Science.gov

Sample records for acid propyl gallate

  1. Contact depigmentation induced by propyl gallate.

    PubMed

    Pandhi, D; Vij, A; Singal, A

    2011-06-01

    We report a 41-year-old woman who developed contact depigmentation at several body sites after using lipstick, liquid kumkum (a colouring usually made from turmeric or saffron used for social/religious markings), and plastic or rubber slippers (flip-flops). Propyl gallate, a common ingredient to all and a previously undocumented depigmenting agent, was incriminated on patch testing with the Indian standard series. PMID:21564173

  2. Kinetics of the transformation of n-propyl gallate and structural analogs in the perfused rat liver

    SciTech Connect

    Eler, Gabrielle Jacklin; Santos, Israel Souza; Giaretta de Moraes, Amarilis; Mito, Márcio Shigueaki; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2013-11-15

    n-Propyl gallate and its analogs are used in foods and other products to prevent oxidation. In the liver the compound exerts several harmful effects, especially gluconeogenesis inhibition. The mode of transport and distribution of n-propyl gallate and its kinetics of biotransformation have not yet been investigated. To fill this gap the transformation, transport and distribution of n-propyl gallate and two analogs were investigated in the rat liver. Isolated perfused rat liver was used. n-Propyl gallate, methyl gallate, n-octyl gallate and transformation products were quantified by high pressure-liquid chromatography coupled to fluorescence detection. The interactions of n-propyl gallate and analogs with the liver presented three main characteristics: (1) the hydrolytic release of gallic acid from n-propyl gallate and methyl gallate was very fast compared with the subsequent transformations of the gallic acid moiety; (2) transport of the esters was very fast and flow-limited in contrast to the slow and barrier-limited transport of gallic acid; (3) the apparent distribution volume of n-propyl gallate, but probably also of methyl gallate and n-octyl gallate, greatly exceeded the water space in the liver, contrary to the gallic acid space which is smaller than the water space. It can be concluded that at low portal concentrations (< 50 μM) the gallic acid esters are 100% extracted during a single passage through the liver, releasing mainly gallic acid into the systemic circulation. For the latter a considerable time is required until complete biotransformation. The exposure of the liver to the esters, however, is quite prolonged due to extensive intracellular binding. - Highlights: • The liver binds very strongly n-propyl gallate and releases basically gallic acid. • n-propyl gallate and analogs undergo concentrative flow-limited distribution. • Gallic acid undergoes barrier-limited distribution and is slowly transformed. • The long residence time of n-propyl

  3. Studies on the Food Additive Propyl Gallate: Synthesis, Structural Characterization, and Evaluation of the Antioxidant Activity

    ERIC Educational Resources Information Center

    Garrido, Jorge; Garrido, E. Manuela; Borges, Fernanda

    2012-01-01

    Antioxidants are additives largely used in industry for delaying, retarding, or preventing the development of oxidative deterioration. Propyl gallate (E310) is a phenolic antioxidant extensively used in the food, cosmetics, and pharmaceutical industries. A series of lab experiments have been developed to teach students about the importance and…

  4. Allergic contact dermatitis to propyl gallate and pentylene glycol in an emollient cream.

    PubMed

    Foti, Caterina; Bonamonte, Domenico; Cassano, Nicoletta; Conserva, Anna; Vena, Gino A

    2010-05-01

    A 62-year-old man, with a 20-year history of seborrhoeic dermatitis, presented with a worsening of his dermatitis. He had previously been demonstrated to be allergic to various topical corticosteroids, so he had been using an emollient cream (Sebclair), containing piroctone olamine and various anti-inflammatory substances, for 6 months, with good effect. Patch testing to the cream and its ingredients revealed positive reactions to both propyl gallate and pentylene glycol. A positive reaction to propylene glycol was also detected, whereas patch testing to butylene glycol was negative. Complete remission followed avoidance of the offending substances. PMID:20546226

  5. NTP Carcinogenesis Bioassay of Propyl Gallate (CAS No. 121-79-9) in F344/N Rats and B6C3F1 Mice (Feed Study).

    PubMed

    1982-12-01

    carcinomas (combined) were similar in control and dosed groups (3/50, 6%; 3/50, 6%; 5/49, 10%). Negative%; 2/50, 4%; 5/49, 10%). The incidences of hepatocellular adenomas or carcinomas (combined) were similar in control and dosed groups (3/50, 6%; 3/50, 6%; 5/49, 10%). Negative trends (P<0.05) were obtained for fibromas of the skin or subcutaneous tissue in male mice (5/50, 1/49, 0/50). Under the conditions of this bioassay, propyl gallate was not considered carcinogenic for F344/N rats, although there was evidence of an increased proportion of low-dose male rats with preputial gland tumors, islet-cell tumors of the pancreas, and pheochromocytomas of the adrenal glands; rare tumors of the brain occurred in two low-dose females. Propyl gallate was not considered to be carcinogenic for B6C3F1 mice of either sex, although the increased incidence of malignant lymphoma in male mice may have been related to the dietary administration of propyl gallate. Levels of Evidence of Carcinogenicity: Male Rats: Equivocal Female Rats: Negative Male Mice: Equivocal Female Mice: Negative Synonyms: 2,4,5 trihydroxybenzoic acid propyl ester; gallic acid propyl ester; Progallin P; Tennox PG PMID:12750752

  6. The Use of Chlorhexidine/n-Propyl Gallate (CPG) as an Ambient-Temperature Urine Preservative

    NASA Technical Reports Server (NTRS)

    Nillen, Jeannie L.; Smith, Scott M.

    2003-01-01

    A safe, effective ambient temperature urine preservative, chlorhexidine/n-propyl gallate (CPG), has been formulated for use during spacefli ght that reduces the effects of oxidation and bacterial contamination on sample integrity while maintaining urine pH. The ability of this preservative to maintain stability of nine key analytes was evaluated for a period of one year. CPG effectively maintained stability of a mmonia, total nitrogen, 3-methylhistidine, chloride, sodium, potassiu m, and urea; however, creatinine and osmolality were not preserved by CPG. These data indicate that CPG offers prolonged room-temperature storage for multiple urine analytes, reducing the requirements for f rozen urine storage on future spaceflights. Iii medical applications on Earth, this technology can allow urine samples to be collected in remote settings and eliminate the need to ship frozen samples.

  7. Production of propyl gallate in nonaqueous medium using cell-associated tannase of Bacillus massiliensis: effect of various parameters and statistical optimization.

    PubMed

    Aithal, Mahesh; Belur, Prasanna D

    2013-01-01

    Enzymatic synthesis of propyl gallate in an organic solvent was studied using cell-associated tannase (E.C. 3.1.1.20) of Bacillus massiliensis. Lyophilized biomass showing tannase activity was used as a biocatalyst. The influence of buffer pH and strength, water activity, temperature, biocatalyst loading, gallic acid concentration, and 1-propanol concentration was studied by the one-factor-at-a-time method. Subsequently, response surface methodology was applied based on a central composite design to determine the effects of three independent variables (biocatalyst loading, gallic acid concentration, and 1-propanol concentration) and their mutual interactions. A total of 20 experiments were conducted, and a statistical model was developed, which predicted the maximum propyl gallate yield of 20.28 μg/mL in the reaction mixture comprising 40.4 mg biocatalyst, 0.4 mM gallic acid, and 6.52 % (v/v) 1-propanol in 9.5 mL benzene at 30°C. The subsequent verification experiments established the validity of the model. Under optimal conditions, 25% conversion of gallic acid to propyl gallate was achieved on a molar basis. The absence of the need for enzyme purification and subsequent immobilization steps and good conversion efficiency makes this enzyme system an interesting one. Reports on the applications of bacterial whole cell systems for synthetic reactions in organic solvents are scarce, and perhaps this is the first report on bacterial cell-associated tannase-mediated esterification in a nonaqueous medium. PMID:23600575

  8. Propyl Gallate Inhibits Adipogenesis by Stimulating Extracellular Signal-Related Kinases in Human Adipose Tissue-Derived Mesenchymal Stem Cells

    PubMed Central

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-01-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation. PMID:25813451

  9. Disruption of DNA Damage-Response by Propyl Gallate and 9-Aminoacridine.

    PubMed

    Matsuda, Shun; Matsuda, Yoko; Yanagisawa, Shin-Ya; Ikura, Masae; Ikura, Tsuyoshi; Matsuda, Tomonari

    2016-06-01

    The DNA-damage response (DDR) protects the genome from various types of endogenous and exogenous DNA damage, and can itself be a target of certain chemicals that give rise to chromosomal aberrations. Here, we developed a screening method to detect inhibition of Mediator of DNA damage Checkpoint 1 (MDC1) foci formation (the Enhanced Green Fluorescent Protein (EGFP)-MDC1 foci formation-inhibition assay) using EGFP-MDC1-expressing human cells. The assay identified propyl gallate (PG) and 9-aminoacridine (9-AA) as inhibitors of camptothecin (CPT)-induced MDC1 foci formation. We demonstrated that the inhibition of CPT-induced MDC1 foci formation by PG was caused by the direct suppression of histone H2AX phosphorylation at Ser139 (γH2AX), which is required for MDC1 foci formation, by quantifying γH2AX in cells and in vitro 9-AA also directly suppressed H2AX Ser139-phosphorylation in vitro but the concentration was much higher than that required to suppress CPT-induced MDC1 foci formation in cells. Consistent with these findings, PG and 9-AA both suppressed CPT-induced G2/M cell-cycle arrest and increased the number of abnormal nuclei. Our results suggest that early DDR-inhibitory effects of PG and 9-AA contribute to their chromosome-damaging potential, and that the EGFP-MDC1 foci formation-inhibition assay is useful for detection of and screening for H2AX Ser139-phosphorylation-inhibitory effects of chemicals. PMID:26928355

  10. Effects of platelet inhibitors on propyl gallate-induced platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activation.

    PubMed

    Xiao, Hongyan; Kovics, Richard; Jackson, Van; Remick, Daniel G

    2004-04-01

    Propyl gallate (PG) is a platelet agonist characterized by inducing platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activity. The mechanisms of platelet activation following PG stimulation were examined by pre-incubating platelets with well-defined platelet inhibitors using platelet aggregation, protein tyrosine phosphorylation, activated plasma clotting time, and annexin V binding by flow cytometry. PG-induced platelet aggregation and tyrosine phosphorylation of multiple proteins were substantially abolished by aspirin, apyrase, and abciximab (c7E3), suggesting that PG is associated with activation of platelet cyclooxygenase 1, adenosine phosphate receptors, and glycoprotein IIb/IIIa, respectively. The phosphorylation of the cytoskeletal enzyme pp60(c-src) increased following PG stimulation, but was blunted by pre-incubation of platelets with aspirin, apyrase, and c7E3, suggesting that tyrosine kinase is important for the signal transduction of platelet aggregation. Propyl gallate also activates platelet factor 3 by decreasing the platelet coagulation time and increasing platelet annexin V binding. Platelet incubation with aspirin, apyrase, and c7E3 did not alter PG-induced platelet coagulation and annexin V binding. The results suggest that platelet factor 3 activation and membrane phosphotidylserine expression were not involved with activation of platelet cyclooxygenase, adenosine phosphate receptors, and glycoprotein IIb/IIIa. PG is unique in its ability to stimulate platelet aggregation and coagulation simultaneously, and platelet inhibitors in this study affect only platelet aggregation but not platelet coagulation. PMID:15060414

  11. Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol-gel film.

    PubMed

    Xu, Guilin; Chi, Yu; Li, Lu; Liu, Shouhua; Kan, Xianwen

    2015-06-15

    A novel imprinted sol-gel electrochemical sensor for the determination of propyl gallate (PG) was developed based on a composite of graphene and single walled carbon nanotubes (GR-SWCNTs). It was fabricated by stepwise modifying GR-SWCNTs and molecularly imprinted polymers and stored in 0.10 mol L(-1) phosphate buffer solution pH 6.0, which endowed the sensor good sensitivity and selective recognition towards template molecules. The morphology and specific adsorption capacity of the sensor was characterized by scanning electron microscope and electrochemical methods, respectively. Under the optimized conditions, a linear range of the sensor to PG was 8.0 × 10(-8)-2.6 × 10(-3)mo lL(-1) with a limit of detection of 5.0 × 10(-8)mol L(-1) (S/N=3). The sensor exhibited specificity and selectivity towards template molecules as well as excellent reproducibility, regeneration and stability. Furthermore, the sensor could be applied to determine PG in edible oils, instant noodles and cookies with satisfactory results. PMID:25660855

  12. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    PubMed

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. PMID:25487712

  13. Allergic contact stomatitis to dodecyl gallate? A review of the relevance of positive patch test results to gallates.

    PubMed

    Gamboni, Sarah E; Palmer, Amanda M; Nixon, Rosemary L

    2013-08-01

    Gallic acid esters or gallates are antioxidants used as preservatives in food and cosmetics. Few cases of gallates causing allergic contact dermatitis (ACD) have been reported in the literature. We present a case report of a 42-year-old beauty therapist who presented with a swollen tongue. Patch testing was positive to dodecyl gallate, commonly reported as being present in edible oil and oily foods such as margarine. Our patient avoided foods presumed to contain gallates and at the 6-week review reported a substantial improvement in her tongue symptoms. We reviewed our database and found 16 (7%) definitely or possibly relevant reactions to dodecyl gallate, seven (15%) definitely or possibly relevant reactions to propyl gallate and six (3%) definitely or possibly relevant reactions to octyl gallate. Most reactions were attributed to margarine, moisturising cream and lipstick. These products are often mentioned in the literature as containing gallates; however, ingredient labelling and discussions with manufacturers made it difficult to establish whether they are currently present in foods. Ascertaining relevance for these reactions is not always possible. PMID:22943875

  14. 21 CFR 582.3660 - Propyl gallate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... safe for use in food when the total content of antioxidants is not over 0.02 percent of fat or oil content, including essential (volatile) oil content of the food, provided the substance is used...

  15. 21 CFR 582.3660 - Propyl gallate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... safe for use in food when the total content of antioxidants is not over 0.02 percent of fat or oil content, including essential (volatile) oil content of the food, provided the substance is used...

  16. 21 CFR 582.3660 - Propyl gallate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... safe for use in food when the total content of antioxidants is not over 0.02 percent of fat or oil content, including essential (volatile) oil content of the food, provided the substance is used...

  17. 21 CFR 184.1660 - Propyl gallate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... in a maximum total content of antioxidants of 0.02 percent of the fat or oil content, including the essential (volatile) oil content, of the food. (e) Prior sanctions for this ingredient different from...

  18. 21 CFR 582.3660 - Propyl gallate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... safe for use in food when the total content of antioxidants is not over 0.02 percent of fat or oil content, including essential (volatile) oil content of the food, provided the substance is used...

  19. 21 CFR 184.1660 - Propyl gallate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ingredient is used as an antioxidant as defined in § 170.3(o)(3) of this chapter. (d) The ingredient is used... manufacturing practice results in a maximum total content of antioxidants of 0.02 percent of the fat or...

  20. 21 CFR 184.1660 - Propyl gallate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ingredient is used as an antioxidant as defined in § 170.3(o)(3) of this chapter. (d) The ingredient is used... manufacturing practice results in a maximum total content of antioxidants of 0.02 percent of the fat or...

  1. 21 CFR 184.1660 - Propyl gallate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ingredient is used as an antioxidant as defined in § 170.3(o)(3) of this chapter. (d) The ingredient is used... manufacturing practice results in a maximum total content of antioxidants of 0.02 percent of the fat or...

  2. 21 CFR 184.1660 - Propyl gallate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ingredient is used as an antioxidant as defined in § 170.3(o)(3) of this chapter. (d) The ingredient is used... manufacturing practice results in a maximum total content of antioxidants of 0.02 percent of the fat or...

  3. 21 CFR 582.3660 - Propyl gallate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... safe for use in food when the total content of antioxidants is not over 0.02 percent of fat or oil content, including essential (volatile) oil content of the food, provided the substance is used...

  4. Epigallocatechin-3-gallate functions as a physiological regulator by modulating the jasmonic acid pathway.

    PubMed

    Hong, Gaojie; Wang, Jie; Hochstetter, Danielle; Gao, Yuanyuan; Xu, Ping; Wang, Yuefei

    2015-03-01

    Flavonoids, a class of plant polyphenols derived from plant secondary metabolism, play important roles in plant development and have beneficial effects on human health. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol, and its molecular and biochemical mechanism have been followed with interest. The shared signaling heritage or convergence of organisms has allowed us to extend this research into the model plant, Arabidopsis thaliana. Here, we showed that EGCG could promote jasmonic acid (JA) signaling in A. thaliana. EGCG not only inhibited seed germination but also elevated the resistance to necrotrophic Botrytis cinerea, partly by altering the relative strength of JA signaling. Accordingly, JA marker gene induction, seed germination inhibition and the increased resistance to B. cinerea were attenuated in the JA-insensitive coi1-2 mutant. The coi1-2 mutant was partially insensitive to the treatment of EGCG, further implicating the function of EGCG in JA signaling and/or perception. Our results indicate that EGCG, a member of the flavonoid class of polyphenols, affects signal processing in seed development and disease susceptibility via modulation of JA signaling. PMID:25124736

  5. Poly(pyrrole-co-pyrrole propylic acid) film and its application in label-free surface plasmon resonance immunosensors.

    PubMed

    Hu, Weihua; Li, Chang Ming; Dong, Hua

    2008-12-01

    In this work, surface plasmon resonance (SPR) was used to study protein immobilization on poly(pyrrole-co-pyrrole propylic acid) (PPy/PPa) for immunosensing applications. SPR was employed to in situ monitor the electropolymerization process and to control thickness of the PPy/PPa copolymer film. Goat IgG as a model protein was covalently immobilized on the carboxyl-containing film through EDC/NHS as the coupling reagents. The effect of pyrrole propylic acid (Pa) proportion in the deposition solution on the protein immobilization capability was systemically investigated. The immobilization efficiency was demonstrated by a label-free SPR immunosensor. The heterogeneous kinetics of the immune reaction was discussed. This work could provide a facile method to immobilize proteins on an electrode surface by electropolymerized copolymer, and renders a universal approach to in situ study the protein immobilization process and sensing kinetics for scientific insights of the heteroimmunosensing scheme particularly in surface chemistry and molecular biology for further improvement of immunosensors. PMID:19068327

  6. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.

    PubMed

    Xie, Wenlei; Yang, Dong

    2011-10-01

    The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability. PMID:21871795

  7. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion.

    PubMed

    Asnaashari, Maryam; Farhoosh, Reza; Sharif, Ali

    2014-09-15

    The anti-DPPH radical effect as well as anti-peroxide activity of gallic acid, methyl gallate, and α-tocopherol in a bulk Kilka fish oil and its oil-in-water emulsion stabilized by soy protein isolate at 55°C were investigated. Gallic acid with the lowest hydrophobicity (log P=-0.28) was found to be the most active antiradical agent (IC50=29.5 μM), followed by methyl gallate (IC50=38.0 μM, log P=-0.23) and α-tocopherol (IC50=105.3 μM, log P=0.70). The anti-peroxide activity in the bulk oil system decreased in the order of methyl gallate>gallic acid>α-tocopherol. In the emulsion system, methyl gallate still behaved better than gallic acid, but the highest activity belonged to α-tocopherol. Based on the calculation of a number of kinetic parameters, the antioxidants, in general, showed better performances in the bulk oil system than in the emulsion system. PMID:24767079

  8. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    PubMed Central

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  9. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid.

    PubMed

    Thai, Van Viet; Lee, Byong-Taek

    2010-06-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4 x 2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37 degrees C. PMID:20333539

  10. Ferulic acid enhances the vasorelaxant effect of epigallocatechin gallate in tumor necrosis factor-alpha-induced inflammatory rat aorta.

    PubMed

    Zhao, Jian; Suyama, Aki; Tanaka, Mitsuru; Matsui, Toshiro

    2014-07-01

    Previously, we demonstrated synergistic enhancement of vasorelaxation by combination treatment with Trp-His and epigallocatechin gallate (EGCg) in intact rat aorta. The aim of the present study was to determine whether this vasorelaxant synergy could be recapitulated in tumor necrosis factor-alpha (TNF-α)-induced inflammatory rat aorta, and to determine the extent of its modulation by anti-inflammatory phenolic acids. Synergistic enhancement of vasorelaxation in rat aorta by Trp-His and EGCg was significantly attenuated in the presence of TNF-α, an effect that was reversed by the addition of ferulic acid (FA, 250 μM). Moreover, FA markedly enhanced EGCg-induced vasorelaxation, but not Trp-His-induced vasorelaxation, in TNF-α-treated aorta. Structure-activity analysis showed that the unsaturated 2-propenoic moiety and the methoxy group of FA were important for the enhancement of vasorelaxation by EGCg. The stimulation of EGCg-induced vasorelaxation by FA was antagonized by the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine acetate, while FA enhanced vasorelaxant properties of the endothelial nitric oxide (NO) synthase activator acetylcholine in TNF-α-treated inflammatory aorta. Moreover, the EGCg-stimulated NO production was also enhanced by FA in TNF-α-treated aorta. These data indicate that stimulation of NO production by FA enhances the vasorelaxant properties of EGCg in TNF-α-induced inflammatory aorta. PMID:24794014

  11. Is 2-propyl-4-pentenoic acid, a hepatotoxic metabolite of valproate, responsible for valproate-induced hyperammonemia?

    PubMed

    Kondo, T; Ishida, M; Kaneko, S; Hirano, T; Otani, K; Fukushima, Y; Muranaka, H; Koide, N; Yokoyama, M; Nakata, S

    1992-01-01

    To investigate the association between valproate metabolism (VPA) and VPA-induced hyperammonemia together with the contribution of VPA hepatotoxicity risk factors such as young age, polypharmacy, and high serum VPA levels to VPA-induced hyperammonemia, plasma ammonia (NH3) levels, serum levels of VPA and its metabolites, and biochemical parameters were determined in 98 patients treated with VPA (53 monopharmacy cases and 45 polypharmacy cases). In monopharmacy patients, plasma NH3 levels did not depend on age, VPA dosage or serum levels. Serum level of 2-propyl-4-pentenoic acid (4-en) showed a negative correlation with plasma NH3 level in the monopharmacy group. In polypharmacy patients, plasma NH3 levels, serum glutamic pyruvic transaminase, and gamma-glutamyl-transpeptidase were significantly higher, while level/dose VPA ratio, 2-en-VPA serum level, and bilirubin were significantly lower than those in monopharmacy patients. These results suggest that young age and relatively high VPA serum levels within the therapeutic range were unlikely to be risk factors for common hyperammonemia associated with VPA therapy and that 4-en was not causally related to this adverse effect. The decreased serum level of 2-en-VPA in polypharmacy patients may be a reflection of a certain mitochondrial dysfunction, which might be a mechanism of the increased NH3 levels. The changes in biochemical parameters in polypharmacy patients were considered results of the enzyme-inducing activity of coadministered antiepileptic drugs (AEDs). PMID:1350534

  12. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.

    PubMed

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). PMID:27612776

  13. Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells.

    PubMed

    Huang, Yuhui; Kumazoe, Motofumi; Bae, Jaehoon; Yamada, Shuhei; Takai, Mika; Hidaka, Shiori; Yamashita, Shuya; Kim, Yoonhee; Won, Yeongseon; Murata, Motoki; Tsukamoto, Shuntaro; Tachibana, Hirofumi

    2015-09-01

    An epidemiological study showed that green tea consumption is associated with a reduced risk of hematopoietic malignancy. The major green tea polyphenol epigallocatechin‑3-O-gallate (EGCG) is reported to have anticancer effects. Chronic myeloid leukemia (CML) is a major hematopoietic malignancy characterized by expansion of myeloid cells. In the present study, we showed EGCG-induced acid sphingomyelinase (ASM) activation and lipid raft clustering in CML cells. The ASM inhibitor desipramine significantly reduced EGCG-induced cell death. Protein kinase Cδ is a well‑known kinase that plays an important role in ASM activation. We observed EGCG-induced phosphorylation of protein kinase Cδ at Ser664. Importantly, EGCG-induced ASM activation was significantly reduced by pretreatment of CML cells with the soluble guanylate cyclase inhibitor NS2028, suggesting that EGCG induced ASM activation through the cyclic guanosine monophosphate (cGMP)-dependent pathway. Indeed, pharmacological inhibition of a cGMP-negative regulator enhanced the anti-CML effect of EGCG. These results indicate that EGCG-induced cell death via the cGMP/ASM pathway in CML cells. PMID:26135316

  14. Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells

    PubMed Central

    HUANG, YUHUI; KUMAZOE, MOTOFUMI; BAE, JAEHOON; YAMADA, SHUHEI; TAKAI, MIKA; HIDAKA, SHIORI; YAMASHITA, SHUYA; KIM, YOONHEE; WON, YEONGSEON; MURATA, MOTOKI; TSUKAMOTO, SHUNTARO; TACHIBANA, HIROFUMI

    2015-01-01

    An epidemiological study showed that green tea consumption is associated with a reduced risk of hematopoietic malignancy. The major green tea polyphenol epigallocatechin-3-O-gallate (EGCG) is reported to have anticancer effects. Chronic myeloid leukemia (CML) is a major hematopoietic malignancy characterized by expansion of myeloid cells. In the present study, we showed EGCG-induced acid sphingomyelinase (ASM) activation and lipid raft clustering in CML cells. The ASM inhibitor desipramine significantly reduced EGCG-induced cell death. Protein kinase Cδ is a well-known kinase that plays an important role in ASM activation. We observed EGCG-induced phos-phorylation of protein kinase Cδ at Ser664. Importantly, EGCG-induced ASM activation was significantly reduced by pretreatment of CML cells with the soluble guanylate cyclase inhibitor NS2028, suggesting that EGCG induced ASM activation through the cyclic guanosine monophosphate (cGMP)-dependent pathway. Indeed, pharmacological inhibition of a cGMP-negative regulator enhanced the anti-CML effect of EGCG. These results indicate that EGCG-induced cell death via the cGMP/ASM pathway in CML cells. PMID:26135316

  15. Electroantennogram, flight orientation and oviposition responses of Anopheles stephensi and Aedes aegypti to a fatty acid ester-propyl octadecanoate.

    PubMed

    Seenivasagan, Thangaraj; Sharma, Kavita R; Prakash, Shri

    2012-10-01

    Studies were carried out to evaluate the role of a C(21)-fatty acid ester; propyl octadecanoate (PO) for olfaction-mediated behavioral responses of urban malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti mosquitoes using electroantennogram (EAG), flight orientation and oviposition experiments. Dose dependent electrophysiological responses were recorded for PO from the antenna of both mosquito species in which 10(-5) g elicited significant EAG response. An. stephensi exhibited 2.4, 4.2 and 5.5 fold increased EAG response compared to control, while Ae. aegypti showed 1.9, 4.6 and 5.8 fold EAG responses respectively at 10(-7) g, 10(-6) g and 10(-5) g doses. In the Y-tube olfactometer, 77-80% gravid females of An. stephensi, and 64-77% of Ae. aegypti were caught in the chambers releasing 10(-6) g and 10(-5) g plume of PO. The synthetic fatty acid ester loaded onto an effervescent tablet at 0.1 mg/L, 1 mg/L and 10 mg/L elicited increased ovipositional responses from gravid mosquitoes compared to control. The oviposition activity indices (OAI) of An. stephensi females were +0.40, +0.51 and +0.58, whereas the OAI for Ae. aegypti females were +0.05, +0.36 and +0.57 respectively in 0.1, 1, 10 mg/L of PO; indicated concentration dependent increased egg deposition. Similarly, in the residual activity studies, oviposition substrates treated with PO on effervescent tablet at 1mg/L and 10mg/L received significantly increased egg deposition by gravid females of both mosquito species for up to 1 week compared to control substrates. PO can potentially be used in ovitraps to monitor An. stephensi and Ae. aegypti populations in the vector surveillance programs. PMID:22750483

  16. Effects of epigallocatechin gallate, L-ascorbic acid, alpha-tocopherol, and dihydrolipoic acid on the formation of deoxyguanosine adducts derived from lipid peroxidation.

    PubMed

    Nath, Raghu G; Wu, Mona Y; Emami, Armaghan; Chung, Fung-Lung

    2010-01-01

    Oxidation of polyunsaturated fatty acids (PUFAs) releases alpha,beta-unsaturated aldehydes that modify deoxyguanosine (dG) to form cyclic 1,N(2)-propanodeoxyguanosine adducts. One of the major adducts detected in vivo is acrolein (Acr)-derived 1,N(2)-propanodeoxyguanosine (Acr-dG). We used a chemical model system to examine the effects of 4 antioxidants known to inhibit fatty acid oxidation on the formation of Acr-dG and 8-oxodeoxyguaonsine (8-oxodG) from the PUFA docosahexaenoic acid (DHA) under oxidative conditions. We found that epigallocatechin gallate (EGCG) and dihydrolipoic acid (DHLA) inhibit both Acr-dG and 8-oxodG formation. In contrast, ascorbic acid and alpha-tocopherol actually increase Acr-dG at high concentrations and do not show a concentration-dependant inhibition of 8-oxodG. We also studied their effects on blocking Acr-dG formation directly from Acr. EGCG and DHLA can both effectively block Acr-dG formation, but ascorbic acid and alpha-tocopherol show weak or little effect. These results highlight the complexity of antioxidant mechanisms and also reveal that EGCG and DHLA are effective at suppressing lipid peroxidation-induced Acr-dG and 8-oxodG formation as well as blocking the reaction of dG with Acr. PMID:20574923

  17. SWELLING OF PEATS IN LIQUID METHYL, TETRAMETHYLENE AND PROPYL SULFOXIDES AND IN LIQUID PROPYL SULFONE

    EPA Science Inventory

    The interactions of methyl, tetramethylene, and propyl sulfoxides and propyl sulfone during sorption onto four de-waxed, acid-form peats have been studied by means of swelling measurements. The results for sulfoxides are displayed as het-eromolecular sorption isotherms, which plo...

  18. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds.

    PubMed

    Lee, Eun Ji; Lee, Jong Ho; Jin, Linhua; Jin, Oh Seong; Shin, Yong Cheol; Sang, Jin Oh; Lee, Jaebeom; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-11-01

    In this study, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) for application to tissue engineering scaffolds for skin regeneration were prepared via coaxial electrospinning. Physicochemical properties of HA/PLGA-E core/shell fiber meshes were characterized by SEM, Raman spectroscopy, contact angle, EGCG release profiling and in vitro degradation. Biomechanical properties of HA/PLGA-E meshes were also investigated by a tensile strength test. SEM images showed that HA/PLGA-E fiber meshes had a three-dimensional interconnected pore structure with an average fiber diameter of about 1270 nm. Raman spectra revealed that EGCG was uniformly dispersed in the PLGA shell of meshes. HA/PLGA-E meshes showed sustained EGCG release patterns by controlled diffusion and PLGA degradation over 4 weeks. EGCG loading did not adversely affect the tensile strength and elastic modulus of HA/PLGA meshes, while increased their hydrophilicity and surface energy. Attachment of human dermal fibroblasts on HA/PLGA-E meshes was appreciably increased and their proliferation was steadily retained during the culture period. These results suggest that HA/PLGA-E core/shell fiber meshes can be potentially used as scaffolds supporting skin regeneration. PMID:25958546

  19. Synergistic Effect of Artificial Tears Containing Epigallocatechin Gallate and Hyaluronic Acid for the Treatment of Rabbits with Dry Eye Syndrome

    PubMed Central

    Hung, Ya-Jung; Chen, Zhi-Yu; Fang, Hsu-Wei; Chen, Ko-Hua

    2016-01-01

    Dry eye syndrome (DES) is a common eye disease. Artificial tears (AT) are used to treat DES, but they are not effective. In this study, we assessed the anti-inflammatory effect of AT containing epigallocatechin gallate (EGCG) and hyaluronic acid (HA) on DES. Human corneal epithelial cells (HCECs) were used in the WST-8 assay to determine the safe dose of EGCG. Lipopolysaccharide-stimulated HCECs showing inflammation were treated with EGCG/HA. The expression of IL-1ß, IL-6, IL-8, and TNF-α was assessed by real-time PCR and AT physical properties such as the viscosity, osmolarity, and pH were examined. AT containing EGCG and HA were topically administered in a rabbit DES model established by treatment with 0.1% benzalkonium chloride (BAC). Tear secretion was assessed and fluorescein, H&E, and TUNEL staining were performed. Inflammatory cytokine levels in the corneas were also examined. The non-toxic optimal concentration of EGCG used for the treatment of HCECs in vitro was 10 μg/mL. The expression of several inflammatory genes, including IL-1ß, IL-6, IL-8, and TNF-α, was significantly inhibited in inflamed HCECs treated with 10 μg/mL EGCG and 0.1% (w/v) HA (E10/HA) compared to that in inflamed HCECs treated with either EGCG or HA alone. AT containing E10/HA mimic human tears, with similar osmolarity and viscosity and a neutral pH. Fluorescence examination of the ocular surface of mouse eyes showed that HA increased drug retention on the ocular surface. Topical treatment of DES rabbits with AT plus E10/HA increased tear secretion, reduced corneal epithelial damage, and maintained the epithelial layers and stromal structure. Moreover, the corneas of the E10/HA-treated rabbits showed fewer apoptotic cells, lower inflammation, and decreased IL-6, IL-8, and TNF-α levels. In conclusion, we showed that AT plus E10/HA had anti-inflammatory and mucoadhesive properties when used as topical eye drops and were effective for treating DES in rabbits. PMID:27336157

  20. A combination of eicosapentaenoic acid-free fatty acid, epigallocatechin-3-gallate and proanthocyanidins has a strong effect on mTOR signaling in colorectal cancer cells.

    PubMed

    D'Angelo, Leonarda; Piazzi, Giulia; Pacilli, Annalisa; Prossomariti, Anna; Fazio, Chiara; Montanaro, Lorenzo; Graziani, Giulia; Fogliano, Vincenzo; Munarini, Alessandra; Bianchi, Francesca; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2014-10-01

    Colorectal cancer (CRC) is one of the major causes of cancer death worldwide. The development of novel anti-CRC agents able to overcome drug resistance and/or off-target toxicity is of pivotal importance. The mammalian target of rapamycin (mTOR) plays a critical role in CRC, regulating protein translation and controlling cell growth, proliferation, metabolism and survival. The aim of this study was to explore the effect of a combination of three natural compounds, eicosapentaenoic acid-free fatty acid (EPA-FFA), epigallocatechin-3-gallate (EGCG) and proanthocyanidins (grape seed [GS] extract) at low cytotoxic concentrations on CRC cells and test their activity on mTOR and translational regulation. The CRC cell lines HCT116 and SW480 were treated for 24h with combinations of EPA-FFA (0-150 µM), EGCG (0-175 µM) and GS extract (0-15 µM) to evaluate the effect on cell viability. The low cytotoxic combination of EPA-FFA 150 µM, EGCG 175 µM and GS extract 15 µM completely inhibited the mTOR signaling in HCT116 and SW480 cells, reaching an effect stronger than or comparable to that of the mTOR inhibitor Rapamycin in HCT116 or SW480 cells, respectively. Moreover, the treatment led to changes of protein translation of ribosomal proteins, c-Myc and cyclin D1. In addition, we found a reduction of clonal capability in both cell lines, with block of cell cycle in G0G1 and induction of apoptosis. Our data suggest that the low cytotoxic combination of EPA-FFA, EGCG and GS extract, tested for the first time here, inhibits mTOR signaling and thus could be considered for CRC treatment. PMID:25123131

  1. β-Cyclodextrin-Propyl Sulfonic Acid Catalysed One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles as Local Anesthetic Agents.

    PubMed

    Ran, Yan; Li, Ming; Zhang, Zong-Ze

    2015-01-01

    Some functionalized 1,2,4,5-tetrasubstituted imidazole derivatives were synthesized using a one-pot, four component reaction involving 1,2-diketones, aryl aldehydes, ammonium acetate and substituted aromatic amines. The synthesis has been efficiently carried out in a solvent free medium using β-cyclodextrin-propyl sulfonic acid as a catalyst to afford the target compounds in excellent yields. The local anesthetic effect of these derivatives was assessed in comparison to lidocaine as a standard using a rabbit corneal and mouse tail anesthesia model. The three most potent promising compounds were subjected to a rat sciatic nerve block assay where they showed considerable local anesthetic activity, along with minimal toxicity. Among the tested analogues, 4-(1-benzyl-4,5-diphenyl-1H-imidazol-2-yl)-N,N-dimethylaniline (5g) was identified as most potent analogue with minimal toxicity. It was further characterized by a more favourable therapeutic index than the standard. PMID:26569210

  2. FT-IR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE

    EPA Science Inventory

    FT-IR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide, and propyl sulfone in hexane, CCl4, CS2, and CHCl3 to assist in the assignment of FT-IR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. T...

  3. FTIR SOLUTION SPECTRA OF PROPYL SULFIDE, PROPYL SULFOXIDE, AND PROPYL SULFONE

    EPA Science Inventory

    FTIR spectra were obtained of 0.5% volumetric solutions of propyl sulfide, propyl sulfoxide and propyl sulfone in hexane, CC14, CS2, and CHCl3 to assist in the assignment of FTIR-PAS spectra of propyl sulfoxide sorbed within the structure of several peats and onto cellulose. he C...

  4. Cyclic fatty esters: synthesis, characterization, and lipolysis of isomeric triglycerides of 9-(6-propyl-3-cyclohexenyl)-(Z)8-nonenoic acid.

    PubMed

    Awl, R A; Frankel, E N; Brooks, D D; Weisleder, D

    1986-08-01

    Triglycerides of a model cyclic fatty acid (CFA) 9-(6-propyl-3-cyclohexenyl)-(Z)8-nonenoic acid (Ia) were synthesized for biological and toxicity evaluations. The monoacid triglyceride II (CyCyCy) was interesterified with triolein (OOO) to obtain mixtures of diacid triglycerides: III (OOCy), IV (OCyO), V (OCyCy), and VI (CyOCy). The interesterification mixtures were separated by preparative HPLC into two 'critical pairs' of isomeric triglycerides. Triglycerides III-VI were synthesized and a 13C-NMR method was developed to estimate 'critical pairs'. CFA-triglycerides were characterized by IR, NMR, HPLC and capillary GLC, and their relative rates of hydrolysis by lipase were compared. Although tricyclin (II) was completely resistant to lipolysis, triglycerides III and VI hydrolyzed significantly slower than triolein, and the 'critical pairs' hydrolyzed as readily as triolein. Therefore, partial CFA-triglycerides formed in heat-abused fats can undergo lipolysis and likely be absorbed like normal dietary fats. PMID:3757149

  5. Enhanced antitumor activities of (-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo

    SciTech Connect

    Matsumura, Kazuaki; Kaihatsu, Kunihiro; Mori, Shuichi; Cho, Han Hee; Kato, Nobuo; Hyon, Suong Hyu

    2008-12-26

    (-)-Epigallocatechin-3-O-gallate (EGCG) monoesters modified with butanoyl (EGCG-C4), octanoyl (EGCG-C8), palmitoyl groups (EGCG-C16) were synthesized by a lipase-catalyzed transesterification method and their antitumor activities were investigated in vitro and in vivo. The in vitro antitumor activities of EGCG-monoester derivatives increased in an alkyl chain length-dependent manner. The cytotoxicity of EGCG, EGCG-C4, EGCG-C8 was mainly caused by H{sub 2}O{sub 2} which was generated with their oxidation. On the other hand, EGCG-C16 was more stable than EGCG and it did not generate H{sub 2}O{sub 2} in the cell culture medium. Furthermore, EGCG-C16 inhibited cell proliferation and induced apoptosis in the presence of catalase. EGCG-C16 was found to inhibit the phosphorylation of the epidermal growth factor receptor (EGFR), which is related to various types of tumor growth. EGCG-C16 suppressed tumor growth in vivo in colorectal tumor bearing mice in comparison to an untreated control, vector control (DMSO) and EGCG.

  6. Gallate, the component of HIF-inducing catechins, inhibits HIF prolyl hydroxylase

    SciTech Connect

    Tsukiyama, Fuyo; Nakai, Yumi; Yoshida, Masataka; Tokuhara, Takahiro; Hirota, Kiichi; Sakai, Akiko; Hayashi, Hideyuki . E-mail: hayashi@art.osaka-med.ac.jp; Katsumata, Takahiro

    2006-12-08

    Catechins have recently been reported to increase the cellular content of the hypoxia-inducible factor (HIF)-1{alpha} within mammalian cells. These catechins have a gallate moiety as a common structure. We now report that n-propyl gallate (nPG) also increases the HIF-1{alpha} protein in the rat heart-derived H9c2 cells. The increase was dose-dependent and reached a maximum at 2-4 h after the addition of nPG to the cells. nPG did not change the HIF-1{alpha} mRNA level, showing that the increase is a posttranscriptional event. Although nPG did not inhibit the HIF prolyl hydroxylase, gallate, the hydrolysis product of nPG, inhibited the enzyme completely at submillimolar concentrations. Model building studies on the human HIF prolyl hydroxylase 2 showed that the two phenolate oxygen atoms of gallate form a chelate with the active site Fe{sup 2+}, while the carboxyl group of gallate forms a strong ionic/hydrogen bonding interaction with Arg383, explaining why nPG, which has an esterified carboxyl group, is unable to inhibit the hydroxylase. Together with the observation that gallate was detected in the H9c2 cells treated with nPG, these results suggest that nPG incorporated into the cells is hydrolyzed and the released gallate inhibits the HIF prolyl hydroxylase, thereby reducing the HIF degradation rate and increasing the HIF-1{alpha} content.

  7. Promotion of full-thickness wound healing using epigallocatechin-3-O-gallate/poly (lactic-co-glycolic acid) membrane as temporary wound dressing.

    PubMed

    Kim, Hye-Lee; Lee, Jeong-Hyun; Kwon, Byeong Ju; Lee, Mi Hee; Han, Dong-Wook; Hyon, Suong-Hyu; Park, Jong-Chul

    2014-05-01

    Epigallocatechin-3-O-gallate (EGCG) is a major polyphenolic compound in green tea. It has been known that EGCG regulates the secretion of cytokines and the activation of skin cells during wound healing. In this study, various concentrations of EGCG were added to the electrospun membranes composed of poly (lactic-co-glycolic acid) (PLGA), and its healing effects on full-thickness wounds created in nude mice were investigated. The electrospun membranes containing 5 wt% EGCG (5EGCG/PLGA membrane) exhibited cytotoxicity in human dermal fibroblasts (HDFs) as HDF morphologies were transformed on them. In the animal study, cell infiltration of mice treated with electrospun membranes containing 1 wt% EGCG (1EGCG/PLGA membrane) significantly increased after 2 weeks. The immunoreactivity of Ki-67 (re-epithelialization at the wound site) and CD 31 (formation of blood vessels) also increased in the mice treated with 1EGCG/PLGA membranes in comparison with the mice treated with PLGA membranes. These results suggest that 1EGCG/PLGA can enhance wound healing in full thickness by accelerating cell infiltration, re-epithelialization, and angiogenesis. PMID:24571533

  8. Physicochemical characterisation of β-carotene emulsion stabilised by covalent complexes of α-lactalbumin with (-)-epigallocatechin gallate or chlorogenic acid.

    PubMed

    Wang, Xiaoya; Liu, Fuguo; Liu, Lei; Wei, Zihao; Yuan, Fang; Gao, Yanxiang

    2015-04-15

    In this study the impact of covalent complexes of α-lactalbumin (α-La) with (-)-epigallocatechin gallate (EGCG) or chlorogenic acid (CA) was investigated on the physicochemical properties of β-carotene oil-in-water emulsions. EGCG, or CA, was covalently linked to α-La at pH 8.0, as evidenced by increased total phenolic content and declined fluorescence intensity. Compared with those stabilised by α-La alone and α-La-CA or EGCG mixture, the emulsion stabilised by the α-La-EGCG covalent complex exhibited the least changes in particle size and transmission profiles, using a novel centrifugal sedimentation technique, indicating an improvement in the physical stability. The least degradation of β-carotene occurred in the emulsion stabilised with the α-La-EGCG covalent complex when stored at 25 °C. These results implied that protein-polyphenol covalent complexes were able to enhance the physical stability of β-carotene emulsion and inhibit the degradation of β-carotene in oil-in-water emulsion, and the effect was influenced by the types of the phenolic compounds. PMID:25466060

  9. Exovascular application of epigallocatechin-3-O-gallate-releasing electrospun poly(L-lactide glycolic acid) fiber sheets to reduce intimal hyperplasia in injured abdominal aorta.

    PubMed

    Lee, Mi Hee; Kwon, Byeong-ju; Koo, Min-Ah; Jang, Eui Hwa; Seon, Gyeung Mi; Park, Jong-Chul

    2015-09-01

    Intimal hyperplasia is an excessive ingrowth of tissue resulting in chronic structural lesions commonly found at sites of atherosclerotic lesions, arterial angioplasty, vascular graft anastomoses, and other vascular abnormalities. Epigallocatechin-3-O-gallate (EGCG) was shown to elicit antioxidant, anti-proliferative, and anti-thrombogenic effects. In this study, we used an electrospinning technique to synthesize EGCG-eluting biodegradable poly(L-lactide glycolic acid) (PLGA) fiber sheets for local delivery of EGCG and investigated the effect of their exovascular application on intimal hyperplasia following balloon-induced abdominal aorta injury in a rabbit experimental model. The morphology of the composite sheets was characterized using scanning electron microscopy and Fourier transform-infrared spectroscopy. EGCG was loaded and dispersed into the PLGA-based electrospun fibers. The EGCG-loaded PLGA sheets exhibited sustained EGCG release following the initial 24 h of burst release in phosphate-buffered saline. In vivo studies demonstrated significant inhibition of intimal hyperplasia following the application of the EGCG-eluting electrospun PLGA fiber sheets, compared with vehicle PLGA controls. In conclusion, our results show that exovascular application of EGCG-eluting PLGA electrospun fiber sheets may provide a useful system for the effective local delivery of drugs for the prevention of intimal hyperplasia. PMID:26391656

  10. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.

    PubMed

    Foskolos, A; Siurana, A; Rodriquez-Prado, M; Ferret, A; Bravo, D; Calsamiglia, S

    2015-08-01

    The ban on the use of antibiotics as growth promoters in animal feeds in the European Union has stimulated research on potential alternatives. Recently, propyl-propane thiosulfonate (PTSO), a stable organosulfurate compound of garlic, was purified. The objectives of the current study were to investigate the potential effects of PTSO on rumen microbial fermentation and to define effective doses. Two experiments were conducted using dual-flow continuous culture fermenters in 2 replicated periods. Each experimental period consisted of 5 d for adaptation of the ruminal fluid and 3 d for sampling. Temperature (39°C), pH (6.4), and liquid (0.10 h(-1)) and solid (0.05 h(-1)) dilution rates were maintained constant. Samples were taken 2 h after feeding and from the 24-h effluent. Samples were analyzed for volatile fatty acids (VFA) and nitrogen fractions, and degradation of nutrients was calculated. In addition, 24-h effluents from experiment 2 were analyzed for their fatty acid (FA) profile. Treatments in experiment 1 included a negative control without additive, a positive control with monensin (12mg/L), and PTSO at 30 and 300mg/L. The addition of 30mg/L did not affect any of the measurements tested. The addition of 300mg/L reduced microbial fermentation, as suggested by the decreased total VFA concentration, true degradation of organic matter and acid detergent fiber, and a tendency to decrease neutral detergent fiber degradation. Experiment 2 was conducted to test increasing doses of PTSO (0, 50, 100, and 150mg/L) on rumen microbial fermentation. At 2 h postfeeding, total VFA and molar proportion of propionate responded quadratically, with higher values in the intermediate doses. Molar proportions of butyrate increased and branched-chain VFA decreased linearly as the dose of PTSO increased. In the 24-h effluents, total VFA, acetate, and branched-chain VFA concentrations decreased linearly and those of propionate responded cubically with the highest value at 100mg

  11. Modulation of the inhibitory effect of phenylethylamine on spontaneous motor activity in mice by CPP-(+/-)-3-(2-carboxypiperazin-4-YL)-propyl-1-phosphonic acid.

    PubMed

    Lapin, I P; Yuwiler, A

    1997-02-01

    Beta-phenyl-ethylamine (PEA) at dose of 50 mg/kg inhibits spontaneous, motor activity in mice. CPP- (+/-)-3-(2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid, a selective and competitive antagonist of N-methyl-D-aspartate (NMDA) receptors, in doses of 0.2-10 mg/kg dose-dependently antagonizes this inhibitory effect of PEA. This effect of CPP appeared to be selective because the inhibitory action of PEA was not altered by pretreament with noncompetitive antagonists of NMDA receptors, such as dizocilpine (MK-801), phencyclidine (PCP), 1-phenylcyclohexylamine (PCA) or by antagonists of other behavioral effects of PEA such as haloperidol, baclofen and phenibut (beta-phenyl-GABA). CPP failed to antagonize the inhibitory effect of other tested drugs such as diazepam, haloperidol, baclofen and phenibut. Intracerebroventricularly administered NMDA (0.2 microM), an agonist of NMDA receptors, suppressed the antagonistic effects of CPP against PEA. This suggests that anti-PEA effect of CPP is related to NMDA receptors. Anti-PEA effect of CPP is not due to accelerated deamination of PEA in CPP-treated mice. When small doses of PEA (5 and 10 mg/kg) and CPP (0.2 and 1 mg/kg) were used, the synergism of two drugs was observed. CPP (1 mg/kg) and deprenyl (0.5 mg/kg) an inhibitor monoamine oxidase of B type (MAO-B), had additive effects on PEA-induced inhibition of locomotion. This effect was not associated with any further inhibition of activity of brain MAO-B (over the inhibition induced by deprenyl alone-by 65%) under high (80 microM) or low (4.3 microM) concentration of PEA as a substrate in the medium. Mechanism of the interaction of CPP and PEA, two drugs belonging to different groups of biologically active compounds, deserves further studies. PMID:9050075

  12. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    PubMed

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids. PMID:27451180

  13. Water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a nucleic acids vector for cell transfection.

    PubMed

    Faizuloev, Evgeny; Marova, Anna; Nikonova, Alexandra; Volkova, Irina; Gorshkova, Marina; Izumrudov, Vladimir

    2012-08-01

    To endow the cationic polysaccharides with solubility in the whole pH-range without loss of functionality of the amino groups, different chitosan samples were treated with glycidyltrimethylammonium chloride. Each modified unit of the exhaustively alkylated quaternized chitosan (QCht) contained both quaternary and secondary amino groups. The intercalated dye displacement assay and ζ-potential measurements implied stability of QCht polyplexes at physiological conditions and protonation of the secondary amino groups in slightly acidic media which is favorable for transfection according to proton sponge mechanism. The cytotoxicity and transfection efficacy increased with the chain lengthening. Nevertheless, the longest chains of QCht, 250 kDa were less toxic than PEI for COS-1 cells and revealed comparable and even significantly higher transfection activity of siRNA and plasmid DNA, respectively. Thus, highly polymerized QCht (250 kDa) provided the highest level of the plasmid DNA transfection being 5 and 80 times more active than QCht (100 kDa) and QCht (50 kDa), respectively, and 4-fold more effective than PEI, 25 kDa. The established influence of QCht molecular weight on toxicity and transfection efficacy allows elaborating polysaccharide vectors that possess rational balance of these characteristics. PMID:24750918

  14. Layered Double Hydroxide as a Vehicle to Increase Toxicity of Gallate Ions against Adenocarcinoma Cells.

    PubMed

    Arratia-Quijada, Jenny; Rivas-Fuentes, Selma; Saavedra, Karina J Parra; Lamas, Adriana M Macías; Carbajal Arízaga, Gregorio Guadalupe

    2016-01-01

    The antineoplasic activity of gallic acid has been reported. This compound induces apoptosis and inhibits the growth of several neoplasic cells. However, this molecule is easily oxidized and degraded in the body. The aim of this work was to intercalate gallate ions into layered double hydroxide (LDH) nanoparticles under controlled conditions to reduce oxidation of gallate and to evaluate its toxicity against the A549 adenocarcinoma cell line. An isopropanol medium under nitrogen atmosphere was adequate to intercalate gallate ions with a lesser oxidation degree as detected by electron spin resonance spectroscopy. Concentrations of the hybrid LDH-gallate nanoparticles between 0.39 and 25 µg/mL reduced the cell viability to 67%, while the value reached with the pure gallic acid and LDH was 90% and 78%, respectively, thus proving that the combination of gallate ions with the inorganic nanoparticles increases the toxicity potential within this dose range. PMID:27438820

  15. Separation of catechins and O-methylated (-)-epigallocatechin gallate using polyamide thin-layer chromatography.

    PubMed

    Wang, Kunbo; Chen, Qincao; Lin, Yong; Yu, Shuangshang; Lin, Haiyan; Huang, Jianan; Liu, Zhonghua

    2016-04-01

    Thin-layer chromatography (TLC) method for the separation and quantitative determination of seven related compounds: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3″Me) and (-)-epigallocatechin- 3-O-(4-O-methyl) gallate (EGCG4″Me) has been developed. The above-mentioned seven compounds have been resolved using polyamide TLC plates using a double-development with methanol followed by acetone/acetic acid (2:1, v/v). In addition, separation of the phenolic acids namely gallic acid, chlorogenic acid, and caffeic acid was achieved using the same solvent system. The applicability of the method was checked by screening of extracts of green, black, oolong, white tea and tea cultivars leaves. PMID:26990737

  16. Investigations on the synthesis and pharmacological properties of amides of 7-methyl-3-phenyl-1-[2-hydroxy-3-(4-phenyl-1-piperazinyl)propyl]-2,4- dioxo-1,2,3,4-tetrahydropyrido[2,3-d]-pyrimidine-5-carboxylic acid.

    PubMed

    Sladowska, H; Sieklucka-Dziuba, M; Rajtar, G; Sadowski, M; Kleinrok, Z

    1999-01-01

    Synthesis of amides of 7-methyl-3-phenyl-2,4-dioxo-1,2,3,4- tetrahydropyrido[2,3-d]pyrimidine-5-carboxylic acid (6-10) and their 1-[2-hydroxy-3(4-phenyl-1-piperazinyl)propyl] derivatives (11-15) are described. Some of them displayed strong analgesic activity. PMID:10668178

  17. Liquid chromatography coupled to quadrupole-time of flight tandem mass spectrometry based quantitative structure-retention relationships of amino acid analogues derivatized via n-propyl chloroformate mediated reaction.

    PubMed

    Kritikos, Nikolaos; Tsantili-Kakoulidou, Anna; Loukas, Yannis L; Dotsikas, Yannis

    2015-07-17

    In the current study, quantitative structure-retention relationships (QSRR) were constructed based on data obtained by a LC-(ESI)-QTOF-MS/MS method for the determination of amino acid analogues, following their derivatization via chloroformate esters. Molecules were derivatized via n-propyl chloroformate/n-propanol mediated reaction. Derivatives were acquired through a liquid-liquid extraction procedure. Chromatographic separation is based on gradient elution using methanol/water mixtures from a 70/30% composition to an 85/15% final one, maintaining a constant rate of change. The group of examined molecules was diverse, including mainly α-amino acids, yet also β- and γ-amino acids, γ-amino acid analogues, decarboxylated and phosphorylated analogues and dipeptides. Projection to latent structures (PLS) method was selected for the formation of QSRRs, resulting in a total of three PLS models with high cross-validated coefficients of determination Q(2)Y. For this reason, molecular structures were previously described through the use of descriptors. Through stratified random sampling procedures, 57 compounds were split to a training set and a test set. Model creation was based on multiple criteria including principal component significance and eigenvalue, variable importance, form of residuals, etc. Validation was based on statistical metrics Rpred(2),QextF2(2),QextF3(2) for the test set and Roy's metrics rm(Av)(2) and rm(δ)(2), assessing both predictive stability and internal validity. Based on aforementioned models, simplified equivalent were then created using a multi-linear regression (MLR) method. MLR models were also validated with the same metrics. The suggested models are considered useful for the estimation of retention times of amino acid analogues for a series of applications. PMID:26044385

  18. Mechanism of permeability-enhancing effect of EDTA and boric acid on the corneal penetration of 4-[1-hydroxy-1-methylethyl]-2-propyl-1-[4-[2-[tetrazole-5-yl]phenyl]phenyl] methylimidazole-5-carboxylic acid monohydrate (CS-088).

    PubMed

    Kikuchi, Takayuki; Suzuki, Masahiko; Kusai, Akira; Iseki, Ken; Sasaki, Hitoshi; Nakashima, Kenichiro

    2005-08-11

    This study was conducted to clarify the penetration properties of 4-[1-hydroxy-1-methylethyl]-2-propyl-1-[4-[2-[tetrazole-5-yl]phenyl]phenyl]methylimidazole-5-carboxylic acid monohydrate (CS-088), an ophthalmic agent, and the mechanism of the permeability-enhancing effect of EDTA and boric acid (EDTA/boric acid) on the corneal penetration of CS-088. In the absence of additives, corneal permeability decreased with increasing concentration of CS-088 as CS-088 monomers self-associate to form dimers. Presence of EDTA/boric acid caused no significant changes in the physicochemical properties of CS-088, the apparent partition coefficient or the mean particle size of CS-088. EDTA/boric acid induced only a slight change in the zeta potential of liposomes used as a model of the biological membrane. On the other hand, EDTA/boric acid significantly increased membrane fluidity of liposomes, whereas other buffering agents tested did not. This effect was synergistic and concentration-dependent for both EDTA and boric acid as was observed in in vitro corneal penetration of CS-088. In accordance with the result, the rate of CS-088 permeation into the liposomes significantly increased by the addition of EDTA/boric acid. Therefore, it was demonstrated that EDTA/boric acid promotes corneal penetration of CS-088 through the transcellular pathway by increasing membrane fluidity. Conversely, other buffering agents decreased corneal permeability of CS-088 by inducing further self-association of CS-088 aggregates. PMID:15979832

  19. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases.

    PubMed

    Nogales, Juan; Canales, Angeles; Jiménez-Barbero, Jesús; García, José Luis; Díaz, Eduardo

    2005-10-21

    In this work we have characterized the galA gene product from Pseudomonas putida KT2440, a ring-cleavage dioxygenase that acts specifically on gallate to produce 4-oxalomesaconate. The protein is a trimer composed by three identical subunits of 47.6 kDa (419 amino acids) that uses Fe2+ as the main cofactor. The gallate dioxygenase showed maximum activity at pH 7.0, and the Km and Vmax values for gallate were 144 microM and 53.2 micromol/min/mg of protein, respectively. A phylogenetic study suggests that the gallate dioxygenase from P. putida KT2440 is the prototype of a new subgroup of type II extradiol dioxygenases that share a common ancestor with protocatechuate 4,5-dioxygenases and whose two-domain architecture might have evolved from the fusion of the large and small subunits of the latter. A three-dimensional model for the N-terminal domain (residues 1-281) and C-terminal domain (residues 294-420) of the gallate dioxygenase from P. putida KT2440 was generated by comparison with the crystal structures of the large (LigB) and small (LigA) subunits of the protocatechuate 4,5-dioxygenase from Sphingomonas paucimobilis SYK-6. The expression of the galA gene was specifically induced when P. putida KT2440 cells grew in the presence of gallate. A P. putida KT2440 galA mutant strain was unable to use gallate as the sole carbon source and it did not show gallate dioxygenase activity, suggesting that the GalA protein is the only dioxygenase involved in gallate cleavage in this bacterium. This work points to the existence of a new pathway that is devoted to the catabolism of gallic acid and that remained unknown in the paradigmatic P. putida KT2440 strain. PMID:16030014

  20. Synthesis and pharmacological properties of 1-[2-hydroxy-3-(4-o,m,p-halogenophenyl)- and 3-(4-m-chlorophenyl)-1-piperazinyl]propyl derivatives of amides of 7-methyl-3-phenyl-2,4-dioxo-1,2,3,4-tetrahydropyrido [2,3-d]pyrimidine-5-carboxylic acid with analgesic and sedative activities.

    PubMed

    Sabiniarz, Aleksandra; Sladowska, Helena; Filipek, Barbara; Sapa, Jacek; Dudek, Magdalena; Slepokura, Katarzyna

    2007-01-01

    Synthesis of 1-[2-hydroxy-3-(4-o,m,p-halogenophenyl)- and 3-(4-m-chlorophenyl)-1-piperazinyl]propyl derivatives of amides of 7-methyl-3-phenyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-5-carboxylic acid (18, 20-23, 25, 27-30 and 19, 24, 26) is described. All substances were active as analgesic agents in "writhing syndrome" test and except of 18 and 23 they acted stronger than acetylsalicylic acid. All final derivatives tested significantly suppressed the spontaneous locomotor activity of mice. PMID:18536164

  1. Ultraviolet photodissociation dynamics of the n-propyl and i-propyl radicals

    SciTech Connect

    Song, Yu; Zheng, Xianfeng; Zhou, Weidong; Lucas, Michael; Zhang, Jingsong

    2015-06-14

    Ultraviolet (UV) photodissociation dynamics of jet-cooled n-propyl (n-C{sub 3}H{sub 7}) radical via the 3s Rydberg state and i-propyl (i-C{sub 3}H{sub 7}) radical via the 3p Rydberg states are studied in the photolysis wavelength region of 230–260 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The H-atom photofragment yield spectra of the n-propyl and i-propyl radicals are broad and in good agreement with the UV absorption spectra. The H + propene product translational energy distributions, P(E{sub T})’s, of both n-propyl and i-propyl are bimodal, with a slow component peaking around 5-6 kcal/mol and a fast one peaking at ∼50 kcal/mol (n-propyl) and ∼45 kcal/mol (i-propyl). The fraction of the average translational energy in the total excess energy, 〈f{sub T}〉, is 0.3 for n-propyl and 0.2 for i-propyl, respectively. The H-atom product angular distributions of the slow components of n-propyl and i-propyl are isotropic, while that of the fast component of n-propyl is anisotropic (with an anisotropy parameter ∼0.8) and that of i-propyl is nearly isotropic. Site-selective loss of the β hydrogen atom is confirmed using the partially deuterated CH{sub 3}CH{sub 2}CD{sub 2} and CH{sub 3}CDCH{sub 3} radicals. The bimodal translational energy and angular distributions indicate two dissociation pathways to the H + propene products in the n-propyl and i-propyl radicals: (i) a unimolecular dissociation pathway from the hot ground-state propyl after internal conversion from the 3s and 3p Rydberg states and (ii) a direct, prompt dissociation pathway coupling the Rydberg excited states to a repulsive part of the ground-state surface, presumably via a conical intersection.

  2. Ultraviolet photodissociation dynamics of the n-propyl and i-propyl radicals.

    PubMed

    Song, Yu; Zheng, Xianfeng; Zhou, Weidong; Lucas, Michael; Zhang, Jingsong

    2015-06-14

    Ultraviolet (UV) photodissociation dynamics of jet-cooled n-propyl (n-C3H7) radical via the 3s Rydberg state and i-propyl (i-C3H7) radical via the 3p Rydberg states are studied in the photolysis wavelength region of 230-260 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The H-atom photofragment yield spectra of the n-propyl and i-propyl radicals are broad and in good agreement with the UV absorption spectra. The H + propene product translational energy distributions, P(E(T))'s, of both n-propyl and i-propyl are bimodal, with a slow component peaking around 5-6 kcal/mol and a fast one peaking at ∼50 kcal/mol (n-propyl) and ∼45 kcal/mol (i-propyl). The fraction of the average translational energy in the total excess energy, 〈f(T)〉, is 0.3 for n-propyl and 0.2 for i-propyl, respectively. The H-atom product angular distributions of the slow components of n-propyl and i-propyl are isotropic, while that of the fast component of n-propyl is anisotropic (with an anisotropy parameter ∼0.8) and that of i-propyl is nearly isotropic. Site-selective loss of the β hydrogen atom is confirmed using the partially deuterated CH3CH2CD2 and CH3CDCH3 radicals. The bimodal translational energy and angular distributions indicate two dissociation pathways to the H + propene products in the n-propyl and i-propyl radicals: (i) a unimolecular dissociation pathway from the hot ground-state propyl after internal conversion from the 3s and 3p Rydberg states and (ii) a direct, prompt dissociation pathway coupling the Rydberg excited states to a repulsive part of the ground-state surface, presumably via a conical intersection. PMID:26071709

  3. Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of Bacillus licheniformis SCD11501.

    PubMed

    Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S

    2015-01-01

    Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis. PMID:25737230

  4. Encapsulation of Antioxidant Gallate Derivatives in Biocompatible Poly(ε-caprolactone)-b-Pluronic-b-Poly(ε-caprolactone) Micelles.

    PubMed

    Fuentes, Irma; Blanco-Fernandez, Bárbara; Alvarado, Nancy; Leiva, Ángel; Radić, Deodato; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2016-04-12

    Formulation of antioxidant agents is still a challenge that limits their application in the biomedical field. Pentablock copolymers obtained through modification of two common PEO-PPO-PEO copolymers (Pluronic F127 and F68) with poly(ε-carprolactone) (PCL) were evaluated regarding their capability to form nanocarriers suitable for gallic acid, methyl gallate, and ethyl gallate. Applying a dialysis method, PCL/F127/PCL and PCL/F68/PCL self-assembled into spherical micelles in 0.9% NaCl aqueous solution but notably differed in critical micellar concentration (CMC), micelle core hydrophobicity, and micelle size, as evidenced by pyrene fluorescence, transmission electron microscopy, and dynamic light scattering. Cytotoxicity studies showed that the copolymers were safe at concentrations well above the CMC. Transfer of gallic acid and derivatives from aqueous medium to the micelle phase was characterized in terms of distribution constant and free energy of transference, which were shown to be strongly dependent on the hydrophobicity of the gallate derivatives and the length of PCL in the pentablock copolymer. Antioxidant activity of gallates was challenged against DPPH previously loaded in PCL/F127/PCL and PCL/F68/PCL micelles. The more the hydrophobicity of the gallate derivative, the greater the capability to enter in the micelle and to consume free radicals. In vitro release studies of gallic acid, methyl gallate, and ethyl gallate from the pentablock copolymer micelles also evidenced the influence of the hydrophobicity of both the gallate derivative and the micelle core on release rate, recording a variety of release patterns. Overall, PCL/F127/PCL and PCL/F68/PCL appear as suitable nanocarriers of potent antioxidant agents in a wide range of polarities, which may be useful for diverse therapeutic applications. PMID:26986801

  5. Dressing with epigallocatechin gallate nanoparticles for wound regeneration.

    PubMed

    Lin, Yu-Hsin; Lin, Jui-Hsiang; Li, Tzong-Shiun; Wang, Shih-Hao; Yao, Chun-Hsu; Chung, Wan-Yu; Ko, Tse-Hao

    2016-03-01

    Several reagents have been studied to overcome the problems encountered with antiseptic use, such as moderate cutaneous wound cytotoxicity and skin thinning. We successfully prepared a gelatin/chitosan/epigallocatechin gallate nanoparticle incorporated in a poly(γ-glutamic acid)/gelatin hydrogel, which comprised activated carbon fibers with gentamicin, to fabricate a sandwiched dressing to enhance wound regeneration. The inner layer of activated carbon fibers with gentamicin was designed to prevent bacterial infection, and the outer layer of gelatin/chitosan/epigallocatechin gallate nanoparticles incorporated in a poly(γ-glutamic acid)/gelatin hydrogel was designed to prevent inflammation and facilitate reepithelialization. An in vitro study demonstrated that the dressing effectively inhibited target microorganisms, and scanning electron microscope and confocal laser scanning microscope indicated that the nanoparticles were homogeneously dispersed and migrated into the hydrogel. The in vivo study reported that the sandwiched dressing, comprising the poly(γ-glutamic acid)/gelatin hydrogel, was easy to remove from the wound and facilitated wound tissue regeneration and accelerated healing process. PMID:26472668

  6. 21 CFR 573.880 - Normal propyl alcohol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Normal propyl alcohol. 573.880 Section 573.880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.880 Normal propyl alcohol. Normal propyl alcohol may be safely used in feeds...

  7. 21 CFR 573.880 - Normal propyl alcohol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Normal propyl alcohol. 573.880 Section 573.880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.880 Normal propyl alcohol. Normal propyl alcohol may be safely used in feeds...

  8. 21 CFR 573.880 - Normal propyl alcohol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Normal propyl alcohol. 573.880 Section 573.880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.880 Normal propyl alcohol. Normal propyl alcohol may be safely used in feeds...

  9. 21 CFR 573.880 - Normal propyl alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Normal propyl alcohol. 573.880 Section 573.880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.880 Normal propyl alcohol. Normal propyl alcohol may be safely used in feeds...

  10. 21 CFR 573.880 - Normal propyl alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Normal propyl alcohol. 573.880 Section 573.880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.880 Normal propyl alcohol. Normal propyl alcohol may be safely used in feeds...

  11. Synthesis and pharmacological properties of N,N-dialkyl(dialkenyl)amides of 7-methyl-3-phenyl-1-[2-hydroxy-3-(4-phenyl-1-piperazinyl)propyl]-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-5-carboxylic acid.

    PubMed

    Sladowska, Helena; Sabiniarz, Aleksandra; Filipek, Barbara; Kardasz, Małgorzata; Maciag, Dorota

    2003-01-01

    Synthesis of N,N-dialkyl(dialkenyl)amides of 7-methyl-3-phenyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-5-carboxylic acid (5-9) and their 1-[2-hydroxy-3-(4-phenyl-1-piperazinyl)propyl] derivatives (10-14) is described. Compounds 10-14 were tested for analgesic and sedative activities as well as for mu-opioid receptors binding affinities. All the amides, being the object of investigation, displayed an interesting analgesic action, which in case of the compounds 10-12 and 14 was superior to that of acetylsalicylic acid in two different tests. Furthermore all the amides (10-14) significantly suppressed the spontaneous locomotor activity, prolonged barbiturate sleep in mice and showed a weak affinity to mu-opioid receptors. PMID:12595034

  12. Oxidative stability of (-)-epigallocatechin gallate in the presence of thiols.

    PubMed

    Unnadkat, Nausheel R; Elias, Ryan J

    2012-10-31

    Polyphenols are attractive ingredients due to their purported health benefits, but their addition to foods is limited by their chemical instability, as they are rapidly oxidized under many conditions. This oxidation not only compromises the potential biological activity of the phenolic compound, but can also affect the chemical stability of the surrounding food matrix. Polyphenols bearing catechol or gallate groups, when oxidized to their benzoquinone forms, are strong electrophiles capable of reacting with nucleophilic thiols via 1,4-Michael addition reactions. These reactions are known to proceed in foods during processing and storage, and can profoundly affect the quality and biological efficacy of polyphenols when they are added as functional food ingredients. The stability of (-)-epigallocatechin gallate (EGCG) in the presence of three thiol-containing species [cysteine (Cys), glutathione (GSH), 3-mercaptohexan-1-ol (3SH)] was followed under both neutral and acidic conditions. Both Cys and GSH increased the rate of EGCG oxidation at pH 4. At pH 7, only Cys was found to increase the rate of EGCG oxidation. On the basis of these results, the reactivity of thiols toward EGCG follows the trend: Cys > GSH > 3SH, which is consistent with observed thiol-quinone adduct formation rates. Contrary to the results observed for Cys and GSH, 3SH was observed to inhibit EGCG oxidation. PMID:23035942

  13. Mimicking the hierarchical functions of dentin collagen cross-links with plant derived phenols and phenolic acids.

    PubMed

    Vidal, Cristina M P; Leme, Ariene A; Aguiar, Thaiane R; Phansalkar, Rasika; Nam, Joo-Won; Bisson, Jonathan; McAlpine, James B; Chen, Shao-Nong; Pauli, Guido F; Bedran-Russo, Ana

    2014-12-16

    Proanthocyanidins (PACs) are secondary plant metabolites that mediate nonenzymatic collagen cross-linking and enhance the properties of collagen based tissue, such as dentin. The extent and nature of cross-linking is influenced by the composition and specific chemical structure of the bioactive compounds present in certain PAC-rich extracts. This study investigated the effect of the molecular weight and stereochemistry of polyphenol compounds on two important properties of dentin, biomechanics, and biostability. For that, purified phenols, a phenolic acid, and some of its derivatives were selected: PAC dimers (A1, A2, B1, and B2) and a trimer (C1), gallic acid (Ga), its esters methyl-gallate (MGa) and propyl-gallate (PGa), and a pentagalloyl ester of glucose (PGG). Synergism was assessed by combining the most active PAC and gallic acid derivative. Mechanical properties of dentin organic matrix were determined by the modulus of elasticity obtained in a flexural test. Biostability was evaluated by the resistance to collagenase degradation. PACs significantly enhanced dentin mechanical properties and decreased collagen digestion. Among the gallic acid derivatives, only PGG had a significant enhancing effect. The lack of observed C1:PGG synergy indicates that both compounds have similar mechanisms of interaction with the dentin matrix. These findings reveal that the molecular weight of polyphenols have a determinant effect on their interaction with type I collagen and modulates the mechanism of cross-linking at the molecular, intermolecular, and inter-microfibrillar levels. PMID:25379878

  14. Mimicking the hierarchical functions of dentin collagen cross-links with plant derived phenols and phenolic acids

    PubMed Central

    Vidal, Cristina M. P.; Leme, Ariene A.; Aguiar, Thaiane R.; Phansalkar, Rasika; Nam, Joo-Won; Bisson, Jonathan; McAlpine, James B.; Chen, Shao-Nong; Pauli, Guido F.; Bedran-Russo, Ana

    2015-01-01

    Proanthocyanidins (PACs) are secondary plant metabolites that mediate non-enzymatic collagen cross-linking and enhance the properties of collagen based tissue, such as dentin. The extent and nature of cross-linking is influenced by the composition and specific chemical structure of the bioactive compounds present in certain PAC-rich extracts. This study investigated the effect of the molecular weight and stereochemistry of polyphenol compounds on two important properties of dentin, biomechanics and biostability. For that, purified phenols, a phenolic acid and some of its derivatives were selected: PACs dimers (A1, A2, B1 and B2) and a trimer (C1), gallic acid (Ga), its esters methyl gallate (MGa) and propyl gallate (PGa), and a pentagalloyl ester of glucose (PGG). Synergism was assessed by combination of the most active PAC and gallic acid derivative. Mechanical properties of dentin organic matrix were determined by the modulus of elasticity obtained in a flexural test. Biostability was evaluated by resistance to collagenase degradation. PACs significantly enhanced dentin mechanical properties and decreased collagen digestion. Among the gallic acid derivatives, only PGG had a significant enhancing effect. The lack of observed C1:PGG synergy indicates that both compounds have similar mechanisms of interaction with the dentin matrix. These findings reveal that the molecular weight of polyphenols have a determinant effect on their interaction with type I collagen and modulate the mechanism of cross-linking at the molecular, inter-molecular, and inter-micro-fibrillar levels. PMID:25379878

  15. In vitro protection of biological macromolecules against oxidative stress and in vivo toxicity evaluation of Acacia nilotica (L.) and ethyl gallate in rats

    PubMed Central

    2014-01-01

    Background Recently, enormous research has been focused on natural bioactive compounds possessing potential antioxidant and anticancer properties using cell lines and animal models. Acacia nilotica (L.) is widely distributed in Asia, Africa, Australia and Kenya. The plant is traditionally used to treat mouth, ear and bone cancer. However, reports on Acacia nilotica (L.) Wild. Ex. Delile subsp. indica (Benth.) Brenan regarding its toxicity profile is limited. Hence in this study, we investigated the antioxidant capacity and acute toxicity of ethyl gallate, a phenolic antioxidant present in the A. nilotica (L.) leaf extract. Methods The antioxidant activity of ethyl gallate against Fenton’s system (Fe3+/H2O2/ascorbic acid) generated oxidative damage to pBR322 DNA and BSA was investigated. We also studied the interaction of ethyl gallate to CT-DNA by wave scan and FTIR analysis. The amount of ethyl gallate present in the A. nilotica (L.) leaf extract was calculated using HPLC and represented in gram equivalence of ethyl gallate. The acute toxicity profile of ethyl gallate in the A. nilotica (L.) leaf extract was analyzed in albino Wistar rats. Measurement of liver and kidney function markers, total proteins and glucose were determined in the serum. Statistical analysis was done using statistical package for social sciences (SPSS) tool version 16.0. Results Ethyl gallate was found to be effective at 100 μg/mL concentration by inhibiting the free radical mediated damage to BSA and pBR322 DNA. We also found that the interaction of ethyl gallate and A. nilotica (L.) leaf extract to CT-DNA occurs through intercalation. One gram of A. nilotica (L.) leaf extract was found to be equivalent to 20 mg of ethyl gallate through HPLC analysis. Based on the acute toxicity results, A. nilotica (L.) leaf extract and ethyl gallate as well was found to be non-toxic and safe. Conclusions Results revealed no mortality or abnormal biochemical changes in vivo and the protective effect

  16. Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide

    NASA Astrophysics Data System (ADS)

    Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M.

    2014-09-01

    The largest noncyclic molecules detected in the interstellar medium (ISM) are organic with a straight-chain carbon backbone. We report an interstellar detection of a branched alkyl molecule, iso-propyl cyanide (i-C3H7CN), with an abundance 0.4 times that of its straight-chain structural isomer. This detection suggests that branched carbon-chain molecules may be generally abundant in the ISM. Our astrochemical model indicates that both isomers are produced within or upon dust grain ice mantles through the addition of molecular radicals, albeit via differing reaction pathways. The production of iso-propyl cyanide appears to require the addition of a functional group to a nonterminal carbon in the chain. Its detection therefore bodes well for the presence in the ISM of amino acids, for which such side-chain structure is a key characteristic.

  17. Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid.

    PubMed

    Aruoma, O I; Halliwell, B; Aeschbach, R; Löligers, J

    1992-02-01

    1. Carnosol and carnosic acid have been suggested to account for over 90% of the antioxidant properties of rosemary extract. 2. Purified carnosol and carnosic acid are powerful inhibitors of lipid peroxidation in microsomal and liposomal systems, more effective than propyl gallate. 3. Carnosol and carnosic acid are good scavengers of peroxyl radicals (CCl3O2.) generated by pulse radiolysis, with calculated rate constants of 1-3 x 10(6) M-1 s-1 and 2.7 x 10(7) M-1 s-1 respectively. 4. Carnosic acid reacted with HOCl in such a way as to protect the protein alpha 1-antiproteinase against inactivation. 5. Both carnosol and carnosic acid stimulated DNA damage in the bleomycin assay but they scavenged hydroxyl radicals in the deoxyribose assay. The calculated rate constants for reaction with .OH in the deoxyribose system for carnosol and carnosic acid were 8.7 x 10(10) M-1 s-1 and 5.9 x 10(10) M-1 s-1 respectively. 6. Carnosic acid appears to scavenge H2O2, but it could also act as a substrate for the peroxidase system. 7. Carnosic acid and carnosol reduce cytochrome c but with a rate constant significantly lower than that of O2(-.). PMID:1378672

  18. Determination of catechins and catechin gallates in tissues by liquid chromatography with coulometric array detection and selective solid phase extraction.

    PubMed

    Chu, Kai On; Wang, Chi Chiu; Chu, Ching Yan; Rogers, Michael Scott; Choy, Kwong Wai; Pang, Chi Pui

    2004-10-25

    Catechins levels in organ tissues, particularly liver, determined by published methods are unexpectedly low, probably due to the release of oxidative enzymes, metal ions and reactive metabolites from tissue cells during homogenization and to the pro-oxidant effects of ascorbic acid during sample processing in the presence of metal ions. We describe a new method for simultaneous analysis of eight catechins in tissue: (+)-catechin (C), (-)-epicatechin (EC), (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-catechin gallate (CG), (-)-epicatechin gallate (ECG), (-)-gallocatechin gallate (GCG) and (-)-epigallocatechin gallate (EGCG) (Fig. 1). The new extraction procedure utilized a methanol/ethylacetate/dithionite (2:1:3) mixture during homogenization for simultaneous enzyme precipitation and antioxidant protection. Selective solid phase extraction was used to remove most interfering bio-matrices. Reversed phase HPLC with CoulArray detection was used to determine the eight catechins simultaneously within 25 min. Good linearity (>0.9922) was obtained in the range 20-4000 ng/g. The coefficients of variance (CV) were less than 5%. Absolute recovery ranged from 62 to 96%, accuracy 92.5 +/- 4.5 to 104.9 +/- 6%. The detection limit was 5 ng/g. This method is capable for determining catechins in rat tissues of liver, brain, spleen, and kidney. The method is robust, reproducible, with high recovery, and has been validated for both in vitro and in vivo sample analysis. PMID:15380714

  19. Pathologically activated neuroprotection via uncompetitive blockade of N-methyl-D-aspartate receptors with fast off-rate by novel multifunctional dimer bis(propyl)-cognitin.

    PubMed

    Luo, Jialie; Li, Wenming; Zhao, Yuming; Fu, Hongjun; Ma, Dik-Lung; Tang, Jing; Li, Chaoying; Peoples, Robert W; Li, Fushun; Wang, Qinwen; Huang, Pingbo; Xia, Jun; Pang, Yuanping; Han, Yifan

    2010-06-25

    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and gamma-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [(3)H]MK-801 with a K(i) value of 0.27 mum, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation. PMID:20404346

  20. Pathologically Activated Neuroprotection via Uncompetitive Blockade of N-Methyl-d-aspartate Receptors with Fast Off-rate by Novel Multifunctional Dimer Bis(propyl)-cognitin*

    PubMed Central

    Luo, Jialie; Li, Wenming; Zhao, Yuming; Fu, Hongjun; Ma, Dik-Lung; Tang, Jing; Li, Chaoying; Peoples, Robert W.; Li, Fushun; Wang, Qinwen; Huang, Pingbo; Xia, Jun; Pang, Yuanping; Han, Yifan

    2010-01-01

    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and γ-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [3H]MK-801 with a Ki value of 0.27 μm, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation. PMID:20404346

  1. Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate.

    PubMed

    Melgarejo, Esther; Urdiales, José Luis; Sánchez-Jiménez, Francisca; Medina, Miguel Angel

    2010-02-01

    Biogenic amines and polyamines are organic polycations derived from aromatic or cationic amino acids. They exert pleiotropic effects, more related to intercellular communication in the case of biogenic amines, and to intracellular signaling in the case of polyamines. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target key enzyme of biogenic amine and polyamine metabolic pathways. Herein, we review the specific effects of EGCG on concrete molecular targets of both biogenic amine and polyamine metabolic pathways, and discuss the relevance of these data to support the potential therapeutic interest of this compound. PMID:19956995

  2. Identification of a novel selective peroxisome proliferator-activated receptor alpha agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674), that produces marked changes in serum lipids and apolipoprotein A-1 expression.

    PubMed

    Singh, Jai Pal; Kauffman, Raymond; Bensch, William; Wang, Guoming; McClelland, Pam; Bean, James; Montrose, Chahrzad; Mantlo, Nathan; Wagle, Asavari

    2005-09-01

    Low high-density lipoprotein-cholesterol (HDL-c) is an important risk factor of coronary artery disease (CAD). Optimum therapy for raising HDL-c is still not available. Identification of novel HDL-raising agents would produce a major impact on CAD. In this study, we have identified a potent (IC50 approximately 24 nM) and selective peroxisome proliferator-activated receptor alpha (PPARalpha) agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674). In human apolipoprotein A-1 (apoA-1) transgenic mice, LY518674 produced a dose-dependent increase in serum HDL-c, resulting in 208 +/- 15% elevation at optimum dose. A new synthesis of apoA-1 contributed to the increase in HDL-c. LY518674 increased apoA-1 mRNA levels in liver. Moreover, liver slices from animals treated with LY518674 secreted 3- to 6-fold more apoA-1 than control liver slices. In cultured hepatocytes, LY518674 produced 50% higher apoA-1 secretion, which was associated with increase in radiolabeled methionine incorporation in apoA-1. Thus, LY518674 is a potent and selective PPARalpha agonist that produced a much greater increase in serum HDL-c than the known fibrate drugs. The increase in HDL-c was associated with de novo synthesis of apoA-1. PMID:15933217

  3. Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy

    PubMed Central

    Granja, Andreia; Pinheiro, Marina; Reis, Salette

    2016-01-01

    Cancer is one of the leading causes of morbidity and mortality all over the world. Conventional treatments, such as chemotherapy, are generally expensive, highly toxic and lack efficiency. Cancer chemoprevention using phytochemicals is emerging as a promising approach for the treatment of early carcinogenic processes. (−)-Epigallocatechin-3-gallate (EGCG) is the major bioactive constituent in green tea with numerous health benefits including anti-cancer activity, which has been intensively studied. Besides its potential for chemoprevention, EGCG has also been shown to synergize with common anti-cancer agents, which makes it a suitable adjuvant in chemotherapy. However, limitations in terms of stability and bioavailability have hampered its application in clinical settings. Nanotechnology may have an important role in improving the pharmacokinetic and pharmacodynamics of EGCG. Indeed, several studies have already reported the use of nanoparticles as delivery vehicles of EGCG for cancer therapy. The aim of this article is to discuss the EGCG molecule and its associated health benefits, particularly its anti-cancer activity and provide an overview of the studies that have employed nanotechnology strategies to enhance EGCG’s properties and potentiate its anti-tumoral activity. PMID:27213442

  4. Furan formation from fatty acids as a result of storage, gamma irradiation, UV-C and heat treatments.

    PubMed

    Fan, Xuetong

    2015-05-15

    The effects of gamma and UV-C irradiation in comparison with thermal processing and storage at 25°C on formation of furan from different fatty acids were investigated. Results showed that furan was generated from polyunsaturated fatty acids such as linoleic and linolenic acid during thermal (120°C, 25 min) and UV-C (11.5 J/cm(2)) treatments. Gamma irradiation (up to 20 kGy) did not induce formation of significant amounts of furan from any of the fatty acids studied. Storage of unsaturated fatty acid emulsions at 25°C for 3 days led to the formation of furan (7-11 ng/mL) even without prior thermal or non-thermal treatments. pH significantly impacted furan formation with >3.5 times more furan formed at pH 9 than at pHs 3 or 6 during 3 days at 25°C. The addition of Trolox, BHA, and propyl gallate had no significant effect on furan formation from linolenic acid while α-tocopherol and FeSO4 promoted furan formation. PMID:25577103

  5. Three New Oxidation Products Produced from Epigallocatechin-3- O-gallate and Epicatechin-3-O-gallate.

    PubMed

    Li, Yan; Matsuo, Yosuke; Saito, Yoshinori; Tanaka, Takashi

    2016-02-01

    During chemical studies on uncharacterized black tea polyphenols, the enzymatic oxidation of a mixture of epigallocatechin-3-O-gallate (1) and epicatechin-3-O-gallate (2) was examined, and three new dimeric products together with six known catechin dimers were isolated. Two of the new compounds have tricyclo[5.2.2.0²,⁶]undecane and tricyclo[5.2.1.0²,⁶]decane carboxyl structures generated by oxidative coupling between two pyrogallol-B-rings of 1. Another new product was a dimer connected by a C-C bond between the B-ring of 1 and a galloyl group of 2. PMID:27032198

  6. Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity

    PubMed Central

    Cortes, Leonel A.; Castro, Lorena; Pesce, Bárbara; Maya, Juan D.; Ferreira, Jorge; Castro-Castillo, Vicente; Parra, Eduardo; Jara, José A.; López-Muñoz, Rodrigo

    2015-01-01

    Chagas disease is one of the most neglected tropical diseases in the world, affecting nearly 15 million people, primarily in Latin America. Only two drugs are used for the treatment of this disease, nifurtimox and benznidazole. These drugs have limited efficacy and frequently induce adverse effects, limiting their usefulness. Consequently, new drugs must be found. In this study, we demonstrated the in vitro trypanocidal effects of a series of four gallic acid derivatives characterized by a gallate group linked to a triphenylphosphonium (TPP+) moiety (a delocalized cation) via a hydrocarbon chain of 8, 10, 11, or 12 atoms (TPP+-C8, TPP+-C10, TPP+-C11, and TPP+-C12, respectively). We analyzed parasite viability in isolated parasites (by MTT reduction and flow cytometry) and infected mammalian cells using T. cruzi Y strain trypomastigotes. Among the four derivatives, TPP+-C10 and TPP+-C12 were the most potent in both models, with EC50 values (in isolated parasites) of 1.0 ± 0.6 and 1.0 ± 0.7 μM, respectively, and were significantly more potent than nifurtimox (EC50 = 4.1 ± 0.6 μM). At 1 μM, TPP+-C10 and TPP+-C12 induced markers of cell death, such as phosphatidylserine exposure and propidium iodide permeabilization. In addition, at 1 μM, TPP+-C10 and TPP+-C12 significantly decreased the number of intracellular amastigotes (TPP+-C10: 24.3%, TPP+-C12: 19.0% of control measurements, as measured by DAPI staining) and the parasite’s DNA load (C10: 10%, C12: 13% of control measurements, as measured by qPCR). Based on the previous mode of action described for these compounds in cancer cells, we explored their mitochondrial effects in isolated trypomastigotes. TPP+-C10 and TPP+-C12 were the most potent compounds, significantly altering mitochondrial membrane potential at 1 μM (measured by JC-1 fluorescence) and inducing mitochondrial transition pore opening at 5 μM. Taken together, these results indicate that the TPP+-C10 and TPP+-C12 derivatives of gallic acid are

  7. Characterization and cloning of laccase gene from Hericium coralloides NBRC 7716 suitable for production of epitheaflagallin 3-O-gallate.

    PubMed

    Itoh, Nobuya; Takagi, Shinya; Miki, Asami; Kurokawa, Junji

    2016-01-01

    Epitheaflagallin 3-O-gallate (ETFGg) is a minor polyphenol found in black tea extract, which has good physiological functions. It is synthesized from epigallocatechin gallate (EGCg) with gallic acid via laccase oxidation. Various basidiomycetes and fungi were screened to find a suitable laccase for the production of ETFGg. A basidiomycete, Hericium coralloides NBRC 7716, produced an appropriate extracellular laccase. The purified laccase produced twice the level of ETFGg compared with commercially available laccase from Trametes sp. The enzyme, termed Lcc2, is a monomeric protein with an apparent molecular mass of 67.2 kDa. The N-terminal amino acid sequence of Lcc2 is quite different from laccase isolated from the fruiting bodies of Hericium. Lcc2 showed similar substrate specificity to known laccases and could oxidize various phenolic substrates, including pyrogallol, gallic acid, and 2,6-dimethoxyphenol. The full-length lcc2 gene was obtained by PCR using degenerate primers, which were designed based on the N-terminal amino acid sequence of Lcc2 and conserved copper-binding sites of laccases, and 5'-, and 3'-RACE PCR with mRNA. The Lcc2 gene showed homology with Lentinula edodes laccase (sharing 77% amino acid identity with Lcc6). We successfully produced extracellular Lcc2 using a heterologous expression system with Saccharomyces cerevisiae. Moreover, it was confirmed that the recombinant laccase generates similar levels of ETFGg as the native enzyme. PMID:26672458

  8. Evaluation of H2CHXdedpa, H2dedpa- and H2CHXdedpa-N,N'-propyl-2-NI ligands for (64)Cu(ii) radiopharmaceuticals.

    PubMed

    Ramogida, Caterina F; Boros, Eszter; Patrick, Brian O; Zeisler, Stefan K; Kumlin, Joel; Adam, Michael J; Schaffer, Paul; Orvig, Chris

    2016-08-16

    The chiral acyclic "pa" ligand (pa = picolinic acid) H2CHXdedpa (N4O2) and two NI-containing dedpa analogues (H2CHXdedpa-N,N'-propyl-2-NI, H2dedpa-N,N'-propyl-2-NI, NI = nitroimidazole) were studied as chelators for copper radiopharmaceuticals (CHX = cyclohexyl, H2dedpa = 1,2-[[carboxypyridin-2-yl]methylamino]ethane). The hexadentate ligand H2CHXdedpa was previously established as a superb system for (67/68)Ga radiochemistry. The solid state X-ray crystal structures of [Cu(CHXdedpa-N,N'-propyl-2-NI)] and [Cu(dedpa-N,N'-propyl-2-NI)] reveal the predicted hexadentate, distorted octahedral binding of the copper(ii) ion. Cyclic voltammetry of [Cu(dedpa-N,N'-propyl-2-NI)] shows that there is one reversible couple associated with the NI redox, and one irreversible but reproducible couple attributed to the Cu(ii)/Cu(i) redox cycle. Quantitative radiolabeling (>99%) of CHXdedpa(2-) and (dedpa-N,N'-propyl-2-NI)(2-) with (64)Cu was achieved under fast and efficient labeling conditions (10 min, RT, 0.5 M sodium acetate buffer, pH 5.5) at ligand concentrations as low as 10(-6) M. In vitro kinetic inertness studies of the (64)Cu labelled complexes were studied in human serum at 37 °C over 24 hours; [(64)Cu(CHXdedpa)] was found to be 98% stable compared to previously investigated [(64)Cu(dedpa)] which was only 72% intact after 24 hours. PMID:27161975

  9. Interactions of lauryl gallate with phospholipid components of biological membranes.

    PubMed

    Jurak, Małgorzata; Miñones, José

    2016-08-01

    The effect of different amounts of lauryl gallate (LG) on properties of the model membranes of phosphatidylcholines (PC), differing in the presence of double bonds in the hydrocarbon chains, and phosphatidylglycerol (PG) was described in terms of phase behaviour of mixtures, interactions between both components, monolayers stability and their organization. The Langmuir monolayer technique was used to monitor the surface thermodynamics (i.e. the excess area and excess Gibbs energy of mixing) on the basis of surface pressure-area per molecule (π-A) isotherms. Simultaneously, morphology of the studied monolayers was visualized by the Brewster angle microscopy (BAM). This allowed evaluating the kind and magnitude of interactions which influence on the phase behaviour and structural properties of the monolayers. The obtained results can be helpful to reveal the mechanism of phospholipid antioxidant protection and important pharmacological (antimicrobial) role of lauryl gallate for production of effective therapeutic substances. PMID:27117642

  10. Anticancer activity of flavane gallates isolated from Plicosepalus curviflorus

    PubMed Central

    Fawzy, Ghada Ahmed; Al-Taweel, Areej Mohammad; Perveen, Shagufta

    2014-01-01

    Background: Previous investigation of the methanol extract of Plicosepalus curviflorus leaves led to the isolation of two new flavane gallates (1, 2), together with other compounds including quercetin (3). The stems of P. curviflorus are used traditionally for the treatment of cancer in Yemen. Objective: The aim of this study was to evaluate the anticancer activity of the plant methanol extract as well as isolated compounds (1-3). Materials and Methods: The human cancer cell lines used were; MCF-7, HepG-2, HCT-116, Hep-2, HeLa and normal, Vero cell line using the Crystal Violet Staining method (CVS). Results: Quercetin (3) possessed the highest anticancer effect against all five cell lines (IC50 ranging from 3.6 to 16.2 μg/ml). It was followed by 2S, 3R-3, 3′, 4′, 5, 7-pentahydroxyflavane-5-O-gallate (1), with IC50 ranging from 11.6 to 38.8 μg/ml. The weakest anticancer activity was given by 2S, 3R-3,3′,4′,5,5′,7-hexahydroxyflavane-3′,5-di-O-gallate (2) with IC50 ranging from 39.8 to above 50 μg/ml, compared to vinblastine sulphate as reference drug. Colon, liver and breast cell lines seemed to be more sensitive to the tested compounds than the cervical and laryngeal cell lines. Concerning the cytotoxic effect on Vero cell line, the pentahydroxyflavane-5-O-gallate (1) showed the highest IC50 ( 138.2 μg/ml), while quercetin exhibited the lowest IC50 to Vero cells (30.5 μg/ml), compared to vinblastine sulphate as reference drug (IC50: 39.7 μg/ml). Conclusion: The results suggest the possible use of compounds 1 and 3 as anticancer drugs especially against colon and liver cancers. PMID:25298669

  11. [Quantitative analysis of (-)-epigallocatechin gallate in tea leaves by high-performance liquid chromatography].

    PubMed

    Sakata, I; Ikeuchi, M; Maruyama, I; Okuda, T

    1991-12-01

    The quantitative analysis of (-)-epigallocatechin gallate (EGCG) in tea (Camellia sinensis L.) was performed by high-performance liquid chromatography (HPLC) with a C-18 reversed-phase column. EGCG was then eluted within 20 min by using methanol-water-acetic acid (20:75:5 (v/v/v)) as an eluent. As an internal standard, tryptophan was used. The content of EGCG in five kinds of green tea (sencha, gyokuro, bancha, matsucha and oolong tea) and in a cup of those was determined by both the extraction method with 50% (v/v) methanol and the infusion method with water. The largest amount of EGCG was obtained from matsucha by the extraction method, or from sencha by the infusion method. Furthermore, EGCG contents in various parts of the tea plant were examined. The first leaf had the highest concentration of EGCG, and the concentration of EGCG decreased with the aging of the leaf. PMID:1806661

  12. Chitosan gallate as a novel potential polysaccharide antioxidant: an EPR study.

    PubMed

    Pasanphan, Wanvimol; Buettner, Garry R; Chirachanchai, Suwabun

    2010-01-11

    A novel biopolymer-based antioxidant, chitosan conjugated with gallic acid (chitosan galloylate, chitosan-GA), is proposed. Electron paramagnetic resonance (EPR) demonstrates a wide range of antioxidant activity for chitosan-GA as evidenced from its reactions with oxidizing free radicals, that is, 1,1-diphenyl-2-picryl-hydrazyl (DPPH), horseradish peroxidase (HRP)-H(2)O(2), carbon-centered alkyl radicals, and hydroxyl radicals. The EPR spectrum of the radical formed on chitosan-GA was attributed to the semiquinone radical of the gallate moiety. The stoichiometry and effective concentration (EC(50)) of the DPPH free radical with chitosan-GA show that the radical scavenging capacity is maintained even after thermal treatment at 100 degrees C for an hour. Although the degree of substitution of GA on chitosan was about 15%, its antioxidant capacity, that is, the reaction with carbon-centered and hydroxyl radicals, is comparable to that of GA. PMID:19889400

  13. Molecular interactions between (-)-epigallocatechin gallate analogs and pancreatic lipase.

    PubMed

    Wang, Shihui; Sun, Zeya; Dong, Shengzhao; Liu, Yang; Liu, Yun

    2014-01-01

    The molecular interactions between pancreatic lipase (PL) and four tea polyphenols (EGCG analogs), like (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin (EC), were studied from PL activity, conformation, kinetics and thermodynamics. It was observed that EGCG analogs inhibited PL activity, and their inhibitory rates decreased by the order of EGCG>GCG>ECG>EC. PL activity at first decreased rapidly and then slowly with the increase of EGCG analogs concentrations. α-Helix content of PL secondary structure decreased dependent on EGCG analogs concentration by the order of EGCG>GCG>ECG>EC. EGCG, ECG, and EC could quench PL fluorescence both dynamically and statically, while GCG only quenched statically. EGCG analogs would induce PL self-assembly into complexes and the hydrodynamic radii of the complexes possessed a close relationship with the inhibitory rates. Kinetics analysis showed that EGCG analogs non-competitively inhibited PL activity and did not bind to PL catalytic site. DSC measurement revealed that EGCG analogs decreased the transition midpoint temperature of PL enzyme, suggesting that these compounds reduced PL enzyme thermostability. In vitro renaturation through urea solution indicated that interactions between PL and EGCG analogs were weak and non-covalent. PMID:25365042

  14. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS.

    PubMed

    Del Bufalo, Aurélia; Bernad, José; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Françoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. PMID:21807015

  15. A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor

    SciTech Connect

    Li, Guodong; Lin, Wenwei; Araya, Juan J.; Chen, Taosheng; Timmermann, Barbara N.; Guo, Grace L.

    2012-01-15

    Farnesoid X receptor (FXR) is a ligand-activated nuclear receptor and serves as a key regulator to maintain health of the liver and intestine. Bile acids are endogenous ligands of FXR, and there are increasing efforts to identify FXR modulators to serve as biological probes and/or pharmaceutical agents. Natural FXR ligands isolated from plants may serve as models to synthesize novel FXR modulators. In this study, we demonstrated that epigallocatechin-3-gallate (EGCG), a major tea catechin, specifically and dose-dependently activates FXR. In addition, EGCG induced FXR target gene expression in vitro. Surprisingly, in a co-activator (SRC2) recruitment assay, we found that EGCG does not recruit SRC2 to FXR, but it dose-dependently inhibits recruitment of SRC2 to FXR (IC{sub 50}, 1 μM) by GW6064, which is a potent FXR synthetic ligand. In addition, EGCG suppressed FXR target gene expression induced by either GW4064 or chenodeoxycholic acid in vitro. Furthermore, wild-type and FXR knockout mice treated with an acute dose of EGCG had induced mRNA expression in a subset of FXR target genes in the intestine but not in the liver. In conclusion, EGCG is a unique modulator of FXR in the intestine and may serve as an important model for future development of FXR modulators. -- Highlights: ► Epigallocatechin-3-gallate (EGCG) is a unique farnesoid X receptor (FXR) modulator. ► EGCG activates FXR by itself, but inhibits FXR transactivation by other agonists. ► Low concentration of EGCG activates FXR in mouse intestine but not liver. ► EGCG activates FXR to induce a subset of FXR target genes in mouse intestine.

  16. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes

    PubMed Central

    Król, Ewa; de Sousa Borges, Anabela; da Silva, Isabel; Polaquini, Carlos R.; Regasini, Luis O.; Ferreira, Henrique; Scheffers, Dirk-Jan

    2015-01-01

    Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5–C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity—however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ. PMID:25972861

  17. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes.

    PubMed

    Król, Ewa; de Sousa Borges, Anabela; da Silva, Isabel; Polaquini, Carlos R; Regasini, Luis O; Ferreira, Henrique; Scheffers, Dirk-Jan

    2015-01-01

    Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5-C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity-however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ. PMID:25972861

  18. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogalloyl (B-ring) moieties in EGCG underwent ...

  19. Validation of a high performance liquid chromatography method for the stabilization of epigallocatechin gallate.

    PubMed

    Fangueiro, Joana F; Parra, Alexander; Silva, Amélia M; Egea, Maria A; Souto, Eliana B; Garcia, Maria L; Calpena, Ana C

    2014-11-20

    Epigallocatechin gallate (EGCG) is a green tea catechin with potential health benefits, such as anti-oxidant, anti-carcinogenic and anti-inflammatory effects. In general, EGCG is highly susceptible to degradation, therefore presenting stability problems. The present paper was focused on the study of EGCG stability in HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) medium regarding the pH dependency, storage temperature and in the presence of ascorbic acid a reducing agent. The evaluation of EGCG in HEPES buffer has demonstrated that this molecule is not able of maintaining its physicochemical properties and potential beneficial effects, since it is partially or completely degraded, depending on the EGCG concentration. The storage temperature of EGCG most suitable to maintain its structure was shown to be the lower values (4 or -20 °C). The pH 3.5 was able to provide greater stability than pH 7.4. However, the presence of a reducing agent (i.e., ascorbic acid) was shown to provide greater protection against degradation of EGCG. A validation method based on RP-HPLC with UV-vis detection was carried out for two media: water and a biocompatible physiological medium composed of Transcutol®P, ethanol and ascorbic acid. The quantification of EGCG for purposes, using pure EGCG, requires a validated HPLC method which could be possible to apply in pharmacokinetic and pharmacodynamics studies. PMID:25175728

  20. (−)-Epigallocatechin-3-gallate induces secretion of anorexigenic gut hormones

    PubMed Central

    Song, Won-Young; Aihara, Yoshiko; Hashimoto, Takashi; Kanazawa, Kazuki; Mizuno, Masashi

    2015-01-01

    The anorexigenic gut hormones, cholecystokinin (CCK), glucagon-like peptide (GLP)-1 and peptide tyrosine-tyrosine (PYY), are released in response to food intake from the intestines. Dietary nutrients have been shown to stimulate these hormones. Some non-nutrients such as polyphenols show anorexigenic effects on humans. In the present study, we examined whether dietary polyphenols can stimulate secretion of these gut hormones. Caco-2 cells expressed mRNA of the gut hormones, CCK, PC1 (prohormone convertase 1), GCG (glucagon) and PYY. CCK, GLP-1 and PYY were secreted from Caco-2 cells after adding sugars, amino acids or fatty acids. Using Caco-2 cells, epigallocatechin-3-gallate (EGCG), chlorogenic acid and ferulic acid induced secretion of anorexigenic gut hormones. Particularly, EGCG induced secretion of all three hormones. In an ex vivo assay using murine intestines, EGCG also released CCK from the duodenum, and GLP-1 from the ileum. These results suggest that EGCG may affect appetite via gut hormones. PMID:26388676

  1. Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme

    NASA Astrophysics Data System (ADS)

    Ghosh, Kalyan Sundar; Sahoo, Bijaya Ketan; Dasgupta, Swagata

    2008-02-01

    Various reported antibacterial activities of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea prompted us to study its binding with lysozyme. This has been investigated by fluorescence, circular dichroism (CD) and protein-ligand docking. The binding parameters were determined using a modified Stern-Volmer equation. The thermodynamic parameters are indicative of an initial hydrophobic association. The complex is, however, held together predominantly by van der Waals interactions and hydrogen bonding. CD studies do not indicate any significant changes in the secondary structure of lysozyme. Docking studies revealed that specific interactions are observed with residues Trp 62 and Trp 63.

  2. Ascorbic acid, glutathione and synthetic antioxidants prevent the oxidation of vitamin E in platelets.

    PubMed

    Vatassery, G T; Smith, W E; Quach, H T

    1989-12-01

    An earlier report from this laboratory showed that tocopherol in human platelets is oxidized when the platelets are incubated in vitro in Tyrode medium with arachidonate (or other oxidants). Arachidonate is a more potent oxidizing agent in 50 mM potassium phosphate buffer at pH 7.4 with 0.1 mM ethylenediaminetetraacetic acid (EDTA) than in Tyrode medium. Forty to fifty percent of total platelet tocopherol was oxidized upon incubation with 40-50 microM arachidonate in the phosphate-buffered medium. The tocopherol oxidation took place within 15 min after the addition of arachidonate. Preincubation of platelets with ascorbate blocked the oxidation of tocopherol. This is one of the first direct in vitro demonstrations of the vitamin E-sparing action of vitamin C in media containing biological cellular material. Other compounds which blocked the oxidation of platelet tocopherol were ascorbyl palmitate, propyl gallate, butylated hydroxytoluene, hydroquinone and glutathione. If ascorbate or glutathione was added after the tocopherol was oxidized to the quinone there was no reversal of the oxidation. PMID:2515405

  3. Antibacterial Activity of Alkyl Gallates against Xanthomonas citri subsp. citri

    PubMed Central

    Silva, I. C.; Regasini, L. O.; Petrônio, M. S.; Silva, D. H. S.; Bolzani, V. S.; Belasque, J.; Sacramento, L. V. S.

    2013-01-01

    The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. PMID:23104804

  4. Diesters from Oleic Acid: Synthesis, Low Temperature Properties, and Oxidation Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several diesters were prepared from commercially available oleic acid and common organic acids. The key step in the three step synthesis of oleochemical diesters entails a ring opening esterification of alkyl 9,10-epoxyoctadecanoates (alkyl: propyl, iso-propyl, octyl, 2-ethylhexyl) using propionic a...

  5. Epimerization of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate: relationship between epimerization and chemical structure.

    PubMed

    Suzuki, Masazumi; Sano, Mitsuaki; Yoshida, Risa; Degawa, Masakuni; Miyase, Toshio; Maeda-Yamamoto, Mari

    2003-01-15

    Epimerization at C-2 of O-methylated catechin derivatives and four major tea catechins were investigated. The epimeric isomers of (-)-epicatechin (I), (-)-epicatechin-3-O-gallate (II), (-)-epigallocatechin (III), (-)-epigallocatechin-3-O-gallate (IV), and (-)-epigallocatechin-3-O-(3-O-methyl)gallate (V) in green tea extracts increased time-dependently at 90 degrees C. The epimerization rates of authentic tea catechins in distilled water are much lower than those in tea infusion or in pH 6.0 buffer solution. The addition of tea infusion to the authentic catechin solution accelerated the epimerization, and the addition of ethylenediaminetetraacetic acid, disodium salt (Na(2)EDTA) decreased the epimerization in the pH 6.0 buffer solution. Therefore, the metal ions in tea infusion may affect the rate of epimerization. The proportions of the epimers to authentic tea catechins [III, IV, V, and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (VI)] in pH 6.0 buffer solution after heating at 90 degrees C for 30 min were 42.4%, 37.0%, 41.7%, and 30.4%, respectively. These values were higher than those of I and II (23.5% and 23.6%, respectively). The O-methylated derivatives at the 4'-position on the B ring of IV and VI were hardly epimerized. These results suggest that the hydroxyl moiety on the B ring of catechins plays an important role in the epimerization in the order 3',4',5'-triol type > 3',4'-diol type > 3',5'-diol type. PMID:12517118

  6. Rapid Stimulation of 5-Lipoxygenase Activity in Potato by the Fungal Elicitor Arachidonic Acid 1

    PubMed Central

    Bostock, Richard M.; Yamamoto, Hiroyuki; Choi, Doil; Ricker, Karin E.; Ward, Bernard L.

    1992-01-01

    The activity of lipoxygenase (LOX) in aged potato tuber discs increased by almost 2-fold following treatment of the discs with the fungal elicitor arachidonic acid (AA). Enzyme activity increased above that in untreated discs within 30 min after AA treatment, peaked at 1 to 3 h, and returned to near control levels by 6 h. The majority of the activity was detected in a soluble fraction (105,000g supernatant), but a minor portion was also associated with a particulate fraction enriched in microsomal membranes (105,000g pellet); both activities were similarly induced. 5-Hydroperoxyeicosatetraenoic acid was the principal product following incubation of these extracts with AA. Antibodies to soybean LOX strongly reacted with a protein with a molecular mass of approximately 95-kD present in both soluble and particulate fractions whose abundance generally corresponded with LOX activity in extracts. LOX activity was not enhanced by treatment of the discs with nonelicitor fatty acids or by branched β-glucans from the mycelium of Phytophthora infestans. Prior treatment of the discs with abscisic acid, salicylhydroxamic acid, or n-propyl gallate, all of which have been shown to suppress AA induction of the hypersensitive response, inhibited the AA-induced increment in LOX activity. Cycloheximide pretreatment, which abolishes AA elicitor activity for other responses such as phytoalexin induction, did not inhibit LOX activity in water- or elicitor-treated discs but enhanced activity similar to that observed by AA treatment. The elicitor-induced increase in 5-LOX activity preceded or temporally paralleled the induction of other studied responses to AA, including the accumulation of mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase and phenylalanine ammonia lyase reported here. The results are discussed in relation to the proposed role of the 5-LOX in signal-response coupling of arachidonate elicitation of the hypersensitive response. Images Figure 4 Figure 7 PMID

  7. Photolysis of n-Propyl Formate in the Presence of O2 and NO2: Peroxy Formyl Propyl Nitrate CH3CH2CH2OC(O)OONO2 Synthesis and Characterization.

    PubMed

    Vila, Jesús A; Argüello, Gustavo A; Malanca, Fabio E

    2016-01-21

    The photo-oxidation of n-propyl formate (initiated by chlorine atoms) was studied in the presence of NO2, and the products were identified. The Cl atom attack to the molecule occurs in four sites, leading to the formation of formic acid, carbon dioxide, dicarbonylic products, nitrates, peroxy propionyl nitrate (CH3CH2C(O)OONO2, PPN), and a new peroxynitrate, peroxy formyl propyl nitrate (CH3CH2CH2OC(O)OONO2, PFPN). To characterize bulk quantities of the PFPN, its synthesis was carried out by the photolysis of mixtures of CH3CH2CH2OC(O)H, NO2, Cl2, and O2. After purification, its infrared spectrum and thermal stability were determined. The main infrared absorption bands and their corresponding cross sections are 796, 1219, 1302, 1741, and 1831 cm(-1) (1.16, 3.11, 0.88, 2.42, and 1.34 × 10(-18) cm(2) molec(-1), respectively). Thermal decomposition was studied as a function of pressure from 6.0 to 1000 mbar at 298 K, and the activation energy was determined between 293 and 304 K at total pressures of 9.0 and 1000 mbar (Ea = 98 ± 3 and 110 ± 2 kJ/mol, respectively). The atmospheric thermal lifetimes were obtained from kinetic parameters. PMID:26702471

  8. Neuroprotective Activity of (-)-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity.

    PubMed

    Liu, Jin-Biao; Zhou, Li; Wang, Yi-Zhong; Wang, Xu; Zhou, Yu; Ho, Wen-Zhe; Li, Jie-Liang

    2016-01-01

    Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs). Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS). Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders. PMID:27191001

  9. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).

    PubMed

    Singh, Neha Atulkumar; Mandal, Abul Kalam Azad; Khan, Zaved Ahmed

    2016-01-01

    Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG. PMID:27268025

  10. Promotion of neuronal plasticity by (-)-epigallocatechin-3-gallate.

    PubMed

    Xie, Wen; Ramakrishna, Narayan; Wieraszko, Andrzej; Hwang, Yu-Wen

    2008-05-01

    The consumption of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenolic compound found in green tea, has been associated with various neurological benefits including cognitive improvement. The physiological basis for this effect is unknown. In this study, we used synaptic transmission between the CA3 and CA1 regions (Schaffer collateral) of the mouse hippocampus to examine the effects of EGCG on neuronal plasticity. We found that the level of high frequency stimulation-evoked long-term potentiation (LTP) was significantly enhanced when hippocampal slices were pre-incubated with 10 microM EGCG for 1 h prior to the experiment. EGCG incubation also enabled hippocampal slices prepared from Ts65Dn mice, a Down syndrome mouse model deficient in LTP, to express LTP to a level comparable to the normal controls. EGCG treatment did not alter the degree of pair-pulse inhibition; therefore, the enhancement effect of EGCG is unlikely to involve the attenuation of this inhibitory mechanism. PMID:17943438

  11. Crystal structure of (1RS,21SR,22RS,24SR)-28-oxo-24-propyl-8,11,14-trioxa-24,27-di­aza­penta­cyclo[19.5.1.122,26.02,7.015,20]octa­cosa-2,4,6,15(20),16,18-hexa­ene acetic acid monosolvate

    PubMed Central

    Hieu, Truong Hong; Anh, Le Tuan; Soldatenkov, Anatoly T.; Tuyen, Nguyen Van; Khrustalev, Victor N.

    2016-01-01

    The title compound, C26H32N2O4(M)·C2H4O2, (I), is the product of the Petrenko–Kritchenko condensation of N-propyl­piperidinone with 1,5-bis­(2-formyl­phen­oxy)-3-oxa­pentane and ammonium acetate. In M, the aza-14-crown-3-ether ring adopts a bowl conformation, with the configuration of the C—O—C—C —O—C—C—O—C polyether chain being t–g (−)–t–t–g (+)–t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 62.75 (5)°. The central piperidinone ring has a boat conformation, whereas the terminal piperidinone ring adopts a chair conformation. The boat conformation of the central piperidinone ring is supported by the bifurcated intra­molecular N—H⋯O hydrogen bond. In the crystal, each solvent mol­ecule is linked to mol­ecule M via strong O—H⋯N hydrogen bonding, forming hydrogen-bonded pairs of mol­ecules, which further inter­act through weak C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. PMID:27308052

  12. Toxicity and Loss of Mitochondrial Membrane Potential Induced by Alkyl Gallates in Trypanosoma cruzi

    PubMed Central

    Andréo, Rogério; Regasini, Luís Octávio; Petrônio, Maicon Segalla; Chiari-Andréo, Bruna Galdorfini; Tansini, Aline; Silva, Dulce Helena Siqueira; Cicarelli, Regina Maria Barretto

    2015-01-01

    American trypanosomiasis or Chagas disease is a debilitating disease representing an important social problem that affects, approximately, 10 million people in the world. The main aggravating factor of this situation is the lack of an effective drug to treat the different stages of this disease. In this context, the search for trypanocidal substances isolated from plants, synthetic or semi synthetic molecules, is an important strategy. Here, the trypanocidal potential of gallates was assayed in epimastigotes forms of T. cruzi and also, the interference of these substances on the mitochondrial membrane potential of the parasites was assessed, allowing the study of the mechanism of action of the gallates in the T. cruzi organisms. Regarding the preliminary structure-activity relationships, the side chain length of gallates plays crucial role for activity. Nonyl, decyl, undecyl, and dodecyl gallates showed potent antitrypanosomal effect (IC50 from 1.46 to 2.90 μM) in contrast with benznidazole (IC50 = 34.0 μM). Heptyl gallate showed a strong synergistic activity with benznidazole, reducing by 105-fold the IC50 of benznidazole. Loss of mitochondrial membrane potential induced by these esters was revealed. Tetradecyl gallate induced a loss of 53% of the mitochondrial membrane potential, at IC50 value.

  13. The Effect of the Molecular Architecture on the Antioxidant Properties of Chitosan Gallate.

    PubMed

    Wu, Chunhua; Wang, Liping; Fang, Zhongxiang; Hu, Yaqin; Chen, Shiguo; Sugawara, Tatsuya; Ye, Xingqian

    2016-01-01

    To elucidate the structure-antioxidant activity relationships of chitosan gallate (CG), a series of CG derivatives with different degrees of substitution (DS's) and molecular weights (MWs) were synthesized from chitosan (CS) and gallic acid (GA) via a free radical graft reaction. A higher MW led to a lower DS of CG. The structures of CG were characterized by FT-IR and ¹H NMR, and results showed that GA was mainly conjugated to the C-2 and C-6 positions of the CS chain. The antioxidant activity (the DPPH radical scavenging activity and reducing power) were enhanced with an increased DS and a decreased MW of CG. A correlation between antioxidant activities and the DS and MW of CG was also established. In addition, a suitable concentration (0~250 μg/mL) of CG with different MWs (32.78~489.32 kDa) and DS's (0~92.89 mg·GAE/g CG) has no cytotoxicity. These results should provide a guideline to the application of CG derivatives in food or pharmacology industries. PMID:27187421

  14. The Effect of the Molecular Architecture on the Antioxidant Properties of Chitosan Gallate

    PubMed Central

    Wu, Chunhua; Wang, Liping; Fang, Zhongxiang; Hu, Yaqin; Chen, Shiguo; Sugawara, Tatsuya; Ye, Xingqian

    2016-01-01

    To elucidate the structure–antioxidant activity relationships of chitosan gallate (CG), a series of CG derivatives with different degrees of substitution (DS’s) and molecular weights (MWs) were synthesized from chitosan (CS) and gallic acid (GA) via a free radical graft reaction. A higher MW led to a lower DS of CG. The structures of CG were characterized by FT-IR and 1H NMR, and results showed that GA was mainly conjugated to the C-2 and C-6 positions of the CS chain. The antioxidant activity (the DPPH radical scavenging activity and reducing power) were enhanced with an increased DS and a decreased MW of CG. A correlation between antioxidant activities and the DS and MW of CG was also established. In addition, a suitable concentration (0~250 μg/mL) of CG with different MWs (32.78~489.32 kDa) and DS’s (0~92.89 mg·GAE/g CG) has no cytotoxicity. These results should provide a guideline to the application of CG derivatives in food or pharmacology industries. PMID:27187421

  15. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea

    PubMed Central

    Steinmann, J; Buer, J; Pietschmann, T; Steinmann, E

    2013-01-01

    The consumption of green tea (Camellia sinensis) has been shown to have many physiological and pharmacological health benefits. In the past two decades several studies have reported that epigallocatechin-3-gallate (EGCG), the main constituent of green tea, has anti-infective properties. Antiviral activities of EGCG with different modes of action have been demonstrated on diverse families of viruses, such as Retroviridae, Orthomyxoviridae and Flaviviridae and include important human pathogens like human immunodeficiency virus, influenza A virus and the hepatitis C virus. Furthermore, the molecule interferes with the replication cycle of DNA viruses like hepatitis B virus, herpes simplex virus and adenovirus. Most of these studies demonstrated antiviral properties within physiological concentrations of EGCG in vitro. In contrast, the minimum inhibitory concentrations against bacteria were 10–100-fold higher. Nevertheless, the antibacterial effects of EGCG alone and in combination with different antibiotics have been intensively analysed against a number of bacteria including multidrug-resistant strains such as methicillin-resistant Staphylococcus aureus or Stenotrophomonas maltophilia. Furthermore, the catechin EGCG has antifungal activity against human-pathogenic yeasts like Candida albicans. Although the mechanistic effects of EGCG are not fully understood, there are results indicating that EGCG binds to lipid membranes and affects the folic acid metabolism of bacteria and fungi by inhibiting the cytoplasmic enzyme dihydrofolate reductase. This review summarizes the current knowledge and future perspectives on the antibacterial, antifungal and antiviral effects of the green tea constituent EGCG. PMID:23072320

  16. Strong Inhibition of Secretory Sphingomyelinase by Catechins, Particularly by (-)-Epicatechin 3-O-Gallate and (-)-3'-O-Methylepigallocatechin 3-O-Gallate.

    PubMed

    Kobayashi, Keiko; Ishizaki, Yuki; Kojo, Shosuke; Kikuzaki, Hiroe

    2016-01-01

    Sphingomyelinases (SMases) are key enzymes involved in many diseases which are caused by oxidative stress, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease, and Alzheimer's disease. SMases hydrolyze sphingomyelin to generate ceramide, a well-known pro-apoptotic lipid. SMases are classified into five types based on pH optimum, subcellular localization, and cation dependence. Previously, we demonstrated that elevation of secretory sphingomyelinase (sSMase) activity increased the plasma ceramide concentration under oxidative stress induced by diabetes and atherosclerosis in murine models. These results suggest that sSMase inhibitors can prevent the progress of these diseases. The present study demonstrated that sSMase activity was activated by oxidation and inhibited by reduction. Furthermore, we examined whether catechins inhibited the sSMase activity in a physiological plasma concentration. Among catechins, (-)-epicatechin 3-O-gallate (ECg) exhibited strong inhibitory effect on sSMase (IC50=25.7 μM). This effect was attenuated by methylation at the 3″- or 4″-position. On the other hand, (-)-epigallocatechin 3-O-gallate (EGCg) and (-)-catechin 3-O-gallate (Cg) exhibited weaker inhibitory activity than ECg, and (-)-epicatechin and (-)-epigallocatechin did not affect sSMase activity. Additionally, one synthetic catechin, (-)-3'-O-methylepigallocatechin 3-O-gallate (EGCg-3'-O-Me), showed the strongest inhibitory effect (IC50=1.7 μM) on sSMase. This phenomenon was not observed for (-)-4'-O-methylepigallocatechin 3-O-gallate. These results suggest that the reduction potential, the presence of the galloyl residue at the C-3 position, and the steric requirement to interact with sSMase protein are important for effective inhibition of sSMase. PMID:27264097

  17. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  18. Epigallocatechin-gallate Suppresses Tumorigenesis by Directly Targeting Pin1

    SciTech Connect

    Urusova, Darya V.; Shim, Jung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Zykova, Tatyana A.; Carper, Andria; Bode, Ann M.; Dong, Zigang

    2011-09-01

    The most active anticancer component in green tea is epigallocatechin-3-gallate (EGCG). The human peptidyl prolyl cis/trans isomerase (Pin1) plays a critical role in oncogenic signaling. Herein, we report the X-ray crystal structure of the Pin1/EGCG complex resolved at 1.9 Å resolution. Notably, the structure revealed the presence of EGCG in both the WW and PPIase domains of Pin1. The direct binding of EGCG with Pin1 was confirmed and the interaction inhibited Pin1 PPIase activity. In addition, proliferation of cells expressing Pin1 was inhibited and tumor growth in a xenograft mouse model was suppressed. The binding of EGCG with Arg17 in the WW domain prevented the binding of c-Jun, a well-known Pin1 substrate. EGCG treatment corresponded with a decreased abundance of cyclin D1 and diminution of 12-O-tetradecanoylphorbol-l3-acetate–induced AP-1 or NF-κB promoter activity in cells expressing Pin1. Overall, these results showed that EGCG directly suppresses the tumor-promoting effect of Pin1.

  19. Pentyl Gallate Nanoemulsions as Potential Topical Treatment of Herpes Labialis.

    PubMed

    Kelmann, Regina G; Colombo, Mariana; De Araújo Lopes, Sávia Caldeira; Nunes, Ricardo J; Pistore, Morgana; Dall Agnol, Daniele; Rigotto, Caroline; Silva, Izabella Thais; Roman, Silvane S; Teixeira, Helder F; Oliveira Simões, Cláudia M; Koester, Letícia S

    2016-07-01

    Previous studies have demonstrated the antiherpes activity of pentyl gallate (PG), suggesting that it could be a promising candidate for the topical treatment of human herpes labialis. PG low aqueous solubility represents a major drawback to its incorporation in topical dosage forms. Hence, the feasibility of incorporating PG into nanoemulsions, the ability to penetrate the skin, to inhibit herpes simplex virus (HSV)-1 replication, and to cause dermal sensitization or toxicity were evaluated. Oil/water nanoemulsions containing 0.5% PG were prepared by spontaneous emulsification. The in vitro PG distribution into porcine ear skin after topical application of nanoemulsions was assessed, and the in vitro antiviral activity against HSV-1 replication was evaluated. Acute dermal toxicity and risk of dermal sensitization were evaluated in rat model. Nanoemulsions presented nanometric particle size (from 124.8 to 143.7 nm), high zeta potential (from -50.1 to -66.1 mV), loading efficiency above 99%, and adequate stability during 12 months. All formulations presented anti-HSV-1 activity. PG was able to reach deeper into the dermis more efficiently from the nanoemulsion F4. This formulation as well as PG were considered safe for topical use. Nanoemulsions seem to be a safe and effective approach for topically delivering PG in the treatment of human herpes labialis infection. PMID:27290627

  20. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

    SciTech Connect

    Del Bufalo, Aurelia; Bernad, Jose; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Francoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1{beta} and TNF-{alpha}) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE{sub 2,} TxB{sub 2} and PGD{sub 2}), eugenol and cinnamaldehyde inhibiting also the production of IL-1{beta} and TNF-{alpha}. We further demonstrated that there is no unique PGE{sub 2} inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. - Highlights: > We investigated how contact sensitizers modulate an inflammatory response. > We used macrophage-differentiated cell line, U-937 treated with PMA/LPS. > Sensitizers specifically inhibit the production of COX metabolites (PGE2, TxB2). > Several mechanisms of inhibition: COX-2 expression/enzymatic activity, isomerases. > New insight in the biochemical properties of sensitizers.

  1. Elucidation of the Fe(III) Gallate Structure in Historical Iron Gall Ink.

    PubMed

    Ponce, Aldo; Brostoff, Lynn B; Gibbons, Sarah K; Zavalij, Peter; Viragh, Carol; Hooper, Joseph; Alnemrat, Sufian; Gaskell, Karen J; Eichhorn, Bryan

    2016-05-17

    Synthetic, structural, spectroscopic and aging studies conclusively show that the main colorant of historical iron gall ink (IGI) is an amorphous form of Fe(III) gallate·xH2O (x = ∼1.5-3.2). Comparisons between experimental samples and historical documents, including an 18th century hand-written manuscript by George Washington, by IR and Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy confirm the relationship between the model and authentic samples. These studies settle controversy in the cultural heritage field, where an alternative structure for Fe(III) gallate has been commonly cited. PMID:27058399

  2. Photodissociation dynamics of the 2-propyl radical, C3H7

    NASA Astrophysics Data System (ADS)

    Noller, Bastian; Fischer, Ingo

    2007-04-01

    The photodissociation of 2-propyl leading to propene+H was investigated with nanosecond time resolution. A supersonic beam of isolated 2-propyl radicals was produced by pyrolysis of 2-bromopopane. The kinetic energy release of the H-atom photofragment was monitored as a function of excitation wavelength by photofragment Doppler spectroscopy via the Lyman-α transition. The loss of hydrogen atoms after excitation proceeds in α position to the radical center with a rate constant of 5.8×107s-1 at 254nm. Approximately 20% of the excess energy is deposited as translation in the H-atom photofragment. In contrast 1-propyl does not lose H atoms to a significant extent. The experimental results are compared to simple Rice-Ramsperger-Kassel-Marcus calculations. The possible reaction pathways are examined in hybrid density functional theory calculations.

  3. Photodissociation dynamics of the 2-propyl radical, C{sub 3}H{sub 7}

    SciTech Connect

    Noller, Bastian; Fischer, Ingo

    2007-04-14

    The photodissociation of 2-propyl leading to propene+H was investigated with nanosecond time resolution. A supersonic beam of isolated 2-propyl radicals was produced by pyrolysis of 2-bromopopane. The kinetic energy release of the H-atom photofragment was monitored as a function of excitation wavelength by photofragment Doppler spectroscopy via the Lyman-{alpha} transition. The loss of hydrogen atoms after excitation proceeds in {alpha} position to the radical center with a rate constant of 5.8x10{sup 7} s{sup -1} at 254 nm. Approximately 20% of the excess energy is deposited as translation in the H-atom photofragment. In contrast 1-propyl does not lose H atoms to a significant extent. The experimental results are compared to simple Rice-Ramsperger-Kassel-Marcus calculations. The possible reaction pathways are examined in hybrid density functional theory calculations.

  4. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress

    PubMed Central

    Zhang, Bo; Wang, Bing; Cao, Shuhua

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47phox translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  5. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.

    PubMed

    Chu, Chenyu; Deng, Jia; Xiang, Lin; Wu, Yingying; Wei, Xiawei; Qu, Yili; Man, Yi

    2016-10-01

    Collagen membranes have ideal biological and mechanical properties for supporting infiltration and proliferation of osteoblasts and play a vital role in guided bone regeneration (GBR). However, pure collagen can lead to inflammation, resulting in progressive bone resorption. Therefore, a method for regulating the level of inflammatory cytokines at surgical sites is paramount for the healing process. Epigallocatechin-3-gallate (EGCG) is a component extracted from green tea with numerous biological activities including an anti-inflammatory effect. Herein, we present a novel cross-linked collagen membrane containing different concentrations of EGCG (0.0064%, 0.064%, and 0.64%) to regulate the level of inflammatory factors secreted by pre-osteoblast cells; improve cell proliferation; and increase the tensile strength, wettability, and thermal stability of collagen membranes. Scanning electron microscope images show that the surfaces of collagen membranes became smoother and the collagen fiber diameters became larger with EGCG treatment. Measurement of the water contact angle demonstrated that introducing EGCG improved membrane wettability. Fourier transform infrared spectroscopy analyses indicated that the backbone of collagen was intact, and the thermal stability was significant improved in differential scanning calorimetry. The mechanical properties of 0.064% and 0.64% EGCG-treated collagen membranes were 1.5-fold greater than those of the control. The extent of cross-linking was significantly increased, as determined by a 2,4,6-trinitrobenzenesulfonic acid solution assay. The Cell Counting Kit-8 (CCK-8) and live/dead assays revealed that collagen membrane cross-linked by 0.0064% EGCG induced greater cell proliferation than pure collagen membranes. Additionally, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results showed that EGCG significantly affected the production of inflammatory factors secreted by MC3T3-E1 cells. Taken together, our

  6. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention

    PubMed Central

    Wang, Dongxu; Taylor, Ethan Will; Wang, Yijun; Wan, Xiaochun; Zhang, Jinsong

    2012-01-01

    Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels. PMID:22619522

  7. Epigallocatechin Gallate/Layered Double Hydroxide Nanohybrids: Preparation, Characterization, and In Vitro Anti-Tumor Study

    PubMed Central

    Shafiei, Seyedeh Sara; Solati-Hashjin, Mehran; Samadikuchaksaraei, Ali; Kalantarinejad, Reza; Asadi-Eydivand, Mitra; Abu Osman, Noor Azuan

    2015-01-01

    In recent years, nanotechnology in merging with biotechnology has been employed in the area of cancer management to overcome the challenges of chemopreventive strategies in order to gain promising results. Since most biological processes occur in nano scale, nanoparticles can act as carriers of certain drugs or agents to deliver it to specific cells or targets. In this study, we intercalated Epigallocatechin-3-Gallate (EGCG), the most abundant polyphenol in green tea, into Ca/Al-NO3 Layered double hydroxide (LDH) nanoparticles, and evaluated its efficacy compared to EGCG alone on PC3 cell line. The EGCG loaded LDH nanohybrids were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM) and nanosizer analyses. The anticancer activity of the EGCG-loaded LDH was investigated in prostate cancer cell line (PC3) while the release behavior of EGCG from LDH was observed at pH 7.45 and 4.25. Besides enhancing of apoptotic activity of EGCG, the results showed that intercalation of EGCG into LDH can improve the anti- tumor activity of EGCG over 5-fold dose advantages in in-vitro system. Subsequently, the in-vitro release data showed that EGCG-loaded LDH had longer release duration compared to physical mixture, and the mechanism of diffusion through the particle was rate-limiting step. Acidic attack was responsible for faster release of EGCG molecules from LDH at pH of 4.25 compared to pH of 7.4. The results showed that Ca/Al-LDH nanoparticles could be considered as an effective inorganic host matrix for the delivery of EGCG to PC3 cells with controlled release properties. PMID:26317853

  8. Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro.

    PubMed

    Liu, Qin; Li, Mu-Yan; Lin, Xiao; Lin, Cui-Wu; Liu, Bu-Ming; Zheng, Li; Zhao, Jin-Min

    2014-09-25

    The ideal therapeutic agent for treatment of osteoarthritis (OA) should have not only potent anti-inflammatory effect but also favorable biological properties to restore cartilage function. Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on OA (Singh et al., 2003) [1]. However, GA has much weaker antioxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel sulfonamido-based gallate named sodium salt of 3,4,5-trihydroxy-N-[4-(thiazol-2-ylsulfamoyl)-phenyl]-benzamide (SZNTC) and analyzed its chondro-protective and pharmacological effects. Comparison of SZNTC with GA and sulfathiazole sodium (ST-Na) was also performed. Results showed that SZNTC could effectively inhibit the Interleukin-1 (IL-1)-mediated induction of metalloproteinase-1 (MMP-1) and MMP-3 and could induce the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), which demonstrated ability to reduce the progression of OA. SZNTC can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Expression of the collagen I gene was effectively down-regulated, revealing the inhibition of chondrocytes dedifferentiation by SZNTC. Hypertrophy that may lead to chondrocyte ossification was also undetectable in SZNTC groups. The recommended dose of SZNTC ranges from 3.91μg/ml to 15.64μg/ml, among which the most profound response was observed with 7.82μg/ml. In contrast, its source products of GA and ST-Na have a weak effect in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed SZNTC as a promising novel agent in the treatment of chondral and osteochondral lesions. PMID:25130855

  9. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress.

    PubMed

    Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang

    2015-11-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress. PMID:26557015

  10. Immunotherapy with methyl gallate, an inhibitor of Treg cell migration, enhances the anti-cancer effect of cisplatin therapy

    PubMed Central

    Kim, Hyunseong; Lee, Gihyun; Sohn, Sung-Hwa; Lee, Chanju; Kwak, Jung Won

    2016-01-01

    Foxp3+ CD25+CD4+ regulatory T (Treg) cells are crucial for the maintenance of immunological self-tolerance and are abundant in tumors. Most of these cells are chemo-attracted to tumor tissues and suppress anti-tumor responses inside the tumor. Currently, several cancer immunotherapies targeting Treg cells are being clinically tested. Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. While cisplatin is a powerful drug for the treatment of multiple cancers, there are obstacles that limit its use, such as renal dysfunction and the development of cisplatin-resistant cancer cells after its use. To minimize these barriers, combinatorial therapies of cisplatin with other drugs have been developed and have proven to be more effective to treat cancer. In the present study, we evaluated the eff ect of the combination therapy using methyl gallate with cisplatin in EL4 murine lymphoma bearing C57BL/6 mice. The combinatorial therapy of methyl gallate and cisplatin showed stronger anti-cancer eff ects than methyl gallate or cisplatin as single treatments. In Treg cell-depleted mice, however, the eff ect of methyl gallate vanished. It was found that methyl gallate treatment inhibited Treg cell migration into the tumor regardless of cisplatin treatment. Additionally, in both the normal and cisplatin-treated tumor-bearing mice, there was no renal toxicity attributed to methyl gallate treatment. These findings suggest that methyl gallate treatment could be useful as an adjuvant method accompanied with cisplatin therapy. PMID:27162480

  11. Epigallocatechin-3-gallate protects against tumor necrosis factor alpha induced inhibition of osteogenesis of mesenchymal stem cells.

    PubMed

    Liu, Wei; Fan, Jian-Bo; Xu, Da-Wei; Zhang, Jie; Cui, Zhi-Ming

    2016-03-01

    Anabolic bone accruement through osteogenic differentiation is important for the maintenance of physiological bone mass and often disrupted in various inflammatory diseases. Epigallocatechin-3-gallate, as an antioxidant and anti-inflammatory agent, has been suggested for potential therapeutic use in this context, possibly by the inhibition of bone resorption as well as the enhancement of bone formation through directly activating osteoblast differentiation. However, the reported effects of epigallocatechin-3-gallate modulating osteoblast differentiation are mixed, and the underlying molecular mechanism is still elusive. Moreover, there is limited information regarding the effects of epigallocatechin-3-gallate on osteogenic potential of mesenchymal stem cell in inflammation. Here, we examined the in vitro osteogenic differentiation of human mesenchymal stem cells. We found that the cell viability and osteoblast differentiation of human bone marrow-derived mesenchymal stem cells are significantly inhibited by inflammatory cytokine TNFα treatment. Epigallocatechin-3-gallate is able to enhance the cell viability and osteoblast differentiation of mesenchymal stem cells and is capable of reversing the TNFα-induced inhibition. Notably, only low doses of epigallocatechin-3-gallate have such benefits, which potentially act through the inhibition of NF-κB signaling that is stimulated by TNFα. These data altogether clarify the controversy on epigallocatechin-3-gallate promoting osteoblast differentiation and further provide molecular basis for the putative clinical use of epigallocatechin-3-gallate in stem cell-based bone regeneration for inflammatory bone loss diseases, such as rheumatoid arthritis and prosthetic osteolysis. PMID:26748399

  12. Dietary supplementation with high dose of epigallocatechin-3-gallate (EGCG) promotes inflammatory response in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigallocatechin-3-gallate (EGCG) from green tea has been indicated to have anti-inflammatory activity. However, most of the evidence is in vitro studies in which EGCG is often added at levels unachievable by oral intake. With few exceptions, in vivo studies along this line have been conducted in an...

  13. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T cell subsets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies suggest that green tea component epigallocatechin-3-gallate (EGCG) may have a beneficial effect in reducing the pathogenesis of autoimmune diseases; however, the underlying mechanism(s) are not well understood. In this study, we determined the effect of EGCG on the development of experiment...

  14. Immunomodulating effect of epigallocatechin-3-gallate from green tea: mechanisms and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consuming green tea or its active ingredient, epigallocatechin 3-gallate (EGCG), has been shown consistently to benefit the healthy functioning of several body systems. In the immune system specifically, accumulating evidence has revealed an immunomodulating effect of green tea/EGCG. Several types ...

  15. Radioprotective effects of ( minus )-epigallocatechin 3-O-gallate (green-tea tannin) in mice

    SciTech Connect

    Uchida, Shinji; Ozaki, Masayori ); Suzuki, Keiko; Shikita, Mikio )

    1992-01-01

    Long-term administration of ({minus})-epigallocatechin 3-O-gallate (EGCG) to mice through drinking water prevented radiation-induced increase of lipid peroxides in liver and significantly prolonged life span after lethal whole-body X-irradiation. The result indicates validity of this green-tea component as an orally active radio-protector of very low toxicity.

  16. 40 CFR 721.9516 - Siloxanes and silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Siloxanes and silicones, 3- propyl Me... Substances § 721.9516 Siloxanes and silicones, 3- propyl Me, di-Me, reaction products with polyethylene...) The chemical substance identified generically as siloxanes and silicones, 3- propyl Me,...

  17. 40 CFR 721.9516 - Siloxanes and silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Siloxanes and silicones, 3- propyl Me... Substances § 721.9516 Siloxanes and silicones, 3- propyl Me, di-Me, reaction products with polyethylene...) The chemical substance identified generically as siloxanes and silicones, 3- propyl Me,...

  18. [Interaction of fish collagen peptide with epigallocatechin gallate].

    PubMed

    Yang, Wei; Yuan, Fang; Gao, Yan-xiang

    2015-01-01

    Fish collagen is known to have good moisturising property and antioxidant ability, which has been increasingly added into cosmetics, foods and drinks as thicker agent and to increase dietary supply of collagen. Fish collagen peptide (FCP) is a white or pale yellow powder, obtained by extracting collagen from sources including the scales and bones of fish such as bonito, halibut, tuna, and sea bream. It is identical to human collagen and 100% absorbable through the skin. (-)-Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has lots of beneficial biological and pharmacological effects, including antioxidant, antimutagenic, antiviral and antiinflammatory activities. Because proteins have the desirable formulation of EGCG-fortified food, the interaction between proteins and EGCG molecules has been widely studied. At the same time, the interaction of proteins and EGCG was known to affect the content of free EGCG, structure of proteins, antioxidant capacity of EGCG in foods. But, to our knowledge, the interaction between FCP and EGCG has not been characterised clearly, and little is known about their interaction mechanism. Therefore, a better understanding of the interaction between FCP and EGCG would help to control their functional properties in food products during processing, transportation and storage when we facilitate FCP as the vehicles for EGCG. In view of the above, we planned to study the interaction of FCP with EGCG by using different spectroscopic techniques, such as fluorescence spectroscopic, FTIR, CD and Raman. EGCG caused a concentration dependent quenching of the intrinsic fluorescence of tyrosine residue in the FCP, indicating the occurrence of interactions between FCP and EGCG. Excimer-like species and dityrosine were regularly formed with the addition of EGCG into the solution, and the interaction of FCP and EGCG partly disrupted the structure-of the protein. Synchronous fluorescence results indicate that the interaction caused

  19. Pathway and kinetic analysis on the propyl radical + 02 reaction system

    SciTech Connect

    Bozzelli, J.W.; Pitz, W.J.

    1997-05-01

    In this study of the reaction of alkyl radicals with molecular oxygen, we analyze the propyl + 02 reaction system using thermochemical kinetics, Transition State Theory (TST), molecular thermodynamic properties, quantum Kassel analysis (quantum RRK) for k(E) and modified strong collision analysis for fall off. Cyclic transition states for both hydrogen transfer and the H02 concerted elimination from propylperoxy are calculated using semi-empirical (MOPAC PM3) calculations [8] in addition to transition states for H02 elimination and epoxide formation from hydroperoxy-isopropyl. Computed rate constants for propyl + 02 are compared to the values of Gulati and Walker who measured the rate constants at 50 torr and over a temperature range of 653 to 773 K. Computed rate constants are also used in a detailed chemical kinetic mechanism and compared to the n- propyl + 02 data of Slagle. They measured the rate of disappearance of n-propyl by reaction with 02 over a temperature range of 297 to 635 K and a pressure range of 0.4 to 7 Torr, as well as the fall off data of the Kaiser and Wallington.

  20. 75 FR 50922 - Prohydrojasmon, propyl-3-oxo-2-pentylcyclo-pentylacetate; Temporary Exemption From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ...This regulation establishes a temporary exemption from the requirement of a tolerance for residues of the biochemical pesticide prohydrojasmon (PDJ), propyl-3-oxo-2-pentylcyclo-pentylacetate, on red apple varieties when applied/used as a plant growth-regulator in accordance with the terms of Experimental Use Permit (EUP) No. 62097- EUP-R and when used in accordance with good agricultural......

  1. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System

    PubMed Central

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  2. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System.

    PubMed

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  3. No-carrier-added carbon-11-labeled sn-1,2- and sn-1,3-diacylglycerols by (11C)propyl ketene method

    SciTech Connect

    Imahori, Y.; Fujii, R.; Ueda, S.; Ido, T.; Nishino, H.; Moriyama, Y.; Yamamoto, Y.L.; Nakahashi, H. )

    1991-08-01

    This article describes the preparation of sn-1,2-(11C)diacylglycerols and sn-1,3-(11C)diacylglycerols by a no-carrier-added reaction based on a labeling method using (1-11C)propyl ketene, which is one of the most potent acylating agents. (1-11C)Propyl ketene was produced by pyrolytic decomposition of (1-11C)butyric acid and was trapped in pyridine containing L-alpha-palmitoyl-lysophosphatidylcholine, producing L-alpha-palmitoyl-2-(1-11C)butyryl-sn-glycero-3-phosphorylcholine. The authors adopted an enzymatic reaction to remove the phosphorylcholine, in which L-alpha-palmitoyl-2-(1-11C)butyryl-sn-glycero-3-phosphorylcholine was incubated with phospholipase C, hydrolyzing to produce 1-palmitoyl-sn-2-(1-11C)butyrylglycerol. Total synthesis time was about 50 minutes and the specific activity was estimated at 93 GBq/mumol (2.5 Ci/mumol) at end of synthesis. Radiochemical yield was 3.8% based on the trapped 11CO2. sn-1,3-(11C)Diacylglycerol was also synthesized by (1-11C)propyl ketene reaction with 1-palmitoyl-sn-glycerol in a single procedure. The regional brain tissue radioactivities obtained in sn-1,2-(11C)diacylglycerol were higher than those of sn-1,3-(11C)diacylglycerol, and the regional values varied widely. In autoradiography of brain slices from conscious rats, sn-1,2-(11C)diacylglycerol incorporation sites were discretely localized, especially in the amygdala, cerebral cortex, and hippocampus, suggesting that intensive neuronal processing occurred in these areas on the basis of phosphatidylinositol turnover.

  4. Epigallocatechin-3-gallate Increases RXRγ-mediated Pro-apoptotic and Anti-invasive Effects in Gastrointestinal Cancer Cell Lines.

    PubMed

    Papi, Alessio; Govoni, Marzia; Ciavarella, Carmen; Spisni, Enzo; Orlandi, Marina; Farabegoli, Fulvia

    2016-01-01

    Molecules with synergistic effects often enhance the benefits of cancer therapy. We observed that the major catechin of green tea, (-)-Epigallocatechin-3-gallate (EGCG), induced retinoid X receptor-γ (RXRγ) expression in the SK-Ch-A1 cholangiocarcinoma cell line and in two colon carcinoma cell lines (LoVo and the derivative multi-drug resistant LoVoMDR). On this basis, we analyzed the effects of EGCG in combination with an RXRγ ligand, 6-OH-11-O-hydroxyphenantrene (IIF), or with a ligand of retinoic acid receptor, all-trans-retinoic acid (RA). IIF alone and in combination with EGCG activated the retinoic X response elements and induced the germ cell nuclear factor. In parallel, EGCG induced 67 kDa laminin receptor expression alone and in combination with IIF. We observed a synergistic growth inhibition with EGCG and IIF in combination at lower doses. These effects were accompanied by apoptosis activation through the mitochondrial pathway. Moreover, in LoVo cell line we observed an induction of Forkhead box O3 expression, another molecule involved in apoptosis activation. Finally, metalloproteinase activity and extracellular matrix metalloproteinase inducer (EMMPRIN) expression were inhibited and tumor cell invasion was strongly reduced in the SK-Ch-A1 cell line after treatment with EGCG and IIF. In conclusion, the use of specific RXR ligands in combination with catechins could open a new perspective in gastrointestinal tumor chemoprevention. PMID:26278714

  5. Assessment of extraction parameters on antioxidant capacity, polyphenol content, epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and iriflophenone 3-C-β-glucoside of agarwood (Aquilaria crassna) young leaves.

    PubMed

    Tay, Pei Yin; Tan, Chin Ping; Abas, Faridah; Yim, Hip Seng; Ho, Chun Wai

    2014-01-01

    The effects of ethanol concentration (0%-100%, v/v), solid-to-solvent ratio (1:10-1:60, w/v) and extraction time (30-180 min) on the extraction of polyphenols from agarwood (Aquilaria crassna) were examined. Total phenolic content (TPC), total flavonoid content (TFC) and total flavanol (TF) assays and HPLC-DAD were used for the determination and quantification of polyphenols, flavanol gallates (epigallocatechin gallate--EGCG and epicatechin gallate--ECG) and a benzophenone (iriflophenone 3-C-β-glucoside) from the crude polyphenol extract (CPE) of A. crassna. 2,2'-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was used to evaluate the antioxidant capacity of the CPE. Experimental results concluded that ethanol concentration and solid-to-solvent ratio had significant effects (p<0.05) on the yields of polyphenol and antioxidant capacity. Extraction time had an insignificant influence on the recovery of EGCG, ECG and iriflophenone 3-C-β-glucoside, as well as radical scavenging capacity from the CPE. The extraction parameters that exhibited maximum yields were 40% (v/v) ethanol, 1:60 (w/v) for 30 min where the TPC, TFC, TF, DPPH, EGCG, ECG and iriflophenone 3-C-β-glucoside levels achieved were 183.5 mg GAE/g DW, 249.0 mg QE/g DW, 4.9 mg CE/g DW, 93.7%, 29.1 mg EGCG/g DW, 44.3 mg ECG/g DW and 39.9 mg iriflophenone 3-C-β-glucoside/g DW respectively. The IC50 of the CPE was 24.6 mg/L. PMID:25153858

  6. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    PubMed

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. PMID:27234496

  7. Molecular characterization of the boron adducts of the proteasome inhibitor bortezomib with epigallocatechin-3-gallate and related polyphenols.

    PubMed

    Glynn, Stephen J; Gaffney, Kevin J; Sainz, Marcos A; Louie, Stan G; Petasis, Nicos A

    2015-04-01

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) was reported to effectively antagonize the ability of Bortezomib (BZM) to induce apoptosis in cancer cells. This interaction was attributed to the formation of a covalent adduct between a phenolic moiety of EGCG with the boronic acid group of Bortezomib. However, the structural details of this boron adduct and the molecular factors that contribute to its formation and its ability to inhibit Bortezomib's activity remain unclear. This paper describes the use of NMR spectroscopy and cell assays to characterize the structures and properties of the boron adducts of EGCG and related polyphenols. The observed boron adducts included both boronate and borate derivatives, and their structural characteristics were correlated with cell-based evaluation of the ability of EGCG and other phenols to antagonize the anticancer activity of Bortezomib. The enhanced stability of the BZM/EGCG adduct was attributed to electronic and steric reasons, and a newly identified intramolecular interaction of the boron atom of BZM with the adjacent amide bond. The reported approach provides a useful method for determining the potential ability of polyphenols to form undesired adducts with boron-based drugs and interfere with their actions. PMID:25669488

  8. Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging.

    PubMed

    Wu, Chunhua; Tian, Jinhu; Li, Shan; Wu, Tiantian; Hu, Yaqin; Chen, Shiguo; Sugawara, Tatsuya; Ye, Xingqian

    2016-08-01

    The chitosan gallates (CG) were obtained by free-radical-initiated grafting of gallic acid (GA) onto chitosan (CS) in this work. The chemical structures of the CG were corroborated by UV-vis, GPC and (1)H NMR analysis. The grafting reaction was accompanied with a degradation of the CS molecule. The shear-thinning flow behavior of CG film-forming solutions (CG FFS) decreased with the grafting amount of GA into CS chain, while the CG FFS grafted at a lower GA value behaved like a networks containing entangled or cross-linked polymer chains with a more elastic behavior. The increasing of GA grafting onto the CS chain led to a reduction of tensile strength, elongation at break and water resistance in the corresponding films, but increases in the antioxidant and antimicrobial activities were observed. The microstructure of the film was investigated using scanning electron and atomic force microscope, and the results were closely related to the observed film properties. PMID:27112845

  9. Molecular characterization of the boron adducts of the proteasome inhibitor Bortezomib with epigallocatechin-3-gallate and related polyphenols

    PubMed Central

    Glynn, Stephen J.; Gaffney, Kevin J.; Sainz, Marcos A.; Louie, Stan G.

    2015-01-01

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) was reported to effectively antagonize the ability of Bortezomib to induce apoptosis in cancer cells. This interaction was attributed to the formation of a covalent adduct between a phenolic moiety of EGCG with the boronic acid group of Bortezomib. However, the structural details of this boron adduct and the molecular factors that contribute to its formation and its ability to inhibit Bortezomib's activity remain unclear. This paper describes the use of NMR spectroscopy and cell assays to characterize the structures and properties of the boron adducts of EGCG and related polyphenols. The observed boron adducts included both boronate and borate derivatives, and their structural characteristics were correlated with cell-based evaluation of the ability of EGCG and other phenols to antagonize the anticancer activity of Bortezomib. The enhanced stability of the BZM/EGCG adduct was attributed to electronic and steric reasons, and a newly identified intramolecular interaction of the boron atom of BZM with the adjacent amide bond. The reported approach provides a useful method for determining the potential ability of polyphenols to form undesired adducts with boron-based drugs and interfere with their actions. PMID:25669488

  10. Controlled release study of an anti-carcinogenic agent, gallate from the surface of magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghotbi, Mohammad Yeganeh; bin Hussein, Mohd Zobir

    2012-07-01

    Immobilization of gallate anion, an anti-carcinogenic, anti-mutagenic, and anti-microbial agent on the surface of magnetite nanoparticles was accomplished by adsorption technique for the formation of a core-shell nanocomposite. A simple co-precipitation technique in the presence of poly vinyl pyrrolidone was successfully applied for the preparation of magnetite nanoparticles as core beads with narrow size distribution. The powders were characterized by X-ray diffraction, particle size analysis, magnetic measurements, atomic force microscope and also infrared spectroscopy. FTIR and CHNS results indicated that the gallate anion was actually adsorbed onto the surface of the magnetite nanoparticles. The release of the anion from the surface of the nanocomposite was found to be controllable by the selection of the release media.

  11. Processing and electrical properties of alkaline earth-doped lanthanum gallate

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; McCready, D.E.; Pederson, L.R.; Weber, W.J.

    1997-10-01

    Oxides exhibiting substantial oxygen ion conductivity are utilized in a number of high-temperature applications, including solid oxide fuel cells, oxygen separation membranes, membrane reactors, and oxygen sensors. Alkaline earth-doped lanthanum gallate powders were prepared by glycine/nitrate combustion synthesis. Compacts of powders synthesized under fuel-rich conditions were sintered to densities greater than 97% of theoretical. Appropriate doping with Sr or Ba on the A-site of the perovskite structure, and Mg on the B-site, resulted in oxygen ion conductivity higher than that of yttria-stabilized zirconia (YSZ), and high ionic transference numbers. Doping with Ca and Mg resulted in lower conductivity than YSZ. Thermal expansion coefficients of the doped gallates were higher than that of YSZ.

  12. Effect of Lauryl Gallate on Wetting Properties of Organized Thin Phospholipid Films on Mica.

    PubMed

    Jurak, Małgorzata

    2016-07-14

    To characterize surfaces of phospholipid/lauryl gallate monolayers deposited on mica there were applied numerous methods such as measurements of advancing and receding contact angles and optical profilometry, as well as atomic force microscopy. As a result, there was no found correlation between contact angles (and their hysteresis) or surface roughness. Hence, most monolayer topographical changes at the Ångstrom level accompanied changes in surface chemistry which resulted in the hysteresis of contact angle on thin films. The obtained results indicate that stability and permeability of the binary films are determined by the composition and stoichiometry of the mixed monolayers. These results can be helpful for insight into lauryl gallate behavior in living systems, i.e., in membrane antioxidant protection and pharmacological activities. PMID:27332889

  13. Contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetic products.

    PubMed

    Rastogi, S C; Schouten, A; de Kruijf, N; Weijland, J W

    1995-01-01

    The contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in 215 cosmetic products have been determined to elucidate the concentration and frequency of use of these parabens in cosmetic products, and to monitor whether the products complied with the Danish and EEC regulations. The results showed that 77% of the products investigated contained 0.01%-0.87% parabens. Nearly all (99%) of the leave-on cosmetics and 77% of rinse-off cosmetics were found to contain parabens. A maximum of 0.32% methyl- and propylparaben, 0.19% ethylparaben, and 0.07% butyl- and benzylparaben were present in paraben-positive cosmetics. A preferential use of methyl-/ethyl-/propyl-/butyl-/benzylparaben in various groups of cosmetic products was revealed. PMID:7720367

  14. Crystal structure of 3-amino-1-propyl­pyridinium bromide

    PubMed Central

    Venkatesan, P.; Rajakannan, V.; Thamotharan, S.

    2014-01-01

    The title mol­ecular salt, C8H13N2 +·Br−, crystallizes with two independent 3-amino­pyridinium cations and two bromide anions in the asymmetric unit (Z′ = 2). In the pyridine ring, the N atom is alkyl­ated by a propyl group. The dihedral angle between the mean planes of the pyridinium ring and the propyl group is 84.84 (2)° in cation A, whereas the corresponding angle is 89.23 (2)° in cation B. In the crystal, the anions and cations are linked via N—H⋯Br and C—H⋯Br hydrogen bonds, forming chains propagating along [100]. PMID:25552997

  15. Laboratory Evaluation of Drop-in Solvent Alternatives to n-Propyl Bromide for Vapor Degreasing

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2012-01-01

    Based on this limited laboratory study, solvent blends of trans-1,2 dichloroethylene with HFEs, HFCs, or PFCs appear to be viable alternatives to n-propyl bromide for vapor degreasing. The lower boiling points of these blends may lead to greater solvent loss during use. Additional factors must be considered when selecting a solvent substitute, including stability over time, VOC, GWP, toxicity, and business considerations.

  16. Molecular Interactions between (−)-Epigallocatechin Gallate Analogs and Pancreatic Lipase

    PubMed Central

    Wang, Shihui; Sun, Zeya; Dong, Shengzhao; Liu, Yang; Liu, Yun

    2014-01-01

    The molecular interactions between pancreatic lipase (PL) and four tea polyphenols (EGCG analogs), like (−)-epigallocatechin gallate (EGCG), (−)-gallocatechin gallate (GCG), (−)-epicatechin gallate (ECG), and (−)-epigallocatechin (EC), were studied from PL activity, conformation, kinetics and thermodynamics. It was observed that EGCG analogs inhibited PL activity, and their inhibitory rates decreased by the order of EGCG>GCG>ECG>EC. PL activity at first decreased rapidly and then slowly with the increase of EGCG analogs concentrations. α-Helix content of PL secondary structure decreased dependent on EGCG analogs concentration by the order of EGCG>GCG>ECG>EC. EGCG, ECG, and EC could quench PL fluorescence both dynamically and statically, while GCG only quenched statically. EGCG analogs would induce PL self-assembly into complexes and the hydrodynamic radii of the complexes possessed a close relationship with the inhibitory rates. Kinetics analysis showed that EGCG analogs non-competitively inhibited PL activity and did not bind to PL catalytic site. DSC measurement revealed that EGCG analogs decreased the transition midpoint temperature of PL enzyme, suggesting that these compounds reduced PL enzyme thermostability. In vitro renaturation through urea solution indicated that interactions between PL and EGCG analogs were weak and non-covalent. PMID:25365042

  17. Synthesis and Biological Testing of Novel Glucosylated Epigallocatechin Gallate (EGCG) Derivatives.

    PubMed

    Zhang, Xin; Wang, Jing; Hu, Jiang-Miao; Huang, Ye-Wei; Wu, Xiao-Yun; Zi, Cheng-Ting; Wang, Xuan-Jun; Sheng, Jun

    2016-01-01

    Epigallocatechin gallate (EGCG) is the most abundant component of green tea catechins and has strong physiological activities. In this study, two novel EGCG glycosides (EGCG-G1 and EGCG-G2) were chemoselectively synthesized by a chemical modification strategy. Each of these EGCG glycosides underwent structure identification, and the structures were assigned as follows: epigallocatechin gallate-4''-O-β-d-glucopyranoside (EGCG-G1, 2) and epigallocatechin gallate-4',4''-O-β-d-gluco-pyranoside (EGCG-G2, 3). The EGCG glycosides were evaluated for their anticancer activity in vitro against two human breast cell lines (MCF-7 and MDA-MB-231) using MTT assays. The inhibition rate of EGCG glycosides (EGCG-G1 and EGCG-G2) is not obvious. The EGCG glycosides are more stable than EGCG in aqueous solutions, but exhibited decreasing antioxidant activity in the DPPH radical-scavenging assay (EGCG > EGCG-G2 > EGCG-G1). Additionally, the EGCG glycosides exhibited increased water solubility: EGCG-G2 and EGCG-G1 were 15 and 31 times as soluble EGCG, respectively. The EGCG glycosides appear to be useful, and further studies regarding their biological activity are in progress. PMID:27187321

  18. Evaluation of poly{-N-isopropylacrylamide-co-[3-(methacryloylamino)propyl]trimethylammonium} as a stationary phase for capillary electrochromatography.

    PubMed

    Zhang, Xin; Colón, Luis A

    2006-03-01

    A cationic polyacrylamide-based stationary phase was synthesized and characterized for CEC. The stationary phase was prepared by radical copolymerization of N-isopropylacrylamide (NIPAAm) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTA), producing a copolymer attached to 5 microm porous silica particles. Fourier transform infrared spectroscopy and thermogravimetric analysis were used to characterize the copolymer. Under capillary electrochromatographic conditions, the poly-NIPAAm-co-MAPTA stationary phase showed to be stable in a wide pH range. The amino groups in the MAPTA provided an anodic EOF for CEC separation. The electroosmotic mobility changed less than 10% when the pH of the mobile phase was changed from 2 to 12. The run-to-run RSD of analyte migration time was less than 1.5% (n = 3), and the RSD of peak area was less than 3% (n = 3). The day-to-day RSD for migration time was less than 2% (n = 3). The polar groups present in the stationary phase contributed to the selectivity of the phase providing for hydrophilic interactions. In the separation of a series of neutral and acidic compounds, the stationary phase shows a mixed-mode separation mechanism with both hydrophobicity and hydrophilicity contributing to the separation. PMID:16523452

  19. Ethyl gallate suppresses proliferation and invasion in human breast cancer cells via Akt-NF-κB signaling.

    PubMed

    Cui, Hongxia; Yuan, Jiaxin; Du, Xiaohui; Wang, Ming; Yue, Liling; Liu, Jicheng

    2015-03-01

    Euphorbia fischeriana Steud is a traditional Chinese Medicine that is known to possess a variety of anticarcinogenic properties. However, the bioactive constituents in Euphorbia fischeriana Steud and molecular mechanisms underlying this action in cancer treatment remain poorly understood. The present study investigated the chemotherapy activity and molecular targets of Ethyl gallate, which is identified as the major constituent extracted from the roots of Euphorbia fischeriana Steud in breast cancer cell lines in vitro. The results showed Ethyl gallate obviously decreased cell proliferation in MDA-MB-231 and MCF-7 cells in a dose- and time-dependent manner. Highly invasive MDA-MB-231 cells were found to be highly sensitive to treatment. Furthermore, significantly decreased metastatic potential of highly metastatic MDA-MB‑231 cells by Ethyl gallate was identified via the inhibition of cell motility using invasion and migration through a polyethylene terephthalate membrane. Ethyl gallate treatment decreased the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 by the downregulation of mRNA levels using RT-PCR, enzymes that are critical to tumor invasion. Treatment with Ethyl gallate decreased phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-κB (NF-κB) activation in MDA-MB-231 cells. These results indicate that Ethyl gallate suppresses proliferation and invasion in human breast cancer cells by modulating the PI3K/Akt pathway, which may contribute to inhibiting their downstream targets such as NF-κB p-65, Bcl-2/Bax, and mRNA levels of MMP-2 and MMP-9 in breast cancer cells. Thus, the present study shed new light on Ethyl gallate, an important bioactive constituent of Euphorbia fischeriana Steud, in human breast cancer treatment. The findings may provide basal theories for wide therapeutic application in human breast cancer. PMID:25522911

  20. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  1. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp.

    PubMed

    Acharyya, Saurabh; Sarkar, Prodipta; Saha, Dhira R; Patra, Amarendra; Ramamurthy, T; Bag, Prasanta K

    2015-08-01

    Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24  h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline>ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a time-dependent manner in the presence of MG (4 × MBC) and reduced to zero within 20  h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp. PMID:26272388

  2. 40 CFR 721.10565 - Ethanol, 2,2′-[[3-[(2-hydroxyethyl)amino]propyl]imino]bis-, N-(hydrogenated tallow alkyl) derivs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethanol, 2,2â²- propyl]imino]bis-, N... Significant New Uses for Specific Chemical Substances § 721.10565 Ethanol, 2,2′- propyl]imino]bis-, N...) The chemical substance identified as ethanol, 2,2′- propyl]imino]bis-, N-(hydrogenated tallow...

  3. 40 CFR 721.10565 - Ethanol, 2,2′-[[3-[(2-hydroxyethyl)amino]propyl]imino]bis-, N-(hydrogenated tallow alkyl) derivs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethanol, 2,2â²- propyl]imino]bis-, N... Significant New Uses for Specific Chemical Substances § 721.10565 Ethanol, 2,2′- propyl]imino]bis-, N...) The chemical substance identified as ethanol, 2,2′- propyl]imino]bis-, N-(hydrogenated tallow...

  4. Alpha-heteroatom derivatized analogues of 3-(acetylhydroxyamino)propyl phosphonic acid (FR900098) as antimalarials.

    PubMed

    Verbrugghen, Thomas; Vandurm, Pierre; Pouyez, Jenny; Maes, Louis; Wouters, Johan; Van Calenbergh, Serge

    2013-01-10

    To explore the hitherto successful derivatization of the α-carbon of fosmidomycin, a series of new α-substituted analogues was prepared. This was done by introduction of a heteroatom (N or O) in α-position to the phosphonate and using the resultant OH and NH₂ groups as a handle for appending a variety of substituents by means of several functional groups such as ether, amide, urea, and 1,4-triazole. The synthesized molecules, as a racemic mixture, were assayed for their EcDXR inhibitory potency. Both the α-azido-analogue and the α-hydroxylated analogue proved most promising, and docking experiments were performed. Although several compounds showed high potency when assayed against Plasmodium falciparum K1 in human erythrocytes, a clear correlation between the enzyme inhibition constants and P. falciparum inhibition concentrations could not be found. PMID:23215035

  5. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA.

    PubMed Central

    Livneh, Z; Elad, D; Sperling, J

    1979-01-01

    Photoalkylation of circular covalently closed DNA from phage PM2 with isopropyl alcohol by using a free radical photoinitiator and UV light of lambda greater than 305 nm led to the specific 8-substitution of purine moieties in the DNA, yielding 8-(2-hydroxy-2-propyl)adenine and 8-(2-hydroxy-2-propyl)guanine as the only detectable damage in the DNA. Using this specifically photoalkylated DNA as a substrate, we discovered in extracts of Micrococcus luteus an endonucleolytic activity that is directed towards 8-(2-hydroxy-2-propyl) purines in DNA. The activity is not a combination of a DNA-glycosylase and an apurinic site endonuclease. It is not inhibited by single-stranded DNA, by UV- or gamma-irradiated single-stranded DNA, or by normal or depurinated double-stranded DNA. however, gamma- or UV-(254 nm) irradiated double-stranded DNAs to inhibit the activity, hinting at the possibility of a common type of lesion in these damaged DNAs. Divalent cations are not required for the incising activity, and it is fully active in 1 mM EDTA, whereas caffeine and ATP cause inhibition. Extracts of mutant M. luteus lacking pyrimidine-dimer-directed endonucleases were found to contain the endonucleolytic activity in levels comparable to those present in the wild type. After the incision, we could demonstrate the specific excision of the 8-alkylated purines from the damaged DNA. The special conformational consequences of the 8-alkylation of purines, at the nucleotide level, namely their nonregular syn conformation, suggest that it is the distortion in the DNA that is recognized by the endonuclease. PMID:293658

  6. Endonucleolytic activity directed towards 8-(2-hydroxy-2-propyl) purines in double-stranded DNA.

    PubMed

    Livneh, Z; Elad, D; Sperling, J

    1979-11-01

    Photoalkylation of circular covalently closed DNA from phage PM2 with isopropyl alcohol by using a free radical photoinitiator and UV light of lambda greater than 305 nm led to the specific 8-substitution of purine moieties in the DNA, yielding 8-(2-hydroxy-2-propyl)adenine and 8-(2-hydroxy-2-propyl)guanine as the only detectable damage in the DNA. Using this specifically photoalkylated DNA as a substrate, we discovered in extracts of Micrococcus luteus an endonucleolytic activity that is directed towards 8-(2-hydroxy-2-propyl) purines in DNA. The activity is not a combination of a DNA-glycosylase and an apurinic site endonuclease. It is not inhibited by single-stranded DNA, by UV- or gamma-irradiated single-stranded DNA, or by normal or depurinated double-stranded DNA. however, gamma- or UV-(254 nm) irradiated double-stranded DNAs to inhibit the activity, hinting at the possibility of a common type of lesion in these damaged DNAs. Divalent cations are not required for the incising activity, and it is fully active in 1 mM EDTA, whereas caffeine and ATP cause inhibition. Extracts of mutant M. luteus lacking pyrimidine-dimer-directed endonucleases were found to contain the endonucleolytic activity in levels comparable to those present in the wild type. After the incision, we could demonstrate the specific excision of the 8-alkylated purines from the damaged DNA. The special conformational consequences of the 8-alkylation of purines, at the nucleotide level, namely their nonregular syn conformation, suggest that it is the distortion in the DNA that is recognized by the endonuclease. PMID:293658

  7. Kinetics of tris (1-chloro-2-propyl) phosphate (TCIPP) metabolism in human liver microsomes and serum.

    PubMed

    Van den Eede, Nele; Tomy, Gregg; Tao, Fang; Halldorson, Thor; Harrad, Stuart; Neels, Hugo; Covaci, Adrian

    2016-02-01

    Tris(1-chloro-2-propyl) phosphate (TCIPP) is an emerging contaminant which is ubiquitous in the indoor and outdoor environment. Moreover, its presence in human body fluids and biota has been evidenced. Since no quantitative data exist on the biotransformation or stability of TCIPP in the human body, we performed an in vitro incubation of TCIPP with human liver microsomes (HLM) and human serum (HS). Two metabolites, namely bis(2-chloro-isopropyl) phosphate (BCIPP) and bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), were quantified in a kinetic study using HLM or HS (only BCIPP, the hydrolysis product) and LC-MS. The Michaelis-Menten model fitted best the NADPH-dependent formation of BCIPHIPP and BCIPP in HLM, with respective V(MAX) of 154 ± 4 and 1470 ± 110 pmol/min/mg protein and respective apparent K(m) of 80.2 ± 4.4 and 96.1 ± 14.5 μM. Hydrolases, which are naturally present in HLM, were also involved in the production of BCIPP. A HS paraoxonase assay could not detect any BCIPP formation above 38.6 ± 10.8 pmol/min/μL serum. Our data indicate that BCIPP is the major metabolite of TCIPP formed in the liver. To our knowledge, this is the first quantitative assessment of the stability of TCIPP in tissues of humans or any other species. Further research is needed to confirm whether these biotransformation reactions are associated with a decrease or increase in toxicity. PMID:26473552

  8. The mixed alkali effect in zinc-compensated (K,Na)-β-gallate

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, G. V.; Foster, L. M.

    1982-03-01

    The "mixed alkali effect" was investigated in a Zn-doped K-β-gallate fast ion conductor with partial replacement of the K by Na. A minimum in conductivity occurs at about 0.8 atom fraction Na. A model is proposed in which the site occupancies are determined by the interstitial pair concept, and the conductivity minimum occurs when Beevers-Ross sites are occupied by K + only. A knee in the Arrhenius plots of samples containing potassium is explained as the onset of activation of K + away from interstitial complexes bound coulombically to the zinc charge-compensating centers.

  9. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  10. Experimental data for the synthesis of a new dimeric prodelphinidin gallate.

    PubMed

    Teixeira, Natércia; Mateus, Nuno; de Freitas, Victor

    2016-09-01

    This data article contains raw and processed data related to research published in Teixeira et al. (2016) [1]. Here we introduce data acquired from the synthesis of a prodelphinidin dimer gallate. All synthesis steps are described and a dataset for the removal of the protecting on prodelphinidin synthesis is presented. With hydrogenolysis in situ with triethylsilane the hydrogen required is produced and used at the same time, making the reaction possible without resorting to bottled hydrogen. Full NMR and HPLC-ESI-MS analysis data is also provided. PMID:27437435

  11. Green tea polyphenol epigallocatechin 3-gallate in arthritis: progress and promise

    PubMed Central

    2010-01-01

    Green tea's active ingredient, epigallocatechin 3-gallate (EGCG), has gained significant attention among scientists and has been one of the leading plant-derived molecules studied for its potential health benefits. In the present review I summarize the findings from some of the most significant preclinical studies with EGCG in arthritic diseases. The review also addresses the limitations of the dose, pharmacokinetics, and bioavailability of EGCG in experimental animals and findings related to the EGCG-drug interaction. Although these findings provide scientific evidence of the anti-rheumatic activity of EGCG, further preclinical studies are warranted before phase clinical trials could be initiated with confidence for patients with joint diseases. PMID:20447316

  12. Identification of glucuronides as in vivo liver conjugates of seven cannabinoids and some of their hydroxy and acid metabolites.

    PubMed

    Harvey, D J; Martin, B R; Paton, W D

    1977-02-01

    Glucuronide conjugates of cannabidiol (CBD), 7-hydroxy-CBD, propyl-CBD, cannabinol (CBN), 7-hydroxy-CBN, CBN-7-oic acid, propyl CBN and cannabichromene have been identified as major metabolites of CBD, CBN and their propyl homologues and of cannabichromene in mouse liver. Trace amounts of the glucuronide conjugates of delta1- and delta1(6)-tetrahydrocannabinol (THC) were also detected. Identification was made by combined gas-liquid chromatographic and mass spectrometric studies of the trimethylsilyl (TMS), d9-TMS and methyl ester-TMS derivatives of the glucuronides and the TMS derivatives of the product of the reduction of the metabolites with lithium aluminium deuteride. PMID:847285

  13. PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions

    PubMed Central

    Shin, Yong Cheol; Yang, Won Jun; Lee, Jong Ho; Oh, Jin-Woo; Kim, Tai Wan; Park, Jong-Chul; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-01-01

    This study concentrates on the development of biodegradable nanofiber membranes with controlled drug release to ensure reduced tissue adhesion and accelerated healing. Nanofibers of poly(lactic-co-glycolic acid) (PLGA) loaded with epigallocatechin-3-O-gallate (EGCG), the most bioactive polyphenolic compound in green tea, were electrospun. The physicochemical and biomechanical properties of EGCG-releasing PLGA (E-PLGA) nanofiber membranes were characterized by atomic force microscopy, EGCG release and degradation profiles, and tensile testing. In vitro antioxidant activity and hemocompatibility were evaluated by measuring scavenged reactive oxygen species levels and activated partial thromboplastin time, respectively. In vivo antiadhesion efficacy was examined on the rat peritonea with a surgical incision. The average fiber diameter of E-PLGA membranes was approximately 300–500 nm, which was almost similar to that of pure PLGA equivalents. E-PLGA membranes showed sustained EGCG release mediated by controlled diffusion and PLGA degradation over 28 days. EGCG did not adversely affect the tensile strength of PLGA membranes, whereas it significantly decreased the elastic modulus and increased the strain at break. E-PLGA membranes were significantly effective in both scavenging reactive oxygen species and extending activated partial thromboplastin time. Macroscopic observation after 1 week of surgical treatment revealed that the antiadhesion efficacy of E-PLGA nanofiber membranes was significantly superior to those of untreated controls and pure PLGA equivalents, which was comparable to that of a commercial tissue-adhesion barrier. In conclusion, the E-PLGA hybrid nanofiber can be exploited to craft strategies for the prevention of postsurgical adhesions. PMID:25187710

  14. Dual Beneficial Effects of (-)-Epigallocatechin-3-Gallate on Levodopa Methylation and Hippocampal Neurodegeneration: In Vitro and In Vivo Studies

    PubMed Central

    Kang, Ki Sung; Wen, Yujing; Yamabe, Noriko; Fukui, Masayuki; Bishop, Stephanie C.; Zhu, Bao Ting

    2010-01-01

    Background A combination of levodopa (L-DOPA) and carbidopa is the most commonly-used treatment for symptom management in Parkinson's disease. Studies have shown that concomitant use of a COMT inhibitor is highly beneficial in controlling the wearing-off phenomenon by improving L-DOPA bioavailability as well as brain entry. The present study sought to determine whether (-)-epigallocatechin-3-gallate (EGCG), a common tea polyphenol, can serve as a naturally-occurring COMT inhibitor that also possesses neuroprotective actions. Methodology/Principal Findings Using both in vitro and in vivo models, we investigated the modulating effects of EGCG on L-DOPA methylation as well as on chemically induced oxidative neuronal damage and degeneration. EGCG strongly inhibited human liver COMT-mediated O-methylation of L-DOPA in a concentration-dependent manner in vitro, with an average IC50 of 0.36 µM. Oral administration of EGCG moderately lowered the accumulation of 3-O-methyldopa in the plasma and striatum of rats treated with L-DOPA + carbidopa. In addition, EGCG also reduced glutamate-induced oxidative cytotoxicity in cultured HT22 mouse hippocampal neuronal cells through inactivation of the nuclear factor κB-signaling pathway. Under in vivo conditions, administration of EGCG exerted a strong protective effect against kainic acid-induced oxidative neuronal death in the hippocampus of rats. Conclusions/Significance These observations suggest that oral administration of EGCG may have significant beneficial effects in Parkinson's patients treated with L-DOPA and carbidopa by exerting a modest inhibition of L-DOPA methylation plus a strong neuroprotection against oxidative damage and degeneration. PMID:20700524

  15. Long-Term Effects of (-)-Epigallocatechin Gallate (EGCG) on Pristane-Induced Arthritis (PIA) in Female Dark Agouti Rats.

    PubMed

    Leichsenring, Anna; Bäcker, Ingo; Furtmüller, Paul G; Obinger, Christian; Lange, Franziska; Flemmig, Jörg

    2016-01-01

    Rheumatoid arthritis (RA)-a widespread chronic inflammatory disease in industrialized countries-is characterized by a persistent and progressive joint destruction. The chronic pro-inflammatory state results from a mutual activation of the innate and the adaptive immune system, while the exact pathogenesis mechanism is still under discussion. New data suggest a role of the innate immune system and especially polymorphonuclear granulocytes (PMNs, neutrophils) not only during onset and the destructive phase of RA but also at the chronification of the disease. Thereby the enzymatic activity of myeloperoxidase (MPO), a peroxidase strongly abundant in neutrophils, may be important: While its peroxidase activity is known to contribute to cartilage destruction at later stages of RA the almost MPO-specific oxidant hypochlorous acid (HOCl) is also discussed for certain anti-inflammatory effects. In this study we used pristane-induced arthritis (PIA) in Dark Agouti rats as a model for the chronic course of RA in man. We were able to shown that a specific detection of the HOCl-producing MPO activity provides a sensitive new marker to evaluate the actual systemic inflammatory status which is only partially detectable by the evaluation of clinical symptoms (joint swelling and redness measurements). Moreover, we evaluated the long-term pharmacological effect of the well-known anti-inflammatory flavonoid epigallocatechin gallate (EGCG). Thereby only upon early and continuous oral application of this polyphenol the arthritic symptoms were considerably diminished both in the acute and in the chronic phase of the disease. The obtained results were comparable to the treatment control (application of methotrexate, MTX). As revealed by stopped-flow kinetic measurements, EGCG may regenerate the HOCl-production of MPO which is known to be impaired at chronic inflammatory diseases like RA. It can be speculated that this MPO activity-promoting effect of EGCG may contribute to the

  16. Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells

    PubMed Central

    2013-01-01

    Background (−)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, effectively reduces body weight and tissue and blood lipid accumulation. To explore the mechanism by which EGCG inhibits cellular lipid accumulation in free fatty acid (FFA) induced HepG2 cell culture, we investigated the proteome change of FFA-induced HepG2 cells exposed to EGCG using two-dimensional gel electrophoresis and mass spectrometry. Results In this study, 36 protein spots showed a significant change in intensity by more than 1.5-fold from the control group to the FFA group and from the FFA group to the FFA + EGCG group. Among them, 24 spots were excised from gels and identified by LC-MS/MS. In total, 18 proteins were successfully identified. All identified proteins were involved in lipid metabolism, glycometabolism, antioxidant defense, respiration, cytoskeleton organization, signal transduction, DNA repair, mRNA processing, iron storage, or were chaperone proteins. This indicated that these physiological processes may play roles in the mechanism of inhibition of lipid accumulation by EGCG in FFA-induced HepG2 cells. Western blotting analysis was used to verify the expression levels of differentially expressed proteins, which agree with the proteomic results. Conclusions From the proteomic analysis, we hypothesized that EGCG reduced cellular lipid accumulation in FFA-induced HepG2 cells through the activation of AMP-activated protein kinase (AMPK) resulting from the generation of reactive oxygen species (ROS). The induction of ROS may be a result of EGCG regulation of the antioxidant defense system. Activation of AMPK shifted some FFA toward oxidation, away from lipid and triglyceride storage, and suppressed hepatic gluconeogenesis. The findings of this study improve our understanding of the molecular mechanisms of inhibition of lipid accumulation by EGCG in HepG2 cells. PMID:23866759

  17. Propyl alcohol

    MedlinePlus

    Rubbing alcohol Alcohol swabs Skin and hair products Nail polish remover Note: This list may not be all ... number will let you talk to experts in poisoning. They will give you further instructions. This is ...

  18. Simultaneous, stability indicating, HPLC-DAD determination of guaifenesin and methyl and propyl-parabens in cough syrup.

    PubMed

    Grosa, Giorgio; Del Grosso, Erika; Russo, Roberta; Allegrone, Gianna

    2006-06-01

    A stability indicating high performance liquid chromatography procedure has been developed for the simultaneous determination of guaifenesin (GUA), methyl p-hydroxybenzoate (MHB) and propyl p-hydroxybenzoate (PHB) in a commercial cough syrup dosage form. The method was specific and stability indicating as chromatographic conditions were selected to provide adequate separation of GUA, MHB and PHB from the putative degradation products guaiacol (GUAI) and p-hydroxybenzoic acid (HBA) as well as from excipients. The isocratic separation and quantitation were achieved within 17 min on a 150-mm column with an ether-linked phenyl stationary phase and a hydrophilic endcapping. The mobile phase was constituted of eluant A: aqueous phosphate buffer (pH 3.0, 10 mM)/acetonitrile 25/75 (v/v) and eluant B:methanol; the A:B ratio was 85:15 (v/v) with a flow rate 1 ml min-1 and detection of analytes at 254 and 276 nm. The method showed good linearity for the GUA-MHB-PHB mixture in the 95-285, 4-12, and 1-3 microg ml-1 ranges, respectively, being all the square of the correlation coefficients greater than 0.999. The interday R.S.D.s were 1.17, 1.14, and 0.91%, for GUA, MHB, and PHP, respectively. The method demonstrated also to be accurate; indeed the average recoveries, at 100% of the target assay concentration, were 100.5, 100.3, and 100.7% with relative standard deviations of 0.8, 0.7, and 0.4% for GUA, MHB, and PHB, respectively, from laboratory prepared samples. The applicability of the method was evaluated in commercial dosage form analysis as well as in stability studies. PMID:16497471

  19. Expression alterations of genes on both neuronal and glial development in rats after developmental exposure to 6-propyl-2-thiouracil.

    PubMed

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2014-08-01

    The present study was performed to determine target gene profiles associated with pathological mechanisms of developmental neurotoxicity. For this purpose, we selected a rat developmental hypothyroidism model because thyroid hormones play an essential role in both neuronal and glial development. Region-specific global gene expression analysis was performed at postnatal day (PND) 21 on four brain regions representing different structures and functions, i.e., the cerebral cortex, corpus callosum, dentate gyrus and cerebellar vermis of rats exposed to 6-propyl-2-thiouracil in the drinking water at 3 and 10ppm from gestational day 6 to PND 21. Expression changes of gene clusters of neuron differentiation and development, cell migration, synaptic function, and axonogenesis were detected in all four regions. Characteristically, gene expression profiles suggestive of affection of ephrin signaling and glutamate transmission were obtained in multiple brain regions. Gene clusters suggestive of suppression of myelination and glial development were specifically detected in the corpus callosum and cerebral cortex. Immunohistochemically, immature astrocytes immunoreactive for vimentin and glial fibrillary acidic protein were increased, and oligodendrocytes immunoreactive for oligodendrocyte lineage transcription factor 2 were decreased in the corpus callosum. Immunoreactive intensity of myelin basic protein was also decreased in the corpus callosum and cerebral cortex. The hippocampal dentate gyrus showed downregulation of Ptgs2, which is related to synaptic activity and neurogenesis, as well as a decrease of cyclooxygenase-2-immunoreactive granule cells, suggesting an impaired synaptic function related to neurogenesis. These results suggest that multifocal brain region-specific microarray analysis can determine the affection of neuronal or glial development. PMID:24780913

  20. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats.

    PubMed

    Takagaki, Akiko; Nanjo, Fumio

    2015-09-23

    Inhibitory activity of angiotensin I-converting enzyme (ACE) was examined with (-)-epigallocatechin gallate (EGCG) metabolites produced by intestinal bacteria, together with tea catechins. All of the metabolites showed ACE inhibitory activities and the order of IC50 was hydroxyphenyl valeric acids > 5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (1) > trihydroxyphenyl 4-hydroxyvaleric acid ≫ dihydroxyphenyl 4-hydroxyvaleric acid ≫ 5-(3,5-dihydroxyphenyl)-γ-valerolactone (2). Among the catechins, galloylated catechins exhibited stronger ACE inhibitory activity than nongalloylated catechins. Furthermore, the effects of a single oral intake of metabolites 1 and 2 on systolic blood pressure (SBP) were examined with spontaneously hypertensive rats (SHR). Significant decreases in SBP were observed between 2 h after oral administration of 1 (150 mg/kg in SHR) and the control group (p = 0.002) and between 4 h after administration of 2 (200 mg/kg in SHR) and the control group (p = 0.044). These results suggest that the two metabolites have hypotensive effects in vivo. PMID:26323573

  1. Preparation and antioxidant activity of green tea extract enriched in epigallocatechin (EGC) and epigallocatechin gallate (EGCG).

    PubMed

    Hu, Jianhui; Zhou, Danrong; Chen, Yuqiong

    2009-02-25

    The present study investigated effects of solvents, temperature, and duration on extracting efficiency of catechins from green tea by an orthogonal test. The results suggested that extraction of epigallocatechin gallate (EGCG) was highly dependent on these factors, whereas that of epigallocatechin (EGC) was significantly affected by duration and solvent (P < 0.05). Effects of these factors on epicatechin (EC), catechin (C), and epicatechin gallate (ECG) were not significant. A two-step preparation was adopted to produce green tea extract enriched in EGC (GTE-EGC) and green tea extract enriched in EGCG (GTE-EGCG). The optimum conditions for GTE-EGC were that green tea was brewed in 75% ethanol at 30 degrees C for 10 min, whereas for GTE-EGCG the same tea was brewed in 35% ethanol at 90 degrees C for 60 min. Compared with GTE-EGC, GTE-EGCG had EGCG increased by 110.42%, whereas EGC decreased by 40.38% with EC and ECG being unchanged. Most importantly, GTE-EGCG possessed greater antioxidant activity (in vitro) than GTE-EGC. PMID:19182914

  2. (-)-Epigallocatechin-3-gallate inhibits voltage-gated proton currents in BV2 microglial cells.

    PubMed

    Jin, Sanghee; Park, Mijung; Song, Jin-Ho

    2013-01-01

    (-)-Epigallocatechin-3-gallate (EGCG), the principal constituent of green tea, protects neurons from toxic insults by suppressing the microglial secretion of neurotoxic inflammatory mediators. Voltage-gated proton channels are expressed in microglia, and are required for NADPH oxidase-dependent reactive oxygen species generation. Brain damage after ischemic stroke is dependent on proton channel activity. Accordingly, we examined whether EGCG could inhibit proton channel function in the murine microglial BV2 cells. EGCG potently inhibited proton currents with an IC(50) of 3.7 μM. Other tea catechins, (-)-epigallocatechin, (-)-epicatechin and (-)-epicatechin-3-gallate, were far less potent than EGCG. EGCG did not change the kinetics of proton currents such as the activation and the deactivation time constants, the reversal potential and the activation voltage, suggesting that the gating process of proton channels were not altered by EGCG. EGCG is known to disturb lipid rafts by sequestering cholesterol. However, neither extraction of cholesterol with methyl-β-cyclodextrin or cholesterol supplementation could reverse the EGCG inhibition of proton currents. In addition, the EGCG effect was preserved in the presence of the cytoskeletal stabilizers paclitaxel and phalloidin, phosphatase inhibitors, the antioxidant Trolox, superoxide dismutase or catalase. The proton channel inhibition can be a substantial mechanism for EGCG to suppress microglial activation and subsequent neurotoxic events. PMID:23201067

  3. Green tea (-)-epigallocatechin gallate induced growth inhibition of human placental choriocarcinoma cells.

    PubMed

    Shih, Li-Jane; Lin, Yu-Ren; Lin, Cheng-Kuo; Liu, Hang-Shen; Kao, Yung-Hsi

    2016-05-01

    This study investigated the pathways involved in the effect of green tea epigallocatechin gallate (EGCG) on mitogenesis in BeWo, JEG-3, and JAR placental choriocarcinoma cells. EGCG inhibited cell proliferation in dose-dependent and time-dependent manners, as indicated by the number of cells and incorporation of bromodeoxyuridine (BrdU). A catechin-specific effect of green tea was evident; EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in suppressing cell growth. When all three of the mitogen-activated protein kinase (MAPK) subfamilies, i.e., ERK, p38, and JNK, were examined, EGCG significantly increased levels of phospho-ERK1/2 (pERK1/2) and phospho-p38 (pp38) and did not alter the total protein levels of ERK1/2, p38 MAPK, JNK, and phospho-JNK. EGCG-induced increases in the levels of pERK1/2 and pp38 proteins were prevented by pre-treatment with specific inhibitors of ERK1/2 MAPK and p38 MAPK, respectively. These inhibitors also suppressed EGCG-induced decreases in both cell number and BrdU incorporation. Moreover, pre-treatment with an AMP-activated protein kinase (AMPK) inhibitor prevented the actions of EGCG on proliferation and AMPK phosphorylation. These data suggest that EGCG mediates choriocarcinoma cell growth via the AMPK, ERK, and p38 pathways, but not JNK pathway. PMID:27208402

  4. Quercetin and epigallocatechin-3-gallate effect on the anisotropy of model membranes with cholesterol.

    PubMed

    Ionescu, Diana; Margină, Denisa; Ilie, Mihaela; Iftime, Adrian; Ganea, Constanţa

    2013-11-01

    Cell membrane fluidity, which can be altered by oxidative stress, plays an important role in the cell physiology. Flavonoids are among the most studied food substances that prevent and/or reduce oxidative stress, but their action mechanisms are far from being understood. We performed a study on the effect of quercetin and epigallocatechin-3-gallate on 2-Dimyristoyl-sn-glycero-3-phosphocholine small unilamellar vesicles (SUVs) with different amounts of cholesterol, using Laurdan as a fluorescent probe, to put into evidence the perturbations of the phospholipid membrane fluidity and local lipid order in an attempt to decipher the action mechanism of the flavonoids at the cell membrane level. Results indicate that polyphenols modulate the transition from the gel phase to the liquid crystalline phase of SUVs in all studied membranes. SUVs with cholesterol have by themselves higher phase transition temperature and the presence of polyphenols stabilizes further the membrane. Quercetin has a dose-dependent effect on the fluidity and local order of the lipid membranes, whilst epigallocatechin-3-gallate action is not dose-dependent, the differences being attributable to the hydrophobic/hydrophilic character of the substances. The findings are discussed within the frame of earlier reports on the effect of polyphenols on artificial membranes. PMID:23523830

  5. Epigallocatechin-3-gallate directly suppresses T cell proliferation through impaired IL-2 utilization and cell cycle progression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigallocatechin-3-gallate (EGCG), a bioactive component of green tea, has a variety of health impact. Previously we demonstrated that in vitro EGCG supplementation inhibited T cell response in mouse spleen cells. In the present study, we first extended our in vitro observation to in vivo and confir...

  6. Green tea epigallocatechin-3-gallate modulates differentiation of naive CD4+ T cells into specific lineage effector cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4+ T helper (Th) subsets Th1, Th9, and Th17 cells are implicated in inducing autoimmunity whereas regulatory T cells (Treg) have a protective effect. We previously showed that epigallocatechin-3-gallate (EGCG) attenuated experimental autoimmune encephalomyelitis (EAE) and altered CD4+ T cell subpo...

  7. Extraction of titanium(IV) gallate into tri-iso-octylam1ne and its spectrophotometric determination.

    PubMed

    Athavale, V T; Krishnamurthy, K R; Venkateswarlu, C

    1968-03-01

    Extraction of titanium(IV) gallate species into tri-iso-octylamine (TIOA) has been studied to develop a spectrophotometric method for the determination of titanium. The behaviour of common ions, under the conditions for quantitative extraction of titanium, is reported. Examples are given of application of the method to analysis of steels, reactor-grade thoria, and silicate rocks. PMID:18960298

  8. Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model.

    PubMed

    Dabbagh-Bazarbachi, Husam; Clergeaud, Gael; Quesada, Isabel M; Ortiz, Mayreli; O'Sullivan, Ciara K; Fernández-Larrea, Juan B

    2014-08-13

    Labile zinc, a tiny fraction of total intracellular zinc that is loosely bound to proteins and easily interchangeable, modulates the activity of numerous signaling and metabolic pathways. Dietary plant polyphenols such as the flavonoids quercetin (QCT) and epigallocatechin-gallate act as antioxidants and as signaling molecules. Remarkably, the activities of numerous enzymes that are targeted by polyphenols are dependent on zinc. We have previously shown that these polyphenols chelate zinc cations and hypothesized that these flavonoids might be also acting as zinc ionophores, transporting zinc cations through the plasma membrane. To prove this hypothesis, herein, we have demonstrated the capacity of QCT and epigallocatechin-gallate to rapidly increase labile zinc in mouse hepatocarcinoma Hepa 1-6 cells as well as, for the first time, in liposomes. In order to confirm that the polyphenols transport zinc cations across the plasma membrane independently of plasma membrane zinc transporters, QCT, epigallocatechin-gallate, or clioquinol (CQ), alone and combined with zinc, were added to unilamellar dipalmitoylphosphocholine/cholesterol liposomes loaded with membrane-impermeant FluoZin-3. Only the combinations of the chelators with zinc triggered a rapid increase of FluoZin-3 fluorescence within the liposomes, thus demonstrating the ionophore action of QCT, epigallocatechin-gallate, and CQ on lipid membrane systems. The ionophore activity of dietary polyphenols may underlay the raising of labile zinc levels triggered in cells by polyphenols and thus many of their biological actions. PMID:25050823

  9. (E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Xiao, Zhaohui; Xiao, Chunsheng; Wang, Huixin; Wang, Bing; Li, Ying; Chen, Xuesi; Guo, Xinhua

    2016-04-01

    Low-abundance samples and salt interference are always of great challenges for the practical protein profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Herein, a series of carboxyl-esterified derivatives of α-cyano-4-hydroxycinnamic acid (CHCA) were synthesized and evaluated as matrices for MALDI-MS analysis of protein. Among them, (E)-propyl α-cyano-4-hydroxyl cinnamylate (CHCA-C3) was found to exhibit excellent assay performance for intact proteins by improving the detection sensitivity 10 folds compared with the traditional matrices [i.e., super2,5-dihydroxybenzoic acid (superDHB), sinapic acid (SA), and CHCA]. In addition, CHCA-C3 was shown to have high tolerance to salts, the ion signal of myoglobin was readily detected even in the presence of urea (8 M), NH4HCO3 (2 M), and KH2PO4 (500 mM), meanwhile sample washability was robust. These achievements were mainly attributed to improved ablation ability and increased hydrophobicity or affinity of CHCA-C3 to proteins in comparison with hydrophilic matrixes, leading to more efficient ionization of analyte. Furthermore, direct analysis of proteins from crude egg white demonstrated that CHCA-C3 was a highly efficient matrix for the analysis of low-abundance proteins in complex biological samples. These outstanding performances indicate the tremendous potential use of CHCA-C3 in protein profiling by MALDI-MS.

  10. Synthesis and Biological Evaluation of 2-Hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(Alkoxycarbonyl)amino]benzoates

    PubMed Central

    Tengler, Jan; Kapustíková, Iva; Peško, Matúš; Keltošová, Stanislava; Mokrý, Petr; Kollár, Peter; O'Mahony, Jim; Král'ová, Katarína; Jampílek, Josef

    2013-01-01

    A series of twenty substituted 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates were prepared and characterized. As similar compounds have been described as potential antimycobacterials, primary in vitro screening of the synthesized carbamates was also performed against two mycobacterial species. 2-Hydroxy-3-[2-(2,6-dimethoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, 2-hydroxy-3-[2-(4-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride, and 2-hydroxy-3-[2-(2-methoxyphenoxy)ethylamino]-propyl 4-(butoxycarbonylamino)benzoate hydrochloride showed higher activity against M. avium subsp. paratuberculosis and M. intracellulare than the standards ciprofloxacin, isoniazid, or pyrazinamide. Cytotoxicity assay of effective compounds was performed using the human monocytic leukaemia THP-1 cell line. Compounds with predicted amphiphilic properties were also tested for their effects on the rate of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. All butyl derivatives significantly stimulated the rate of PET, indicating that the compounds can induce conformational changes in thylakoid membranes resulting in an increase of their permeability and so causing uncoupling of phosphorylation from electron transport. PMID:24288475

  11. Micellar and biochemical properties of a propyl-ended fluorinated surfactant designed for membrane-protein study.

    PubMed

    Abla, Maher; Unger, Sebastian; Keller, Sandro; Bonneté, Françoise; Ebel, Christine; Pucci, Bernard; Breyton, Cécile; Durand, Grégory

    2015-05-01

    Our goal is to design optimised fluorinated surfactants for handling membrane proteins in solution. We report herein the self-assembling and biochemical properties of a new hemifluorinated surfactant (H3F6H3DigluM) with a branched diglucosylated polar head group and an apolar tail consisting of a perfluorohexane core decorated with a hydrogenated propyl tip. For the sake of comparison, its fluorinated analogue without propyl tip (F6H3DigluM) was also studied. Isothermal titration calorimetry and surface tension showed that the addition of a propyl tip has a significant effect on the overall hydrophobicity of the surfactant, in contrast to the behaviour described when adding an ethyl tip to a fluorinated surfactant. From dynamic light scattering, analytical ultracentrifugation and small-angle X-ray scattering, both H3F6H3DigluM and F6H3DigluM self-assemble into small globular micelles of 5-7 nm in diameter and have aggregation numbers of 62±8 and 46±2, respectively. Finally, H3F6H3DigluM was found to be the best fluorinated surfactant developed in our group to stabilise the model membrane protein bacteriorhodopsin (bR) in aqueous solution. This study demonstrates the suitability of this new propyl-ended fluorinated surfactant for biochemical and structural applications and confirms the superiority of hemifluorinated chains over fluorinated ones. PMID:25616252

  12. Additives In Meat and Poultry Products

    MedlinePlus

    ... all cases, ingredients must be listed on the product label in the ingredients statement in order by weight, ... acid pyrophosphate, or orthophosphates, declared as "phosphates" on labels. PROPYL GALLATE - used as an antioxidant to prevent rancidity in products such as rendered fats or pork sausage. It ...

  13. Crystal structure of 3-amino-2-propyl­quinazolin-4(3H)-one

    PubMed Central

    El-Hiti, Gamal A.; Smith, Keith; Hegazy, Amany S.; Alanazi, Saud A.; Kariuki, Benson M.

    2015-01-01

    In the title mol­ecule, C11H13N3O, the propyl group is almost perpendicular to the quinazolin-4(3H)-one mean plane, making a dihedral angle of 88.98 (9)°. In the crystal, mol­ecules related by an inversion centre are paired via π–π overlap, indicated by the short distances of 3.616 (5) and 3.619 (5) Å between the centroids of the aromatic rings of neighbouring mol­ecules. Inter­molecular N—H⋯N and N—H⋯O hydrogen bonds form R 6 6(30) rings and C(5) chains, respectively, generating a three-dimensional network. Weak C—H⋯O inter­actions are also observed. PMID:26396813

  14. Conformations in unsymmetrically N-n-propyl-N-substituted 2-phenylacetamides

    NASA Astrophysics Data System (ADS)

    Antonović, D. G.; Vajs, V. E.; Stojanović, N. D.; Nikolić, A. D.; Petrović, S. D.

    1992-03-01

    As a part of a study on the structural characteristics of some new various N-alkyl-N-substituted 2-phenylacetamides the infrared and 1H N.M.R. spectra were obtained and interpreted. The synthesis of a various N-n-propyl-N-alkyl 2-phenylacetamides of the general formula PhCH 2CON(nPr)R, wherein R is ethyl, isopropyl, n-butyl, t-butyl and cyclohexyl, were performed. The corresponding mixed secondary amines of the type HNnPrR were obtained by catalytic hydrogenation of the synthetized propylidenealkylamines. The 1H N.M.R. spectra of these unsymmetrically N,N-disubstituted amides have been studied and the peaks have been assigned in each cases to two possible conformational isomers, arising from the lack of free rotation about the C(O)N bond. These results are in accordance with our previous investigation of the structure of N-substituted 2-phenylacetamides.

  15. Effects of the novel anti-ulcer agent 1-(5'-oxohexyl)-3-methyl-7-propyl xanthine on experimental ulcers and gastric secretion in rats.

    PubMed

    Tanaka, T; Bickel, M; Herling, A W; Sakurai, M; Goto, M; Hayashi, S

    1989-06-01

    The effects of 1-(5'-oxohexyl)-3-methyl-7-propyl xanthine (HWA 285) on various experimentally induced ulcers and gastric acid secretion were investigated in rats. HWA 285 (10-50 mg/kg, p.o.) inhibited restraint and water-immersion-induced stress, ulcers, indometacin- and absolute ethanol-induced gastric ulcers and mepirizole-induced duodenal ulcers in rats in a dose-dependent manner. HWA 285 (10-25 mg/kg i.d.) had inhibitory effects on acetylsalicylic acid-induced ulcers. The healing of acetic acid-induced chronic ulcers was significantly accelerated by HWA 285 (25 mg/kg p.o.) when it was given twice daily for 7 consecutive days. When given orally (twice a day, 11 doses in total) before the induction of gastric ulcers by stress, cimetidine at 100 mg/kg aggravated the ulcers, whereas, HWA 285 at 25 mg/kg had not such an effect. In conscious pylorus-ligated rats, HWA 285 (10-100 mg/kg i.p.) showed a dose-dependent inhibition on basal and desglugastrin- and 2-deoxy-D-glucose (2-DG)-stimulated gastric acid secretion. In stomach-lumen perfused rats, HWA 285 (30 mg/kg i.v.) inhibited 2-DG-stimulated gastric acid secretion but not carbachol-stimulated gastric acid secretion. These results suggest that the anti-ulcer effects of HWA 285 are produced by cytoprotective and central anti-secretory activity without peripheral anti-cholinergic properties. Whether the central anti-secretory effects of HWA 285 play thereby the key role, have to be clarified in further investigation. PMID:2775336

  16. Improved Quantification of Free and Ester-Bound Gallic Acid in Foods and Beverages by UHPLC-MS/MS.

    PubMed

    Newsome, Andrew G; Li, Yongchao; van Breemen, Richard B

    2016-02-17

    Hydrolyzable tannins are measured routinely during the characterization of food and beverage samples. Most methods for the determination of hydrolyzable tannins use hydrolysis or methanolysis to convert complex tannins to small molecules (gallic acid, methyl gallate, and ellagic acid) for quantification by HPLC-UV. Often unrecognized, analytical limitations and variability inherent in these approaches for the measurement of hydrolyzable tannins include the variable mass fraction (0-0.90) that is released as analyte, contributions of sources other than tannins to hydrolyzable gallate (can exceed >10 wt %/wt), the measurement of both free and total analyte, and lack of controls to account for degradation. An accurate, specific, sensitive, and higher-throughput approach for the determination of hydrolyzable gallate based on ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) that overcomes these limitations was developed. PMID:26804199

  17. Antiallergic activity of rosmarinic acid esters is modulated by hydrophobicity, and bulkiness of alkyl side chain.

    PubMed

    Zhu, Fengxian; Xu, Zhongming; Yonekura, Lina; Yang, Ronghua; Tamura, Hirotoshi

    2015-01-01

    Methyl, propyl and hexyl esters of rosmarinic, caffeic and p-coumaric acids were tested for antiallergic activity, and rosmarinic acid propyl ester exhibited the greatest β-hexosaminidase release suppression (IC50, 23.7 μM). Quadratic correlations between pIC50 and cLogP (r(2) = 0.94, 0.98, and 1.00, respectively) were observed in each acid ester series. The antiallergic activity is modulated by hydrophobicity, and alkyl chain bulkiness. PMID:25686361

  18. Hydrophobic properties conferred to Kraft pulp by a laccase-catalysed treatment with lauryl gallate.

    PubMed

    Reynaud, Céline; Tapin-Lingua, Sandra; Elegir, Graziano; Petit-Conil, Michel; Baumberger, Stéphanie

    2013-09-10

    Hydrophobic properties were conferred to a high-lignin-content Kraft pulp by a laccase-catalysed treatment in the presence of lauryl gallate (LG). The treatment resulted in a two-fold increase in contact angle and conferred water absorption resistance to the pulp. Kappa number was increased, indicating that some phenolic compounds were incorporated in the pulp. A control treatment with LG alone did not affect water absorption, demonstrating that laccase was essential to attain these new properties. The loss of hydrophobicity after an acetone Soxhlet extraction highlighted that adsorbed acetone-soluble compounds played a key role in the properties. GC-FID and HPSEC-UV analysis of the acetone extract indicated the formation of dodecanol and different phenolic oligomers. SEM images showed the treatment-induced changes in the fibre network. Additional experiments with various reaction times and reactant concentrations highlighted the role of LG oxidation products in the introduction of absorption resistance. PMID:23876480

  19. Neuroprotective Activity of (−)-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity

    PubMed Central

    Liu, Jin-Biao; Zhou, Li; Wang, Yi-Zhong; Wang, Xu; Zhou, Yu; Ho, Wen-Zhe; Li, Jie-Liang

    2016-01-01

    Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs). Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS). Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders. PMID:27191001

  20. Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses.

    PubMed

    Zhou, Bo; Lin, Hai; Chen, Baojie; Pun, Edwin Yue-Bun

    2011-03-28

    Superbroadband emission from 1.0 to 1.7 μm wavelength was observed in thulium-bismuth (Tm-Bi) codoped sodium-germanium-gallate (NGG) glasses under 793 nm excitation. Efficient energy transfer process from Bi to Tm ions, with value as high as 67.7%, was achieved which is beneficial in achieving flat broadband lineshape. The large stimulated emission cross-section and measured lifetime confirm the potentials of Tm-Bi codopants as luminescence sources for superbroadband near-infrared (NIR) optical amplifiers and tunable lasers. Planar optical waveguides were fabricated successfully in the codoped NGG glasses using K(+)-Na(+) ion-exchange process. PMID:21451680

  1. The effect of epigallocatechin gallate on hepatocytes isolated from normal and partially hepatectomized rats.

    PubMed

    Mezera, Vojtech; Kucera, Otto; Moravcova, Alena; Peterova, Eva; Cervinkova, Zuzana

    2014-06-01

    Epigallocatechin gallate (EGCG) is an antioxidant found in green tea. In this study, male Wistar rats were subjected either to partial hepatectomy (PHx), or a sham operation (LAP). Twenty-four hours after surgery, hepatocytes were isolated and treated with various concentrations of EGCG for up to 72 h. We then measured markers of cell viability, oxidative stress, DNA synthesis, and caspase activity. Morphological criteria, cell viability tests, and albumin synthesis revealed toxicity starting at 10 μmol/L. DNA synthesis was higher in hepatocytes isolated from rats after PHx and inhibited by EGCG. Furthermore, EGCG increased the activity of caspases 3 and 7, seen more in hepatocytes from PHx rats. In conclusion, EGCG at a concentration of 10 μmol/L was toxic for hepatocytes isolated from both PHx and LAP rats. PMID:24853265

  2. Induction of apoptosis by epigallocatechin-3-gallate in human lymphoblastoid B cells

    SciTech Connect

    Noda, Chiseko He, Jinsong; Takano, Tomoko; Tanaka, Chisato; Kondo, Toshinori; Tohyama, Kaoru; Yamamura, Hirohei; Tohyama, Yumi

    2007-11-03

    (-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, has been shown to suppress cancer cell proliferation and induce apoptosis. In this study we investigated its efficacy and the mechanism underlying its effect using human B lymphoblastoid cell line Ramos, and effect of co-treatment with EGCG and a chemotherapeutic agent on apoptotic cell death. EGCG induced dose- and time-dependent apoptotic cell death accompanied by loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, and cleavage of pro-caspase-9 to its active form. EGCG also enhanced production of intracellular reactive oxygen species (ROS). Pretreatment with diphenylene iodonium chloride, an inhibitor of NAD(P)H oxidase and an antioxidant, partially suppressed both EGCG-induced apoptosis and production of ROS, implying that oxidative stress is involved in the apoptotic response. Furthermore, we showed that combined-treatment with EGCG and a chemotherapeutic agent, etoposide, synergistically induced apoptosis in Ramos cells.

  3. The Protective Effect of Epigallocatechin-3-gallate on Paraquat-induced Haemolysis of Erythrocyte Membrane

    PubMed Central

    Moses, K; Pepple, D; Singh, P

    2015-01-01

    ABSTRACT Epigallocatechin-3-gallate (EGCG) is a major ingredient present in green tea, which has a high anti-oxidant activity. In this study, the effect of EGCG was investigated on paraquat-induced haemolysis of erythrocyte membrane. Erythrocytes were incubated in 0.03, 0.3, 3.0 and 30 mg/mL EGCG, respectively and exposed to 30 mg/mL of paraquat for 10 minutes. The effect of paraquat was determined by an analysis of the osmotic fragility of the erythrocytes. The results showed that EGCG (30 mg/mL) significantly (p < 0.05) reduced the haemolysis of erythrocytes exposed to paraquat (5.0 mg/mL). This suggests that EGCG may have a protective effect on paraquat-induced erythrocyte membrane haemolysis and that consumption of green tea, with high EGCG concentration, could ameliorate the deleterious effect of paraquat toxicity on the haemolysis of erythrocyte membrane. PMID:26426167

  4. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    NASA Astrophysics Data System (ADS)

    Mancini, Alessandro; Felice, Valeria; Natali Sora, Isabella; Malavasi, Lorenzo; Tealdi, Cristina

    2014-05-01

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La0.8Sr0.2MnO3-d and La0.8Sr0.2Fe0.8Cu0.2O3-d and K2NiF4-type La2NiO4+d were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system.

  5. Nanoencapsulation Enhances Epigallocatechin-3-Gallate Stability and Its Anti-atherogenic Bioactivities in Macrophages

    PubMed Central

    Wang, Shu

    2013-01-01

    We have successfully synthesized (−)-epigallocatechin-3-gallate (EGCG) encapsulated nanostructured lipid carriers (NLCE) and chitosan coated NLCE (CSNLCE) using natural lipids, surfactant, chitosan and EGCG. Nanoencapsulation dramatically improved EGCG stability. CSNLCE significantly increased EGCG content in THP-1 derived macrophages compared with nonencapsulated EGCG. As compared to 10 μM of nonencapsulated EGCG, both NLCE and CSNLCE at the same concentration significantly decreased macrophage cholesteryl ester content. NLCE and CSNLCE significantly decreased mRNA levels and protein secretion of monocyte chemoattractant protein-1 (MCP-1) levels in macrophages, respectively. These data suggest that nanoencapsulated EGCG may have a potential to inhibit atherosclerotic lesion development through decreasing macrophage cholesterol content and MCP-1 expression. PMID:24020822

  6. Mechanisms of saccharide protection against epigallocatechin-3-gallate deterioration in aqueous solutions.

    PubMed

    Shpigelman, Avi; Zisapel, Adi; Cohen, Yifat; Livney, Yoav D

    2013-08-15

    We investigated the mechanisms of the protection conferred by sugars to epigallocatechin-3-gallate (EGCG) against deterioration. Additionally, we present a rapid method for evaluating the deterioration rate of EGCG using absorbance spectroscopy. We found that various sugars provided different levels of protection at identical weight percentage, and the combination of sugars and β-lactoglobulin nanocomplexes provided greater protection for EGCG than each protective component alone. We suggest that the concentration-dependent protection by sugars resulted from a combination of mechanisms, including: (1) reduced aqueous O2 solubility, (2) scavenging of reactive oxygen species, and (3) chelation of traces of transition metal ions, which is suggested to be the main reason for the differences among the sugars. The observed protective effect of sugars can be easily applied by the industry in proper selection of sugars for enrichment of syrups or concentrates with EGCG and for the preparation of enriched beverages and foods for health promotion. PMID:23561215

  7. Methyl gallate.

    PubMed

    Bebout, Deborah; Pagola, Silvina

    2009-01-01

    THE CRYSTAL STRUCTURE OF THE TITLE COMPOUND (SYSTEMATIC NAME: methyl 3,4,5-trihydroxy-benzoate), C(8)H(8)O(5), is composed of essentially planar mol-ecules [maximum departures from the mean carbon and oxygen skeleton plane of 0.0348 (10) Å]. The H atoms of the three hydroxyl groups, which function as hydrogen-bond donors and acceptors simultaneously, are oriented in the same direction around the aromatic ring. In addition to two intra-molecular hydrogen bonds, each mol-ecule is hydrogen bonded to six others, creating a three-dimensional hydrogen-bonded network. PMID:21581923

  8. Methyl gallate

    PubMed Central

    Bebout, Deborah; Pagola, Silvina

    2009-01-01

    The crystal structure of the title compound (systematic name: methyl 3,4,5-trihydroxy­benzoate), C8H8O5, is composed of essentially planar mol­ecules [maximum departures from the mean carbon and oxygen skeleton plane of 0.0348 (10) Å]. The H atoms of the three hydroxyl groups, which function as hydrogen-bond donors and acceptors simultaneously, are oriented in the same direction around the aromatic ring. In addition to two intra­molecular hydrogen bonds, each mol­ecule is hydrogen bonded to six others, creating a three-dimensional hydrogen-bonded network. PMID:21581923

  9. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives

    PubMed Central

    Khamverdi, Zahra; Rezaei-Soufi, Loghman; Rostamzadeh, Tayebeh

    2015-01-01

    Statement of the Problem Self-etch adhesives can activate matrix metalloproteinase (MMP) which hydrolyzes organic matrix of demineralized dentin. Epigallocatechin gallate (EGCG), especially found in green tea, could inhibit the activation of MMP. Purpose The aim of this study was to evaluate the effect of adding Epigallocatechin gallate (EGCG) into two types of adhesives on dentin bond strength. Materials and Method In this experimental study, 64 extracted third molars were randomly divided into 16 groups. Clearfil SE Bond and Filtek Silorane System with 0 µM, 25µM, 50µM, and 100µM concentration of 95% EGCG were used for bonding. Following the bonding and fabrication of beams (1±0.1 mm2) and storage in distilled water, the specimens were subjected to thermal cycles. Microtensile bond strengths of 8 groups were examined after 24 hours and others were tested after 6 months. The fracture modes of specimens were evaluated by stereomicroscope and SEM. Data were analyzed by three-way ANOVA and t-test (α = 0.05). Results The results of the three- way ANOVA test showed that types of bonding, storage time and interactive effect of EGCG concentration and bonding influenced the bond strength of specimens significantly (p<0.05). The results of the t-test indicated that storage time only had significant effect on bond strength of Clearfil SE Bond with no EGCG (p= 0.017). The most common failure modes in Filtek Silorane System groups and Clearfil SE Bond groups were adhesive and mixed/cohesive, respectively. The results of SEM at different magnifications showed that most fractures have occurred in the hybrid layer. Conclusion Although adding 100 µM volume of EGCG to Clearfil SE Bond can preserve the dentin bond, incorporation of EGCG in the silorane system, especially in high concentrations, decreases the bond strength after 6 months. PMID:26046100

  10. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls

    PubMed Central

    2012-01-01

    Background Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. Results In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring) moieties in EGCG underwent radical cross-coupling with monolignols mainly by β–O–4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92%) that far exceeded that for lignified controls (44 to 62%). Alkali-insoluble residues from EGCG-lignified walls yielded up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls. Conclusions It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops. PMID:22889353

  11. Densities and vapor-liquid equilibria in binary mixtures formed by propyl methanoate + ethanol, + propan-1-ol, and + butan-1-ol at 160.0 kPa

    SciTech Connect

    Falcon, J.; Ortega, J.; Gonzalez, E.

    1996-07-01

    Densities and excess volumes were determined at 298.15 K for propyl methanoate + ethanol, + propan-1-ol, and + butan-1-ol. The results of those quantities were then correlated to get the concentrations of vapor-liquid equilibrium obtained isobarically at 160 kPa for the same mixtures. Two mixtures show azeotropes: for propyl methanoate (1) + ethanol (2), x{sub 1} = 0.443 at T = 358.7 K; and for propyl methanoate (1) + propan-1-ol (2), x{sub 1} = 0.762 at T = 368.2 K. The mixtures are thermodynamically consistent, and the predictions made using several group-contribution models are satisfactory.

  12. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    PubMed

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. PMID:26637442

  13. Comparative evaluation of different co-antioxidants on the photochemical- and functional-stability of epigallocatechin-3-gallate in topical creams exposed to simulated sunlight.

    PubMed

    Scalia, Santo; Marchetti, Nicola; Bianchi, Anna

    2013-01-01

    The catechin (-)-epigallocatechin-3-gallate (EGCG) exhibits high antioxidant activity and it has been reported to provide protection of the skin against damage induced by solar UV radiation. However, EGCG is highly unstable under sunlight. The present study aimed to compare the effectiveness of the co-antioxidant agents vitamin E, butylated hydroxytoluene, vitamin C and a-lipoic acid for their potential to protect the catechin from photochemical degradation. Model creams (oil-in-water emulsions) containing EGCG (1%, w/w) alone or combined with equimolar concentrations of co-antioxidant were exposed to a solar simulator at an irradiance corresponding to natural sunlight. Photodegradation was evaluated by HPLC-UV and HPLC-ESI-MS/MS. Addition of the co-antioxidants vitamin C and a-lipoic acid to the formulation significantly reduced the light-induced decomposition of EGCG from 76.9 ± 4.6% to 20.4 ± 2.7% and 12.6 ± 1.6%, respectively. Conversely, butylated hydroxytoluene had no effect (EGCG loss, 78.1 ± 4.6%) and vitamin E enhanced the EGCG photolysis to 84.5 ± 3.4%. The functional stability of the catechin in the creams exposed to the solar simulator was also evaluated by measuring the in vitro antioxidant activity. Following irradiation, the reduction of the EGCG formulation antioxidant power was lower (21.8%) than the extent of degradation (76.9%), suggesting the formation of photoproducts with antioxidant properties. The influence of the examined co-antioxidants on the functional stability of the catechin under simulated sunlight paralleled that measured for the EGCG photodecomposition, a-lipoic acid exerting the greatest stabilising effect (antioxidant activity decrease, 1.4%). These results demonstrated that a-lipoic acid is an effective co-antioxidant agent for the stabilization of EGCG in dermatological products for skin photoprotection. PMID:23292326

  14. Bile acid-binding ability of kaki-tannin from young fruits of persimmon (Diospyros kaki) in vitro and in vivo.

    PubMed

    Matsumoto, Kenji; Kadowaki, Akio; Ozaki, Natsumi; Takenaka, Makiko; Ono, Hiroshi; Yokoyama, Shin-ichiro; Gato, Nobuki

    2011-04-01

    The bile acid-binding ability of a highly polymerized tannin (kaki-tannin) extracted from dried-young fruits of persimmon (Diospyros kaki) was examined. The kaki-tannin was composed mainly of epicatechin, epigallocatechin, epicatechin-3-O-gallate and epigallocatechin-3-O-gallate. Bile acid-binding ability of kaki-tannin was examined against cholic acid, glycocholic acid, taurocholic acid and deoxycholic acid in vitro, and its effect on fecal bile acid excretion in mice was also examined. Although the bile acid-binding ability of kaki-tannin was weaker than that of cholestyramine, kaki-tannin adsorbed all the bile acids tested and significantly promoted fecal bile acid excretion in mice when supplied at 1% (w/w) in the diet. PMID:20922818

  15. Exercise but not (-)-Epigallocatechin-3-gallate or β-Alanine enhances physical fitness, brain plasticity, and behavioral performance in mice

    PubMed Central

    Bhattacharya, Tushar K.; Pence, Brandt D.; Ossyra, Jessica M.; Gibbons, Trisha E.; Perez, Samuel; McCusker, Robert H.; Kelley, Keith W.; Johnson, Rodney W.; Woods, Jeffrey A.; Rhodes, Justin S.

    2015-01-01

    Nutrition and physical exercise can enhance cognitive function but the specific combinations of dietary bioactives that maximize pro-cognitive effects are not known nor are the contributing neurobiological mechanisms. Epigallocatechin-3-gallate (EGCG) is a flavonoid constituent of many plants with high levels found in green tea. EGCG has anti-inflammatory and anti-oxidant properties and is known to cross the blood brain barrier where it can affect brain chemistry and physiology. β-alanine (B-ALA) is a naturally occurring β–amino acid that could increase cognitive functioning by increasing levels of exercise via increased capacity of skeletal muscle, by crossing the blood brain barrier and acting as a neurotransmitter, or by free radical scavenging in muscle and brain after conversion into carnosine. The objective of this study was to determine the effects of EGCG (∼ 250 mg/kg/day), B-ALA (∼550 mg/kg/day), and their combination with voluntary wheel running exercise on the following outcome measures: body composition, time to fatigue, production of new cells in the granule layer of the dentate gyrus of the hippocampus as a marker for neuronal plasticity, and behavioral performance on the contextual and cued fear conditioning tasks, as measures of associative learning and memory. Young adult male BALB/cJ mice approximately 2 months old were randomized into 8 groups varying the nutritional supplement in their diet and access to running wheels over a 39 day study period. Running increased food intake, decreased fat mass, increased time to exhaustive fatigue, increased numbers of new cells in the granule layer of the hippocampus, and enhanced retrieval of both contextual and cued fear memories. The diets had no effect on their own or in combination with exercise on any of the fitness, plasticity, and behavioral outcome measures other than B-ALA decreased percent body fat whereas EGCG increased lean body mass slightly. Results suggest that, in young adult BALB

  16. Exercise but not (-)-epigallocatechin-3-gallate or β-alanine enhances physical fitness, brain plasticity, and behavioral performance in mice.

    PubMed

    Bhattacharya, Tushar K; Pence, Brandt D; Ossyra, Jessica M; Gibbons, Trisha E; Perez, Samuel; McCusker, Robert H; Kelley, Keith W; Johnson, Rodney W; Woods, Jeffrey A; Rhodes, Justin S

    2015-06-01

    Nutrition and physical exercise can enhance cognitive function but the specific combinations of dietary bioactives that maximize pro-cognitive effects are not known nor are the contributing neurobiological mechanisms. Epigallocatechin-3-gallate (EGCG) is a flavonoid constituent of many plants with high levels found in green tea. EGCG has anti-inflammatory and anti-oxidant properties and is known to cross the blood brain barrier where it can affect brain chemistry and physiology. β-Alanine (B-ALA) is a naturally occurring β-amino acid that could increase cognitive functioning by increasing levels of exercise via increased capacity of skeletal muscle, by crossing the blood brain barrier and acting as a neurotransmitter, or by free radical scavenging in muscle and brain after conversion into carnosine. The objective of this study was to determine the effects of EGCG (~250mg/kg/day), B-ALA (~550mg/kg/day), and their combination with voluntary wheel running exercise on the following outcome measures: body composition, time to fatigue, production of new cells in the granule layer of the dentate gyrus of the hippocampus as a marker for neuronal plasticity, and behavioral performance on the contextual and cued fear conditioning tasks, as measures of associative learning and memory. Young adult male BALB/cJ mice approximately 2months old were randomized into 8 groups varying the nutritional supplement in their diet and access to running wheels over a 39day study period. Running increased food intake, decreased fat mass, increased time to exhaustive fatigue, increased numbers of new cells in the granule layer of the hippocampus, and enhanced retrieval of both contextual and cued fear memories. The diets had no effect on their own or in combination with exercise on any of the fitness, plasticity, and behavioral outcome measures other than B-ALA decreased percent body fat whereas EGCG increased lean body mass slightly. Results suggest that, in young adult BALB/cJ mice, a 39

  17. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2delta and bck1delta), ...

  18. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2' and bck1'), Aspergil...

  19. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction with poly(oxypropylene)-poly(oxyethylene) glycol; when used as an inert ingredient in a pesticide chemical formulation. Dow Corning Corporation submitted a petition to EPA under the Federal Food,......

  20. Dodecyl gallate induces apoptosis by upregulating the caspase-dependent apoptotic pathway and inhibiting the expression of anti-apoptotic Bcl-2 family proteins in human osteosarcoma cells

    PubMed Central

    CHENG, CHUN-HSIANG; CHENG, YEN-PO; CHANG, ING-LIN; CHEN, HSIN-YAO; WU, CHIA-CHIEH; HSIEH, CHEN-PU

    2016-01-01

    Dodecyl gallate (DG) is a gallic acid ester that has been shown to inhibit tumor growth. The aim of this study was to investigate the mechanism by which DG induces antiproliferative and apoptotic effects in MG-63 human osteosarcoma cells. Dose- and time-dependent cytotoxic effects of DG were determined using an MTT assay. The results showed that the half-maximal inhibitory concentration (IC50) of DG in MG-63 cells was 31.15 µM at 24 h, 10.66 µM at 48 h, and 9.06 µM at 72 h. Flow cytometric analysis demonstrated that exposure to 20 and 40 µM DG resulted in an increase in the sub-G1 phase population and in S-phase cell cycle arrest. Furthermore, western blot analysis of apoptosis-related protein expression revealed an increase in the activation of caspases 8 and 3, cleavage of poly (ADPribose) polymerase (PARP), and disruption of mitochondrial membrane permeability was measured by flow cytometry. An increase in the Bax/Bcl-2 ratio and a decrease in the expression of inhibitor of apoptosis protein (IAP) family members, namely X-linked inhibitor of apoptosis protein and survivin, were also observed following DG treatment. These data provide insight into the molecular mechanisms governing the ability of DG to induce apoptosis in human osteosarcoma cells in vitro. PMID:26707422

  1. Dietary (-)-Epigallocatechin-3-gallate Supplementation Counteracts Aging-Associated Skeletal Muscle Insulin Resistance and Fatty Liver in Senescence-Accelerated Mouse.

    PubMed

    Liu, Hung-Wen; Chan, Yin-Ching; Wang, Ming-Fu; Wei, Chu-Chun; Chang, Sue-Joan

    2015-09-30

    Aging is accompanied by pathophysiological changes including insulin resistance and fatty liver. Dietary supplementation with (-)-epigallocatechin-3-gallate (EGCG) improves insulin sensitivity and attenuates fatty liver disease. We hypothesized that EGCG could effectively modulate aging-associated changes in glucose and lipid metabolism in senescence-accelerated mice (SAM) prone 8 (SAMP8). Higher levels of glucose, insulin, and free fatty acid, inhibited Akt activity, and decreased glucose transporter 4 (GLUT4) expression were observed in SAMP8 mice compared to the normal aging group, SAM resistant 1 mice. EGCG supplementation for 12 weeks successfully decreased blood glucose and insulin levels via restoring Akt activity and GLUT4 expression and stimulating AMPKα activation in skeletal muscle. EGCG up-regulated genes involved in mitochondrial biogenesis and subsequently restored mitochondrial DNA copy number in skeletal muscle of SAMP8 mice. Decreased adipose triglyceride lipase and increased sterol regulatory element binding proteins-1c (SREBP-1c) and carbohydrate responsive element binding protein at mRNA levels were observed in SAMP8 mice in accordance with hepatocellular ballooning and excess lipid accumulation. The pevention of hepatic lipid accumulation by EGCG was mainly attributed to down-regulation of mTOR and SREBP-1c-mediated lipid biosynthesis via suppression of the positive regulator, Akt, and activation of the negative regulator, AMPKα, in the liver. EGCG beneficially modulates glucose and lipid homeostasis in skeletal muscle and liver, leading to alleviation of aging-associated metabolic disorders. PMID:26152236

  2. (−)-Epigallocatechin-3-Gallate Enhances Hepatitis C Virus Double-Stranded RNA Intermediates-Triggered Innate Immune Responses in Hepatocytes

    PubMed Central

    Wang, Yizhong; Li, Jieliang; Wang, Xu; Peña, Juliet C.; Li, Kui; Zhang, Ting; Ho, Wenzhe

    2016-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a major polyphenol component of green tea, has recently been identified as an inhibitor of hepatitis C virus (HCV) entry. Here, we examined whether EGCG can enhance hepatocyte-mediated intracellular innate immunity against HCV. HCV dsRNAs (Core, E1-P7, NS-3′NTR and NS5A) induced interferon-λ1 (IFN-λ1) expression in human hepatocytes. These HCV dsRNAs also induced the expression of Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I) and several antiviral IFN-stimulated genes (ISGs) expression. Although EGCG treatment of hepatocytes alone had little effect on TLR3 and RIG-I signaling pathways, EGCG significantly enhanced HCV dsRNAs-induced the expression of IFN-λ1, TLR3, RIG-I and antiviral ISGs in hepatocytes. Furthermore, treatment of HCV-infected hepatocytes with EGCG and HCV dsRNAs inhibited viral replication. Given that EGCG has the ability to enhance HCV dsRNAs-induced intracellular antiviral innate immunity against HCV, suggesting the potential application of EGCG as a new anti-HCV agent for HCV therapy. PMID:26879672

  3. Anti-inflammatory Effect of Methyl Gallate on Experimental Arthritis: Inhibition of Neutrophil Recruitment, Production of Inflammatory Mediators, and Activation of Macrophages.

    PubMed

    Correa, Luana Barbosa; Pádua, Tatiana Almeida; Seito, Leonardo Noboru; Costa, Thadeu Estevam Moreira Maramaldo; Silva, Magaiver Andrade; Candéa, André Luis Peixoto; Rosas, Elaine Cruz; Henriques, Maria G

    2016-06-24

    Methyl gallate (MG) is a prevalent phenolic acid in the plant kingdom, and its presence in herbal medicines might be related to its remarkable biological effects, such as its antioxidant, antitumor, and antimicrobial activities. Although some indirect evidence suggests anti-inflammatory activity for MG, there are no studies demonstrating this effect in animal models. Herein, we demonstrated that MG (0.7-70 mg/kg) inhibited zymosan-induced experimental arthritis in a dose-dependent manner. The oral administration of MG (7 mg/kg) attenuates arthritis induced by zymosan, affecting edema formation, leukocyte migration, and the production of inflammatory mediators (IL-1β, IL-6, TNF-α, CXCL-1, LTB4, and PGE2). Pretreatment with MG inhibited in vitro neutrophil chemotaxis elicited by CXCL-1, as well as the adhesion of these cells to TNF-α-primed endothelial cells. MG also impaired zymosan-stimulated macrophages by inhibiting IL-6 and NO production, COX-2 and iNOS expression, and intracellular calcium mobilization. Thus, MG is likely to present an anti-inflammatory effect by targeting multiple cellular events such as the production of various inflammatory mediators, as well as leukocyte activation and migration. PMID:27227459

  4. Alternative Respiratory Pathway

    PubMed Central

    Siedow, James N.; Girvin, Mark E.

    1980-01-01

    Oxygen uptake during the first hours of imbibition in intact soybean and mung bean seeds showed a marked sensitivity to potassium cyanide but was unaffected by addition of either salicylhydroxamic acid or propyl gallate. However O2 uptake by finely ground seed particles was very sensitive to the addition of either compound. The results indicated that O2 uptake in intact, imbibing seeds was associated with a cyanide-sensitive process, most probably mitochondrial mediated respiration, and not the result of the cyanide-insensitive lipoxygenase activity which was readily detectable in ground seed particles. The antioxidant propyl gallate was found to inhibit specifically alternative pathway electron transfer in isolated mung bean mitochondria. Half-maximal inhibition occurred with 2 to 5 micromolar propyl gallate. Kinetic analysis indicated that propyl gallate inhibition of the alternative pathway occurred at, or very near, the site of inhibition of the alternative pathway by salicylhydroxamic acid. A high level of lipoxygenase activity was found to be associated with washed mitochondria isolated from a variety of etiolated plant tissues. Most of this lipoxygenase activity could be eliminated from mung bean mitochondria if the mitochondria were purified on a discontinuous sucrose gradient. This indicated that the mitochondrial-associated activity was probably the result of nonspecific adsorption of lipoxygenase onto the mitochondrial membranes during isolation. PMID:16661259

  5. A comprehensive evaluation of the density of neat fatty acids and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Density is one of the most important physical properties of a chemical compound, affecting numerous applications. An application in the case of fatty acid esters (biodiesel) is that density is specified in some biodiesel standards. In the present work, the density of fatty acid methyl, ethyl, propyl...

  6. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units - preparation and characterization

    NASA Astrophysics Data System (ADS)

    Laskowski, Lukasz; Laskowska, Magdalena; Jelonkiewicz, Jerzy; Dulski, Mateusz; Wojtyniak, Marcin; Fitta, Magdalena; Balanda, Maria

    2016-09-01

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUID magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined.

  7. Phase diagram of the iodine-sodium iodide-water-propyl alcohol system at 298.15 K

    NASA Astrophysics Data System (ADS)

    Rubtsova, E. M.; Varlamova, T. M.; Monakhova, Y. B.; Mushtakova, S. P.

    2015-06-01

    Phase equilibria in the cross sections of isothermal-isobaric sections of the phase diagram of four-component iodine-potassium iodide-water-propyl alcohol are investigated at 298.15 K and pressure of 101325 Pa. It is shown that a three-phase equilibrium of the eutonic type occurs in the cross sections containing (I) 10 and (II) 30 wt % of propyl alcohol, and two three-phase equilibria of the monotectic type are found in cross section II. It is shown that the solid phases of saturated solutions in the investigated cross sections are potassium iodide and crystalline iodine. The compositions of the mixed solvents with the strongest iodine dissolving ability relative to individual solvents are established.

  8. 78 FR 57285 - 2,5-Furandione, Polymer With Ethenylbenzene, Hydrolyzed, 3-(Dimethylamino)propyl Imide, Imide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of 2,5-furandione, polymer with ethenylbenzene, hydrolyzed, 3-(dimethylamino)propyl imide, imide with polyethylene-polypropylene glycol 2-aminopropyl me ether, 2,2'-(1,2- diazenediyl)bis[2-methylbutanenitrile]-initiated (CAS Reg. No. 1062609- 13-5) when used as an inert ingredient in a pesticide......

  9. Vibrational spectra and normal coordinate analysis of 2-hydroxy-3-(2-methoxyphenoxy) propyl carbamate

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Renuga, S.

    2014-11-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FTIR spectroscopy in the range 50-4000 cm-1 and 450-4000 cm-1 respectively, for 2-hydroxy-3-(2-methoxyphenoxy) propyl carbamate (2H3MPPLC) molecule. The molecular structure, fundamental vibrational frequencies and intensities of the vibrational bands were interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) and ab initio HF methods with 6-31G(d,p) basis set. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The scaled B3LYP/6-31G(d,p) results show the best agreement with the experimental values over the other method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results confirm the occurrence of intramolecular charge-transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the investigated molecule has been computed using B3LYP/6-31G(d,p) method. Mulliken population analysis on atomic charges was also calculated. Besides, frontier molecular orbitals, molecular electrostatic potential (MEP) and thermodynamic properties were performed.

  10. Intricate internal rotation surface and fundamental infrared transitions of the n-propyl radical.

    PubMed

    Li, Chenyang; Agarwal, Jay; Wu, Chia-Hua; Allen, Wesley D; Schaefer, Henry F

    2015-01-22

    The potential energy surface for methylene hindered internal rotation is examined for the n-propyl radical, a molecule fundamental to combustion chemistry. Six stationary points are identified, and four of them are unique: 1, 2, TS1, and TS2. The remaining two structures 1' and TS1' are mirror images with respect to 1 and TS1. Focal point analysis, converged to the complete basis set limit of coupled-cluster theory with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)], is employed to obtain the relative energies of these structures. A one-dimensional potential energy surface (PES) is constructed by explicitly mapping out a distinguished reaction path via constrained geometry optimizations. A "double-well" feature is observed on the electronic PES, but under the adiabatic approximation, the enthalpic (0 K) PES becomes a regular single-well potential with the expected 180° periodicity. The corresponding one-dimensional vibrational Schrödinger equation is solved using the Cooley-Numerov approach to obtain vibrational states of the methylene torsional motion. The predicted barrier for internal rotation is 105.5 and 137.2 cm(-1) for the electronic and enthalpic surfaces, respectively. Anharmonic (fundamental) vibrational frequencies are predicted for structure 1 using second-order vibrational perturbation theory, and the band origins for 11 modes are reported. Comparison with previous electron spin resonance and infrared spectroscopic work, in addition to other theoretical investigations, is made where possible. PMID:25007004

  11. Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process

    SciTech Connect

    Francis, L.; Balakrishnan, A.; Marsano, E.

    2010-08-15

    Silver (Ag) nanoparticles ({approx}6 nm) were synthesized using a novel dialysis process. Silver nitrate was used as a starting precursor, ethylene glycol as solvent and hydroxy propyl cellulose (HPC) introduced as a capping agent. Different batches of reaction mixtures were prepared with different concentrations of silver nitrate (AgNO{sub 3}). After the reduction and aging, these solutions were subjected to ultra-violet visible spectroscopy (UVS). Optimized solution, containing 250 mg AgNO{sub 3} revealed strong plasmon resonance peak at {approx}410 nm in the spectrum indicating good colloidal state of Ag nanoparticles in the diluted solution. The optimized solution was subjected to dialysis process to remove any unreacted solvent. UVS of the optimized solution after dialysis showed the plasmon resonance peak shifting to {approx}440 nm indicating the reduction of Ag ions into zero-valent Ag. This solution was dried at 80 {sup o}C and the resultant HPC capped Ag (HPC/Ag) nanoparticles were studied using transmission electron microscopy (TEM) for their particle size and morphology. The particle size distribution (PSD) analysis of these nanoparticles showed skewed distribution plot with particle size ranging from 3 to 18 nm. The nanoparticles were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform infrared spectroscopy (FT-IR).

  12. Growth of propyl-p-hydroxybenzoate single crystals and its characterizations

    NASA Astrophysics Data System (ADS)

    Karunagaran, N.; Ramasamy, P.

    2012-06-01

    Single crystals of Propyl-p-hydroxybenzoate (PHB) crystals have been grown by slow evaporation solution technique (SEST) using methanol as a solvent. The PHB single crystal of dimension up to 27×16×8 mm3 has been grown in a period of 18 days at room temperature. The optical transparency of the grown PHB crystal has been measured on (212) plane by UV-Vis-NIR spectrophotometer. The crystal has 60% of transparency in the entire visible region. The thermo gravimetric analysis (TG) and differential thermal analysis (DTA) studies reveal that the crystal is thermally stable up to 99°C. The mechanical strength of the grown PHB crystal is measured using Vickers microhardness tester. The chemical etching studies were carried out on (212) plane using methanol etchant. The laser damage threshold of PHB crystal is 1.3 GW/cm2. The dielectric properties have been investigated. The birefringence value is found to be 0.10148 at the wavelength of 504 nm. The refractive index of grown PHB single crystal is 1.6753.

  13. Development of Anionically Decorated Caged Neurotransmitters: In Vitro Comparison of 7-Nitroindolinyl- and 2-(p-Phenyl-o-nitrophenyl)propyl-Based Photochemical Probes.

    PubMed

    Kantevari, Srinivas; Passlick, Stefan; Kwon, Hyung-Bae; Richers, Matthew T; Sabatini, Bernardo L; Ellis-Davies, Graham C R

    2016-05-17

    Neurotransmitter uncaging, especially that of glutamate, has been used to study synaptic function for over 30 years. One limitation of caged glutamate probes is the blockade of γ-aminobutyric acid (GABA)-A receptor function. This problem comes to the fore when the probes are applied at the high concentrations required for effective two-photon photolysis. To mitigate such problems one could improve the photochemical properties of caging chromophores and/or remove receptor blockade. We show that addition of a dicarboxylate unit to the widely used 4-methoxy-7-nitroindolinyl-Glu (MNI-Glu) system reduced the off-target effects by about 50-70 %. When the same strategy was applied to an electron-rich 2-(p-Phenyl-o-nitrophenyl)propyl (PNPP) caging group, the pharmacological improvements were not as significant as in the MNI case. Finally, we used very extensive biological testing of the PNPP-caged Glu (more than 250 uncaging currents at single dendritic spines) to show that nitro-biphenyl caging chromophores have two-photon uncaging efficacies similar to that of MNI-Glu. PMID:26929152

  14. Systemic exposure to parabens: pharmacokinetics, tissue distribution, excretion balance and plasma metabolites of [14C]-methyl-, propyl- and butylparaben in rats after oral, topical or subcutaneous administration.

    PubMed

    Aubert, Nicolas; Ameller, Thibault; Legrand, Jean-Jacques

    2012-03-01

    Parabens (PB) are preservatives used in food, drugs and personal care products preventing microbial and fungal contamination. We investigated ADME profiles of [14C]-methyl-, propyl- or butylparaben (MP, PP, BP) following single oral, dermal or subcutaneous (BP) doses at 100 mg/kg to Sprague-Dawley rats. Plasma Cmax and AUC values after oral or subcutaneous doses were 4- to 10-fold higher relative to respective values after dermal administration. tmax ranged from 0.5, 2 or 8 h after oral, subcutaneous or dermal administration, respectively. MP produced higher blood Cmax and AUC levels relative to those after PP or BP. Following oral or subcutaneous administration, urinary excretion was predominant (>70%, mainly during the first 24 h), less than 4% were eliminated in the feces, 2% were retained in the tissues and carcasses. Following dermal application, >50% of the dose was unabsorbed, 14-27% or <2% were respectively excreted in the urine or feces, respectively. Overall, parabens were well absorbed after oral and subcutaneous, and partially absorbed after dermal administration. All administration routes produced a single peak in the plasma, corresponding to that of para-hydroxybenzoic acid (PHBA) suggesting that PB produce no significant systemic exposure of mammalian organisms after oral, topical or subcutaneous administration. PMID:22265941

  15. Bioconcentration and transfer of the organophorous flame retardant 1,3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae.

    PubMed

    Wang, Qiangwei; Lai, Nelson Lok-Shun; Wang, Xianfeng; Guo, Yongyong; Lam, Paul Kwan-Sing; Lam, James Chung-Wah; Zhou, Bingsheng

    2015-04-21

    Organophosphate flame retardants are emerging environmental contaminants, although knowledge of their health risks is limited. Here, thyroid hormone homeostasis and neuronal development was studied in the progeny of adult zebrafish exposed to tris(1,3-dichloro-2-propyl) phosphate (TDCPP). Adult zebrafish were exposed to TDCPP (0, 4, 20, and 100 μg/L) for 3 months. Increased generation of reactive oxygen species and reduced survival rates was observed in exposed F1 larvae. We also observed a significant decrease in plasma thyroxine and 3,5,3'-triiodothyronine levels in F0 females and F1 eggs/larvae. The mRNA and protein expression of factors associated with neuronal development (e.g., α1-tubulin, myelin basic protein, and synapsin IIa) were significantly downregulated in exposed F1 larvae, as was the level of the neurotransmitters dopamine, serotonin, gamma amino butyric acid, and histamine. Larval locomotion was significantly decreased in exposed fish, but there was no effect on acetylcholinesterase activity. Bioconcentration of TDCPP was observed in F0 fish. TDCPP was also detected in F1 eggs following parental exposure, indicating maternal transfer of this compound. This study uniquely shows that TDCPP can be transferred to the offspring of exposed adults, causing thyroid endocrine disruption and developmental neurotoxicity. PMID:25826601

  16. Agonist activity of a novel compound, 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554), at central 5-HT1A receptors.

    PubMed

    Matsuda, T; Seong, Y H; Aono, H; Kanda, T; Baba, A; Saito, K; Tobe, A; Iwata, H

    1989-10-24

    We used an in vitro radioligand receptor binding assay with rat cerebral cortex, hippocampus and striatum membrane preparations to show that 1-[3-(3,4-methylenedioxyphenoxy)propyl]-4-phenyl piperazine (BP-554) had much higher affinity for 5-HT1A recognition sites than for 5-HT1-non-A, 5-HT2, benzodiazepine, dopamine D-2 and alpha 2-adrenergic recognition sites. The compound inhibited the activity of forskolin-stimulated adenylate cyclase in rat hippocampal membranes. Intraperitoneal injection of BP-554 to mice decreased the concentration of only 5-hydroxy-indoleacetic acid of the amines and their metabolites in the brain and decreased the accumulation of 5-hydroxytryptophan in the brain after decarboxylase inhibition by 3-hydroxybenzylhydrazine. Furthermore, the administration of BP-554 caused hypothermia and increased serum corticosterone levels in mice. The observed effects of BP-554 were similar to those of 8-hydroxy-2-(di-n-propylamino)tetralin. These results suggest that BP-554 acts as a selective 5-HT1A receptor agonist in vivo. PMID:2533078

  17. Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos

    SciTech Connect

    Farhat, Amani; Buick, Julie K.; Williams, Andrew; Yauk, Carole L.; O'Brien, Jason M.; Crump, Doug; Williams, Kim L.; Chiu, Suzanne; Kennedy, Sean W.

    2014-03-01

    We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 μg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The gene expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways. - Highlights: • TDCPP dysregulates genes involved in immune function and lipid metabolism. • A targeted effect of TDCPP toxicity on cholesterol metabolism is apparent. • A state of cholestatic liver fibrosis is suggested by the expression profile. • Elevated plasma bile acids suggest that TDCPP causes liver dysfunction.

  18. Determination of S-methyl-, S-propyl-, and S-propenyl-L-cysteine sulfoxides by gas chromatography-mass spectrometry after tert-butyldimethylsilylation.

    PubMed

    Tsuge, Kouichiro; Kataoka, Mieko; Seto, Yasuo

    2002-07-31

    A gas chromatographic-mass spectrometric method for the determination of S-methyl-L-cysteine sulfoxide (1), S-propyl-L-cysteine sulfoxide (2), and S-propenyl-L-cysteine sulfoxide (3), specific marker compounds in the genus Allium, is described. The target amino acids were converted to the tert-butyldimethylsilyl derivatives. The products were silylated on the amino and carboxyl groups and on an additional oxygen atom and were separated on a nonpolar capillary column. That incorporation of three tert-butyldimethylsilyl groups had occurred was verified by mass spectrometry, which gave an m/z 302 fragment as base peak (amino acid side chain eliminated ion) and m/z 436 (1), 464 (2), or 462 (3) as major peaks (tert-butyl function eliminated ion), by electron impact ionization. The detection limits for 1 and 2 under selected ion monitoring at m/z 436 (1) and m/z 464 (2), respectively, were determined to be 0.3 and 1.8 ng per injection. To clean up the analytes from the solvent extract of onion, as a representative food material, onion, the sample solution was subjected to combined solid phase extraction. The eluate from a Sep-Pak C(18) cartridge was applied to a Bond Elut SCX cartridge (H(+) form), followed by washing with 0.1 M hydrochloric acid and elution with 0.5 M ammonia. From a simulated matrix solution containing 5% sucrose, 1 and 2 were extracted quantitatively, and the detection yield was approximately 75%. The contents of 1, 2, and 3 in commercial onion were estimated to be 0.3, 3.1, and 3.0 mg, respectively, per gram of fresh weight. PMID:12137458

  19. How Epigallocatechin Gallate Can Inhibit α-Synuclein Oligomer Toxicity in Vitro♦

    PubMed Central

    Lorenzen, Nikolai; Nielsen, Søren B.; Yoshimura, Yuichi; Vad, Brian S.; Andersen, Camilla Bertel; Betzer, Cristine; Kaspersen, Jørn D.; Christiansen, Gunna; Pedersen, Jan S.; Jensen, Poul Henning; Mulder, Frans A. A.; Otzen, Daniel E.

    2014-01-01

    Oligomeric species of various proteins are linked to the pathogenesis of different neurodegenerative disorders. Consequently, there is intense focus on the discovery of novel inhibitors, e.g. small molecules and antibodies, to inhibit the formation and block the toxicity of oligomers. In Parkinson disease, the protein α-synuclein (αSN) forms cytotoxic oligomers. The flavonoid epigallocatechin gallate (EGCG) has previously been shown to redirect the aggregation of αSN monomers and remodel αSN amyloid fibrils into disordered oligomers. Here, we dissect EGCG's mechanism of action. EGCG inhibits the ability of preformed oligomers to permeabilize vesicles and induce cytotoxicity in a rat brain cell line. However, EGCG does not affect oligomer size distribution or secondary structure. Rather, EGCG immobilizes the C-terminal region and moderately reduces the degree of binding of oligomers to membranes. We interpret our data to mean that the oligomer acts by destabilizing the membrane rather than by direct pore formation. This suggests that reduction (but not complete abolition) of the membrane affinity of the oligomer is sufficient to prevent cytotoxicity. PMID:24907278

  20. Certain (-)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG.

    PubMed

    Wei, Yaqing; Chen, Pingping; Ling, Tiejun; Wang, Yijun; Dong, Ruixia; Zhang, Chen; Zhang, Longjie; Han, Manman; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2016-08-01

    (-)-Epigallocatechin-3-gallate (EGCG) from green tea has anti-cancer effect. The cytotoxic actions of EGCG are associated with its auto-oxidation, leading to the production of hydrogen peroxide and formation of numerous EGCG auto-oxidation products (EAOPs), the structures and bioactivities of them remain largely unclear. In the present study, we compared several fundamental properties of EGCG and EAOPs, which were prepared using 5mg/mL EGCG dissolved in 200mM phosphate buffered saline (pH 8.0 at 37°C) and normal oxygen partial pressure for different periods of time. Despite the complete disappearance of EGCG after the 4-h auto-oxidation, 4-h EAOPs gained an enhanced capacity to deplete cysteine thiol groups, and retained the cytotoxic effects of EGCG as well as the capacity to produce hydrogen peroxide and inhibit thioredoxin reductase, a putative target for cancer prevention and treatment. The results indicate that certain EAOPs possess equivalent cytotoxic activities to EGCG, while exhibiting simultaneously enhanced capacity for cysteine depletion. These results imply that EGCG and EAOPs formed extracellularly function in concert to exhibit cytotoxic effects, which previously have been ascribed to EGCG alone. PMID:26988496

  1. Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses.

    PubMed

    Lin, H; Zhang, Y Y; Pun, E Y B

    2008-12-15

    Efficient 2.0 microm infrared and visible upconversion emissions have been observed in Ho3+/Yb3+ co-doped mixed-alkali bismuth gallate (LKBBG) glasses having a maximum-phonon energy of 673 cm(-1). The Judd-Ofelt parameters Omega2, Omega4 and Omega6 of Ho3+ indicate that there is a high asymmetry and strong covalent environment in LKBBG glasses. The large absorption and emission cross-sections of Yb3+ confirm that it is a suitable sensitizer for capturing and transferring pump energy to Ho3+. The emission cross-section profile for the 5I7-->5I8 transition is derived using the reciprocity method and the peak value is 5.54 x 10(-21)cm2, which is much larger than the value in fluorozircoaluminate glasses. LKBBG glasses exhibit low maximum-phonon energy and large refractive index, and it is possible to achieve an effective 1.66 microm U-band emission of Ho3+ under 900 nm laser radiation. PMID:18586553

  2. Hibernation, reversible cell growth inhibition by epigallocatechin-3-O-gallate.

    PubMed

    Matsumura, Kazuaki; Kim, Jong-yoon; Tsutsumi, Sadami; Hyon, Suong-hyu

    2007-01-20

    Epigallocatechin-3-O-gallate (EGCg) and related polyphenolic compounds found in tea are known to have antioxidative activities. However, they also have pro-oxidative activities such as generation of hydrogen peroxide. In this report, we investigated the effect on cells and showed the potential usage of EGCg in cell preservation. H(2)O(2) was generated from EGCg at concentrations of more than 300 microg/mL for 6 h at 37 degrees C, and high cytotoxicity for L929 cells were shown. In contrast, in the presence of 1 microg/mL catalase, the amount of generated H(2)O(2) was significantly low and cytotoxicity decreased markedly. This indicates that catalase eliminated H(2)O(2) generated by degradation of EGCg. Although H(2)O(2) generation was prevented, L929 cell proliferation was slightly inhibited in proportion to the concentrations of EGCg. L929 was exposed able to be 300 microg/mL to EGCg and 1 microg/mL catalase for maximum 18 days. EGCg inhibited the growth of L929 cells, and cell proliferation was restarted immediately after medium change for removing EGCg. We concluded that EGCg had a reversible growth inhibition when H(2)O(2) was eliminated from cell cultures. PMID:16996160

  3. The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress

    PubMed Central

    Krupkova, Olga; Handa, Junichi; Hlavna, Marian; Klasen, Juergen; Ospelt, Caroline; Ferguson, Stephen John; Wuertz-Kozak, Karin

    2016-01-01

    Oxidative stress-related phenotypic changes and a decline in the number of viable cells are crucial contributors to intervertebral disc degeneration. The polyphenol epigallocatechin 3-gallate (EGCG) can interfere with painful disc degeneration by reducing inflammation, catabolism, and pain. In this study, we hypothesized that EGCG furthermore protects against senescence and/or cell death, induced by oxidative stress. Sublethal and lethal oxidative stress were induced in primary human intervertebral disc cells with H2O2 (total n = 36). Under sublethal conditions, the effects of EGCG on p53-p21 activation, proliferative capacity, and accumulation of senescence-associated β-galactosidase were tested. Further, the effects of EGCG on mitochondria depolarization and cell viability were analyzed in lethal oxidative stress. The inhibitor LY249002 was applied to investigate the PI3K/Akt pathway. EGCG inhibited accumulation of senescence-associated β-galactosidase but did not affect the loss of proliferative capacity, suggesting that EGCG did not fully neutralize exogenous radicals. Furthermore, EGCG increased the survival of IVD cells in lethal oxidative stress via activation of prosurvival PI3K/Akt and protection of mitochondria. We demonstrated that EGCG not only inhibits inflammation but also can enhance the survival of disc cells in oxidative stress, which makes it a suitable candidate for the development of novel therapies targeting disc degeneration. PMID:27119009

  4. Epigallocatechin gallate as a modulator of Campylobacter resistance to macrolide antibiotics.

    PubMed

    Kurinčič, Marija; Klančnik, Anja; Smole Možina, Sonja

    2012-11-01

    Comprehensive therapeutic use of macrolides in humans and animals is important in the selection of macrolide-resistant Campylobacter isolates. This study shows high co-resistance to erythromycin, azithromycin, clarithromycin, dirithromycin and tylosin, with contributions from the 23S rRNA gene and drug efflux systems. The CmeABC efflux pump plays an important role in reduced macrolide susceptibility, accompanied by contributions from the CmeDEF efflux pump and potentially a third efflux pump. To improve clinical performance of licensed antibiotics and chemotherapeutic agents, it is important to understand the factors in Campylobacter that affect susceptibility to macrolide antibiotics. Using mutants that lack the functional genes coding for the CmeB and CmeF efflux pump proteins and the CmeR transcriptional repressor, we show that these efflux pumps are potential targets for the development of therapeutic strategies that use a combination of a macrolide with an efflux pump inhibitor (EPI) to restore macrolide efficacy. The natural phenolic compound epigallocatechin gallate (EGCG) has good modulatory activity over the extrusion across the outer membrane of the macrolides tested, both in sensitive and resistant Campylobacter isolates. Comparing EGCG with known chemical EPIs, correlations in the effects on the particular macrolide antibiotics were seen. EGCG modifies Campylobacter multidrug efflux systems and thus could have an impact on restoring macrolide efficacy in resistant strains. PMID:22999765

  5. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage.

    PubMed

    Chani, Baldeep; Puri, Veena; Chander Sobti, Ranbir; Puri, Sanjeev

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs) have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 μM, 5 μM, 10 μM, 50 μM) in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity. PMID:27397998

  6. Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice.

    PubMed

    Wang, Yanqiu; Wang, Bowen; Du, Feng; Su, Xuesong; Sun, Guangping; Zhou, Guangyu; Bian, Xiaohui; Liu, Na

    2015-04-01

    The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition. PMID:25549657

  7. Neuroprotective Effect of Combination Therapy of Glatiramer Acetate and Epigallocatechin-3-Gallate in Neuroinflammation

    PubMed Central

    Hentschel, Nicole; Infante-Duarte, Carmen; Aktas, Orhan; Zipp, Frauke

    2011-01-01

    Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system. However, studies of MS and the animal model, experimental autoimmune encephalomyelitis (EAE), indicate that neuronal pathology is the principle cause of clinical disability. Thus, there is need to develop new therapeutic strategies that not only address immunomodulation but also neuroprotection. Here we show that the combination therapy of Glatiramer acetate (GA), an immunomodulatory MS therapeutic, and the neuroprotectant epigallocatechin-3-gallate (EGCG), the main phenol in green tea, have synergistic protective effects in vitro and in the EAE model. EGCG and GA together led to increased protection from glutamate- and TRAIL-induced neuronal cell death in vitro. EGCG combined with GA induced regeneration of hippocampal axons in an outgrowth assay. The combined application of EGCG and GA did not result in unexpected adverse events in vivo. Neuroprotective and neuroregenerative effects could be translated in the in vivo model, where combination treatment with EGCG and GA significantly delayed disease onset, strongly reduced clinical severity, even after onset of symptoms and reduced inflammatory infiltrates. These results illustrate the promise of combining neuroprotective and anti-inflammatory treatments and strengthen the prospects of EGCG as an adjunct therapy for neuroinflammatory and neurodegenerative diseases. PMID:22022398

  8. Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate.

    PubMed

    Tian, Jing; Tu, Hu; Shi, Xiaowen; Wang, Xiaoying; Deng, Hongbing; Li, Bin; Du, Yumin

    2016-09-01

    Cellulose electrospun nanofibrous mats coated with bilayers of chitosan (CS) and epigallocatechin gallate (EGCG) or with bilayers of CS-rectorite (REC) composite (CS-REC) and EGCG were fabricated via layer-by-layer (LBL) self-assembly technique. LBL-structured cellulose nanofibers still maintained three-dimension fiber structure according to the observation from scanning electron microscopy images. The average diameter of nanofibers were enlarged with the addition of REC. X-ray photoelectron spectroscopy results confirmed the deposition of CS and CS-REC onto the corresponding mats. The tensile strength and rate of elongation at break of LBL-structured nanofibers had no difference from those of uncoated nanofibers. The encapsulation efficiency and loading capacity of nanofibers were enhanced in the presence of REC. In addition the in-vitro cumulative release profiles of EGCG indicate that the addition of REC delayed the release of EGCG. Antimicrobial assay demonstrated the inhibitory effects of CS and EGCG on the growth of Staphylococcus aureus. Meanwhile the CS-REC composites improved the antimicrobial effects of CS and EGCG by adsorption of bacteria to the surface of REC then enhancement of exposure of bacteria to EGCG and the matrix of CS. PMID:27288819

  9. Epigallocatechin-3-Gallate Reduces Cytotoxic Effects Caused by Dental Monomers: A Hypothesis.

    PubMed

    Jiao, Yang; Ma, Sai; Wang, Yirong; Li, Jing; Shan, Lequn; Chen, Jihua

    2015-01-01

    Resin monomers from dental composite materials leached due to incomplete polymerization or biodegradation may cause contact allergies and damage dental pulp. The cytotoxicity of dental resin monomers is due to a disturbance of intracellular redox equilibrium, characterized by an overproduction of reactive oxygen species (ROS) and depletion of reduced glutathione (GSH). Oxidative stress caused by dental resin monomers leads to the disturbance of vital cell functions and induction of cell apoptosis in affected cells. The nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway plays a key role in the cellular defense system against oxidative and electrophilic stress. Epigallocatechin-3-gallate (EGCG) can activate the Nrf2 pathway and induce expression of a multitude of antioxidants and phase II enzymes that can restore redox homeostasis. Therefore, here, we tested the hypothesis that EGCG-mediated protection against resin monomer cytotoxicity is mediated by activation of the Nrf2 pathway. This study will help to elucidate the mechanism of resin monomer cytotoxicity and provide information that will be helpful in improving the biocompatibility of dental resin materials. PMID:26489899

  10. Effect of (-)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation.

    PubMed

    Li, M; Hagerman, A E

    2015-01-01

    (-)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10-100 mM during a 21-day incubation at 37°C and pH: 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation. PMID:25794449

  11. Antiallodynic effect of intrathecal epigallocatechin-3-gallate due to suppression of reactive oxygen species

    PubMed Central

    An, Sang Soon; Kim, Yeo Ok; Park, Cheon Hee; Lin, Hai

    2014-01-01

    Background Green tea modulates neuropathic pain. Reactive oxygen species (ROS) are suggested as a key molecule in the underlying mechanism of neuropathic pain in the spinal cord. We examined the effect of epigallocatechin-3-gallate (EGCG), the major catechin in green tea, in neuropathic pain and clarified the involvement of ROS on the activity of EGCG. Methods Neuropathic pain was induced in male Sprague-Dawley rats by spinal nerve ligation (SNL). A polyethylene tube was intrathecally located. Nociceptive degree was estimated by a von Frey filament and expressed as a paw withdrawal threshold (PWT). To determine the role of ROS on the effect of EGCG, a free radical donor (tert-BuOOH) was pretreated before administration of EGCG. ROS activity was assayed by xanthine oxidase (XO) and malondialdehyde (MDA). Results SNL decreased the PWT compared to sham rats. The decrease remained during the entire observation period. Intrathecal EGCG increased the PWT at the SNL site. Intrathecal tert-BuOOH significantly decreased the effect of EGCG. The levels of both XO and MDA in the spinal cord were increased in SNL rats compared to sham. Intrathecal EGCG decreased the level of XO and MDA. Conclusions EGCG may reduce neuropathic pain by SNL due to the suppression of ROS in the spinal cord. PMID:25237449

  12. Protection of epigallocatechin gallate against degradation during in vitro digestion using apple pomace as a carrier.

    PubMed

    Wu, Liangyu; Sanguansri, Luz; Augustin, Mary Ann

    2014-12-17

    Apple pomace, a byproduct of the apple juice processing industry, may be used as a matrix for carrying phytochemicals. High-pressure processing (600 MPa for 5 min) or heat treatment (121 °C for 5 min) of wet apple pomace can increase the shelf life of the pomace but may influence the carrier properties of the wet pomace for phytochemicals. We examined the effects of these processing treatments on the adsorption capacity of apple pomace for epigallocatechin gallate (EGCG) and the stability of EGCG in simulated gastrointestinal fluids in vitro. Both processing treatments reduced the adsorption capacity but protected EGCG against degradation in the simulated gastrointestinal fluids. The extent of EGCG degradation in simulated gastrointestinal fluids in vitro in the presence of apple pomace was not influenced by gastric and intestinal enzymes, suggesting that pH had the overriding influence on EGCG degradation. This study showed the potential of apple pomace as a carrier for EGCG in functional food applications. PMID:25419979

  13. Binding of (-)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles.

    PubMed

    Li, Jinbing; Wang, Xiaoyong

    2015-02-01

    Novel thermally-induced BSA/ι-carrageenan particles are used as a protective carrier for (-)-epigallocatechin-3-gallate (EGCG). The addition of EGCG to BSA/ι-carrageenan particles can highly quench the intrinsic fluorescence of BSA, which is explained in terms of the binding of EGCG to the hydrophobic pockets of BSA mainly through the hydrophobic force. According to the double logarithm equation, the binding constant is determined as 1.1×10(8)M(-1) for the binding of EGCG with BSA/ι-carrageenan particles. The high binding affinity is ascribed to both the molecular structure of EGCG and the partial unfolding state of BSA in BSA/ι-carrageenan particles. The circular dichroism spectra and calculated α-helix of BSA suggest that the bound EGCG leads to a more random secondary structure of BSA. Furthermore, BSA/ι-carrageenan particles are found to be superior to native BSA and pure BSA particles for improving the stability and radical scavenging activity of EGCG. PMID:25172749

  14. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.

    PubMed

    Lestringant, Pauline; Guri, Anilda; Gülseren, Ibrahim; Relkin, Perla; Corredig, Milena

    2014-08-20

    Varying amounts of epigallocatechin-3-gallate (EGCG) were encapsulated in β-lactoglobulin (β-Lg) nanoparticles, either native or processed, denoted as heated or desolvated protein. The stability, physical properties, and bioactivity of the β-Lg-EGCG complexes were tested. Native β-Lg-EGCG complexes showed comparable stability and binding efficacy (EGCG/β-Lg molar ratio of 1:1) to heated β-Lg nanoparticles (1% and 5% protein w/w). The sizes of heated and desolvated β-Lg nanoparticles were comparable, but the latter showed the highest binding affinity for EGCG. The presence of EGCG complexed with β-Lg did not affect the interfacial tension of the protein when tested at the soy oil-water interface but caused a decrease in dilational elasticity. All β-Lg complexes (native, heated, or desolvated) showed a decrease in cellular proliferation similar to that of free ECGC. In summary, protein-EGCG complexes did not alter the bioefficacy of EGCG and contributed to increased stability with storage, demonstrating the potential benefits of nanoencapsulation. PMID:25077960

  15. Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: stability and interaction mechanism.

    PubMed

    Xue, Jin; Tan, Chen; Zhang, Xiaoming; Feng, Biao; Xia, Shuqin

    2014-05-21

    Polyphenols normally have strong binding affinity with proteins, which may lead to protein precipitation. Glycosylation of protein via Maillard reaction in mild condition may inhibit the precipitation. This study prepared nanocomplexes of epigallocatechin-3-gallate (EGCG) and protein, and their stability against environmental stress was investigated. Subsequently, these findings were correlated with the interactions between EGCG and casein. Results showed that glycosylated casein displayed strong encapsulating and retaining capacity to EGCG, and no obvious aggregation or fusion appeared in the concentration range of 0.25-5.00 mg/mL during storage. The in vitro release demonstrated that casein, especially glycosylated casein, could effectively protect EGCG from degradation in alkaline pH and displayed a slow and sustained release in intestinal fluid, which may be attributed to the inhibiting effects of casein binding on the motion freedom of EGCG. Fluorescence quenching spectra demonstrated that the steric hindrance induced by dextran could inhibit the interaction between casein and EGCG. These findings demonstrated that glycosylated casein could be used as a promising and effective nanocarrier for EGCG. PMID:24670204

  16. Promoting photosensitized reductive dechlorination of chlorothalonil using epigallocatechin gallate in water.

    PubMed

    Tan, Yongqiang; Huang, Qinghua; Shi, Taozhong; Jin, Laijia; Hua, Rimao; Wu, Xiangwei; Li, Xiangqiong; Li, Xuede; Cao, Haiqun; Tang, Jun; Li, Qing X

    2014-12-17

    Chlorothalonil (CTL) is a broad-spectrum fungicide. Photodegradation is a main degradation pathway of CTL in water. Because of the high aquatic toxicity of CTL and its metabolite 4-hydroxy CTL (CTL-OH), it is significant to develop an effective method to degrade CTL but without formation of CTL-OH. Epigallocatechin gallate (EGCG) is an abundant tea byproduct and has more than 100-fold reducing power than vitamin C. The present study reports photosensitization effects of EGCG on CTL photodegradation in water under sunlight and artificial lights. The results indicated that EGCG significantly photosensitizes CTL photodegradation. Under high-pressure mercury light illumination, CTL underwent primarily reductive dechlorination. CTL-OH, a main CTL photolytic product, was not detected when EGCG was added in the water. We concluded that EGCG not only significantly enhances CTL photodegradation rate but also alters the photodegradation pathways, avoiding the production of the highly toxic CTL-OH. The results indicated high potential of using EGCG to minimize CTL aquatic toxicity and pollution. PMID:25423043

  17. Protective potential of epigallocatechin-3-gallate against benign prostatic hyperplasia in metabolic syndrome rats.

    PubMed

    Chen, Jinglou; Song, Hongping

    2016-07-01

    Epigallocatechin-3-gallate (EGCG) is a major catechin in green tea with functions of antioxidant, anti-proliferative, anti-inflammatory and attenuating metabolic syndrome. In this study, rat model of benign prostatic hyperplasia (BPH) accompanied with metabolic syndrome was induced by fed on high-fat diet for 12 weeks combined with testosterone injection (10mg/kg/d) from 9th to 12th weeks. EGCG was orally given from 9th to 12th weeks. Finally, the levels of glucose, total cholesterol, triglyceride, prostate weight, insulin-like growth factors (IGFs), inflammatory cytokines, antioxidant enzymes, and prostatic expression of IGF binding protein-3 (IGFBP-3) and peroxisome proliferator activated receptors (PPARs) were evaluated. It was found that EGCG significantly decreased the levels of glucose, total cholesterol, triglyceride, IGFs, and inflammatory cytokines, normalized the activities of antioxidant enzymes, as well as increased the prostatic expression of IGFBP-3 and PPARs. These results indicated that EGCG was able to exert anti-BPH activities in metabolic syndrome rats. PMID:27348728

  18. Crystal Engineering of Green Tea Epigallocatechin-3-gallate (EGCg) Cocrystals and Pharmacokinetic Modulation in Rats

    PubMed Central

    2013-01-01

    The most abundant polyphenol in green tea, epigallocatechin-3-gallate (EGCg), has recently received considerable attention due to the discovery of numerous health-promoting bioactivities. Despite reports of its poor oral bioavailability, EGCg has been included in many dietary supplement formulations. Conventional preformulation methods have been employed to improve the bioavailability of EGCg. However, these methods have limitations that hinder the development of EGCg as an effective therapeutic agent. In this study, we have utilized the basic concepts of crystal engineering and several crystallization techniques to screen for various solid crystalline forms of EGCg and evaluated the efficacy of crystal engineering for modulating the pharmacokinetics of EGCg. We synthesized and characterized seven previously undescribed crystal forms of EGCg including the pure crystal structure of EGCg. The aqueous solubility profiles of four new EGCg cocrystals were determined. These cocrystals were subsequently dosed at 100 mg EGCg per kg body weight in rats, and the plasma levels were monitored over the course of eight hours following the single oral dose. Two of the EGCg cocrystals were found to exhibit modest improvements in relative bioavailability. Further, cocrystallization resulted in marked effects on pharmacokinetic parameters including Cmax, Tmax, area under curve, relative bioavailability, and apparent terminal half-life. Our findings suggest that modulation of the pharmacokinetic profile of EGCg is possible using cocrystallization and that it offers certain opportunities that could be useful during its development as a therapeutic agent. PMID:23730870

  19. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster

    PubMed Central

    Wagner, Anika E.; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-01-01

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  20. Identification of (-)-epigallocatechin-3-gallate as a potential agent for blocking infection by grass carp reovirus.

    PubMed

    Wang, Hao; Liu, Weisha; Yu, Fei; Lu, Liqun

    2016-04-01

    Grass carp reovirus (GCRV), the representative strain of the species Aquareovirus C, serves as a model for studying the pathogenesis of aquareoviruses. Previously, epigallocatechin gallate (EGCG) was shown to inhibit orthoreovirus infection. The aim of this study was to test its potential in blocking infection by GCRV. We show that adhesion to the CIK (Ctenopharyngodon idellus kidney) cell surface by GCRV particles is inhibited in a dose-dependent manner by EGCG, as well as by a crude extract of green tea. We also evaluated the safety of EGCG and green tea extract using CIK cells, and the results suggest that EGCG is a promising compound that may be developed as a plant-derived small molecular therapeutic agent against grass carp hemorrhagic disease caused by GCRV infection. As the ligand for the 37/67-kDa laminin receptor (LamR), EGCG's blocking effect on GCRV attachment was associated with the binding potential of GCRV particles to LamR, which was inferred from a VOPBA assay. PMID:26758731

  1. Food Inhibits the Oral Bioavailability of the Major Green Tea Antioxidant Epigallocatechin Gallate in Humans

    PubMed Central

    Naumovski, Nenad; Blades, Barbara L.; Roach, Paul D.

    2015-01-01

    The bioavailability of the most abundant and most active green tea antioxidant, epigallocatechin gallate (EGCG) remains uncertain. Therefore, the systemic absorption of EGCG was tested in healthy fasted humans. It was administered as capsules with water or with a light breakfast, or when incorporated within a strawberry sorbet. The results for plasma EGCG clearly revealed that taking EGCG capsules without food was better; the AUC was 2.7 and 3.9 times higher than when EGCG capsules were taken with a light breakfast (p = 0.044) or with EGCG imbedded in the strawberry sorbet (p = 0.019), respectively. This pattern was also observed for Cmax and Cav. Therefore, ingesting food at the same time as EGCG, whether it was imbedded or not in food, substantially inhibited the absorption of the catechin. As with some types of medications that are affected by food, it appears that EGCG should be taken without food in order to maximise its systemic absorption. Therefore, based on these findings, ingesting EGCG with water on an empty stomach is the most appropriate method for the oral delivery of EGCG in clinical trials where EGCG is to be investigated as a potential bioactive nutraceutical in humans. PMID:26783711

  2. The Effect of (-)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism.

    PubMed

    Andrich, Kathrin; Bieschke, Jan

    2015-01-01

    Studies on the interaction of the green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) with fourteen disease-related amyloid polypeptides and prions Huntingtin, Amyloid-beta, alpha-Synuclein, islet amyloid polypeptide (IAPP), Sup35, NM25 and NM4, tau, MSP2, semen-derived enhancer of virus infection (SEVI), immunoglobulin light chains, beta-microglobulin, prion protein (PrP) and Insulin, have yielded a variety of experimental observations. Here, we analyze whether these observations could be explained by a common mechanism and give a broad overview of the published experimental data on the actions of EGCG. Firstly, we look at the influence of EGCG on aggregate toxicity, morphology, seeding competence, stability and conformational changes. Secondly, we screened publications elucidating the biochemical mechanism of EGCG intervention, notably the effect of EGCG on aggregation kinetics, oligomeric aggregation intermediates, and its binding mode to polypeptides. We hypothesize that the experimental results may be reconciled in a common mechanism, in which EGCG binds to cross-beta sheet aggregation intermediates. The relative position of these species in the energy profile of the amyloid cascade would determine the net effect of EGCG on aggregation and disaggregation of amyloid fibrils. PMID:26092630

  3. In vivo human skin penetration of (-)-epigallocatechin-3-gallate from topical formulations.

    PubMed

    Scalia, Santo; Trotta, Valentina; Bianchi, Anna

    2014-06-01

    The aim of the study was to examine the effect of topical vehicles on the in vivo human stratum corneum penetration of the antioxidant and skin photoprotective agent (-)-epigallocatechin-3-gallate (EGCG). Model oil-in-water (o/w) emulsion and gel formulations containing 1 % (m/m) EGCG were prepared and subjected to photodegradation studies in order to select excipients that minimize the light instability of EGCG. The optimized emulsion and gel were applied to human volunteers and the EGCG percutaneous permeation was evaluated in vivo by the tape- -stripping technique. No significant differences in the percentage of the applied EGCG dose diffused into the stratum corneum were observed between the o/w emulsion (36.1 ± 7.5 %) and gel (35.5 ± 8.1 %) preparations. However, the amount of EGCG permeated into the deeper region of human stratum corneum was significantly larger for the o/w emulsion compared to the gel. Therefore, the emulsion represents a suitable vehicle for topical delivery of EGCG. PMID:24914725

  4. The application of proteomics for studying the neurorescue activity of the polyphenol (-)-epigallocatechin-3-gallate.

    PubMed

    Weinreb, Orly; Amit, Tamar; Youdim, Moussa B H

    2008-08-15

    Accumulating evidence suggests that oxidative stress resulting in reactive oxygen species generation plays a pivotal role in neurodegenerative diseases, supporting the realization of the use of radical scavengers, metal chelator agents, such as the natural polyphenols for therapy. In this study, we have focused on specific identification of proteins involved in the neurorescue activity of the green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG) in a progressive model of neuronal death, induced by long-term serum deprivation of human neuroblastoma SH-SY5Y cells. The study was designed in attempt to define biomarkers for the mechanism of action of EGCG, associated with its iron chelating properties and its ability to regulate metabolic energy balance and affect cell morphology. By using mass spectrometry analysis combined with gene expression technique, we have succeeded to identify such genes and proteins (e.g. ATP synthase mitochondrial F1 complex beta, protein kinase C epsilon, nerve vascular growth factor inducible precursor and hypoxia inducible factor-1 alpha). These results strengthen the notion that the diverse molecular signaling pathways participating in the neurorescue activity of EGCG render this multifunctional compound as potential agent to reduce risk of various neurodegenerative diseases. PMID:18211800

  5. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage

    PubMed Central

    Chani, Baldeep; Puri, Veena; Chander Sobti, Ranbir; Puri, Sanjeev

    2016-01-01

    Epigallocatechin gallate (EGCG) is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs) have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 μM, 5 μM, 10 μM, 50 μM) in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity. PMID:27397998

  6. Vascular and Metabolic Actions of the Green Tea Polyphenol Epigallocatechin Gallate

    PubMed Central

    Keske, Michelle A.; Ng, Huei L.H.; Premilovac, Dino; Rattigan, Stephen; Kim, Jeong-a; Munir, Kashif; Yang, Peixin; Quon, Michael J.

    2016-01-01

    Epidemiological studies demonstrate robust correlations between green tea consumption and reduced risk of type 2 diabetes and its cardiovascular complications. However, underlying molecular, cellular, and physiological mechanisms remain incompletely understood. Health promoting actions of green tea are often attributed to epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea. Insulin resistance and endothelial dysfunction play key roles in the pathogenesis of type 2 diabetes and its cardiovascular complications. Metabolic insulin resistance results from impaired insulin-mediated glucose disposal in skeletal muscle and adipose tissue, and blunted insulin-mediated suppression of hepatic glucose output that is often associated with endothelial/vascular dysfunction. This endothelial dysfunction is itself caused, in part, by impaired insulin signaling in vascular endothelium resulting in reduced insulin-stimulated production of NO in arteries, and arterioles that regulate nutritive capillaries. In this review, we discuss the considerable body of literature supporting insulin-mimetic actions of EGCG that oppose endothelial dysfunction and ameliorate metabolic insulin resistance in skeletal muscle and liver. We conclude that EGCG is a promising therapeutic to combat cardiovascular complications associated with the metabolic diseases characterized by reciprocal relationships between insulin resistance and endothelial dysfunction that include obesity, metabolic syndrome and type 2 diabetes. There is a strong rationale for well-powered randomized placebo controlled intervention trials to be carried out in insulin resistant and diabetic populations. PMID:25312214

  7. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-{kappa}B

    SciTech Connect

    Lin, R.-W.; Chen, C.-H.; Wang, Y.-H.; Ho, M.-L.; Hung, S.-H.; Chen, I.-S. Wang, G.-J.

    2009-02-20

    People who regularly drink tea have been found to have a higher bone mineral density (BMD) and to be at less risk of hip fractures than those who do not drink it. Green tea catechins such as (-)-epigallocatechin gallate (EGCG) have been reported to increase osteogenic functioning in mesenchymal stem cells. However, its effect on osteoclastogenesis remains unclear. In this study, we investigated the effect of EGCG on RANKL-activation osteoclastogenesis and NF-{kappa}B in RAW 264.7, a murine preosteoclast cell line. EGCG (10-100 {mu}M) significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in murine RAW 264.7 cells and bone marrow macrophages (BMMs). EGCG appeared to target osteoclastic differentiation at an early stage but had no cytotoxic effect on osteoclast precursors. In addition, it significantly inhibited RANKL-induced NF-{kappa}B transcriptional activity and nuclear translocation. We conclude that EGCG inhibits osteoclastogenesis through its activation of NF-{kappa}B.

  8. Epigallocatechin Gallate: A Review of Its Beneficial Properties to Prevent Metabolic Syndrome

    PubMed Central

    Legeay, Samuel; Rodier, Marion; Fillon, Laetitia; Faure, Sébastien; Clere, Nicolas

    2015-01-01

    Obesity and being overweight are linked with a cluster of metabolic and vascular disorders that have been termed the metabolic syndrome. This syndrome promotes the incidence of cardiovascular diseases that are an important public health problem because they represent a major cause of death worldwide. Whereas there is not a universally-accepted set of diagnostic criteria, most expert groups agree that this syndrome is defined by an endothelial dysfunction, an impaired insulin sensitivity and hyperglycemia, dyslipidemia, abdominal obesity and hypertension. Epidemiological studies suggest that the beneficial cardiovascular health effects of diets rich in green tea are, in part, mediated by their flavonoid content, with particular benefits provided by members of this family such as epigallocatechin gallate (EGCG). Although their bioavailability is discussed, various studies suggest that EGCG modulates cellular and molecular mechanisms of various symptoms leading to metabolic syndrome. Therefore, according to in vitro and in vivo model data, this review attempts to increase our understanding about the beneficial properties of EGCG to prevent metabolic syndrome. PMID:26198245

  9. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice.

    PubMed

    Liu, Dongmei; Zhang, Xiaoli; Jiang, Li; Guo, Yun; Zheng, Changqing

    2014-05-01

    (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compound present in green tea and has been shown to possess anti-inflammatory and anti-oxidative properties. In this study, we investigated the protective effects of EGCG against concanavalin A (ConA)-induced liver injury and the underlying mechanisms. EGCG (5 mg/kg) was administered orally by gavage to mice twice daily for 10 days before an intravenous injection of ConA. We found that EGCG effectively rescued lethality, improved hepatic pathological damage, and decreased serum levels of alanine aminotransaminase (ALT) in ConA-challenged mice. Furthermore, EGCG also significantly prevented the release of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-4, and IL-6 in serum, reduced malondialdehyde (MDA) levels, and restored glutathione (GSH) content and superoxide dismutase (SOD) activity in liver tissues from ConA-challenged mice. Finally, nuclear factor (NF)-κB activation and expression levels of Toll-like receptor (TLR) 2, TLR4 and TLR9 protein in liver tissues were significantly inhibited by EGCG pretreatment. Taken together, our data suggest that EGCG possesses hepatoprotective properties against ConA-induced liver injury through its anti-inflammatory and anti-oxidant actions. PMID:24373695

  10. Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons.

    PubMed

    Kurogi, Mako; Kawai, Yasushi; Nagatomo, Katsuhiro; Tateyama, Michihiro; Kubo, Yoshihiro; Saitoh, Osamu

    2015-01-01

    The sensation of astringency is elicited by catechins and their polymers in wine and tea. It has been considered that catechins in green tea are unstable and auto-oxidized to induce more astringent taste. Here, we examined how mammalian transient receptor potential V1 (TRPV1) and TRPA1, which are nociceptive sensors, are activated by green tea catechins during the auto-oxidation process. Neither TRPV1 nor TRPA1 could be activated by any of the freshly prepared catechin. When one of the major catechin, epigallocatechin gallate (EGCG), was preincubated for 3h in Hank's balanced salt solution, it significantly activated both TRP channels expressed in HEK293 cells. Even after incubation, other catechins showed much less effects. Results suggest that only oxidative products of EGCG activate both TRPV1 and TRPA1. Dorsal root ganglion (DRG) sensory neurons were also activated by the incubated EGCG through TRPV1 and TRPA1 channels. Liquid chromatography-mass spectrometry revealed that theasinensins A and D are formed during incubation of EGCG. We found that purified theasinensin A activates both TRPV1 and TRPA1, and that it stimulates DRG neurons through TRPV1 and TRPA1 channels. Results suggested a possibility that TRPV1 and TRPA1 channels are involved in the sense of astringent taste of green tea. PMID:25422365

  11. Effects of Green Tea Compound Epigallocatechin-3-Gallate against Stenotrophomonas maltophilia Infection and Biofilm

    PubMed Central

    Vidigal, Pedrina G.; Müsken, Mathias; Becker, Katrin A.; Häussler, Susanne; Wingender, Jost; Steinmann, Eike; Kehrmann, Jan; Gulbins, Erich; Buer, Jan; Rath, Peter Michael; Steinmann, Jörg

    2014-01-01

    We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF. PMID:24690894

  12. Synergistic and Additive Effects of Epigallocatechin Gallate and Digitonin on Plasmodium Sporozoite Survival and Motility

    PubMed Central

    Hellmann, Janina K.; Münter, Sylvia; Wink, Michael; Frischknecht, Friedrich

    2010-01-01

    Background Most medicinal plants contain a mixture of bioactive compounds, including chemicals that interact with intracellular targets and others that can act as adjuvants to facilitate absorption of polar agents across cellular membranes. However, little is known about synergistic effects between such potential drug candidates and adjuvants. To probe for such effects, we tested the green tea compound epigallocatechin gallate (EGCG) and the membrane permeabilising digitonin on Plasmodium sporozoite motility and viability. Methodology/Principal Findings Green fluorescent P. berghei sporozoites were imaged using a recently developed visual screening methodology. Motility and viability parameters were automatically analyzed and IC50 values were calculated, and the synergism of drug and adjuvant was assessed by the fractional inhibitory concentration index. Validating our visual screening procedure, we showed that sporozoite motility and liver cell infection is inhibited by EGCG at nontoxic concentrations. Digitonin synergistically increases the cytotoxicity of EGCG on sporozoite survival, but shows an additive effect on sporozoite motility. Conclusions/Significance We proved the feasibility of performing highly reliable visual screens for compounds against Plasmodium sporozoites. We thereby could show an advantage of administering mixtures of plant metabolites on inhibition of cell motility and survival. Although the effective concentration of both drugs is too high for use in malaria prophylaxis, the demonstration of a synergistic effect between two plant compounds could lead to new avenues in drug discovery. PMID:20072627

  13. Epigallocatechin-3-Gallate Reduces Cytotoxic Effects Caused by Dental Monomers: A Hypothesis

    PubMed Central

    Jiao, Yang; Ma, Sai; Wang, Yirong; Li, Jing; Shan, Lequn; Chen, Jihua

    2015-01-01

    Resin monomers from dental composite materials leached due to incomplete polymerization or biodegradation may cause contact allergies and damage dental pulp. The cytotoxicity of dental resin monomers is due to a disturbance of intracellular redox equilibrium, characterized by an overproduction of reactive oxygen species (ROS) and depletion of reduced glutathione (GSH). Oxidative stress caused by dental resin monomers leads to the disturbance of vital cell functions and induction of cell apoptosis in affected cells. The nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway plays a key role in the cellular defense system against oxidative and electrophilic stress. Epigallocatechin-3-gallate (EGCG) can activate the Nrf2 pathway and induce expression of a multitude of antioxidants and phase II enzymes that can restore redox homeostasis. Therefore, here, we tested the hypothesis that EGCG-mediated protection against resin monomer cytotoxicity is mediated by activation of the Nrf2 pathway. This study will help to elucidate the mechanism of resin monomer cytotoxicity and provide information that will be helpful in improving the biocompatibility of dental resin materials. PMID:26489899

  14. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm.

    PubMed

    Vidigal, Pedrina G; Müsken, Mathias; Becker, Katrin A; Häussler, Susanne; Wingender, Jost; Steinmann, Eike; Kehrmann, Jan; Gulbins, Erich; Buer, Jan; Rath, Peter Michael; Steinmann, Jörg

    2014-01-01

    We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF. PMID:24690894

  15. Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut.

    PubMed

    Vesic, Jelena; Stambolic, Ivan; Apostolovic, Danijela; Milcic, Milos; Stanic-Vucinic, Dragana; Cirkovic Velickovic, Tanja

    2015-10-15

    2S albumins of peanuts are seed storage proteins, highly homologous in structure and described as major elicitors of anaphylactic reactions to peanut (allergens Ara h 2 and Ara h 6). Epigallocatechin-3-gallate (EGCG) is the most biologically potent polyphenol of green tea. Non-covalent interactions of EGCG with proteins contribute to its diverse biological activities. Here we used the methods of circular dichroism, fluorescence quenching titration, isothermal titration calorimetry and computational chemistry to elucidate interactions of EGCG and 2S albumins. Similarity in structure and overall fold of 2S albumins yielded similar putative binding sites and similar binding modes with EGCG. Binding affinity determined for Ara h 2 was in the range described for complexes of EGCG and other dietary proteins. Binding of EGCG to 2S albumins affects protein conformation, by causing an α-helix to β-structures transition in both proteins. 2S albumins of peanuts may be good carriers of physiologically active green tea catechin. PMID:25952873

  16. Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha.

    PubMed

    Xu, Jun; Gu, Weizhen; Li, Chaoyan; Li, Xiao; Xing, Guozhen; Li, Yan; Song, Yanhui; Zheng, Wenming

    2016-07-01

    Plants possess various natural antiviral properties. Epigallocatechin-3-gallate (EGCG), a major component of green tea, inhibits a variety of viruses. However, the clinical application of EGCG is currently hindered by a scarcity of information on its molecular mechanism of action. In the present study, we examined the anti-HBV (hepatitis B virus) effects of catechins from green tea at the transcriptional and antigen-expression levels, as well as the associated molecular mechanisms, because HBV-associated liver diseases have become a key public health issue due to their serious impact on human physical and mental health. By using fluorescence quenching and affinity binding, we demonstrated that EGCG is an important transcriptional regulator of the HBV genome, which it achieves by interacting with farnesoid X receptor alpha (FXRα). Luciferase assay showed that EGCG effectively inhibited the transcription of the HBV promoter dose-dependently when expression plasmids of FXRα and retinoid X receptor α (RXRα) were co-transfected into HEK293 cells. These results indicate that the downregulation of the HBV antigen and the decrease in the transcriptional activation of the HBV EnhII/core promoter by FXRα/RXRα are mainly due to the interaction between EGCG and FXRα. Therefore, EGCG, an antagonist of FXRα in liver cells, has the potential to be employed as an effective anti-HBV agent. PMID:26968537

  17. (-)-Epigallocatechin Gallate Inhibits Asymmetric Dimethylarginine-Induced Injury in Human Brain Microvascular Endothelial Cells.

    PubMed

    Li, Jia; Zhang, Zhiming; Lv, Lianjie; Qiao, Haibo; Chen, Xiuju; Zou, Changlin

    2016-08-01

    (-)-Epigallocatechin gallate (EGCG) is the main polyphenol component of green tea (leaves of the Camellia sinensis plant). EGCG has been reported to protect human brain microvascular endothelial cells (HBMECs) against injury in several models. However, the exact mechanism is still unclear. In the current study we found that EGCG protected against asymmetric dimethylarginine (ADMA)-induced HBMEC injury, and inhibited ADMA-induced reactive oxygen species production and malondialdehyde expression. At the same time, we found that pretreatment with EGCG attenuated the upregulation of Bax and the downregulation of Bcl-2, thus confirming the cellular protective properties of EGCG against ADMA-induced apoptosis. Furthermore, we found that EGCG inhibited ADMA-induced phosphorylation of ERK1/2 and p-38, whose inhibitors relieved HBMEC injury. In conclusion, EGCG can protect against ADMA-induced HBMEC injury via the ERK1/2 and p38 MAPK pathways, which are involved in the underlying mechanisms of HBMEC injury in cerebral infarction. PMID:27038929

  18. Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension.

    PubMed

    Yi, Qiu-Yue; Qi, Jie; Yu, Xiao-Jing; Li, Hong-Bao; Zhang, Yan; Su, Qing; Shi, Tao; Zhang, Dong-Mei; Guo, Jing; Feng, Zhi-Peng; Wang, Mo-Lin; Zhu, Guo-Qing; Liu, Jin-Jun; Shi, Xiao-Lian; Kang, Yu-Ming

    2016-07-01

    Oxidative stress plays an important role in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG) is the main polyphenol present in green tea and is known for its potent antioxidant and anti-inflammatory properties. In the present study, we hypothesize that EGCG attenuates oxidative stress in the paraventricular nucleus of hypothalamus (PVN), thereby decreasing the blood pressure and sympathetic activity in renovascular hypertensive rats. After renovascular hypertension was induced in male Sprague-Dawley rats by the two-kidney one-clip (2K-1C) method, the rats received bilateral PVN infusion of EGCG (20 μg/h) or vehicle via osmotic minipump for 4 weeks. Our results were shown as follows: (1) Hypertension induced by 2K-1C was associated with the production of reactive oxygen species in the PVN; (2) chronic infusion of EGCG in the PVN decreased stress-related NAD(P)H oxidase subunit gp91(phox) and NOX-4 and increased the activity of antioxidant enzymes (SOD-1), also balanced the content of cytokines (IL-1β, IL-6, IL-10 and MCP-1) in the PVN, and attenuated the level of norepinephrine in plasma of 2K-1C rats. Our findings provide strong evidence that PVN infusion of EGCG inhibited renovascular hypertension progression through its potent anti-oxidative and anti-inflammatory activity in the PVN. PMID:26162770

  19. (-)-Epigallocatechin-3-gallate (EGCG) attenuates arsenic-induced cardiotoxicity in rats.

    PubMed

    Sun, Tao-Li; Liu, Zhi; Qi, Zheng-Jun; Huang, Yong-Pan; Gao, Xiao-Qin; Zhang, Yan-Yan

    2016-07-01

    Chronic arsenic exposure in drinking water is associated with the abnormalities of cardiac tissue. Excessive generation of ROS induced by arsenic has a central role in arsenic-induced cardiotoxicity. (-)-Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, possesses a potent antioxidant capacity and exhibits extensive pharmacological activities. This study was aim to evaluate the effect of EGCG on arsenic-induced cardiotoxicity in vivo and in vitro. Treatment with NaAsO2 seriously affected the morphology and ultrastructure of myocardium, and induced cardiac injuries, oxidative stress, intracellular calcium accumulation and apoptosis in rats. In consistent with in vivo study, the injuries, oxidative stress and apoptosis were also observed in NaAsO2-treated H9c2 cells. All of these effects induced by NaAsO2 were attenuated by EGCG. These results suggest EGCG could attenuate NaAsO2-induced cardiotoxicity, and the mechanism may involve its potent antioxidant capacity. PMID:27170490

  20. Laser- and gamma-ray induced crystallization of IR-transmitting calcium gallate glass

    NASA Astrophysics Data System (ADS)

    Nishida, T.; Kubuki, S.; Takashima, Y.; Mikami, M.; Yagi, T.

    1994-12-01

    Ar+-laser ( λ=488 nm) irradiation of calcium gallate (CG) glass with the composition of 60CaO·39Ga2O3·Fe2O3 resulted in a distinct decrease in the IR transmittance ( T) due to the formation of crystalline CaGa2O4 and CaGa4O9 phases. The Mössbauer spectrum of non-irradiated glass comprised a broad doublet due to distorted Fe3+(Td) with δ, Δ, and Γ of 0.20, 1.33, and 1.00 mm s-1, respectively. An additional doublet due to Fe3+(Td) was observed in the Ar+-irradiated glass and δ, Δ, and Γ were 0.17, 1.32, and 0.75 mm s-1, respectively. A decrease in T was also observed after the60Co γ-ray irradiation with doses ≥105Gy, and the precipitation of CaO, Ga2O3, and CaGa4O7 phases was confirmed by X-ray diffraction.

  1. Epigallocatechin-gallate modulates chemotherapy-induced apoptosis in human cholangiocarcinoma cells

    PubMed Central

    Lang, Molly; Henson, Roger; Braconi, Chiara; Patel, Tushar

    2014-01-01

    Green tea polyphenols are chemopreventive in several cancer models but their use as adjunctive therapeutic agents for cancer is unknown. Cholangiocarcinomas respond poorly to chemotherapeutic agents, and our aims were to assess the utility of green tea polyphenols as adjuncts to chemotherapy for cholangiocarcinoma. We assessed the effect of purified green tea catechins on chemotherapy-induced apoptosis in KMCH, CC-LP-1 and Mz-ChA-1 human cholangiocarcinoma cells. Epigallocatechin-gallate (EGCG), but not the structurally related catechin epigallocatechin, sensitized cells to apoptosis induced by gemcitabine, mitomycin C, or 5-fluorouracil in vitro. Mitochondrial membrane depolarization, cytosolic cytochrome C expression and apoptosis were increased in cells incubated with EGCG and gemcitabine compared to either agent alone. Furthermore, EGCG decreased in vivo growth and increased the sensitivity to gemcitabine of Mz-ChA-1 cells xenografts in nude mice. In conclusion, the green tea polyphenol EGCG sensitizes human cholangiocarcinoma cells to chemotherapy-induced apoptosis and warrants evaluation as an adjunct to chemotherapy for the treatment of human cholangiocarcinoma. PMID:19226332

  2. Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro

    PubMed Central

    HUANG, HAOJIA; LIU, QIN; LIU, LEI; WU, HUAYU; ZHENG, LI

    2015-01-01

    In autologous chondrocyte implantation (ACI) to restore defective cartilage, limited cell numbers and dedifferentiation of chondrocytes are the major difficulties. An alternative is the use of growth factors, but their high cost and potential for tumorigenesis are major obstacles. To ensure successful ACI therapy, it is important to find an effective substitute pro-chondrogenic agent. Epigallocatechin-3-gallate (EGCG), one of the green tea catechins, has been widely investigated in studies of interleukin-1β-induced chondrocytes. In the present study, the effects of EGCG on rabbit articular chondrocytes were investigated through the examination of cell proliferation, morphology, glycosaminoglycan synthesis and cartilage-specific gene expression. The results showed that EGCG could effectively promote chondrocyte growth and enhance the secretion and synthesis of the cartilage extracellular matrix by upregulating expression levels of aggrecan, collagen II and Sox9 genes. Expression of the collagen I gene was downregulated, which showed that EGCG effectively inhibited the dedifferentiation of chondrocytes. Hypertrophy, which may lead to chondrocyte ossification, was also undetectable in the EGCG groups. In conclusion, the recommended dose of EGCG was found to be in the range of 5 to 20 μM, with the most marked response observed with 10 μM. The present study may provide a basis for the development of a novel agent as a substitute for growth factors in the treatment of articular cartilage defects. PMID:25452805

  3. Epigallocatechin-3-Gallate Attenuates Unilateral Ureteral Obstruction-Induced Renal Interstitial Fibrosis in Mice

    PubMed Central

    Wang, Bowen; Du, Feng; Su, Xuesong; Sun, Guangping; Zhou, Guangyu; Bian, Xiaohui; Liu, Na

    2015-01-01

    The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition. PMID:25549657

  4. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    SciTech Connect

    Raza, Haider . E-mail: h.raza@uaeu.ac.ae; John, Annie

    2005-09-15

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo.

  5. Effect of (−)-Epigallocatechin-3-Gallate on Glucose-Induced Human Serum Albumin Glycation

    PubMed Central

    Li, Min; Hagerman, Ann E.

    2016-01-01

    (−)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10 to 100 mM during a 21-day incubation at 37 °C and pH 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation. PMID:25794449

  6. Kinetics of the reduction of pyridinium ions by 2-hydroxy-2-propyl radicals in aqueous solution

    SciTech Connect

    Shimura, M.; Espenson, J.H.

    1983-01-19

    Kinetic measurements were made for the reductions of the pyridinium ions derived from pyridine, 4-methylpyridine, 3-hydroxypyridine, nicotinamide, and isonicotinamide as well as 1-methylpyridinium and 1,4-dimethylpyridinium ions by 2-hydroxy-2-propyl radicals, which were generated by the homolytic cleavage of the chromium-carbon bond in (H/sub 2/O)/sub 5/CrC(CH/sub 3/)/sub 2/OH/sup 2 +/. The rate constants (dm/sup 3/ mol/sup -1/ s/sup -1/) at 25.0/sup 0/C and an ionic strength of 1.0M (LiClO/sub 4/) are as follows: pyridinium ion, 9.6 x 10/sup 5/; 1-methylpyridinium ion, 3.7 x 10/sup 5/; 4-methylpyridinium ion, 7.3 x 10/sup 4/; 1,4-dimethylpyridinium ion, less than or equal to1 x 10/sup 4/; 3-hydroxypyridinium ion, 1.4 x 10/sup 8/; 3-(aminocarbonyl)pyridinium ion, 7.9 x 10/sup 8/; 4-(aminocarbonyl)pyridinium ion, 1.2 x 10/sup 9/. The rate constants are reasonably well correlated by the Hammett p-sigma equation with p = +8.5. The first two compounds show a second kinetic term corresponding to the rate law k'(Cr/sup 2 +/)(pyH/sup +/)(.C-(CH/sub 3/)/sub 2/OH)(H/sup +/)/sup -1/, consistent with reduction of a Cr(II)-pyridine complex by the free radical.

  7. Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films.

    PubMed

    Dogan, N; McHugh, T H

    2007-01-01

    Edible films and coatings in foods can be used to increase shelf-life and improve organoleptic characteristics of foods by avoiding deterioration of food components and therefore promoting preservation of the final product. This study is the first to investigate the use of different size fillers for the purpose of preparing edible composite films with fillers < 1.0 microm in size. For this purpose, water vapor permeability and mechanical properties of HPMC (hydroxy propyl methyl cellulose) based films with the inclusion of different size MCC (microcrystalline cellulose) fillers were studied. The water vapor permeability of the control HPMC film was 1.2 +/- 0.2 g-mm/kPa-h-m2 and did not show a significant change with the addition of fillers. A comparison of mechanical properties of the films with a tensile test showed that tensile strength of the control film, which was prepared using a 3 wt% HPMC solution, increased from 29.7 +/- 1.6 MPa to 70.1 +/- 7.9 MPa with the addition of 500-nm size particles, while it increased only to 37.4 +/- 5.5 MPa with the addition of 3-microm size particles. Also important is that the elongation percentage of the control film did not decrease significantly with the addition of submicron size fillers to the HPMC films. This study showed that the increased surface area per weight of smaller size MCC fillers compared to their larger size counterparts was highly beneficial in terms of film mechanical property improvement. PMID:17995880

  8. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    SciTech Connect

    Gundlach, A.L.; Largent, B.L.; Snyder, S.H.

    1986-06-01

    (+)3H-3-PPP ((+)3H-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine) binds with high affinity to brain membranes with a pharmacological profile consistent with that of sigma receptors. The distribution of (+)3H-3-PPP binding sites in brain and spinal cord of both guinea pig and rat has been determined by in vitro autoradiography with binding densities quantitated by computer-assisted densitometry. (+)3H-3-PPP binding to slide-mounted brain sections is saturable and displays high affinity and a pharmacological specificity very similar to sites labeled in homogenates. (+)3H-3-PPP binding sites are heterogeneously distributed. Highest concentrations of binding sites occur in spinal cord, particularly the ventral horn and dorsal root ganglia; the pons-medulla, associated with the cranial nerve and pontine nuclei and throughout the brain stem reticular formation; the cerebellum, over the Purkinje cell layer; the midbrain, particularly the central gray and red nucleus; and hippocampus, over the pyramidal cell layer. Lowest levels are seen in the basal ganglia and parts of the thalamus, while all other areas, including hypothalamus and cerebral cortex, exhibit moderate grain densities. Quinolinic acid-induced lesions of the hippocampus indicate that (+)3H-3-PPP labels hippocampal pyramidal cells and granule cells in the dentate gyrus. Intrastriatal injection of ibotenic acid dramatically reduces (+)3H-3-PPP binding in this area, while injection of 6-hydroxydopamine produces a relatively slight decrease. The distribution of (+)3H-3-PPP binding sites does not correlate with the receptor distribution of any recognized neurotransmitter or neuropeptide, including dopamine. However, there is a notable similarity between the distribution of (+)3H-3-PPP sites and high-affinity binding sites for psychotomimetic opioids, such as the benzomorphan (+)SKF 10,047.

  9. Detailed modeling of low-temperature propane oxidation: 1. The role of the propyl + O(2) reaction.

    PubMed

    Huynh, Lam K; Carstensen, Hans-Heinrich; Dean, Anthony M

    2010-06-24

    Accurate description of reactions between propyl radicals and molecular oxygen is an essential prerequisite for modeling of low-temperature propane oxidation because their multiple reaction pathways either accelerate the oxidation process via chain branching or inhibit it by forming relatively stable products. The CBS-QB3 level of theory was used to construct potential energy surfaces for n-C(3)H(7) + O(2) and i-C(3)H(7) + O(2). High-pressure rate constants were calculated using transition state theory with corrections for tunneling and hindered rotations. These results were used to derive pressure- and temperature-dependent rate constants for the various channels of these reactions under the framework of the Quantum Rice-Ramsperger-Kassel (QRRK) and the modified strong collision (MSC) theories. This procedure resulted in a thermodynamically consistent C(3)H(7) + O(2) submechanism, which was either used directly or as part of a larger extended detailed kinetic mechanism to predict the loss of propyl and the product yields of propylene and HO(2) over a wide range of temperatures, pressures, and residence times. The overall good agreement between predicted and experimental data suggests that this reaction subset is reliable and should be able to properly account for the reactions of propyl radicals with O(2) in propane oxidation. It is also demonstrated that for most conditions of practical interest only a small subset of reactions (e.g., isomerization, concerted elimination of HO(2), and stabilization) controls the oxidation kinetics, which makes it possible to considerably simplify the mechanism. Moreover, we observed strong similarities in the rate coefficients within each reaction class, suggesting the potential for development of relatively simple rate constant estimation rules that could be applied to analogous reactions involving hydrocarbon radicals that are too large to allow accurate detailed electronic structure calculations. PMID:20509639

  10. Simultaneous detection of green tea catechins and gallic acid in human serum after ingestion of green tea tablets using ion-pair high-performance liquid chromatography with electrochemical detection.

    PubMed

    Narumi, Keiko; Sonoda, Jun-Ichiro; Shiotani, Keita; Shigeru, Michihiro; Shibata, Masayuki; Kawachi, Akio; Tomishige, Erisa; Sato, Keizo; Motoya, Toshiro

    2014-01-15

    We developed an analytical method for the simultaneous determination of tea catechins and gallic acid (GA) in human serum using ion-pair high-performance liquid chromatography (HPLC) with electrochemical detection. GA was measured to estimate the amount of gallate moiety produced by degradation of gallated catechins ((-)-epicatechin-3-gallate, ECG; (-)-epigallocatechin-3-gallate, EGCG). Ethyl gallate was adopted as an internal standard to correct for the extraction efficiency. To maximize extraction efficiency, a hydrophobic polytetrafluoroethylene (PTFE) filter was selected for pre-treatment prior to separation. HPLC separation was performed using a C18 reversed-phase column with a gradient mobile phase of phosphate buffer (pH 2.5) containing tetrahexylammonium hydrogensulfate as an ion-pair reagent. Using this method, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), ECG, EGCG, ethyl gallate, and GA were detected as single peaks. The resolution values for target analytes were 4.0-13.0 and the mean values of the absolute recoveries of catechins and GA were 77.3-93.9%. The detection limits for catechins and GA in serum were 0.4-3.1ng/mL. The serum catechin levels of eight healthy volunteers after ingestion of a single dose of green tea tablets were measured using this method. The concentration of total catechins (free+conjugated forms) in serum peaked 60min after ingestion. From these results, this method is thought to enable the simultaneous quantification of GA, the hydrolysis product of gallated catechins, and target catechins, and to be sufficiently sensitive for pharmacokinetic studies of catechins following oral administration of green tea. PMID:24342507

  11. Plant-mediated stereoselective biotransformation of phenylglyoxylic acid esters.

    PubMed

    Maczka, Wanda Krystyna; Grabarczyk, Małgorzata; Wińska, Katarzyna; Anioł, Mirosław

    2014-01-01

    Enantioselective reduction of the carbonyl group of three phenylglyoxylic acid esters (methyl, ethyl, and n-propyl esters, 2-4) was conducted using blended plant materials (roots of carrot, beetroot, celeriac and parsley; apple). All used biocatalysts transformed these esters to the corresponding mandelic acid esters with high yield, preferably into the respective R-enantiomer. Butanedione addition improved the enantioselectivity of the reaction. PMID:25265851

  12. Combination Therapy with Epigallocatechin-3-Gallate and Doxorubicin in Human Prostate Tumor Modeling Studies

    PubMed Central

    Stearns, Mark E.; Amatangelo, Michael D.; Varma, Devika; Sell, Chris; Goodyear, Shaun M.

    2010-01-01

    The polyphenol epigallocatechin-3-gallate (EGCG) in combination with doxorubicin (Dox) exhibits a synergistic activity in blocking the growth and colony-forming ability of human prostate cell lines in vitro. EGCG has been found to disrupt the mitochondrial membrane potential, induce vesiculation of mitochondria, and induce elevated poly (ADP-ribose) polymerase (PARP) cleavage and apoptosis. EGCG in combination with low levels of Dox had a synergistic effect in blocking tumor cell growth. In vivo tumor modeling studies with a highly metastatic tumor line, PC-3ML cells, revealed that EGCG (228 mg/kg or 200 μmol/L) appeared to sensitize tumors to Dox. EGCG combined with low levels of Dox (0.14 mg/kg or 2 μmol/L) blocked tumor growth by PC-3ML cells injected intraperitoneally (ie, in CB17 severe combined immunodeficiencies) and significantly increased mouse survival rates. Similarly, relatively low levels of EGCG (57 mg/kg or 50 μmol/L) plus Dox (0.07 mg/kg or 1 μmol/L) eradicated established tumors (ie, in nonobese diabetic–severe combined immunodeficiencies) that were derived from CD44hi tumor-initiating cells isolated from PCa-20a cells. Flow cytometry results showed that EGCG appeared to enhance retention of Dox by tumor cells to synergistically inhibit tumor growth and eradicate tumors. These data suggest that localized delivery of high dosages of EGCG combined with low levels of Dox may have significant clinical application in the treatment of metastatic prostate and/or eradication of primary tumors derived from tumor-initiating cells. PMID:20971741

  13. Molecular mechanisms underlying attenuation of cisplatin-induced acute kidney injury by epicatechin gallate.

    PubMed

    Malik, Salma; Suchal, Kapil; Bhatia, Jagriti; Gamad, Nanda; Dinda, Amit Kumar; Gupta, Yogendra Kumar; Arya, Dharamvir Singh

    2016-08-01

    Cisplatin, a platinum compound, is used as a first-line agent against various forms of solid cancers. Nephrotoxicity is an important adverse effect of cisplatin therapy, which involves increased oxidative stress, inflammation, apoptosis, and activation of the mitogen-activated protein kinase (MAPK) pathway. It is well known that the bioactive compounds present in green tea are used to treat various disorders due to their biological activities. With this background, the present study was aimed to investigate the effect of epicatechin gallate (ECG), a green tea polyphenol, in cisplatin-induced nephrotoxicity in rats. To achieve this, ECG (1.25, 2.5, and 5 mg/kg; intraperitoneal (i.p.)) was administered to male albino Wistar rats for the period of 10 days. On the 7th day, a single i.p. injection of cisplatin (8 mg/kg) was injected into rats to produce kidney injury and the animals were then killed on the 10th day. Cisplatin toxicity was associated with enhanced oxidative stress, impaired renal function along with marked tubular necrosis in Histopathology. Furthermore, cisplatin activated the MAPK pathway, which contributed to inflammation and apoptosis in the kidney of treated rats. In contrast, ECG (5 mg/kg) pretreatment normalized cisplatin-induced oxidative stress, renal function, and histopathological changes. ECG also prevented the activation of the MAPK pathway, and attenuated inflammation and apoptosis in rats. These findings suggest that ECG prevented cisplatin-induced oxidative stress, inflammation, and apoptosis by downregulating the MAPK pathway and resulted in improved renal function. PMID:27239733

  14. Photodegradation of (-)-epigallocatechin-3-gallate in topical cream formulations and its photostabilization.

    PubMed

    Bianchi, Anna; Marchetti, Nicola; Scalia, Santo

    2011-12-01

    The aim of the study was to examine the photostability of the major catechin of green tea, (-)-epigallocatechin-3-gallate (EGCG), which possesses important antioxidant and skin photoprotective properties. In order to simulate realistic conditions of use of topical preparations, the photolysis studies were performed in model creams (oil-in-water emulsions) containing 1% (w/w) EGCG and exposed to a solar simulator at an irradiance corresponding to natural sunlight. The extent of photodegradation was measured by HPLC-UV and HPLC-ESI-MS. EGCG was found to decompose by 68.9±2.3%, after 1h irradiation. Addition of the coantioxidants, vitamin E or butylated hydroxytoluene to the emulsion formulation, significantly enhanced the photolability of the catechin, the EGCG loss reached 85.7±1.3% and 80.5±1.4%, respectively. On the other hand, inclusion of the UVB (290-320nm) filter, ethylhexyl methoxycinnamate in the cream produced a small but significant reduction of EGCG photodegradation to 61.0±2.9%, while the UVA (320-400nm) filter, butyl methoxydibenzoylmethane was ineffective (EGCG degradation, 67.8±1.5%). A more marked decrease in the light-induced decomposition of EGCG to 51.6±2.7% was achieved, under the same conditions, using the water-soluble UVB filter, benzophenone-4 (BP-4). This effect was concentration dependent, maximal EGCG photostabilization (catechin loss, 29.4±2.2%) was attained in the presence of 2.1% (w/w) BP-4. Therefore, BP-4 represents a useful additive to improve the light stability of EGCG in topical formulations for skin photoprotection. PMID:21807473

  15. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation.

    PubMed

    Fangueiro, Joana F; Andreani, Tatiana; Fernandes, Lisete; Garcia, Maria L; Egea, Maria A; Silva, Amélia M; Souto, Eliana B

    2014-11-01

    The encapsulation of epigallocatechin gallate (EGCG) in lipid nanoparticles (LNs) could be a suitable approach to avoid drug oxidation and epimerization, which are common processes that lead to low bioavailability of the drug limiting its therapeutic efficacy. The human health benefits of EGCG gained much interest in the pharmaceutical field, and so far there are no studies reporting its encapsulation in LNs. The purpose of this study has been the development of an innovative system for the ocular delivery of EGCG using LNs as carrier for the future treatment of several diseases, such as dry eye, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy and macular oedema. LNs dispersions have been produced by multiple emulsion technique and previously optimized by a factorial design. In order to increase ocular retention time and mucoadhesion by electrostatic attraction, two distinct cationic lipids were used, namely, cetyltrimethylammonium bromide (CTAB) and dimethyldioctadecylammonium bromide (DDAB). EGCG has been successfully loaded in the LNs dispersions and the nanoparticles analysis over 30 days of storage time predicted a good physicochemical stability. The particles were found to be in the nanometer range (<300 nm) and all the evaluated parameters, namely pH, osmolarity and viscosity, were compatible to the ocular administration. The evaluation of the cationic lipid used was compared regarding physical and chemical parameters, lipid crystallization and polymorphism, and stability of dispersion during storage. The results show that different lipids lead to different characteristics mainly associated with the acyl chain composition, i.e. double lipid shows to have influence in the crystallization and stability. Despite the recorded differences between DTAB and DDAB, both cationic LNs seem to fit the parameters for ocular drug delivery. PMID:25303852

  16. (−)-Epigallocatechin Gallate, A Major Constituent of Green Tea, Poisons Human Type II Topoisomerases†

    PubMed Central

    Bandele, Omari J.; Osheroff, Neil

    2010-01-01

    (−)-Epigallocatechin gallate (EGCG) is the most abundant and biologically active polyphenol in green tea, and many of the therapeutic benefits of the beverage have been attributed to this compound. High concentrations of EGCG are cytotoxic and trigger genotoxic events in mammalian cells. Although this catechin affects a number of cellular systems, the genotoxic effects of several bioflavonoid-based dietary polyphenols are believed to be mediated, at least in part, by their actions on topoisomerase II. Therefore, the effects of green tea extract and EGCG on DNA cleavage mediated by human topoisomerase IIα and β were characterized. The extract and EGCG increased levels of DNA strand breaks generated by both enzyme isoforms. However, EGCG acted by a mechanism that was distinctly different from those of genistein, a dietary polyphenol, and etoposide, a widely prescribed anticancer drug. In contrast to these agents, EGCG exhibited all of the characteristics of a redox-dependent topoisomerase II poison that acts by covalently adducting to the enzyme. First, EGCG stimulated DNA scission mediated by both isoforms primarily at sites that were cleaved in the absence of compounds. Second, exposure of EGCG to the reducing agent dithiothreitol (DTT) prior to its addition to DNA cleavage assays abrogated the effects of the catechin on DNA scission. Third, once EGCG stimulated topoisomerase II-mediated DNA cleavage, exposure to DTT did not effect levels of DNA strand breaks. Finally, EGCG inhibited the DNA cleavage activities of topoisomerase IIα and β when incubated with either enzyme prior to the addition of DNA. Taken together, these results provide strong evidence that EGCG is a redox-dependent topoisomerase II poison, and utilizes a mechanism similar to that of 1,4-benzoquinone. PMID:18293940

  17. Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation.

    PubMed

    Cai, Jing; Jing, Da; Shi, Ming; Liu, Yang; Lin, Tian; Xie, Zhen; Zhu, Yi; Zhao, Haibo; Shi, Xiaodan; Du, Fang; Zhao, Gang

    2014-07-01

    Infrasound, a kind of common environmental noise and a major contributor of vibroacoustic disease, can induce the central nervous system (CNS) damage. However, no relevant anti-infrasound drugs have been reported yet. Our recent studies have shown that infrasound resulted in excessive microglial activation rapidly and sequential inflammation, revealing a potential role of microglia in infrasound-induced CNS damage. Epigallocatechin gallate (EGCG), a major bioactive component in green tea, has the capacity of protecting against various neurodegenerative diseases via an anti-inflammatory mechanism. However, it is still unknown to date whether EGCG acts on infrasound-induced microglial activation and neuronal damage. We showed that, after 1-, 2- or 5-day exposure of rats to 16 Hz, 130 dB infrasound (2 h/day), EGCG significantly inhibited infrasound-induced microglial activation in rat hippocampal region, evidenced by reduced expressions of Iba-1 (a marker for microglia) and proinflammatory cytokines (IL-1β, IL-6, IL-18 and TNF-α). Moreover, infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by EGCG. EGCG also inhibited infrasound-induced activation of primary microglia in vitro and decreased the levels of proinflammatory cytokines in the supernatants of microglial culture, which were toxic to cultured neurons. Furthermore, EGCG attenuated infrasound-induced increases in nuclear NF-κB p65 and phosphorylated IκBα, and ameliorated infrasound-induced decrease in IκB in microglia. Therefore, our study provides the first evidence that EGCG acts against infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation through a potential NF-κB pathway-related mechanism, suggesting that EGCG can be used as a promising drug for the treatment of infrasound-induced CNS damage. PMID:24746834

  18. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes.

    PubMed

    Huang, Hsiu-Chen; Tao, Mi-Hua; Hung, Tzu-Min; Chen, Jui-Chieh; Lin, Zi-Jun; Huang, Cheng

    2014-11-01

    Hepatitis B virus (HBV) is a major cause of liver disease and hepatocellular carcinoma. Chronic HBV infection is currently managed with either nucleoside/nucleotide-based or interferon-based therapies, but fails to clear infection in a substantial proportion of cases, and antiviral strategies targeting the early stages of infection are therefore required for the prevention of HBV infection. In this study, we examined some common phytochemicals and identified epigallocatechin-3-gallate (EGCG) as a new inhibitor of HBV entry. EGCG, a flavonoid present in green tea extract, belongs to the subclass of catechins. We demonstrated that EGCG at a concentration of 50μM inhibited HBV entry into immortalized human primary hepatocytes by more than 80%, whereas the other four catechins tested had much weaker inhibitory effects. DMSO-differentiated HuS-E/2 cells expressed sodium taurocholate cotransporting polypeptide (NTCP), which is a receptor for HBV. Application of EGCG during HBV inoculation markedly inhibited infection in both DMSO-differentiated HuS-E/2 cells and HA-NTCP-expressing Huh7 cells. Interestingly, EGCG induced clathrin-dependent endocytosis of NTCP from the plasma membrane followed by protein degradation. In addition, EGCG inhibited the clathrin-mediated endocytosis of transferrin. Treatment of cells with EGCG had no effect on HBV genome replication or virion secretion. Moreover, the characteristic of HBV virion and the expression of known HBV entry factors were unaltered by EGCG. Finally, the antiviral activity of EGCG on HBV entry was observed using four different genotypes, A to D. These results show that the green tea-derived molecule EGCG potently inhibits HBV entry and could be used in prevention of HBV reinfection. PMID:25260897

  19. Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia.

    PubMed

    Wang, Hang; Lai, Ying-Jiun; Chan, Yi-Lin; Li, Tsung-Lin; Wu, Chang-Jer

    2011-06-01

    Cachexia, also known as wasting syndrome notably with skeletal muscle atrophy, costs nearly one-third of all cancer deaths in man. (-)-Epigallocatechin-3-gallate (EGCG), the principal polyphenolic component in green tea, is a potent preventive against cachexia as well as cancers. However, how EGCG counteracts cachexia-provoked muscle wasting is unclear. EGCG was demonstrated to be able to retard tumor progression as well as to prevent body weight from loss, because EGCG attenuates skeletal muscle leukocytic infiltration and down-regulates tumor-induced NF-κB and E3-ligases in muscle. In mice, the dosages optimized against cachexia were determined to be 0.2 mg/mouse/day for prevention and to be 0.6 mg/mouse/day for treatment. Anti-cachexia effects were assessed using the LLC tumor model. Mice with the same body weight were divided into groups, including control, tumor bearing, and tumor-bearing but receiving water or EGCG in both prevention and treatment experiments. RT-PCR was used to assess mRNA expressions of NF-κB, MuRF 1, and MAFbx. The intracellular NF-κB, MuRF 1 and MAFbx were determined and quantified by immunofluorescence and Western blotting, respectively. Our results conclude EGCG regulates the expressions of NF-κB as well as downstream mediators, MuRF 1 and MAFbx, so EGCG may be an appropriate agent to be included in ensemble therapeutics of the tumor-induced muscle atrophy. PMID:21397390

  20. (-)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury.

    PubMed

    Renno, Waleed M; Al-Maghrebi, May; Alshammari, Ahmad; George, Preethi

    2013-02-01

    Recently, we have shown that green tea (GT) consumption improves both reflexes and sensation in unilateral chronic constriction injury to the sciatic nerve. Considering the substantial neuroprotective properties of GT polyphenols, we sought to investigate whether (-)-epigallocatechin-3-gallate (EGCG) could protect the sciatic nerve and improve functional impairments induced by a crushing injury. We also examined whether neuronal cell apoptosis induced by the crushing injury is affected by EGCG treatment. Histological examination of sciatic nerves from EGCG-treated (50mg/kg; i.p.) showed that axonotmized rats had a remarkable axonal and myelin regeneration with significant decrease in the number of myelinated axonal fibers compared to vehicle-treated crush group. Similarly, ultrastructural evaluation of EGCG-treated nerves displayed normal unmyelinated and myelinated axons with regular myelin sheath thickness and normalized appearance of Schmidt-Lantermann clefts. Extracellular matrix displayed normal collagen fibers appearance with distinctively organized distribution similar to sham animals. Analysis of foot position and extensor postural thrust test showed a progressive and faster recovery in the EGCG-treated group compared to vehicle-treated animals. EGCG-treated rats showed significant increase in paw withdrawal thresholds to mechanical stimulation compared to vehicle-treated crush group. EGCG treatment also restored the mRNA expression of Bax, Bcl-2 and survivin but not that of p53 to sham levels on days 3 and 7 post-injury. Our results demonstrate that EGCG treatment enhanced functional recovery, advanced morphological nerve rescue and accelerated nerve regeneration following crush injury partly due to the down regulation of apoptosis related genes. PMID:23313191

  1. (-)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells.

    PubMed

    Ogawa, Kengo; Hara, Takeshi; Shimizu, Masahito; Nagano, Junji; Ohno, Tomohiko; Hoshi, Masato; Ito, Hiroyasu; Tsurumi, Hisashi; Saito, Kuniaki; Seishima, Mitsuru; Moriwaki, Hisataka

    2012-09-01

    Immune escape, the ability of tumor cells to avoid tumor-specific immune responses, occurs during the development and progression of several types of human malignancies, including colorectal cancer (CRC). Indoleamine 2,3-dioxygenase (IDO), the tryptophan catabolic enzyme, plays a significant role in regulating the immune response and provides tumor cells with a potent tool to evade the immune system. In the present study, we examined the effects of (-)-epigallocatechin gallate (EGCG), the major catechin in green tea, on the inhibition of IDO expression induced by interferon (IFN)-γ in human CRC cells. We found that IFN-γ increased the expression levels of IDO protein and mRNA in HT29 and SW837 CRC cell lines. Treatment of SW837 cells with EGCG significantly decreased IFN-γ-induced expression of IDO protein and mRNA in a dose-dependent manner. Enzymatic activity of IDO, determined by the concentration of L-kynurenine in the culture medium, was also significantly inhibited by EGCG treatment. Phosphorylation of signal transducer and activator of transcription 1 (STAT1) induced by IFN-γ was also significantly inhibited by EGCG. Reporter assays indicated that EGCG inhibited the transcriptional activities of IDO promoters, IFN-stimulated response element and IFN-γ activation sequence, activated by STAT1 phosphorylation. These findings suggest that EGCG may exert antitumor effects on CRC, at least in part, by inhibiting the expression and function of IDO through the suppression of STAT1 activation. EGCG may, thus, serve as a potential agent for antitumor immunotherapy and be useful in the chemoprevention and/or treatment of CRC. PMID:23741252

  2. Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis.

    PubMed

    Chen, Jinglou; Du, Lifen; Li, Jingjing; Song, Hongping

    2016-10-01

    Cadmium (Cd) pollution is a serious environmental problem. Kidney is a main target organ of Cd toxicity. This study was undertaken to investigate the potential protective effects of epigallocatechin-3-gallate (EGCG) against chronic renal injury and fibrosis induced by CdCl2. Rat model was induced by exposing to 250 mg/L CdCl2 through drinking water. The renal function was evaluated by detecting the levels of blood urea nitrogen (BUN) and serum creatinine (SCR). The oxidative stress was measured by detecting the levels of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione/oxidized glutathione (GSH/GSSG) and renal enzymatic antioxidant status. Additionally, the renal levels of transforming growth factor-β1 (TGF-β1), Smad3, phosphorylation-Smad3 (pp-Smad3), α-smooth muscle actin (α-SMA), vimentin and E-cadherin were measured by western blot assay. Renal levels of microRNA-21 (miR-21), miR-29a/b/c and miR-192 were measured by quantitative RT-PCR. It was found that EGCG ameliorated the CdCl2-induced renal injury, inhibited the level of oxidative stress, normalized renal enzymatic antioxidant status and E-cadherin level, as well as attenuated the over generation of TGF-β1, pp-Smad3, vimentin and α-SMA. EGCG also decreased the production of miR-21 and miR-192, and enhanced the levels of miR-29a/b/c. These results showed that EGCG could attenuate Cd induced chronic renal injury. PMID:27474435

  3. Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate Restores Nrf2 Activity and Ameliorates Crescentic Glomerulonephritis

    PubMed Central

    Zhou, Jason K.; Peng, Ai; Vaziri, Nosratola D.; Mohan, Chandra; Xu, Yan; Zhou, Xin J.

    2015-01-01

    Crescentic glomerulonephritis (GN) is the most severe form of GN and is associated with significant morbidity and mortality despite aggressive immunotherapy with steroids, cytotoxic drugs, and plasmapheresis. We examined the therapeutic efficacy of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG, 50 mg/kg BW/day x3weeks), a potent anti-inflammatory and anti-oxidant agent, on experimental crescentic GN induced in 129/svJ mice by administration of rabbit anti-mouse glomerular basement membrane sera. Routine histology and key molecules involved in inflammatory and redox signaling were studied. EGCG treatment significantly reduced mortality, decreased proteinuria and serum creatinine, and markedly improved renal histology when compared with vehicle-treated mice. The improvements in renal function and histology were accompanied by the restoration of Nrf2 signaling (which was impaired in vehicle-treated mice) as shown by increased nuclear translocation of Nrf2 and cytoplasmic glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modifier subunit, and glutathione peroxidase. EGCG-treated mice also showed reduction in p-Akt, p-JNK, p-ERK1/2 and p-P38 as well as restoration of PPARγ and SIRT1 levels. Lower dose of EGCG (25 mg/kg BW/day x2 weeks) treatment also significantly decreased proteinuria and serum creatinine, and markedly improved renal histology when compared with vehicle-treated mice. Thus, our data illustrate the efficacy of EGCG in reversing the progression of crescentic GN in mice by targeting multiple signaling and inflammatory pathways as well as countering oxidative stress. PMID:25785827

  4. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles.

    PubMed

    Zhang, Jia; Nie, Shufang; Martinez-Zaguilan, Raul; Sennoune, Souad R; Wang, Shu

    2016-04-01

    Intimal macrophages are determinant cells for atherosclerotic lesion formation by releasing inflammatory factors and taking up oxidized low-density lipoprotein (oxLDL) via scavenger receptors, primarily the CD36 receptor. (-)-Epigallocatechin-3-gallate (EGCG) has a potential to decrease cholesterol accumulation and inflammatory responses in macrophages. We made EGCG-loaded nanoparticles (Enano) using phosphatidylcholine, kolliphor HS15, alpha-tocopherol acetate and EGCG. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine (KOdiA-PC), a CD36-targeted ligand found on oxLDL, was incorporated on the surface of Enano to make ligand-Enano (L-Enano). The objectives of this study are to deliver EGCG to macrophages via CD36-targeted L-Enano and to determine its antiatherogenic bioactivities. The optimized nanoparticles obtained in our study were spherical and around 108 nm in diameter, and had about 10% of EGCG loading capacity and 96% of EGCG encapsulation efficiency. Compared to Enano, CD36-targeted L-Enano had significantly higher binding affinity to and uptake by macrophages at the same pattern as oxLDL. CD36-targeted L-Enano dramatically improved EGCG stability, increased macrophage EGCG content, delivered EGCG to macrophage cytosol and avoided lysosomes. L-Enano significantly decreased macrophage mRNA levels and protein secretion of monocyte chemoattractant protein 1, but did not significantly change macrophage cholesterol content. The innovative CD36-targeted nanoparticles may facilitate targeted delivery of diagnostic, preventive and therapeutic compounds to intimal macrophages for the diagnosis, prevention and treatment of atherosclerosis with enhanced efficacy and decreased side effects. PMID:27012617

  5. The Effect of Epigallocatechin Gallate on Flap Viability of Rat Perforator Abdominal Flaps.

    PubMed

    Aksakal, İbrahim Alper; Küçüker, İsmail; Önger, Mehmet Emin; Engin, Murat Sinan; Keleş, Musa Kemal; Demir, Ahmet

    2016-05-01

    Background Epigallocatechin gallate (EGCG) is a substance abundant in green tea. In this study, the effects of EGCG on perforator flap viability were investigated. Methods A total of 40 rats were assigned to four groups of 10 each. In each subject, a 4 × 6 cm abdominal skin flap was raised and adapted back onto its place. In the control group, no further procedures were taken. In the flap group, 40 mg/kg/d EGCG was injected into the flap. In the gavage group, 100 mg/kg/d EGCG was given through a feeding tube. In the intraperitoneal group, 50 mg/kg/d EGCG was injected intraperitoneally. On the 7th postoperative day, flaps were photographed and the viable areas were measured and compared via a one-way analysis of variance. Results The ratios of viable and contracted flap area were 9.15/12.01, 4.59/16.46, 11.56/11.20, and 11.65/10.77 cm(2) for the control, flap group, gavage group, and intraperitoneal group, respectively. While the flap group yielded the worst results in the sense of flap contraction and viability (p < 0.001), the gavage and intraperitoneal groups were significantly better than those of the control group (p = 0.03). Histologically, epidermal, papillary dermal, and capillary tissue volumes were evaluated. In comparison to the control group, the flap group yielded significantly increased epidermal and dermal volumes (p = 0.03), however, these values were significantly decreased (p = 0.04) in the gavage and intraperitoneal groups. Capillary volumes were significantly decreased in EGCG treatment groups (p < 0.01). Conclusion Our experiment has shown that oral and intraperitoneal administration of EGCG increases the perforator flap viability when compared with controls, while direct injection decreases the viability. PMID:26919381

  6. Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate

    SciTech Connect

    Takahashi, Atsushi; Watanabe, Tatsuro; Mondal, Anupom; Suzuki, Kaori; Kurusu-Kanno, Miki; Li, Zhenghao; Yamazaki, Takashi; Fujiki, Hirota; Suganuma, Masami

    2014-01-03

    Highlights: •EGCG reduced cell motility of highly metastatic human lung cancer cells. •EGCG increased cell stiffness of the cells, indicating the inhibition of phenotypes of EMT. •EGCG inhibited expression of vimentin and Slug in the cells at the leading edge of scratch. •Treatment of MβCD increased cell stiffness, and inhibited cell motility and vimentin expression. •Inhibition of EMT phenotypes with EGCG is a mechanism-based inhibition of cancer metastasis. -- Abstract: Cell motility and cell stiffness are closely related to metastatic activity of cancer cells. (−)-Epigallocatechin gallate (EGCG) has been shown to inhibit spontaneous metastasis of melanoma cell line into the lungs of mice, so we studied the effects of EGCG on cell motility, cell stiffness, and expression of vimentin and Slug, which are molecular phenotypes of epithelial–mesenchymal transition (EMT). Treatments of human non-small cell lung cancer cell lines H1299 and Lu99 with 50 and 100 μM EGCG reduced cell motility to 67.5% and 43.7% in H1299, and 71.7% and 31.5% in Lu99, respectively in in vitro wound healing assay. Studies on cell stiffness using atomic force microscope (AFM) revealed that treatment with 50 μM EGCG increased Young’s modulus of H1299 from 1.24 to 2.25 kPa and that of Lu99 from 1.29 to 2.28 kPa, showing a 2-fold increase in cell stiffness, i.e. rigid elasticity of cell membrane. Furthermore, treatment with 50 μM EGCG inhibited high expression of vimentin and Slug in the cells at a leading edge of scratch. Methyl-β-cyclodextrin, a reagent to deplete cholesterol in plasma membrane, showed inhibition of EMT phenotypes similar that by EGCG, suggesting that EGCG induces inhibition of EMT phenotypes by alteration of membrane organization.

  7. Pulse and gamma radiolysis studies of 3-sulfo propyl methacrylate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Panda, Anjali; Mohan, Hari; Sabharwal, S.

    2001-10-01

    Radiation induced polymerization of 3-sulfo propyl methacrylate (SPMA) in aqueous solution (10 wt%) has been studied by steady state and pulse radiolysis techniques. The effect of radiation characteristics such as irradiation dose, dose rate and the presence of crosslinking agent on the gel formation of SPMA monomer has been investigated. In N 2 -saturated solution, the gel formation doses for SPMA were found to be 70 and 258 Gy at dose rates of 1.2 and 5 kGy h -1, respectively. The swelling ratio results showed that the gel obtained at a constant dose of 0.8 kGy dose swells ˜630 times of its dry weight at a dose rate of 5 kGy h -1 whereas it is 394 times of its dry weight for the dose rate 1.2 kGy h -1. The reactions of the primary radicals of water radiolysis such as e aq-, H-atom, OH radical, O rad - , and some oxidizing radicals like N3rad , Cl2rad - , SO4rad - and reducing species like CO 2rad - with SPMA have been studied using pulse radiolysis technique. The results show that the reaction of e aq-, H-atom and OH radicals with SPMA are in the diffusion controlled limit with their respective bimolecular rate constant values being 8.6×10 9, 2×10 9 and 1.5×10 10 dm 3 mol -1 s -1. The radical anion, SPMA rad - , ( λmax=280 nm) is observed to undergo fast protonation forming H-adduct, SPMA—H rad , ( λmax=310 nm) with a p Ka value of 9.1. Cl 2rad - reacts with a bimolecular rate constant of 3.5×10 7 dm 3 mol -1 s -1 forming solute radical cation ( λmax=265 nm). One-electron oxidation and reduction potentials for SPMA/SPMA rad + and SPMA/SPMA rad - couples are estimated to be more than +1.6 and less than -1.9 V, respectively.

  8. Real Time Monitoring of Inhibition of Adipogenesis and Angiogenesis by (−)-Epigallocatechin-3-Gallate in 3T3-L1 Adipocytes and Human Umbilical Vein Endothelial Cells

    PubMed Central

    Tang, Wenjing; Song, Huanlei; Cai, Wei; Shen, Xiuhua

    2015-01-01

    Little is known about the effect of (−)-epigallocatechin-3-gallate (EGCG) on angiogenesis in adipocytes. We aimed to test the effect of EGCG on the expression of vascular endothelial growth factor (VEGF) in adipocytes. The levels of VEGF secretion, the expression of VEGF message ribonucleic acid (mRNA) and VEGF protein in 3T3-L1 cells were measured by enzyme linked immunosorbent assay (ELISA), real time polymerase chain reaction (PCR), and immunofluorescence staining, respectively. The xCELLigence real time cell analysis system was used to study the growth and differentiation of 3T3-L1 preadipocytes. A coculture system was used to test the effects of 3T3-L1 cells on proliferation of human umbilical vein endothelial cells (HUVECs). The conditioned media derived from 3T3-L1 cells treated with or without EGCG was used to culture the HUVECs for a tube formation assay. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα), two transcription factors related to both adipogenesis and angiogenesis, were examined to explore the potential mechanism. We found that all the three measurements of VEGF expression in adipocytes (mRNA, protein and secretion in media) were reduced after EGCG treatment. The growth of HUVECs co-cultured with 3T3-L1 cells was significantly increased and the conditioned media from EGCG treated 3T3-L1 adipocytes inhibited tube formation in HUVECs. Both PPARγ and C/EBPα expression in adipocytes were decreased with EGCG treatment. In conclusion, findings from this study suggest that EGCG may inhibit angiogenesis by regulating VEGF expression and secretion in adipocytes. PMID:26516907

  9. Epigallocatechin-3-Gallate Attenuates Oxidative Stress and Inflammation in Obstructive Nephropathy via NF-κB and Nrf2/HO-1 Signalling Pathway Regulation.

    PubMed

    Wang, Yanqiu; Wang, Bowen; Du, Feng; Su, Xuesong; Sun, Guangping; Zhou, Guangyu; Bian, Xiaohui; Liu, Na

    2015-09-01

    Oxidative stress and inflammation contribute importantly to the pathogenesis of chronic kidney disease (CKD). Epigallocatechin-3-gallate (EGCG), which is the most abundant and most active catechin polyphenol extracted from green tea, has been proved to have many bioactivities. In this study, the renoprotective effect of EGCG was evaluated in a widely used kidney disease model, the unilateral ureteral obstruction (UUO) mice model. After 14 days of EGCG administration, mean arterial blood pressure, body-weight and obstructed kidney weight were measured. Levels of blood urea nitrogen (BUN) and creatinine (CR) and activities of glutamic-pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) in serum were estimated as indicators of renal function. Periodic acid-Schiff (PAS) staining was performed to observe the pathological changes of the obstructed kidney. Antioxidant enzymes and pro-inflammatory cytokine production were estimated to reflect the oxidative stress and inflammatory state in the obstructed kidney. Finally, the main proteins in the NF-κB and Nrf2 signalling pathway and DNA binding activity of NF-κB and Nrf2 were measured to investigate the effect of EGCG on these two pathways. The results demonstrated that EGCG could restore UUO-induced kidney weight loss and renal dysfunction. In addition, UUO-induced oxidative stress and inflammatory responses in the obstructed kidney were also prevented by EGCG. Furthermore, EGCG could induce both NF-κB and Nrf2 nuclear translocation in the UUO kidney and promote heme oxygenase-1 (HO-1) production. These results indicated that the renoprotective effect of EGCG might be through its NF-κB and Nrf2 signalling pathway regulations. PMID:25625183

  10. Novel Epigallocatechin-3-Gallate (EGCG) Derivative as a New Therapeutic Strategy for Reducing Neuropathic Pain after Chronic Constriction Nerve Injury in Mice

    PubMed Central

    Xifró, Xavier; Vidal-Sancho, Laura; Boadas-Vaello, Pere; Turrado, Carlos; Alberch, Jordi; Puig, Teresa; Verdú, Enrique

    2015-01-01

    Neuropathic pain is common in peripheral nerve injury and often fails to respond to ordinary medication. Here, we investigated whether the two novel epigallocatechin-3-gallate (EGCG) polyphenolic derivatives, compound 23 and 30, reduce the neuropathic pain in mice chronic constriction nerve injury (CCI). First, we performed a dose-response study to evaluate nociceptive sensation after administration of EGCG and its derivatives 23 and 30, using the Hargreaves test at 7 and 21 days after injury (dpi). We daily administered EGCG, 23 and 30 (10 to 100 mg/Kg; i.p.) during the first week post-CCI. None of the doses of compound 23 caused significant pain diminution, whereas 50mg/kg was optimal for both EGCG and 30 to delay the latency of paw withdrawal. With 50 mg/Kg, we showed that EGCC prevented the thermal hyperalgesia from 7 to 21 dpi and compound 30 from 14 to 56 dpi. To evaluate the molecular mechanisms underpinning why EGCG and compound 30 differentially prevented the thermal hyperalgesia, we studied several biochemical parameters in the dorsal horn of the spinal cord at 14 and 56 dpi. We showed that the effect observed with EGCG and compound 30 was related to the inhibition of fatty acid synthase (FASN), a known target of these polyphenolic compounds. Additionally, we observed that EGCG and compound 30 reduced the expression of CCI-mediated inflammatory proteins and the nuclear localization of nuclear factor-kappa B at 14 dpi, but not at 56 dpi. We also strongly detected a decrease of synaptic plasma membrane levels of N-methyl-D-asparte receptor 2B in CCI-mice treated with compound 30 at 56 dpi. Altogether, compound 30 reduced the chronic thermal hyperalgesia induced by CCI better than the natural compound EGCG. Thus, our findings provide a rationale for the preclinical development of compound 30 as an agent to treat neuropathic pain. PMID:25855977

  11. Structural and Kinetic Characterization of the 4-Carboxy-2-hydroxymuconate Hydratase from the Gallate and Protocatechuate 4,5-Cleavage Pathways of Pseudomonas putida KT2440.

    PubMed

    Mazurkewich, Scott; Brott, Ashley S; Kimber, Matthew S; Seah, Stephen Y K

    2016-04-01

    The bacterial catabolism of lignin and its breakdown products is of interest for applications in industrial processing of ligno-biomass. The gallate degradation pathway ofPseudomonas putidaKT2440 requires a 4-carboxy-2-hydroxymuconate (CHM) hydratase (GalB), which has a 12% sequence identity to a previously identified CHM hydratase (LigJ) fromSphingomonassp. SYK-6. The structure of GalB was determined and found to be a member of the PIG-LN-acetylglucosamine deacetylase family; GalB is structurally distinct from the amidohydrolase fold of LigJ. LigJ has the same stereospecificity as GalB, providing an example of convergent evolution for catalytic conversion of a common metabolite in bacterial aromatic degradation pathways. Purified GalB contains a bound Zn(2+)cofactor; however the enzyme is capable of using Fe(2+)and Co(2+)with similar efficiency. The general base aspartate in the PIG-L deacetylases is an alanine in GalB; replacement of the alanine with aspartate decreased the GalB catalytic efficiency for CHM by 9.5 × 10(4)-fold, and the variant enzyme did not have any detectable hydrolase activity. Kinetic analyses and pH dependence studies of the wild type and variant enzymes suggested roles for Glu-48 and His-164 in the catalytic mechanism. A comparison with the PIG-L deacetylases led to a proposed mechanism for GalB wherein Glu-48 positions and activates the metal-ligated water for the hydration reaction and His-164 acts as a catalytic acid. PMID:26867578

  12. Green Tea Extract Rich in Epigallocatechin-3-Gallate Prevents Fatty Liver by AMPK Activation via LKB1 in Mice Fed a High-Fat Diet

    PubMed Central

    Santamarina, Aline B.; Oliveira, Juliana L.; Silva, Fernanda P.; Carnier, June; Mennitti, Laís V.; Santana, Aline A.; de Souza, Gabriel H. I.; Ribeiro, Eliane B.; Oller do Nascimento, Cláudia M.; Lira, Fábio S.; Oyama, Lila M.

    2015-01-01

    Supplementation with epigallocatechin-3-gallate has been determined to aid in the prevention of obesity. Decaffeinated green tea extract appears to restore a normal hepatic metabolic profile and attenuate high-fat diet (HFD)-induced effects, thereby preventing non-alcoholic fatty liver disease in mice. Mice were maintained on either a control diet (CD) or HFD for 16 weeks and supplemented with either water or green tea extract (50 mg/kg/day). The body mass increase, serum adiponectin level, and lipid profile were measured over the course of the treatment. Furthermore, the AMPK pathway protein expression in the liver was measured. From the fourth week, the weight gain in the CD + green tea extract (CE) group was lower than that in the CD + water (CW) group. From the eighth week, the weight gain in the HFD + water (HFW) group was found to be higher than that in the CW group. Moreover, the weight gain in the HFD + green tea extract (HFE) group was found to be lower than that in the HFW group. Carcass lipid content was found to be higher in the HFW group than that in the CW and HFE groups. Serum analysis showed reduced non-esterified fatty acid level in the CE and HFE groups as compared with their corresponding placebo groups. Increased adiponectin level was observed in the same groups. Increased VLDL-TG secretion was observed in the HFW group as compared with the CW and HFE groups. Increased protein expression of AdipoR2, SIRT1, pLKB1, and pAMPK was observed in the HFE group, which explained the reduced expression of ACC, FAS, SREBP-1, and ChREBP in this group. These results indicate that the effects of decaffeinated green tea extract may be related to the activation of AMPK via LKB1 in the liver of HFD-fed mice. PMID:26536464

  13. Long-Term Effects of (–)-Epigallocatechin Gallate (EGCG) on Pristane-Induced Arthritis (PIA) in Female Dark Agouti Rats

    PubMed Central

    Leichsenring, Anna; Bäcker, Ingo; Furtmüller, Paul G.; Obinger, Christian; Lange, Franziska; Flemmig, Jörg

    2016-01-01

    Rheumatoid arthritis (RA)—a widespread chronic inflammatory disease in industrialized countries—is characterized by a persistent and progressive joint destruction. The chronic pro-inflammatory state results from a mutual activation of the innate and the adaptive immune system, while the exact pathogenesis mechanism is still under discussion. New data suggest a role of the innate immune system and especially polymorphonuclear granulocytes (PMNs, neutrophils) not only during onset and the destructive phase of RA but also at the chronification of the disease. Thereby the enzymatic activity of myeloperoxidase (MPO), a peroxidase strongly abundant in neutrophils, may be important: While its peroxidase activity is known to contribute to cartilage destruction at later stages of RA the almost MPO-specific oxidant hypochlorous acid (HOCl) is also discussed for certain anti-inflammatory effects. In this study we used pristane-induced arthritis (PIA) in Dark Agouti rats as a model for the chronic course of RA in man. We were able to shown that a specific detection of the HOCl-producing MPO activity provides a sensitive new marker to evaluate the actual systemic inflammatory status which is only partially detectable by the evaluation of clinical symptoms (joint swelling and redness measurements). Moreover, we evaluated the long-term pharmacological effect of the well-known anti-inflammatory flavonoid epigallocatechin gallate (EGCG). Thereby only upon early and continuous oral application of this polyphenol the arthritic symptoms were considerably diminished both in the acute and in the chronic phase of the disease. The obtained results were comparable to the treatment control (application of methotrexate, MTX). As revealed by stopped-flow kinetic measurements, EGCG may regenerate the HOCl-production of MPO which is known to be impaired at chronic inflammatory diseases like RA. It can be speculated that this MPO activity-promoting effect of EGCG may contribute to the

  14. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation

    PubMed Central

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Singh, Sudhir Shankar; Mandal, Nripendranath

    2015-01-01

    Background: Spondias pinnata has been reported for its efficient anticancer effects, but the studies were mostly focused on its extract. Objective: Since its bioactive compounds are largely unknown, this study was designed to characterize the lead components present in it and their anticancer activity against human glioblastoma cell line (U87). Materials and Methods: Major compounds from the ethyl acetate fraction were isolated by column chromatography and their anticancer potentials against U87 cells were evaluated. Furthermore, flow cytometric and immunoblotting analyses were performed to demonstrate the mechanism of apoptosis inducing activity of methyl gallate (MG) against U87 cell line. Results: Four major compounds were isolated from the ethyl acetate fraction. Amongst these, two compounds showed promising activities and with the help of different spectroscopic methods they were identified as gallic acid and MG. Flow cytometric studies revealed that MG-induced apoptosis in U87 cells dose-dependently; the same was confirmed by activation of caspases through cleavage of endogenous substrate poly (adenosine diphosphate-ribose) polymerase. MG treatment also induced the expression of p53 and B-cell lymphoma-2-associated X and cleavage of BH3 interacting-domain with a concomitant decrease in B-cell lymphoma-2 expression. Moreover, MG-induced sustained phosphorylation of extracellular signal-regulated kinase (ERK1/2) in U87 cells with no change in the phosphorylation of other mitogen-activated protein kinases (c-Jun N-terminal of stress-activated protein kinases, p38). Conclusion: MG is a potent antioxidant and it induces sustained ERK1/2 activation and apoptosis in human glioblastoma U87, and provide a rationale for evaluation of MG for other brain carcinoma cell lines for the advancement of glioblastoma therapy. PMID:25829764

  15. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate.

    PubMed

    Levites, Yona; Amit, Tamar; Mandel, Silvia; Youdim, Moussa B H

    2003-05-01

    Green tea extract and its main polyphenol constituent (-)-epigallocatechin-3-gallate (EGCG) possess potent neuroprotective activity in cell culture and mice model of Parkinson's disease. The central hypothesis guiding this study is that EGCG may play an important role in amyloid precursor protein (APP) secretion and protection against toxicity induced by beta-amyloid (Abeta). The present study shows that EGCG enhances (approximately 6-fold) the release of the non-amyloidogenic soluble form of the amyloid precursor protein (sAPPalpha) into the conditioned media of human SH-SY5Y neuroblastoma and rat pheochromocytoma PC12 cells. sAPPalpha release was blocked by the hydroxamic acid-based metalloprotease inhibitor Ro31-9790, which indicated mediation via alpha-secretase activity. Inhibition of protein kinase C (PKC) with the inhibitor GF109203X, or by down-regulation of PKC, blocked the EGCG-induced sAPPalpha secretion, suggesting the involvement of PKC. Indeed, EGCG induced the phosphorylation of PKC, thus identifying a novel PKC-dependent mechanism of EGCG action by activation of the non-amyloidogenic pathway. EGCG is not only able to protect, but it can rescue PC12 cells against the beta-amyloid (Abeta) toxicity in a dose-dependent manner. In addition, administration of EGCG (2 mg/kg) to mice for 7 or 14 days significantly decreased membrane-bound holoprotein APP levels, with a concomitant increase in sAPPalpha levels in the hippocampus. Consistently, EGCG markedly increased PKCalpha and PKC in the membrane and the cytosolic fractions of mice hippocampus. Thus, EGCG has protective effects against Abeta-induced neurotoxicity and regulates secretory processing of non-amyloidogenic APP via PKC pathway. PMID:12670874

  16. The single and synergistic effects of the major tea components caffeine, epigallocatechin-3-gallate and L-theanine on rat sperm viability.

    PubMed

    Dias, Tânia R; Alves, Marco G; Casal, Susana; Silva, Branca M; Oliveira, Pedro F

    2016-03-01

    Caffeine, epigallocatechin-3-gallate (EGCG) and L-theanine are the major components of tea (Camellia sinensis L.) and the main representatives of the classes of methylxanthines, catechins and free amino acids present in this beverage. There are many studies reporting tea's health benefits, however it is not clear if those effects are mediated by a single component or a synergistic action. This study aimed to evaluate the individual and synergistic effects of tea's major components on rat epididymal spermatozoa survival and oxidative profile during 3-day storage at room temperature (RT). For that, spermatozoa were incubated with caffeine (71 μg mL(-1)), EGCG (82 μg mL(-1)), or L-theanine (19 μg mL(-1)), alone or in combination. Spermatozoa viability was assessed by the eosin-nigrosin staining technique. The oxidative profile was established by evaluating the levels of carbonyl groups, protein nitration and lipid peroxidation. Supplementation of sperm storage medium with the three compounds together improved sperm viability, after 24, 48 and 72 h of incubation, relative to the control and the groups incubated with each component individually. However, at the end of the 72 h of incubation, there was an increase in protein oxidation in the group exposed to the three compounds, illustrating that the combined treatment triggers different alterations in sperm proteins during their maturational process in the epididymis. This study highlights the importance of the synergism between tea components for the beneficial effects usually attributed to this beverage, particularly in sperm storage at RT. PMID:26902467

  17. Polyphenols protect against protein glycoxidation.

    PubMed

    Sadowska-Bartosz, Izabela; Galiniak, Sabina; Bartosz, Grzegorz

    2014-10-01

    Glycoxidation belongs to posttranslational protein modifications which underlie pathological sequelae of diabetes and other diseases, and contribute to aging. Search for efficient inhibitors of glycoxidation is therefore of considerable importance. We studied the effect of various polyphenols on the glycoxidation of bovine serum albumin (90 uM) incubated in vitro with glucose, fructose or ribose (100mM) for 6 days in 0.1M phosphate buffer, pH 7.4. Polyphenols have multiple biological actions including antioxidant activity and chelation of transition metal ions. The extent of glycoxidation was evaluated using fluorimetic parameters reflecting formation of Advanced Glycoxidation End Products (AGEs: 325/440nm), dityrosine (330/415nm), formylkynurenine (325/434nm) and kynurenine (365/480nm) and confirmed by estimation of AGEs using an ELISA kit. The results confirmed reliability of easily measurable fluorimetric parameters such as AGEs, dityrosine and formylkynurenine level for estimation of the extent of glycoxidation.All the polyphenols used (caffeic acid, ferulic acid, gallic acid, genistein, naringin, propyl gallate, quercitrin and rutin) decreased the extent of albumin glycoxidation. The extent of protection varied for different sugars (e. g. 1mM genistein: 24.4±1.7 for glucose, 44.5±0.2 for fructose 51.4±0.3 for ribose) The sequence of protective effect was: ferulic acid>caffeic acid>propyl gallate>naringin>quercitrin>genistein for glucose, caffeic acid>ferulic acid>propyl gallate>genistein>quercitrin>rutin>naringin for fructose and genistein>ferulic acid>caffeic acid>rutin>propyl gallate>naringin>quercitrin>gallic acid. These results confirm that polyphenols, natural components of human diet, protect against protein glycation in a model in vitro system. This study was performed within the framework of COSTCM1001 action and was sponsored by Grant 2011/01/M/N23-02065 of the National Science Center of Poland. PMID:26461390

  18. Design, synthesis, antibacterial evaluation and docking study of novel 2-hydroxy-3-(nitroimidazolyl)-propyl-derived quinolone.

    PubMed

    Li, Qing; Xing, Junhao; Cheng, Haibo; Wang, Hui; Wang, Jing; Wang, Shuai; Zhou, Jinpei; Zhang, Huibin

    2015-01-01

    A novel series of 2-hydroxy-3-(nitroimidazolyl)-propyl-derived quinolones 6a-o were synthesized and evaluated for their in vitro antibacterial activity. Most of the target compounds exhibited potent activity against Gram-positive strains. Among them, moxifloxacin analog 6n displayed the most potent activity against Gram-positive strains including S. epidermidis (MIC = 0.06 μg/mL), MSSE (MIC = 0.125 μg/mL), MRSE (MIC = 0.03 μg/mL), S. aureus (MIC = 0.125 μg/mL), MSSA (MIC = 0.125 μg/mL), (MIC = 2 μg/mL). Its activity against MRSA was eightfold more potent than reference drug gatifloxacin. Finally, docking study of the target compound 6n revealed that the binding model of quinolone nucleus was similar to that of gatifloxacin and the 2-hydroxy-3-(nitroimidazolyl)-propyl group formed two additional hydrogen bonds. PMID:25048811

  19. Conformations and Barriers to Methyl Group Internal Rotation in Two Asymmetric Ethers: Propyl Methyl Ether and Butyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Long, B. E.; Dechirico, F.; Cooke, S. A.

    2012-06-01

    The conformational preferences of the O-C-C-C unit are important in many biological systems with the unit generally preferring a gauche configuration compared to an anti configuration. Butyl methyl ether and propyl methyl ether provide very simple systems for this phenomenom to manifest. Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). In the case of butyl methyl ether, only one conformer has been observed. This conformer has torsional angles of COCC = 180°, OCCC = 62° and CCCC = 180° (anti-gauche-anti) and rotational constants of A = 10259.4591(33) MHz, B = 1445.6470(13) MHz, and C = 1356.2944(14) MHz. The rotational spectrum was doubled and has been analyzed to produce an effective barrier to methyl group internal rotation of 780(35) cm-1. A prior rotational spectroscopic study on propyl methyl ether had focused only on the high energy anti-anti conformer. We have analyzed spectra from the lowest energy anti-gauche conformer and the spectroscopic constants will be presented. A summary of the differences in conformational energies and methyl group internal rotation barriers for the class of aliphatic asymmetric ethers will be presented. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang, D. B. Mitchell. J. Am. Chem. Soc. 115 (4170), 1993. Hiroshi Kato, Jun Nakagawa, Michiro Hayashi. J. Mol. Spectrosc. 80 (272), 1980.

  20. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish.

    PubMed

    Wang, Qiangwei; Lam, James Chung-Wah; Man, Yin-Chung; Lai, Nelson Lok-Shun; Kwok, Karen Ying; Guo, Yong yong; Lam, Paul Kwan-Sing; Zhou, Bingsheng

    2015-01-01

    Organophosphate flame retardants are ubiquitous environmental contaminants; however, knowledge is limited regarding their environmental health risks and toxicity. Here, we investigated the effects of acute and long-term exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCPP) to the nervous system of zebrafish. Zebrafish embryos (2 h post-fertilization) were exposed to TDCPP (0-100 μg/L) for 6 months up until sexual maturation. Concentrations of TDCPP and its metabolic product (bis(1,3-dichloro-2-propyl) phosphate, BDCPP) were measured in the tissues of 5 day post-fertilization (dpf) larvae. There was no effect on locomotion, acetylcholinesterase activity, levels of the neurotransmitters dopamine and serotonin, and expression of mRNAs and proteins related to central nervous system development (e.g., myelin basic protein, α1-tubulin) in any exposure group. However, in adult fish, reductions of dopamine and serotonin levels were detected in the brains of females but not males. Downregulation of nervous system development genes was observed in both the male and female brain tissues. TDCPP concentrations were measured in adult fish tissues including the brain, and greater levels were detected in females. Our results showed that females are more sensitive to TDCPP stress than males in terms of TDCPP-induced neurotoxicity. We demonstrate that long-term exposure to lower concentrations of TDCPP in fish can lead to neurotoxicity. PMID:25461749

  1. Anti-Inflammatory Activity of Choisya ternata Kunth Essential Oil, Ternanthranin, and Its Two Synthetic Analogs (Methyl and Propyl N-Methylanthranilates)

    PubMed Central

    Pinheiro, Mariana Martins Gomes; Miltojević, Ana B.; Radulović, Niko S.; Abdul-Wahab, Ikarastika Rahayu; Boylan, Fabio; Fernandes, Patrícia Dias

    2015-01-01

    Choisya ternata Kunth (Rutaceae) is native to North America where it is popularly known as “Mexican orange”. In this study, the anti-inflammatory effects of the essential oil (EO) obtained from the leaves of C. ternata, one of its minor components (ternanthranin—ISOAN) and its two synthetic analogues (methyl and propyl N-methylanthranilate – MAN and PAN) were evaluated. Mice pretreated with the EO (EO) obtained from C. ternata leaves (3–100 mg/kg, p.o.), ISOAN, MAN or PAN (1–30 mg/kg, p.o.) and the reference drugs, morphine (1 mg/kg, p.o.) and acetylsalicylic acid (ASA, 100 mg/kg, p.o.), were evaluated in inflammation models such as formalin and subcutaneous air pouch models, with measurement of cell migration, exudate volume, protein extravasation, nitric oxide and pro-inflammatory cytokines. The EO from C. ternata significantly inhibited the time that the animals spent licking the formalin-injected paw in the second phase of the model at their higher doses (30 and 100 mg/kg, respectively). An inhibition of the inflammatory reaction induced after subcutaneous carrageenan injection into air pouch was also observed. In this model, the EO significantly reduced cell migration, exudate volume, protein extravased, and the increase in levels of inflammatory mediators (nitric oxide, TNF-α and IL-1β). ISOAN, MAN and PAN behaved in the same fashion at much smaller doses. Also, these molecules were able to show significant effects in the reduction of paw edema (at all tested doses) when the phlogistic agent was carrageenan, bradykinin, 5-HT, PGE2, C48/80 or 12-O-tetradecanoylphorbol-acetate (TPA). None of the tested doses had any effect in reducing histamine-induced edema. Our results indicate that the EO from C. ternata and anthranilate derivatives demonstrates an anti-inflammatory effect. PMID:25807367

  2. Anti-inflammatory activity of Choisya ternata Kunth essential oil, ternanthranin, and its two synthetic analogs (methyl and propyl N-methylanthranilates).

    PubMed

    Pinheiro, Mariana Martins Gomes; Miltojević, Ana B; Radulović, Niko S; Abdul-Wahab, Ikarastika Rahayu; Boylan, Fabio; Fernandes, Patrícia Dias

    2015-01-01

    Choisya ternata Kunth (Rutaceae) is native to North America where it is popularly known as "Mexican orange". In this study, the anti-inflammatory effects of the essential oil (EO) obtained from the leaves of C. ternata, one of its minor components (ternanthranin-ISOAN) and its two synthetic analogues (methyl and propyl N-methylanthranilate--MAN and PAN) were evaluated. Mice pretreated with the EO (EO) obtained from C. ternata leaves (3-100 mg/kg, p.o.), ISOAN, MAN or PAN (1-30 mg/kg, p.o.) and the reference drugs, morphine (1 mg/kg, p.o.) and acetylsalicylic acid (ASA, 100 mg/kg, p.o.), were evaluated in inflammation models such as formalin and subcutaneous air pouch models, with measurement of cell migration, exudate volume, protein extravasation, nitric oxide and pro-inflammatory cytokines. The EO from C. ternata significantly inhibited the time that the animals spent licking the formalin-injected paw in the second phase of the model at their higher doses (30 and 100 mg/kg, respectively). An inhibition of the inflammatory reaction induced after subcutaneous carrageenan injection into air pouch was also observed. In this model, the EO significantly reduced cell migration, exudate volume, protein extravased, and the increase in levels of inflammatory mediators (nitric oxide, TNF-α and IL-1β). ISOAN, MAN and PAN behaved in the same fashion at much smaller doses. Also, these molecules were able to show significant effects in the reduction of paw edema (at all tested doses) when the phlogistic agent was carrageenan, bradykinin, 5-HT, PGE2, C48/80 or 12-O-tetradecanoylphorbol-acetate (TPA). None of the tested doses had any effect in reducing histamine-induced edema. Our results indicate that the EO from C. ternata and anthranilate derivatives demonstrates an anti-inflammatory effect. PMID:25807367

  3. Structure of poly(propyl ether imine) dendrimer from fully atomistic molecular dynamics simulation and by small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Jana, Chandan; Jayamurugan, G.; Ganapathy, Rajesh; Maiti, Prabal K.; Jayaraman, N.; Sood, A. K.

    2006-05-01

    We study the structure of carboxylic acid terminated neutral poly(propyl ether imine) (PETIM) dendrimer from generations 1-6 (G1-G6) in a good solvent (water) by fully atomistic molecular dynamics (MD) simulations. We determine as a function of generation the structural properties such as radius of gyration, shape tensor, asphericity, fractal dimension, monomer density distribution, and end-group distribution functions. The sizes obtained from the MD simulations have been validated by small angle x-ray scattering experiment on dendrimer of generations 2-4 (G2-G4). A good agreement between the experimental and theoretical value of radius of gyration has been observed. We find a linear increase in radius of gyration with the generation. In contrast, Rg scales as ˜Nx with the number of monomers. We find two distinct exponents depending on the generations, x =0.47 for G1-G3 and x =0.28 for G3-G6, which reveal their nonspace filling nature. In comparison with the amine terminated poly(amidoamine) (PAMAM) dendrimer, we find that Rg of Gth generation PETIM dendrimer is nearly equal to that of (G +1)th generation of PAMAM dendrimer as observed by Maiti et al. [Macromolecules 38, 979 (2005)]. We find substantial back folding of the outer subgenerations into the interior of the dendrimer. Due to their highly flexible nature of the repeating branch units, the shape of the PETIM dendrimer deviates significantly from the spherical shape and the molecules become more and more spherical as the generation increases. The interior of the dendrimer is quite open with internal cavities available for accommodating guest molecules, suggesting the use of PETIM dendrimer for guest-host applications. We also give a quantitative measure of the number of water molecules present inside the dendrimer.

  4. Antiepileptic potential and behavioral profile of L-pGlu-(2-propyl)-L-His-L-ProNH2, a newer thyrotropin-releasing hormone analog.

    PubMed

    Rajput, Satyendra Kumar; Krishnamoorthy, Srinivasan; Pawar, Chandrasekhar; Kaur, Navneet; Monga, Vikramdeep; Meena, Chhuttan Lal; Jain, Rahul; Sharma, Shyam S

    2009-01-01

    Thyrotropin-releasing hormone (TRH) and its analogs have a number of neurobiological functions and therapeutic uses in disorders of the central nervous system. In this study, the newly synthesized TRH analogs were evaluated for central nervous system activity in pentobarbital-induced sleeping in mice. The most potent TRH analog (L-pGlu-(2-propyl)-L-His-L-ProNH(2) coded as NP-647) was evaluated for its antiepileptic potential in various seizure models in mice in comparison with TRH. Intravenous pretreatment with NP-647 (10 and 20 micromol/kg body wt) significantly delayed the onset and reduced the frequency of convulsions in the pentylenetetrazole model, but not in the maximum electroshock seizure model. Also, it was found to be protective against picrotoxin- and kainic acid-induced seizures. However, NP-647 did not significantly affect theophylline-induced seizures. Further study of the effect of NP-647 on locomotor activity and a functional observational battery revealed that it did not significantly exhibit any undesirable effects as compared with vehicle and TRH. NP-647 did not significantly affect cerebral blood flow, whereas the native peptide TRH markedly increased cerebral blood flow. Furthermore, NP-647 exerted antiepileptic activity without significantly altering plasma thyroid-stimulating hormone levels and mean arterial blood pressure. This suggests that NP-647 is more selective for central nervous system activity and devoid of hormonal and cerebrovascular system effects. In contrast, TRH exhibited cardiac and endocrine effects as marked by significant elevation in mean arterial blood pressure and plasma thyroid-stimulating hormone levels. This study demonstrates that NP-647 has potential antiepileptic activity devoid of undesirable effects and, thus, can be exploited for the prevention and treatment of epilepsy. PMID:18952198

  5. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection.

    PubMed

    Hu, Bing; Wang, Lin; Zhou, Bei; Zhang, Xin; Sun, Yi; Ye, Hong; Zhao, Liyan; Hu, Qiuhui; Wang, Guoxiang; Zeng, Xiaoxiong

    2009-04-10

    Monomers of (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) and (-)-3-O-methyl epicatechin gallate (ECG3'Me) (purity, >97%) were successfully prepared from extract of green tea by two-time separation with Toyopearl HW-40S column chromatography eluted by 80% ethanol. In addition, monomers of (-)-catechin (C), (-)-gallocatechin (GC), (-)-gallocatechin gallate (GCG), and (-)-catechin gallate (CG) (purity, >98%) were prepared from EC, EGC, EGCG, and ECG by heat-epimerization and semi-preparative HPLC chromatography. With the prepared catechin standards, an effective and simultaneous HPLC method for the analysis of gallic acid, tea catechins, and purine alkaloids in tea was developed in the present study. Using an ODS-100Z C(18) reversed-phase column, fourteen compounds were rapidly separated within 15min by a linear gradient elution of formic acid solution (pH 2.5) and methanol. A 2.5-7-fold reduction in HPLC analysis time was obtained from existing analytical methods (40-105min) for gallic acid, tea catechins including O-methylated catechins and epimers of epicatechins, as well as purine alkaloids. Detection limits were generally on the order of 0.1-1.0ng for most components at the applied wavelength of 280nm. Method replication generally resulted in intraday and interday peak area variation of <6% for most tested components in green, Oolong, black, and pu-erh teas. Recovery rates were generally within the range of 92-106% with RSDs less than 4.39%. Therefore, advancement has been readily achievable with commonly used chromatography equipments in the present study, which will facilitate the analytical, clinical, and other studies of tea catechins. PMID:19246045

  6. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    SciTech Connect

    Martinotti, Simona; Ranzato, Elia; Parodi, Monica; Vitale, Massimo; Burlando, Bruno

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  7. Inhibition of Herpes Simplex Virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate

    PubMed Central

    de Oliveira, Aline; Adams, Sandra D.; Lee, Lee H.; Murray, Sean R.; Hsu, Stephen D.; Hammond, Jeffrey R.; Dickinson, Douglas; Chen, Ping; Chu, Tin-Chun

    2012-01-01

    Green tea polyphenol epigallocatechin gallate (EGCG) is a strong anti-oxidant that has previously been shown to reduce the number of plaques in HIV-infected cultured cells. Modified EGCG palmitoyl-EGCG (p-EGCG), is of interest as a topical antiviral agent for Herpes Simplex Virus (HSV-1) infections. This study evaluated the effect of p-EGCG on HSV-infected Vero cells. Results of cell viability and cell proliferation assays indicate that p-EGCG is not toxic to cultured Vero cells and show that modification of the green tea polyphenol epigallocatechin gallate (EGCG) with palmitate increases the effectiveness of EGCG as an antiviral agent. Furthermore, p-EGCG is a more potent inhibitor of Herpes Simplex Virus 1 (HSV-1) than EGCG and can be topically applied to skin, one of the primary tissues infected by HSV. Viral binding assay, plaque forming assay, PCR, real-time PCR, and fluorescence microscopy were used to demonstrate that p-EGCG concentrations of 50 µM and higher block the production of infectious HSV-1 particles. p-EGCG was found to inhibit HSV-1 adsorption to Vero cells. Thus, p-EGCG may provide a novel treatment for HSV-1 infections. PMID:23182741

  8. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient, 2-amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha... 40 Protection of Environment 23 2010-07-01 2010-07-01 false...

  9. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient, 2-amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha... 40 Protection of Environment 24 2011-07-01 2011-07-01 false...

  10. Biocatalytic amidation of carboxylic acids and their antinemic activity.

    PubMed

    Bose, Abinesh; Shakil, Najam Akhtar; Pankaj; Kumar, Jitendra; Singh, Manish K

    2010-04-01

    A series of novel N-alkyl substituted amides, synthesized by enzyme catalysis, were evaluated against root-knot nematode, Meloidogyne incognita and found to have potential antinemic activity. The corresponding amides were prepared by the condensation of equimolar amounts of carboxylic acids with different alkyl amines in the presence of Candida antarctica lipase at 60-90 degrees C in 16-20 h. The reactions were carried out in a non - solvent system without the use of any activating agents. All the products were obtained in appreciable amounts and the yields for different compounds varied between 77.4-82.3%. The synthesized compounds were characterized using spectroscopy techniques namely Infra Red (IR) and Nuclear Magnetic Resonance (NMR) ((1)H and (13)C). Nematicidal activity of synthesized amides was evaluated against J(2)s of Meloidogyne incognita at 500, 250, 125 and 62.5 ppm concentrations after 24 h, 48 h and 72 h of exposure. Among all the tested compounds, N-propyl-butyramide, N-propyl-pentanamide and N-propyl-hexanamide were found to possess significant activity with LC(50) values of 67.46, 83.49 and 96.53 respectively. N-propyl-butyramide with LC(50) value of 67.46 ppm was found to be most active amide against J(2)s of Meloidogyne incognita. The bioactivity study showed that an increase in alkyl chain significantly decreased the activity of amides against root-knot nematode. PMID:20390959

  11. Epigallocatechin-3-gallate inhibits expression of receptors for T cell regulatory cytokines and their downstream signaling in mouse CD4+ T cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously showed a suppressive effect of epigallocatechin-3-gallate (EGCG) on T cell cycling and expansion as well as a paradoxical effect on IL-2 levels (up-regulating) and IL-2 receptor (IL-2R)alpha expression (down-regulating). Thus, in the current study we tested the hypothesis that EGCG aff...

  12. Epigallocatechin-3-gallate reduces DNA damage induced by benzo[a]pyrene diol epoxide and cigarette smoke condensate in human mucosa tissue cultures.

    PubMed

    Baumeister, Philipp; Reiter, Maximilian; Kleinsasser, Norbert; Matthias, Christoph; Harréus, Ulrich

    2009-06-01

    Although epidemiological studies indicate cancer preventive effects of diets rich in fruit and vegetables, large clinical intervention studies conducted to evaluate dietary supplementation with micronutrients, mostly vitamins, showed disappointing results in large parts. In contrast, there is encouraging epidemiologic data indicating great chemopreventive potential of a large group of phytochemicals, namely polyphenols. This study shows the DNA protective effect epigallocatechin-3-gallate, a tea catechin, and one of the best-studied substances within this group, on carcinogen-induced DNA fragmentation in upper aerodigestive tract cells. Cell cultures from fresh oropharyngeal mucosa biopsies were preincubated with epigallocatechin-3-gallate in different concentrations before DNA damage was introduced with the metabolically activated carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide or cigarette smoke condensate. Effects on resulting DNA fragmentation were measured using the alkaline single-cell microgel electrophoresis (comet assay). Epigallocatechin-3-gallate significantly reduced benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage by up to 51% (P<0.001). Fragmentation induced by cigarette smoke condensate could be lowered by 47% (P<0.001). Data suggest a cancer preventive potential of epigallocatechin-3-gallate as demonstrated on a subcellular level. An additional mechanism of tea catechin action is revealed by using a primary mucosa culture model. PMID:19491610

  13. Pharmaco-Phylogenetic Investigation of Methyl Gallate Isolated from Acacia nilotica (L.) Delile and Its Cytotoxic Effect on NIH3T3 Mouse Fibroblast.

    PubMed

    Mishra, Rohit K; Ramakrishna, M; Mishra, Vani; Pathak, Ashutosh; Rajesh, S; Sharma, Shivesh; Pandey, Avinash C; Nageswara Rao, G; Dikshit, Anupam

    2016-01-01

    Present exploration deals with the therapeutic perspective of methyl gallate isolated from the leaf extract of Acacia nilotica (L.) Delile in contrast to food-borne bacterial pathogen's viz., Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus with their evolutionary succession. The extract was subjected to phytochemical analysis and isolated compound was identified as methyl gallate using UV-vis, IR and NMR spectra. It was found most potent against K. pneumoniae with its minimum inhibition concentration (MIC) of 0.32 mg/ml and minimum bactericidal concentration (MBC) at 0.62 mg/ml. The correlation of MIC values with an evolutionary succession assists the relationship between their genetic and toxic properties. The cytotoxic pursuit of methyl gallate was additionally assessed over NIH3T3 mouse fibroblast by Neutral red (NR) uptake, MTT cell proliferation assay and did not disclose any relevant influence on cell viability as well as cell proliferation. As such, the methyl gallate extracted from the leaf of A. nilotica holds massive antibacterial aptitude and hands out towards a new paradigm for food and pharmaceutical industries. PMID:26813302

  14. Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro

    SciTech Connect

    Wu, Fen; Sun, Hong; Kluz, Thomas; Clancy, Hailey A.; Kiok, Kathrin; Costa, Max

    2012-01-15

    Hexavalent chromium [Cr(VI)] is a human carcinogen that results in the generation of reactive oxygen species (ROS) and a variety of DNA lesions leading to cell death. Epigallocatechin-3-gallate (EGCG), the major polyphenol present in green tea, possesses potent antioxidative activity capable of protecting normal cells from various stimuli-induced oxidative stress and cell death. Here we demonstrated that co-treatment with EGCG protected human normal bronchial epithelial BEAS-2B cells from Cr(VI)-induced cell death in a dose-dependent manner. Cr(VI) induces apoptosis as the primary mode of cell death. Co-treatment of BEAS-2B cells with EGCG dose-dependently suppressed Cr(VI)-induced apoptosis. Fluorescence microscopic analyses and quantitative measurement revealed that EGCG significantly decreased intracellular levels of ROS induced by Cr(VI) exposure. Using a well-established K{sup +}/SDS precipitation assay, we further showed that EGCG was able to dose-dependently reduce DNA–protein cross-links (DPC), lesions that could be partially attributed to Cr(VI)-induced oxidative stress. Finally, analyses of Affymetrix microarray containing 28,869 well-annotated genes revealed that, among the 3412 genes changed more than 1.5-fold by Cr(VI) treatment, changes of 2404 genes (70%) were inhibited by pretreatment of EGCG. Real-time PCR confirmed the induction of 3 genes involved in cell death and apoptosis by Cr(VI), which was eliminated by EGCG. In contrast, Cr(VI) reduced the expression of 3 genes related to cellular defense, and this reduction was inhibited by EGCG. Our results indicate that EGCG protects BEAS-2B cells from Cr(VI)-induced cytotoxicity presumably by scavenging ROS and modulating a subset of genes. EGCG, therefore, might serve as a potential chemopreventive agent against Cr(VI) carcinogenesis. -- Highlights: ► EGCG protected human normal bronchial epithelial BEAS-2B cells from Cr(VI)-induced cell death and apoptosis. ► EGCG significantly decreased

  15. Epigallocatechin-3-gallate inhibits proliferation and migration of human colon cancer SW620 cells in vitro

    PubMed Central

    Zhou, Fang; Zhou, Hong; Wang, Ting; Mu, Yuan; Wu, Biao; Guo, Dong-lin; Zhang, Xian-mei; Wu, Ying

    2012-01-01

    Aim: Epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent in green tea. The aim of this study is to investigate the effects of EGCG on proliferation and migration of the human colon cancer SW620 cells. Methods: Proliferation and migration of SW620 cells were induced by the protease-activated receptor 2-agonist peptide (PAR2-AP, 100 μmol/L) or factor VIIa (10 nmol/L), and analyzed using MTT and Transwell assays, respectively. The cellular cytoskeleton was stained with rhodamine-conjugated phalloidin and examined with a laser scanning confocal fluorescence microscope. The expression of caspase-7, tissue factor (TF) and matrix metalloproteinase (MMP)-9 in the cells was examined using QT-PCR, ELISA and Western blot assays. The activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and nuclear factor-kappa B (NF-κB) signaling pathways was analyzed with Western blot. Results: Both PAR2-AP and factor VIIa promoted SW620 cell proliferation and migration, and caused cytoskeleton reorganization (increased filopodia and pseudopodia). Pretreatment with EGCG (25, 50, 75, and 100 μg/mL) dose-dependently blocked the cell proliferation and migration induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) prevented the cytoskeleton changes induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) counteracted the down-regulation of caspase-7 expression and up-regulation of TF and MMP-9 expression in the cells treated with PAR2-AP or factor VIIa. Furthermore, it blocked the activation of ERK1/2 and NF-κB (p65/RelA) induced by PAR2-AP or factor VIIa. Conclusion: EGCG blocks the proliferation and migration of SW620 cells induced by PAR2-AP and factor VIIa via inhibition of the ERK1/2 and NF-κB pathways. The compound may serve as a preventive and therapeutic agent for colon cancers. PMID:22101170

  16. Reduction of ferrylmyoglobin by theanine and green tea catechins. Importance of specific Acid catalysis.

    PubMed

    Yin, Jie; Andersen, Mogens L; Skibsted, Leif H

    2013-03-27

    Reduction of the hypervalent heme pigment ferrylmyoglobin by green tea catechins in aqueous solution of pH = 7.5 was investigated by stopped-flow spectroscopy. Reduction by the gallic acid esters epigallocatechin gallate (EGCG, k2 = 1460 L mol(-1) s(-1), 25.0 °C, 0.16 ionic strength) and epicatechin gallate (ECG, 1410 L mol(-1) s(-1)) was found faster than for epicatechin (EC, 300 L mol(-1) s(-1)) and epigallocatechin (EGC, 200 L mol(-1) s(-1)), even though the gallate ion (G, 330 L mol(-1) s(-1)) is similar in rate to EC. The rate for reduction by EC, EGC, ECG, EGCG, and G shows no correlation with their oxidation potentials or phenolic hydrogen-oxygen bond dissociation energy, but with the pKa of the most acidic phenol group. Theanine, with an acidity similar to that of EC, reduces ferrylmyoglobin with a similar rate (200 L mol(-1) s(-1)), in support of general acid catalysis with an initial proton transfer prior to electron transfer. PMID:23461366

  17. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    ERIC Educational Resources Information Center

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  18. One-pot synthesis with in situ preconcentration of spherical monodispersed gold nanoparticles using thermoresponsive 3-(alkyldimethylammonio)-propyl sulfate zwitterionic surfactants.

    PubMed

    Takagai, Yoshitaka; Miura, Ryo; Endo, Arata; Hinze, Willie L

    2016-08-21

    Homogeneous solutions of thermoresponsive zwitterionic 3-(alkyldimethylammonio)-propyl sulfate surfactants at elevated temperatures were employed for the synthesis of gold nanoparticles (AuNPs) by the citrate reduction method. Upon cooling at completion of the reaction, the mixture phase separates with the monodispersed AuNPs condensed and concentrated in the small volume surfactant-rich phase. PMID:27430646

  19. 40 CFR 721.9516 - Siloxanes and silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal ether. 721.9516 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9516 Siloxanes and silicones, 3- propyl Me, di-Me, reaction products with...

  20. 40 CFR 721.9516 - Siloxanes and silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal ether. 721.9516 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9516 Siloxanes and silicones, 3- propyl Me, di-Me, reaction products with...

  1. 40 CFR 721.9516 - Siloxanes and silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal ether. 721.9516 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9516 Siloxanes and silicones, 3- propyl Me, di-Me, reaction products with...

  2. Neurotoxicological and thyroid evaluations of rats developmentally exposed to tris(1,3-dichloro-2-propyl)phosphate (TDICPP) and tris(2-chloro-2-ethyl)phosphate(TCEP)

    EPA Science Inventory

    ABSTRACT: Tris(1,3-dichloro-2-propyl)phosphate (TDICPP) and tris(2-chloro-2-ethyl)phosphate (TCEP) are organophosphorous flame retardants with widespread usage and human exposures through food, inhalation, and dust ingestion. They have been detected in human tissues including ur...

  3. Further studies into the photodissociation pathways of 2-bromo-2-nitropropane and the dissociation channels of the 2-nitro-2-propyl radical intermediate.

    PubMed

    Booth, Ryan S; Brynteson, Matthew D; Lee, Shih-Huang; Lin, J J; Butler, Laurie J

    2014-07-01

    These experiments investigate the decomposition mechanisms of geminal dinitro energetic materials by photolytically generating two key intermediates: 2-nitropropene and 2-nitro-2-propyl radicals. To characterize the unimolecular dissociation of each intermediate, we form them under collision-free conditions using the photodissociation of 2-bromo-2-nitropropane; the intermediates are formed at high internal energies and undergo a multitude of subsequent unimolecular dissociation events investigated herein. Complementing our prior work on this system, the new data obtained with a crossed-laser molecular beam scattering apparatus with VUV photoionization detection at Taiwan's National Synchrotron Radiation Research Center (NSRRC) and new velocity map imaging data better characterize two of the four primary 193 nm photodissociation channels. The C-Br photofission channel forming the 2-nitro-2-propyl radicals has a trimodal recoil kinetic energy distribution, P(ET), suggesting that the 2-nitro-2-propyl radicals are formed both in the ground electronic state and in two low-lying excited electronic states. The new data also revise the HBr photoelimination P(ET) forming the 2-nitropropene intermediate. We then resolved the multiple competing unimolecular dissociation channels of each photoproduct, confirming many of the channels detected in the prior study, but not all. The new data detected HONO product at m/e = 47 using 11.3 eV photoionization from both intermediates; analysis of the momentum-matched products allows us to establish that both 2-nitro-2-propyl → HONO + CH3CCH2 and 2-nitropropene → HONO + C3H4 occur. Photoionization at 9.5 eV allowed us to detect the mass 71 coproduct formed in OH loss from 2-nitro-2-propyl; a channel missed in our prior study. The dynamics of the highly exothermic 2-nitro-2-propyl → NO + acetone dissociation is also better characterized; it evidences a sideways scattered angular distribution. The detection of some stable 2

  4. Bioactivity-guided fractionation of an antidiarrheal Chinese herb Rhodiola kirilowii (Regel) Maxim reveals (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator.

    PubMed

    Chen, Lei; Yu, Bo; Zhang, Yaofang; Gao, Xin; Zhu, Liang; Ma, Tonghui; Yang, Hong

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is the principal apical route for transepithelial fluid transport induced by enterotoxin. Inhibition of CFTR has been confirmed as a pharmaceutical approach for the treatment of secretory diarrhea. Many traditional Chinese herbal medicines, like Rhodiola kirilowii (Regel) Maxim, have long been used for the treatment of secretory diarrhea. However, the active ingredients responsible for their therapeutic effectiveness remain unknown. The purpose of this study is to identify CFTR inhibitors from Rhodiola kirilowii (Regel) Maxim via bioactivity-directed isolation strategy. We first identified fractions of Rhodiola kirilowii (Regel) Maxim that inhibited CFTR Cl- channel activity. Further bioactivity-directed fractionation led to the identification of (-)-epigallocatechin-3-gallate (EGCG) as CFTR Cl- channel inhibitor. Analysis of 5 commercially available EGCG analogs including (+)-catechins (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG) and EGCG revealed that ECG also had CFTR inhibitory activity. EGCG dose-dependently and reversibly inhibited CFTR Cl- channel activity in transfected FRT cells with an IC50 value around 100 μM. In ex vivo studies, EGCG and ECG inhibited CFTR-mediated short-circuit currents in isolated rat colonic mucosa in a dose-dependent manner. In an intestinal closed-loop model in mice, intraluminal application of EGCG (10 μg) and ECG (10 μg) significantly reduced cholera toxin-induced intestinal fluid secretion. CFTR Cl- channel is a molecular target of natural compounds EGCG and ECG. CFTR inhibition may account, at least in part, for the antidiarrheal activity of Rhodiola kirilowii (Regel) Maxim. EGCG and ECG could be new lead compounds for development of CFTR-related diseases such as secretory diarrhea. PMID:25747701

  5. Bioactivity-Guided Fractionation of an Antidiarrheal Chinese Herb Rhodiola kirilowii (Regel) Maxim Reveals (-)–Epicatechin-3-Gallate and (-)–Epigallocatechin-3-Gallate as Inhibitors of Cystic Fibrosis Transmembrane Conductance Regulator

    PubMed Central

    Chen, Lei; Yu, Bo; Zhang, Yaofang; Gao, Xin; Zhu, Liang; Ma, Tonghui; Yang, Hong

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is the principal apical route for transepithelial fluid transport induced by enterotoxin. Inhibition of CFTR has been confirmed as a pharmaceutical approach for the treatment of secretory diarrhea. Many traditional Chinese herbal medicines, like Rhodiola kirilowii (Regel) Maxim, have long been used for the treatment of secretory diarrhea. However, the active ingredients responsible for their therapeutic effectiveness remain unknown. The purpose of this study is to identify CFTR inhibitors from Rhodiola kirilowii (Regel) Maxim via bioactivity-directed isolation strategy. We first identified fractions of Rhodiola kirilowii (Regel) Maxim that inhibited CFTR Cl- channel activity. Further bioactivity-directed fractionation led to the identification of (-)–epigallocatechin-3-gallate (EGCG) as CFTR Cl- channel inhibitor. Analysis of 5 commercially available EGCG analogs including (+)–catechins (C), (-)–epicatechin (EC), (-)–epigallocatechin (EGC), (-)–epicatechin-3-gallate (ECG) and EGCG revealed that ECG also had CFTR inhibitory activity. EGCG dose-dependently and reversibly inhibited CFTR Cl- channel activity in transfected FRT cells with an IC50 value around 100 μM. In ex vivo studies, EGCG and ECG inhibited CFTR-mediated short-circuit currents in isolated rat colonic mucosa in a dose-dependent manner. In an intestinal closed-loop model in mice, intraluminal application of EGCG (10 μg) and ECG (10 μg) significantly reduced cholera toxin-induced intestinal fluid secretion. CFTR Cl- channel is a molecular target of natural compounds EGCG and ECG. CFTR inhibition may account, at least in part, for the antidiarrheal activity of Rhodiola kirilowii (Regel) Maxim. EGCG and ECG could be new lead compounds for development of CFTR-related diseases such as secretory diarrhea. PMID:25747701

  6. RAFT Polymerization of N-[3-(Trimethoxysilyl)-propyl]acrylamide and Its Versatile Use in Silica Hybrid Materials.

    PubMed

    Maçon, Anthony L B; Greasley, Sarah L; Becer, C Remzi; Jones, Julian R

    2015-12-01

    Reversible addition-fragmentation chain transfer (RAFT) polymerization and characterization of an alkoxysilane acrylamide monomer using a trithiocarbonate chain transfer agent are described. Poly(N-[3-(trimethoxysilyl)propyl]acrylamide) (PTMSPAA) homopolymers are obtained with good control over the polymerization. A linear increase in the molecular weight is observed whereas the polydispersity values do not exceed 1.2 regardless of the monomer conversion. Moreover, PTMSPAA is used as a macro-RAFT agent to polymerize N-isopropylacrylamide (NIPAM). By varying the degree of polymerization of NIPAM within the block copolymer, different sizes of thermoresponsive particles are obtained. These particles are stabilized by the condensation of the alkoxysilane moieties of the polymers. Furthermore, a co-network of silica and PTMSPAA is prepared using the sol-gel process. After drying, transparent mesoporous hybrids are obtained with a surface area of up to 400 m(2) g(-1). PMID:26288010

  7. Convenient Synthesis of 18F-Radiolabeled R-(−)-N-n-propyl-2-(3-fluoropropanoxy-11-hydroxynoraporphine

    PubMed Central

    Sromek, Anna W.; Zhang, Shaohui; Akurathi, Vamsidar; Packard, Alan B.; Li, Wei; Alagille, David; Morley, Thomas J.; Baldwin, Ronald; Tamagnan, Gilles; Neumeyer, John L.

    2014-01-01

    Aporphines are attractive candidates for imaging D2 receptor function because, as agonists rather than antagonists, they are selective for the receptor in the high affinity state. In contrast, D2 antagonists do not distinguish between the high and low affinity states, and in vitro data suggests that this distinction may be important in studying diseases characterized by D2 dysregulation, such as schizophrenia and Parkinson’s disease. Accordingly, MCL-536 (R-(−)-N-n-propyl-2-(3-[18F]fluoropropanoxy-11-hydroxynoraporphine) was selected for labeling with 18F based on in vitro data obtained for the non-radioactive (19F) compound. Fluorine-18-labeled MCL-536 was synthesized in 70% radiochemical yield, >99% radiochemical purity and specific activity of 167 GBq/μmol (4.5 Ci/μmol) using p-toluenesulfonyl (tosyl) both as a novel protecting group for the phenol and a leaving group for the radiofluorination. PMID:25400260

  8. Convenient synthesis of 18F-radiolabeled R-(-)-N-n-propyl-2-(3-fluoropropanoxy-11-hydroxynoraporphine.

    PubMed

    Sromek, Anna W; Zhang, Shaohui; Akurathi, Vamsidhar; Packard, Alan B; Li, Wei; Alagille, David; Morley, Thomas J; Baldwin, Ronald; Tamagnan, Gilles; Neumeyer, John L

    2014-12-01

    Aporphines are attractive candidates for imaging D2 receptor function because, as agonists rather than antagonists, they are selective for the receptor in the high affinity state. In contrast, D2 antagonists do not distinguish between the high and low affinity states, and in vitro data suggests that this distinction may be important in studying diseases characterized by D2 dysregulation, such as schizophrenia and Parkinson's disease. Accordingly, MCL-536 (R-(-)-N-n-propyl-2-(3-[(18)F]fluoropropanoxy-11-hydroxynoraporphine) was selected for labeling with (18)F based on in vitro data obtained for the non-radioactive ((19)F) compound. Fluorine-18-labeled MCL-536 was synthesized in 70% radiochemical yield, >99% radiochemical purity, and specific activity of 167 GBq/µmol (4.5 Ci/µmol) using p-toluenesulfonyl (tosyl) both as a novel protecting group for the phenol and a leaving group for the radiofluorination. PMID:25400260

  9. (E)-2-Hydr­oxy-6-[(4-propyl­phenyl)­iminiometh­yl]phenolate

    PubMed Central

    Yazıcı, Serap; Albayrak, Çiğdem; Gümrükçüoğlu, İsmail; Şenel, İsmet; Büyükgüngör, Orhan

    2010-01-01

    The title compound, C16H17NO2, crystallizes with three crystallographically independent zwitterionic mol­ecules in the asymmetric unit which differ significantly in the orientations of the propyl side chains. The dihedral angles between the two benzene rings in the three mol­ecules are 6.17 (7), 6.75 (7) and 23.67 (7)°, respectively. In each independent mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, each independent mol­ecule exists as part of an O—H⋯O hydrogen-bonded centrosymmetric R 2 2(10) dimer. PMID:21580188

  10. Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride as inhibitor on mild steel.

    PubMed

    Sangeetha, Y; Meenakshi, S; SairamSundaram, C

    2015-01-01

    The biopolymer N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride (HTACC) was synthesised and its influence as a novel corrosion inhibitor on mild steel in 1M HCl was studied using gravimetric and electrochemical experiments. The compound obtained was characterised using FTIR and NMR studies. The inhibition efficiency increased with the increase in concentration and reached a maximum of 98.9% at 500 ppm concentration. Polarisation studies revealed that HTACC acts both as anodic and cathodic inhibitor. Electrochemical impedance studies confirmed that the inhibition is through adsorption on the metal surface. The extent of inhibition exhibits a negative trend with increase in temperature. Langmuir isotherm provides the best description on the adsorption nature of the inhibitor. SEM analysis indicated the presence of protective film formed by the inhibitor on the metal surface. PMID:25450546

  11. (Z)-N-(2,6-Diiso­propyl­phen­yl)-4-nitro­benzimidoyl chloride

    PubMed Central

    El-Hiti, Gamal A.; Smith, Keith; Jones, Dyfyr Heulyn; Masmali, Ali; Kariuki, Benson M.

    2013-01-01

    In the title compound, C19H21ClN2O2, the aromatic rings are approximately perpendicular to each other, subtending a dihedral angle of 87.7 (1)°. In the crystal, the 4-nitro­phenyl groups of pairs of neighbouring mol­ecules are parallel and oriented head-to-tail with a ring centroid–centroid distance of 3.9247 (12) Å, leading to a π–π inter­action between the pair. The faces of each phenyl ring of the 2,6-diiso­propyl­phenyl group inter­act with two different groups, viz. a chloro group of an adjacent mol­ecule on one side and the edge of the 4-nitro­phenyl ring of a second mol­ecule on the other side. PMID:24427026

  12. Anharmonic modeling of the conformation-specific IR spectra of ethyl, n-propyl, and n-butylbenzene

    NASA Astrophysics Data System (ADS)

    Tabor, Daniel P.; Hewett, Daniel M.; Bocklitz, Sebastian; Korn, Joseph A.; Tomaine, Anthony J.; Ghosh, Arun K.; Zwier, Timothy S.; Sibert, Edwin L.

    2016-06-01

    Conformation-specific UV-IR double resonance spectra are presented for ethyl, n-propyl, and n-butylbenzene. With the aid of a local mode Hamiltonian that includes the effects of stretch-scissor Fermi resonance, the spectra can be accurately modeled for specific conformers. These molecules allow for further development of a first principles method for calculating alkyl stretch spectra. Across all chain lengths, certain dihedral patterns impart particular spectral motifs at the quadratic level. However, the anharmonic contributions are consistent from molecule to molecule and conformer to conformer. This transferability of anharmonicities allows for the Hamiltonian to be constructed from only a harmonic frequency calculation, reducing the cost of the model. The phenyl ring alters the frequencies of the CH2 stretches by about 15 cm-1 compared to their n-alkane counterparts in trans configurations. Conformational changes in the chain can lead to shifts in frequency of up to 30 cm-1.

  13. The Laboratory Rotational Spectrum of Iso-Propyl Cyanide and AN Astronomical Search in Sagittarius B2(N)

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Coutens, A.; Walters, A.; Grabow, J.-U.; Belloche, A.; Menten, K. M.; Schlemmer, S.

    2009-06-01

    We have carried out a molecular line survey of Sagittarius B2(N) in the 3 mm region with selected recordings at 2 and 1.3 mm to probe the chemical complexity in massive star-forming regions. Noteworthy results include the detection of aminoacetonitrile, a possible precursor of the aminoacid glycine, the detection of ^{13}C isotopologs of vinyl cyanide, and the detection of ethyl formate as well as normal-propyl cyanide. The heavy atoms in the latter molecule form a chain. An isomer with a branched structure, iso-propyl cyanide, also exists, but its rotational spectrum has only been recorded in few transitions up to 40 GHz. Therefore, laboratory measurements were extended. The molecule is rather asymmetric (κ = -0.5766) with a strong a-dipole moment component of 4.05 (2) D and a still sizable c-component of 1.4 (2) D.^e Measurements in Köln were carried out in selected regions between 40 and 600 GHz. Since the c-type transitions appeared to be weaker than predicted additional Stark (and also zero-field) measurements have been carried out in Hannover between 6 and 20 GHz. We will present results of these laboratory spectroscopic investigations as well as the outcome of a search for the molecule in our Sgr B2(N) line survey. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, C. Hieret, Astron. Astrophys. 482 (2008) 179; Erratum 492 (2008) 796. H. S. P. Müller, A. Belloche, K. M. Menten, C. Comito, P. Schilke, J. Mol. Spectrosc. 251 (2008) 319. A. Belloche, R. T. Garrod, H. S. P. Müller, K. M. Menten, C. Comito, P. Schilke, Astron. Astrophys. (2009), accepted. G. E. Herberich, Z. Naturforsch. 22a (1967) 543. J. R. Durig, Y. S. Li, J. Mol. Struct. 21 (1974) 289.

  14. Design, synthesis and biological evaluation of novel benzimidazole-2-substituted phenyl or pyridine propyl ketene derivatives as antitumour agents.

    PubMed

    Wu, Lin-tao; Jiang, Zhi; Shen, Jia-jia; Yi, Hong; Zhan, Yue-chen; Sha, Ming-quan; Wang, Zhen; Xue, Si-tu; Li, Zhuo-rong

    2016-05-23

    A series of novel benzimidazole-2-subsituted phenyl or pyridine propyl ketene derivatives were designed and synthesized. The biological activities of these derivatives were then evaluated as potential antitumour agents. These compounds were assayed for growth-inhibitory activity against HCT116, MCF-7 and HepG2 cell lines in vitro. The IC50 values of compounds A1 and A7 against the cancer cells were 0.06-3.64 μM and 0.04-9.80 μM, respectively. Their antiproliferative activities were significantly better than that of 5-Fluorouracil (IC50: 56.96-174.50 μM) and were close to that of Paclitaxel (IC50: 0.026-1.53 μM). The activity of these derivatives was over 100 times more effective than other reported structures of chalcone analogues (licochalcone A). A preliminary mechanistic study suggested that these compounds inhibit p53-MDM2 binding. Compounds A1, A7 and A9 effectively inhibited tumour growth in BALB/c mice with colon carcinoma HCT116 cells. The group administered 200 mg/kg of compound A7 showed a 74.6% tumour growth inhibition with no signs of toxicity at high doses that was similar to the inhibition achieved with the 12.5 mg/kg irinotecan positive control (70.2%). Therefore, this class of benzimidazole-2-subsituted phenyl or pyridine propyl ketene derivatives represents a promising lead structure for the development of possible p53-MDM2 inhibitors as new antitumour agents. PMID:27017265

  15. Interaction between Pin1 and its natural product inhibitor epigallocatechin-3-gallate by spectroscopy and molecular dynamics simulations.

    PubMed

    Xi, Lei; Wang, Yu; He, Qing; Zhang, Qingyan; Du, Linfang

    2016-12-01

    The binding of epigallocatechin-3-gallate (EGCG) to wild type Pin1 in solution was studied by spectroscopic methods and molecular dynamics simulations in this research to explore the binding mode and inhibition mechanism. The binding constants and number of binding sites per Pin1 for EGCG were calculated through the Stern-Volmer equation. The values of binding free energy and thermodynamic parameters were calculated and indicated that hydrogen bonds, electrostatic interaction and Van der Waals interaction played the major role in the binding process. The alterations of Pin1 secondary structure in the presence of EGCG were confirmed by far-UV circular dichroism spectra. The binding model at atomic-level revealed that EGCG was bound to the Glu12, Lys13, Arg14, Met15 and Arg17 in WW domain. Furthermore, EGCG could also interact with Arg69, Asp112, Cys113 and Ser114 in PPIase domain. PMID:27372509

  16. Protection of human γB-crystallin from UV-induced damage by epigallocatechin gallate: spectroscopic and docking studies.

    PubMed

    Chaudhury, Susmitnarayan; Bag, Sudipta; Bose, Madhuparna; Das, Amit Kumar; Ghosh, Ananta Kumar; Dasgupta, Swagata

    2016-08-16

    The transparency of the human eye lens depends on the solubility and stability of the structural proteins of the eye lens, the crystallins. Although the mechanism of cataract formation is still unclear, it is believed to involve protein misfolding and/or aggregation of proteins due to the influence of several external factors such as ultraviolet (UV) radiation, low pH, temperature and exposure to chemical agents. In this article, we report the study of UV induced photo-damage (under oxidative stress) of recombinant human γB-crystallin in vitro in the presence of the major green tea polyphenol, (-)-epigallocatechin gallate (EGCG). We have shown that EGCG has the ability to protect human γB-crystallin from oxidative stress-induced photo-damage. PMID:27410057

  17. The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios

    PubMed Central

    Wobst, Heike J; Sharma, Apurwa; Diamond, Marc I; Wanker, Erich E; Bieschke, Jan

    2015-01-01

    The accumulation of amyloid-beta (Aβ) and tau aggregates is a pathological hallmark of Alzheimer's disease. Both polypeptides form fibrillar deposits, but several lines of evidence indicate that Aβ and tau form toxic oligomeric aggregation intermediates. Depleting such structures could thus be a powerful therapeutic strategy. We generated a fragment of tau (His-K18ΔK280) that forms stable, toxic, oligomeric tau aggregates in vitro. We show that (−)-epigallocatechin gallate (EGCG), a green tea polyphenol that was previously found to reduce Aβ aggregation, inhibits the aggregation of tau K18ΔK280 into toxic oligomers at ten- to hundred-fold substoichiometric concentrations, thereby rescuing toxicity in neuronal model cells. PMID:25436420

  18. Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases?

    PubMed Central

    2013-01-01

    Neurodegenerative disorders show an increasing prevalence in a number of highly developed countries. Often, these diseases require life-long treatment mostly with drugs which are costly and mostly accompanied by more or less serious side-effects. Their heterogeneous manifestation, severity and outcome pose the need for individualised treatment options. There is an intensive search for new strategies not only for treating but also for preventing these diseases. Green tea and green tea extracts seem to be such a promising and safe alternative. However, data regarding the beneficial effects and possible underlying mechanism, specifically in clinical trials, are rare and rather controversial or non-conclusive. This review outlines the existing evidence from preclinical studies (cell and tissue cultures and animal models) and clinical trials regarding preventive and therapeutic effects of epigallcatechin-3-gallate in neurodegenerative diseases and considers antioxidative vs. pro-oxidative properties of the tea catechin important for dosage recommendations. PMID:23418936

  19. [Lipase-catalyzed production of biodiesel from high acid value waste oil with ultrasonic assistant].

    PubMed

    Wang, Jian-Xun; Huang, Qing-De; Huang, Feng-Hong; Wang, Jiang-Wei; Huang, Qin-Jie

    2007-11-01

    Biodiesel fuel produced with the enzyme-catalyzed esterification and transesterification of high acid value waste oil through ultrasonic assistant was explored. Propyl oleate, biodiesel, converted from high acid value waste oil and 1-proponal catalyzed with immobilized lipases from Candida antarctica and Aspergillus oryzae in conditions of ultrasonic assistant. Commercial immobilized lipase Novozym 435 from C. antarctica was used as biocatalyst catalyzing high acid value waste oil and 1-proponal esterification and transesterification to propyl oleate under the ultrasonic assistant conditions and different conditions such as lipases amounts, initiatory molar ratio of propanol to oil, frequency of ultrasonic and power of ultrasonic were investigated and optimized. It is revealed that the enzymatic activity of Novozym435 is enhanced and, in particular, enzyme-catalyzed transesterification activity is enhanced obviously under the ultrasonic assistant conditions. Low frequency and mild energy ultrasonic is a key factor for enhancing enzymatic activity, emulsifying oil-propanol system and accelerating the speed of produce diffusing in the system. Under the optimal ultrasonic assistant reaction conditions, such as Novozym435 amounts 8% by oil quantity, initiatory molar ratio of propanol to oil 3:1, frequency of ultrasonic 28 KHz, power of ultrasonic 100 W and temperature of water batch 40-45 degrees C, the conversion ratio to propyl oleate reached to 94.86% in 50 mins in comparison with the highest conversion ratio to propyl oleate 84.43% under the conventional mechanical agitation conditions. Furthermore, it is demonstrated that various short chain linear and branched alcohols (C1-C5) show high conversion ratio to fatty acid alkyl esters (biodiesel) under the optimal ultrasonic assistant reaction conditions. On the other hand, ultrasonic energy is propitious to reduce the adsorption of product propyl oleate, by-product glycerol and other emplastics in system on the

  20. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor

    SciTech Connect

    Van Aller, Glenn S.; Carson, Jeff D.; Tang, Wei; Peng, Hao; Zhao, Lin; Copeland, Robert A.; Tummino, Peter J.; Luo, Lusong

    2011-03-11

    Research highlights: {yields} Epigallocatechin-3-gallate (EGCG) is an ATP-competitive inhibitor of PI3K and mTOR with Ki values around 300 nM. {yields} EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231and A549 cells. {yields} Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site. {yields} These results suggest another important molecular mechanism for the anticancer activities of EGCG. -- Abstract: The PI3K signaling pathway is activated in a broad spectrum of human cancers, either directly by genetic mutation or indirectly via activation of receptor tyrosine kinases or inactivation of the PTEN tumor suppressor. The key nodes of this pathway have emerged as important therapeutic targets for the treatment of cancer. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea, is an ATP-competitive inhibitor of both phosphoinositide-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) with K{sub i} values of 380 and 320 nM respectively. The potency of EGCG against PI3K and mTOR is within physiologically relevant concentrations. In addition, EGCG inhibits cell proliferation and AKT phosphorylation at Ser473 in MDA-MB-231 and A549 cells. Molecular docking studies show that EGCG binds well to the PI3K kinase domain active site, agreeing with the finding that EGCG competes for ATP binding. Our results suggest another important molecular mechanism for the anticancer activities of EGCG.

  1. Influence of Antioxidants on the Bioactivity of Amphotericin B

    PubMed Central

    Andrews, Fred A.; Beggs, William H.; Sarosi, George A.

    1977-01-01

    Four antioxidants, propyl gallate, butylated hydroxyanisole, butylated hydroxytoluene, and d-α-tocopherol acid succinate were found to stabilize amphotericin B and to prolong its antifungal activity against Candida albicans. Although each of the antioxidants was effective in this respect, propyl gallate and butylated hydroxyanisole were better than butylated hydroxytoluene and d-α-tocopherol acid succinate. None of the antioxidants alone adversely affected normal cell growth. It is suggested that amphotericin B instability is due, at least in part, to lability of the carbon-carbon double bonds of the polyene moiety toward autoxidation. By protecting the drug molecule with an antioxidant, it is possible to significantly lower the quantity of AB necessary to obtain particular antifungal effects. PMID:324396

  2. Extract from Rumex acetosa L. for Prophylaxis of Periodontitis: Inhibition of Bacterial In Vitro Adhesion and of Gingipains of Porphyromonas gingivalis by Epicatechin-3-O-(4β→8)-Epicatechin-3-O-Gallate (Procyanidin-B2-Di-Gallate)

    PubMed Central

    Schmuch, Jana; Beckert, Sabine; Brandt, Simone; Löhr, Gesine; Hermann, Fabian; Schmidt, Thomas J.; Beikler, Thomas; Hensel, Andreas

    2015-01-01

    Background The aerial parts of Rumex acetosa L. have been used in traditional European medicine for inflammatory diseases of the mouth epithelial tissue. The following study aimed to investigate the influence of a proanthocyanidin-enriched extract from R. acetosa extract against the adhesion of Porphyromonas gingivalis (P. gingivalis), a pathogen strongly involved in chronic and aggressive periodontitis. A further goal was to define the bioactive lead structures responsible for a potential antiadhesive activity and to characterize the underlying molecular mechanisms of the antiadhesive effects. Methodology An extract of R. acetosa (RA1) with a defined mixture of flavan-3-ols, oligomeric proanthocyanidins and flavonoids, was used. Its impact on P. gingivalis adhesion to KB cells was studied by flow cytometry, confocal laser scanning microscopy and in situ adhesion assay using murine buccal tissue. RA1 and its compounds 1 to 15 were further investigated for additional effects on gingipain activity, hemagglutination and gene expression by RT-PCR. Principal Findings RA1 (5 to 15 μg/mL) reduced P. gingivalis adhesion in a dose-dependent manner to about 90%. Galloylated proanthocyanidins were confirmed to be responsible for this antiadhesive effect with epicatechin-3-O-gallate-(4β,8)-epicatechin-3’-O-gallate (syn. procyanidin B2-di-gallate) being the lead compound. Ungalloylated flavan-3-ols and oligomeric proanthocyanidins were inactive. RA1 and the galloylated proanthocyanidins strongly interact with the bacterial virulence factor Arg-gingipain, while the corresponding Lys-gingipain was hardly influenced. RA1 inhibited also hemagglutination. In silico docking studies indicated that epicatechin-3-O-gallate-(4β,8)-epicatechin-3’-O-gallate interacts with the active side of Arg-gingipain and hemaglutinin from P. gingivalis; the galloylation of the molecule seems to be responsible for fixation of the ligand to the protein. In conclusion, the proanthocyanidin

  3. (-)-Epigallocatechin-3-Gallate Modulates Spinal Cord Neuronal Degeneration by Enhancing Growth-Associated Protein 43, B-Cell Lymphoma 2, and Decreasing B-Cell Lymphoma 2-Associated X Protein Expression after Sciatic Nerve Crush Injury

    PubMed Central

    Al-Maghrebi, May; Rao, Muddanna S.; Khraishah, Haitham

    2015-01-01

    Abstract Our previous studies have established that (-)-epigallocatechin-3-gallate (EGCG) has both neuroprotective and -regenerative capacity after sciatic nerve injury. Moreover, this improvement was evident on the behavioral level. The aim of this study was to investigate the central effects of ECGC on spinal cord motor neurons after sciatic nerve injury. Our study showed that administering 50 mg/kg intraperitoneally i.p. of EGCG to sciatic nerve-injured rats improved their performance on different motor functions and mechanical hyperesthesia neurobehavioral tests. Histological analysis of spinal cords of EGCG-treated sciatic nerve-injured (CRUSH+ECGC) animals showed an increase in the number of neurons in the anterior horn, when compared to the naïve, sham, and saline-treated sciatic nerve-injured (CRUSH) control groups. Additionally, immunohistochemical study of spinal cord sections revealed that EGCG reduced the expression of glial fibrillary acidic protein and increased the expression of growth-associated protein 43, a marker of regenerating axons. Finally, EGCG reduced the ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 and increased the expression of survivin gene. This study may shed some light on the future clinical use of EGCG and its constituents in the treatment of peripheral nerve injury. PMID:25025489

  4. [Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].

    PubMed

    Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying

    2011-08-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively. PMID:22007520

  5. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    PubMed

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (p<0.05) were observed in both peel and pulp. The levels of total phenolic acids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms. PMID:27542479

  6. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    EPA Science Inventory

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  7. Complete Genome Sequence of Aneurinibacillus migulanus E1, a Gramicidin S- and d-Phenylalanyl-l-Propyl Diketopiperazine-Deficient Mutant.

    PubMed

    Belbahri, Lassaad; Alenezi, Faizah N; Luptakova, Lenka; Rateb, Mostafa E; Woodward, Steve

    2015-01-01

    We report here the complete genome sequence of the Aneurinibacillus migulanus E1 mutant deficient in gramicidin S (GS) and d-phenylalanyl-l-propyl diketopiperazine (DKP) formation. The genome consists of a circular chromosome (6,301,904 bp, 43.20% G+C content) without any plasmid. The complete genome sequence enables further investigation of the biosynthetic mechanism and the biological function of gramicidin S. PMID:26679577

  8. Supplementing antioxidants to pigs fed diets high in oxidants: II. Effects on carcass characteristics, meat quality, and fatty acid profile.

    PubMed

    Lu, T; Harper, A F; Dibner, J J; Scheffler, J M; Corl, B A; Estienne, M J; Zhao, J; Dalloul, R A

    2014-12-01

    The study was conducted to determine effects of dietary supplementation with a blend of antioxidants (ethoxyquin and propyl gallate) on carcass characteristics, meat quality, and fatty acid profile in finishing pigs fed a diet high in oxidants. A total of 100 crossbred barrows (10.9±1.4 kg BW, 36±2 d of age) were randomly allotted to 5 diet treatments (5 replicate pens per treatment, 4 pigs per pen). Treatments included: 1) HO: high oxidant diet containing 5% oxidized soy oil and 10% PUFA source which contributed 5.56% crude fat and 2.05% docosahexanoic acid (DHA) to the diet; 2) VE: the HO diet with 11 IU/kg of added vitamin E; 3) AOX: the HO diet with antioxidant blend (135 mg/kg); 4) VE+AOX: the HO diet with both vitamin E and antioxidant blend; and 5) SC: a standard corn-soy control diet with nonoxidized oil and no PUFA source. The trial lasted for 118 d; on d 83, the HO diet pigs were switched to the SC diet due to very poor health. From that point, the VE pigs displayed the poorest performance. On d 118, 2 pigs from each pen were harvested for sampling. Compared to pigs fed SC diet, the HO and VE pigs (P<0.05) showed lighter carcass weight, less back fat, less lean body mass, and smaller loin eye area. In addition, the VE pigs had decreased dressing percentage than the AOX and VE+AOX pigs (65.7 vs. 75.3 and 74.2%). Compared to the SC pigs, greater moisture percentage (74.7 vs. 77.4%) and less extractable lipid content (2.43 vs. 0.95%) were found in VE fed pigs (P<0.05). Drip loss of loin muscle in VE pigs was less than SC pigs (0.46 vs. 3.98%, P=0.02), which was associated with a trend for a greater 24-h muscle pH (5.74 vs. 5.54, P=0.07). The antioxidant blend addition in the high oxidant diet attenuated all of these effects to levels similar to SC (P>0.05), except a* value (redness) and belly firmness. Visible yellow coloration of backfat and lipofuscin in HO and VE pigs was observed at harvest at d 118. The high oxidant diet resulted in greater

  9. Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection.

    PubMed

    He, Wei; Liu, Zhongxiang; Du, Xiaosong; Jiang, Yadong; Xiao, Dan

    2008-07-30

    A new material-poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane}(PMDFPS) sensitive to toxic organophosphate vapor was synthesized with 2,3-difluorophenol, allyl bromide and poly (methyl hydrosiloxane) as raw materials, via O-alkylation, Claisen rearrange reaction and hydrosilylation reaction. This novel material was then coated on a quartz crystal microbalance (QCM) to investigate its gas sensitive properties to the nerve agent simulant dimethyl methylphosphonate (DMMP) vapor, as well as known interfering vapors. When tested with competing vapors, the sensor was more than 10 times sensitive to DMMP than to other interfering vapors. Thus, high selectivity of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} to DMMP was demonstrated. The poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane}-QCM sensor responded linearly to DMMP vapor with a slope of 14 Hz/ppm in the 1-50 ppm range with a detection limit of 0.21 ppm (S/N=3). PMID:18585342

  10. Acute health effects from community exposure to N-propyl mercaptan from an ethoprop (Mocap)-treated potato field in Siskiyou County, California.

    PubMed

    Ames, R G; Stratton, J W

    1991-01-01

    A 145-acre potato field adjacent to Dorris, California, was treated with ethoprop (Mocap) to control nematodes. Ethoprop releases n-propyl mercaptan, a highly odorous and volatile gas, as a degradation product of the pesticide. An epidemiological investigation was undertaken by the California Department of Health Services because community residents sought medical attention for odor-related illness. Elevated health effects were found among those who reported smelling a strong odor (n-propyl mercaptan has a characteristic onion-like odor). In a logistic regression analysis, the most highly elevated 6-wk health effect incidence risks, expressed as odds ratios (ORs) adjusted for age, sex, and current cigarette smoking status, were for headache (OR = 5.08), diarrhea (OR = 3.80), runny nose (OR = 5.31), sore throat (OR = 3.58), burning/itching eyes (OR = 5.64), fever (OR = 3.59), hay fever attacks (OR = 3.50), and asthma attacks (OR = 6.0). Based upon these elevated health effects, it is recommended that human exposures to n-propyl mercaptan be minimized to the extent practicable. PMID:2069429

  11. Psychotomimetic opiate receptors labeled and visualized with (+)-(/sup 3/H)3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    SciTech Connect

    Largent, B.L.; Gundlach, A.L.; Snyder, S.H.

    1984-08-01

    3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP) has been proposed as a selective dopamine autoreceptor agonist in the central nervous system. This report describes the pharmacology and localization of specific high-affinity binding sites for (+)-(/sup 3/H)3-PPP in brain. The drug specificity of (+)-(/sup 3/H)3-PPP binding is identical to that of sigma receptors, which may mediate psychotomimetic effects of some opiates. Haloperidol and the opioid derivatives, pentazocine, cyclazocine, and SKF 10,047 are potent inhibitors of (+)-(/sup 3/H)3-PPP binding. Stereoselectivity is exhibited for the (+) isomers of cyclazocine and SKF 10.047 at the sigma site, opposite to the stereoselectivity seen at ..mu.., sigma, and k opiate receptors. (+)-(/sup 3/H)3-PPP does not label dopamine receptors, as potent dopamine agonists and antagonists are weak inhibitors of binding and the localization of specific (+)-(/sup 3/H)3-PPP binding sites does not parallel that of dopamine neurons. Discrete localizations of (+)-(/sup 3/H)3-PPP binding sites in many brain areas including limbic, midbrain, brainstem, and cerebellar regions may explain psychotomimetic actions of opiates and behavior effects of 3-PPP. 41 references, 2 figures, 1 table.

  12. Effects of Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Tetrahymena Thermophila: Targeting the Ribosome

    PubMed Central

    Li, Jing; Giesy, John P.; Yu, Liqin; Li, Guangyu; Liu, Chunsheng

    2015-01-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has been frequently detected in the environment, and exposure to TDCPP appears widespread. It has been implicated to cause toxicity in vertebrates, but its potential to affect lower-trophic-level species remains unknown. In the present study, the ciliated protozoan, Tetrahymena thermophila, was used as a model to evaluate toxic effects of TDCPP and explore molecular mechanisms by integrating phenotypic observation, RNA-Seq and transmission electron microscopy (TEM) Imaging technologies. Exposure to 0.01, 0.1 or 1 μM TDCPP for 5 days significantly decreased the relative biomass by reducing number of cells, size of cells and quantity of cilia in a dose-dependent manner. RNA-Seq analysis demonstrated that expression of twenty-one ribosome protein genes was down-regulated and these genes were enriched in “ribosome” term in KEGG pathway analysis. Furthermore, down-regulation of genes expressing ribosome proteins was accompanied by decreased ribosome quantity in rough endoplasmic reticulum and cytoplasm and enlarged ribosome size. Therefore, taken together, the data from the present study suggest that exposure to TDCPP affects growth and reproduction of Tetrahymena thermophila by targeting the ribosome. This information might provide insights into critical mechanisms of toxic action in other species and lead to useful bioindicators of exposure to TDCPP. PMID:25994279

  13. A case study on quantitative in vitro to in vivo extrapolation for environmental esters: Methyl-, propyl- and butylparaben.

    PubMed

    Campbell, Jerry L; Yoon, Miyoung; Clewell, Harvey J

    2015-06-01

    Parabens have been reported as potential endocrine disrupters and are widely used in consumer projects including cosmetics, foods and pharmaceuticals. We report on the development of a PBPK model for methyl-, propyl-, and butylparaben. The model was parameterized through a combination of QSAR for tissue solubility and quantitative in vitro to in vivo extrapolation (IVIVE) for hydrolysis in portals of entry including intestine and skin as well as in the primary site of metabolism, the liver. Overall, the model provided very good agreement with published time-course data in blood and urine from controlled dosing studies in rat and human, and demonstrates the potential value of quantitative IVIVE in expanding the use of human biomonitoring data in safety assessment. An in vitro based cumulative margin of safety (MOS) was calculated by comparing the effective concentrations from an in vitro assay of estrogenicity to the free paraben concentrations predicted by the model to be associated with the 95th percentile urine concentrations reported in NHANES (2009-2010 collection period). The calculated MOS for adult females was 108, whereas the MOS for males was 444. PMID:25839974

  14. Effects of Tris(1,3-dichloro-2-propyl) Phosphate (TDCPP) in Tetrahymena Thermophila: Targeting the Ribosome

    NASA Astrophysics Data System (ADS)

    Li, Jing; Giesy, John P.; Yu, Liqin; Li, Guangyu; Liu, Chunsheng

    2015-05-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has been frequently detected in the environment, and exposure to TDCPP appears widespread. It has been implicated to cause toxicity in vertebrates, but its potential to affect lower-trophic-level species remains unknown. In the present study, the ciliated protozoan, Tetrahymena thermophila, was used as a model to evaluate toxic effects of TDCPP and explore molecular mechanisms by integrating phenotypic observation, RNA-Seq and transmission electron microscopy (TEM) Imaging technologies. Exposure to 0.01, 0.1 or 1 μM TDCPP for 5 days significantly decreased the relative biomass by reducing number of cells, size of cells and quantity of cilia in a dose-dependent manner. RNA-Seq analysis demonstrated that expression of twenty-one ribosome protein genes was down-regulated and these genes were enriched in “ribosome” term in KEGG pathway analysis. Furthermore, down-regulation of genes expressing ribosome proteins was accompanied by decreased ribosome quantity in rough endoplasmic reticulum and cytoplasm and enlarged ribosome size. Therefore, taken together, the data from the present study suggest that exposure to TDCPP affects growth and reproduction of Tetrahymena thermophila by targeting the ribosome. This information might provide insights into critical mechanisms of toxic action in other species and lead to useful bioindicators of exposure to TDCPP.

  15. Effects of selenium treatment on 6-n-propyl-2-thiouracil-induced impairment of long-term potentiation.

    PubMed

    Bitiktaş, Soner; Tan, Burak; Batakçı, Melek; Kavraal, Şehrazat; Dursun, Nurcan; Süer, Cem

    2016-08-01

    The goal of this study was to evaluate whether sodium selenite could afford protection against the effects of hypothyroidism on long-term potentiation (LTP), which is thought to be the cellular basis for learning and memory. Hypothyroidism was induced in young-adult rats by the administration of 6-n-propyl-2-thiouracil (PTU) in tap water for 21 days. Half of these hypothyroid and euthroid rats were given 10ppM selenium with their drinking water. Field potentials were recorded from the dentate gyrus in response to stimulation of the medial perforant pathway in vivo. PTU treatment resulted in a significant reduction in both free T3 and free T4 levels, whereas selenium administration to PTU-treated rats restored only the levels of free T3 to their control values. Thyroid hormone levels were not affected by selenium in euthyroid rats. PTU-treated rats exhibited an attenuation of population spike (PS) - LTP, but a comparable potentiation of excitatory postsynaptic potential (EPSP) was found among these rats. The administration of selenium to PTU-treated rats was partially able to attenuate impairment of LTP, but not of potentiation during the LTP induction protocol in hypothyroid rats. Interestingly, the hypothyroid rats that were supplemented with selenium had a lower EPSP potentiation during induction protocol than the control rats. The present study suggests a possible importance of T3 in Se-induced rescue of impaired PS-LTP in hypothyroidism. PMID:26892488

  16. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester.

    PubMed

    Tang, Zhenjie; Yuan, Shuqiang; Hu, Yumin; Zhang, Hui; Wu, Wenjing; Zeng, Zhaolei; Yang, Jing; Yun, Jingping; Xu, Ruihua; Huang, Peng

    2012-02-01

    It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver metastatic tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1-10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy. PMID:22350014

  17. Genotoxicity assessment of propyl thiosulfinate oxide, an organosulfur compound from Allium extract, intended to food active packaging.

    PubMed

    Mellado-García, P; Maisanaba, S; Puerto, M; Llana-Ruiz-Cabello, M; Prieto, A I; Marcos, R; Pichardo, S; Cameán, A M

    2015-12-01

    Essential oils from onion (Allium cepa L.), garlic (Allium sativum L.), and their main components, such as propyl thiosulfinate oxide (PTSO) are being intended for active packaging with the purpose of maintaining and extending food product quality and shelf life. The present work aims to assess for the first time the potential mutagenicity/genotoxicity of PTSO (0-50 µM) using the following battery of genotoxicity tests: (1) the bacterial reverse-mutation assay in Salmonella typhimurium (Ames test, OECD 471); (2) the micronucleus test (OECD 487) (MN) and (3) the mouse lymphoma thymidine-kinase assay (OECD 476) (MLA) on L5178YTk(+/-), cells; and (4) the comet assay (with and without Endo III and FPG enzymes) on Caco-2 cells. The results revealed that PTSO was not mutagenic in the Ames test, however it was mutagenic in the MLA assay after 24 h of treatment (2.5-20 µM). The parent compound did not induce MN on mammalian cells; however, its metabolites (in the presence S9) produced positive results (from 15 µM). Data from the comet assay indicated that PTSO did not induce DNA breaks or oxidative DNA damage. Further in vivo genotoxicity tests are needed to confirm its safety before it is used as active additive in food packaging. PMID:26607106

  18. Characterization of a bystander effect induced by the endocrine-disrupting chemical 6-propyl-2-thiouracil in zebrafish embryos.

    PubMed

    Liu, Chunsheng; Yan, Wei; Zhou, Bingsheng; Guo, Yongyong; Liu, Hongling; Yu, Hongxia; Giesy, John P; Wang, Jianghua; Li, Guangyu; Zhang, Xiaowei

    2012-08-15

    This study was conducted to evaluate possible bystander effects induced by the model chemical 6-propyl-2-thiouracil (PTU) on melanin synthesis. Zebrafish (Danio rerio) embryos were treated with PTU by either microinjection exposure, via waterborne exposure or indirectly through bystander exposure. Melanin content, related mRNA and protein expression were examined at the end of exposure (36 h post-fertilization). Direct exposure to PTU decreased the melanin content, up-regulated mRNA expressions of oculocutaneous albinism type 2 (OCA2), tyrosinase (TYR), dopachrometautomerase (DCT), tyrosinase-related protein 1 (TYRP1) and silver (SILV), and increased the protein expressions of TYR and SILV. Bystander exposure also up-regulated mRNA and protein expressions of TYR and SILV but increased melanin contents. Correlation analysis demonstrated that mRNA expressions of OCA2, TYR, DCT, TYRP1, SILV and protein expressions of TYR and SILV in bystander exposure groups were positively correlated with corresponding expressions in microinjection exposure groups. The results might have environmental implications and highlight the need to consider the bystander effects when assessing potential risks of endocrine-disrupting chemicals. PMID:22542736

  19. Epigallocatechin gallate promotes the vasorelaxation power of the antiatherosclerotic dipeptide Trp-His in contracted rat aorta.

    PubMed

    Tanaka, Mitsuru; Zhao, Jian; Suyama, Aki; Matsui, Toshiro

    2012-09-12

    The aim of this study was to demonstrate the enhancement of the vasorelaxation power of the antiatherosclerotic voltage-dependent L-type Ca(2+) channel (VDCC)-blocking peptide Trp-His by epigallocatechin gallate (EGCg). We found that 300 μM EGCg dramatically enhanced the magnitude of Trp-His-induced vasorelaxation by a factor of >6 (EC(50) of Trp-His: EGCg(-), 2.80 ± 0.05 mM; EGCg(+), 0.45 ± 0.04 mM) in phenylephrine-contracted rat aorta. The enhancing effect of EGCg was completely abolished in endothelium-removed aorta and high K(+)-contracted aorta. The enhancement of Trp-His-induced vasorelaxation by EGCg was significantly diminished by either N(G)-monomethyl-l-arginine acetate (NO synthase (NOS) inhibitor) or 1-H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one (soluble guanylyl cyclase inhibitor), together with the enhancement of NOS activity by EGCg. These results indicate that the enhancing effect of EGCg in Trp-His-induced vasorelaxation may be involved in the activation of NO/cGMP pathway. PMID:22900606

  20. Systematic review of green tea epigallocatechin gallate in reducing low-density lipoprotein cholesterol levels of humans.

    PubMed

    Momose, Yuko; Maeda-Yamamoto, Mari; Nabetani, Hiroshi

    2016-09-01

    We conducted a systematic review of the literature for the ability of green tea epigallocatechin gallate (EGCG) to lower low-density lipoprotein cholesterol (LDL-C). Study subjects were limited to healthy individuals and randomized, controlled trials on human serum lipid levels, especially LDL-C, conducted. A total of 17 trials (n = 1356) met all of the inclusion criteria. According to weighted mean differences for changes from baseline with 95% confidence intervals (CI), 107-856 mg/d of EGCG for 4 to 14 weeks reduced LDL-C by -9.29 mg/dl (95% CI, -12.27 to -6.31). Sub-analysis was performed to compare the EGCG lowering effect on LDL-C between non-obese and obese subjects, EGCG dose, baseline of LDL-C levels, or BMI. We concluded that consumption of green tea EGCG resulted in a significant reduction of LDL-C at any baseline level and any dose between 107 and 856 mg/d, and the effect size was slightly dependent on the baseline lipid level of the subjects. PMID:27324590

  1. pH and temperature stability of (-)-epigallocatechin-3-gallate-β-cyclodextrin inclusion complex-loaded chitosan nanoparticles.

    PubMed

    Liu, Fei; Majeed, Hamid; Antoniou, John; Li, Yue; Ma, Yun; Yokoyama, Wallace; Ma, Jianguo; Zhong, Fang

    2016-09-20

    The oxidative stability of (-)-epigallocatechin-3-gallate (EGCG) incorporated as inclusion complexes (ICs) in sulfobutylether-β-cyclodextrin sodium (SBE-β-CD) and then ionotropically crosslinked with chitosan hydrochloride (CSH) into nanoparticles were investigated. EGCG-loaded CSH-SBE-β-CD nanoparticles (CSNs) were physically unstable at higher pH and temperature. The particle size of CSNs was unchanged in the pH range of 3-5, but the microenvironment of EGCG-IC appeared to be intact until the pH increased to 6.5 by fluorescence spectroscopy. The physical structure of EGCG-ICs was also affected during storage in addition to CSNs, which was further affected as temperature increased from 25 to 55°C. The decrease in antioxidant activities of EGCG-ICs and free EGCG with increasing pH, storage time and temperature were modest compared to the prominent decreases in antioxidant activities of EGCG-loaded CSNs. The extreme entrapment of EGCG-ICs and/or free EGCG in the aggregated CSNs restricted the release of EGCG, thus inhibiting the antioxidant activities. PMID:27261758

  2. Epigallocatechin-3-gallate attenuates the AIM2-induced secretion of IL-1β in human epidermal keratinocytes.

    PubMed

    Yun, Mihee; Seo, Gimoon; Lee, Ji-Young; Chae, Gue Tae; Lee, Seong-Beom

    2015-11-27

    The pro-inflammatory cytokine interleukin-1β (IL-1β) plays a central role in the pathogenesis of psoriasis. Keratinocytes are a major source of IL-1β and express absent in melanoma 2 (AIM2). AIM2 recognizes a double-stranded DNA and initiates the IL-1β-processing of inflammasome. The AIM2 inflammasome is a cytosolic multiprotein complex composed of AIM2, an apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1. Epigallocatechin-3-Gallate (EGCG), a major polyphenolic component of green tea, has anti-inflammatory properties. In the current study, we investigated the issue of whether or how EGCG suppresses AIM2 inflammasome in human epidermal keratinocytes, neonatal (HEKn). Treatment with EGCG, before or after IFN-γ priming, attenuated poly(dA:dT)-induced IL-1β secretion in HEKn cells. Pre-treatment with EGCG reduced the level of IFN-γ-induced priming signal via the down-regulation of pro-IL-1β and pro-capspase-1 in HEKn cells. Furthermore, treatment with EGCG attenuated poly(dA:dT)-induced ASC oligomerization and caspase-1 activation in IFN-γ-primed HEKn cells. These results suggest that EGCG attenuates AIM2-induced IL-1β secretion by suppressing both IFN-γ-mediated priming and poly(dA:dT)-induced ASC oligomerization of inflammasomes in human epidermal keratinocytes. PMID:26494301

  3. Effects of epigallocatechin-3-gallate on the healing of extraction sockets with a periapical lesion: A pilot study in dogs.

    PubMed

    Hong, Ji-Youn; Yon, Jeyoung; Lee, Jung-Seok; Lee, In-Kyeong; Yang, Cheryl; Kim, Min-Soo; Choi, Seong-Ho; Jung, Ui-Won

    2015-05-01

    The aim of this study was to characterize the healing process of extraction sockets with a periapical lesion following immediate graft with collagenated bovine bone mineral (CBBM) soaked with epigallocatechin-3-gallate (EGCG). Following induction of periapical lesions in premolars in five dogs, treatment of extraction sockets was divided into three groups: control (no treatment) and two test groups, CBBM with or without EGCG. 3D reconstruction and superimposition of the digital images were used to measure the dimensional changes in alveolar ridge. Histologic specimen was evaluated in all groups. The horizontal ridge widths at 4-mm level were wider in both test groups (3.3 ± 1.7 mm in CBBM; 3.0 ± 1.7 mm in CBBM+EGCG) than in the control group (1.7 ± 2.4 mm). Fibrosis and limited new bone formation were observed in the apical regions of test groups; however, the extent of fibrosis was less in the CBBM+EGCG group. Within the limitations of this study, it was conjectured that adjunctive use of EGCG with CBBM can be a candidate biomaterial in grafting of extraction socket with periapical lesion. Bone regeneration at the coronal region of the CBBM grafted socket might not be influenced by the presence of a periapical lesion. PMID:25045081

  4. Preparative separation of gallocatechin gallate from Camellia ptilophylla using macroporous resins followed by sephadex LH-20 column chromatography.

    PubMed

    Li, Kaikai; Zhou, Xuelin; Liu, Cheuk-Lun; Yang, Xiaorong; Han, Xiaoqiang; Shi, Xianggang; Song, Xiaohong; Ye, Chuangxing; Ko, Chun-hay

    2016-02-01

    Gallocatechin gallate (GCG) possesses multiple potential biological activities. However, the content of GCG in traditional green tea is too low which limits its in-depth pharmacological research and application. In the present study, a simple, efficient and environment-friendly chromatographic separation method was developed for preparative enrichment and separation of GCG from cocoa tea (Camellia ptilophylla) which contains high content of GCG. In the first step, the adsorption properties of selected resins were evaluated, and XAD-7HP resin was chosen by its adsorption and desorption properties for GCG. In order to maximize column efficiency for GCG collection, the operating parameters (e.g., flow rate, ethanol concentration, and bed height) were optimized. We found that the best combination was the feed concentration at 20mg/mL, flow rate at 0.75 BV/h and the ratio of diameter to bed heights as 1:12. Under these conditions, the purity of GCG was 45% with a recovery of 89%. In order to obtain pure target, a second step was established using column chromatography with sephadex LH-20 gel and 55% ethanol-water solution as eluent. After this step, the purity of the GCG was 91% with a recovery of 68% finally. PMID:26744789

  5. Reversible regulation of cell cycle-related genes by epigallocatechin gallate for hibernation of neonatal human tarsal fibroblasts.

    PubMed

    Bae, Jung Yoon; Kanamune, Jun; Han, Dong-Wook; Matsumura, Kazuaki; Hyon, Suong-Hyu

    2009-01-01

    We investigated the hibernation effect of epigallocatechin-3-O-gallate (EGCG) on neonatal human tarsal fibroblasts (nHTFs) by analyzing the expression of cell cycle-related genes. EGCG application to culture media moderately inhibited the growth of nHTFs, and the removal of EGCG from culture media led to complete recovery of cell growth. EGCG resulted in a slight decrease in the cell population of the S and G(2)/M phases of cell cycle with concomitant increase in that of the G(0)/G(1) phase, but this cell cycle profile was restored to the initial level after EGCG removal. The expression of cyclin D1 (CCND1), CCNE2, CCN-dependent kinase 6 (CDK6), and CDK2 was restored, whereas that of CCNA, CCNB1, and CDK1 was irreversibly attenuated. The expression of a substantial number of genes analyzed by cDNA microarray was affected by EGCG application, and these affected expression levels were restored to the normal levels after EGCG removal. We also found the incorporation of FITC-EGCG into the cytosol of nHTFs and its further nuclear translocation, which might lead to the regulation of the exogenous signals directed to genes for cellular responses including proliferation and cell cycle progression. These results suggest that EGCG temporarily affects not only genes related to the cell cycle but also various other cellular functions. PMID:19622233

  6. Effects of prolonged ingestion of epigallocatechin gallate on diabetes type 1-induced vascular modifications in the erectile tissue of rats.

    PubMed

    Lombo, C; Morgado, C; Tavares, I; Neves, D

    2016-07-01

    Diabetes Mellitus type 1 is a metabolic disease that predisposes to erectile dysfunction, partly owing to structural and molecular changes in the corpus cavernosum (CC) vessels. The aim of this study was to determine the effects of early treatment with the antioxidant epigallocatechin gallate (EGCG) in cavernous diabetes-induced vascular modifications. Diabetes was induced in two groups of young Wistar rats; one group was treated with EGCG for 10 weeks. A reduction in smooth muscle content was observed in the CC of diabetic rats, which was significantly attenuated with EGCG consumption. No differences were observed among groups, neither in the expression of VEGF assayed by western blotting nor in the immunofluorescent labeling of vascular endothelial growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2). VEGFR2 was restricted to the endothelium, whereas VEGF and VEGFR1 co-localized in the smooth muscle layer. With regard to the Angiopoietin/Tie-2 system, no quantitative differences in Angiopoietin 1 were observed among the experimental groups. Ang1 localization was restricted to the smooth muscle layer, and receptor Tie2 and Angiopoietin 2 were both expressed in the endothelium. In brief, our results suggest that EGCG consumption prevented diabetes-induced loss of cavernous smooth muscle but does not affect vascular growth factor expression in young rats. PMID:27169491

  7. Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication

    PubMed Central

    Zhong, L; Hu, J; Shu, W; Gao, B; Xiong, S

    2015-01-01

    Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits diverse beneficial properties, including antiviral activity. Autophagy is a cellular process that is involved in the degradation of long-lived proteins and damaged organelles. Recent evidence indicates that modulation of autophagy is a potential therapeutic strategy for various viral diseases. In the present study, we investigated the effect of EGCG on hepatitis B virus (HBV) replication and the possible involvement of autophagy in this process. Our results showed that HBV induced autophagosome formation, which was required for replication of itself. However, although EGCG efficiently inhibited HBV replication, it enhanced, but not inhibited, autophagosome formation in hepatoma cells. Further study showed that HBV induced an incomplete autophagy, while EGCG, similar to starvation, was able to induce a complete autophagic process, which appeared to be unfavorable for HBV replication. Furthermore, it was found that HBV induced an incomplete autophagy by impairing lysosomal acidification, while it lost this ability in the presence of EGCG. Taken together, these data demonstrated that EGCG treatment opposed HBV-induced incomplete autophagy via enhancing lysosomal acidification, which was unfavorable for HBV replication. PMID:25996297

  8. Fabrication mechanism and structural characteristics of the ternary aggregates by lactoferrin, pectin, and (-)-epigallocatechin gallate using multispectroscopic methods.

    PubMed

    Yang, Wei; Xu, Chenqi; Liu, Fuguo; Sun, Cuixia; Yuan, Fang; Gao, Yanxiang

    2015-05-27

    The ternary aggregates were fabricated by lactoferrin (LF), pectin (high methylated pectin (HMP)/low methylated pectin (LMP)), and (-)-epigallocatechin gallate (EGCG) through three different fabrication methods at pH 5.0. The turbidity, particle size, and ζ-potential of ternary aggregates were influenced by the types of pectin, the concentration of EGCG, and fabrication methods. The fluorescence intensity of LF decreased with an increase in EGCG concentration for all ternary aggregates. Far-UV circular dichroism results indicated that EGCG could alter the secondary structure of LF with an increase in the proportion of β-sheet structure at the cost of unordered coil structure. According to near-UV circular dichroism results, EGCG could also modulate the tertiary structure of LF at the presence of pectin. In addition, EGCG could increase the viscoelasticity of the ternary aggregates with HMP, leading to better stability of the ternary aggregates. An opposite result was observed for the ternary aggregates with LMP. These findings should provide an insight into the fabrication mechanism and applications of ternary aggregates formed by protein, polysaccharide, and polyphenol in the food, pharmaceutical, and cosmetic industries. PMID:25955032

  9. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    PubMed Central

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  10. Epigallocatechin Gallate (EGCG) Decorating Soybean Seed Ferritin as a Rutin Nanocarrier with Prolonged Release Property in the Gastrointestinal Tract.

    PubMed

    Yang, Rui; Sun, Guoyu; Zhang, Min; Zhou, Zhongkai; Li, Quanhong; Strappe, Padraig; Blanchard, Chris

    2016-09-01

    The instability and low bioavailability of polyphenols limit their applications in food industries. In this study, epigallocatechin gallate (EGCG) and soybean seed ferritin deprived of iron (apoSSF) were fabricated as a combined double shell material to encapsulate rutin flavonoid molecules. Firstly, due to the reversible assembly characteristics of phytoferritin, rutin was successfully encapsulated within apoSSF to form a ferritin-rutin complex (FR) with an average molar ratio of 28.2: 1 (rutin/ferritin). The encapsulation efficiency and loading capacity of rutin were 18.80 and 2.98 %, respectively. EGCG was then bound to FR to form FR-EGCG composites (FRE), and the binding number of EGCG was 27.30 ± 0.68 with a binding constant K of (2.65 ± 0.11) × 10(4) M(-1). Furthermore, FRE exhibited improved rutin stability, and displayed prolonged release of rutin in simulated gastrointestinal tract fluid, which may be attributed to the external attachment of EGCG to the ferritin cage potentially reducing enzymolysis in GI fluid. In summary, this work demonstrates a novel nanocarrier for stabilization and sustained release of bioactive polyphenols. PMID:27323763

  11. Improving anticancer efficacy of (–)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells

    PubMed Central

    Chen, Cheng-Cheung; Hsieh, Dar-Shih; Huang, Kao-Jean; Chan, Yi-Lin; Hong, Po-Da; Yeh, Ming-Kung; Wu, Chang-Jer

    2014-01-01

    (–)-Epigallocatechin-3-gallate (EGCG), the major bioactive constituent in green tea, has been reported to effectively inhibit the formation and development of tumors. To maximize the effectiveness of EGCG, we attached it to nanogold particles (EGCG-pNG) in various ratios to examine in vitro cytotoxicity and in vivo anti-cancer activity. EGCG-pNG showed improved anti-cancer efficacy in B16F10 murine melanoma cells; the cytotoxic effect in the melanoma cells treated with EGCG-pNG was 4.91 times higher than those treated with EGCG. The enhancement is achieved through mitochondrial pathway-mediated apoptosis as determined by annexin V assay, JC-10 staining, and caspase-3, -8, -9 activity assay. Moreover, EGCG-pNG was 1.66 times more potent than EGCG for inhibition of tumor growth in a murine melanoma model. In the hemolysis assay, the pNG surface conjugated with EGCG is most likely the key factor that contributes to the decreased release of hemoglobin from human red blood cells. PMID:24855338

  12. Inhibition of autoantigen expression by (-)-epigallocatechin-3-gallate (the major constituent of green tea) in normal human cells.

    PubMed

    Hsu, Stephen; Dickinson, Douglas P; Qin, Haiyan; Lapp, Carol; Lapp, David; Borke, James; Walsh, Douglas S; Bollag, Wendy B; Stöppler, Hubert; Yamamoto, Tetsuya; Osaki, Tokio; Schuster, George

    2005-11-01

    Autoimmune disorders, characterized by inflammation and apoptosis of target cells leading to tissue destruction, are mediated in part by autoantibodies against normal cellular components (autoantigens) that may be overexpressed. For example, antibodies against the autoantigens SS-A/Ro and SS-B/La are primary markers for systemic lupus erythematosus and Sjögren's syndrome. Recently, studies in animals demonstrated that green tea consumption may reduce the severity of some autoimmune disorders, but the mechanism is unclear. Herein, we sought to determine whether the most abundant green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), affects autoantigen expression in human cells. Cultures of pooled normal human primary epidermal keratinocytes and of an immortalized human salivary acinar cell line were incubated with 100 microM EGCG (a physiologically achievable level for topical application or oral administration) for various time periods and then analyzed by cDNA microarray analysis, reverse transcription-polymerase chain reaction, and Western blotting for expression of several major autoantigen candidates. EGCG inhibited the transcription and translation of major autoantigens, including SS-B/La, SS-A/Ro, coilin, DNA topoisomerase I, and alpha-fodrin. These findings, taken together with green tea's anti-inflammatory and antiapoptotic effects, suggest that green tea polyphenols could serve as an important component in novel approaches to combat autoimmune disorders in humans. PMID:16046615

  13. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down's syndrome.

    PubMed

    Valenti, Daniela; De Rasmo, Domenico; Signorile, Anna; Rossi, Leonardo; de Bari, Lidia; Scala, Iris; Granese, Barbara; Papa, Sergio; Vacca, Rosa Anna

    2013-04-01

    A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) - a natural polyphenol component of green tea - to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content. In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS. PMID:23291000

  14. The catechol-O-methyltransferase inhibitor, tolcapone, increases the bioavailability of unmethylated (−)-epigallocatechin-3-gallate in mice*

    PubMed Central

    Forester, Sarah C.; Lambert, Joshua D.

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), has been shown to inhibit cancer in vivo. EGCG, however, is rapidly methylated by catechol-O-methyl transferase (COMT), which reduces its cancer preventive efficacy. Tolcapone (TOL), is a clinically-used COMT inhibitor. Here, we examined the effect of TOL on the bioavailability of EGCG in male CF-1 mice. Plasma and tissue levels of EGCG and its methyl metabolites were determined following intragastric administration of EGCG (100 mg/kg), TOL (30 mg/kg), or the combination. In mice treated with EGCG, unmethylated plasma EGCG accounted for 63.4 % of the total. Co-administration of TOL increased this fraction to 87.9 %. In the urine, unmethylated EGCG accounted for 29.2 % of the total, whereas treatment with EGCG plus TOL increased this to 81.8 %. Similar effects were observed in the major organs examined. TOL effectively inhibited the methylation of EGCG in vivo. Future studies should examine the cancer preventive effects of the combination. PMID:26213577

  15. Methyl Gallate from Galla rhois Successfully Controls Clinical Isolates of Salmonella Infection in Both In Vitro and In Vivo Systems

    PubMed Central

    Choi, Jang-Gi; Mun, Su-Hyun; Chahar, Harendra S.; Bharaj, Preeti; Kang, Ok-Hwa; Kim, Se-Gun; Shin, Dong-Won; Kwon, Dong-Yeul

    2014-01-01

    Galla rhois is a commonly used traditional medicine for the treatment of pathogenic bacteria in Korea as well as in other parts of Asia. Methyl gallate (MG), a major component of Galla Rhois, exhibits strong antibacterial activity, but its mechanism of action against Salmonella spp. is unclear. In the present study, we investigated the antibacterial actions of MG against Salmonella. The antibacterial activity determined by broth dilution method indicated that the antibacterial activity of MG against Salmonella strains ranged from 3.9 to 125 µg/ml. In vitro bacterial viability test indicated that MG significantly decreased the viability of Salmonella over 40% when combined with ATPase inhibitors. The time-kill curves showed that a combined MG and ATPase inhibitors (DCCD and NaN3) treatment reduced the bacterial counts dramatically after 24 h. Oral administration of MG showed a strong anti-bacterial activity against WS-5 infected BALB/c mice. In contrast to the untreated Salmonella infected control animals, MG treated groups showed no clinical symptoms of the disease, such as lethargy and liver damage. It was observed that MG treatment significantly increased the survival of animals from Salmonella infection, while in untreated groups all animal succumbed to disease by the sixth day post infection. Thus, the present study demonstrates the therapeutic ability of MG against Salmonella infections. PMID:25048362

  16. Epigallocatechin 3-Gallate Ameliorates Bile Duct Ligation Induced Liver Injury in Mice by Modulation of Mitochondrial Oxidative Stress and Inflammation

    PubMed Central

    Su, Rong; Xie, Haiyang; Zhou, Lin; Zheng, Shusen

    2015-01-01

    Cholestatic liver fibrosis was achieved by bile duct ligation (BDL) in mice. Liver injury associated with BDL for 15 days included significant reactive oxygen/nitrogen species generation, liver inflammation, cell death and fibrosis. Administration of Epigallocatechin 3-Gallate (EGCG) in animals reduced liver fibrosis involving parenchymal cells in BDL model. EGCG attenuated BDL-induced gene expression of pro-fibrotic markers (Collagen, Fibronectin, alpha 2 smooth muscle actin or SMA and connective tissue growth factor or CTGF), mitochondrial oxidative stress, cell death marker (DNA fragmentation and PARP activity), NFκB activity and pro-inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2). EGCG also improved BDL induced damages of mitochondrial electron transport chain complexes and antioxidant defense enzymes such as glutathione peroxidase and manganese superoxide dismutase. EGCG also attenuated hydrogen peroxide induced cell death in hepatocytes in vitro and alleviate stellate cells mediated fibrosis through TIMP1, SMA, Collagen 1 and Fibronectin in vitro. In conclusion, the reactive oxygen/nitrogen species generated from mitochondria plays critical pathogenetic role in the progression of liver inflammation and fibrosis and this study indicate that EGCG might be beneficial for reducing liver inflammation and fibrosis. PMID:25955525

  17. Epigallocatechin-3-Gallate Inhibits Ethanol-Induced Apoptosis Through Neurod1 Regulating CHOP Expression in Pancreatic β-Cells.

    PubMed

    Wu, Tijun; Xiang, Jie; Shan, Wei; Li, Mengxiao; Zhou, Wenbo; Han, Xiao; Chen, Fang

    2016-05-01

    Epiga-llocatechin-3-gallate (EGCG) is one kind of polyphenol abundant extracted from green tea which has a potent antidiabetic activity. However, the molecular mechanisms mediating the protection procession of EGCG are still unclear. The aim of this study was to investigate the protective effect of EGCG on pancreatic β-cells exposed to ethanol and the possible underlying mechanisms. To observe the effect of EGCG, we assessed apoptosis in βTC-6 and INS-1 cells, which were in complete medium containing 60 mM ethanol, or coincubation with different concentration of EGCG. We also evaluated the roles of Neurod1 in CHOP expression and ethanol-mediated damage through plasmid overexpression. Treatment with EGCG decreased CHOP expression and apoptosis, whereas its treatment increased Neurod1 expression in ethanol-treated βTC-6 and INS-1 cells. Overexpression of Neurod1 caused the decrease of CHOP expression and apoptosis in ethanol-treated cells. Furthermore, Neurod1 inhibited CHOP expression by deacetylation of Histone H4 at the CHOP gene promoter. In addition, EGCG partially restores the activity of Neurod1 binding to CHOP promoter in ethanol-treated cells. In conclusion, EGCG protected β-cell against ethanol-induced β-cell apoptosis by Neurod1 regulating CHOP expression. Anat Rec, 299:573-582, 2016. © 2016 Wiley Periodicals, Inc. PMID:26916663

  18. Cytotoxicity of arsenic trioxide is enhanced by (-)-epigallocatechin-3-gallate via suppression of ferritin in cancer cells

    SciTech Connect

    Lee, Te-Chang; Cheng, I-Cheng; Shue, Jun-Jie; Wang, T.C.

    2011-01-01

    Arsenic trioxide (ATO) treatment is a useful therapy against human acute promyelocytic leukemia (APL), however, it concomitantly brings potential adverse consequences including serious side effect, human carcinogenicity and possible development of resistance. This investigation revealed that those problems might be relaxed by simultaneous application with (-)-epigallocatechin-3-gallate (EGCG), one of the major components from green tea. EGCG significantly lowered down the ATO concentration required for an effective control of APL cells, HL-60. The simultaneous treatment of ATO with EGCG induced a mitochondria-dependent apoptosis in HL-60 cells significantly, which accounted for more than 70% of the cell death in the treatment. The mechanism of apoptosis induction was elucidated. EGCG in HL-60 cells acted as a pro-oxidant enhancing intracellular hydrogen peroxide significantly. ATO, on the other hand, induced heme oxygenase-1 (HO-1) to catalyze heme degradation, thereby provided ferrous iron for EGCG-induced hydrogen peroxide to precede Fenton reaction, which in turn generated deleterious reactive oxygen species to damage cell. In addition, EGCG inhibited expression of ferritin, which supposedly to sequester harmful ferrous iron, thereby augmented the occurrence of Fenton reaction. This investigation also provided evidence that ATO, since mainly acted to induce HO-1 in simultaneous treatment with EGCG, could be replaced by other HO-1 inducer with much less human toxicity. Furthermore, several of our preliminary investigations revealed that the enhanced cytotoxicity induced by combining heme degradation and Fenton reaction is selectively toxic to malignant but not non-malignant cells.

  19. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles.

    PubMed

    Wu, Shanshan; Sun, Kang; Wang, Xin; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2013-07-31

    The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability. PMID:23822637

  20. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells

    PubMed Central

    Chen, Di; Pamu, Sreedhar; Cui, Qiuzhi; Chan, Tak Hang; Dou, Q. Ping

    2012-01-01

    AMP-activated protein kinase (AMPK) is a critical monitor of cellular energy status and also controls processes related to tumor development, including cell cycle progression, protein synthesis, cell growth and survival. Therefore AMPK as an anti-cancer target has received intensive attention recently. It has been reported that the anti-diabetic drug metformin and some natural compounds, such as quercetin, genistein, capsaicin and green tea polyphenol epigallocatechin gallate (EGCG), can activate AMPK and inhibit cancer cell growth. Indeed, natural products have been the most productive source of leads for the development of anti-cancer drugs but perceived disadvantages, such as low bioavailability and week potency, have limited their development and use in the clinic. In this study we demonstrated that synthetic EGCG analogs 4 and 6 were more potent AMPK activators than metformin and EGCG. Activation of AMPK by these EGCG analogs resulted in inhibition of cell proliferation, up-regulation of the cyclin-dependent kinase inhibitor p21, down-regulation of mTOR pathway, and suppression of stem cell population in human breast cancer cells. Our findings suggest that novel potent and specific AMPK activators can be discovered from natural and synthetic sources that have potential to be used for anti-cancer therapy in the clinic. PMID:22459208

  1. A functional chitosan membrane with grafted epigallocatechin-3-gallate and lovastatin enhances periodontal tissue regeneration in dogs.

    PubMed

    Lee, Bor-Shiunn; Lee, Chien-Chen; Lin, Hung-Pin; Shih, Wei-An; Hsieh, Wan-Ling; Lai, Chern-Hsiung; Takeuchi, Yasuo; Chen, Yi-Wen

    2016-10-20

    Currently used guided tissue regeneration (GTR) membranes are mainly used as a barrier to prevent epithelial cells growth into defects before new bone formation. The aim of this study was to develop a tri-layer functional chitosan (CS) membrane with epigallocatechin-3-gallate (EGCG) grafted on the outer layer for bactericidal activity, and lovastatin was included in the middle layer for controlled release. Successful EGCG grafting was demonstrated using Fourier transform infrared spectroscopy and EGCG grafting significantly enhanced adhesion and proliferation of human gingival fibroblasts. The release duration of lovastatin reached 21days. CS-Lovastatin1 produced the highest alkaline phosphatase activity and EGCG14-CS exhibited the best bactericidal activity against periodontopathic bacteria. Finally, the EGCG14-CS-Lovastatin1 membrane showed a higher percentage of bone regeneration than BioMend(®) and control groups in one-walled defects of beagle dogs. These results suggest that the EGCG14-CS-Lovastatin1 membrane has the potential to be used as a novel GTR membrane. PMID:27474626

  2. Evaluation of an injectable bone substitute (betaTCP/hydroxyapatite/hydroxy-propyl-methyl-cellulose) in severely osteopenic and aged rats.

    PubMed

    Blouin, S; Moreau, M F; Weiss, P; Daculsi, G; Baslé, M F; Chappard, D

    2006-09-01

    The use of injectable biomaterials is of interest in osteoporotic patients to locally restore bone mass in sites at risk of fracture. An injectable bone substitute (IBS1 made of betaTCP/hydroxyapatite as a calcium phosphate substitute and hydroxy-propyl-methyl-cellulose as a polymer carrier) was used in a severely osteopenic rat model obtained by combining orchidectomy (ORX) and disuse (paralysis induced by botulinum toxin - BTX). Fifty-six aged male rats were randomized into three groups: 18 were SHAM operated; 38 were ORX and BTX injected in the right hindlimb; they constituted the OP (osteoporotic) group. One month after ORX-BTX surgery, 20 of these OP rats received a IBS1 injection in the right femur (OP-IBS1 rats). Animals were studied at the time of IBS1 injection 1 month post ORX-BTX (M1), 1 month (M2) and 2 months (M3) after IBS1 injection. Bone mass (BV/TV) and microarchitectural parameters were measured by microCT. BV/TV was decreased after ORX-BTX; ORX and BTX had cumulative effects on bone loss (differences maximized on the right femur). BV/TV (combining the volume of both bone and material in OP-IBS1 rats) was elevated at M1 but decreased at M2. Marked bone formation was found onto the biomaterial granules but bone had a woven texture. A marked increase in the number of nonosteoclastic TRAcP+ cells was found in the implanted area. IBS1 induced new bone formation shortly after implantation but both IBS1 and woven bone were resorbed without inducing lamellar bone. Biomaterial trials must be conducted with long-term implantation periods, in aged osteoporotic animals. PMID:16739169

  3. Morphology and water resistance of mixed silane films of bis[3-(triethoxysilyl) propyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine

    SciTech Connect

    Pan, Guirong; Schaefer, Dale W.; van Ooij, Wim J.; Kent, Michael S.; Majewski, Jaroslaw; Yim, Hyun

    2010-12-03

    Functional organosilanes are powerful interface-active agents that find applications as adhesion promoters as well as optical, dielectric and protective coatings. Bis-silanes are of particular interest because they are highly crosslinked leading to very robust films. In almost all applications, the water resistance of the films is a critical performance measure. Here we use neutron reflectivity to address the effect of bridging group on the hydrothermal response of bis-silane films prepared using bis[3-(triethoxysilyl) propyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine. Neat and mixed films are examined as-prepared, after exposure to water vapor and then in the re-dried state. The bridging group is the key factor that controls the morphology and water resistance of silane films. Although bis-sulfur silane is not as condensed as bis-amino silane, bis-sulfur swells less in water because of the hydrophobic nature of bridging group. The reflectivity of bis-sulfur silane film is reversible after room-temperature water conditioning but not at 80 C, indicating chemical alternation of the film at 80 C. The water resistance of mixed silane is roughly that of both components weighted by their volume fraction. But based on the enhanced shrinkage that occurs following water-vapor conditioning of the mixed film, condensation is accelerated in the mixed silane. Regarding the precursor solution, bis-amino silane may act as a catalyst in the hydrolysis of bis-sulfur silane leading to more silanols in the solution and further condensation in the film. Variation in the structure normal to the substrate is also examined by swelling the film with d-nitrobenzene, a non-reacting swelling agent.

  4. Improvement of aripiprazole solubility by complexation with (2-hydroxy)propyl-β-cyclodextrin using spray drying technique.

    PubMed

    Mihajlovic, Tijana; Kachrimanis, Kyriakos; Graovac, Adrijana; Djuric, Zorica; Ibric, Svetlana

    2012-06-01

    Due to the fact that the number of new poorly soluble active pharmaceutical ingredients is increasing, it is important to investigate the possibilities of improvement of their solubility in order to obtain a final pharmaceutical formulation with enhanced bioavailability. One of the strategies to increase drug solubility is the inclusion of the APIs in cyclodextrins. The aim of this study was to investigate the possibility of aripiprazole solubility improvement by inclusion in (2-hydroxy)propyl-β-cyclodextrin (HPBCD) and simultaneous manipulation of pH of the medium and addition of polyvinylpyrrolidone. Aripiprazole-HPBCD complexes were prepared by spray drying aqueous drug-HPBCD solutions, and their properties were compared with those prepared by solvent-drop co-grinding and physical mixing. The obtained powders were characterized by thermoanalytical methods (TGA and DSC), FTIR spectroscopy, their dissolution properties were assessed, while the binding of aripiprazole into the cavity of HPBCD was studied by molecular docking simulations. The solubilization capacity was found to be dependent on pH as well as the buffer solution's ionic composition. The presence of PVP in the formulation could affect the solubilization capacity significantly, but further experimentation is required before its effect is fully understood. On the basis of solubility studies, the drug/HPBCD stoichiometry was found to be 1:3. The spray-dried products were free of crystalline aripiprazole, they possessed higher solubility and dissolution rate, and were stable enough over a prolonged period of storage. Spray drying of cyclodextrin solutions proved to be an appropriate and efficient technique for the preparation of highly soluble inclusion compounds of aripiprazole and HPBCD. PMID:22535520

  5. Variations of lipid profile in animals caused by adenosine analogs: N6 (amido-3-propyl) adenosine hydrochloride and (carboxamido-3-propylamino)-6-(triproprionyl) 2',3',5'beta (D-ribosyl)-9-purine.

    PubMed

    Laborit, G; Hasni, H; Baron, C; Pierrefiche, G; Laborit, H

    1992-03-01

    N6-substituted adenosine analogues are powerful inhibitors of lipolysis in the adipose tissues of animals and humans, because of their agonist effect on A1 purine receptors. Using a model of hypertriglyceridemia provoked by intravenous injection of Triton WR 1339, we observed that Agr 529 [N6(amido-3-propyl)adenosine hydrochloride] at 2 mg.kg-1 intravenous in rabbits, and intraperitoneally and orally in rats led to a return of the levels of circulating triglycerides to normal values. In addition, Agr 529 and its prodrug, Agr 540 [(carboxamido-3-propylamino)-6-(triproprionyl)2', 3',5'beta(D-ribosyl)-9-purine] administered to rats at 3 and 30 mg.kg-1, respectively, returned plasma triglyceride concentrations to normal levels. Intravenous administration of Agr 529 to normal rats led to decreased concentrations of plasma fatty acids, phospholipids, triglycerides and total cholesterol as a function of dose. The decrease began at 0.1 mg.kg-1 and was highly significant at 3 mg.kg-1. In the same conditions, the intraperitoneal administration of Agr 529 caused a dose-dependent hypolipemia. There was no apparent effect on cholesterol and on the triglycerides of high density lipoproteins. A kinetic study showed that the antilipemic effect of Agr 529 intravenously injected at 3 mg.kg-1 began 30 minutes after the injection with a maximum effect at 2 hours. The effect persisted up to 8 hours after injection. The present results show that the administration of Agr 529 and Agr 540 to normal animals causes hypolipemia (decrease in fatty acids, phospholipids, triglycerides and cholesterol) and restores induced hypertriglyceridemia. These effects may be attributed to an interaction of the molecules with A1 purinergic receptors of adipose tissue. PMID:1509199

  6. Epigallocatechin-3-gallate induces mesothelioma cell death via H2 O2 -dependent T-type Ca2+ channel opening.

    PubMed

    Ranzato, Elia; Martinotti, Simona; Magnelli, Valeria; Murer, Bruno; Biffo, Stefano; Mutti, Luciano; Burlando, Bruno

    2012-11-01

    Malignant mesothelioma (MMe) is a highly aggressive, lethal tumour requiring the development of more effective therapies. The green tea polyphenol epigallocathechin-3-gallate (EGCG) inhibits the growth of many types of cancer cells. We found that EGCG is selectively cytotoxic to MMe cells with respect to normal mesothelial cells. MMe cell viability was inhibited by predominant induction of apoptosis at lower doses and necrosis at higher doses. EGCG elicited H(2) O(2) release in cell cultures, and exogenous catalase (CAT) abrogated EGCG-induced cytotoxicity, apoptosis and necrosis. Confocal imaging of fluo 3-loaded, EGCG-exposed MMe cells showed significant [Ca(2+) ](i) rise, prevented by CAT, dithiothreitol or the T-type Ca(2+) channel blockers mibefradil and NiCl(2) . Cell loading with dihydrorhodamine 123 revealed EGCG-induced ROS production, prevented by CAT, mibefradil or the Ca(2+) chelator BAPTA-AM. Direct exposure of cells to H(2) O(2) produced similar effects on Ca(2+) and ROS, and these effects were prevented by the same inhibitors. Sensitivity of REN cells to EGCG was correlated with higher expression of Ca(v) 3.2 T-type Ca(2+) channels in these cells, compared to normal mesothelium. Also, Ca(v) 3.2 siRNA on MMe cells reduced in vitro EGCG cytotoxicity and abated apoptosis and necrosis. Intriguingly, Ca(v) 3.2 expression was observed in malignant pleural mesothelioma biopsies from patients, but not in normal pleura. In conclusion, data showed the expression of T-type Ca(2+) channels in MMe tissue and their role in EGCG selective cytotoxicity to MMe cells, suggesting the possible use of these channels as a novel MMe pharmacological target. PMID:22564432

  7. (-)-Epigallocatechin-3-gallate Modulates the Differential Expression of Survivin Splice Variants and Protects Spermatogenesis During Testicular Torsion

    PubMed Central

    Al-Ajmi, Nada; Renno, Waleed Mohammed

    2013-01-01

    The anti-apoptotic effect of (-)-epigallocatechin-3-gallate (EGCG) during unilateral testicular torsion and detorsion (TT/D) was established in our previous study. In mice, the smallest inhibitor of apoptosis, survivin, is alternatively spliced into three variants, each suggested to have a unique function. Here, we assessed how EGCG exerts its protective effect through the expression of the different survivin splice variants and determined its effect on the morphology of the seminiferous tubules during TT/D. Three mouse groups were used: sham, TT/D+vehicle and TT/D treated with EGCG. The expression of the survivin variants (140 and 40) and other apoptosis genes (p53, Bax and Bcl-2) was measured with semi-quantitative RT-PCR. Histological analysis was performed to assess DNA fragmentation, damage to spermatogenesis and morphometric changes in the seminiferous tubules. In the TT/D+vehicle group, survivin 140 expression was markedly decreased, whereas survivin 40 expression was not significantly different. In parallel, there was an increase in the mRNA level of p53 and the Bax to Bcl-2 ratio in support of apoptosis induction. Histological analyses revealed increased DNA fragmentation and increased damage to spermatogenesis associated with decreased seminiferous tubular diameter and decreased germinal epithelial cell thickness in the TT/D+vehicle group. These changes were reversed to almost sham levels upon EGCG treatment. Our data indicate that EGCG protects the testis from TT/D-induced damage by protecting the morphology of the seminiferous tubules and modulating survivin 140 expression. PMID:23946684

  8. Preventive Effects of Epigallocatechin-3-O-Gallate against Replicative Senescence Associated with p53 Acetylation in Human Dermal Fibroblasts

    PubMed Central

    Han, Dong-Wook; Lee, Mi Hee; Kim, Bongju; Lee, Jun Jae; Hyon, Suong-Hyu; Park, Jong-Chul

    2012-01-01

    Considering the various pharmacological activities of epigallocatechin-3-O-gallate (EGCG) including anticancer, and anti-inflammatory, antidiabetic, and so forth, relatively less attention has been paid to the antiaging effect of EGCG on primary cells. In this study, the preventive effects of EGCG against serial passage-induced senescence were investigated in primary cells including rat vascular smooth muscle cells (RVSMCs), human dermal fibroblasts (HDFs), and human articular chondrocytes (HACs). The involvement of Sirt1 and acetylated p53 was examined as an underlying mechanism for the senescence preventive activity of EGCG in HDFs. All cells were employed with the initial passage number (PN) between 3 and 7. For inducing senescence, the cells were serially passaged at the predetermined times and intervals in the absence or presence of EGCG (50 or 100 μM). Serial passage-induced senescence in RVSMCs and HACs was able to be significantly prevented at 50 μM EGCG, while in HDFs, 100 μM EGCG could significantly prevent senescence and recover their cell cycle progression close to the normal level. Furthermore, EGCG was found to prevent serial passage- and H2O2-induced senescence in HDFs by suppressing p53 acetylation, but the Sirt1 activity was unaffected. In addition, proliferating HDFs showed similar cellular uptake of FITC-conjugated EGCG into the cytoplasm with their senescent counterparts but different nuclear translocation of it from them, which would partly account for the differential responses to EGCG in proliferating versus senescent cells. Taking these results into consideration, it is suggested that EGCG may be exploited to craft strategies for the development of an antiaging or age-delaying agent. PMID:23259030

  9. Synergistic Effects of the Green Tea Extract Epigallocatechin-3-gallate and Taxane in Eradication of Malignant Human Prostate Tumors1

    PubMed Central

    Stearns, Mark E; Wang, Min

    2011-01-01

    We have examined whether epigallocatechin-3-gallate (EGCG), and extract of green tea, in combination with taxane (i.e., paclitaxel and docetaxel), exerts a synergistic activity in blocking human prostate PC-3ML tumor cell growth in vitro and in vivo. Growth assays in vitro revealed that the IC50 values were ∼30 µM, ∼3 nM, and ∼6 nM, for EGCG, paclitaxel and docetaxel, respectively. Isobolograms generated from the data clearly indicated that EGCG in combination with paclitaxel or docetaxel had an additive effect in blocking tumor cell growth. EGCG combined with taxane also had an additive effect to increase the expression of apoptotic genes, (p53, p73, p21, and caspase 3) and the percent apoptosis observed in vitro and in tumor modeling studies in severe combined immunodeficient mice. The tumor modeling studies clearly showed that EGCG plus taxane injected intraperitoneally (i.p.) induced a significant increase in apoptosis rates (TUNEL assays) and eliminated preexisting tumors generated from PC-3ML cells implanted i.p., increasing disease-free survival rates to greater than 90%. More importantly, the combination therapy (i.p. biweekly) blocked metastases after intravenous injection of PC-3ML cells through the tail vein. In mice treated with EGCG plus taxane, the disease-free survival rates increased from 0% (in untreated mice) to more than 70% to 80% in treated mice. Taken together, these data demonstrate for the first time that EGCG in combination with taxane may provide a novel therapeutic treatment of advanced prostate cancer. PMID:21633670

  10. Skin penetration of epigallocatechin-3-gallate and quercetin from green tea and Ginkgo biloba extracts vehiculated in cosmetic formulations.

    PubMed

    dal Belo, S E; Gaspar, L R; Maia Campos, P M B G; Marty, J-P

    2009-01-01

    Green tea (Camellia sinensis) and Ginkgo biloba extracts in cosmetic formulations have been suggested to protect the skin against UV-induced damage and skin ageing. Thus, it is very important to assess the human skin penetration of their major flavonoids to verify if they penetrate and remain in the skin to exert their proposed effects. The aim of this study was to evaluate the human skin penetration of epigallocatechin-3-gallate (EGCG) and quercetin from green tea and G. biloba extracts vehiculated in cosmetic formulations. This study was conducted with fresh dermatomed human Caucasian skin from abdominal surgery mounted on static Franz diffusion cells. Skin samples were mounted between two diffusion half-cells and 10 mg/cm(2) of formulations supplemented with 6% of green tea or G. biloba extract were applied on the skin surface. The receptor fluid was removed after 6 and 24 h and analyzed by high-performance liquid chromatography for the quantification of the flavonoids. The stratum corneum was removed by tape stripping and immersed in methanol and the epidermis was mechanically separated from the dermis and triturated in methanol to extract EGCG and quercetin. The results showed that the flavonoids under study penetrated into the skin, without reaching the receptor fluid. The majority of EGCG was quantified in the stratum corneum (0.87 microg/cm(2)), which was statistically higher than the EGCG concentrations found in viable epidermis (0.54 microg/cm(2)) and in the dermis (0.38 microg/cm(2)). The majority of quercetin was quantified in the viable epidermis (0.23 microg/cm(2)), which was statistically higher than the EGCG concentration found in the stratum corneum layer (0.17 microg/cm(2)). Finally, it can be concluded that EGCG and quercetin from green tea and G. biloba extracts vehiculated in cosmetic formulations presented good skin penetration and retention, which can favor their skin effects. PMID:19786823

  11. Radioprotective Effect of Epigallocatechin-3-Gallate on Salivary Gland Dysfunction After Radioiodine Ablation in a Murine Model

    PubMed Central

    Choi, Jeong-Seok; An, Hye-Young; Park, In Suh; Kim, Seok-Ki; Kim, Young-Mo; Lim, Jae-Yol

    2016-01-01

    Objectives. Radioiodine (RI) therapy is known to subject cellular components of salivary glands (SG) to oxidative stress leading to SG dysfunction. However, the protective effects of antioxidants on RI-induced SG damage have not been well investigated. The authors investigated the morphometric and functional effects of epigallocatechin-3-gallate (EGCG) administered prior to RI therapy and compared this with the effects of amifostine (a well-known antioxidant) in a murine model of RI sialadenitis. Methods. Four-week-old female C57BL/6 mice (n=48) were divided into four groups; a normal control group, a RI-treated group (0.01 mCi/g mouse, orally), an EGCG and RI-treated group, and an amifostine and RI-treated group. Animals in these groups were divided into 3 subgroups and euthanized at 15, 30, and 90 days post-RI treatment. Salivary flow rates and lag times were measured, and morphologic and histologic examinations and TUNEL (terminal deoxynucleotidyl transferase biotin-dUDP nick end labeling) assays were performed. Changes in salivary 99mTc pertechnetate uptake and excretion were followed by single-photon emission computed tomography. Results. Salivary flow rates and lag times to salivation in the EGCG or amifostine groups were better than in the RI-treated group. Histologic examinations of SGs in the EGCG or amifostine group showed more mucin-rich parenchyma and less periductal fibrosis than in the RI-treated group. Fewer apoptotic cells were observed in acini, ducts, and among endothelial cells in the EGCG or amifostine group than in the RI group. In addition, patterns of 99mTc pertechnetate excretion were quite different in the EGCG or amifostine group than in the RI group. Conclusion. EGCG supplementation before RI therapy could protect from RI-induced SG damage in a manner comparable to amifostine, and thus, offers a possible means of preventing SG damage by RI. PMID:27136365

  12. Treatment of Chronic Experimental Autoimmune Encephalomyelitis with Epigallocatechin-3-Gallate and Glatiramer Acetate Alters Expression of Heme-Oxygenase-1

    PubMed Central

    Janssen, Antonia; Fiebiger, Sebastian; Bros, Helena; Hertwig, Laura; Romero-Suarez, Silvina; Hamann, Isabell; Chanvillard, Coralie; Bellmann-Strobl, Judith; Paul, Friedemann; Millward, Jason M.; Infante-Duarte, Carmen

    2015-01-01

    We previously demonstrated that epigallocatechin-3-gallate (EGCG) synergizes with the immunomodulatory agent glatiramer acetate (GA) in eliciting anti-inflammatory and neuroprotective effects in the relapsing-remitting EAE model. Thus, we hypothesized that mice with chronic EAE may also benefit from this combination therapy. We first assessed how a treatment with a single dose of GA together with daily application of EGCG may modulate EAE. Although single therapies with a suboptimal dose of GA or EGCG led to disease amelioration and reduced CNS inflammation, the combination therapy had no effects. While EGCG appeared to preserve axons and myelin, the single GA dose did not improve axonal damage or demyelination. Interestingly, the neuroprotective effect of EGCG was abolished when GA was applied in combination. To elucidate how a single dose of GA may interfere with EGCG, we focused on the anti-inflammatory, iron chelating and anti-oxidant properties of EGCG. Surprisingly, we observed that while EGCG induced a downregulation of the gene expression of heme oxygenase-1 (HO-1) in affected CNS areas, the combined therapy of GA+EGCG seems to promote an increased HO-1 expression. These data suggest that upregulation of HO-1 may contribute to diminish the neuroprotective benefits of EGCG alone in this EAE model. Altogether, our data indicate that neuroprotection by EGCG in chronic EAE may involve regulation of oxidative processes, including downmodulation of HO-1. Further investigation of the re-dox balance in chronic neuroinflammation and in particular functional studies on HO-1 are warranted to understand its role in disease progression. PMID:26114502

  13. Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways.

    PubMed

    Wu, C C; Hsu, M C; Hsieh, C W; Lin, J B; Lai, P H; Wung, B S

    2006-05-15

    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various phytochemicals and we examined the ability of Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, to upregulate HO-1 expression in endothelial cells (ECs). We demonstrate that EGCG induces HO-1 expression in a concentration- and time-dependent manner. Furthermore, EGCG-mediated HO-1 induction was abrogated in the presence of actinomycin D and cycloheximide, indicating that this upregulation of HO-1 occurred at the transcriptional level. EGCG also upregulates Nrf2 levels in nuclear extracts and increases ARE-luciferase activity. Furthermore, EGCG is the most potent inducer of HO-1 expression of the different green tea constituents that we analyzed, but had no detectable cytotoxic effects over the 25-100 microM dosage range. The inhibition of intracellular ROS production by N-acetylcysteine (NAC), glutathione (GSH), superoxide dismutase (SOD), catalase and the mitochondrial complex I inhibitor, rotenone, results in a decrease in EGCG-dependent HO-1 expression. In addition, we determined that tyrosine kinase is involved in EGCG induction of HO-1 as this is abrogated by genistein. ECs treated with EGCG exhibit activation of Akt and ERK1/2. In addition, pharmacological inhibitors of phosphatidylinositol 3-kinase and MEK1/2, which are upstream of Akt and ERK1/2, respectively, attenuate EGCG-induced HO-1 expression. On the other hand, pretreatment of these cells with EGCG exerts significant cytoprotective effects against H2O2, suggesting that the induction of HO-1 is an important component in the protection against oxidative stress. Hence, EGCG is a novel phytochemical inducer of HO-1 expression and we further identify the principal underlying mechanisms involved in this process. PMID:16378625

  14. Effects of epigallocatechin gallate on the proliferation and apoptosis of the nasopharyngeal carcinoma cell line CNE2

    PubMed Central

    ZHANG, WEIJUN; YANG, PING; GAO, FEI; YANG, JIE; YAO, KAITAI

    2014-01-01

    The present study explored the effects of epigallocatechin gallate (EGCG) on the cell cycle, proliferation and apoptosis of the nasopharyngeal carcinoma cell line CNE2 in vitro. The proliferation of CNE2 cells was detected using the cell counting kit-8 method. Cell cycle distribution and apoptosis were detected using flow cytometry. The human telomerase reverse transcriptase (hTERT) mRNA expression was determined using reverse transcription polymerase chain reactions. The protein expression of hTERT and Myc proto-oncogene protein (c-Myc) was observed using western blot analysis. EGCG inhibited the proliferation of CNE2 cells in a concentration-dependent manner (P<0.05) and blocked the cell cycle progression of the cells. In the low concentration (100 μg/ml) group, the cell cycle arrest showed a time-dependent manner. However, as the concentration increased and action time was prolonged, this time dependency became less marked. EGCG promoted the apoptosis of CNE2 cells in a time-dependent manner. In addition, EGCG downregulated the mRNA and protein expression of hTERT and downregulated the expression of c-Myc protein. Downregulation of the expression of hTERT and c-Myc was more evident in the high-dose group (200 μg/mL). In conclusion, EGCG has proliferation-inhibiting, cell cycle-blocking and apoptosis-promoting effects on CNE2 cells. EGCG may be developed into an auxiliary therapeutic agent for the treatment of nasopharyngeal carcinoma. PMID:25371733

  15. Tocotrienol-rich fraction, [6]-gingerol and epigallocatechin gallate inhibit proliferation and induce apoptosis of glioma cancer cells.

    PubMed

    Rahman, Amirah Abdul; Makpol, Suzana; Jamal, Rahman; Harun, Roslan; Mokhtar, Norfilza; Ngah, Wan Zurinah Wan

    2014-01-01

    Plant bioactives [6]-gingerol (GING), epigallocatechin gallate (EGCG) and asiaticoside (AS) and vitamin E, such as tocotrienol-rich fraction (TRF), have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in combination on glioma cancer cells. TRF, GING, EGCG and AS were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) in culture by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay. With the exception of AS, combinations of two compounds were tested, and the interactions of each combination were evaluated by the combination index (CI) using an isobologram. Different grades of glioma cancer cells showed different cytotoxic responses to the compounds, where in 1321N1 and LN18 cells, the combination of EGCG + GING exhibited a synergistic effect with CI = 0.77 and CI = 0.55, respectively. In contrast, all combinations tested (TRF + GING, TRF + EGCG and EGCG + GING) were found to be antagonistic on SW1783 with CI values of 1.29, 1.39 and 1.39, respectively. Combined EGCG + GING induced apoptosis in both 1321N1 and LN18 cells, as evidenced by Annexin-V FITC/PI staining and increased active caspase-3. Our current data suggests that the combination of EGCG + GING synergistically induced apoptosis and inhibits the proliferation 1321N1 and LN18 cells, but not SW1783 cells, which may be due to their different genetic profiles. PMID:25221872

  16. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells.

    PubMed

    Song, Qinxin; Li, Danhui; Zhou, Yongzhi; Yang, Jie; Yang, Wanqi; Zhou, Guohua; Wen, Jingyuan

    2014-01-01

    The aim of this study was to evaluate (+)-catechin and (-)-epigallocatechin gallate (EGCG) cellular uptake and transport across human intestinal Caco-2 cell monolayer in both the absence and presence of niosomal carrier in variable conditions. The effect of free drugs and drug-loaded niosomes on the growth of Caco-2 cells was studied. The effects of time, temperature, and concentration on drug cellular uptake in the absence or presence of its niosomal delivery systems were investigated. The intestinal epithelial membrane transport of the drug-loaded niosomes was examined using the monolayer of the human Caco-2 cells. The kinetics of transport, and the effect of temperature, adenosine triphosphate inhibitor, permeability glycoprotein inhibitor, multidrug resistance-associated protein 2 inhibitor, and the absorption enhancer on transport mechanism were investigated. It was found that the uptake of catechin, EGCG, and their niosomes by Caco-2 cells was 1.22 ± 0.16, 0.90 ± 0.14, 3.25 ± 0.37, and 1.92 ± 0.22 μg/mg protein, respectively (n=3). The apparent permeability coefficient values of catechin, EGCG, and their niosomes were 1.68 ± 0.16, 0.88 ± 0.09, 2.39 ± 0.31, and 1.42 ± 0.24 cm/second (n=3) at 37°C, respectively. The transport was temperature- and energy-dependent. The inhibitors of permeability glycoprotein and multidrug resistance-associated protein 2 and the absorption enhancer significantly enhanced the uptake amount. Compared with the free drugs, niosomal formulation significantly enhanced drug absorption. Additionally, drug-loaded niosomes exhibited stronger stability and lower toxicity. These findings showed that the oral absorption of tea flavonoids could be improved by using the novel drug delivery systems. PMID:24855353

  17. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T-cell subsets.

    PubMed

    Wang, Junpeng; Ren, Zhihong; Xu, Yanmei; Xiao, Sheng; Meydani, Simin N; Wu, Dayong

    2012-01-01

    The green tea component epigallocatechin-3-gallate (EGCG) may be beneficial in autoimmune diseases; however, the underlying mechanisms are not well understood. In this study, we determined the effect of EGCG on the development of experimental autoimmune encephalomyelitis, an animal model for human multiple sclerosis, and the underlying mechanisms. Female C57BL/6 mice were fed EGCG (0%, 0.15%, 0.3%, and 0.6% in diet) for 30 days and then immunized with specific antigen myelin oligodendrocyte glycoprotein 35-55. EGCG dose dependently attenuated clinical symptoms and pathological features (leukocyte infiltration and demyelination) in the central nervous system and inhibited antigen-specific T-cell proliferation and delayed-type hypersensitivity skin response. We further showed that EGCG reduced production of interferon-γ, IL-17, IL-6, IL-1β, and tumor necrosis factor-α; decreased types 1 and 17 helper T cells (Th1 and Th17, respectively); and increased regulatory T-cell populations in lymph nodes, the spleen, and the central nervous system. Moreover, EGCG inhibited expression of transcription factors T-box expressed in T cells and retinoid-related orphan receptor-γt, the specific transcription factor for Th1 and Th17 differentiation, respectively; the plasma levels of intercellular adhesion molecule 1; and CCR6 expression in CD4(+) T cells. These results indicate that EGCG may attenuate experimental autoimmune encephalomyelitis autoimmune response by inhibiting immune cell infiltration and modulating the balance among pro- and anti-autoimmune CD4(+) T-cell subsets. Thus, we identified a novel mechanism that underlies EGCG's beneficial effect in autoimmune disease. PMID:22056360

  18. Effect of Epigallocatechin Gallate on shear bond strength of composite resin to bleached enamel: an in vitro study

    PubMed Central

    Khamverdi, Zahra; Kasraei, Shahin; Ronasi, Negin; Rostami, Shiva

    2013-01-01

    Objectives The aim of this study was to determine the effect of epigallocatechin gallate (EGCG) on the shear bond strength of composite resin to bleached enamel. Materials and Methods Ninety enamel surfaces of maxillary incisors were randomly divided into 9 groups as follows: G1: control (no bleaching); G2: bleaching; G3: bleaching and storage for seven days; G4 - 6: bleaching and application of 600, 800 and 1,000 µmol of EGCG-containing solution for 10 minutes, respectively; G7 - 9: bleaching and application of 600, 800 and 1,000 µmol of EGCG-containing solution for 20 minutes, respectively. The specimens were bleached with 30% hydrogen peroxide gel and a composite resin cylinder was bonded on each specimen using a bonding agent. Shear bond strength of the samples were measured in MPa. Data was analyzed using the two-way ANOVA and Tukey HSD tests (α = 0.05). Results The maximum and minimum mean shear bond strength values were observed in G1 and G2, respectively. Time and concentration of EGCG showed no significant effects on bond strength of the groups (p > 0.05). Multiple comparison of groups did not reveal any significant differences between the groups except for G2 and all the other groups (p < 0.05). Conclusions There is a significant decrease in bond strength of composite resin to enamel immediately after bleaching. A delay of one week before bonding and the use of EGCG increased bond strength of composite resin to bleached enamel. PMID:24303360

  19. The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival.

    PubMed

    Balasubramanian, Sivaprakasam; Adhikary, Gautam; Eckert, Richard L

    2010-03-01

    The polycomb group (PcG) proteins are epigenetic regulators of gene expression that enhance cell survival. This regulation is achieved via action of two multiprotein PcG complexes--PRC2 (EED) and PRC1 [B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1)]. These complexes modulate gene expression by increasing histone methylation and reducing acetylation--leading to a closed chromatin conformation. Activity of these proteins is associated with increased cell proliferation and survival. We show increased expression of key PcG proteins in immortalized keratinocytes and skin cancer cell lines. We examine the role of two key PcG proteins, Bmi-1 and enhancer of zeste homolog 2 (Ezh2), and the impact of the active agent in green tea, (-)-epigallocatechin-3-gallate (EGCG), on the function of these regulators. EGCG treatment of SCC-13 cells reduces Bmi-1 and Ezh2 level and this is associated with reduced cell survival. The reduction in survival is associated with a global reduction in histone H3 lysine 27 trimethylation, a hallmark of PRC2 complex action. This change in PcG protein expression is associated with reduced expression of key proteins that enhance progression through the cell cycle [cyclin-dependent kinase (cdk)1, cdk2, cdk4, cyclin D1, cyclin E, cyclin A and cyclin B1] and increased expression of proteins that inhibit cell cycle progression (p21 and p27). Apoptosis is also enhanced, as evidenced by increased caspase 9, 8 and 3 cleavage and increased poly(adenosine diphosphate ribose) polymerase cleavage. EGCG treatment also increases Bax and suppresses Bcl-xL expression. Vector-mediated enhanced Bmi-1 expression reverses these EGCG-dependent changes. These findings suggest that green tea polyphenols reduce skin tumor cell survival by influencing PcG-mediated epigenetic regulatory mechanisms. PMID:20015867

  20. Differences in binding behavior of (-)-epigallocatechin gallate to β-lactoglobulin heterodimers (AB) compared to homodimers (A) and (B).

    PubMed

    Keppler, Julia K; Martin, Dierk; Garamus, Vasil M; Schwarz, Karin

    2015-11-01

    The lipocalin β-lactoglobulin (β-LG) exists in different natural genetic variants--of which β-LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes--building homodimers of β-LG A and β-LG B and heterodimers of β-LG AB. Although β-LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero- and homodimers of β-LG is largely unknown. The present findings revealed significant differences for hetero- and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (-)-epigallocatechin gallate (EGCG)). These findings were confirmed using FT-IR, where the addition of EGCG influenced the β-sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β-LG in the order β-LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β-LG and gives not only important information for β-LG binding studies, but may also apply for polymorphisms of other self-aggregating lipocalins. PMID:26038095

  1. Biological and Mechanistic Characterization of Novel Prodrugs of Green Tea Polyphenol Epigallocatechin Gallate Analogs in Human Leiomyoma Cell Lines.

    PubMed

    Ahmed, Reda Saber Ibrahim; Liu, Gang; Renzetti, Andrea; Farshi, Pershang; Yang, Huanjie; Soave, Claire; Saed, Ghassan; El-Ghoneimy, Ashraf Ahmed; El-Banna, Hossny Awad; Foldes, Robert; Chan, Tak-Hang; Dou, Q Ping

    2016-10-01

    Uterine fibroids (leiomyomas) are very common benign tumors grown on the smooth muscle layer of the uterus, present in up to 75% of reproductive-age women and causing significant morbidity in a subset of this population. Although the etiology and biology of uterine fibroids are unclear, strong evidence supports that cell proliferation, angiogenesis and fibrosis are involved in their formation and growth. Currently the only cure for uterine fibroids is hysterectomy; the available alternative therapies have limitations. Thus, there is an urgent need for developing a novel strategy for treating this condition. The green tea polyphenol epigallocatechin gallate (EGCG) inhibits the growth of uterine leiomyoma cells in vitro and in vivo, and the use of a green tea extract (containing 45% EGCG) has demonstrated clinical activity without side effects in women with symptomatic uterine fibroids. However, EGCG has a number of shortcomings, including low stability, poor bioavailability, and high metabolic transformations under physiological conditions, presenting challenges for its development as a therapeutic agent. We developed a prodrug of EGCG (Pro-EGCG or 1) which shows increased stability, bioavailability and biological activity in vivo as compared to EGCG. We also synthesized prodrugs of EGCG analogs, compounds 2a and 4a, in order to potentially reduce their susceptibility to methylation/inhibition by catechol-O-methyltransferase. Here, we determined the effect of EGCG, Pro-EGCG, and 2a and 4a on cultured human uterine leiomyoma cells, and found that 2a and 4a have potent antiproliferative, antiangiogenic, and antifibrotic activities. J. Cell. Biochem. 117: 2357-2369, 2016. © 2016 Wiley Periodicals, Inc. PMID:26950525

  2. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer

    PubMed Central

    Toden, Shusuke; Tran, Hanh-My; Tovar-Camargo, Oscar A.; Okugawa, Yoshinaga; Goel, Ajay

    2016-01-01

    Resistance to cytotoxic chemotherapy is a major cause of mortality in colorectal cancer (CRC) patients. A small subset of cancer cells, termed “cancer stem cells” (CSCs), are believed to be key contributors of chemoresistance and tumor recurrence. Recently, epigallocatechin-3-gallate (EGCG), an active catechin present in green tea, has been shown to suppress CSC growth in various cancers, but whether it can specifically target CSCs and subsequently sensitize chemoresistant CRC cells to standard of care chemotherapeutic treatments remains unknown. Herein, we investigated the chemosensitizing effects of EGCG in 5-fluorouracil (5FU)-resistant (5FUR) CRC cells and spheroid-derived CSCs (SDCSCs), and interrogated the underlying molecular mechanisms responsible for its chemopreventive activity. EGCG enhanced 5FU-induced cytotoxicity and inhibited proliferation in 5FUR cell lines through enhancement of apoptosis and cell cycle arrest. The 5FUR cells showed higher spheroid forming capacity compared to parental cells, indicating higher CSC population. EGCG treatment in these cells resulted in suppression of SDCSC formation and enhanced 5FU sensitivity to SDCSCs. Furthermore, EGCG suppressed Notch1, Bmi1, Suz12, and Ezh2, and upregulated self-renewal suppressive-miRNAs, miR-34a, miR-145, and miR-200c, which are some of the key pathways targeted in 5FUR CRC cells. These findings were validated in vivo, wherein EGCG treatment resulted in inhibited tumor growth in a SDCSC xenograft model. Collectively our data provide novel and previously unrecognized evidence for EGCG-induced sensitization to 5FU through targeting of CSCs in CRC. Our data highlight that in addition to its chemopreventive ability, EGCG may serve as an adjunctive treatment to conventional chemotherapeutic drugs in CRC patients. PMID:26930714

  3. Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes

    PubMed Central

    Castellano-González, Gloria; Pichaud, Nicolas; Ballard, J. William O.; Bessede, Alban; Marcal, Helder; Guillemin, Gilles J.

    2016-01-01

    Mitochondrial dysfunction and resulting energy impairment have been identified as features of many neurodegenerative diseases. Whether this energy impairment is the cause of the disease or the consequence of preceding impairment(s) is still under discussion, however a recovery of cellular bioenergetics would plausibly prevent or improve the pathology. In this study, we screened different natural molecules for their ability to increase intracellular adenine triphosphate purine (ATP). Among them, epigallocatechin-3-gallate (EGCG), a polyphenol from green tea, presented the most striking results. We found that it increases ATP production in both human cultured astrocytes and neurons with different kinetic parameters and without toxicity. Specifically, we showed that oxidative phosphorylation in human cultured astrocytes and neurons increased at the level of the routine respiration on the cells pre-treated with the natural molecule. Furthermore, EGCG-induced ATP production was only blocked by sodium azide (NaN3) and oligomycin, inhibitors of cytochrome c oxidase (CcO; complex IV) and ATP synthase (complex V) respectively. These findings suggest that the EGCG modulates CcO activity, as confirmed by its enzymatic activity. CcO is known to be regulated differently in neurons and astrocytes. Accordingly, EGCG treatment is acting differently on the kinetic parameters of the two cell types. To our knowledge, this is the first study showing that EGCG promotes CcO activity in human cultured neurons and astrocytes. Considering that CcO dysfunction has been reported in patients having neurodegenerative diseases such as Alzheimer's disease (AD), we therefore suggest that EGCG could restore mitochondrial function and prevent subsequent loss of synaptic function. PMID:26760769

  4. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    SciTech Connect

    Moreira, Liliana; Araújo, Isabel; Costa, Tito; Correia-Branco, Ana; Faria, Ana; Martel, Fátima; Keating, Elisa

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  5. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    PubMed Central

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-01-01

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in colorectal cancer cells. PMID:24518414

  6. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1{beta} secretion

    SciTech Connect

    Ellis, Lixia Z.; Liu, Weimin; Luo, Yuchun; Okamoto, Miyako; Qu, Dovina; Dunn, Jeffrey H.; Fujita, Mayumi

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EGCG inhibits melanoma cell growth at physiological doses (0.1-1 {mu}M). Black-Right-Pointing-Pointer EGCG inhibits melanoma cell growth via inflammasomes and IL-1{beta} suppression. Black-Right-Pointing-Pointer Inflammasomes and IL-1{beta} could be potential targets for future melanoma therapeutics. -- Abstract: Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has been demonstrated to possess anti-inflammatory, antioxidant, anti-mutagenic and anti-carcinogenic properties. The anti-melanoma effect of EGCG has been previously suggested, but no clear mechanism of action has been established. In this study, we demonstrated that EGCG inhibits melanoma cell growth at physiological doses (0.1-1 {mu}M). In the search for mechanisms of EGCG-mediated melanoma cell suppression, we found that NF-{kappa}B was inhibited, and that reduced NF-{kappa}B activity was associated with decreased IL-1{beta} secretion from melanoma cells. Since inflammasomes are involved in IL-1{beta} secretion, we investigated whether IL-1{beta} suppression was mediated by inflammasomes, and found that EGCG treatment led to downregulation of the inflammasome component, NLRP1, and reduced caspase-1 activation. Furthermore, silencing the expression of NLRP1 abolished EGCG-induced inhibition of tumor cell proliferation both in vitro and in vivo, suggesting a key role of inflammasomes in EGCG efficacy. This paper provides a novel mechanism for EGCG-induced melanoma inhibition: inflammasome downregulation {yields} decreased IL-1{beta} secretion {yields} decreased NF-{kappa}B activities {yields} decreased cell growth. In addition, it suggests inflammasomes and IL-1{beta} could be potential targets for future melanoma therapeutics.

  7. In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii

    PubMed Central

    2014-01-01

    Background Acinetobacter baumannii is an opportunistic human pathogen often associated with life-threatening infections in the immunocompromised and the critically ill. Strains are often multidrug-resistant (MDR) and due to the lack of new synthetic antimicrobials in development for treatment, attention is increasingly focused on natural compounds either as stand-alone or adjunctive agents. Curcumin (CCM) is a natural polyphenol found in turmeric and isolated from the plant, Curcuma longa. Curcumin has been found to possess many biological properties, including antibacterial activity. In this study the antimicrobial activity of CCM and synergistic effects with epigallocatechin gallate (EGCG) against multidrug-resistant strains of A. baumannii were investigated and assessed via checkerboard and time-kill assays. Results The MIC of CCM was >256 μg/mL against all strains of A. baumannii whilst those for EGCG ranged from 128-1024 μg/mL. In checkerboard studies synergy was observed against 5/9 isolates, with an additive effect noted in the remaining 4. The addition of EGCG reduced the MIC of CCM by 3- to 7-fold, with the greatest interaction resulting in a CCM MIC of 4 μg/mL. Time-kill curves indicated that a CCM-EGCG (1:8 and 1:4) combination was bactericidal with a 4 to 5-log reduction in viable counts after 24 h compared to the most effective polyphenol alone. Conclusions This study demonstrates that despite little antibacterial activity alone, CCM activity is greatly enhanced in the presence of EGCG resulting in antibacterial activity against MDR A. baumannii. The combination may have a potential use in medicine as a topical agent to prevent or treat A. baumannii infections. PMID:24969489

  8. Compounds Derived from Epigallocatechin-3-Gallate (EGCG) as a Novel Approach to the Prevention of Viral Infections.

    PubMed

    Hsu, Stephen

    2015-01-01

    Pathogenic viral infections pose major health risks to humans and livestock due to viral infection-associated illnesses such as chronic or acute inflammation in crucial organs and systems, malignant and benign lesions. These lead to large number of illnesses and deaths worldwide each year. Outbreaks of emerging lethal viruses, such as Ebola virus, severe acute respiratory syndrome (SARS) virus and Middle East respiratory syndrome (MERS) virus, could lead to epidemics or even pandemics if they are not effectively controlled. Current strategies to prevent viral entry into the human body are focused on cleansing the surface of the skin that covers hands and fingers. Surface protection and disinfection against microorganisms, including viruses, is performed by sanitization of the skin surface through hand washing with soap and water, surface disinfectants, and hand sanitizers, particularly alcohol-based hand sanitizers. However, concerns about the overall ineffectiveness, toxicity of certain ingredients of disinfectants, pollution of the environment, and the short duration of antimicrobial activity of alcohol have not been addressed, and the epidemiology of certain major viral infections are not correlated inversely with the current measures of viral prevention. In addition to a short duration on the skin surface, alcohol is ineffective against certain viruses such as norovirus, rabies virus, and polio virus. There is a need for a novel approach to protect humans and livestock from infections of pathogenic viruses that is broadly effective, long-lasting (persistent), non-toxic, and environment-friendly. A strong candidate is a group of unique compounds found in Camellia sinensis (tea plant): the green tea polyphenols, in particular epigallocatechin-3-gallate (EGCG) and its lipophilic derivatives. This review discussed the weaknesses of current hand sanitizers, gathered published results from many studies on the antiviral activities of EGCG and its lipophilic

  9. Nitric oxide pathway activity modulation alters the protective effects of (-)Epigallocatechin-3-gallate on reserpine-induced impairment in rats.

    PubMed

    Chen, Cheng-Neng; Chang, Kuo-Chi; Lin, Rui-Feng; Wang, Mao-Hsien; Shih, Ruoh-Lan; Tseng, Hsiang-Chien; Soung, Hung-Sheng; Tsai, Cheng-Chia

    2016-05-15

    Reserpine (RES) has been reported to increase the brain's neural oxidative stress and cause cognitive dysfunction. Having powerful antioxidative properties, green tea catechins, especially (-)epigallocatechin-3-gallate (EGCG), are able to protect against many oxidative injuries. In this study, we examined the protecting properties of EGCG on RES-induced impairment of short-term memory in three-month-old male Wistar rats. RES (1mg/kg i.p.) induced memory impairment (p<0.001) as evaluated by the social recognition task. EGCG treatment (100mg/kg i.p. for 7days, starting 6days before RES injection) was able to improve the impaired memory caused by RES. RES treatment increased the nitric oxide (NO) level and lipid peroxidation (LPO) production, and decreased the antioxidation power in hippocampi. EGCG treatment was able to counteract the RES-induced NO level and LPO production, as well as enhanced the hippocampal antioxidation power in RES-treated rats. In order to examine the implication of NO pathway activity in RES treatment, either NO precursor (L-arginine; L-A) or NO synthase inhibitor (L-NAME; L-N) was co-pretreated with EGCG; NO precursor treatment eliminated the protective effect of EGCG, in contrast to that NO synthase inhibitor treatment significantly increased the EGCG effects on cognitive and biochemical protection in RES-treated rats. These results suggested that the NO pathway was implicated, at least in part, in the RES-induced impairment, as well as in the protective effect of EGCG in treating RES-induced impairment of memory. The above evidence provides a clinically relevant value for EGCG in preventing RES-induced cognitive dysfunction. PMID:26944334

  10. Epigallocatechin Gallate Remodels Fibrils of Lattice Corneal Dystrophy Protein, Facilitating Proteolytic Degradation and Preventing Formation of Membrane-Permeabilizing Species.

    PubMed

    Stenvang, Marcel; Christiansen, Gunna; Otzen, Daniel E

    2016-04-26

    Lattice corneal dystrophy is associated with painful recurrent corneal erosions and amyloid corneal opacities induced by transforming growth factor β-induced protein (TGFBIp) that impairs vision. The exact mechanism of amyloid fibril formation in corneal dystrophy is unknown but has been associated with destabilizing mutations in the fourth fasciclin 1 (Fas1-4) domain of TGFBIp. The green tea compound epigallocatechin gallate (EGCG) has been found to inhibit fibril formation of various amyloidogenic proteins in vitro. In this study, we investigated the effect of EGCG as a potential treatment in lattice corneal dystrophy (LCD) using Fas1-4 with the naturally occurring LCD-inducing A546T mutation. A fewfold molar excess of EGCG was found to inhibit fibril formation in vitro by directing Fas1-4 A546T into stable EGCG-bound protein oligomers. Incubation with 2 molar equiv of EGCG led to a 4-fold reduction in the aggregates' membrane disruptive potential, potentially indicative of significantly lower cytotoxicity with regard to corneal erosions. EGCG did not induce oligomer formation by wild-type Fas1-4, indicating that treatment with EGCG would not interfere with the native function of the wild-type protein. Addition of EGCG to 10-day-old fibrils reduced fibril content in a dose-dependent manner. Proteinase K was found to reduce the light scattering of nontreated fibrils by 31% but reduced that of fibrils treated with 8 molar equiv of EGCG by 85%. This suggests that EGCG remodeling of fibril structure can facilitate aggregate removal by endogenous proteases and thus alleviate the protein deposits' light scattering symptoms. PMID:27042751

  11. Synergistic Effect of the Flavonoid Catechin, Quercetin, or Epigallocatechin Gallate with Fluconazole Induces Apoptosis in Candida tropicalis Resistant to Fluconazole

    PubMed Central

    da Silva, Cecília Rocha; de Andrade Neto, João Batista; de Sousa Campos, Rosana; Figueiredo, Narjara Silvestre; Sampaio, Letícia Serpa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; Gaspar, Danielle Macêdo; de Andrade, Geanne Matos; Lima, Iri Sandro Pampolha; de Barros Viana, Glauce Socorro; de Moraes, Manoel Odorico; Lobo, Marina Duarte Pinto; Grangeiro, Thalles Barbosa

    2014-01-01

    Flavonoids are a class of phenolic compounds commonly found in fruits, vegetables, grains, flowers, tea, and wine. They differ in their chemical structures and characteristics. Such compounds show various biological functions and have antioxidant, antimicrobial, anti-inflammatory, and antiapoptotic properties. The aim of this study was to evaluate the in vitro interactions of flavonoids with fluconazole against Candida tropicalis strains resistant to fluconazole, investigating the mechanism of synergism. Three combinations formed by the flavonoids (+)-catechin hydrated, hydrated quercetin, and (−)-epigallocatechin gallate at a fixed concentration with fluconazole were tested. Flavonoids alone had no antifungal activity within the concentration range tested, but when they were used as a cotreatment with fluconazole, there was significant synergistic activity. From this result, we set out to evaluate the possible mechanisms of cell death involved in this synergism. Isolated flavonoids did not induce morphological changes or changes in membrane integrity in the strains tested, but when they were used as a cotreatment with fluconazole, these changes were quite significant. When evaluating mitochondrial damage and the production of reactive oxygen species (ROS) only in the cotreatment, changes were observed. Flavonoids combined with fluconazole were shown to cause a significant increase in the rate of damage and the frequency of DNA damage in the tested strains. The cotreatment also induced an increase in the externalization of phosphatidylserine, an important marker of early apoptosis. It is concluded that flavonoids, when combined with fluconazole, show activity against strains of C. tropicalis resistant to fluconazole, promoting apoptosis by exposure of phosphatidylserine in the plasma membrane and morphological changes, mitochondrial depolarization, intracellular accumulation of ROS, condensation, and DNA fragmentation. PMID:24366745

  12. Combination therapy with taurine, epigallocatechin gallate and genistein for protection against hepatic fibrosis induced by alcohol in rats.

    PubMed

    Zhuo, Lang; Liao, Ming; Zheng, Li; He, Min; Huang, Quanfang; Wei, Ling; Huang, Renbin; Zhang, Shijun; Lin, Xing

    2012-01-01

    This study was to investigate the possibility of enhancing the anti-fibrotic effect by using a combination therapy with taurine, epigallocatechin gallate and genistein in a rat liver fibrosis model induced by alcohol, and to explore its underlying mechanism. Hepatic fibrosis was induced by intragastric administration with various amount of alcohol (5.0-9.5 g/kg) within 24 weeks in rats. The model group received alcohol only, and treatment groups received the corresponding drugs plus alcohol respectively, while the normal control group received an equal volume of saline. The antifibrotic effects of combination therapy were assessed directly by hepatic histology, and indirectly by measurement of serum biochemical markers, the fibrosis markers and related key cytokines/proteins. The results showed that combination therapy could significantly improve the liver function, as indicated by decreasing levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, γ-glutamyltransferase, interleukin-6 and tumor necrosis factor-α. Moreover, combination therapy could effectively suppress the serum levels of fibrosis markers and hepatic hydroxyproline content, inhibit collagen deposition and reduce the pathological tissue damage. Research on mechanism showed that combination therapy was able to markedly reduce lipid peroxidation and recruit the anti-oxidative defense system, and inhibit the expression of B-cell lymphoma 2, α-smooth muscle actin, transforming growth factor β(1) and small mothers against decapentaplegic homolog 3 proteins. Our results showed that combination therapy is effective in attenuating hepatic injury and fibrosis in the alcohol-induced rat model. The improved efficacy of the combination therapy with its good safety profile could represent a new protective approach for liver fibrosis. PMID:23037169

  13. Coordinated Regulation of Murine Cardiomyocyte Contractility by Nanomolar (−)-Epigallocatechin-3-Gallate, the Major Green Tea Catechin

    PubMed Central

    Feng, Wei; Hwang, Hyun Seok; Kryshtal, Dmytro O.; Yang, Tao; Padilla, Isela T.; Tiwary, Asheesh K.; Puschner, Birgit; Pessah, Isaac N.

    2012-01-01

    Green tea polyphenolic catechins exhibit biological activity in a wide variety of cell types. Although reports in the lay and scientific literature suggest therapeutic potential for improving cardiovascular health, the underlying molecular mechanisms of action remain unclear. Previous studies have implicated a wide range of molecular targets in cardiac muscle for the major green tea catechin, (−)-epigallocatechin-3-gallate (EGCG), but effects were observed only at micromolar concentrations of unclear clinical relevance. Here, we report that nanomolar concentrations of EGCG significantly enhance contractility of intact murine myocytes by increasing electrically evoked Ca2+ transients, sarcoplasmic reticulum (SR) Ca2+ content, and ryanodine receptor type 2 (RyR2) channel open probability. Voltage-clamp experiments demonstrate that 10 nM EGCG significantly inhibits the Na+-Ca2+ exchanger. Of importance, other Na+ and Ca2+ handling proteins such as Ca2+-ATPase, Na+-H+ exchanger, and Na+-K+-ATPase were not affected by EGCG ≤1 μM. Thus, nanomolar EGCG increases contractility in intact myocytes by coordinately modulating SR Ca2+ loading, RyR2-mediated Ca2+ release, and Na+-Ca2+ exchange. Inhibition of Na+-K+-ATPase activity probably contributes to the positive inotropic effects observed at EGCG concentrations >1 μM. These newly recognized actions of nanomolar and micromolar EGCG should be considered when the therapeutic and toxicological potential of green tea supplementation is evaluated and may provide a novel therapeutic strategy for improving contractile function in heart failure. PMID:22918967

  14. Fyn Is a Novel Target of (−)-Epigallocatechin Gallate in the Inhibition of JB6 Cl41 Cell Transformation

    PubMed Central

    He, Zhiwei; Tang, Faqing; Ermakova, Svetlana; Li, Ming; Zhao, Qing; Cho, Yong-Yeon; Ma, Wei-Ya; Choi, Hong-Seok; Bode, Ann M.; Yang, Chung S.; Dong, Zigang

    2010-01-01

    The cancer preventive action of (−)-epigallocatechin gallate (EGCG), found in green tea, is strongly supported by epidemiology and laboratory research data. However, the mechanism by which EGCG inhibits carcinogenesis and cell transformation is not clear. In this study, we report that EGCG suppressed epidermal growth factor (EGF)-induced cell transformation in JB6 cells. We also found that EGCG inhibited EGF-induced Fyn kinase activity and phosphorylation in vitro and in vivo. Fyn was implicated in the process because EGF-induced JB6 cell transformation was inhibited by small interfering RNA (siRNA)-Fyn-JB6 cells. With an in vitro protein-binding assay, we found that EGCG directly bound with the GST-Fyn-SH2 domain but not the GST-Fyn-SH3 domain. The Kd value for EGCG binding to the Fyn SH2 domain was 0.367 ± 0.122 µM and Bmax was 1.35 ± 0.128 nmol/mg. Compared with control JB6 Cl41 cells, EGF-induced phosphorylation of p38 MAP kinase (p38 MAPK) (Thr180/Tyr182), ATF-2 (Thr71) and signal transducer and activator of transcription 1 (STAT1) (Thr727) was decreased in siRNA-Fyn-JB6 cells. EGCG could inhibit the phosphorylation of p38 MAPK, ATF-2, and STAT1. The DNA binding ability of AP-1, STAT1, and ATF-2 was also decreased in siRNA-Fyn-JB6 cells. Overall, these results demonstrated that EGCG interacted with Fyn and inhibited Fyn kinase activity and thereby regulated EGF-induced cell transformation. Inhibition of Fyn kinase activity is a novel and important mechanism that may be involved in EGCG-induced inhibition of cell transformation. PMID:18095272

  15. Bis(μ2-iso-propyl-imido-κ(2) N:N)bis-[(η(5)-cyclo-penta-dien-yl)(ethenolato-κO)titanium(IV)].

    PubMed

    Haehnel, Martin; Spannenberg, Anke; Rosenthal, Uwe

    2014-01-01

    The title dinuclear half-sandwich complex, [CpTi(OCH=CH2)(μ2-N-iPr)]2 (Cp = cyclo-penta-dien-yl; iPr = isopropyl), was ob-tained from the reaction of Cp2TiCl2, n-butyl-lithium and iso-propyl-amine in tetra-hydro-furan. Each Ti(IV) atom is coordinated by one Cp ligand, one vin-yloxy unit and two bridging imido groups in a strongly distorted tetra-hedral geometry. There are two half mol-ecules in the asymmetric unit, such that whole mol-ecules being generated by inversion symmetry. PMID:24526944

  16. Synthesis of a Nanostructured Composite: Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxane via Click Reaction.

    PubMed

    Ghodsi, Mohammadi Ziarani; Shakiba Nahad, Monireh; Lashgari, Negar; Alireza, Badiei

    2015-01-01

    Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxanes as functionalized silsesquioxanes were synthesized via click reaction (copper-catalyzed Huisgen 1,3-dipolar cycloaddition reaction) between azidemoiety functionalized silsesquioxane and prop-2-ynyl 2-chlorobenzoate. The latter one was synthesized via the condensation reaction of propargyl alcohol and 2-chlorobenzoyl chloride in the presence of SBA-Pr-NH(2) (Santa Barbara Amorphous type material) as a nano basic catalyst. This approach provides a simple and convenient route to efficiently functionalize a wide range of new structures on the surface of silsesquioxanes. PMID:26454606

  17. Volumetric Properties of the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (VMSD1111, LB5079_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (VMSD1111, LB5079_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  18. Volumetric Properties of the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (VMSD1212, LB5078_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (VMSD1212, LB5078_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  19. Vapor-Liquid Equilibrium in the Mixture Propyl vinyl ether C5H10O + C6H6 Benzene (EVLM1121, LB5723_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-liquid Equilibrium in the Mixture Propyl vinyl ether C5H10O + C6H6 Benzene (EVLM1121, LB5723_E)' providing data from direct measurement of mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  20. Volumetric Properties of the Mixture Propyl vinyl ether C5H10O + C6H6 Benzene (VMSD1212, LB5077_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propyl vinyl ether C5H10O + C6H6 Benzene (VMSD1212, LB5077_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  1. Vapor-Liquid Equilibrium in the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (EVLM1121, LB5724_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (EVLM1121, LB5724_E)' providing data from direct measurement of mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  2. Volumetric Properties of the Mixture Propyl vinyl ether C5H10O + C6H6 Benzene (VMSD1111, LB5076_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Propyl vinyl ether C5H10O + C6H6 Benzene (VMSD1111, LB5076_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  3. Optimization of Ultrasound-assisted extraction of polyphenols, tannins and epigallocatechin gallate from barks of Stryphnodendron adstringens (Mart.) Coville bark extracts

    PubMed Central

    Sousa, Jordana N.; Pedroso, Nathália B.; Borges, Leonardo L.; Oliveira, Gerlon A. R.; Paula, José R.; Conceição, Edemilson C.

    2014-01-01

    Background: Stryphnodendron adstringens (Mar.) Coville is a native plant from Brazil, rich in phenolic compounds and used on popular medicine as a wound healing agent, in the treatment of gastric lesions and as antimicrobial. Materials and Methods: Ultrassound-assisted extraction (UAE) was applied to extraction of epigallocatechin gallate (EGCG), total polyphenols (TP) and total tannins (TT) content from barks of Stryphnodendron adstringens (Mar.) Coville. Several operating parameters, namely extraction time (min), liquid to solid ratio (mg/mL), ethanolic strength (%, v/v), were optimized using response surface methodology (RSM) with a Box-Behnken design. Results: By using the desirability function approach, the optimum UAE conditions to obtain desirable extraction yields for all these metabolites simultaneously were found at the extraction time of 30 min, solid to liquid ratio of 4 mg/mL and ethanolic strength of 65. Under these conditions, the epigallocatechin gallate, total polyphenols and total tannins content were 0.31; 22.95 and 11.95 % (w/w), respectively. Conclusion: The results indicated that knowledge gained from this study should be helpful to further exploit and apply this resource and also showed the feasibility of ultrasound-assisted extraction for obtaining GEGC, TP and TT from barks of S. adstrigens. PMID:24991110

  4. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes.

    PubMed

    Huang, Chieh-Chen; Wu, Wen-Bin; Fang, Jia-You; Chiang, Han-Sun; Chen, Shao-Kuan; Chen, Bing-Huei; Chen, Ying-Ting; Hung, Chi-Feng

    2007-01-01

    (-)-Epicatechin-3-gallate (ECG) is a polyphenolic compound similar to (-)-epigallocatechin-3-gallate (EGCG) which is abundant in green tea. Numerous workers have proposed that EGCG protects epidermal cells against UVB-induced damage. However, little has been known about whether ECG protects keratinocytes against UVB-induced damage. We decided to investigate the protective effects and underlying mechanisms of ECG on UVB-induced damage. Cell viability was determined by the MTT assay. Activation of ERK1/2, p38 and JNK was analyzed by Western blotting. Intracellular H2O2 production and DNA content was analyzed by flow cytometry. Lipid peroxidation was assayed by colorimetry. In our study, we found that ECG dose-dependently attenuated UVB-induced keratinocyte death. Moreover, ECG markedly inhibited UVB-induced cell membrane lipid peroxidation and H2O2 generation in keratinocytes, suggesting that ECG can act as a free radical scavenger when keratinocytes were photodamaged. In parallel, H2O2-induced the activation of ERK1/2, p38 and JNK in keratinocytes could be inhibited by ECG. UVB-induced pre-G1 arrest leading to apoptotic changes of keratinocytes were blocked by ECG. Taken together, we provide here evidence that ECG protects keratinocytes from UVB-induced photodamage and H2O2-induced oxidative stress, possibly through inhibition of the activation of ERK1/2, p38 and JNK and/or scavenging of free radicals. PMID:17960092

  5. A-type dimeric epigallocatechin-3-gallate (EGCG) is a more potent inhibitor against the formation of insulin amyloid fibril than EGCG monomer.

    PubMed

    Nie, Rong-Zu; Zhu, Wei; Peng, Jin-Ming; Ge, Zhen-Zhen; Li, Chun-Mei

    2016-06-01

    Because fibrillary protein aggregates is regarded to be closely associated with many diseases such as Alzheimer's disease, diabetes, and Parkinson's disease, growing interest and researches have been focused on finding potential fibrillation inhibitors. In the present study, the inhibitory effects of epigallocatechin-3-gallate (EGCG) and A-type dimeric epigallocatechin-3-gallate (A-type EGCG dimer) on the formation of insulin fibrillation were compared by multi-dimensional approaches including thioflavin-T (ThT) fluorescence assay, 1-anilinonaphthalene-8-sulfonic (ANS) fluorescence assay, dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) spectroscopy. Our results confirmed that A-type EGCG dimer is a more potent inhibitor against the formation of bovine insulin amyloid fibril than EGCG. In addition, A-type EGCG dimer could not only inhibit insulin amyloid fibril formation, but also change the aggregation pathway and induce bovine insulin into amorphous aggregates. The results of the present study may provide a new guide on finding novel anti-amyloidogenic agents. PMID:27079519

  6. Stimulating Effect of a Novel Synthesized Sulfonamido-Based Gallate ZXHA-TC on Primary Osteoblasts

    PubMed Central

    Jin, Pan; Liao, Liang; Lin, Xiao; Guo, Qinggong; Lin, Cuiwu; Wu, Huayu

    2015-01-01

    Purpose This study is intended to investigate the effects of plants or plant-derived antioxidants on prevention of osteoporosis through the maintenance of reactive oxygen species (ROS) at a favorable level. Materials and Methods In this study, a novel antioxidant, namely 3,4,5-Trihydroxy-N-[4-(5-hydroxy-6-methoxy-pyrimidin-4-ylsulfamoyl)-phenyl]-benzamide (ZXHA-TC) was synthesized from gallic acid and sulfadimoxine. Its effect on osteoblast metabolism was investigated via the detection of cell proliferation, cell viability, production of ROS, and expression of osteogenic-specific genes including runt-related transcription factor 2 (RUNX2), bone sialoprotein (BSP), osteocalcin (OCN), alpha-1 type I collagen (COL1A1), and osteogenic-related proteins after treatment for 2, 4, and 6 days respectively. Results The results showed that ZXHA-TC has a stimulating effect on the proliferation and osteogenic differentiation of primary osteoblasts by promoting cell proliferation, cell viability, and the expression of genes BSP and OCN. Productions of bone matrix and mineralization were also increased by ZXHA-TC treatment as a result of up-regulation of COL1A1 and alkaline phosphatase (ALP) at the early stage and down-regulation of both genes subsequently. A range of 6.25×10-3 µg/mL to 6.25×10-1 µg/mL is the recommended dose for ZXHA-TC, within which 6.25×10-2 µg/mL showed the best performance. Conclusion This study may hold promise for the development of a novel agent for the treatment of osteoporosis. PMID:25837183

  7. Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: estrogenic activity, endocrine disruption and reproductive effects on zebrafish.

    PubMed

    Wang, Qiangwei; Lam, James C W; Han, Jian; Wang, Xianfeng; Guo, Yongyong; Lam, Paul K S; Zhou, Bingsheng

    2015-03-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an organophosphate flame retardant that is detectable in the environment and biota, prompting concern over its risk to wildlife and human health. Our objective was to investigate whether long-term exposure to low concentrations of TDCPP can affect fish reproduction. Zebrafish embryos were exposed to low concentrations (0, 4, 20 and 100μg/L) of TDCPP from 2h post-fertilization until sexual maturation. Exposure to TDCPP significantly increased plasma estradiol and testosterone levels in females, but had no effect in males. TDCPP exposure also caused a significant reduction in fecundity as indicated by decreased egg production. Real-time PCR was performed to examine selected genes in the hypothalamic-pituitary-gonadal (HPG) axis and liver. Principle component analysis (PCA) showed that sex hormone levels and fecundity were related to the mRNA level of several genes in the HPG axis. Furthermore, hepatic vitellogenin (vtg1 and vtg3) expression was upregulated in both females and males, suggesting TDCPP has estrogenic activity. Histological examination revealed promotion of oocyte maturation in the females, but retardation of spermiation in males. Reduced egg quality (e.g., egg diameter) and increased malformation rates were observed in the F1 generation. Chemical analysis showed significant levels of TDCPP and its metabolite bis(1,3-dichloro-2-propyl) phosphate in the gonads of males and females. In conclusion, long-term exposure to low concentrations of TDCPP impairs fish reproduction. PMID:25637911

  8. The Flame-Retardant Tris(1,3-dichloro-2-propyl) Phosphate Represses Androgen Signaling in Human Prostate Cancer Cell Lines.

    PubMed

    Reers, Alexandra R; Eng, Margaret L; Williams, Tony D; Elliott, John E; Cox, Michael E; Beischlag, Timothy V

    2016-05-01

    The effects of six organophosphate flame retardants (OPFRs) tris(2-butoxyethyl) phosphate, tris(2-chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, tris(methylphenyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), and triethyl phosphate on the activities of androgen receptor (AR), estrogen receptor (ER), and aryl hydrocarbon receptor (AhR) were assessed in human prostate and endometrial cancer cells. OPFRs had no effect on ER or AhR target gene activation in ECC-1 cells. The effect of TDCIPP on mRNA and protein accumulation of AR target genes was examined further. AR-inducible gene and protein expression were significantly altered by TDCIPP exposure and repressed PSA levels in conditioned media of prostate cancer cells. We demonstrated that TDCIPP has no affinity for the AR ligand binding domain (AR-LBD) and exerts its antiandrogenic effects in a noncompetitive fashion. Thus, the clinical relevance of TDCIPP exposure on prostate cancer detection and progression to a therapeutically refractile state ought to be investigated further. PMID:26709203

  9. The carboxyl modifier 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) inhibits half of the high-affinity Mn-binding site in photosystem II membrane fragments

    SciTech Connect

    Preston, C.; Seibert, M. )

    1991-10-08

    The diphenylcarbazide (DPC)/Mn{sup 2+} assay was used to assess the amount of the high-affinity Mn-binding site in manganese-depleted photosystem II (PS II) membrane fragments from spinach and Scenedesmus obliquus. The assay mechanism at high DPC concentration was shown to involve noncompetitive inhibition of only half of the control level of DPC donation to PS II by micromolar concentrations of Mn at pH 6.5. At low DPC concentration both DPC and Mn{sup 2+} donate to PS II additively. Treatment with the carboxyl amino acid modifier 1-ethyl-3-(3(dimethylamino) propyl) carbodiimide (EDC) inhibited half of the high affinity Mn-binding site in spinach and Scenedesmus WT PS II membranes and all of the available site in Scenedesmus LF-1 mutant PS II membranes. A similar EDC concentration dependence was observed in all cases. This protection was specific for Mn{sup 2+}; six other divalent cations were ineffective. The authors conclude that EDC modifies that half of the high-affinity Mn-binding site that is insensitive to the histidine modifier diethyl pyrocarbonate (DEPC) and directly affects ligands that bind Mn. The effects of EDC and DEPC that influence the high-affinity site are mutually exclusive and are specific to the lumenal side of the PS II membrane. They suggest that carboxyl residues on reaction center proteins are associated with half of the high-affinity Mn-binding site in PS II and are involved along with histidine residues in binding Mn functional in the O{sub 2}-evolving process.

  10. Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sagittarius B2(N)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Garrod, R. T.; Müller, H. S. P.; Menten, K. M.; Comito, C.; Schilke, P.

    2009-05-01

    Context: In recent years, organic molecules of increasing complexity have been found toward the prolific Galactic center source Sagittarius B2. Aims: We wish to explore the degree of complexity that the interstellar chemistry can reach in star-forming regions. Methods: We carried out a complete line survey of the hot cores Sgr B2(N) and (M) with the IRAM 30 m telescope in the 3 mm range, plus partial surveys at 2 and 1.3 mm. We analyzed this spectral survey in the local thermodynamical equilibrium approximation. We modeled the emission of all known molecules simultaneously, which allows us to search for less abundant, more complex molecules. We compared the derived column densities with the predictions of a coupled gas-phase and grain-surface chemical code. Results: We report the first detection in space of ethyl formate (C2H5OCHO) and n-propyl cyanide (C3H7CN) toward Sgr B2(N). The detection of n-propyl cyanide is based on refined spectroscopic parameters derived from combined analyses of available laboratory spectroscopic data. For each molecule, we identified spectral features at the predicted frequencies having intensities compatible with a unique rotation temperature. For an assumed source size of 3 arcsec, our modeling yields a column density of 5.4 × 1016 cm-2, a temperature of 100 K, and a linewidth of 7 km s-1 for ethyl formate. n-Propyl cyanide is detected with two velocity components having column densities of 1.5 × 1016 cm-2 and 6.6 × 1015 cm-2, respectively, for a source size of 3 arcsec, a temperature of 150 K, and a linewidth of 7 km s-1. The abundances of ethyl formate and n-propyl cyanide relative to H2 are estimated to be 3.6 × 10-9 and 1.0 × 10-9, respectively. We derived column density ratios of 0.8/15/1 for the related species t-HCOOH/CH3OCHO/C2H5OCHO and 108/80/1 for CH3CN/C2H5CN/C3H7CN. Our chemical modeling reproduces these ratios reasonably well. It suggests that the sequential, piecewise construction of ethyl and n-propyl cyanide from

  11. Effects of exercise and dietary epigallocatechin gallate and β-alanine on skeletal muscle in aged mice.

    PubMed

    Pence, Brandt D; Gibbons, Trisha E; Bhattacharya, Tushar K; Mach, Houston; Ossyra, Jessica M; Petr, Geraldine; Martin, Stephen A; Wang, Lin; Rubakhin, Stanislav S; Sweedler, Jonathan V; McCusker, Robert H; Kelley, Keith W; Rhodes, Justin S; Johnson, Rodney W; Woods, Jeffrey A

    2016-02-01

    Aging leads to sarcopenia and loss of physical function. We examined whether voluntary wheel running, when combined with dietary supplementation with (-)-epigallocatechin-3-gallate (EGCG) and β-alanine (β-ALA), could improve muscle function and alter gene expression in the gastrocnemius of aged mice. Seventeen-month-old BALB/cByJ mice were given access to a running wheel or remained sedentary for 41 days while receiving either AIN-93M (standard feed) or AIN-93M containing 1.5 mg·kg(-1) EGCG and 3.43 mg·kg(-1) β-ALA. Mice underwent tests over 11 days from day 29 to day 39 of the study period, including muscle function testing (grip strength, treadmill exhaustive fatigue, rotarod). Following a rest day, mice were euthanized and gastrocnemii were collected for analysis of gene expression by quantitative PCR. Voluntary wheel running (VWR) improved rotarod and treadmill exhaustive fatigue performance and maintained grip strength in aged mice, while dietary intervention had no effect. VWR increased gastrocnemius expression of several genes, including those encoding interleukin-6 (Il6, p = 0.001), superoxide dismutase 1 (Sod1, p = 0.046), peroxisome proliferator-activated receptor gamma coactivator 1-α (Ppargc1a, p = 0.013), forkhead box protein O3 (Foxo3, p = 0.005), and brain-derived neurotrophic factor (Bdnf, p = 0.008), while reducing gastrocnemius levels of the lipid peroxidation marker 4-hydroxynonenal (p = 0.019). Dietary intervention alone increased gastrocnemius expression of Ppargc1a (p = 0.033) and genes encoding NAD-dependent protein deacetylase sirtuin-1 (Sirt1, p = 0.039), insulin-like growth factor I (Igf1, p = 0.003), and macrophage marker CD11b (Itgam, p = 0.016). Exercise and a diet containing β-ALA and EGCG differentially regulated gene expression in the gastrocnemius of aged mice, while VWR but not dietary intervention improved muscle function. We found no synergistic effects between dietary intervention and VWR. PMID:26761622

  12. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    SciTech Connect

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  13. An in vitro evaluation of epigallocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin.

    PubMed

    Dyer, Paul D R; Kotha, Arun K; Gollings, Alex S; Shorter, Susan A; Shepherd, Thomas R; Pettit, Marie W; Alexander, Bruce D; Getti, Giulia T M; El-Daher, Samer; Baillie, Les; Richardson, Simon C W

    2016-07-01

    The catechin, epigallocatechin gallate (eGCG), found in green tea, has inhibitory activity against a number of protein toxins and was investigated in relation to its impact upon ricin toxin (RT) in vitro. The IC(50) for RT was 0.08±0.004 ng/mL whereas the IC(50) for RT+100 μM eGCG was 3.02±0.572 ng/mL, indicating that eGCG mediated a significant (p<0.0001) reduction in ricin toxicity. This experiment was repeated in the human macrophage cell line THP-1 and IC(50) values were obtained for RT (0.54±0.024 ng/mL) and RT+100 μM eGCG (0.68±0.235 ng/mL) again using 100 μM eGCG and was significant (p=0.0013). The documented reduction in ricin toxicity mediated by eGCG was found to be eGCG concentration dependent, with 80 and 100 μg/mL (i.e. 178 and 223 μM respectively) of eGCG mediating a significant (p=0.0472 and 0.0232) reduction in ricin toxicity at 20 and 4 ng/ml of RT in Vero and THP-1 cells (respectively). When viability was measured in THP-1 cells by propidium iodide exclusion (as opposed to the MTT assays used previously) 10 ng/mL and 5 ng/mL of RT was used. The addition of 1000 μM and 100 μM eGCG mediated a significant (p=0.0015 and <0.0001 respectively) reduction in ricin toxicity relative to an identical concentration of ricin with 1 μg eGCG. Further, eGCG (100 μM) was found to reduce the binding of RT B chain to lactose-conjugated Sepharose as well as significantly (p=0.0039) reduce the uptake of RT B chain in Vero cells. This data suggests that eGCG may provide a starting point to refine biocompatible substances that can reduce the lethality of ricin. PMID:27017946

  14. Chronic treatment with epigallocatechin gallate reduces motor hyperactivity and affects in vitro tested intestinal motility of spontaneously hypertensive rats

    PubMed Central

    Potenza, Maria Assunta; Montagnani, Monica; Nacci, Carmela; De Salvia, Maria Antonietta

    2016-01-01

    Background Green tea catechins seem to contribute toward reducing body weight and fat. Objective We aimed to investigate whether chronic administration of (–)-epigallocatechin-3-gallate (EGCG), the most abundant catechin of green tea, reduces weight gain in spontaneously hypertensive rats (SHR), an animal model of metabolic syndrome, by increasing motor activity and/or by altering gastrointestinal motility. Design Nine-week-old SHR were randomly assigned to two groups and treated by gavage for 3 weeks with vehicle dimethyl sulfoxide or EGCG (200 mg/kg/day). Age-matched Wistar-Kyoto (WKY) control rats were treated with vehicle alone. The effect of chronic administration of EGCG was evaluated on open-field motor activity and on ex vivo colonic and duodenal motility. Moreover, in vitro acute effect of 20-min incubation with EGCG (100 µM) or vehicle was evaluated in colonic and duodenal specimens from untreated WKY rats and SHR. Results Vehicle-treated SHR were normoglycemic and hyperinsulinemic, and showed a reduction of plasma adiponectin when compared to vehicle-treated WKY rats. In addition, consistent with fasting glucose and insulin values, vehicle-treated SHR were more insulin resistant than age-matched vehicle-treated WKY rats. Chronic treatment for 3 weeks with EGCG improved insulin sensitivity, raised plasma adiponectin levels, and reduced food intake and weight gain in SHR. Vehicle-treated SHR showed increased open-field motor activity (both crossings and rearings) when tested after each week of treatment. The overall hyperactivity of vehicle-treated SHR was significantly reduced to the levels of vehicle-treated WKY rats after 2 and 3 weeks of EGCG treatment. Colonic and duodenal preparations obtained from SHR chronically treated in vivo with EGCG showed reduced responses to carbachol (0.05–5 µM) and increased inhibitory response to electrical field stimulation (EFS, 1–10 Hz, 13 V, 1 msec, 10-sec train duration), respectively. In vitro acute EGCG

  15. NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells

    PubMed Central

    2014-01-01

    Background Nitric oxide (NO) is a signaling molecule regulating numerous cellular functions in development and disease. In the brain, neuronal injury or neuroinflammation can lead to microglial activation, which induces NO production. NO can react with critical cysteine thiols of target proteins forming S-nitroso-proteins. This modification, known as S-nitrosylation, is an evolutionarily conserved redox-based post-translational modification (PTM) of specific proteins analogous to phosphorylation. In this study, we describe a protocol for analyzing S-nitrosylation of proteins using a gel-based proteomic approach and use it to investigate the modes of action of a botanical compound found in green tea, epigallocatechin-3-gallate (EGCG), on protein S-nitrosylation after microglial activation. Methods/Results To globally and quantitatively analyze NO-induced protein S-nitrosylation, the sensitive gel-based proteomic method, termed NitroDIGE, was developed by combining two-dimensional differential in-gel electrophoresis (2-D DIGE) with the modified biotin switch technique (BST) using fluorescence-tagged CyDye™ thiol reactive agents to label S-nitrosothiols. The NitroDIGE method showed high specificity and sensitivity in detecting S-nitrosylated proteins (SNO-proteins). Using this approach, we identified a subset of SNO-proteins ex vivo by exposing immortalized murine BV-2 microglial cells to a physiological NO donor, or in vivo by exposing BV-2 cells to endotoxin lipopolysaccharides (LPS) to induce a proinflammatory response. Moreover, EGCG was shown to attenuate S-nitrosylation of proteins after LPS-induced activation of microglial cells primarily by modulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response. Conclusions These results demonstrate that NitroDIGE is an effective proteomic strategy for “top-down” quantitative analysis of protein S-nitrosylation in multi-group samples in response to nitrosative stress due

  16. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  17. Propylsulfonic and arenesulfonic functionalized SBA-15 silica as an efficient and reusable catalyst for the acidolysis of soybean oil with medium-chain fatty acids.

    PubMed

    Xie, Wenlei; Zhang, Chi

    2016-11-15

    The objective of this work was to develop a feasible ecofriendly process to produce medium-chain fatty acid (MCFA)-enriched structured lipids (SLs) in heterogeneous manners. For this purpose, the propyl-SO3H or arene-SO3H-modified SBA-15 materials were prepared through a surface functionalization of SBA-15 silica with propyl-SO3H and arene-SO3H groups. The organosulfonic acid-functionalized SBA-15 materials were characterized by Brönsted acidity determination, elemental analysis, XRD, C(13) MAS NMR, FT-IR, SEM, TG, TEM, and N2 adsorption-desorption techniques. Results showed that the propyl-SO3H and arene-SO3H groups were successfully tethered on the SBA-15 support, and the ordered mesoporous structure of SBA-15 silica was well retained after the organofunctionalization. This organic-inorganic hybrid material displayed high surface acidities and high activities in the acidolysis of soybean oil with caprylic or capric acid to produce SLs containing MCFAs. The influences of processing parameters on the reaction were investigated. The two studied catalysts showed an excellent recyclability for the reaction. PMID:27283609

  18. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  19. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  20. 40 CFR 180.1065 - 2-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. 180.1065...-Amino-4,5-dihydro-6-methyl-4-propyl-s-triazolo(1,5-alpha)pyrimidin-5-one; exemption from the requirement of a tolerance. The inert ingredient,...

  1. Intramolecular and intermolecular migration of propyl groups in 9-isopropyl-o- and 9-isopropyl-m-carboranes under the action of HCl and AlCl/sub 3/

    SciTech Connect

    Zakharkin, L.I.; Kovredov, A.I.; Ol'shevskaya, V.A.; Vitt, S.V.

    1986-04-20

    Under the action of HCl and AlCl/sub 3/ intramolecular and intermolecular migration of propyl groups occurred in 9-isopropyl-o-carborane and 9-isopropyl-m-carborane in CS/sub 2/ at 20/sup 0/C which was accompanied by isomerization of isopropyl groups into propyl. The action of AlCl/sub 3/ and HCl on 9-isopropyl-o-carborane led to o-carborane, a mixture of disubstituted B,B'-(C/sub 3/H/sub 7/)/sub 2/-o-carboranes, and a mixture of monosubstituted B-(C/sub 3/H/sub 7/)-o-carboranes which consisted of 4-, 8-, and 9-isopropyl-, and 8- and 9-propyl-o-carboranes. On reacting HCl and AlCl/sub 3/ with 9-isopropyl-m-carborane there was formed m-carborane, a mixture of disubstituted B,b'-(C/sub 3/H/sub 7/)/sub 2/-m-carboranes, and a mixture of monosubstituted B-(C/sub 3/H/sub 7/)-m-carboranes consisting of 4-, 5-, and 9-isopropyl-m-, and -, 5-, and 9-propyl-m-carboranes.

  2. Crystal structure of di-μ-iodido-bis-{[1,3-bis-(2,6-diiso-propyl-phen-yl)imidazol-2-yl-idene]lithium}.

    PubMed

    Wan, Hui-Da; Hong, Jian-Quan

    2015-06-01

    In the title binuclear complex, [Li2(C27H36N2)2I2], the unique Li(I) cation is coordinated by two iodide anions and one yl-idene C atom from a 1,3-bis-(2,6-diiso-propyl-phen-yl)imidazol-2-yl-idene ligand in a distorted trigonal-planar geometry. The two symmetry-related iodide anions bridge two Li(I) cations, forming an inversion dimer in which the Li2I2 plane is nearly perpendicular to the imidazol-2-yl-idene ring, with a dihedral angle of 85.5 (3)°. No hydrogen bonding is observed in the crystal. PMID:26090170

  3. Laser action from 1,3,5,7-tetramethyl-2,6-diethyl-8-n-propyl pyrromethene-BF2

    NASA Astrophysics Data System (ADS)

    Zeng, Heping; Liang, Feng; Sun, Zhenrong; Yuan, Yizhong; Yao, Zuguang; Xu, Zhizhan

    2002-06-01

    We measured spectroscopic and laser action properties of a novel 8-position substituted pyrromethene-BF2, namely 1,3,5,7-tetramethyl-2,6-diethyl-8-n-propyl pyrromethene-BF2 complex. The laser action was performed with the corresponding dye solution in ethanol, which was placed in a Littman-type laser cavity pumped by the second harmonic of a Q-switched Nd:YAG laser. The spectroscopic measurements clearly indicated that the corresponding dye solution in ethanol exhibited intense absorption in the visible spectral region with large fluorescence quantum yield. It possesses rather low triplet-triplet absorption in the spectral region 460-550 nm and almost negligible triplet-triplet absorption in the lasing spectral region. As a consequence, it lases nearly as efficiently as commercially available benchmark laser dyes such as Rhodamine-6G and outperformed them in wavelength tunability in our laser cavity and pump geometry.

  4. Design, synthesis and applications of chiral N-2-phenyl-2-propyl sulfinyl imines for Group-Assisted Purification (GAP) asymmetric synthesis

    PubMed Central

    Pindi, Suresh; Wu, Jianbin; Li, Guigen

    2013-01-01

    A new chiral (Rs)-2-phenyl-2-propyl sulfinamide has been designed and synthesized; its derived aldimines and ketimines have been applied for asymmetric addition reaction with allylmagnesium bromide. The reaction was conveniently performed at room temperature to give a series of homoallylic amines in high yields (up to quant) and diastereoselectivity (up to >99 % de). The pure products were obtained by relying on Group-Assisted Purification (GAP) chemistry to avoid traditional purification methods of column chromatography or recrystallization. The conversion of disulfide to (Rs)-thiosulfinate was also confirmed to be of the GAP chemistry in which washing crude product can generate pure enantiomer. The absolute stereochemistry has been determined by X-ray analysis. PMID:23496279

  5. 6-Propyl-2-thiouracil versus 6-methoxymethyl-2-thiouracil: enhancing the hydrogen-bonded synthon motif by replacement of a methylene group with an O atom.

    PubMed

    Hützler, Wilhelm Maximilian; Egert, Ernst; Bolte, Michael

    2016-08-01

    The understanding of intermolecular interactions is a key objective of crystal engineering in order to exploit the derived knowledge for the rational design of new molecular solids with tailored physical and chemical properties. The tools and theories of crystal engineering are indispensable for the rational design of (pharmaceutical) cocrystals. The results of cocrystallization experiments of the antithyroid drug 6-propyl-2-thiouracil (PTU) with 2,4-diaminopyrimidine (DAPY), and of 6-methoxymethyl-2-thiouracil (MOMTU) with DAPY and 2,4,6-triaminopyrimidine (TAPY), respectively, are reported. PTU and MOMTU show a high structural similarity and differ only in the replacement of a methylene group (-CH2-) with an O atom in the side chain, thus introducing an additional hydrogen-bond acceptor in MOMTU. Both molecules contain an ADA hydrogen-bonding site (A = acceptor and D = donor), while the coformers DAPY and TAPY both show complementary DAD sites and therefore should be capable of forming a mixed ADA/DAD synthon with each other, i.e. N-H...O, N-H...N and N-H...S hydrogen bonds. The experiments yielded one solvated cocrystal salt of PTU with DAPY, four different solvates of MOMTU, one ionic cocrystal of MOMTU with DAPY and one cocrystal salt of MOMTU with TAPY, namely 2,4-diaminopyrimidinium 6-propyl-2-thiouracilate-2,4-diaminopyrimidine-N,N-dimethylacetamide-water (1/1/1/1) (the systematic name for 6-propyl-2-thiouracilate is 6-oxo-4-propyl-2-sulfanylidene-1,2,3,6-tetrahydropyrimidin-1-ide), C4H7N4(+)·C7H9N2OS(-)·C4H6N4·C4H9NO·H2O, (I), 6-methoxymethyl-2-thiouracil-N,N-dimethylformamide (1/1), C6H8N2O2S·C3H7NO, (II), 6-methoxymethyl-2-thiouracil-N,N-dimethylacetamide (1/1), C6H8N2O2S·C4H9NO, (III), 6-methoxymethyl-2-thiouracil-dimethyl sulfoxide (1/1), C6H8N2O2S·C2H6OS, (IV), 6-methoxymethyl-2-thiouracil-1-methylpyrrolidin-2-one (1/1), C6H8N2O2S·C5H9NO, (V), 2,4-diaminopyrimidinium 6-methoxymethyl-2-thiouracilate (the systematic name for 6-methoxymethyl-2

  6. Crystal structure of 2-[2-(hy­droxy­imino)-1-phenyl­propyl­idene]-N-phen­ylhydrazinecarbo­thio­amide

    PubMed Central

    Anderson, Brian J.; Freedman, Michael B.; Millikan, Sean P.; Smolenski, Victoria A.; Jasinski, Jerry P.

    2015-01-01

    In the title compound, C16H16N4OS, an intra­molecular C—H⋯S hydrogen bond is observed. With the exception of the phenyl ring of the phenyl­propyl­idene unit, the remainder of the mol­ecule has an almost planar skeleton with an r.m.s. deviation of 0.121 (5) Å from the plane through the remaining 16 atoms. In the crystal O—H⋯N hydrogen bonds are observed between the terminal hy­droxy­imino groups, forming inverson dimers with R 2 2(6) graph-set motifs. Additional C—H⋯N contacts stack the dimers along [100]. While no π—π inter­actions are present, weak C—H⋯O and O—H⋯Cg inter­actions are also observed and help stabilize the crystal packing. PMID:26594484

  7. X-ray studies of 2-amino-5-oxo-4-propyl-4,5-dihydropyrano[3,2- c]chromene-3-carbonitrile

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Banerjee, B.; Brahmachari, G.; Kant, R.; Gupta, V. K.

    2015-11-01

    The carbonitrile compound, 2-amino-5-oxo-4-propyl-4,5-dihydropyrano[3,2- c]chromene-3-carbonitrile was synthesized, in 83% yield, by one-pot multicomponent reaction of butyraldehyde, malononitrile and 4-hydroxycoumarin using 10 mol% urea as an organo-catalyst at room temperature, and its crystal structure was determined by X-ray diffraction technique. The crystals are triclinic, a = 7.7379(5), b = 8.7520(6), c = 11.6589(5) Å, α = 96.668(4)°, β = 100.033(4)°, γ = 112.547(6)°, Z = 2, sp. gr. P. Both pyran rings in the molecule adopt a boat conformation. The crystal structure is stabilized by N-H···O and N-H···N hydrogen bonds.

  8. Well-defined poly(2-hydroxyl-3-(2-hydroxyethylamino)propyl methacrylate) vectors with low toxicity and high gene transfection efficiency.

    PubMed

    Xu, F J; Chai, M Y; Li, W B; Ping, Y; Tang, G P; Yang, W T; Ma, J; Liu, F S

    2010-06-14

    Successful gene delivery vectors for clinical translation should have high transfection efficiency and minimal toxicity. In this work, well-defined poly(2-hydroxyl-3-(2-hydroxyethylamino)propyl methacrylate) (PGEA) vectors with flanking cationic secondary amine and nonionic hydroxyl units were prepared via the ring-opening reaction of the pendant epoxide groups of poly(glycidyl methacrylate) with the amine moieties of ethanolamine. It was found that PGEA carriers possess very low toxicity (<10% of the toxicity of branched polyethylenimine (PEI, 25 kDa), while exhibiting surprisingly excellent transfection efficiency (higher than or comparable to that of PEI (25 kDa)) in different cell lines. A series of transfection and cytotoxicity assays revealed that PGEAs are highly promising as a new class of safe and efficient gene delivery vectors for future clinical gene therapies. PMID:20426406

  9. CF3+ fragmentation by electron impact ionization of perfluoro-propyl-vinyl-ethers, C5F10O, in gas phase

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Ishikawa, Kenji; Hayashi, Toshio; Miyawaki, Yudai; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-04-01

    The gas phase fragmentations of perfluoro-propyl-vinyl ether (PPVE, C5F10O) are studied experimentally. Dominant fragmentations of PPVE are found to be the result of a dissociative ionization reaction, i.e., CF3+ via direct bond cleavage, and C2F3O- and C3F7O- via electron attachment. Regardless of the appearance energy of around 14.5 eV for the dissociative ionization of CF3+, the observed ion efficiency for the CF3+ ion was extremely large the order of 10-20 cm-2, compared with only 10-21 cm-2 for the other channels. PPVE characteristically generated CF3+ as the largest abundant ion are advantageous for use of feedstock gases in plasma etching processes.

  10. 2-[2-(2,6-Dichloro­anilino)phen­yl]-N′-(4-propyl­cyclo­hexyl­idene)acetohydrazide

    PubMed Central

    Akkurt, Mehmet; Nassozi, Mebble; Çapan, Gültaze; Kocabalkanlı, Ayşe; Çelik, Ísmail; Büyükgüngör, Orhan

    2010-01-01

    The asymmetric unit of the title compound, C23H27Cl2N3O, contains two crystallographically independent mol­ecules in which the dihedral angles between the benzene rings are 70.1 (3) and 63.8 (3)°. In each mol­ecule an intra­molecular N—H⋯O hydrogen bond generates an S(7) ring. The atoms of the propyl grouping of one mol­ecule are disordered over two orientations with occupancies of 0.666 (6) and 0.334 (6). The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen-bonding inter­actions. PMID:21579699

  11. Unravelling the structure of protic ionic liquids with theoretical and experimental methods: ethyl-, propyl- and butylammonium nitrate explored by Raman spectroscopy and DFT calculations.

    PubMed

    Bodo, E; Mangialardo, S; Ramondo, F; Ceccacci, F; Postorino, P

    2012-11-29

    We present an analysis of gas-phase structures of small clusters of n-alkylammonium nitrates (ethyl, propyl, and butyl) together with vibrational Raman spectroscopy of their respective liquid phases. The assignment and interpretation of the resonant frequencies have been performed by comparison with high-quality ab initio (DFT) computations. The theoretical spectra are in excellent agreement with the measured ones and allow the interpretation and assignment of almost all the spectral features. A careful analysis of the vibrational frequencies and of the electronic structure of the compounds has provided additional information on various structural features and on the rather complex hydrogen bonding network that exists in such compounds. A geometric structure of the short-range local arrangement in the bulk phases is also proposed. PMID:22973943

  12. Green tea polyphenol (-)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway.

    PubMed

    Mandel, Silvia; Reznichenko, Lydia; Amit, Tamar; Youdim, Moussa B H

    2003-01-01

    Our recent studies have demonstrated that green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) exerts neuroprotective/neurorescue effects against B-amyloid toxicity and protects neuronal cells from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP+) and 6-hydroxydopamine in vitro, or from N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced nigral dopaminergic neuronal loss in mice. In the present study, we report that EGCG (0.1 and 1 microM) significantly protects rat pheochromocytoma PC12 cells from apoptosis induced by serum support withdrawal, suggesting that EGCG may play a role in the growth of PC12 cells, where it stimulates survival-promoting pathways. PMID:14715445

  13. ANALYSIS OF THE FLAME RETARDANT METABOLITES BIS (1,3-DICHLORO-2-PROPYL) PHOSPHATE (BDCPP) AND DIPHENYL PHOSPHATE (DPP) IN URINE USING LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    PubMed Central

    Cooper, EM; Covaci, A; van Nuijs, ALN; Webster, TF; Stapleton, HM

    2013-01-01

    Organophosphate triesters tris-(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) are widely used flame retardants (FRs) present in many products common to human environments, yet understanding of human exposure, and health effects of these compounds is limited. Monitoring urinary metabolites as biomarkers of exposure can be a valuable aid for improving this understanding; however, no previously published method exists for the analysis of the primary TDCPP metabolite, bis (1,3-dichloro-2-propyl) phosphate (BDCPP), in human urine. Here we present a method to extract the metabolites BDCPP and diphenyl phosphate (DPP) in human urine using mixed-mode anion exchange solid phase extraction and mass-labeled internal standards with analysis by atmospheric pressure chemical ionization liquid chromatography tandem mass spectrometry (APCI-LC/MS-MS). The method detection limit was 8 pg mL−1 urine for BDCPP and 204 pg mL−1 for DPP. Recoveries of analytes spiked into urine ranged from 82 ± 10% to 91 ± 4% for BDCPP and from 72 ± 12% to 76 ± 8% for DPP. Analysis of a small number of urine samples (n=9) randomly collected from non occupationally exposed adults revealed the presence of both BDCPP and DPP in all samples. Non-normalized urinary concentrations ranged from 46–1662 pg BDCPP mL−1 and 287–7443 pg DPP mL−1, with geometric means of 147 pg BDCPP mL−1 and 1074 pg DPP mL−1. Levels of DPP were higher than those of BDCPP in 89% of samples. The presented method is simple and sufficiently sensitive to detect these FR metabolites in humans and may be applied to future studies to increase our understanding of exposure and potential health effects to FRs. PMID:21830137

  14. Analysis of the flame retardant metabolites bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography-tandem mass spectrometry.

    PubMed

    Cooper, E M; Covaci, A; van Nuijs, A L N; Webster, T F; Stapleton, H M

    2011-10-01

    Organophosphate triesters tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate are widely used flame retardants (FRs) present in many products common to human environments, yet understanding of human exposure and health effects of these compounds is limited. Monitoring urinary metabolites as biomarkers of exposure can be a valuable aid for improving this understanding; however, no previously published method exists for the analysis of the primary TDCPP metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), in human urine. Here, we present a method to extract the metabolites BDCPP and diphenyl phosphate (DPP) in human urine using mixed-mode anion exchange solid phase extraction and mass-labeled internal standards with analysis by atmospheric pressure chemical ionization liquid chromatography tandem mass spectrometry. The method detection limit was 8 pg mL(-1) urine for BDCPP and 204 pg mL(-1) for DPP. Recoveries of analytes spiked into urine ranged from 82 ± 10% to 91 ± 4% for BDCPP and from 72 ± 12% to 76 ± 8% for DPP. Analysis of a small number of urine samples (n=9) randomly collected from non-occupationally exposed adults revealed the presence of both BDCPP and DPP in all samples. Non-normalized urinary concentrations ranged from 46-1,662 pg BDCPP mL(-1) to 287-7,443 pg DPP mL(-1), with geometric means of 147 pg BDCPP mL(-1) and 1,074 pg DPP mL(-1). Levels of DPP were higher than those of BDCPP in 89% of samples. The presented method is simple and sufficiently sensitive to detect these FR metabolites in humans and may be applied to future studies to increase our understanding of exposure to and potential health effects from FRs. PMID:21830137

  15. A Case of Complete and Durable Molecular Remission of Chronic Lymphocytic Leukemia Following Treatment with Epigallocatechin-3-gallate, an Extract of Green Tea.

    PubMed

    Lemanne, Dawn; Block, Keith I; Kressel, Bruce R; Sukhatme, Vikas P; White, Jeffrey D

    2015-01-01

    We report the case of a 48-year-old man who achieved a complete molecular remission 20 years after a diagnosis of chronic lymphocytic leukemia while using epigallicatechin-3-gallate, an extract of green tea. The patient presented at age 28 with lymphocytosis, mild anemia, mild thrombocytopenia, and massive splenomegaly, for which a splenectomy was performed. He was then followed expectantly. Over the next two decades, he suffered two symptomatic chronic lymphocytic leukemia-related events. The first occurred twelve years after diagnosis (at age 40) when the patient developed fevers, night sweats, and moderate anemia. He was diagnosed with autoimmune hemolytic anemia secondary to chronic lymphocytic leukemia. The patient declined conventional therapy in favor of a diet, exercise, and supplement regimen, and recovered from the autoimmune hemolytic anemia though the underlying chronic lymphocytic leukemia remained evident. This is the first published case report of "spontaneous" recovery from secondary autoimmune hemolytic anemia in an adult.  Over the second decade following chronic lymphocytic leukemia diagnosis, serial bone marrow biopsies demonstrated increasing lymphocytosis, with minimal peripheral lymphocytosis. However, twenty years after diagnosis, peripheral lymphocytosis accelerated, with white blood cell counts rising to 55,000/µL. Because the patient continued to refuse conventional therapy, he was treated instead with a supplement regimen that included high doses of epigallocatechin-3-gallate, a green tea extract. Peripheral lymphocytosis resolved. More remarkably, a bone marrow examination, including flow cytometry, showed no evidence of a malignant clone. Two years later (at age 51), the peripheral blood and bone marrow were without molecular evidence of chronic lymphocytic leukemia or any malignancy. The patient remains well at age 52. PMID:26858922

  16. A Case of Complete and Durable Molecular Remission of Chronic Lymphocytic Leukemia Following Treatment with Epigallocatechin-3-gallate, an Extract of Green Tea

    PubMed Central

    Block, Keith I; Kressel, Bruce R; Sukhatme, Vikas P; White, Jeffrey D

    2015-01-01

    We report the case of a 48-year-old man who achieved a complete molecular remission 20 years after a diagnosis of chronic lymphocytic leukemia while using epigallicatechin-3-gallate, an extract of green tea. The patient presented at age 28 with lymphocytosis, mild anemia, mild thrombocytopenia, and massive splenomegaly, for which a splenectomy was performed. He was then followed expectantly. Over the next two decades, he suffered two symptomatic chronic lymphocytic leukemia-related events. The first occurred twelve years after diagnosis (at age 40) when the patient developed fevers, night sweats, and moderate anemia. He was diagnosed with autoimmune hemolytic anemia secondary to chronic lymphocytic leukemia. The patient declined conventional therapy in favor of a diet, exercise, and supplement regimen, and recovered from the autoimmune hemolytic anemia though the underlying chronic lymphocytic leukemia remained evident. This is the first published case report of "spontaneous" recovery from secondary autoimmune hemolytic anemia in an adult.  Over the second decade following chronic lymphocytic leukemia diagnosis, serial bone marrow biopsies demonstrated increasing lymphocytosis, with minimal peripheral lymphocytosis. However, twenty years after diagnosis, peripheral lymphocytosis accelerated, with white blood cell counts rising to 55,000/µL. Because the patient continued to refuse conventional therapy, he was treated instead with a supplement regimen that included high doses of epigallocatechin-3-gallate, a green tea extract. Peripheral lymphocytosis resolved. More remarkably, a bone marrow examination, including flow cytometry, showed no evidence of a malignant clone. Two years later (at age 51), the peripheral blood and bone marrow were without molecular evidence of chronic lymphocytic leukemia or any malignancy. The patient remains well at age 52.  PMID:26858922

  17. Covalent interaction of ascorbic acid with natural products

    PubMed Central

    Kesinger, Nicholas G.; Stevens, Jan F.

    2009-01-01

    While ascorbic acid (Vitamin C) is mostly known as a cofactor for proline hydroxylase and as a biological antioxidant, it also forms covalent bonds with natural products which we here refer to as ‘ascorbylation’. A number of natural products containing an ascorbate moiety has been isolated and characterized from a variety of biological sources, ranging from marine algae to flowering plants. Most of these compounds are formed as a result of nucleophilic substitution or addition by ascorbate, e.g. the ascorbigens from Brassica species are ascorbylated indole derivatives. Some ascorbylated tannins appear to be formed from electrophilic addition to dehydroascorbic acid. There are also examples of annulations of ascorbate with dietary polyphenols, e.g., epigallocatechin gallate (EGCG) and resveratrol derivatives. Herein is a survey of thirty-three ascorbylated natural products and their reported biological activities. PMID:19875138

  18. An ultrasensitive photoelectrochemical nucleic acid biosensor

    PubMed Central

    Gao, Zhiqiang; Tansil, Natalia C.

    2005-01-01

    A simple and ultrasensitive procedure for non-labeling detection of nucleic acids is described in this study. It is based on the photoelectrochemical detection of target nucleic acids by forming a nucleic acid/photoreporter adduct layer on an ITO electrode. The target nucleic acids were hybridized with immobilized oligonucleotide capture probes on the ITO electrode. A subsequent binding of a photoreporter—a photoactive threading bis-intercalator consisting of two N,N′-bis(3-propyl-imidazole)-1,4,5,8-naphthalene diimides (PIND) linked by a Ru(bpy)22+ (bpy = 2,2′-bipyridine) complex (PIND–Ru–PIND)—allowed for photoelectrochemical detection of the target nucleic acids. The extremely low dissociation rate of the adduct and the highly reversible photoelectrochemical response under visible light illumination (490 nm) make it possible to conduct nucleic acid detection, with a sensitivity enhancement of four orders of magnitude over voltammetry. These results demonstrate for the first time the potential of photoelectrochemical biosensors for PCR-free ultrasensitive detection of nucleic acids. PMID:16061935

  19. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and gamma-aminobutyric acid (GABA) metabolism in the mouse.

    PubMed

    Nau, H; Löscher, W

    1982-03-01

    The slow onset and carry-over effect of valproic acid (VPA) therapy observed in some clinical as well as experimental animal studies have been examined by parallel pharmacokinetic and pharmacological investigations in a mouse model. VPA was rapidly transferred into brain and was cleared from that tissue with rates which exceeded plasma clearance rates. Of several VPA metabolites present in plasma, only one could be found in the brain: 2-propyl-2-pentenoic acid. This metabolite was cleared from plasma and from brain slower than the parent drug. gamma-Aminobutyric acid (GABA) concentrations were increased within 15 min after VPA injection and remained significantly elevated for at least 8 h. A similar time course was found in regard to the increase of the electroconvulsive threshold (maximal seizures) induced by VPA administration. The activity of glutamic acid decarboxylase rose parallel to the elevation of brain GABA levels, whereas the activity of GABA aminotransferase was not affected. Whereas the rapid onset of the effect on electroconvulsive threshold and on GABA metabolism can be explained by the rapid entrance of VPA into brain, the carry-over effects observed correlated with the kinetics of the metabolite 2-propyl-2-pentenoic acid better than with those of VPA due to the persistence of this metabolite in brain. PMID:6801254

  20. Behavioral and electrophysiological responses of Culex quinquefasciatus to certain fatty acid esters.

    PubMed

    Seenivasagan, Thangaraj; Guha, Lopamudra; Iqbal, S Thanvir

    2013-12-01

    Oviposition response of gravid Culex quinquefasciatus females to a series of synthetic fatty acid esters was evaluated at 10ppm under laboratory conditions. Octyl tridecanoate and propyl octadecanoate elicited 85% and 73% increased ovipositional responses respectively, compared to control, among the 16 esters tested. Other 14 esters showed highly significant repellency (67-96%) to gravid females. Standard 3-methyl indole received 69% increased egg deposition compared to control. In the Y-tube olfactometer, gravid C. quinquefasciatus females exhibited 78, 64% and 58% orientation respectively to octyl tridecanoate, propyl octadecanoate and 3-methyl indole. Gravid females exhibited 19-41% reduced orientation toward treatment odors of other esters significantly different from respective control. Electroantennogram studies revealed 4-18-fold increased antennal response, in which 3-methyl indole, octyl tridecanoate and propyl octadecanoate elicited 8-, 18- and 15-fold EAG response respectively, compared to control. Relative EAG response of octyl tridecanoate compared to standard 3-methyl indole was significantly different. Reduced EAG responses were elicited by FAE-06, -08, -13, -14 and -15, while the relative EAG responses of other esters were at par with the standard stimulus. These, esters could be utilized potentially as oviposition attractants and repellents against C. quinquefasciatus females to reduce the breeding in polluted water along with existing integrated vector control methods. PMID:24055543

  1. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    PubMed

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  2. Phenolic acids and depsides from some species of the Erodium genera.

    PubMed

    Fecka, I; Kowalczyk, A; Cisowski, W

    2001-01-01

    Six natural polyphenolic compounds, brevifolin carboxylic acid, brevifolin, ellagic acid, methyl gallate, gallic acid and protocatechuic acid have been isolated from the methanol extract of the whole plant of Erodium cicutarium (L.) L.'Hérit. (Geraniaceae). Structures were determined by conventional methods of analysis and confirmed by MS and NMR spectral analysis. The distribution of these compounds in the other species of the Erodium genera (E. botrys, E. chium, E. ciconium, E. cicutarium, E. glutinosum subsp. dunense, E. gruinum, E. manescavi, E. pelargoniiflorum, E. petraeum) were examined by HPLC with a RP-18 column, and MGD-TLC methods on unmodified silica gel and silica gel chemically modified with polar and nonpolar groups (HPTLC-Si 60 LiChrospher, HPTLC-NH2, HPTLC-DIOL, HPTLC RP-18W). PMID:11837680

  3. Isolation, purification and identification of ellagic acid derivatives, catechins, and procyanidins from the root bark of Anisophyllea dichostyla R. Br.

    PubMed

    Khallouki, F; Haubner, R; Hull, W E; Erben, G; Spiegelhalder, B; Bartsch, H; Owen, R W

    2007-03-01

    The root bark of Anisophyllea dichostyla R. Br. is traditionally used in the Democratic Republic Congo for the treatment of several conditions such as anorexia, fatigue and intestinal infections. We have identified and quantitated several polyphenol antioxidants in the methanol extract of the root bark (120g). The polyphenol content (3.32g/kg) was predominantly ellagitannins (25%) and polyhydroxyflavan-3-ols (catechins and procyanidins, 75%) with 3'-O-methyl-3,4-methylenedioxo ellagic acid 4'-O-beta-d-glucopyranoside and (-)-epicatechin as the major species in each class. These two compounds and the following species were identified unequivocally by NMR spectroscopy: (+)-catechin, (-)-epicatechin 3-O-gallate, 3-O-methyl ellagic acid, 3,3'-di-O-methyl ellagic acid, 3'-O-methyl-3,4-methylenedioxo ellagic acid, 3'-O-methyl-3,4-methylenedioxo ellagic acid 4'-O-beta-d-glucopyranoside, and 3'-O-methyl ellagic acid 4-O-beta-d-xylopyranoside. The following additional compounds were purified by semi-preparative HPLC and tentatively identified on the basis of UV spectra, HPLC-ESI-MS and nano-ESI-MS-MS: (+)-catechin-3-O-beta-d-glucopyranoside, epicatechin-(4beta-->8)-catechin (procyanidin B(1)), epicatechin-(4beta-->8)-epicatechin (procyanidin B(2)), an (epi)catechin trimer, 3-O-methyl ellagic acid 4-O-beta-d-glucopyranoside, (-)-epicatechin 3-O-vanillate, 3,4-methylenedioxo ellagic acid 4'-O- beta-d-glucopyranoside, and 3,3'-di-O-methyl ellagic acid 4-O-beta-d-xylopyranoside. Fractionation of the raw extract by column chromatography on silicic acid yielded 10 fractions. In the hypoxanthine/xanthine oxidase antioxidant assay system, CC-9 which contained a range of polyphenols dominated by (-)-epicatechin-O-gallate proved to be the most potent antioxidant fraction (IC(50)=52 micro g/mL) in terms of ROS scavenging. In terms of XO inhibition CC-8, dominated by (epi)catechin trimer and which also contained appreciable amounts of 3'-O-methyl ellagic acid 4'-O

  4. Crystal structure of [2-(tri­ethyl­ammonio)­eth­yl][(2,4,6-triiso­propyl­phen­yl)sulfon­yl]amide tetra­hydrate

    PubMed Central

    Golz, C.; Strohmann, C.

    2015-01-01

    The zwitterionic title compound, C23H42N2O2S·4H2O, crystallized as a tetrahydrate from a solution of N-[(2,4,6-triiso­propyl­phen­yl)sulfon­yl]aziridine in tri­ethyl­amine, diethyl ether and pentane in the presence of moist air. It is formed by a nucleophillic ring-opening that is assumed to be reversible. The mol­ecular structure shows a major disorder of the triiso­propyl­phenyl group over two equally occupied locations. An inter­esting feature is the uncommon hydrate structure, exhibiting a tape-like motif which can be classified as a transition of the one-dimensional T4(2)6(2) motif into the two-dimensional L4(6)5(7)6(8) motif. PMID:25995881

  5. Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study.

    PubMed

    Battah, Sinan; O'Neill, Sophie; Edwards, Christine; Balaratnam, Sherina; Dobbin, Paul; MacRobert, Alexander J

    2006-01-01

    Intracellular porphyrin generation following administration of 5-aminolaevulinic acid has been widely used in photodynamic therapy for a range of malignant and certain non-malignant lesions. However, cellular uptake of 5-aminolaevulinic acid is limited by its hydrophilic nature and improved means of delivery are therefore being sought. Highly branched polymeric drug carriers known as dendrimers are a promising new approach to drug delivery. The aim of this study was to investigate the efficacy of dendrimers conjugated with 5-aminolaevulinic acid for porphyrin production in the transformed PAM 212 keratinocyte cell line and skin explants. Each dendritic derivative incorporated three 5-aminolaevulinic acid residues which were conjugated as esters via methyl or propyl linkers to a central tertiary carbon whose remaining terminal bore an amino, aminobenzyloxycarbonyl or nitro group. In the cell line, all compounds were more efficient at low concentrations compared to equimolar 5-aminolaevulinic acid for porphyrin production, with the most efficient incorporating the longer propyl linker. This compound was also the most lipophilic according to partition coefficient measurements. The intracellular porphyrin fluorescence levels showed good correlation with cellular phototoxicity following light exposure for all the compounds, together with minimal dark toxicity. Our findings indicate that the key factors influencing the efficacy of the dendritic derivatives are lipophilicity and steric hindrance within the dendritic structure which could restrict access to intracellular esterases for liberation of 5-aminolaevulinic acid. These findings should be taken into account in the design of larger dendrimers of 5-aminolaevulinic acid. PMID:16546435

  6. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. PMID:26116387

  7. Antimycobacterial activity of new N(1)-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives.

    PubMed

    Zampieri, Daniele; Mamolo, Maria Grazia; Vio, Luciano; Romano, Maurizio; Skoko, Nataša; Baralle, Marco; Pau, Valentina; De Logu, Alessandro

    2016-07-15

    N(1)-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives were design, synthesized and tested for their in vitro antimycobacterial activity. The new compounds showed a moderate antimycobacterial activity against the tested strain of Mycobacterium tuberculosis H37Ra and a significant antimycobacterial activity against several mycobacteria other than tuberculosis strains. PMID:27241693

  8. Synthesis and structures of Se analogues of the antithyroid drug 6-n-propyl-2-thiouracil and its alkyl derivatives: formation of dimeric Se-Se compounds and deselenation reactions of charge-transfer adducts of diiodine.

    PubMed

    Antoniadis, Constantinos D; Hadjikakou, Sotiris K; Hadjiliadis, Nick; Papakyriakou, Athanasios; Baril, Martin; Butler, Ian S

    2006-09-01

    Four selenium analogues of the antithyroid drug 6-n-propyl-2-thiouracil (PTU), of formulae RSeU, (R = methyl (Me) (1), ethyl (Et) (2), n-propyl (nPr) (3), and isopropyl (iPr) 4), have been synthesized. Reaction of 1-4 with diiodine in a 1:1 molar ratio in dichloromethane results in the formation of [(RSeU)I(2)] (R = methyl (5), ethyl (6), n-propyl (7) and isopropyl (8)). All compounds have been characterized by elemental analysis, FT-Raman, FT-IR, UV/Vis, (1)H-, (13)C-, (77)Se-1D and -2D NMR spectroscopy, and ESI-MS spectrometric techniques. Recrystallization of 4 from dichloromethane afforded (4CH(2)Cl(2)). Crystals of [(nPrSeU)I(2)] (7), a charge-transfer complex, were obtained from chloroform solutions, while crystallization of 6 and 7 from acetone afforded the diselenides [N-(6-Et-4-pyrimidone)(6-EtSeU)(2)] (92 H(2)O) and [N-(6-nPr-4-pyrimidone)(6-nPrSeU)(2)] (10) as oxidation products. Recrystallization of 7 from methanol/acetonitrile solutions led to deselenation with the formation of 6-n-propyl-2-uracil (nPrU) (11). [(nPrSeU)I(2)] (7) was found to be a charge-transfer complex with a Se--I bond. These results are discussed in relation to the mechanism of action of antithyroid drugs. PMID:16773663

  9. Interaction between Tea Polyphenols and Bile Acid Inhibits Micellar Cholesterol Solubility.

    PubMed

    Ogawa, Kazuki; Hirose, Sayumi; Nagaoka, Satoshi; Yanase, Emiko

    2016-01-13

    The molecular mechanism by which tea polyphenols decrease the micellar solubility of cholesterol is not completely clear. To clarify this mechanism, this study investigated the interaction between tea polyphenols (catechins and oolongtheanins) and cholesterol micelles. A nuclear magnetic resonance (NMR) study was performed on a micellar solution containing taurocholic acid and epigallocatechin gallate (EGCg), and high-performance liquid chromatography (HPLC) analysis was carried out on the precipitate and the supernatant that formed when EGCg was added to a cholesterol-micelle solution. The data indicated a regiospecific interaction of EGCg with taurocholic acid. Therefore, the ability of EGCg to lower the solubility of phosphatidylcholine (PC) and cholesterol in micellar solutions can be attributed to their elimination from the micelles due to interaction between taurocholic acids and EGCg. PMID:26651358

  10. Test-retest reproducibility of [11C]-(+)-propyl-hexahydro-naphtho-oxazin positron emission tomography using the bolus plus constant infusion paradigm.

    PubMed

    Lee, Dianne E; Gallezot, Jean-Dominique; Zheng, Ming-Qiang; Lim, Keunpoong; Ding, Yu-Shin; Huang, Yiyun; Carson, Richard E; Morris, Evan D; Cosgrove, Kelly P

    2013-01-01

    We examined the reproducibility of using the constant infusion paradigm for equilibrium measurement of D2/3 receptors using [11C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO) positron emission tomography (PET). Six subjects were scanned with a bolus plus constant infusion (Kbol = 80 minutes) of [11C]-(+)-PHNO. Binding potential (BPND) was computed using the equilibrium approach and compared to a simplified reference tissue model (SRTM). The rate of change in the concentration-activity curve from 60 to 90 minutes was -5 ± 13%/h in the caudate, putamen, substantia nigra, thalamus, and cerebellum but was 15 ± 15%/h in the ventral striatum and pallidum. Test-retest variability was lower in striatal compared to extrastriatal regions (4 ± 8% vs -8 ± 22%, respectively) using the equilibrium approach, with comparable results with SRTM. The equilibrium ratio and SRTM yielded reliable BPND estimates (intraclass correlation coefficient = 0.88 and 0.82, respectively). These studies support the reproducibility of the bolus plus constant infusion paradigm with [11C]-(+)-PHNO PET. PMID:23415395

  11. Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish.

    PubMed

    Liu, Chunsheng; Su, Guanyong; Giesy, John P; Letcher, Robert J; Li, Guangyu; Agrawal, Ira; Li, Jing; Yu, Liqin; Wang, Jianghua; Gong, Zhiyuan

    2016-01-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in environmental media and has adverse health effect on wildlife and humans. It has been implicated to have hepatotoxicity, but its molecular mechanisms remain unclear. In the present study, adult male zebrafish were exposed to TDCIPP and global hepatic gene expression was examined by RNA-Seq and RT-qPCR in order to understand the molecular mechanisms of TDCIPP-induced hepatotoxicity. Our results indicated that TDCIPP exposure significantly up-regulated the expression of genes involved in endoplasmic reticulum stress and Toll-like receptor (TLR) pathway, implying an inflammatory response, which was supported by up-regulation of inflammation-related biomaker genes. Hepatic inflammation was further confirmed by histological observation of increase of infiltrated neutrophils and direct observation of liver recruitment of neutrophils labeled with Ds-Red fluorescent protein of Tg(lysC:DsRed) zebrafish upon TDCIPP exposure. To further characterize the hepatotoxicity of TDCIPP, the expression of hepatotoxicity biomarker genes, liver histopathology and morphology were examined. The exposure to TDCIPP significantly up-regulated the expression of several biomarker genes for hepatotoxicity (gck, gsr and nqo1) and caused hepatic vacuolization and apoptosis as well as increase of the liver size. Collectively, our results suggest that exposure to TDCIPP induces hepatic inflammation and leads to hepatotoxicity in zebrafish. PMID:26743178

  12. Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Su, Guanyong; Giesy, John P.; Letcher, Robert J.; Li, Guangyu; Agrawal, Ira; Li, Jing; Yu, Liqin; Wang, Jianghua; Gong, Zhiyuan

    2016-01-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in environmental media and has adverse health effect on wildlife and humans. It has been implicated to have hepatotoxicity, but its molecular mechanisms remain unclear. In the present study, adult male zebrafish were exposed to TDCIPP and global hepatic gene expression was examined by RNA-Seq and RT-qPCR in order to understand the molecular mechanisms of TDCIPP-induced hepatotoxicity. Our results indicated that TDCIPP exposure significantly up-regulated the expression of genes involved in endoplasmic reticulum stress and Toll-like receptor (TLR) pathway, implying an inflammatory response, which was supported by up-regulation of inflammation-related biomaker genes. Hepatic inflammation was further confirmed by histological observation of increase of infiltrated neutrophils and direct observation of liver recruitment of neutrophils labeled with Ds-Red fluorescent protein of Tg(lysC:DsRed) zebrafish upon TDCIPP exposure. To further characterize the hepatotoxicity of TDCIPP, the expression of hepatotoxicity biomarker genes, liver histopathology and morphology were examined. The exposure to TDCIPP significantly up-regulated the expression of several biomarker genes for hepatotoxicity (gck, gsr and nqo1) and caused hepatic vacuolization and apoptosis as well as increase of the liver size. Collectively, our results suggest that exposure to TDCIPP induces hepatic inflammation and leads to hepatotoxicity in zebrafish.

  13. Effect of active hydroxyl groups on the interfacial bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane.

    PubMed

    Sakamoto, Harumi; Hirohashi, Yohei; Saito, Haruka; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao

    2008-01-01

    The objective of this study was to investigate the effect of active hydroxyl groups on a titanium (Ti) surface on the bond strength between Ti and segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). Active hydroxyl groups on Ti surface oxide were controlled by immersion in hydrogen peroxide (H2O2) with different lengths of immersion time, and the resulting concentrations of active hydroxyl groups were evaluated using a zinc-complex substitution technique. For the H2O2-treated Ti, it was characterized using X-ray photoelectron spectroscopy and scanning electron spectroscopy. For the bond strength of Ti/ gamma-MPS/SPU interface, it was determined using a shear bond test. Results showed that the bond strength increased with increase in the concentration of active hydroxyl groups. In terms of durability after immersion in water at 310 K for 30 days, it was found that bond strength was improved with increase in active hydroxyl groups. Based on the results obtained, active hydroxyl groups on the surface oxide film were clearly one of the causes governing the interfacial bond strength. PMID:18309616

  14. Mechanical and structural properties underlying contraction of skeletal muscle fibers after partial 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide cross-linking.

    PubMed Central

    Bershitsky, S; Tsaturyan, A; Bershitskaya, O; Mashanov, G; Brown, P; Webb, M; Ferenczi, M A

    1996-01-01

    We show prolonged contraction of permeabilized muscle fibers of the frog during which structural order, as judged from low-angle x-ray diffraction, was preserved by means of partial cross-linking of the fibers using the zero-length cross-linker 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide. Ten to twenty percent of the myosin cross-bridges were cross-linked, allowing the remaining 80-90% to cycle and generate force. These fibers displayed a well-preserved sarcomeric order and mechanical characteristics similar to those of intact muscle fibers. The intensity of the brightest meridional reflection at 14.5 nm, resulting from the projection of cross-bridges evenly spaced along the myofilament length, decreased by 60% as a relaxed fiber was deprived of ATP and entered the rigor state. Upon activation of a rigorized fiber by the addition of ATP, the intensity of this reflection returned to 97% of the relaxed value, suggesting that the overall orientation of cross-bridges in the active muscle was more perpendicular to the filament axis than in rigor. Following a small-amplitude length step applied to the active fibers, the reflection intensity decreased for both releases and stretches. In rigor, however, a small stretch increased the amplitude of the reflection by 35%. These findings show the close link between cross-bridge orientation and tension changes. Images FIGURE 1 FIGURE 6 PMID:8874020

  15. Effects of Tris(1,3-dichloro-2-propyl) Phosphate on Growth, Reproduction, and Gene Transcription of Daphnia magna at Environmentally Relevant Concentrations.

    PubMed

    Li, Han; Su, Guanyong; Zou, Ming; Yu, Liqin; Letcher, Robert J; Yu, Hongxia; Giesy, John P; Zhou, Bingsheng; Liu, Chunsheng

    2015-11-01

    The synthetic flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in natural waters, and its maximum concentration ever reported is 377 ng/L. However, information on the adverse effects of environmentally relevant concentrations of TDCIPP on aquatic organisms are totally unknown. In this study, <12-h old water fleas, D. magna, were exposed to concentrations of 0, 65±7.1, 550±33, or 6500±1400 ng/L TDCIPP, and dose- and time-dependent effects on reproduction and development were evaluated. Sequences of genes of D. magna were obtained from the National Center for Biotechnology Information and were used to develop PCR arrays for D. magna. Arrays were then used to study transcriptional responses of D. magna to TDCIPP. Exposure to environmentally relevant concentrations of TDCIPP significantly decreased fecundity as well as length of F0 and F1 generations. Transcriptional responses showed that, of the 155 genes tested, expressions of 57 genes were significantly changed, and some changes occurred following exposure to environmentally relevant concentrations (i.e., 65±7.1 and 550±23 ng/L). Furthermore, pathways related to protein synthesis and metabolism and endocytosis were considered to be significantly affected in a dose- and time-dependent manner and might be responsible for TDCIPP-induced reproductive and developmental toxicities. PMID:26422752

  16. Environmentally Relevant Concentrations of the Flame Retardant Tris(1,3-dichloro-2-propyl) Phosphate Inhibit Growth of Female Zebrafish and Decrease Fecundity.

    PubMed

    Zhu, Ya; Ma, Xufa; Su, Guanyong; Yu, Liqin; Letcher, Robert J; Hou, Jie; Yu, Hongxia; Giesy, John P; Liu, Chunsheng

    2015-12-15

    Bioconcentrations of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in brain, gonad, and liver as well as effects on fecundity and development of zebrafish (Danio rerio) were determined. Zebrafish (1-month old) were exposed to environmentally relevant concentrations of 29 ± 2.1, 600 ± 21, or 6300 ± 130 ng TDCIPP/L. After 120 days of exposure, TDCIPP accumulated in the brain, gonad, and liver with bioconcentration factors of 460, 38, and 87 in females and 26, 55, and 110 in males, respectively. TDCIPP accumulated to a greater extent in brains of females than those of males. Exposure to 6300 ± 130 ng TDCIPP/L resulted in significantly (P < 0.05) fewer eggs being produced, but the histology of the gonad, plasma concentrations of estradiol and 11-ketotestosterone, and expression of genes involved in hypothalamic-pituitary-gonadal-liver axis were not significantly (P > 0.05) different between individuals exposed to TDCIPP and the unexposed control fish. Exposure to TDCIPP resulted in shorter body length, lighter body mass, and lower gonadal-somatic index in females. These effects were possibly due to down-regulation of expression of genes along the growth hormone/insulin-like growth factor (GH/IGF) axis. Correlations between the production of eggs and developmental parameters or expression of genes along the GH/IGF axis further suggested that environmentally relevant concentrations of TDCIPP could have adverse effects on reproduction, possibly due to the inhibition of the growth of females. PMID:26512412

  17. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 aggregation in films

    SciTech Connect

    Lindemann, William R.; Wang, Wenjie; Fungura, Fadzai; Shinar, Joseph; Shinar, Ruth; Vaknin, David

    2014-11-11

    Surface-pressure isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaics and the likely ensuing ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. As a result, this implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.

  18. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 aggregation in films

    DOE PAGESBeta

    Lindemann, William R.; Wang, Wenjie; Fungura, Fadzai; Shinar, Joseph; Shinar, Ruth; Vaknin, David

    2014-11-11

    Surface-pressure isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaics and the likely ensuingmore » ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. As a result, this implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.« less

  19. Upregulation of (+)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin binding following intracerebroventricular administration of a nitric oxide generator.

    PubMed

    Wallace, D R; Booze, R M

    1997-02-01

    Nitric oxide modulation of dopamine D2 and D3 receptor binding was examined using [125I]epidepride (D2) and (+)7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin ([3H](+)-7-OH-DPAT, D3). Nitric oxide, generated by i.c.v. injection of S-nitroso-N-acetyl-penicillamine (SNAP; 5 microg or 10 microg), significantly increased the density of [3H](+)-7-OH-DPAT binding sites (39% and 134%, respectively) in the striatum 24 hours post-injection in the absence of Gpp(NH)p, representing an upregulation of either D3 receptors or high affinity D2 receptors. In the presence of 10 microM Gpp(NH)p, D3 receptor upregulation was maintained in both the 5 microg (increased 35%) and 10 microg SNAP (increased 44%) groups. [3H](+)-7-OH-DPAT binding was reduced in both striatum and nucleus accumbens in the presence of 10 microM Gpp(NH)p compared to binding in the absence of Gpp(NH)p, suggesting an upregulation of D3 receptors. Administration of SNAP did not alter total specific [125I]epidepride binding in either brain region. These data suggest that; 1) D3 receptor density is modified following nitric oxide generation, and 2) the density of high affinity D2 receptors identified by [3H](+)-7-OH-DPAT increases in the striatum, but decreases in the nucleus accumbens. PMID:9016841

  20. Development of anionically decorated caged neurotransmitters: in vitro comparison of 7-nitroindolinyl- and 2-(p-phenyl-o-nitrophenyl)-propyl-based photochemical probes

    PubMed Central

    Kantevari, Srinivas; Passlick, Stefan; Kwon, Hyung-Bae; Richers, Matthew T.; Sabatini, Bernardo L.; Ellis-Davies, Graham C.R.

    2016-01-01

    Neurotransmitter uncaging, especially that of glutamate, has been used to study synaptic function for over 30 years. One limitation of caged glutamate probes is the blockade of GABA-A receptor function. This problem comes to the fore when the probes are applied at the high concentrations required for effective 2-photon photolysis. To mitigate such problems one could improve the photochemical properties of caging chromophores and/or remove receptor blockade. We show that addition of a dicarboxylate unit to the widely used MNI-Glu reduced the off-target effects by about 50–70%. When the same strategy was applied to an electron rich 2-(p-phenyl-o-nitrophenyl)-propyl (PNPP) cage, the pharmacological improvements were not as significant as for MNI. Finally, we used very extensive biological testing of the PNPP-caged Glu (more than 250 uncaging currents at single dendritic spines) to show that nitro-biphenyl caging chromophores have a 2-photon uncaging efficacy similar to that of MNI-Glu. PMID:26929152