated meiosis initiation partly by RA signalling and then promoted the development of follicles.

  3. Aminochlorination in water: first Brønsted acid-promoted synthesis of vicinal chloramines.

    PubMed

    Wu, Xue-Liang; Wang, Guan-Wu

    2007-11-23

    A practical and scaleable route for the regio- and diastereoselective synthesis of vicinal chloramines from electron-deficient olefins and Chloramine-T promoted by Brønsted acids in water has been realized for the first time. This novel protocol is efficient, mild, ecofriendly, and broadly applicable for the aminochlorination of various electron-deficient olefins including alpha,beta-unsaturated ketones, cinnamate, and cinnamide. Water represents as a privileged solvent for the aminochlorination reaction in our system.

  4. Aberrant LPL Expression, Driven by STAT3, Mediates Free Fatty Acid Metabolism in CLL Cells

    PubMed Central

    Rozovski, Uri; Grgurevic, Srdana; Bueso-Ramos, Carlos; Harris, David M.; Li, Ping; Liu, Zhiming; Wu, Ji Yuan; Jain, Preetesh; Wierda, William; Burger, Jan; O’Brien, Susan; Jain, Nitin; Ferrajoli, Alessandra; Keating, Michael J.; Estrov, Zeev

    2015-01-01

    While reviewing chronic lymphocytic leukemia (CLL) bone marrow slides we identified cytoplasmic lipid vacuoles in CLL cells but not in normal B cells. Because lipoprotein lipase (LPL), which catalyzes hydrolysis of triglycerides into free fatty acids (FFAs), is aberrantly expressed in CLL, we investigated whether LPL regulates the oxidative metabolic capacity of CLL cells. We found that unlike normal B cells, CLL cells metabolize FFAs. Because STAT3 is constitutively activated in CLL cells and because we identified putative STAT3 binding sites in the LPL promoter, we sought to determine whether STAT3 drives the aberrant expression of LPL. Transfection of luciferase reporter gene constructs driven by LPL promoter fragments into MM1 cells revealed that STAT3 activates the LPL promoter. In addition, chromatin immunoprecipitation (ChIP) confirmed that STAT3 binds to the LPL promoter. Furthermore, transfection of CLL cells with STAT3-shRNA downregulated LPL transcripts and protein levels, confirming that STAT3 activates the LPL gene. Finally, transfection of CLL cells with LPL-siRNAs decreased the capacity of CLL cells to oxidize FFAs and reduced cell viability. PMID:25733697

  5. Induction of phenolsulfotransferase expression by phenolic acids in human hepatoma HepG2 cells.

    PubMed

    Yeh, Chi-Tai; Huang, Shang-Ming; Yen, Gow-Chin

    2005-06-15

    Phenolic acids are antioxidant phenolic compounds, widespread in plant foods, which contribute significant biological and pharmacological properties; some have demonstrated a remarkable ability to alter sulfate conjugation. However, the modulation mechanisms of antioxidant phenolic acids on phenolsulfotransferase activity have not yet been described. In the present study, the human hepatoma cell line, HepG2, was used as a model to investigate the effect of antioxidant phenolic acids on enzymatic activity and expression of one of the major phase II sulfate conjugation enzymes, P-form phenolsulfotransferase (PST-P). The results showed that gallic acid, gentisic acid, p-hydroxybenzoic acid, and p-coumaric acid increased PST-P activity, in a dose-dependent manner. A maximum of 4- and 5-fold induction of PST-P activity was observed for both gallic acid and gentisic acid; however, they showed an adverse effect on cell growth at higher concentrations. A 2- or 2.5-fold increase of PST-P activity was found with either p-coumaric or p-hydroxybenzoic acid treatment, whereas no significant effect was found for ferulic acid treatment. PST-P induction, by gallic acid, was further confirmed, using reverse transcription PCR and Western blotting techniques to measure mRNA expression and protein translation. A significant correlation (r = 0.74, p < 0.01) between the expressions of PST-P mRNA and the corresponding PST-P activity was observed. Thus, gallic acid increased PST-P protein expression in HepG2 cells, in a dose- and time-dependent manner. The results demonstrated that certain antioxidant phenolic acids could induce PST-P activity in HepG2 cells, by promoting PST-P mRNA and protein expression, suggesting a novel mechanism by which phenolic acids may be implicated in phase II sulfate conjugation.

  6. New applications for phosphoric acid fuel cells

    SciTech Connect

    Stickles, R.P.; Breuer, C.T.

    1983-11-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on-site total energy systems, industrial co-generation, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting is power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  7. New applications for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Breuer, C. T.

    1983-01-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  8. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance

    PubMed Central

    Soroosh, Pejman; Doherty, Taylor A.; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H.

    2013-01-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3+ iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3+ Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma. PMID:23547101

  9. Halofuginone promotes satellite cell activation and survival in muscular dystrophies.

    PubMed

    Barzilai-Tutsch, Hila; Bodanovsky, Anna; Maimon, Hadar; Pines, Mark; Halevy, Orna

    2016-01-01

    Halofuginone is a leading agent in preventing fibrosis and inflammation in various muscular dystrophies. We hypothesized that in addition to these actions, halofuginone directly promotes the cell-cycle events of satellite cells in the mdx and dysf(-/-) mouse models of early-onset Duchenne muscular dystrophy and late-onset dysferlinopathy, respectively. In both models, addition of halofuginone to freshly prepared single gastrocnemius myofibers derived from 6-week-old mice increased BrdU incorporation at as early as 18h of incubation, as well as phospho-histone H3 (PHH3) and MyoD protein expression in the attached satellite cells, while having no apparent effect on myofibers derived from wild-type mice. BrdU incorporation was abolished by an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated protein kinase, suggesting involvement of this pathway in mediating halofuginone's effects on cell-cycle events. In cultures of myofibers and myoblasts isolated from dysf(-/-) mice, halofuginone reduced Bax and induced Bcl2 expression levels and induced Akt phosphorylation in a time-dependent manner. Addition of an inhibitor of the phosphinositide-3-kinase/Akt pathway reversed the halofuginone-induced cell survival, suggesting this pathway's involvement in mediating halofuginone's effects on survival. Thus, in addition to its known role in inhibiting fibrosis and inflammation, halofuginone plays a direct role in satellite cell activity and survival in muscular dystrophies, regardless of the mutation. These actions are of the utmost importance for improving muscle pathology and function in muscular dystrophies.

  10. Liver cyst cytokines promote endothelial cell proliferation and development.

    PubMed

    Brodsky, Kelley S; McWilliams, Ryan R; Amura, Claudia R; Barry, Nicholas P; Doctor, R Brian

    2009-10-01

    Autosomal dominant polycystic kidney (ADPKD) is highly prevalent genetic disease. Liver cyst disease is the most common extrarenal manifestation in ADPKD and accounts for up to 10% of ADPKD morbidity and mortality. The clinical features of ADPKD liver disease arise from dramatic increases in liver cyst volumes. To identify mechanisms that promote liver cyst growth, the present study characterized the degree of vascularization of liver cyst walls and determined that cyst-specific cytokines and growth factors can drive endothelial cell proliferation and development. Microscopic techniques demonstrated liver cyst walls are well vascularized. A comparative analysis found the vascular density in free liver cyst walls was greater in mice than in humans. Treatment of human micro-vascular endothelial cells (HMEC-1) with human liver cyst fluid (huLCF) induced a rapid increase in vascular endothelium growth factor receptor 2 (VEGFR2) phosphorylation that persisted for 45-60 min and was blocked by 20 microM SU5416, a VEGFR tyrosine kinase inhibitor. Similarly, huLCF treatment of HMEC-1 cells induced an increase in the cell proliferation rate (131 +/- 6% of control levels; P > 0.05) and the degree of vascular development ('tube' diameter assay: 92 +/- 14 microm for huLCF vs. 12 +/- 7 microm for vehicle); P > 0.05). Both cell proliferation and vascular development were sensitive to SU5416. These studies indicate that factors secreted by liver cyst epithelia can activate VEGF signaling pathways and induce endothelial cell proliferation and differentiation. The present studies suggest that targeting VEGFR2-dependent angiogenesis may be an effective therapeutic strategy in blocking ADPKD liver cyst vascularization and growth.

  11. Thymic B cells promote thymus-derived regulatory T cell development and proliferation.

    PubMed

    Lu, Fang-Ting; Yang, Wei; Wang, Yin-Hu; Ma, Hong-Di; Tang, Wei; Yang, Jing-Bo; Li, Liang; Ansari, Aftab A; Lian, Zhe-Xiong

    2015-07-01

    Thymic CD4(+) FoxP3(+) regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell-cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3(+) Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells.

  12. Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo.

    PubMed

    Schultz, Chad; Lemke, Nancy; Ge, Shugang; Golembieski, William A; Rempel, Sandra A

    2002-11-01

    Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human astrocytomas, grades II-IV. We demonstrated previously that SPARC promotes invasion in vitro using the U87MG-derived clone U87T2 and U87T2-derived SPARC-transfected clones, A2b2, A2bi, and C2a4, in the spheroid confrontation assay. Additional in vitro studies demonstrated that SPARC delays growth, increases attachment, and modulates migration of tumor cells in extracellular matrix-specific and concentration-dependent manners. Therefore, we propose that SPARC functionally contributes to brain tumor invasion and delays tumor growth in vivo, and that the effects of SPARC are related to the level of SPARC secreted into the extracellular matrix. To test these hypotheses, we stereotactically injected these clones into nude rat brains (six animals were injected per clone). Animals were sacrificed on day 7 to assess growth and invasion for all clones at the same time in tumor development. To determine whether SPARC delayed but did not inhibit growth, rats were injected with U87T2 or clone A2b2, and the animals were sacrificed on days 9 (U87T2) and 20 (A2b2), when the animals demonstrated neurological deficit. Brains were removed, fixed, photographed, paraffin embedded, and sectioned. Sections were then serially stained with H&E for morphological assessment of invasion and to measure tumor volume, immunohistochemically stained to visualize SPARC, subjected to in situ hybridization with the human AluII DNA-binding probe to identify human cells, and immunohistochemically stained with MIB-1 to measure proliferation index. The results demonstrate that SPARC promotes invasion in vivo at day 7. Both the low (A2bi) and the high (A2b2) SPARC-secreting clones produced invasive tumors, invading with fingerlike projections and satellite masses into adjacent brain, as well as along the corpus collosum. The intermediate SPARC secreting clone (C2a4) primarily migrated as a bulk tumor along the corpus

  13. Delayed apoptosis allows islet β-cells to implement an autophagic mechanism to promote cell survival

    PubMed Central

    Hayes, Heather L.; Peterson, Brett S.; Haldeman, Jonathan M.; Newgard, Christopher B.; Hohmeier, Hans E.

    2017-01-01

    Increased β-cell death coupled with the inability to replicate existing β-cells drives the decline in β-cell mass observed in the progression of both major forms of diabetes. Understanding endogenous mechanisms of islet cell survival could have considerable value for the development of novel strategies to limit β-cell loss and thereby promote β-cell recovery. Insulinoma cells have provided useful insight into β-cell death pathways but observations made in cell lines sometimes fail to translate to primary islets. Here, we report dramatic differences in the temporal regulation and engagement of the apoptotic program in primary rodent islets relative to the INS-1 derived 832/13 cell line. As expected, 832/13 cells rapidly induced cell stress markers in response to ER stress or DNA damage and were fully committed to apoptosis, resulting in >80% cell death within 24 h. In contrast, primary rat islets were largely refractory to cell death in response to ER stress and DNA damage, despite rapid induction of stress markers, such as XBP-1(s), CHOP, and PUMA. Gene expression profiling revealed a general suppression of pro-apoptotic machinery, such as Apaf-1 and caspase 3, and sustained levels of pro-survival factors, such as cIAP-1, cIAP-2, and XIAP, in rat islets. Furthermore, we observed sustained induction of autophagy following chronic ER stress and found that inhibition of autophagy rendered islet β-cells highly vulnerable to ER stress-induced cell death. We propose that islet β-cells dampen the apoptotic response to delay the onset of cell death, providing a temporal window in which autophagy can be activated to limit cellular damage and promote survival. PMID:28212395

  14. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    PubMed

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  15. GABA A receptor π subunit promotes apoptosis of HTR-8/SVneo trophoblastic cells: Implications in preeclampsia.

    PubMed

    Lu, Junjie; Zhang, Qian; Tan, Dongmei; Luo, Wenping; Zhao, Hai; Ma, Jing; Liang, Hao; Tan, Yi

    2016-07-01

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter through its receptors in the mature central nervous system. The GABA type A receptor π subunit (GABRP) has been identified in the tissues of the reproductive system, particularly in the uterus. In addition, we have previously detected GABRP expression in both human and mouse placentas. To examine the role of GABRP in trophoblastic cell invasion, we constructed a pIRES2-GABRP-EGFP plasmid which was used for the transfection of a human placental cell line derived from first trimester extravillous trophoblasts (HTR-8/SVneo). The number of invaded cells was decreased by GABRP overexpression. Notably, the decrease in the invasive cell number may be due to the increased apoptosis of the HTR-8/SVneo cells following GABRP transfection, which was further confirmed by flow cytometry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Based on the increased apoptosis of trophoblastic cells in pregnancies complicated by preeclampsia (PE) and the fact that GABRP promotes the apoptosis of trophoblastic cells, we hypothesized that GABRP expression is increased in the placental tissues from patients with PE compared with that in the normal groups and this hypothesis was confirmed by RT-qPCR and immunohistochemical analysis. Taken together, these findings imply that GABRP plays an important role in placentation and this pathway may be a promising molecular target for the development of novel therapeutic strategies for PE.

  16. Deoxyribonucleic acid sequence of araBAD promoter mutants of Escherichia coli.

    PubMed

    Horwitz, A H; Morandi, C; Wilcox, G

    1980-05-01

    The controlling site region for the araBAD operon is defined, in part, by two classes of cis-acting constitutive mutations. The aralc mutations allow low-level constitutive expression of ara-BAD in the absence of the positive regulatory protein coded for by the araC gene, whereas the araXc mutations allow expression of araBAD in the absence of the cyclic adenosine monophosphate receptor protein. Six independently isolated aralc mutations and three independently isolated araXc mutations were cloned onto the plasmid pBR322 using in vitro recombinant deoxyribonucleic acid techniques and in vivo recombination between plasmid and chromosomal deoxyribonucleic acid. The location of these mutations was determined by deoxyribonucleic acid sequence analysis. All of the aralc mutations occurred at position -35 within the araBAD promoter (+1 = messenger ribonucleic acid start for araBAD) and resulted from an AT leads to GC transition. All of the araXc mutations occurred at position -10 within the araBAD promoter and resulted from a GC leads to AT transition. Models are presented to explain the mode of action of the aralc and araXc mutations.

  17. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  18. CXCR4 engagement promotes dendritic cell survival and maturation

    SciTech Connect

    Kabashima, Kenji Sugita, Kazunari; Shiraishi, Noriko; Tamamura, Hirokazu; Fujii, Nobutaka; Tokura, Yoshiki

    2007-10-05

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.

  19. Lysophosphatidic acid synthesis and phospholipid metabolism in rat mast cells

    SciTech Connect

    Fagan, D.L.

    1986-01-01

    The role of lysophosphatidic acid in mast cell response to antigen was investigated using an isolated rat serosal mast cell model. The cells were incubated with monoclonal murine immunoglobulin E to the dinitrophenyl hapten and prelabeled with /sup 32/P-orthophosphate or /sup 3/H-fatty acids. Lysophosphatidic acid was isolated form cell extracts by 2-dimensional thin-layer chromatography, and the incorporated radioactivity was assessed by liquid scintillation counting. Lysophosphatidic acid labeling with /sup 32/P was increased 2-4 fold within 5 minutes after the addition of antigen or three other mast cell agonists. Functional group analyses unequivocally showed that the labeled compound was lysophosphatidic acid. Lysophosphatidic acid synthesis was dependent on the activity of diacylglycerol lipase, suggesting formation from monoacylglycerol. In addition, the studies of lysophosphatidic acid synthesis suggest that the addition of antigen to mast cells may initiate more than one route of phospholipid degradation and resynthesis. Whatever the origin of lysophosphatidic acid, the results of this study demonstrated that lysophosphatidic acid synthesis is stimulated by a variety of mast cell agonists. Dose-response, kinetic, and pharmacologic studies showed close concordance between histamine release and lysophosphatidic acid labeling responses. These observations provide strong evidence that lysophosphatidic acid plays an important role in mast cell activation.

  20. Cancer cell mitochondria confer apoptosis resistance and promote metastasis.

    PubMed

    Kulawiec, Mariola; Owens, Kjerstin M; Singh, Keshav K

    2009-07-01

    Mutations in mtDNA are found in most cancers. In this study, we studied the role of cancer cell mutant mtDNA in tumorigenesis. We sequenced the entire mitochondrial genome of three different breast cancer cell lines and found that all three, MCF7, MDA-MB-231 and MDA-MB-435, contained mutations in mtDNA. MDA-MB-435 cells contained a mutation in the tRNA(Leu(CUN)) gene known to be involved in pathogenesis of mitochondrial diseases. We generated a mutant cybrid (cytoplasmic hybrid) by repopulating the recipient rho(0) (completely devoid of mtDNA) cells with donor mtDNA derived from an enucleated MDA-MB-435 breast cancer cell line. An isogenic wild-type cybrid was produced by transfer of normal mtDNA from a healthy donor. When compared to the wild type, we found that mutant mtDNA increases mitochondrial membrane potential. However, this increase in mitochondrial membrane potential was not associated with increase in reactive oxygen species (ROS) production. MtDNA mutations conferred resistance to apoptosis triggered by etoposide. Our study also revealed that mutations in mtDNA increase metastatic potential. Using a tail-vein model of metastasis in a mouse model, we show that the mutant cybrid metastatizes to the lungs and forms macrometastic foci. Additionally we found that mutations in mtDNA constitutively activate the PI3/Akt pathway that contributes to increased metastatis. Together our study demonstrates that mutant mtDNA promotes apoptotic resistance and metastasis in a mouse model.

  1. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    SciTech Connect

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  2. The lifespan-promoting effect of acetic acid and Reishi polysaccharide.

    PubMed

    Chuang, Ming-Hong; Chiou, Shyh-Horng; Huang, Chun-Hao; Yang, Wen-Bin; Wong, Chi-Huey

    2009-11-15

    Using Caenorhabditis elegans as a model organism, various natural substances and commercial health-food supplements were screened to evaluate their effects on longevity. Among the substances tested, acetic acid and Reishi polysaccharide fraction 3 (RF3) were shown to increase the expression of the lifespan and longevity-related transcription factor DAF-16 in C. elegans. We have shown that RF3 activates DAF-16 expression via TIR-1 receptor and MAPK pathway whereas acetic acid inhibits the trans-membrane receptor DAF-2 of the insulin/IGF-1 pathway to indirectly activate DAF-16 expression. In addition, a mixture of acetic acid and RF3 possesses a combined effect 30-40% greater than either substance used alone. A proteomic analysis of C. elegans using 2-DE and LC-MS/MS was then carried out, and 15 differentially expressed proteins involved in the lifespan-promoting activity were identified.

  3. Lewis acid promoted ruthenium(II)-catalyzed etherifications by selective hydrogenation of carboxylic acids/esters.

    PubMed

    Li, Yuehui; Topf, Christoph; Cui, Xinjiang; Junge, Kathrin; Beller, Matthias

    2015-04-20

    Ethers are of fundamental importance in organic chemistry and they are an integral part of valuable flavors, fragrances, and numerous bioactive compounds. In general, the reduction of esters constitutes the most straightforward preparation of ethers. Unfortunately, this transformation requires large amounts of metal hydrides. Presented herein is a bifunctional catalyst system, consisting of Ru/phosphine complex and aluminum triflate, which allows selective synthesis of ethers by hydrogenation of esters or carboxylic acids. Different lactones were reduced in good yields to the desired products. Even challenging aromatic and aliphatic esters were reduced to the desired products. Notably, the in situ formed catalyst can be reused several times without any significant loss of activity.

  4. Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells.

    PubMed

    Huang, Shang-Ming; Chuang, Hong-Chih; Wu, Chi-Hao; Yen, Gow-Chin

    2008-08-01

    In the process of glycation, methylglyoxal is a reactive dicarbonyl compound physiologically generated as an intermediate of glycolysis, and is found in high levels in blood or tissue of diabetic models. Biological glycation has been commonly implicated in the development of diabetic microvascular complications of neuropathy. Increasing evidence suggests that neuronal cell cycle regulatory failure followed by apoptosis is an important mechanism in the development of diabetic neuropathy complication. Naturally occurring antioxidants, especially phenolic acids have been recommended as the major bioactive compounds to prevent chronic diseases and promote health benefits. The objective of this study was to investigate the inhibitory abilities of phenolic acids (chlorogenic acid, syringic acid and vanillic acid) on methylglyoxal-induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis in the progression of diabetic neuropathy. The data indicated that methylglyoxal induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis via alternation of mitochondria membrane potential and Bax/Bcl-2 ratio, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase. Furthermore, the results demonstrated that activation of mitogen-activated protein kinase signal pathways (JNK and p38) participated in the methylglyoxal-induced Neuro-2A cell apoptosis process. Treatment of Neuro-2A cells with phenolic acids markedly suppresses cell apoptosis induced by methylglyoxal, suggesting that phenolic acids possess cytoprotective ability in the prevention of diabetic neuropathy complication.

  5. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility*

    PubMed Central

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-01-01

    Within the secreted phospholipase A2 (sPLA2) family, group X sPLA2 (sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies using Pla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2 (cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2. Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizer in vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization. PMID:26828067

  6. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility.

    PubMed

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-03-25

    Within the secreted phospholipase A2(sPLA2) family, group X sPLA2(sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies usingPla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2(cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2 Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizerin vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization.

  7. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid

    PubMed Central

    Hulikova, Alzbeta; Black, Nicholas; Hsia, Lin-Ting; Wilding, Jennifer; Bodmer, Walter F.; Swietach, Pawel

    2016-01-01

    Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer–stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities. PMID:27543333

  8. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread.

    PubMed

    Czuczman, Mark A; Fattouh, Ramzi; van Rijn, Jorik M; Canadien, Veronica; Osborne, Suzanne; Muise, Aleixo M; Kuchroo, Vijay K; Higgins, Darren E; Brumell, John H

    2014-05-08

    Efferocytosis, the process by which dying or dead cells are removed by phagocytosis, has an important role in development, tissue homeostasis and innate immunity. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes, can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells by using the pore-forming toxin listeriolysin O (LLO) and two phospholipase C enzymes. Expression of the cell surface protein ActA allows L. monocytogenes to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. Here we show that protrusion formation is associated with plasma membrane damage due to LLO's pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 (encoded by the Timd4 gene) contributes to efficient cell-to-cell spread by L. monocytogenes in macrophages in vitro and growth of these bacteria is impaired in Timd4(-/-) mice. Thus, L. monocytogenes promotes its dissemination in a host by exploiting efferocytosis. Our results indicate that PS-targeted therapeutics may be useful in the fight against infections by L. monocytogenes and other bacteria that use similar strategies of cell-to-cell spread during infection.

  9. Adenovirus-mediated GDF-5 promotes the extracellular matrix expression in degenerative nucleus pulposus cells*

    PubMed Central

    Luo, Xu-wei; Liu, Kang; Chen, Zhu; Zhao, Ming; Han, Xiao-wei; Bai, Yi-guang; Feng, Gang

    2016-01-01

    Objective: To construct a recombinant adenovirus vector-carrying human growth and differentiation factor-5 (GDF-5) gene, investigate the biological effects of adenovirus-mediated GDF-5 (Ad-GDF-5) on extracellular matrix (ECM) expression in human degenerative disc nucleus pulposus (NP) cells, and explore a candidate gene therapy method for intervertebral disc degeneration (IDD). Methods: Human NP cells of a degenerative disc were isolated, cultured, and infected with Ad-GDF-5 using the AdEasy-1 adenovirus vector system. On Days 3, 7, 14, and 21, the contents of the sulfated glycosaminoglycan (sGAG), deoxyribonucleic acid (DNA) and hydroxyproline (Hyp), synthesis of proteoglycan and collagen II, gene expression of collagen II and aggrecan, and NP cell proliferation were assessed. Results: The adenovirus was an effective vehicle for gene delivery with prolonged expression of GDF-5. Biochemical analysis revealed increased sGAG and Hyp contents in human NP cells infected by Ad-GDF-5 whereas there was no conspicuous change in basal medium (BM) or Ad-green fluorescent protein (GFP) groups. Only cells in the Ad-GDF-5 group promoted the production of ECM, as demonstrated by the secretion of proteoglycan and up-regulation of collagen II and aggrecan at both protein and mRNA levels. The NP cell proliferation was significantly promoted. Conclusions: The data suggest that Ad-GDF-5 gene therapy is a potential treatment for IDD, which restores the functions of degenerative intervertebral disc through enhancing the ECM production of human NP cells. PMID:26739524

  10. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment.

    PubMed

    Cheng, Chiung-Chi; Chao, Wei-Ting; Liao, Chen-Chun; Tseng, Yu-Hui; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Hsu, Yung-Hsiang; Liu, Yi-Hsiang

    2017-02-17

    Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.

  11. Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions.

    PubMed

    Luebeck, E Georg; Moolgavkar, Suresh H; Liu, Amy Y; Boynton, Alanna; Ulrich, Cornelia M

    2008-06-01

    Folate is essential for nucleotide synthesis, DNA replication, and methyl group supply. Low-folate status has been associated with increased risks of several cancer types, suggesting a chemopreventive role of folate. However, recent findings on giving folic acid to patients with a history of colorectal polyps raise concerns about the efficacy and safety of folate supplementation and the long-term health effects of folate fortification. Results suggest that undetected precursor lesions may progress under folic acid supplementation, consistent with the role of folate role in nucleotide synthesis and cell proliferation. To better understand the possible trade-offs between the protective effects due to decreased mutation rates and possibly concomitant detrimental effects due to increased cell proliferation of folic acid, we used a biologically based mathematical model of colorectal carcinogenesis. We predict changes in cancer risk based on timing of treatment start and the potential effect of folic acid on cell proliferation and mutation rates. Changes in colorectal cancer risk in response to folic acid supplementation are likely a complex function of treatment start, duration, and effect on cell proliferation and mutations rates. Predicted colorectal cancer incidence rates under supplementation are mostly higher than rates without folic acid supplementation unless supplementation is initiated early in life (before age 20 years). To the extent to which this model predicts reality, it indicates that the effect on cancer risk when starting folic acid supplementation late in life is small, yet mostly detrimental. Experimental studies are needed to provide direct evidence for this dual role of folate in colorectal cancer and to validate and improve the model predictions.

  12. Tumor exosome-mediated promotion of adhesion to mesothelial cells in gastric cancer cells

    PubMed Central

    Arita, Tomohiro; Ichikawa, Daisuke; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Ogino, Shinpei; Fujita, Yuji; Hiramoto, Hidekazu; Hamada, Junichi; Shoda, Katsutoshi; Kosuga, Toshiyuki; Fujiwara, Hitoshi; Okamoto, Kazuma; Otsuji, Eigo

    2016-01-01

    Background Peritoneal metastasis consists of a highly complex series of steps, and the details of the underlying molecular mechanism remain largely unclear. In this study, the effects of tumor-derived exosomes (TEX) on the progression of gastric cancers were investigated in peritoneal metastasis. Results TEX were internalized in both mesothelial and gastric cancer cells in a cellular origin non-specific manner. Internalization of TEX into mesothelial cells promoted significant adhesion between mesothelial and gastric cancer cells, and TEX internalization into gastric cancer cells significantly promoted migratory ability, while internalization of mesothelial cell-derived exosomes did not. Expression of adhesion-related molecules, such as fibronectin 1 (FN1) and laminin gamma 1 (LAMC1), were increased in mesothelial cells after internalization of TEX from gastric cancer cell line and malignant pleural effusion. Methods TEX were extracted from cell-conditioned medium by ultracentrifugation. The effects of TEX on the malignant potential of gastric cancer were investigated in adhesion, invasion, and proliferation assays. PCR array as well as western blotting were performed to determine the underlying molecular mechanisms. The molecular changes in mesothelial cell after internalization of TEX derived from malignant pleural effusion were also confirmed. Conclusions TEX may play a critical role in the development of peritoneal metastasis of gastric cancer, which may be partially due to inducing increased expression of adhesion molecules in mesothelial cells. PMID:27487135

  13. Smoc2 potentiates proliferation of hepatocellular carcinoma cells via promotion of cell cycle progression

    PubMed Central

    Su, Jing-Ran; Kuai, Jing-Hua; Li, Yan-Qing

    2016-01-01

    AIM To determine the influence of Smoc2 on hepatocellular carcinoma (HCC) cell proliferation and to find a possible new therapeutic target for preventing HCC progression. METHODS We detected expression of Smoc2 in HCC tissues and corresponding non-tumor liver (CNL) tissues using PCR, western blot, and immunohistochemistry methods. Subsequently, we down-regulated and up-regulated Smoc2 expression using siRNA and lentivirus transfection assay, respectively. Then, we identified the effect of Smoc2 on cell proliferation and cell cycle using CCK-8 and flow cytometry, respectively. The common cell growth signaling influenced by Smoc2 was detected by western blot assay. RESULTS The expression of Smoc2 was significantly higher in HCC tissues compared with CNL tissues. Overexpression of Smoc2 promoted HCC cell proliferation and cell cycle progression. Down-regulation of Smoc2 led to inhibition of cell proliferation and cell cycle progression. Smoc2 had positive effect on ERK and AKT signaling. CONCLUSION Smoc2 promotes the proliferation of HCC cells through accelerating cell cycle progression and might act as an anti-cancer therapeutic target in the future. PMID:28018113

  14. Valproic Acid Increases the Hepatic Differentiation Potential of Salivary Gland Cells

    PubMed Central

    Petrakova, O. S.; Ashapkin, V. V.; Shtratnikova, V. Y.; Kutueva, L. I.; Vorotelyak, E. A.; Borisov, M. A.; Terskikh, V. V.; Gvazava, I. G.; Vasiliev, A. V.

    2015-01-01

    The studies of cell plasticity and differentiation abilities are important problems in modern cellular biology. The use of histone deacetylase inhibitor - valproic acid is a promising approach to increasing the differentiation efficiency of various cell types. In this paper we investigate the ability of mouse submandibular salivary gland cells to differentiate into the hepatic direction and the effect of valproic acid on the efficiency of this differentiation. It was shown that the gene expression levels of hepatocyte markers (Aat, Afp, G6p, Pepck, Tat, Cyp3a13) and liver-enriched transcription factors (Hnf-3α, Hnf-3β, Hnf-4α, Hnf-6) were increased after differentiation in salivary gland cells. Valproic acid increases the specificity of hepatic differentiation, reducing the expression levels of the ductal (Krt19, Hhex1, Cyp7a1) and acinar (Ptf1a) markers. After valproic acid exposure, the efficiency of hepatic differentiation also increases, as evidenced by the increase in the gene expression level of Alb and Tdo, and increase in urea production by differentiated cells. No change was found in DNA methylation of the promoter regions of the genes; however, valproic acid treatment and subsequent hepatic differentiation largely affected the histone H3 methylation of liver-enriched genes. Thus, mouse submandibular salivary gland cells are capable of effective differentiation in the hepatic direction. Valproic acid increases the specificity and efficiency of the hepatic differentiation of these cells. PMID:26798494

  15. Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures.

    PubMed Central

    Teti, A; Blair, H C; Schlesinger, P; Grano, M; Zambonin-Zallone, A; Kahn, A J; Teitelbaum, S L; Hruska, K A

    1989-01-01

    Because metabolic acids stimulate bone resorption in vitro and in vivo, we focused on the cellular events produced by acidosis that might be associated with stimulation of bone remodeling. To this end, we exposed isolated chicken osteoclasts to a metabolic (butyric) acid and observed a fall in both intracellular pH and cytosolic calcium [( Ca2+]i). These phenomena were recapitulated when bone resorptive cells, alkalinized by HCO3 loading, were transferred to a bicarbonate-free environment. The acid-induced decline in osteoclast [Ca2+]i was blocked by either NaCN or Na3VO4, in a Na+-independent fashion, despite the failure of each inhibitor to alter stimulated intracellular acidification. Moreover, K+-induced membrane depolarization also reduced cytosolic calcium in a manner additive to the effect of protons. These findings suggest that osteoclasts adherent to bone lack functional voltage-operated Ca2+ channels, and they reduced [Ca2+]i in response to protons via a membrane residing Ca-ATPase. Most importantly, acidosis enhances formation of podosomes, the contact areas of the osteoclast clear zone, indicating increased adhesion to substrate, an early step in bone resorption. Thus, extracellular acidification of osteoclasts leads to decrements in intracellular pH and calcium, and appears to promote cell-matrix attachment. Images PMID:2547838

  16. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    SciTech Connect

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  17. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  18. The glucocorticoid receptor regulates the binding of C/EPBbeta on the alpha-1-acid glycoprotein promoter in vivo.

    PubMed

    Savoldi, G; Fenaroli, A; Ferrari, F; Rigaud, G; Albertini, A; Di Lorenzo, D

    1997-12-01

    A complex interaction between the Glucocorticoid Receptor (GR), C/EBPbeta, and other transcription factors activate the Alpha-1 Acid Glycoprotein (AGP) promoter in HTC(JZ-1) rat hepatoma culture cells. This effect is mediated by the so-called Steroid Responsive Unit (SRU) of the AGP promoter that contains several binding sites for C/EBP transcription factors, some of which overlap with the Glucocorticoid Responsive Element (GRE). Our in vivo footprinting experiments revealed that the GRE- and the C/EBP-binding sites were already occupied glucocorticoid dependently in HTC(JZ-1) cells 10 min after dexamethasone administration (10(-6) M). Furthermore, local changes in the chromatine structure shown by the appearance of DNAse I hypersensitive sites (HS sites) also took place. These changes were probably dependent on a tissue-specific organization of the chromatine at the SRU because they were not detectable in a different glucocorticoid-responsive cell line (PC12) that did not express AGP. Here, we have also shown that withdrawal of dexamethasone or addition of the anti-glucocorticoid RU486 were able to revert the pattern induced by dexamethasone in vivo. The disappearance of the protected region and the hypersensitive sites, typical of the hormone activated promoter, confirmed the necessity of the GR to be bound by the agonist and the inability of the GR-antagonist complex to bind the DNA. By functional assays, we showed that the occupancy of the SRU by these transcriptional proteins in vivo correlated with the activation of the AGP gene transcription. With these results, we have shown that one of the functions of the GR to activate transcription of the AGP gene is to recruit C/EBPbeta and to maintain it bound at its target DNA sequences (SRU). This process was not accomplished by RU486.

  19. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    PubMed

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  20. Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival

    PubMed Central

    Villa, Stephanie R.; Priyadarshini, Medha; Fuller, Miles H.; Bhardwaj, Tanya; Brodsky, Michael R.; Angueira, Anthony R.; Mosser, Rockann E.; Carboneau, Bethany A.; Tersey, Sarah A.; Mancebo, Helena; Gilchrist, Annette; Mirmira, Raghavendra G.; Gannon, Maureen; Layden, Brian T.

    2016-01-01

    The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2−/− mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation. PMID:27324831

  1. Influence of acid and bile acid on ERK activity, PPARγ expression and cell proliferation in normal human esophageal epithelial cells

    PubMed Central

    Jiang, Zhi-Ru; Gong, Jun; Zhang, Zhen-Ni; Qiao, Zhe

    2006-01-01

    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor γ (PPARγ) in normal human esophageal epithelial cells in vitro. METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0 - 6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively. Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARγ protein were determined by the immunoblotting technique. RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P < 0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and phosphorylated ERK1/2 expression. On the contrary, deoxycholic acid (DCA) exposure (> 20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P < 0.05). There was no expression of PPARγ in normal human esophageal epithelial cells. CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway. PMID:16688842

  2. Evidence for a bladder cell glycolipid receptor for Escherichia coli and the effect of neuraminic acid and colominic acid on adherence.

    PubMed Central

    Davis, C P; Avots-Avotins, A E; Fader, R C

    1981-01-01

    The rat bladder epithelial cell receptors involved in mannose-sensitive adherence of Escherichia coli strains were studied. Sodium metaperiodate and lipase pretreatment of epithelial cells significantly reduced bacterial adherence to cells whereas trypsin and phospholipase C had a marginal or insignificant effect on adherence. Neuraminidase and colominic acid significantly increased adherence, whereas N-acetylneuraminic acid significantly reduced adherence. These data suggest that the rat bladder epithelial cell receptors involved in mannose-sensitive adherence are glycolipids. In addition, the data suggested that sialic acid on bladder epithelial cells acts as a nonspecific inhibitor of adherence, whereas colominic acid, a component of some E. coli K1 capsules, may act as a promoter of adherence. PMID:6277793

  3. XRCC2 Promotes Colorectal Cancer Cell Growth, Regulates Cell Cycle Progression, and Apoptosis

    PubMed Central

    Xu, Kaiwu; Song, Xinming; Chen, Zhihui; Qin, Changjiang; He, Yulong; Zhan, Wenhua

    2014-01-01

    Abstract X-ray repair complementing defective repair in Chinese hamster cells 2 (XRCC2) and poly(ADP-ribose) polymerase 1 (PARP1) both play important roles in homologous recombination DNA repair. According to the theory of synthetic lethality, XRCC2-deficient cells are more sensitive to PARP1 inhibitors compared to XRCC2-expressing cells. We investigated XRCC2 expression and function in colorectal cancer (CRC), and the characteristics of sensitivity to PARP1 inhibitor in CRC cells with different XRCC2 levels. We enrolled 153 patients with CRC who had undergone surgery in this study. XRCC2 expression was assessed using immunohistochemistry. Stable CRC SW480 cell lines with low or high XRCC2 expression were constructed. Following treatment with the PARP1 inhibitor olaparib, the viability of cells with different XRCC2 levels was determined; cell cycle distribution and apoptosis were analyzed using flow cytometry. B-cell lymphoma-2 (Bcl-2) protein expression was measured by Western blotting. The positive rates of XRCC2 in primary CRC tissue were significantly higher than that in the matched adjacent noncancerous tissue, and XRCC2 expression status in primary CRC was related to tumor site, Dukes’ stage, and tumor-nodes-metastasis (TNM) stage. XRCC2 overexpression inhibited CRC cell apoptosis and promoted proliferation by enriching cells in the G0/G1 phase. Moreover, olaparib suppressed proliferation, and olaparib sensitivity in CRC cells with high XRCC2 expression was greater. High XRCC2 expression promotes CRC cell proliferation and enriches cells in the G0/G1 phase but inhibits apoptosis. High XRCC2 expression cells are more sensitive to olaparib, which inhibits their viability. PMID:25526472

  4. A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes).

    PubMed

    Santos, Fábio M F; Rosa, João N; Candeias, Nuno R; Carvalho, Cátia Parente; Matos, Ana I; Ventura, Ana E; Florindo, Helena F; Silva, Liana C; Pischel, Uwe; Gois, Pedro M P

    2015-12-22

    Invited for the cover of this issue are Uwe Pischel, Pedro Gois and co-workers at the Universities of Huelva and Lisbon. The image depicts a puzzle, which symbolizes the multicomponent reaction used to prepare a series of boronic acid salicylidenehydrazone (BASHY) dyes that are applied in cell staining. Read the full text of the article at 10.1002/chem.201503943.

  5. Adipokines promote lipotoxicity in human skeletal muscle cells.

    PubMed

    Taube, Annika; Lambernd, Silja; van Echten-Deckert, Gerhild; Eckardt, Kristin; Eckel, Juergen

    2012-07-01

    Studies have shown the implication of specific adipokines or fatty acids (FA) in the pathogenesis of insulin resistance. However, the interplay of adipokines with FA remains poorly understood. This study aimed to investigate the combined effects of adipokines and low concentrations of palmitic acid (PA, 100 µmol/l) on skeletal muscle metabolism. Human skeletal muscle cells were incubated with adipocyte-conditioned medium (CM), PA or PA+CM, and FA transporter and FA metabolism were analysed. CM-incubation increased CD36 level (1.8 fold) and PA-uptake (1.4 fold). However, only co-application of PA+CM resulted in profound lipid accumulation (5.3 fold), 60% reduction of PA-oxidation and 3.5 fold increased diacylglycerol content. Our results support a novel role for adipokines in the pathogenesis of T2D by increasing the lipotoxic potential of PA, notably of low concentrations. This implies an increased lipotoxic risk already at an early stage of weight gain, when lipolysis has not yet contributed to increased plasma free FA levels.

  6. The Influence of 13-cis Retinoic Acid on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Ding, Juan; Kam, Wendy R.; Dieckow, Julia; Sullivan, David A.

    2013-01-01

    Purpose. Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. One of the risk factors for MGD is exposure to 13-cis retinoic acid (13-cis RA), a metabolite of vitamin A. However, the mechanism is not well understood. We hypothesize that 13-cis RA inhibits cell proliferation, promotes cell death, alters gene and protein expressions, and attenuates cell survival pathways in human meibomian gland epithelial cells. Methods. To test our hypotheses, immortalized human meibomian gland epithelial cells were cultured with or without 13-cis RA for varying doses and time. Cell proliferation, cell death, gene expression, and proteins involved in proliferation/survival and inflammation were evaluated. Results. We found that 13-cis RA inhibited cell proliferation, induced cell death, and significantly altered the expression of 6726 genes, including those involved in cell proliferation, cell death, differentiation, keratinization, and inflammation, in human meibomian gland epithelial cells. Further, 13-cis RA also reduced the phosphorylation of Akt and increased the generation of interleukin-1β and matrix metallopeptidase 9. Conclusions. Exposure to 13-cis RA inhibits cell proliferation, increases cell death, alters gene expression, changes signaling pathways, and promotes inflammatory mediator and protease expression in meibomian gland epithelial cells. These effects may be responsible, at least in part, for the 13-cis RA–related induction of MGD. PMID:23722388

  7. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach.

    PubMed

    Gabriel, Matthias; Niederer, Kerstin; Becker, Marc; Raynaud, Christophe Michel; Vahl, Christian-Friedrich; Frey, Holger

    2016-05-18

    Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial cell (EC) specific peptide arginine-glutamic acid-aspartic acid-valine (REDV) using a bifunctional polyethylene glycol (PEG)-spacer (known to reduce platelet and nonspecific protein adhesion). Modified and control surfaces were both evaluated in terms of EC adhesion, colonization, and the attachment of platelets. In addition, samples underwent bacterial challenges. The results strongly suggested that PEG-mediated peptide immobilization renders PTFE an excellent substrate for cellular growth while simultaneously endowing the material with antifouling properties.

  8. Amino acids in the cultivation of mammalian cells.

    PubMed

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  9. Folic acid remodels chromatin on Hes1 and Neurog2 promoters during caudal neural tube development.

    PubMed

    Ichi, Shunsuke; Costa, Fabricio F; Bischof, Jared M; Nakazaki, Hiromichi; Shen, Yueh-Wei; Boshnjaku, Vanda; Sharma, Saurabh; Mania-Farnell, Barbara; McLone, David G; Tomita, Tadanori; Soares, Marcelo B; Mayanil, Chandra S K

    2010-11-19

    The mechanism(s) behind folate rescue of neural tube closure are not well understood. In this study we show that maternal intake of folate prior to conception reverses the proliferation potential of neural crest stem cells in homozygous Splotch embryos (Sp(-/-)) via epigenetic mechanisms. It is also shown that the pattern of differentiation seen in these cells is similar to wild-type (WT). Cells from open caudal neural tubes of Sp(-/-) embryos exhibit increased H3K27 methylation and decreased expression of KDM6B possibly due to up-regulation of KDM6B targeting micro-RNAs such as miR-138, miR-148a, miR-185, and miR-339-5p. In our model, folate reversed these epigenetic marks in folate-rescued Sp(-/-) embryos. Using tissue from caudal neural tubes of murine embryos we also examined H3K27me2 and KDM6B association with Hes1 and Neurog2 promoters at embryonic day E10.5, the proliferative stage, and E12.5, when neural differentiation begins. In Sp(-/-) embryos compared with WT, levels of H3K27me2 associated with the Hes1 promoter were increased at E10.5, and levels associated with the Neurog2 promoter were increased at E12.5. KDM6B association with Hes1 and Neurog2 promoters was inversely related to H3K27me2 levels. These epigenetic changes were reversed in folate-rescued Sp(-/-) embryos. Thus, one of the mechanisms by which folate may rescue the Sp(-/-) phenotype is by increasing the expression of KDM6B, which in turn decreases H3K27 methylation marks on Hes1 and Neurog2 promoters thereby affecting gene transcription.

  10. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    PubMed Central

    Barquissau, V.; Beuzelin, D.; Pisani, D.F.; Beranger, G.E.; Mairal, A.; Montagner, A.; Roussel, B.; Tavernier, G.; Marques, M.-A.; Moro, C.; Guillou, H.; Amri, E.-Z.; Langin, D.

    2016-01-01

    Objective Fat depots with thermogenic activity have been identified in humans. In mice, the appearance of thermogenic adipocytes within white adipose depots (so-called brown-in-white i.e., brite or beige adipocytes) protects from obesity and insulin resistance. Brite adipocytes may originate from direct conversion of white adipocytes. The purpose of this work was to characterize the metabolism of human brite adipocytes. Methods Human multipotent adipose-derived stem cells were differentiated into white adipocytes and then treated with peroxisome proliferator-activated receptor (PPAR)γ or PPARα agonists between day 14 and day 18. Gene expression profiling was determined using DNA microarrays and RT-qPCR. Variations of mRNA levels were confirmed in differentiated human preadipocytes from primary cultures. Fatty acid and glucose metabolism was investigated using radiolabelled tracers, Western blot analyses and assessment of oxygen consumption. Pyruvate dehydrogenase kinase 4 (PDK4) knockdown was achieved using siRNA. In vivo, wild type and PPARα-null mice were treated with a β3-adrenergic receptor agonist (CL316,243) to induce appearance of brite adipocytes in white fat depot. Determination of mRNA and protein levels was performed on inguinal white adipose tissue. Results PPAR agonists promote a conversion of white adipocytes into cells displaying a brite molecular pattern. This conversion is associated with transcriptional changes leading to major metabolic adaptations. Fatty acid anabolism i.e., fatty acid esterification into triglycerides, and catabolism i.e., lipolysis and fatty acid oxidation, are increased. Glucose utilization is redirected from oxidation towards glycerol-3-phophate production for triglyceride synthesis. This metabolic shift is dependent on the activation of PDK4 through inactivation of the pyruvate dehydrogenase complex. In vivo, PDK4 expression is markedly induced in wild-type mice in response to CL316,243, while this increase is blunted

  11. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application.

    PubMed

    Lee, Changsu; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-10-20

    The green algae Haematococcus pluvialis is a freshwater unicellular microalga belonging to Chlorophyceae. It is one of the best natural sources of astaxanthin, a secondary metabolite commonly used as an antioxidant and anti-inflammatory agent. Due to the importance of astaxanthin, various efforts have been made to increase its production. In this study, we attempted to develop a strategy for promoting astaxanthin accumulation in H. pluvialis using 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene (normally known as an aging hormone in plants). Our results demonstrated that ACC could enhance the growth of H. pluvialis, thereby promoting astaxanthin accumulation. Therefore, ACC has an indirect influence on astaxanthin production. We further verified the effect of ACC with a direct treatment of ethylene originated from banana peels. These results indicate that ethylene could be applied as an indirect method for enhancing growth and astaxanthin biosynthesis in H. pluvialis.

  12. Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells.

    PubMed

    Deauvieau, Florence; Ollion, Vincent; Doffin, Anne-Claire; Achard, Carole; Fonteneau, Jean-François; Verronese, Estelle; Durand, Isabelle; Ghittoni, Raffaella; Marvel, Jacqueline; Dezutter-Dambuyant, Colette; Walzer, Thierry; Vie, Henri; Perrot, Ivan; Goutagny, Nadège; Caux, Christophe; Valladeau-Guilemond, Jenny

    2015-03-01

    Dendritic cells (DCs) cross-present antigen (Ag) to initiate T-cell immunity against most infections and tumors. Natural killer (NK) cells are innate cytolytic lymphocytes that have emerged as key modulators of multiple DC functions. Here, we show that human NK cells promote cross-presentation of tumor cell-derived Ag by DC leading to Ag-specific CD8(+) T-cell activation. Surprisingly, cytotoxic function of NK cells was not required. Instead, we highlight a critical and nonredundant role for IFN-γ and TNF-α production by NK cells to enhance cross-presentation by DC using two different Ag models. Importantly, we observed that NK cells promote cell-associated Ag cross-presentation selectively by monocytes-derived DC (Mo-DC) and CD34-derived CD11b(neg) CD141(high) DC subsets but not by myeloid CD11b(+) DC. Moreover, we demonstrate that triggering NK cell activation by monoclonal antibodies (mAbs)-coated tumor cells leads to efficient DC cross-presentation, supporting the concept that NK cells can contribute to therapeutic mAbs efficiency by inducing downstream adaptive immunity. Taken together, our findings point toward a novel role of human NK cells bridging innate and adaptive immunity through selective induction of cell-associated Ag cross-presentation by CD141(high) DC, a process that could be exploited to better harness Ag-specific cellular immunity in immunotherapy.

  13. Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection.

    PubMed

    Siddique, Shahid; Matera, Christiane; Radakovic, Zoran S; Hasan, M Shamim; Gutbrod, Philipp; Rozanska, Elzbieta; Sobczak, Miroslaw; Torres, Miguel Angel; Grundler, Florian M W

    2014-04-08

    Plants and animals produce reactive oxygen species (ROS) in response to infection. In plants, ROS not only activate defense responses and promote cell death to limit the spread of pathogens but also restrict the amount of cell death in response to pathogen recognition. Plants also use hormones, such as salicylic acid, to mediate immune responses to infection. However, there are long-lasting biotrophic plant-pathogen interactions, such as the interaction between parasitic nematodes and plant roots during which defense responses are suppressed and root cells are reorganized to specific nurse cell systems. In plants, ROS are primarily generated by plasma membrane-localized NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidases, and loss of NADPH oxidase activity compromises immune responses and cell death. We found that infection of Arabidopsis thaliana by the parasitic nematode Heterodera schachtii activated the NADPH oxidases RbohD and RbohF to produce ROS, which was necessary to restrict infected plant cell death and promote nurse cell formation. RbohD- and RbohF-deficient plants exhibited larger regions of cell death in response to nematode infection, and nurse cell formation was greatly reduced. Genetic disruption of SID2, which is required for salicylic acid accumulation and immune activation in nematode-infected plants, led to the increased size of nematodes in RbohD- and RbohF-deficient plants, but did not decrease plant cell death. Thus, by stimulating NADPH oxidase-generated ROS, parasitic nematodes fine-tune the pattern of plant cell death during the destructive root invasion and may antagonize salicylic acid-induced defense responses during biotrophic life stages.

  14. Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells.

    PubMed

    Amoh, Yasuyuki; Kanoh, Maho; Niiyama, Shiro; Hamada, Yuko; Kawahara, Katsumasa; Sato, Yuichi; Hoffman, Robert M; Katsuoka, Kensei

    2009-08-01

    The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral-, plasmid- or transposon-mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K-15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary-acidic-protein (GFAP)-positive Schwann cells and promoted the recovery of pre-existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells.

  15. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells.

    PubMed

    Ignacio Barrasa, Juan; Olmo, Nieves; Pérez-Ramos, Pablo; Santiago-Gómez, Angélica; Lecona, Emilio; Turnay, Javier; Antonia Lizarbe, M

    2011-10-01

    The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.

  16. Oncogene-Selective Sensitivity to Synchronous Cell Death following Modulation of the Amino Acid Nutrient Cystine.

    PubMed

    Poursaitidis, Ioannis; Wang, Xiaomeng; Crighton, Thomas; Labuschagne, Christiaan; Mason, David; Cramer, Shira L; Triplett, Kendra; Roy, Rajat; Pardo, Olivier E; Seckl, Michael J; Rowlinson, Scott W; Stone, Everett; Lamb, Richard F

    2017-03-14

    Cancer cells reprogram their metabolism, altering both uptake and utilization of extracellular nutrients. We individually depleted amino acid nutrients from isogenic cells expressing commonly activated oncogenes to identify correspondences between nutrient supply and viability. In HME (human mammary epithelial) cells, deprivation of cystine led to increased cell death in cells expressing an activated epidermal growth factor receptor (EGFR) mutant. Cell death occurred via synchronous ferroptosis, with generation of reactive oxygen species (ROS). Hydrogen peroxide promoted cell death, as both catalase and inhibition of NADPH oxidase 4 (NOX4) blocked ferroptosis. Blockade of EGFR or mitogen-activated protein kinase (MAPK) signaling similarly protected cells from ferroptosis, whereas treatment of xenografts derived from EGFR mutant non-small-cell lung cancer (NSCLC) with a cystine-depleting enzyme inhibited tumor growth in mice. Collectively, our results identify a potentially exploitable sensitization of some EGFR/MAPK-driven tumors to ferroptosis following cystine depletion.

  17. Coniferyl Aldehyde Attenuates Radiation Enteropathy by Inhibiting Cell Death and Promoting Endothelial Cell Function

    PubMed Central

    Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function. PMID:26029925

  18. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    PubMed

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  19. Asiatic acid inhibits adipogenic differentiation of bone marrow stromal cells.

    PubMed

    Li, Zheng-Wei; Piao, Cheng-dong; Sun, Hong-hui; Ren, Xian-Sheng; Bai, Yun-Shen

    2014-03-01

    Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.

  20. Biomimetic Hydrogels Incorporating Polymeric Cell-Adhesive Peptide to Promote the 3D Assembly of Tumoroids

    PubMed Central

    Hao, Ying; Zerdoum, Aidan B.; Stuffer, Alexander J.; Rajasekaran, Ayyappan K.; Jia, Xinqiao

    2016-01-01

    Towards the goal of establishing physiologically relevant in vitro tumor models, we synthesized and characterized a biomimetic hydrogel using thiolated hyaluronic acid (HA-SH) and an acrylated copolymer carrying multiple copies of cell adhesive peptide (PolyRGD-AC). PolyRGD-AC was derived from a random copolymer of tert-butyl methacrylate (tBMA) and oligomeric (ethylene glycol) methacrylate (OEGMA), synthesized via atom transfer radical polymerization (ATRP). Acid hydrolysis of tert-butyl moieties revealed the carboxylates, through which acrylate groups were installed. Partial modification of the acrylate groups with a cysteine-containing RGD peptide generated PolyRGD-AC. When PolyRGD-AC was mixed with HA-SH under physiological conditions, a macroscopic hydrogel with an average elastic modulus of 630 Pa was produced. LNCaP prostate cancer cells encapsulated in HA-PolyRGD gels as dispersed single cells formed multicellular tumoroids by day 4 and reached an average diameter of ~95 μm by day 28. Cells in these structures were viable, formed cell-cell contacts through E-cadherin (E-CAD and displayed cortical organization of F-actin. Compared to the control gels prepared using PolyRDG, multivalent presentation of the RGD signal in the HA matrix increased cellular metabolism, promoted the development of larger tumoroids and enhanced the expression of E-CAD and integrins. Overall, hydrogels with multivalently immobilized RGD is a promising 3D culture platform for dissecting principles of tumorigenesis and for screening anticancer drugs. PMID:27723964

  1. A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes).

    PubMed

    Santos, Fábio M F; Rosa, João N; Candeias, Nuno R; Carvalho, Cátia Parente; Matos, Ana I; Ventura, Ana E; Florindo, Helena F; Silva, Liana C; Pischel, Uwe; Gois, Pedro M P

    2016-01-26

    The modular assembly of boronic acids with Schiff-base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99%) of structurally diverse and photostable dyes that exhibit a polarity-sensitive green-to-yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54,000 M(-1) cm(-1)). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non-cytotoxic, stable, and highly fluorescent poly(lactide-co-glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains.

  2. Type I interferon promotes cell-to-cell spread of Listeria monocytogenes.

    PubMed

    Osborne, Suzanne E; Sit, Brandon; Shaker, Andrew; Currie, Elissa; Tan, Joël M J; van Rijn, Jorik; Higgins, Darren E; Brumell, John H

    2017-03-01

    Type I interferons (IFNs) play a critical role in antiviral immune responses, but can be deleterious to the host during some bacterial infections. Listeria monocytogenes (Lm) induces a type I IFN response by activating cytosolic antiviral surveillance pathways. This is beneficial to the bacteria as mice lacking the type I IFN receptor (IFNAR1(-/-) ) are resistant to systemic infection by Lm. The mechanisms by which type I IFNs promote Lm infection are unclear. Here, we show that IFNAR1 is required for dissemination of Lm within infection foci in livers of infected mice and for efficient cell-to-cell spread in vitro in macrophages. IFNAR1 promotes ActA polarization and actin-based motility in the cytosol of host cells. Our studies suggest type I IFNs directly impact the intracellular life cycle of Lm and provide new insight into the mechanisms used by bacterial pathogens to exploit the type I IFN response.

  3. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid.

    PubMed

    Hou, Tao; Liu, Weiwei; Shi, Wen; Ma, Zhili; He, Hui

    2017-03-15

    The structure of the desalted duck egg white peptides-calcium chelate was characterized by fluorescence spectroscopy, fourier transform infrared spectroscopy, and dynamic light scattering. Characterization results showed structural folding and aggregation of amino acids or oligopeptides during the chelation process. Desalted duck egg white peptides enhanced the calcium uptake in the presence of oxalate, phosphate and zinc ions in Caco-2 monolayers. Animal model indicated that desalted duck egg white peptides effectively enhanced the mineral absorption and counteracted the deleterious effects of phytic acid. These findings suggested that desalted duck egg white peptides might promote calcium uptake in three pathways: 1) desalted duck egg white peptides bind with calcium to form soluble chelate and avoid precipitate; 2) the chelate is absorbed as small peptides by enterocyte; and 3) desalted duck egg white peptides regulate the proliferation and differentiation of enterocytes through the interaction with transient receptor potential vanilloid 6 calcium channel.

  4. Formation of a seed germination promoter from carbohydrates and amino acids.

    PubMed

    Light, Marnie E; Burger, Barend V; van Staden, Johannes

    2005-07-27

    The ability of plant-derived smoke to act as a germination cue in many species has led to widespread interest in this aspect of seed biology. Recently, 3-methyl-2H-furo[2,3-c]pyran-2-one was identified as the main germination cue from smoke. Here, we report on the formation of this compound from reactions of sugars with amino acids. Heating proteins or amino acids with sugars at 180 degrees C for 30 min produces water soluble extracts that promote germination. High-performance liquid chromatography indicated that the active compound(s) derived from these reactions coeluted with the active fraction from a smoke solution. Gas chromatography-mass spectroscopy showed that the active constituent is identical to the germination cue from plant-derived smoke. The results presented in this paper provide evidence for the formation of the major germination cue found in smoke from ubiquitously occurring organic compounds.

  5. Caspase Inhibition Blocks Cell Death and Enhances Mitophagy but Fails to Promote T-Cell Lymphoma

    PubMed Central

    Wang, Sih-han; Martin, Sean M.; Harris, Peter S.; Knudson, C. Michael

    2011-01-01

    Caspase-9 is a component of the apoptosome that mediates cell death following release of cytochrome c from mitochondria. Inhibition of Caspase-9 with a dominant negative construct (Casp9DN) blocks apoptosome function, promotes viability and has been implicated in carcinogenesis. Inhibition of the apoptosome in vitro impairs mitochondrial function and promotes mitophagy. To examine whether inhibition of the apoptosome would enhance mitophagy and promote oncogenesis in vivo, transgenic mice were generated that express Casp9DN in the T cell lineage. The effects of Casp9DN on thymocyte viability, mitophagy and thymic tumor formation were examined. In primary thymocytes, Casp9DN delayed dexamethasone (Dex)-induced cell death, altered mitochondrial structure, and decreased oxidant production. Transmission electron microscopy (TEM) revealed that inhibition of the apoptosome resulted in structurally abnormal mitochondria that in some cases were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitochondria being engulfed by autophagosomes (mitophagy), confocal microscopy showed colocalization of LC3-GFP and mitochondria. However, Casp9DN did not significantly accelerate T-cell lymphoma alone, or in combination with Lck-Bax38/1, or with Beclin 1+/− mice, two tumor-prone strains in which altered mitochondrial function has been implicated in promoting tumor development. In addition, heterozygous disruption of Beclin 1 had no effect on T-cell lymphoma formation in Lck-Bax38/1 mice. Further studies showed that Beclin 1 levels had no effect on Casp9DN-induced loss of mitochondrial function. These results demonstrate that neither inhibition of apoptosome function nor Beclin 1 haploinsufficiency accelerate T-cell lymphoma development in mice. PMID:21611191

  6. NLS-RARα promotes proliferation and inhibits differentiation in HL-60 cells.

    PubMed

    Hu, Xiu-Xiu; Zhong, Liang; Zhang, Xi; Gao, Yuan-Mei; Liu, Bei-Zhong

    2014-01-01

    A unique mRNA produced in leukemic cells from a t(15;17) acute promyelocytic leukemia (APL) patient encodes a fusion protein between the retinoic acid receptor α (RARα) and a myeloid gene product called PML. Studies have reported that neutrophil elastase (NE) cleaves bcr-1-derived PML-RARα in early myeloid cells, leaving only the nuclear localization signal (NLS) of PML attached to RARα. The resultant NLS-RARα fusion protein mainly localizes to, and functions within, the cell nucleus. It is speculated that NLS-RARα may act in different ways from the wild-type RARα, but its biological characteristics have not been reported. This study takes two approaches. Firstly, the NLS-RARα was silenced with pNLS-RARα-shRNA. The mRNA and protein expression of NLS-RARα were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect the differentiation of cells. Secondly, the NLS-RARα was over-expressed by preparation of recombinant adenovirus HL-60/pAd-NLS-RARα. The assays of mRNA and protein expression of NLS-RARα, and cell proliferation, were as above. By contrast, cell differentiation was stimulated by all trans retinoic acid (ATRA) (2.5µmol/L) at 24h after virus infection of pAd-NLS-RARα, and then detected by CD11b labeling two days later. The transcription and translation of C-MYC was detected in HL-60/pAd-NLS-RARα cells which treated by ATRA. Our results showed that compared to the control groups, the expression of NLS-RARα was significantly reduced in the HL-60/pNLS-RARα-shRNA cells, and increased dramatically in the HL-60/pAd-NLS-RARα cells. The proliferation was remarkably inhibited in the HL-60/pNLS-RARα-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-NLS-RARα cells. FCM outcome revealed the differentiation increased in HL-60/pNLS-RARα-shRNA cells, and decreased in the HL-60/pAd-NLS-RARα cells treated with 2.5µmol/L ATRA. The

  7. CD73-mediated adenosine production promotes stem cell-like properties in mouse Tc17 cells.

    PubMed

    Flores-Santibáñez, Felipe; Fernández, Dominique; Meza, Daniel; Tejón, Gabriela; Vargas, Leonardo; Varela-Nallar, Lorena; Arredondo, Sebastián; Guixé, Victoria; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela

    2015-12-01

    The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-β (TGF-β), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-β is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4(+) T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-γ and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L(+) CD127(+) CD8(+) T cells (memory T cells) and is down-regulated in GZMB(+) KLRG1(+) CD8(+) T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8(+) T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells.

  8. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics

    PubMed Central

    Rodríguez-Serrano, M.; Pazmiño, D. M.; Sparkes, I.; Rochetti, A.; Hawes, C.; Romero-Puertas, M. C.; Sandalio, L. M.

    2014-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·–, whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. PMID:24913628

  9. Industry experience in promoting weekly iron-folic acid supplementation in the Philippines.

    PubMed

    Garcia, Josel; Datol-Barrett, Eva; Dizon, Maynilad

    2005-12-01

    After participating in a pilot project under a government-industry partnership to promote the adoption of weekly iron-folic acid supplementation among women of reproductive age in the Philippines in 1998, United Laboratories (UNILAB), the Philippines' largest private pharmaceutical company, decided in April 2002 to launch a weekly iron-folic acid supplement for pregnant and non-pregnant women under the brand name Femina. The business objective set for the Femina brand was to build the category of preventive iron-folic acid supplements in line with the Philippine Department of Health's advocacy on weekly supplementation as an alternate to daily dosing to reduce the prevalence of anemia in the country. The brand was supported with an integrated mix of traditional advertising media with complementary direct-to-consumer educational programs that aimed to create awareness of iron-deficiency anemia, its causes and effects, and the role of weekly intake of iron-folic acid in preventing the condition. Aggressive marketing support for 1 year was successful in creating awareness among the target women. Significant lessons derived from consumers identified opportunity areas that can be further addressed in developing advocacy programs on weekly iron supplementation implemented on a nationwide scale in the future.

  10. Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions.

    PubMed

    Park, Yoon Mee; Lee, Hwa Jeong; Jeong, Jae-Ho; Kook, Joong-Ki; Choy, Hyon E; Hahn, Tae-Wook; Bang, Iel Soo

    2015-12-01

    Nitric oxide (NO) inactivates iron-sulfur enzymes in bacterial amino acid biosynthetic pathways, causing amino acid auxotrophy. We demonstrate that exogenous supplementation with branched-chain amino acids (BCAA) can restore the NO resistance of hmp mutant Salmonella Typhimurium lacking principal NO-metabolizing enzyme flavohemoglobin, and of mutants further lacking iron-sulfur enzymes dihydroxy-acid dehydratase (IlvD) and isopropylmalate isomerase (LeuCD) that are essential for BCAA biosynthesis, in an oxygen-dependent manner. BCAA supplementation did not affect the NO consumption rate of S. Typhimurium, suggesting the BCAA-promoted NO resistance independent of NO metabolism. BCAA supplementation also induced intracellular survival of ilvD and leuCD mutants at wild-type levels inside RAW 264.7 macrophages that produce constant amounts of NO regardless of varied supplemental BCAA concentrations. Our results suggest that the NO-induced BCAA auxotrophy of Salmonella, due to inactivation of iron-sulfur enzymes for BCAA biosynthesis, could be rescued by bacterial taking up exogenous BCAA available in oxic environments.

  11. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  12. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction

    PubMed Central

    Samudio, Ismael; Harmancey, Romain; Fiegl, Michael; Kantarjian, Hagop; Konopleva, Marina; Korchin, Borys; Kaluarachchi, Kumar; Bornmann, William; Duvvuri, Seshagiri; Taegtmeyer, Heinrich; Andreeff, Michael

    2009-01-01

    The traditional view is that cancer cells predominately produce ATP by glycolysis, rather than by oxidation of energy-providing substrates. Mitochondrial uncoupling — the continuing reduction of oxygen without ATP synthesis — has recently been shown in leukemia cells to circumvent the ability of oxygen to inhibit glycolysis, and may promote the metabolic preference for glycolysis by shifting from pyruvate oxidation to fatty acid oxidation (FAO). Here we have demonstrated that pharmacologic inhibition of FAO with etomoxir or ranolazine inhibited proliferation and sensitized human leukemia cells — cultured alone or on bone marrow stromal cells — to apoptosis induction by ABT-737, a molecule that releases proapoptotic Bcl-2 proteins such as Bak from antiapoptotic family members. Likewise, treatment with the fatty acid synthase/lipolysis inhibitor orlistat also sensitized leukemia cells to ABT-737, which supports the notion that fatty acids promote cell survival. Mechanistically, we generated evidence suggesting that FAO regulates the activity of Bak-dependent mitochondrial permeability transition. Importantly, etomoxir decreased the number of quiescent leukemia progenitor cells in approximately 50% of primary human acute myeloid leukemia samples and, when combined with either ABT-737 or cytosine arabinoside, provided substantial therapeutic benefit in a murine model of leukemia. The results support the concept of FAO inhibitors as a therapeutic strategy in hematological malignancies. PMID:20038799

  13. Proepithelin Regulates Prostate Cancer Cell Biology by Promoting Cell Growth, Migration, and Anchorage-Independent Growth

    PubMed Central

    Monami, Giada; Emiliozzi, Velia; Bitto, Alessandro; Lovat, Francesca; Xu, Shi-Qiong; Goldoni, Silvia; Fassan, Matteo; Serrero, Ginette; Gomella, Leonard G.; Baffa, Raffaele; Iozzo, Renato V.; Morrione, Andrea

    2009-01-01

    The growth factor proepithelin has recently emerged as an important regulator of transformation in several physiological and pathological systems. In this study, we determined the biological roles of proepithelin in prostate cancer cells using purified human recombinant proepithelin as well as proepithelin-depletion strategies. Proepithelin promoted the migration of androgen-dependent and -independent human prostate cancer cells; androgen-independent DU145 cells were the more responsive. In these cells, proepithelin additionally stimulated wound closure, invasion, and promotion of cell growth in vitro. These effects required the activation of both the Akt and mitogen-activated protein kinase pathways. We have analyzed proepithelin expression levels in different available prostate cancer microarray studies using the Oncomine database and found a statistically significant increase in proepithelin mRNA expression levels in prostate cancers compared with nonneoplastic controls. Notably, depletion of endogenous proepithelin by siRNA and antisense strategies impaired the ability of DU145 cells to grow and migrate after serum withdrawal and inhibited anchorage-independent growth. Our results provide the first evidence for a role of proepithelin in stimulating the migration, invasion, proliferation, and anchorage-independent growth of prostate cancer cells. This study supports the hypothesis that proepithelin may play a critical role as an autocrine growth factor in the establishment and initial progression of prostate cancer. Furthermore, proepithelin may prove to be a useful clinical marker for the diagnosis of prostate tumors. PMID:19179604

  14. Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport

    PubMed Central

    Vylkova, Slavena; Lorenz, Michael C.

    2014-01-01

    Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. PMID:24626429

  15. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch.

    PubMed

    Muto, Akihiko; Ochiai, Kyoko; Kimura, Yoshitaka; Itoh-Nakadai, Ari; Calame, Kathryn L; Ikebe, Dai; Tashiro, Satoshi; Igarashi, Kazuhiko

    2010-12-01

    Two transcription factors, Pax5 and Blimp-1, form a gene regulatory network (GRN) with a double-negative loop, which defines either B-cell (Pax5 high) or plasma cell (Blimp-1 high) status as a binary switch. However, it is unclear how this B-cell GRN registers class switch DNA recombination (CSR), an event that takes place before the terminal differentiation to plasma cells. In the absence of Bach2 encoding a transcription factor required for CSR, mouse splenic B cells more frequently and rapidly expressed Blimp-1 and differentiated to IgM plasma cells as compared with wild-type cells. Genetic loss of Blimp-1 in Bach2(-/-) B cells was sufficient to restore CSR. These data with mathematical modelling of the GRN indicate that Bach2 achieves a time delay in Blimp-1 induction, which inhibits plasma cell differentiation and promotes CSR (Delay-Driven Diversity model for CSR). Reduction in mature B-cell numbers in Bach2(-/-) mice was not rescued by Blimp-1 ablation, indicating that Bach2 regulates B-cell differentiation and function through Blimp-1-dependent and -independent GRNs.

  16. Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming

    2015-03-01

    Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.

  17. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  18. Homeobox gene Rhox5 is regulated by epigenetic mechanisms in cancer and stem cells and promotes cancer growth

    PubMed Central

    2011-01-01

    Background Homeobox genes murine Rhox5 and human RHOXF1 are expressed in early embryonic stages and then mostly restricted to germline tissues in normal adult, yet they are aberrantly expressed in cancer cells in vitro and in vivo . Here we study the epigenetic regulation and potential functions of Rhox5 gene. Findings In Rhox5 -silenced or extremely low expresser cells, we observed low levels of active histone epigenetic marks (H3ac, H4ac and H3K4me2) and high levels of repressive mark H3K9me2 along with DNA hypermethylation in the promoter. In Rhox5 low expresser cells, we typically observed modest levels of both active and repressive histone marks along with moderate DNA methylation. In Rhox5 highly expressed CT26 cancer cells, we observed DNA hypomethylation along with high levels of both active and repressive histone marks. Epigenetic drugs (retinoic acid and MS-275) induced F9 cell differentiation with enhanced Rhox5 expression and dynamic changes of epigenetic marks. Finally, Rhox5 knockdown by small hairpin RNA (shRNA) in CT26 colon cancer decreased cell proliferation and migration in vitro and tumor growth in vivo . Conclusions Both DNA methylation and histone methylation/acetylation play key roles in modulating Rhox5 expression in various cell types. The stem cell-like "bivalent domain", an epigenetic feature originally identified in key differentiation genes within stem cells, exists in the Rhox5 gene promoter in not only embryonic stem cells but also cancer cells, cancer stem cells, and differentiated Sertoli cells. As Ras signaling-dependent Rhox5 expression promotes tumor growth, Rhox5 may be an ideal target for therapeutic intervention in cancer. PMID:21609483

  19. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    SciTech Connect

    Culiat, Cymbeline T

    2014-11-04

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  20. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    SciTech Connect

    Culiat, Cymbeline T

    2011-03-22

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  1. Mechanism of the promotion of steatotic HepG2 cell apoptosis by cholesterol

    PubMed Central

    Zhu, Chunyan; Xie, Ping; Zhao, Fei; Zhang, Lingqiang; An, Wei; Zhan, Yutao

    2014-01-01

    The role of cholesterol in the pathogenesis of non-alcoholic steatohepatitis (NASH) remains unclear. It is known that apoptosis of hepatocytes is an important characteristics of NASH. The objective of this study was to investigate the effects of cholesterol on steatotic HepG2 cell apoptosis and the possible mechanism in vitro. In this study, HepG2 cells were divided into three groups: (1) normal group, (2) steatosis group and (3) cholesterol group. HepG2 cells were treated with oleic acid to establish a steatosis study model. Steatosis was assessed by Oil Red O staining and triglyceride content assay. Cell apoptosis was measured using an apoptosis kit. The expression levels of apoptosis-related proteins (P53, Bcl-2, Bax, caspase-3, cyclin A, cyclin B1 and cyclin E) were determined by western blot analyses. We found that a hepatocyte steatosis model was successfully established by oleic acid (200 μmol/L) induction. The cholesterol (50 mg/L) group had similar amount of lipid droplets and triglyceride content as steatosis group (P > 0.5). However, the apoptosis rate (P < 0.01) of the cholesterol group was significantly higher than that of the normal group or the steatosis group, and the protein expressions of Bax and caspase-3, but not P53, Bcl-2, cyclin A, cyclin B1 and cyclin E, were also increased in the cholesterol group. Those results suggested that cholesterol markedly promoted apoptosis of steatosis HepG2 cells in vitro, likely through the up-regulation of Bax and caspase-3 expression. This study contributes to explain the effect of cholesterol on NASH pathogenesis. PMID:25400762

  2. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN.

    PubMed

    Zúñiga, Ana; Poupin, María Josefina; Donoso, Raúl; Ledger, Thomas; Guiliani, Nicolás; Gutiérrez, Rodrigo A; González, Bernardo

    2013-05-01

    Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.

  3. Promoter strength of folic acid synthesis genes affects sulfa drug resistance in Saccharomyces cerevisiae.

    PubMed

    Iliades, Peter; Berglez, Janette; Meshnick, Steven; Macreadie, Ian

    2003-01-01

    The enzyme dihydropteroate synthase (DHPS) is an important target for sulfa drugs in both prokaryotic and eukaryotic microbes. However, the understanding of DHPS function and the action of antifolates in eukaryotes has been limited due to technical difficulties and the complexity of DHPS being a part of a bifunctional or trifunctional protein that comprises the upstream enzymes involved in folic acid synthesis (FAS). Here, yeast strains have been constructed to study the effects of FOL1 expression on growth and sulfa drug resistance. A DHPS knockout yeast strain was complemented by yeast vectors expressing the FOL1 gene under the control of promoters of different strengths. An inverse relationship was observed between the growth rate of the strains and FOL1 expression levels. The use of stronger promoters to drive FOL1 expression led to increased sulfamethoxazole resistance when para-aminobenzoic acid (pABA) levels were elevated. However, high FOL1 expression levels resulted in increased susceptibility to sulfamethoxazole in pABA free media. These data suggest that up-regulation of FOL1 expression can lead to sulfa drug resistance in Saccharomyces cerevisiae.

  4. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis.

    PubMed

    Lee, Sangmin; Kim, Sang-Gyu; Park, Chung-Mo

    2010-10-01

    • Findings regarding the role of salicylic acid (SA) in seed germination are somewhat variable, depending on the plant genotypes and experimental conditions used, and thus the molecular mechanisms underlying SA regulation of germination are still unclear. Here, we report that physiological concentrations of SA promote germination under high salinity by modulating antioxidant activity in Arabidopsis. • Germination of SA induction deficient 2 (sid2) seeds was hypersensitive to high salinity. While the inhibitory effect of high salinity was exaggerated in the presence of higher concentrations of SA (> 100 μM), it was significantly reduced in the presence of lower concentrations of SA (< 50 μM). Under high salinity, the endogenous contents of H(2) O(2) were elevated in wild-type and sid2 seeds but reduced to original concentrations after treatment with 1 μM SA. • Germination of NahG transgenic plants was influenced to a lesser degree by high salinity (NahG is a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol). We found that catechol, an SA degradation product accumulated in the transgenic plants, acts as an antioxidant that compromises the inhibitory effects of high salinity. • Our observations indicate that, although SA is not essential for germination under normal growth conditions, it plays a promotive role in seed germination under high salinity by reducing oxidative damage.

  5. [Analysis of the molecular motif for inducing response to jasmonic acid and ethylene in Pib promoter via rice transformation].

    PubMed

    Yu, Li; Yang, Shi-Hu; Jin, Yu-Kuan; Wan, Jian-Min; Zhao, Bao-Quan

    2010-01-01

    The expression of Pib gene in rice was induced by hormone, such as jasmonic acid and ethylene. In order to determine the necessary regions of sequence or motifs for response to jasmonic acid and ethylene in Pib promoter, the full length promoter of Pib (-3,572 approximately 2 bp) and three different 5' deletion fragments of Pib promoter (-2,692 approximately 2 bp, -1,335 approximately 2 bp, -761 approximately 2 bp) were synthesized by PCR and then were substituted for 35S upstream gus in a binary plasmid to construct re-combined plasmids of Pib promoter-gus fusions. Transgenic rice plants of the four recombined plasmids were produced by Agrobacterium-mediated transformation. Quality and quantum analysis of gus activities in transgenic plants at both protein and mRNA levels were conducted. The promotion activity of the full length promoter of Pib (-3,572 approximately 2 bp, pNAR901) was the highest in the four recombinants and the gus activities in its transgenic plant organs were enhanced obviously at 6 h after treatment with jasmonic acid or ethylene. The promotion activity of the deleted Pib promoters was significantly decreased and the response to jasmonic acid or ethylene treatment was not present when the -3,572 approximately -2,692 bp sequence was knocked out from the Pib promoter. Although the disparity in the lengths of the deleted Pib promoter of pNAR902 (-2,692 approximately 2 bp), pNAR903 (-1,335 approximately 2 bp), and pNAR904 (-761 approximately 2 bp) was more than 2 or 3 times, the response to jasmonic acid or ethylene treatment was not different among their transgenic plants. All these results indicated that the common deleted sequences (-3,572 approximately -2,692 bp) in the three deleted Pib promoter constructs were the essential region to the response to jasmonic acid and ethylene treatment. The result of pib promoter sequence searching indicated that there was only one GCCGCC motif at -2,722 bp of this common deleted segment in the Pib promoter

  6. High dose of ascorbic acid induces cell death in mesothelioma cells.

    PubMed

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  7. Peptide interfacial biomaterials improve endothelial cell adhesion and spreading on synthetic polyglycolic acid materials.

    PubMed

    Huang, Xin; Zauscher, Stefan; Klitzman, Bruce; Truskey, George A; Reichert, William M; Kenan, Daniel J; Grinstaff, Mark W

    2010-06-01

    Resorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed "interfacial biomaterials" (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K (A) 1 x 10(7) M(-1)) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70-120% increase in cell spreading from 30 to 60 minutes after plating.

  8. Cathepsin L derived from skeletal muscle cells transfected with bFGF promotes endothelial cell migration.

    PubMed

    Chung, Ji Hyung; Im, Eun Kyoung; Jin, Tae Won; Lee, Seung-Min; Kim, Soo Hyuk; Choi, Eun Young; Shin, Min-Jeong; Lee, Kyung Hye; Jang, Yangsoo

    2011-04-30

    Gene transfer of basic fibroblast growth factor (bFGF) has been shown to induce significant endothelial migration and angiogenesis in ischemic disease models. Here, we investigate what factors are secreted from skeletal muscle cells (SkMCs) transfected with bFGF gene and whether they participate in endothelial cell migration. We constructed replication-defective adenovirus vectors containing the human bFGF gene (Ad/bFGF) or a control LacZ gene (Ad/LacZ) and obtained conditioned media, bFGF-CM and LacZ-CM, from SkMCs infected by Ad/bFGF or Ad/LacZ, respectively. Cell migration significantly increased in HUVECs incubated with bFGF-CM compared to cells incubated with LacZ-CM. Interestingly, HUVEC migration in response to bFGF-CM was only partially blocked by the addition of bFGF-neutralizing antibody, suggesting that bFGF-CM contains other factors that stimulate endothelial cell migration. Several proteins, matrix metalloproteinase-1 (MMP-1), plasminogen activator inhibitor-1 (PAI-1), and cathepsin L, increased in bFGF-CM compared to LacZ-CM; based on 1-dimensional gel electrophoresis and mass spectrometry. Their increased mRNA and protein levels were confirmed by RT-PCR and immunoblot analysis. The recombinant human bFGF protein induced MMP-1, PAI-1, and cathepsin L expression in SkMCs. Endothelial cell migration was reduced in groups treated with bFGF-CM containing neutralizing antibodies against MMP-1 or PAI-1. In particular, HUVECs treated with bFGF-CM containing cell-impermeable cathepsin L inhibitor showed the most significant decrease in cell migration. Cathepsin L protein directly promotes endothelial cell migration through the JNK pathway. These results indicate that cathepsin L released from SkMCs transfected with the bFGF gene can promote endothelial cell migration.

  9. A new type of Schwann cell graft transplantation to promote optic nerve regeneration in adult rats.

    PubMed

    Fang, Yuan; Mo, Xiaofen; Guo, Wenyi; Zhang, Meng; Zhang, Peihua; Wang, Yan; Rong, Xianfang; Tian, Jie; Sun, Xinghuai

    2010-12-01

    Like other parts of the central nervous system, the adult mammalian optic nerve is difficult to regenerate after injury. Transplantation of the peripheral nerve or a Schwann cell (SC) graft can promote injured axonal regrowth. We tried to develop a new type of tissue-engineered SC graft that consisted of SCs seeded onto a poly(lactic-co-glycolic acid)/chitosan conduit. Meanwhile, SCs were transfected along the ciliary neurotrophic factor (CNTF) gene in vitro by electroporation to increase their neurotrophic effect. Four weeks after transplantation, GAP-43 labelled regenerating axons were found in the SC grafts, and axons in the CNTF-SC graft were longer than those in the SC graft. Tissue-engineered SC grafts can provide a feasible environment for optic nerve regeneration and may become an alternative for bridging damaged nerves and repairing nerve defects in the future.

  10. Short communication: malic acid does not promote vaccenic acid accumulation in mixed ruminal fluid with fractionated fish oil by a rumen-simulation technique.

    PubMed

    Liu, L; Wang, J Q; Bu, D P; Liu, S J; Liang, S; Wei, H Y; Zhou, L Y; Liu, K L

    2008-10-01

    The objective of this study was to determine whether malic acid could promote the accumulation of vaccenic acid in the rumen. The control diet was composed of a 65:35 ratio of forage to concentrate with 1% (dry matter basis) added fractionated fish oil (rich in docosahexaenoic acid), and treatment diets consisted of the control diet with added malic acid to achieve final concentrations of 10 mM (treatment 1) and 20 mM (treatment 2), respectively. The experiment was conducted with rumen-simulation equipment (Rusitec) consisting of 9 fermenters. Each treatment included 3 fermenters as replicates. After 7 d of incubation, concentrations of vaccenic acid from treatment 1 (4.38% fatty acids) and treatment 2 (4.46% fatty acids) were similar to that of the control treatment (4.51% fatty acids). The disappearance of docosahexaenoic acid was not different among the control, treatment 1, or treatment 2. These data indicated that malic acid did not promote the accumulation of vaccenic acid in ruminal fluid.

  11. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    SciTech Connect

    Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Portman, Michael A.

    2013-09-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), longchain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.

  12. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    PubMed Central

    Kajimoto, Masaki; O’Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy; Olson, Aaron K.; Portman, Michael A.

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), long-chain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart. PMID:23727393

  13. Synergistic transcriptional enhancement does not depend on the number of acidic activation domains bound to the promoter.

    PubMed Central

    Oliviero, S; Struhl, K

    1991-01-01

    Many eukaryotic transcriptional activator proteins contain a DNA-binding domain that interacts with specific promoter sequences and an acidic activation region that is required to stimulate transcription. Transcriptional enhancement by such activator proteins is often synergistic and promiscuous; promoters containing multiple binding sites for an individual protein or even for unrelated proteins can be 10-100 times more active than promoters with single sites. It has been suggested that such synergy reflects a nonlinear response of the basic transcription machinery to the number and/or quality of acidic activation regions. Here, we determine the transcriptional activity of Jun-Fos heterodimers containing one or two GCN4 acidic activation regions on promoters containing one or two Ap-1 target sites. Surprisingly, heterodimers with one or two acidic regions activate transcription with similar efficiency and are equally synergistic (10- to 15-fold) on promoters containing two target sites. Thus, transcriptional synergy does not depend on the number of acidic activation regions but rather on the number of proteins bound to the promoter. This suggests that synergy is mediated either by cooperative DNA binding or by alternative mechanisms in which the DNA-binding domain plays a more direct role in transcription (e.g., changes in DNA structure, nucleosome displacement, or direct interactions with the transcriptional machinery). Images PMID:1898773

  14. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages.

    PubMed

    Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng

    2014-01-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/-) mice and its potential mechanism. ApoE(-/-) mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/-) mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.

  15. Simultaneous engagement of mechanical stretching and surface pattern promotes cardiomyogenic differentiation of human mesenchymal stem cells.

    PubMed

    Gu, Seo Rin; Kang, Yun Gyeong; Shin, Ji Won; Shin, Jung-Woog

    2017-02-01

    It has been widely recognized and proved that biophysical factors for mimicking in vivo conditions should be also considered to have stem cells differentiated into desired cell type in vitro along with biochemical factors. Biophysical factors include substrate and biomechanical conditions. This study focused on the effect of biomimetic mechanical stretching along with changes in substrate topography to influence on cardiomyogenic differentiation of human mesenchymal stem cells (hMSCs). Elastic micropatterned substrates were made to mimic the geometric conditions surrounding cells in vivo. To mimic biomechanical conditions due to beating of the heart, mechanical stretching was applied parallel to the direction of the pattern (10% elongation, 0.5 Hz, 4 h/day). Suberoylanilide hydroxamic acid (SAHA) was used as a biochemical factor. The micropatterned substrate was found more effective in the alignment of cytoskeleton and cardiomyogenic differentiation compared with flat substrate. Significantly higher expression levels of related markers [GATA binding protein 4 (GATA4), troponin I, troponin T, natriuretic peptide A (NPPA)] were observed when mechanical stretching was engaged on micropatterned substrate. In addition, 4 days of mechanical stretching was associated with higher levels of expression than 2 days of stretching. These results indicate that simultaneous engagement of biomimetic environment such as substrate pattern and mechanical stimuli effectively promotes the cardiomyogenic differentiation of hMSCs in vitro. The suggested method which tried to mimic in vivo microenvironment would provide systematic investigation to control cardiomyogenic differentiation of hMSCs.

  16. Maslinic Acid Inhibits Proliferation of Renal Cell Carcinoma Cell Lines and Suppresses Angiogenesis of Endothelial Cells

    PubMed Central

    Thakor, Parth; Song, Wenzhe; Subramanian, Ramalingam B.; Thakkar, Vasudev R.; Vesey, David A.

    2017-01-01

    Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC) remains a treatment-resistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1), endothelial cells (human umbilical vein endothelial cell line [HUVEC]), and primary cultures of kidney proximal tubular epithelial cells (PTEC) were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  17. Analysis of the rolC promoter region involved in somatic embryogenesis-related activation in carrot cell cultures.

    PubMed Central

    Fujii, N; Yokoyama, R; Uchimiya, H

    1994-01-01

    In cell cultures of carrot (Daucus carota L.), somatic embryogenesis can be induced by transferring cells from a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) to one devoid of 2,4-D. Previous analysis of transgenic carrot cells containing the 5' non-coding sequence of the Ri plasmid rolC and a structural gene for bacterial beta-glucuronidase (uidA) has shown that the chimeric gene is actively expressed after induction of somatic embryogenesis. In this study, we demonstrate that activation of the rolC promoter is dependent on the process of embryo development but not on the duration of the cell culture in 2,4-D-free medium. We also analyzed the cis region of the rolC promoter that is responsible for somatic embryogenesis-related activation (SERA), namely relatively low beta-glucuronidase (GUS) activity in calli and proembryogenic masses (PEM) and high GUS activity in heart- and torpedo-stage embryos. When the -255-bp region of the rolC gene was used, SERA was retained. Internal deletions within this -255-bp region did not alter SERA by the rolC promoter. Furthermore, when a rolC promoter fragment (-848 to -94 bp) was fused to the cauliflower mosaic virus (CaMV) 35S core region (-90 to +6 bp), it conferred relatively low GUS activity in calli and PEM but high GUS activity in heart and torpedo embryos. When -848 to -255-bp or -255- to -94-bp fragments of the rolC promoter were fused to the same CaMV 35S core region, GUS activity patterns were not related to somatic embryogenesis. These results suggest that the combination of several regulatory regions in the rolC promoter may be required for SERA in carrot cell cultures. PMID:8016259

  18. Design of Hyaluronic Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions.

    PubMed

    Tarus, Dominte; Hamard, Lauriane; Caraguel, Flavien; Wion, Didier; Szarpak-Jankowska, Anna; van der Sanden, Boudewijn; Auzély-Velty, Rachel

    2016-09-28

    A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain.

  19. Ethanol Promotes Chemically Induced Oral Cancer in Mice through Activation of the 5-Lipoxygenase Pathway of Arachidonic Acid Metabolism

    PubMed Central

    Guo, Yizhu; Wang, Xin; Zhang, Xinyan; Sun, Zheng; Chen, Xiaoxin

    2011-01-01

    Alcohol drinking is a known risk factor for oral cancer in humans. However, previous animal studies on the promoting effect of ethanol on oral carcinogenesis were inconclusive. It is necessary to develop an animal model with which the molecular mechanism of ethanol-related oral carcinogenesis may be elucidated in order to develop effective prevention strategies. In this study, mice were first treated with 4-nitroquinoline-1-oxide (4NQO, 100μg/ml in drinking water) for 8 weeks, and then given water or ethanol (8%) as the sole drink for another 16 weeks. During the experiment, 8% ethanol was well tolerated by mice. The incidence of squamous cell carcinoma (SCC) increased from 20% (8/41) to 43% (17/40; p<0.05). Expression of 5-lipoxygenase (5-Lox) and cyclooxygenase 2 (Cox-2) was increased in dysplasia and SCC of 4NQO-treated tongues, and further enhanced by ethanol. Using this mouse model, we further demonstrated that fewer cancers were induced in Alox5−/− mice, as were cell proliferation, inflammation, and angiogenesis in the tongue, as compared with Alox5+/+ mice. Interestingly, Cox-2 expression was induced by ethanol in knockout mice, while 5-Lox and leukotriene A4 hydrolase (LTA4H) expression and leukotriene B4 (LTB4) biosynthesis were dramatically reduced. Moreover, ethanol enhanced expression and nuclear localization of 5-Lox and stimulated LTB4 biosynthesis in human tongue SCC cells (SCC-15 and SCC-4) in vitro. In conclusion, this study clearly demonstrated that ethanol promoted 4NQO-induced oral carcinogenesis, at least in part, through further activation of the 5-Lox pathway of arachidonic acid metabolism. PMID:21881027

  20. TAZ promotes cell growth and inhibits Celastrol-induced cell apoptosis.

    PubMed

    Wang, Shuren; Ma, Kai; Chen, Lechuang; Zhu, Hongxia; Liang, Shufang; Liu, Mei; Xu, Ningzhi

    2016-10-01

    Hippo pathway is a highly conservative signalling pathway related to the development of organisms, which has been demonstrated to be strongly linked to the tumorigenesis and tumour progression. As the major downstream effector of Hippo pathway, yes-associated protein (YAP), is a transcriptional activator of target genes that are involved in cell proliferation and survival. As an oncogene, YAP can promote cell growth and inhibit cell apoptosis. Another major downstream effector of Hippo pathway, transcriptional co-activators with PDZ-binding motif (TAZ), is nearly 60% homologous with YAP. In the present study, we assume that TAZ probably has the similar function to YAP. To test this issue, we established an inducible and a stable expression system of TAZ in T-Rex-293 and HEK293 cells respectively. The results of cell growth curves, colony formation assay and tumour xenograft growth showed that overexpression of TAZ could promote cell growth in vitro and in vivo Meanwhile, we found that up-regulated expression of TAZ could partially restore Celastrol-induced cell apoptosis. Induced overexpression of TAZ could up-regulate its target genes including ankyrin repeat domain-containing protein (ANKRD), cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF), increase the expression of B-cell lymphoma-2 (Bcl-2), decrease the expression of Bcl-2 associated X protein (Bax) and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which may be the mechanism underlying anti-apoptosis of TAZ. All these findings indicated that TAZ acts as an oncogene that could be a key regulator of cell proliferation and apoptosis.

  1. TAZ promotes cell growth and inhibits Celastrol-induced cell apoptosis

    PubMed Central

    Wang, Shuren; Ma, Kai; Chen, Lechuang; Zhu, Hongxia; Liang, Shufang; Liu, Mei; Xu, Ningzhi

    2016-01-01

    Hippo pathway is a highly conservative signalling pathway related to the development of organisms, which has been demonstrated to be strongly linked to the tumorigenesis and tumour progression. As the major downstream effector of Hippo pathway, yes-associated protein (YAP), is a transcriptional activator of target genes that are involved in cell proliferation and survival. As an oncogene, YAP can promote cell growth and inhibit cell apoptosis. Another major downstream effector of Hippo pathway, transcriptional co-activators with PDZ-binding motif (TAZ), is nearly 60% homologous with YAP. In the present study, we assume that TAZ probably has the similar function to YAP. To test this issue, we established an inducible and a stable expression system of TAZ in T-Rex-293 and HEK293 cells respectively. The results of cell growth curves, colony formation assay and tumour xenograft growth showed that overexpression of TAZ could promote cell growth in vitro and in vivo. Meanwhile, we found that up-regulated expression of TAZ could partially restore Celastrol-induced cell apoptosis. Induced overexpression of TAZ could up-regulate its target genes including ankyrin repeat domain-containing protein (ANKRD), cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF), increase the expression of B-cell lymphoma-2 (Bcl-2), decrease the expression of Bcl-2 associated X protein (Bax) and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which may be the mechanism underlying anti-apoptosis of TAZ. All these findings indicated that TAZ acts as an oncogene that could be a key regulator of cell proliferation and apoptosis. PMID:27515420

  2. Okadaic Acid Toxin at Sublethal Dose Produced Cell Proliferation in Gastric and Colon Epithelial Cell Lines

    PubMed Central

    del Campo, Miguel; Toledo, Héctor; Lagos, Néstor

    2013-01-01

    The aim of this study was to analyze the effect of Okadaic Acid (OA) on the proliferation of gastric and colon epithelial cells, the main target tissues of the toxin. We hypothesized that OA, at sublethal doses, activates multiple signaling pathways, such as Erk and Akt, through the inhibition of PP2A. To demonstrate this, we carried out curves of doses and time response against OA in AGS, MKN-45 and Caco 2 cell lines, and found an increase in the cell proliferation at sublethal doses, at 24 h or 48 h exposure. Indeed, cells can withstand high concentrations of the toxin at 4 h exposure, the time chosen considering the maximum time before total gastric emptying. We have proved that this increased proliferation is due to an overexpression of Cyclin B, a cyclin that promotes the passage from G2 to mitosis. In addition, we have demonstrated that OA induces activation of Akt and Erk in the three cells lines, showing that OA can activate pathways involved in oncogenesis. In conclusion, this study contributes to the knowledge about the possible effects of chronic OA consumption. PMID:24317467

  3. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    PubMed Central

    Huang, Wen-Shih; Yang, Jen-Tsung; Lu, Chien-Chang; Chang, Shun-Fu; Chen, Cheng-Nan; Su, Yu-Ping; Lee, Ko-Chao

    2015-01-01

    A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC). Hence, resistin may play a role in CRC development. Fulvic acid (FA), a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative) and SW-48 (p53-positive) CRC cells and human umbilical vein endothelial cells (HUVECs) were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin. PMID:26690142

  4. Designer nucleic acids to probe and program the cell.

    PubMed

    Krishnan, Yamuna; Bathe, Mark

    2012-12-01

    Recent advances in nucleic acid sequencing, structural, and computational technologies have resulted in dramatic progress in our understanding of nucleic acid structure and function in the cell. This knowledge, together with the predictable base-pairing of nucleic acids and powerful synthesis and expression capabilities now offers the unique ability to program nucleic acids to form precise 3D architectures with diverse applications in synthetic and cell biology. The unique modularity of structural motifs that include aptamers, DNAzymes, and ribozymes, together with their well-defined construction rules, enables the synthesis of functional higher-order nucleic acid complexes from these subcomponents. As we illustrate here, these highly programmable, smart complexes are increasingly enabling researchers to probe and program the cell in a sophisticated manner that moves well beyond the use of nucleic acids for conventional genetic manipulation alone.

  5. Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation.

    PubMed

    Li, Hao; Liu, Yaodong; Jiao, Yumin; Guo, Anchen; Xu, Xiaoxue; Qu, Xianjun; Wang, Shuo; Zhao, Jizong; Li, Ye; Cao, Yong

    2016-01-01

    Glioblastoma-initiating cells play crucial roles in the origin, growth, and recurrence of glioblastoma multiforme. The elimination of glioblastoma-initiating cells is believed to be a key strategy for achieving long-term survival of glioblastoma patients due to the highly resistant property of glioblastoma-initiating cells to temozolomide. Resveratrol, a naturally occurring polyphenol, has been widely studied as a promising candidate for cancer prevention and treatment. Whether resveratrol could enhance the sensitivity of glioblastoma-initiating cells to temozolomide therapy has not yet been reported. Here, using patient-derived glioblastoma-initiating cell lines, we found that resveratrol sensitized glioblastoma-initiating cells to temozolomide both in vitro and in vivo. Furthermore, we showed that resveratrol enhanced glioblastoma-initiating cells to temozolomide-induced apoptosis through DNA double-stranded breaks/pATM/pATR/p53 pathway activation, and promoted glioblastoma-initiating cell differentiation involving p-STAT3 inactivation. Our results propose that temozolomide and resveratrol combination strategy may be effective in the management of glioblastoma patients, particularly for those patients who have been present with a high abundance of glioblastoma-initiating cells in their tumors and show slight responsiveness to temozolomide.

  6. CREG1 Interacts with Sec8 to Promote Cardiomyogenic Differentiation and Cell-Cell Adhesion.

    PubMed

    Liu, Jie; Qi, Yanmei; Li, Shaohua; Hsu, Shu-Chan; Saadat, Siavash; Hsu, June; Rahimi, Saum A; Lee, Leonard Y; Yan, Chenghui; Tian, Xiaoxiang; Han, Yanling

    2016-06-22

    Understanding the regulation of cell-cell interactions during the formation of compact myocardial structures is important for achieving true cardiac regeneration through enhancing the integration of stem cell-derived cardiomyocytes into the recipient myocardium. In this study, we found that cellular repressor of E1A-stimulated genes 1 (CREG1) is highly expressed in both embryonic and adult hearts. Gain- and loss-of-function analyses demonstrated that CREG1 is required for differentiation of mouse embryonic stem (ES) cell into cardiomyocytes and the formation of cohesive myocardium-like structures in a cell-autonomous fashion. Furthermore, CREG1 directly interacts with Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Site-directed mutagenesis and rescue of CREG1 knockout ES cells showed that CREG1 binding to Sec8 is required for cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8, and N-cadherin colocalize at intercalated discs in vivo and are enriched at cell-cell junctions in cultured cardiomyocytes. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis. Stem Cells 2016.

  7. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    PubMed Central

    Yang, Chun-ming; Ji, Shan; Li, Yan; Fu, Li-ye; Jiang, Tao; Meng, Fan-dong

    2017-01-01

    β-Catenin (CTNNB1 gene coding protein) is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC) cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC. PMID:28260916

  8. RelB-Dependent Stromal Cells Promote T-Cell Leukemogenesis

    PubMed Central

    dos Santos, Nuno R.; Williame, Maryvonne; Gachet, Stéphanie; Cormier, Françoise; Janin, Anne; Weih, Debra; Weih, Falk; Ghysdael, Jacques

    2008-01-01

    Background The Rel/NF-κB transcription factors are often activated in solid or hematological malignancies. In most cases, NF-κB activation is found in malignant cells and results from activation of the canonical NF-κB pathway, leading to RelA and/or c-Rel activation. Recently, NF-κB activity in inflammatory cells infiltrating solid tumors has been shown to contribute to solid tumor initiation and progression. Noncanonical NF-κB activation, which leads to RelB activation, has also been reported in breast carcinoma, prostate cancer, and lymphoid leukemia. Methodology/Principal Findings Here we report a novel role for RelB in stromal cells that promote T-cell leukemogenesis. RelB deficiency delayed leukemia onset in the TEL-JAK2 transgenic mouse model of human T acute lymphoblastic leukemia. Bone marrow chimeric mouse experiments showed that RelB is not required in the hematopoietic compartment. In contrast, RelB plays a role in radio-resistant stromal cells to accelerate leukemia onset and increase disease severity. Conclusions/Significance The present results are the first to uncover a role for RelB in the crosstalk between non-hematopoietic stromal cells and leukemic cells. Thus, besides its previously reported role intrinsic to specific cancer cells, the noncanonical NF-κB pathway may also play a pro-oncogenic role in cancer microenvironmental cells. PMID:18596915

  9. Subcutaneous fatty acid composition of steers finished as weanlings or yearlings with and without growth promotants

    PubMed Central

    2013-01-01

    Background The current study evaluated the subcutaneous fatty acid (FA) composition of calf- and yearling-fed steers with or without growth promoting implants. Crossbred steers (n = 112; 267 ± 5.0 kg) of the same contemporary group were allocated to one of four production system and implant strategy based treatments in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Results There were no interactions (P > 0.05) between production systems and growth promoting implants for the total and individual subcutaneous FA. Yearling as opposed to calf finishing reduced (P < 0.05) subcutaneous proportions of C20:3n-6, trans (t)12-18:1, C14:0, several minor cis-monounsaturated FA (c-MUFA; c9-14:1, c11-16:1, c11-18:1, c12-18:1, c13-18:1, c9-20:1 and c11-20:1), and increased (P < 0 .05) subcutaneous proportions of t11c15-18:2, total and individual branched-chain FA. Subcutaneous fat from steers implanted with growth promotants had higher (P < 0.05) proportions of total polyunsaturated FA (PUFA), total n-6 PUFA, C18:2n-6 and individual t-18:1 isomers (t6 to t10) compared to non-implanted steers. Conclusions Overall, current findings show that production systems and growth promotants led to only minor differences in subcutaneous FA composition of beef steers. PMID:24188642

  10. Aluminium chloride promotes tumorigenesis and metastasis in normal murine mammary gland epithelial cells

    PubMed Central

    Tenan, Mirna; Ferrari, Paolo; Sappino, André‐Pascal

    2016-01-01

    Aluminium salts, present in many industrial products of frequent use like antiperspirants, anti‐acid drugs, food additives and vaccines, have been incriminated in contributing to the rise in breast cancer incidence in Western societies. However, current experimental evidence supporting this hypothesis is limited. For example, no experimental evidence that aluminium promotes tumorigenesis in cultured mammary epithelial cells exists. We report here that long‐term exposure to concentrations of aluminium—in the form of aluminium chloride (AlCl3)—in the range of those measured in the human breast, transform normal murine mammary gland (NMuMG) epithelial cells in vitro as revealed by the soft agar assay. Subcutaneous injections into three different mouse strains with decreasing immunodeficiency, namely, NOD SCID gamma (NSG), NOD SCID or nude mice, revealed that untreated NMuMG cells form tumors and metastasize, to a limited extent, in the highly immunodeficient and natural killer (NK) cell deficient NSG strain, but not in the less permissive and NK cell competent NOD SCID or nude strains. In contrast, NMuMG cells transformed in vitro by AlCl3 form large tumors and metastasize in all three mouse models. These effects correlate with a mutagenic activity of AlCl3. Our findings demonstrate for the first time that concentrations of aluminium in the range of those measured in the human breast fully transform cultured mammary epithelial cells, thus enabling them to form tumors and metastasize in well‐established mouse cancer models. Our observations provide experimental evidence that aluminium salts could be environmental breast carcinogens. PMID:27541736

  11. Arachidonic acid inhibits glycine transport in cultured glial cells.

    PubMed Central

    Zafra, F; Alcantara, R; Gomeza, J; Aragon, C; Gimenez, C

    1990-01-01

    The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier. PMID:2121132

  12. [Accumulation of amino acid substitutions promotes irreversible structural changes in the hemagglutinin of human influenza AH3 virus during evolution].

    PubMed

    Nakajima, Katsuhisa; Nobusawa, Eri; Nakajima, Setsuko

    2006-06-01

    During protein evolution the amino acid substitutions accumulate with time. However, the effect of accumulation of the amino acid substitutions to structural changes has not been estimated well. We will propose that the discordance of amino acid substitution on the HA protein of influenza A virus is useful for the assessment of structural changes during evolution. Discordance value can be obtained from the experimental data of tolerance or intolerance by introducing site directed mutagenesis at the homologous positions of two HA proteins holding the same amino acid residues. The value of discordance correlated to the number of amino acid differences among proteins. In the H3HA discordance rate was calculated to be 0.45% per one amino acid change. Furthermore, discordance of amino acid substitutions suggests that tolerable amino acid substitutions in different order have a probability of promoting irreversible divergence of the HA protein to different subtypes.

  13. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

    PubMed Central

    Sirois, Cherilyn M.; Jin, Tengchuan; Miller, Allison L.; Bertheloot, Damien; Nakamura, Hirotaka; Horvath, Gabor L.; Mian, Abubakar; Jiang, Jiansheng; Schrum, Jacob; Bossaller, Lukas; Pelka, Karin; Garbi, Natalio; Brewah, Yambasu; Tian, Jane; Chang, ChewShun; Chowdhury, Partha S.; Sims, Gary P.; Kolbeck, Roland; Coyle, Anthony J.; Humbles, Alison A.

    2013-01-01

    Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE–DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo. PMID:24081950

  14. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  15. Chemotactic Migration of T Cells towards Dendritic Cells Promotes the Detection of Rare Antigens

    PubMed Central

    Vroomans, Renske M. A.; Marée, Athanasius F. M.; de Boer, Rob J.; Beltman, Joost B.

    2012-01-01

    In many immunological processes chemoattraction is thought to play a role in guiding cells to their sites of action. However, based on in vivo two-photon microscopy experiments in the absence of cognate antigen, T cell migration in lymph nodes (LNs) has been roughly described as a random walk. Although it has been shown that dendritic cells (DCs) carrying cognate antigen in some circumstances attract T cells chemotactically, it is currently still unclear whether chemoattraction of T cells towards DCs helps or hampers scanning. Chemoattraction towards DCs could on the one hand help T cells to rapidly find DCs. On the other hand, it could be deleterious if DCs become shielded by a multitude of attracted yet non-specific T cells. Results from a recent simulation study suggested that the deleterious effect dominates. We re-addressed the question whether T cell chemoattraction towards DCs is expected to promote or hamper the detection of rare antigens using the Cellular Potts Model, a formalism that allows for dynamic, flexible cellular shapes and cell migration. Our simulations show that chemoattraction of T cells enhances the DC scanning efficiency, leading to an increased probability that rare antigen-specific T cells find DCs carrying cognate antigen. Desensitization of T cells after contact with a DC further improves the scanning efficiency, yielding an almost threefold enhancement compared to random migration. Moreover, the chemotaxis-driven migration still roughly appears as a random walk, hence fine-tuned analysis of cell tracks will be required to detect chemotaxis within microscopy data. PMID:23166480

  16. Chemotactic migration of T cells towards dendritic cells promotes the detection of rare antigens.

    PubMed

    Vroomans, Renske M A; Marée, Athanasius F M; de Boer, Rob J; Beltman, Joost B

    2012-01-01

    In many immunological processes chemoattraction is thought to play a role in guiding cells to their sites of action. However, based on in vivo two-photon microscopy experiments in the absence of cognate antigen, T cell migration in lymph nodes (LNs) has been roughly described as a random walk. Although it has been shown that dendritic cells (DCs) carrying cognate antigen in some circumstances attract T cells chemotactically, it is currently still unclear whether chemoattraction of T cells towards DCs helps or hampers scanning. Chemoattraction towards DCs could on the one hand help T cells to rapidly find DCs. On the other hand, it could be deleterious if DCs become shielded by a multitude of attracted yet non-specific T cells. Results from a recent simulation study suggested that the deleterious effect dominates. We re-addressed the question whether T cell chemoattraction towards DCs is expected to promote or hamper the detection of rare antigens using the Cellular Potts Model, a formalism that allows for dynamic, flexible cellular shapes and cell migration. Our simulations show that chemoattraction of T cells enhances the DC scanning efficiency, leading to an increased probability that rare antigen-specific T cells find DCs carrying cognate antigen. Desensitization of T cells after contact with a DC further improves the scanning efficiency, yielding an almost threefold enhancement compared to random migration. Moreover, the chemotaxis-driven migration still roughly appears as a random walk, hence fine-tuned analysis of cell tracks will be required to detect chemotaxis within microscopy data.

  17. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    SciTech Connect

    Joo, Hyung Joon; Seo, Ha-Rim; Jeong, Hyo Eun; Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  18. Lactic acid fermentation in cell-recycle membrane bioreactor.

    PubMed

    Choudhury, B; Swaminathan, T

    2006-02-01

    Traditional lactic acid fermentation suffers from low productivity and low product purity. Cell-recycle fermentation has become one of the methods to obtain high cell density, which results in higher productivity. Lactic acid fermentation was investigated in a cell-recycle membrane bioreactor at higher substrate concentrations of 100 and 120 g/dm3. A maximum cell density of 145 g/dm3 and a maximum productivity of 34 g/(dm3.h) were achieved in cell-recycle fermentation. In spite of complete consumption of substrate, there was a continuous increase in cell density in cell-recycle fermentation. Control of cell density in cell-recycle fermentation was attempted by cell bleeding and reduction in yeast extract concentration.

  19. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  20. Effects of omega-3 fatty acids on regulatory T cells in hematologic neoplasms

    PubMed Central

    Betiati, Dayanne da Silva Borges; de Oliveira, Paula Fernanda; Camargo, Carolina de Quadros; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes

    2013-01-01

    The development of leukemia and lymphomas is related to the increase in inflammatory process modulators. These, in turn, have divergent actions on the neoplastic process. Populations of T cells have different roles in the neoplastic environment; while interferon-gamma positive T cells have antitumor activity, the FoxP3+interleukin-10 positive population present a pro-tumor activity. Simultaneously, the inflammatory process promotes the mobilization of fatty acids from the cell membrane to produce lipid mediators, which also participate of the inflammatory response. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) omega-3 fatty acids, when incorporated in the plasmatic membrane, decrease the arachidonic acid (AA) metabolism and the production of eicosanoids derived from it. Thus, an alternative family of lipid mediators are produced that are often less inflammatory than those produced from arachidonic acid. Fatty acids can also influence the production of peptide mediators such as cytokines, and the expression of transcription factors, which can determine the production patterns of eicosanoids and cytokines as well as cell differentiation. Due to these properties, the objective of this literature review was to investigate studies published over the last 15 years on the effects of using omega-3 fatty acids on inflammatory markers in leukemia and lymphomas. PMID:23741190

  1. C-type lectin-like receptor LOX-1 promotes dendritic cell-mediated class-switched B cell responses.

    PubMed

    Joo, HyeMee; Li, Dapeng; Dullaers, Melissa; Kim, Tae-Whan; Duluc, Dorothee; Upchurch, Katherine; Xue, Yaming; Zurawski, Sandy; Le Grand, Roger; Liu, Yong-Jun; Kuroda, Marcelo; Zurawski, Gerard; Oh, SangKon

    2014-10-16

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a pattern-recognition receptor for a variety of endogenous and exogenous ligands. However, LOX-1 function in the host immune response is not fully understood. Here, we report that LOX-1 expressed on dendritic cells (DCs) and B cells promotes humoral responses. On B cells LOX-1 signaling upregulated CCR7, promoting cellular migration toward lymphoid tissues. LOX-1 signaling on DCs licensed the cells to promote B cell differentiation into class-switched plasmablasts and led to downregulation of chemokine receptor CXCR5 and upregulation of chemokine receptor CCR10 on plasmablasts, enabling their exit from germinal centers and migration toward local mucosa and skin. Finally, we found that targeting influenza hemagglutinin 1 (HA1) subunit to LOX-1 elicited HA1-specific protective antibody responses in rhesus macaques. Thus, LOX-1 expressed on B cells and DC cells has complementary functions to promote humoral immune responses.

  2. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  3. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell

    PubMed Central

    Li, Wei; Zou, Wei; Yang, Yihong; Chai, Yongping; Chen, Baohui; Cheng, Shiya; Tian, Dong

    2012-01-01

    Apoptotic cell degradation is a fundamental process for organism development, and impaired clearance causes inflammatory or autoimmune disease. Although autophagy genes were reported to be essential for exposing the engulfment signal on apoptotic cells, their roles in phagocytes for apoptotic cell removal are not well understood. In this paper, we develop live-cell imaging techniques to study apoptotic cell clearance in the Caenorhabditis elegans Q neuroblast lineage. We show that the autophagy proteins LGG-1/LC3, ATG-18, and EPG-5 were sequentially recruited to internalized apoptotic Q cells in the phagocyte. In atg-18 or epg-5 mutants, apoptotic Q cells were internalized but not properly degraded; this phenotype was fully rescued by the expression of autophagy genes in the phagocyte. Time-lapse analysis of autophagy mutants revealed that recruitment of the small guanosine triphosphatases RAB-5 and RAB-7 to the phagosome and the formation of phagolysosome were all significantly delayed. Thus, autophagy genes act within the phagocyte to promote apoptotic cell degradation. PMID:22451698

  4. PVM/MA-shelled selol nanocapsules promote cell cycle arrest in A549 lung adenocarcinoma cells

    PubMed Central

    2014-01-01

    Background Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol’s hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). Results Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. Conclusions This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells. PMID:25149827

  5. Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition

    PubMed Central

    Tarrado-Castellarnau, Míriam; Cortés, Roldán; Zanuy, Miriam; Tarragó-Celada, Josep; Polat, Ibrahim H.; Hill, Richard; Fan, Teresa W.; Link, Wolfgang; Cascante, Marta

    2016-01-01

    Selenium supplement has been shown in clinical trials to reduce the risk of different cancers including lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better understanding of the downstream cellular targets of MSA will provide information on its mechanism of action and will help to optimise its use in combination therapies with PI3K inhibitors. For this study, the effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and Reactive Oxygen Species production were analysed in A549 cells. FOXO3a subcellular localisation was examined in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate that MSA induces FOXO3a nuclear translocation in A549 cells and in U2OS cells that stably express GFP-FOXO3a. Interestingly, sodium selenite, another selenium compound, did not induce any significant effects on FOXO3a translocation despite inducing apoptosis. Single strand break of DNA, disruption of tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied by induction of apoptosis are late events occurring after 24 h of MSA treatment in A549 cells. Our findings suggest that FOXO3a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent with synergistic antiproliferative effects with cisplatin. PMID:26375988

  6. Pseudolaric acid B activates autophagy in MCF-7 human breast cancer cells to prevent cell death

    PubMed Central

    YU, JINGHUA; CHEN, CHUNHAI; XU, TIANYANG; YAN, MINGHUI; XUE, BIANBIAN; WANG, YING; LIU, CHUNYU; ZHONG, TING; WANG, ZENGYAN; MENG, XIANYING; HU, DONGHUA; YU, XIAOFANG

    2016-01-01

    Pseudolaric acid B (PAB) has been demonstrated to exert antitumor effects in MCF-7 human breast cancer cells. The present study aimed to investigate the mechanism of resistance to PAB-induced cell death. Following incubation with 4 µM of PAB for 3 days, the majority of MCF-7 cells became senescent, while some retained the same morphology as control cells, as assessed using a senescence detection kit. Additionally, 36 h of treatment with 4 µM of PAB increased the positive staining of autophagy markers, as shown by monodansylcadaverine and acridine orange staining. Western blot analysis indicated that this treatment also increased expression of the autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3. Furthermore, treatment with PAB and the autophagy inhibitor 3-methyl adenine significantly decreased the ratio of autophagy, as assessed by flow cytometric analysis of monodansylcadaverine staining density (P<0.001), and increased the ratio of cell death, as assessed by MTT analysis (P<0.001). This indicated that autophagy promotes cell survival as a resistance mechanism to PAB treatment. Additionally, the present study demonstrated that PAB treatment did not affect the mitochondrial membrane potential, which may be related to autophagy. Increased Bcl-2 expression may explain why PAB did not affect the mitochondrial membrane potential. A Bcl-2 binding test demonstrated that PAB treatment inhibits the binding of Bcl-2 and Beclin-1, which may free Beclin-1 to participate in autophagy. Therefore, the present study demonstrated that autophagy may be activated by PAB treatment in human breast cancer MCF-7 cells, contributing to resistance to cell death. PMID:26998069

  7. Pseudolaric acid B activates autophagy in MCF-7 human breast cancer cells to prevent cell death.

    PubMed

    Yu, Jinghua; Chen, Chunhai; Xu, Tianyang; Yan, Minghui; Xue, Bianbian; Wang, Ying; Liu, Chunyu; Zhong, Ting; Wang, Zengyan; Meng, Xianying; Hu, Donghua; Yu, Xiaofang

    2016-03-01

    Pseudolaric acid B (PAB) has been demonstrated to exert antitumor effects in MCF-7 human breast cancer cells. The present study aimed to investigate the mechanism of resistance to PAB-induced cell death. Following incubation with 4 µM of PAB for 3 days, the majority of MCF-7 cells became senescent, while some retained the same morphology as control cells, as assessed using a senescence detection kit. Additionally, 36 h of treatment with 4 µM of PAB increased the positive staining of autophagy markers, as shown by monodansylcadaverine and acridine orange staining. Western blot analysis indicated that this treatment also increased expression of the autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3. Furthermore, treatment with PAB and the autophagy inhibitor 3-methyl adenine significantly decreased the ratio of autophagy, as assessed by flow cytometric analysis of monodansylcadaverine staining density (P<0.001), and increased the ratio of cell death, as assessed by MTT analysis (P<0.001). This indicated that autophagy promotes cell survival as a resistance mechanism to PAB treatment. Additionally, the present study demonstrated that PAB treatment did not affect the mitochondrial membrane potential, which may be related to autophagy. Increased Bcl-2 expression may explain why PAB did not affect the mitochondrial membrane potential. A Bcl-2 binding test demonstrated that PAB treatment inhibits the binding of Bcl-2 and Beclin-1, which may free Beclin-1 to participate in autophagy. Therefore, the present study demonstrated that autophagy may be activated by PAB treatment in human breast cancer MCF-7 cells, contributing to resistance to cell death.

  8. Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents

    PubMed Central

    Lee, Cheng-Hung; Yu, Chia-Ying; Chang, Shang-Hung; Hung, Kuo-Chun; Liu, Shih-Jung; Wang, Chao-Jan; Hsu, Ming-Yi; Hsieh, I-Chang; Chen, Wei-Jan; Ko, Yu-Shien; Wen, Ming-Shien

    2014-01-01

    Introduction This work reports on the development of a biodegradable dual-drug-eluting stent with sequential-like and sustainable drug-release of anti-platelet acetylsalicylic acid and anti-smooth muscle cell (SMC) proliferative paclitaxel. Methods To fabricate the biodegradable stents, poly-L-lactide strips are first cut from a solvent-casted film. They are rolled onto the surface of a metal pin to form spiral stents. The stents are then consecutively covered by acetylsalicylic acid and paclitaxel-loaded polylactide-polyglycolide nanofibers via electrospinning. Results Biodegradable stents exhibit mechanical properties that are superior to those of metallic stents. Biodegradable stents sequentially release high concentrations of acetylsalicylic acid and paclitaxel for more than 30 and 60 days, respectively. In vitro, the eluted drugs promote endothelial cell numbers on days 3 and 7, and reduce the proliferation of SMCs in weeks 2, 4, and 8. The stents markedly inhibit the adhesion of platelets on days 3, 7, and 14 relative to a non-drug-eluting stent. In vivo, the implanted stent is intact, and no stent thrombosis is observed in the stent-implanted vessels without the administration of daily oral acetylsalicylic acid. Promotion of endothelial recovery and inhibition of neointimal hyperplasia are also observed on the stented vessels. Conclusion The work demonstrates the efficiency and safety of the biodegradable dual-drug-eluting stents with sequential and sustainable drug release to diseased arteries. PMID:25206303

  9. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    SciTech Connect

    Busov, Victor

    2013-03-05

    -oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response. Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For example

  10. Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging

    PubMed Central

    Füzik, Tibor; Píchalová, Růžena; Schur, Florian K. M.; Strohalmová, Karolína; Křížová, Ivana; Hadravová, Romana; Rumlová, Michaela; Briggs, John A. G.

    2016-01-01

    ABSTRACT The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This

  11. Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation

    PubMed Central

    Ichihara, Yoshinori; Doi, Toru; Ryu, Youngjae; Nagao, Motoshi; Sawada, Yasuhiro

    2016-01-01

    Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4‐dideoxy‐1,4‐imino‐d‐arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC‐rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU‐positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate‐mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α‐cyano‐4‐hydroxy‐cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986–995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27861886

  12. Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation.

    PubMed

    Ichihara, Yoshinori; Doi, Toru; Ryu, Youngjae; Nagao, Motoshi; Sawada, Yasuhiro; Ogata, Toru

    2017-05-01

    Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC-rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU-positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate-mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α-cyano-4-hydroxy-cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986-995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  13. Clove Extract Inhibits Tumor Growth and Promotes Cell Cycle Arrest and Apoptosis

    PubMed Central

    Liu, Haizhou; Schmitz, John C.; Wei, Jianteng; Cao, Shousong; Beumer, Jan H.; Strychor, Sandra; Cheng, Linyou; Liu, Ming; Wang, Cuicui; Wu, Ning; Zhao, Xiangzhong; Zhang, Yuyan; Liao, Joshua; Chu, Edward; Lin, Xiukun

    2014-01-01

    Cloves (Syzygium aromaticum) have been used as a traditional Chinese medicinal herb for thousands of years. Cloves possess antiseptic, antibacterial, antifungal, and antiviral properties, but their potential anticancer activity remains unknown. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of ethyl acetate extract of cloves (EAEC) and the potential bioactive components responsible for its antitumor activity. The effects of EAEC on cell growth, cell cycle distribution, and apoptosis were investigated using human cancer cell lines. The molecular changes associated with the effects of EAEC were analyzed by Western blot and (qRT)-PCR analysis. The in vivo effect of EAEC and its bioactive component was investigated using the HT-29 tumor xenograft model. We identified oleanolic acid (OA) as one of the components of EAEC responsible for its antitumor activity. Both EAEC and OA display cytotoxicity against several human cancer cell lines. Interestingly, EAEC was superior to OA and the chemotherapeutic agent 5-fluorouracil at suppressing growth of colon tumor xenografts. EAEC promoted G0/G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. Treatment with EAEC and OA selectively increased protein expression of p21WAF1/Cip1 and γ-H2AX and downregulated expression of cell cycle-regulated proteins. Moreover, many of these changes were at the mRNA level, suggesting transcriptional regulation by EAEC treatment. Our results demonstrate that clove extract may represent a novel therapeutic herb for the treatment of colorectal cancer, and OA appears to be one of the bioactive components. PMID:24854101

  14. Clove extract inhibits tumor growth and promotes cell cycle arrest and apoptosis.

    PubMed

    Liu, Haizhou; Schmitz, John C; Wei, Jianteng; Cao, Shousong; Beumer, Jan H; Strychor, Sandra; Cheng, Linyou; Liu, Ming; Wang, Cuicui; Wu, Ning; Zhao, Xiangzhong; Zhang, Yuyan; Liao, Joshua; Chu, Edward; Lin, Xiukun

    2014-01-01

    Cloves (Syzygium aromaticum) have been used as a traditional Chinese medicinal herb for thousands of years. Cloves possess antiseptic, antibacterial, antifungal, and antiviral properties, but their potential anticancer activity remains unknown. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of ethyl acetate extract of cloves (EAEC) and the potential bioactive components responsible for its antitumor activity. The effects of EAEC on cell growth, cell cycle distribution, and apoptosis were investigated using human cancer cell lines. The molecular changes associated with the effects of EAEC were analyzed by Western blot and (qRT)-PCR analysis. The in vivo effect of EAEC and its bioactive component was investigated using the HT-29 tumor xenograft model. We identified oleanolic acid (OA) as one of the components of EAEC responsible for its antitumor activity. Both EAEC and OA display cytotoxicity against several human cancer cell lines. Interestingly, EAEC was superior to OA and the chemotherapeutic agent 5-fluorouracil at suppressing growth of colon tumor xenografts. EAEC promoted G0/G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. Treatment with EAEC and OA selectively increased protein expression of p21(WAF1/Cip1) and γ-H2AX and downregulated expression of cell cycle-regulated proteins. Moreover, many of these changes were at the mRNA level, suggesting transcriptional regulation by EAEC treatment. Our results demonstrate that clove extract may represent a novel therapeutic herb for the treatment of colorectal cancer, and OA appears to be one of the bioactive components.

  15. Effect of Combined Treatment with Ursolic Acid and Resveratrol on Skin Tumor Promotion by 12-O-Tetradecanoylphorbol-13-Acetate.

    PubMed

    Cho, Jiyoon; Rho, Okkyung; Junco, Jacob; Carbajal, Steve; Siegel, Dionicio; Slaga, Thomas J; DiGiovanni, John

    2015-09-01

    In this study, the effects of combining ursolic acid + resveratrol, for possible combined inhibitory effects on skin tumor promotion, were evaluated. Ursolic acid, resveratrol, and the combination of ursolic acid + resveratrol were applied topically prior to 12-O-tetracanoylphorbol-13-acetate (TPA) treatment on mouse skin to examine their effect on TPA-induced signaling pathways, epidermal hyperproliferation, skin inflammation, inflammatory gene expression, and skin tumor promotion. The combination of ursolic acid + resveratrol produced a greater inhibition of TPA-induced epidermal hyperproliferation. The combination of ursolic acid + resveratrol inhibited TPA-induced signaling pathways, including EGFR, STAT3, Src, Akt, Cox-2, Fas, NF-κB, p38 MAPK, c-Jun, and JNK1/2 while increasing levels of tumor suppressors, such as p21 and PDCD4, to a greater extent compared with the groups treated with the individual compounds. Ursolic acid + resveratrol also induced a dramatic increase of p-AMPK-α(Thr172). Combined treatment with ursolic acid + resveratrol resulted in a greater inhibition of expression of proinflammatory cytokines, including Il1a, Il1b, and Il22. Furthermore, NF-κB, Egr-1, and AP-1 DNA binding activities after TPA treatment were dramatically decreased by the combination of ursolic acid + resveratrol. Treatment with ursolic acid + resveratrol during skin tumor promotion with TPA produced greater inhibition of tumor multiplicity and tumor size than with either agent alone. Collectively, the greater ability of the combination of ursolic acid + resveratrol to inhibit skin tumor promotion was due to the greater inhibitory effects on growth factor and inflammatory signaling, skin inflammation, and epidermal hyperproliferation induced by TPA treatment.

  16. Neural cell adhesion molecule-mediated Fyn activation promotes GABAergic synapse maturation in postnatal mouse cortex.

    PubMed

    Chattopadhyaya, Bidisha; Baho, Elie; Huang, Z Josh; Schachner, Melitta; Di Cristo, Graziella

    2013-04-03

    GABAergic basket interneurons form perisomatic synapses, which are essential for regulating neural networks, and their alterations are linked to various cognitive dysfunction. Maturation of basket synapses in postnatal cortex is activity dependent. In particular, activity-dependent downregulation of polysialiac acid carried by the neural cell adhesion molecule (NCAM) regulates the timing of their maturation. Whether and how NCAM per se affects GABAergic synapse development is unknown. Using single-cell genetics to knock out NCAM in individual basket interneurons in mouse cortical slice cultures, at specific developmental time periods, we found that NCAM loss during perisomatic synapse formation impairs the process of basket cell axonal branching and bouton formation. However, loss of NCAM once the synapses are already formed did not show any effect. We further show that NCAM120 and NCAM140, but not the NCAM180 isoform, rescue the phenotype. Finally, we demonstrate that a dominant-negative form of Fyn kinase mimics, whereas a constitutively active form of Fyn kinase rescues, the effects of NCAM knockdown. Altogether, our data suggest that NCAM120/NCAM140-mediated Fyn activation promotes GABAergic synapse maturation in postnatal cortex.

  17. Transformed MDCK cells secrete elevated MMP1 that generates LAMA5 fragments promoting endothelial cell angiogenesis

    PubMed Central

    Gopal, Shashi K.; Greening, David W.; Zhu, Hong-Jian; Simpson, Richard J.; Mathias, Rommel A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) enhances the migration and invasion of cancer cells, and is regulated by various molecular mechanisms including extracellular matrix metalloproteinase (MMP) activity. Previously, we reported transformation of epithelial Madin-Darby canine kidney (MDCK) cells with oncogenic H-Ras (21D1 cells) induces EMT, and significantly elevates MMP1 expression. To explore the biological significance, in this study we characterized 21D1 cells with knocked-down MMP1 expression (21D1−MMP1). MMP1 silencing diminished 21D1 cell migration, invasion and anchorage-independent growth in vitro. Additionally, 21D1−MMP1 cells displayed reduced tumour volume when grown as in vivo subcutaneous xenografts in mice. Depletion of MMP1 lowered the ability of the cellular secretome (extracellular culture medium) to influence recipient cell behaviour. For example, supplementation with 21D1 secretome elevated cell migration of recipient fibroblasts, and enhanced endothelial cell angiogenesis (vessel length and branching). By contrast, 21D1−MMP1 secretome was less potent in both functional assays. We reveal laminin subunit alpha-5 (LAMA5) as a novel biological substrate of MMP1, that generates internal and C-terminal proteolytic fragments in 21D1 secretome. Furthermore, antibody-based inhibition of integrin αvβ3 on endothelial cells nullified the angiogenic capability of 21D1 secretome. Therefore, we report this as a new VEGF-independent mechanism that oncogenic cells may employ to promote tumour angiogenesis. PMID:27324842

  18. Lipoteichoic acid promotes nuclear accumulation of β-catenin via AKT in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Cardoso-Jiménez, Patricia

    2011-09-01

    Treatment of human gingival fibroblasts (HGFs) with lipoteichoic acid (LTA) results in the activation of multiple signaling pathways. Exposure of HGF to LTA has been shown to result in the activation of phosphatidylinositol 3-kinase (PI3K). The aim of this study was to evaluate the effects of LTA-induced PI3K activation in HGFs. We found that LTA treatment results in the phosphorylation of AKT and glycogen synthase kinase (GSK-3). Inactivation of GSK-3 promotes the nuclear accumulation of β-catenin and expression of connexin43. Treatment with PI3K inhibitors, wortmannin and LY294002, inhibited LTA-induced phosphorylation of AKT and GSK-3, demonstrating that these events require PI3K activation. This report is the first demonstration that LTA treatment activates AKT in HGFs.

  19. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.

    PubMed

    Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung

    2015-05-08

    Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease.

  20. Retinoic acid inhibits the cytoproliferative response to weak 50-Hz magnetic fields in neuroblastoma cells

    PubMed Central

    TRILLO, MARÍA ÁNGELES; MARTÍNEZ, MARÍA ANTONIA; CID, MARÍA ANTONIA; ÚBEDA, ALEJANDRO

    2012-01-01

    We previously reported that intermittent exposure to a 50-Hz magnetic field (MF) at 100 μT stimulates cell proliferation in the human neuroblastoma cell line NB69. The present study aimed to investigate whether the magnetic field-induced growth promotion also occurs at a lower magnetic flux density of 10 μT. To this purpose, NB69 cells were subjected for 42 h to intermittent exposure, 3 h on/3 h off, to a 50-Hz MF at a 10 or 100 μT magnetic flux density. The field exposure took place either in the presence or in the absence of the antiproliferative agent retinoic acid. At the end of the treatment and/or incubation period, the cell growth was estimated by hemocytometric counting and spectrophotometric analysis of total protein and DNA contents. Potential changes in DNA synthesis were also assessed through proliferating cell nuclear antigen (PCNA) immunolabeling. The results confirmed previously reported data that a 42-h exposure to a 50-Hz sine wave MF at 100 μT promotes cell growth in the NB69 cell line, and showed that 10 μT induces a similar proliferative response. This effect, which was significantly associated and linearly correlated with PCNA expression, was abolished by the presence of retinoic acid in the culture medium. PMID:23292364

  1. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    PubMed

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l(-1), monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  2. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    SciTech Connect

    Cao, Donglin Hu, Liangshan; Lei, Da; Fang, Xiaolin; Zhang, Zhihong; Wang, Ting; Lin, Maorui; Huang, Jiwei; Yang, Huawen; Zhou, Xuan; Zhong, Limei

    2015-01-30

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.

  3. Tricyclic Antidepressants Promote Ceramide Accumulation to Regulate Collagen Production in Human Hepatic