Science.gov

Sample records for acid protein consisting

  1. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster.

    PubMed Central

    Verrelli, B C; Eanes, W F

    2000-01-01

    PGM plays a central role in the glycolytic pathway at the branch point leading to glycogen metabolism and is highly polymorphic in allozyme studies of many species. We have characterized the nucleotide diversity across the Pgm gene in Drosophila melanogaster and D. simulans to investigate the role that protein polymorphism plays at this crucial metabolic branch point shared with several other enzymes. Although D. melanogaster and D. simulans share common allozyme mobility alleles, we find these allozymes are the result of many different amino acid changes at the nucleotide level. In addition, specific allozyme classes within species contain several amino acid changes, which may explain the absence of latitudinal clines for PGM allozyme alleles, the lack of association of PGM allozymes with the cosmopolitan In(3L)P inversion, and the failure to detect differences between PGM allozymes in functional studies. We find a significant excess of amino acid polymorphisms within D. melanogaster when compared to the complete absence of fixed replacements with D. simulans. There is also strong linkage disequilibrium across the 2354 bp of the Pgm locus, which may be explained by a specific amino acid haplotype that is high in frequency yet contains an excess of singleton polymorphisms. Like G6pd, Pgm shows strong evidence for a branch point enzyme that exhibits adaptive protein evolution. PMID:11102370

  2. Consistent probabilistic outputs for protein function prediction

    PubMed Central

    Obozinski, Guillaume; Lanckriet, Gert; Grant, Charles; Jordan, Michael I; Noble, William Stafford

    2008-01-01

    In predicting hierarchical protein function annotations, such as terms in the Gene Ontology (GO), the simplest approach makes predictions for each term independently. However, this approach has the unfortunate consequence that the predictor may assign to a single protein a set of terms that are inconsistent with one another; for example, the predictor may assign a specific GO term to a given protein ('purine nucleotide binding') but not assign the parent term ('nucleotide binding'). Such predictions are difficult to interpret. In this work, we focus on methods for calibrating and combining independent predictions to obtain a set of probabilistic predictions that are consistent with the topology of the ontology. We call this procedure 'reconciliation'. We begin with a baseline method for predicting GO terms from a collection of data types using an ensemble of discriminative classifiers. We apply the method to a previously described benchmark data set, and we demonstrate that the resulting predictions are frequently inconsistent with the topology of the GO. We then consider 11 distinct reconciliation methods: three heuristic methods; four variants of a Bayesian network; an extension of logistic regression to the structured case; and three novel projection methods - isotonic regression and two variants of a Kullback-Leibler projection method. We evaluate each method in three different modes - per term, per protein and joint - corresponding to three types of prediction tasks. Although the principal goal of reconciliation is interpretability, it is important to assess whether interpretability comes at a cost in terms of precision and recall. Indeed, we find that many apparently reasonable reconciliation methods yield reconciled probabilities with significantly lower precision than the original, unreconciled estimates. On the other hand, we find that isotonic regression usually performs better than the underlying, unreconciled method, and almost never performs worse

  3. Amino acids and proteins.

    PubMed

    van Goudoever, Johannes B; Vlaardingerbroek, Hester; van den Akker, Chris H; de Groof, Femke; van der Schoor, Sophie R D

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional requirements are not met, resulting in a postnatal growth restriction. However, current knowledge on adequate levels of both amino acid as well as protein intake can avoid under nutrition in the direct postnatal phase, avoid the need for subsequent catch-up growth and improve later outcome.

  4. Consistency.

    PubMed

    Levin, Roger

    2005-09-01

    Consistency is a reflection of having the right model, the right systems and the right implementation. As Vince Lombardi, the legendary coach of the Green Bay Packers, once said, "You don't do things right once in a while. You do them right all the time." To provide the ultimate level of patient care, reduce stress for the dentist and staff members and ensure high practice profitability, consistency is key.

  5. The origin of consistent protein structure refinement from structural averaging.

    PubMed

    Park, Hahnbeom; DiMaio, Frank; Baker, David

    2015-06-01

    Recent studies have shown that explicit solvent molecular dynamics (MD) simulation followed by structural averaging can consistently improve protein structure models. We find that improvement upon averaging is not limited to explicit water MD simulation, as consistent improvements are also observed for more efficient implicit solvent MD or Monte Carlo minimization simulations. To determine the origin of these improvements, we examine the changes in model accuracy brought about by averaging at the individual residue level. We find that the improvement in model quality from averaging results from the superposition of two effects: a dampening of deviations from the correct structure in the least well modeled regions, and a reinforcement of consistent movements towards the correct structure in better modeled regions. These observations are consistent with an energy landscape model in which the magnitude of the energy gradient toward the native structure decreases with increasing distance from the native state.

  6. ATP selection in a random peptide library consisting of prebiotic amino acids.

    PubMed

    Kang, Shou-Kai; Chen, Bai-Xue; Tian, Tian; Jia, Xi-Shuai; Chu, Xin-Yi; Liu, Rong; Dong, Peng-Fei; Yang, Qing-Yong; Zhang, Hong-Yu

    2015-10-23

    Based upon many theoretical findings on protein evolution, we proposed a ligand-selection model for the origin of proteins, in which the most ancient proteins originated from ATP selection in a pool of random peptides. To test this ligand-selection model, we constructed a random peptide library consisting of 15 types of prebiotic amino acids and then used cDNA display to perform six rounds of in vitro selection with ATP. By means of next-generation sequencing, the most prevalent sequence was defined. Biochemical and biophysical characterization of the selected peptide showed that it was stable and foldable and had ATP-hydrolysis activity as well.

  7. Toward consistent assignment of structural domains in proteins.

    PubMed

    Veretnik, Stella; Bourne, Philip E; Alexandrov, Nickolai N; Shindyalov, Ilya N

    2004-06-01

    The assignment of protein domains from three-dimensional structure is critically important in understanding protein evolution and function, yet little quality assurance has been performed. Here, the differences in the assignment of structural domains are evaluated using six common assignment methods. Three human expert methods (AUTHORS (authors' annotation), CATH and SCOP) and three fully automated methods (DALI, DomainParser and PDP) are investigated by analysis of individual methods against the author's assignment as well as analysis based on the consensus among groups of methods (only expert, only automatic, combined). The results demonstrate that caution is recommended in using current domain assignments, and indicates where additional work is needed. Specifically, the major factors responsible for conflicting domain assignments between methods, both experts and automatic, are: (1) the definition of very small domains; (2) splitting secondary structures between domains; (3) the size and number of discontinuous domains; (4) closely packed or convoluted domain-domain interfaces; (5) structures with large and complex architectures; and (6) the level of significance placed upon structural, functional and evolutionary concepts in considering structural domain definitions. A web-based resource that focuses on the results of benchmarking and the analysis of domain assignments is available at

  8. Proteins and acids from petroleum.

    PubMed

    Zaki, D; el-Badrawy, S

    1978-01-01

    The wax distillate fraction (boiling range 300 up to 400 degrees C) from the crude oil "El-Alameen" was found to be a good substrate for the biosynthesis of proteins and/or amino acids by bacteria under special culture conditions. The fermentation processes were accompanied by a refining effect to the oil fraction, elevating its refraction index and lowering its melting point, giving dewaxing effect to the oil fraction. PMID:735504

  9. Protein biosynthesis with conformationally restricted amino acids

    SciTech Connect

    Mendel, D. Lawrence Berkeley Lab., CA ); Ellman, J.; Schultz, P.G. )

    1993-05-19

    The incorporation of conformationally constrained amino acids into peptides is a powerful approach for generating structurally defined peptides as conformational probes and bioactive agents. The ability to site-specifically introduce constrained amino acids into large polypeptide chains would provide a similar opportunity to probe the flexibility, conformation, folding and stability of proteins. To this end, we have examined the competence of the Escherichia coli protein biosynthetic machinery to incorporate a number of these unnatural amino acids into the 164 residue protein T4 lysozyme (T4L). Results clearly demonstrate that the protein biosynthetic machinery can accommodate a wide variety of conformationally constrained amino acids. The expansion of structural motifs that can be biosynthetically incorporated into proteins to include a large number of conformationally constrained amino acids significantly increases the power of mutagenesis methods as probes of protein structure and function and provides additional insights into the steric requirements of the translational machinery. 13 refs., 2 figs.

  10. Distinguishing proteins from arbitrary amino acid sequences.

    PubMed

    Yau, Stephen S-T; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  11. A new acidic protein in porcine brain.

    PubMed

    Ishioka, N; Isobe, T; Okuyama, T; Numata, Y; Wada, H

    1980-10-21

    An extremely acidic protein has been isolated in a purified form from porcine rain extract, by (NH4)2SO4 fractionation followed by column chromatography on DEAE-Sephadex A-50 and on Sephadex G-75. The purified protein was tentatively named as glutamic acid-rich protein because it was characterized by its remarkably high content of glutamic acid which accounted for 49% of the total amino acid composition. The protein appeared to be a single polypeptide chain with a molecular weight of 56 000-58 000, and had an isoelectric point of 4.6. The N-terminal amino acid sequence was Asp-Glu-Pro-Pro-Ser-Glu-Gly. The immunochemical analysis using rabbit antiserum prepared to the porcine protein has suggested that it is present in the brain of human, cow, cat, dog and goat as well as in various goat organs including liver, kidney, heart, small intestine and spleen.

  12. Correlated Protein Function Prediction via Maximization of Data-Knowledge Consistency.

    PubMed

    Wang, Hua; Huang, Heng; Ding, Chris

    2015-06-01

    Conventional computational approaches for protein function prediction usually predict one function at a time, fundamentally. As a result, the protein functions are treated as separate target classes. However, biological processes are highly correlated in reality, which makes multiple functions assigned to a protein not independent. Therefore, it would be beneficial to make use of function category correlations when predicting protein functions. In this article, we propose a novel Maximization of Data-Knowledge Consistency (MDKC) approach to exploit function category correlations for protein function prediction. Our approach banks on the assumption that two proteins are likely to have large overlap in their annotated functions if they are highly similar according to certain experimental data. We first establish a new pairwise protein similarity using protein annotations from knowledge perspective. Then by maximizing the consistency between the established knowledge similarity upon annotations and the data similarity upon biological experiments, putative functions are assigned to unannotated proteins. Most importantly, function category correlations are gracefully incorporated into our learning objective through the knowledge similarity. Comprehensive experimental evaluations on the Saccharomyces cerevisiae species have demonstrated promising results that validate the performance of our methods.

  13. The Consistency of Isotopologues of Ambient Atmospheric Nitric Acid in Passively Collected Samples

    NASA Astrophysics Data System (ADS)

    Bell, M. D.; Sickman, J. O.; Bytnerowicz, A.; Padgett, P.; Allen, E. B.

    2012-12-01

    Anthropogenic sources of nitrogen oxides have previously been shown to have distinctive isotopic signatures of oxygen and nitrogen. Nylon filters are currently used in passive sampling arrays to measure ambient atmospheric nitric acid concentrations and estimate deposition rates. This experiment measured the ability of nylon filters to consistently collect isotopologues of atmospheric nitric acid in the same ratios as they are present in the atmosphere. Samplers were deployed in continuous stirred tank reactors (CSTR) and at field sites across a nitrogen deposition gradient in Southern California. Filters were exposed over a four week period with individual filters being subjected to 1-4 week exposure times. Extracted nitric acid were measured for δ18O and δ15N ratios and compared for consistency based on length of exposure and amount of HNO3 collected. Filters within the CSTRs collected HNO3 at a consistent rate in both high and low concentration chambers. After two weeks of exposure, the mean δ18O values were within 0.5‰ of the δ18O of the source HNO3 solution. The mean of all weekly exposures were within 0.5‰ of the δ15N of the source solution, but after three weeks, the mean δ15N of adsorbed HNO3 was within 0.2‰. As the length of the exposure increased, the variability of measured delta values decreased for both elements. The field samplers collected HNO3 consistent with previously measured values along a deposition gradient. The mean δ18O at high deposition sites was 52.2‰ compared to 35.7‰ at the low deposition sites. Mean δ15N values were similar at all sites across the deposition gradient. Due to precipitation events occurring during the exposure period, the δ15N and δ18O of nitric acid were highly variable at all field sites. At single sites, changes in δ15N and δ18O were negatively correlated, consistent with two-sourcing mixing dynamics, but the slope of the regressions differed between high and low deposition sites. Anthropogenic

  14. BIOPOLYMERS FROM POLYLACTIC ACID AND MILK PROTEINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polylactic acid (PLA) is a commercially available biodegradable polymer derived from lactic acid and is used in many nonfood products as an alternative to petrochemical-derived polymers. However, its physical properties limit its use in many applications. Using dairy proteins to substitute for por...

  15. Probing protein stability with unnatural amino acids

    SciTech Connect

    Mendel, D.; Ellman, J.A.; Zhiyuh Chang; Veenstra, D.L.; Kollman, P.A.; Schultz, P.G. )

    1992-06-26

    Unnatural amino acid mutagenesis, in combination with molecular modeling and simulation techniques, was used to probe the effect of side chain structure on protein stability. Specific replacements at position 133 in T4 lysozyme included (1) leucine (wt), norvaline, ethylglycine, and alanine to measure the cost of stepwise removal of methyl groups from the hydrophobic core, (2) norvaline and O-methyl serine to evaluate the effects of side chain solvation, and (3) leucine, S,S-2-amino-4-methylhexanoic acid, and S-2-amino-3-cyclopentylpropanoic acid to measure the influence of packing density and side chain conformational entropy on protein stability. All of these factors (hydrophobicity, packing, conformational entropy, and cavity formation) significantly influence protein stability and must be considered when analyzing any structural change to proteins.

  16. IR-UV photochemistry of protein-nucleic acid systems

    SciTech Connect

    Kozub, J.; Edwards, G.

    1995-12-31

    UV light has often been used to induce the formation of covalent bonds between DNA (or RNA) and tightly-bound protein molecules. However, the internal photoreactions of nucleic acids and proteins limit the yield and complicate the analysis of intermolecular crosslinks. In an ongoing search for improved reaction specificity or new photoreactions in these systems, we have employed UV photons from a Nd:YAG-pumped dye laser and mid-IR photons from the Vanderbilt FEL. Having crosslinked several protein-nucleic acid systems with nanosecond UV laser pulses, we are currently studying the effect of various IR wavelengths on a model system (gene 32 protein and poly[dT]). We have found that irradiation with sufficiently intense FEL macropulses creates an altered form of gene 32 protein which was not observed with UV-only irradiation. The electrophoretic nobility of the product is consistent with the formation of a specific protein-protein crosslink. No evidence of the non-specific protein damage typically induced by UV light is found. The yield of the new photoproduct is apparently enhanced by exposure to FEL macropulses which are synchronized with UV laser pulses. With ideal exposure parameters, the two-color reaction effectively competes with UV-only reactions. Experiments designed to determine the reaction mechanism and to demonstrate FEL-induced reactions in other protein-nucleic acid systems are currently underway.

  17. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  18. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    PubMed Central

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts. PMID:10639127

  19. Consistent Treatment of Hydrophobicity in Protein Lattice Models Accounts for Cold Denaturation

    NASA Astrophysics Data System (ADS)

    van Dijk, Erik; Varilly, Patrick; Knowles, Tuomas P. J.; Frenkel, Daan; Abeln, Sanne

    2016-02-01

    The hydrophobic effect stabilizes the native structure of proteins by minimizing the unfavorable interactions between hydrophobic residues and water through the formation of a hydrophobic core. Here, we include the entropic and enthalpic contributions of the hydrophobic effect explicitly in an implicit solvent model. This allows us to capture two important effects: a length-scale dependence and a temperature dependence for the solvation of a hydrophobic particle. This consistent treatment of the hydrophobic effect explains cold denaturation and heat capacity measurements of solvated proteins.

  20. FLU, an amino acid substitution model for influenza proteins

    PubMed Central

    2010-01-01

    Background The amino acid substitution model is the core component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Although several general amino acid substitution models have been estimated from large and diverse protein databases, they remain inappropriate for analyzing specific species, e.g., viruses. Emerging epidemics of influenza viruses raise the need for comprehensive studies of these dangerous viruses. We propose an influenza-specific amino acid substitution model to enhance the understanding of the evolution of influenza viruses. Results A maximum likelihood approach was applied to estimate an amino acid substitution model (FLU) from ~113, 000 influenza protein sequences, consisting of ~20 million residues. FLU outperforms 14 widely used models in constructing maximum likelihood phylogenetic trees for the majority of influenza protein alignments. On average, FLU gains ~42 log likelihood points with an alignment of 300 sites. Moreover, topologies of trees constructed using FLU and other models are frequently different. FLU does indeed have an impact on likelihood improvement as well as tree topologies. It was implemented in PhyML and can be downloaded from ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/FLU or included in PhyML 3.0 server at http://www.atgc-montpellier.fr/phyml/. Conclusions FLU should be useful for any influenza protein analysis system which requires an accurate description of amino acid substitutions. PMID:20384985

  1. Assessing Predictors of Changes in Protein Stability upon Mutation Using Self-Consistency

    PubMed Central

    Thiltgen, Grant; Goldstein, Richard A.

    2012-01-01

    The ability to predict the effect of mutations on protein stability is important for a wide range of tasks, from protein engineering to assessing the impact of SNPs to understanding basic protein biophysics. A number of methods have been developed that make these predictions, but assessing the accuracy of these tools is difficult given the limitations and inconsistencies of the experimental data. We evaluate four different methods based on the ability of these methods to generate consistent results for forward and back mutations, and examine how this ability varies with the nature and location of the mutation. We find that, while one method seems to outperform the others, the ability of these methods to make accurate predictions is limited. PMID:23144695

  2. GPU.proton.DOCK: Genuine Protein Ultrafast proton equilibria consistent DOCKing.

    PubMed

    Kantardjiev, Alexander A

    2011-07-01

    GPU.proton.DOCK (Genuine Protein Ultrafast proton equilibria consistent DOCKing) is a state of the art service for in silico prediction of protein-protein interactions via rigorous and ultrafast docking code. It is unique in providing stringent account of electrostatic interactions self-consistency and proton equilibria mutual effects of docking partners. GPU.proton.DOCK is the first server offering such a crucial supplement to protein docking algorithms--a step toward more reliable and high accuracy docking results. The code (especially the Fast Fourier Transform bottleneck and electrostatic fields computation) is parallelized to run on a GPU supercomputer. The high performance will be of use for large-scale structural bioinformatics and systems biology projects, thus bridging physics of the interactions with analysis of molecular networks. We propose workflows for exploring in silico charge mutagenesis effects. Special emphasis is given to the interface-intuitive and user-friendly. The input is comprised of the atomic coordinate files in PDB format. The advanced user is provided with a special input section for addition of non-polypeptide charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. The output is comprised of docked complexes in PDB format as well as interactive visualization in a molecular viewer. GPU.proton.DOCK server can be accessed at http://gpudock.orgchm.bas.bg/. PMID:21666258

  3. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  4. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  5. A self-consistent knowledge-based approach to protein design.

    PubMed Central

    Rossi, A; Micheletti, C; Seno, F; Maritan, A

    2001-01-01

    A simple and very efficient protein design strategy is proposed by developing some recently introduced theoretical tools which have been successfully applied to exactly solvable protein models. The design approach is implemented by using three amino acid classes and it is based on the minimization of an appropriate energy function. For a given native state the results of the design procedure are compared, through a statistical analysis, with the properties of an ensemble of sequences folding in the same conformation. If the success rate is computed on those sites designed with high confidence, it can be as high as 80%. The method is also able to identify key sites for the folding process: results for 2ci2 and barnase are in very good agreement with experimental results. PMID:11159418

  6. Kinetic theory of protein filament growth: Self-consistent methods and perturbative techniques

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Knowles, Tuomas P. J.

    2015-12-01

    Filamentous protein structures are of high relevance for the normal functioning of the cell, where they provide the structural component for the cytoskeleton, but are also implicated in the pathogenesis of many disease states. The self-assembly of these supra-molecular structures from monomeric proteins has been studied extensively in the past 50 years and much interest has focused on elucidating the microscopic events that drive linear growth phenomena in a biological setting. Master equations have proven to be particularly fruitful in this context, allowing specific assembly mechanisms to be linked directly to experimental observations of filamentous growth. Recently, these approaches have increasingly been applied to aberrant protein polymerization, elucidating potential implications for controlling or combating the formation of pathological filamentous structures. This article reviews recent theoretical advances in the field of filamentous growth phenomena through the use of the master-equation formalism. We use perturbation and self-consistent methods for obtaining analytical solutions to the rate equations describing fibrillar growth and show how the resulting closed-form expressions can be used to shed light on the general physical laws underlying this complex phenomenon. We also present a connection between the underlying ideas of the self-consistent analysis of filamentous growth and the perturbative renormalization group.

  7. Determination of Protein Folding Intermediate Structures Consistent with Data from Oxidative Footprinting Mass Spectrometry.

    PubMed

    Heinkel, Florian; Gsponer, Jörg

    2016-01-29

    The mapping of folding landscapes remains an important challenge in protein chemistry. Pulsed oxidative labeling of exposed residues and their detection via mass spectrometry provide new means of taking time-resolved "snapshots" of the structural changes that occur during protein folding. However, such experiments have been so far only interpreted qualitatively. Here, we report the detailed structural interpretation of mass spectrometry data from fast photochemical oxidation of proteins (FPOP) experiments at atomic resolution in a biased molecular dynamics approach. We are able to calculate structures of the early folding intermediate of the model system barstar that are fully consistent with FPOP data and Φ values. Furthermore, structures calculated with both FPOP data and Φ values are significantly less compact and have fewer helical residues than intermediate structures calculated with Φ values only. This improves the agreement with the experimental β-Tanford value and CD measurements. The restraints that we introduce facilitate the structural interpretation of FPOP data and provide new means for refined structure calculations of transiently sampled states on protein folding landscapes.

  8. The construction of a bifunctional fusion protein consisting of SEC2 and EGFP.

    PubMed

    Liu, Yanli; Xu, Mingkai; Li, Xu; Sun, Jian; Zhang, Chenggang; Zhang, Huiwen

    2014-01-01

    The aim of this study was to construct a bifunctional fusion protein consisting of staphylococcal enterotoxin C2 (SEC2) and enhanced green fluorescent protein (EGFP). We inserted EGFP and SEC2 fragments into the pET-28a(+) vector to create the expression plasmid vector, pET-28a(+)-SEC2-EGFP, using a two-step method. After verification of the plasmid, successful isolation of the fusion protein, SEC2-EGFP, was achieved by Ni+-affinity chromatography. Fluorescence microscopy, methylthiazol tetrazolium, and flow cytometry assays demonstrated that the constructed fusion protein not only retained the fluorescence signal of EGFP but also exhibited SEC2 bioactivity. Therefore, SEC2-EGFP is a promising tool for the study of the detailed temporal and spatial distributions of SEC2 in cells. Future studies with this vector may help uncover novel therapeutic strategies to treat or manage SEC2-associated diseases and be a new clinical tool for exploiting SEC2 in immunotherapy.

  9. Alimentary proteins, amino acids and cholesterolemia.

    PubMed

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  10. Characterization and amino acid sequence of a fatty acid-binding protein from human heart.

    PubMed Central

    Offner, G D; Brecher, P; Sawlivich, W B; Costello, C E; Troxler, R F

    1988-01-01

    The complete amino acid sequence of a fatty acid-binding protein from human heart was determined by automated Edman degradation of CNBr, BNPS-skatole [3'-bromo-3-methyl-2-(2-nitrobenzenesulphenyl)indolenine], hydroxylamine, Staphylococcus aureus V8 proteinase, tryptic and chymotryptic peptides, and by digestion of the protein with carboxypeptidase A. The sequence of the blocked N-terminal tryptic peptide from citraconylated protein was determined by collisionally induced decomposition mass spectrometry. The protein contains 132 amino acid residues, is enriched with respect to threonine and lysine, lacks cysteine, has an acetylated valine residue at the N-terminus, and has an Mr of 14768 and an isoelectric point of 5.25. This protein contains two short internal repeated sequences from residues 48-54 and from residues 114-119 located within regions of predicted beta-structure and decreasing hydrophobicity. These short repeats are contained within two longer repeated regions from residues 48-60 and residues 114-125, which display 62% sequence similarity. These regions could accommodate the charged and uncharged moieties of long-chain fatty acids and may represent fatty acid-binding domains consistent with the finding that human heart fatty acid-binding protein binds 2 mol of oleate or palmitate/mol of protein. Detailed evidence for the amino acid sequences of the peptides has been deposited as Supplementary Publication SUP 50143 (23 pages) at the British Library Lending Division, Boston Spa, Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5. PMID:3421901

  11. Protein and Amino Acid Requirements during Pregnancy.

    PubMed

    Elango, Rajavel; Ball, Ronald O

    2016-07-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg(-1) · d(-1), respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg(-1) · d(-1) during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14-18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. PMID:27422521

  12. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins.

    PubMed

    Cerutti, David S; Swope, William C; Rice, Julia E; Case, David A

    2014-10-14

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard-Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields. PMID:25328495

  13. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins

    PubMed Central

    2015-01-01

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard–Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields. PMID:25328495

  14. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins.

    PubMed

    Cerutti, David S; Swope, William C; Rice, Julia E; Case, David A

    2014-10-14

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard-Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields.

  15. Amino Acid Recycling in Relation to Protein Turnover 1

    PubMed Central

    Davies, David D.; Humphrey, Thomas J.

    1978-01-01

    Methods of measuring amino acid recycling in Lemna minor are described. The extent to which the recycling of individual amino acids may underestimate protein turnover has been measured for a number of amino acids. The methods have been used to study the relationship between protein turnover and amino acid recycling during nitrogen starvation. It is concluded that following the removal of nitrate from the environment, protein turnover is enhanced, the partitioning of amino acids between protein synthesis and amino acid metabolism is relatively constant, but the total amount of amino acids recycling is increased. PMID:16660236

  16. Protein and Amino Acid Profiles of Different Whey Protein Supplements.

    PubMed

    Almeida, Cristine C; Alvares, Thiago S; Costa, Marion P; Conte-Junior, Carlos A

    2016-01-01

    Whey protein (WP) supplements have received increasing attention by consumers due to the high nutritional value of the proteins and amino acids they provide. However, some WP supplements may not contain the disclosed amounts of the ingredients listed on the label, compromising the nutritional quality and the effectiveness of these supplements. The aim of this study was to evaluate and compare the contents of total protein (TP), α-lactalbumin (α-LA), β-lactoglobulin (β-LG), free essential amino acids (free EAA), and free branched-chain amino acids (free BCAA), amongst different WP supplements produced by U.S. and Brazilian companies. Twenty commercial brands of WP supplements were selected, ten manufactured in U.S. (WP-USA) and ten in Brazil (WP-BRA). The TP was analyzed using the Kjeldahl method, while α-LA, β-LG, free EAA, and free BCAA were analyzed using HPLC system. There were higher (p < 0.05) concentrations of TP, α-LA, β-LG, and free BCAA in WP-USA supplements, as compared to the WP-BRA supplements; however, there was no difference (p > 0.05) in the content of free EAA between WP-USA and WP-BRA. Amongst the 20 brands evaluated, four WP-USA and seven WP-BRA had lower (p < 0.05) values of TP than those specified on the label. In conclusion, the WP-USA supplements exhibited better nutritional quality, evaluated by TP, α-LA, β-LG, and free BCAA when compared to WP-BRA.

  17. Liver Fatty Acid Binding Protein and Obesity

    PubMed Central

    Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15 member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP, or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair-fed a high fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity. PMID:20537520

  18. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  19. Unifying protein inference and peptide identification with feedback to update consistency between peptides.

    PubMed

    Shi, Jinhong; Chen, Bolin; Wu, Fang-Xiang

    2013-01-01

    We first propose a new method to process peptide identification reports from databases search engines. Then via it we develop a method for unifying protein inference and peptide identification by adding a feedback from protein inference to peptide identification. The feedback information is a list of high-confidence proteins, which is used to update an adjacency matrix between peptides. The adjacency matrix is used in the regularization of peptide scores. Logistic regression (LR) is used to compute the probability of peptide identification with the regularized scores. Protein scores are then calculated with the LR probability of peptides. Instead of selecting the best peptide match for each MS/MS, we select multiple peptides. By testing on two datasets, the results have shown that the proposed method can robustly assign accurate probabilities to peptides, and have a higher discrimination power than PeptideProphet to distinguish correct and incorrect identified peptides. Additionally, not only can our method infer more true positive proteins but also infer less false positive proteins than ProteinProphet at the same false positive rate. The coverage of inferred proteins is also significantly increased due to the selection of multiple peptides for each MS/MS and the improvement of their scores by the feedback from the inferred proteins.

  20. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  1. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  2. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  3. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  4. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  5. The internalization signal in the cytoplasmic tail of lysosomal acid phosphatase consists of the hexapeptide PGYRHV.

    PubMed Central

    Lehmann, L E; Eberle, W; Krull, S; Prill, V; Schmidt, B; Sander, C; von Figura, K; Peters, C

    1992-01-01

    Lysosomal acid phosphatase (LAP) is rapidly internalized from the cell surface due to a tyrosine-containing internalization signal in its 19 amino acid cytoplasmic tail. Measuring the internalization of a series of LAP cytoplasmic tail truncation and substitution mutants revealed that the N-terminal 12 amino acids of the cytoplasmic tail are sufficient for rapid endocytosis and that the hexapeptide 411-PGYRHV-416 is the tyrosine-containing internalization signal. Truncation and substitution mutants of amino acid residues following Val416 can prevent internalization even though these residues do not belong to the internalization signal. It was shown recently that part of the LAP cytoplasmic tail peptide corresponding to 410-PPGY-413 forms a well-ordered beta turn structure in solution. Two-dimensional NMR spectroscopy of two modified LAP tail peptides, in which the single tyrosine was substituted either by phenylalanine or by alanine, revealed that the tendency to form a beta turn is reduced by 25% in the phenylalanine-containing peptide and by approximately 50% in the alanine-containing mutant peptide. Our results suggest, that in the short cytoplasmic tail of LAP tyrosine is required for stabilization of the right turn and that the aromatic ring system of the tyrosine residue is a contact point to the putative cytoplasmic receptor. Images PMID:1425575

  6. Implementing a Rational and Consistent Nomenclature for Serine/Arginine-Rich Protein Splicing Factors (SR Proteins) in Plants

    PubMed Central

    Barta, Andrea; Kalyna, Maria; Reddy, Anireddy S.N.

    2010-01-01

    Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species. PMID:20884799

  7. Protein-based biomemory device consisting of the cysteine-modified azurin

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Woo; Oh, Byung-Keun; Kim, Young Jun; Min, Junhong

    2007-12-01

    We demonstrated a protein-based memory device using recombinant Pseudomonas aeruginosa azurin (azurin), a metalloprotein with a redox property. Azurin was recombined with a cysteine residue to enhance the stability of the self-assembled protein on the gold surface. The memory device characteristics, including the "read," "write," and "erase" functions of the self-assembled azurin layer, were well demonstrated with three distinct electrical states of azurin layers by cyclic voltammetry. The robustness of the protein-based biomemory device was validated by the repeated electrochemical performance of 500000cycles.

  8. Regulation of intestinal protein metabolism by amino acids.

    PubMed

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  9. Expression of the whey acidic protein in transgenic pigs impairs mammary development.

    PubMed

    Shamay, A; Pursel, V G; Wilkinson, E; Wall, R J; Hennighausen, L

    1992-05-01

    The whey acidic protein has been found in milk of mice, rats, rabbits and camels, and its gene is expressed specifically in mammary tissue at late pregnancy and throughout lactation. A characteristic of whey acidic protein is the 'four-disulfide-core' signature which is also present in proteins involved in organ development. We have generated six lines of transgenic pigs which carry a mouse whey acidic protein transgene and express it at high levels in their mammary glands. Transgenic sows from three lines could not produce sufficient quantities of milk to support normal development of healthy offspring. This phenotype appears to be similar, if not identical, to the milchlos phenotype exhibited by mice expressing whey acidic protein transgenes. Mammary tissue from post-partum milchlos sows had an immature histological appearance, which was distinct from that observed during normal development or involution. Expression of the whey acidic protein transgene was found in mammary tissue from sexually immature pigs from milchlos lines, but not in sows from lines that appeared to lactate normally. We suggest that precocious synthesis of whey acidic protein impairs mammary development and function. Impaired mammary development due to inappropriate timing of whey acidic protein expression is consistent with the notion that proteins with the 'four-disulfide-core' signature participate in tissue formation. PMID:1284481

  10. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  11. A graph-based integrative method of detecting consistent protein functional modules from multiple data sources.

    PubMed

    Zhang, Yuan; Cheng, Yue; Ge, Liang; Du, Nan; Jia, Kebin; Zhang, Aidong

    2015-01-01

    Many clustering methods have been developed to identify functional modules in Protein-Protein Interaction (PPI) networks but the results are far from satisfaction. To overcome the noise and incomplete problems of PPI networks and find more accurate and stable functional modules, we propose an integrative method, bipartite graph-based Non-negative Matrix Factorisation method (BiNMF), in which we adopt multiple biological data sources as different views that describe PPIs. Specifically, traditional clustering models are adopted as preliminary analysis of different views of protein functional similarity. Then the intermediate clustering results are represented by a bipartite graph which can comprehensively represent the relationships between proteins and intermediate clusters and finally overlapping clustering results are achieved. Through extensive experiments, we see that our method is superior to baseline methods and detailed analysis has demonstrated the benefits of integrating diverse clustering methods and multiple biological information sources. PMID:26547971

  12. Self-consistently optimized energy functions for protein structure prediction by molecular dynamics.

    PubMed

    Koretke, K K; Luthey-Schulten, Z; Wolynes, P G

    1998-03-17

    The protein energy landscape theory is used to obtain optimal energy functions for protein structure prediction via simulated annealing. The analysis here takes advantage of a more complete statistical characterization of the protein energy landscape and thereby improves on previous approximations. This schema partially takes into account correlations in the energy landscape. It also incorporates the relationships between folding dynamics and characteristic energy scales that control the collapse of the proteins and modulate rigidity of short-range interactions. Simulated annealing for the optimal energy functions, which are associative memory hamiltonians using a database of folding patterns, generally leads to quantitatively correct structures. In some cases the algorithm achieves "creativity," i.e., structures result that are better than any homolog in the database.

  13. Novel Long-Circulating Liposomes Consisting of PEG Modified β-Sitosterol for Gambogic Acid Delivery.

    PubMed

    Yu, Fan; Tang, Xinhui

    2016-03-01

    Long-circulating liposome is an effective formulation in field of cancer treatment. However, high expenditure of formulation and high dose of cholesterol severely restrict its application. In this paper, we developed a method by grafting polyethylene glycol 2000 on β-sitosterol succinic anhydride ester to obtain relatively cheap polyethylene glycol-β-sitosterol conjugates, which were used to prepare long-circulating liposome without cholesterol. Gambogic acid which is an effective antitumor ingredient with very short half-life, was used as a model drug to prepare long-circulating liposome in this research. Meanwhile, the characteristics, pharmacokinetics and distribution of this novel long-circulating liposome were also investigated in comparison with other gambogic acid formulations. Polyethylene glycol-β-sitosterol conjugates were synthesized, different liposomal formulations were also prepared by ethanol injection method, and the obtained nanoparticles were characterized by dynamic light scattering and transmission electron microscope. The long-circulating effect, pharmacokinetics and distribution of gambogic acid in rats were also explored. 1HNMR confirmed that polyethylene glycol-β-sitosterol conjugates were synthesized successfully. Novel long-circulating liposome was successfully prepared by ethanol injection method attaining a entrapment efficiency of 89.4%, exhibiting a homogeneous particle size of 245.2 nm and -24.3 mV zeta potential with smooth continuous surface. This novel long-circulating liposome demonstrated better long-circulating effect than ordinary long-circulating liposome. The novel long-circulating liposome as-prepared not only could reduce cost of grafting polyethylene glycol on macromolecular phospholipid, but also no cholestrol in preparation was applied, expanding the application of liposome as a formulation in the field of lowering blood lipid. Therefore, polyethylene glycol-β-sitosterol conjugates are recommended substitute for

  14. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes.

    PubMed Central

    Baker, R T; Board, P G

    1991-01-01

    Complementary DNA clones encoding ubiquitin fused to a 52 amino acid tail protein were isolated from human placental and adrenal gland cDNA libraries. The deduced human 52 amino acid tail protein is very similar to the homologous protein from other species, including the conservation of the putative metal-binding, nucleic acid-binding domain observed in these proteins. Northern blot analysis with a tail-specific probe indicated that the previously identified UbA mRNA species most likely represents comigrating transcripts of the 52 amino acid tail (UbA52) and 80 amino acid tail (UbA80) ubiquitin fusion genes. The UbA52 gene was isolated from a human genomic library and consists of five exons distributed over 3400 base pairs. One intron is in the 5' non-coding region, two interrupt the single ubiquitin coding unit, and the fourth intron is within the tail coding region. Several members of the Alu family of repetitive DNA are associated with the gene. The UbA52 promoter has several features in common with mammalian ribosomal protein genes, including its location in a CpG-rich island, initiation of transcription within a polypyrimidine tract, the lack of a consensus TATA motif, and the presence of Sp1 binding sites, observations that are consistent with the recent identification of the ubiquitin-free tail proteins as ribosomal proteins. Thus, in spite of its unusual feature of being translationally fused to ubiquitin, the 52 amino acid tail ribosomal protein is expressed from a structurally typical ribosomal protein gene. Images PMID:1850507

  15. Protein, amino acids and the control of food intake.

    PubMed

    Tome, Daniel

    2004-08-01

    The influence of protein and amino acid on the control of food intake and the specific control of protein and amino acid intakes remains incompletely understood. The most commonly accepted conclusions are: (1) the existence of an aversive response to diets deficient in or devoid of protein or deficient in at least one essential amino acid; (2) the existence of a mechanism that enables attainment of the minimum requirement for N and essential amino acids by increasing intake of a low-protein diet; (3) a decrease in the intake of a high-protein diet is associated with different processes, including the high satiating effect of protein. Ingested proteins are believed to generate pre- and post-absorptive signals that contribute to the control of gastric kinetics, pancreatic secretion and food intake. At the brain level, two major afferent pathways are involved in protein and amino acid monitoring: the indirect neuro-mediated (mainly vagus-mediated) pathway and the direct blood pathway. The neuro-mediated pathway transfers pre-absorptive and visceral information. This information is for the main part transferred through the vagus nerve that innervates part of the oro-sensory zone: the stomach, the duodenum and the liver. Other information is directly monitored in the blood. It is likely that the system responds precisely when protein and essential amino acid intake is inadequate, but in contrast allows a large range of adaptive capacities through amino acid degradation and substrate interconversion.

  16. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  17. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics.

    PubMed

    Mead, Simon; Stumpf, Michael P H; Whitfield, Jerome; Beck, Jonathan A; Poulter, Mark; Campbell, Tracy; Uphill, James B; Goldstein, David; Alpers, Michael; Fisher, Elizabeth M C; Collinge, John

    2003-04-25

    Kuru is an acquired prion disease largely restricted to the Fore linguistic group of the Papua New Guinea Highlands, which was transmitted during endocannibalistic feasts. Heterozygosity for a common polymorphism in the human prion protein gene (PRNP) confers relative resistance to prion diseases. Elderly survivors of the kuru epidemic, who had multiple exposures at mortuary feasts, are, in marked contrast to younger unexposed Fore, predominantly PRNP 129 heterozygotes. Kuru imposed strong balancing selection on the Fore, essentially eliminating PRNP 129 homozygotes. Worldwide PRNP haplotype diversity and coding allele frequencies suggest that strong balancing selection at this locus occurred during the evolution of modern humans. PMID:12690204

  18. Image analysis reveals that Escherichia coli RecA protein consists of two domains.

    PubMed Central

    Yu, X; Egelman, E H

    1990-01-01

    The Escherichia coli RecA protein catalyzes homologous genetic recombination by forming helical polymers around DNA molecules. These polymers have an ATPase activity, which is essential for the movement of strands between two DNA molecules. One obstacle to structural studies of the RecA filament has been that the ATPase results in a dynamical polymer containing a mixture of states with respect to the bound ATP and its hydrolytic products. We have formed filaments which are trapped in the ADP-Pi state by substituting AIF4- for the Pi, and have used these stable filaments to generate a three-dimensional reconstruction from electron micrographs. The resolution of the reconstruction is sufficient to resolve the 38-k RecA subunit into two nearly equal domains. This reconstruction provides the most detailed view yet of the RecA protein, and serves as a framework within which existing biochemical data on RecA can be understood. Images FIGURE 1 FIGURE 8 FIGURE 12 PMID:2137715

  19. Crystal Structure of Okadaic Acid Binding Protein 2.1: A Sponge Protein Implicated in Cytotoxin Accumulation.

    PubMed

    Ehara, Haruhiko; Makino, Marie; Kodama, Koichiro; Konoki, Keiichi; Ito, Takuhiro; Sekine, Shun-ichi; Fukuzawa, Seketsu; Yokoyama, Shigeyuki; Tachibana, Kazuo

    2015-07-01

    Okadaic acid (OA) is a marine polyether cytotoxin that was first isolated from the marine sponge Halichondria okadai. OA is a potent inhibitor of protein serine/threonine phosphatases (PP) 1 and 2A, and the structural basis of phosphatase inhibition has been well investigated. However, the role and mechanism of OA retention in the marine sponge have remained elusive. We have solved the crystal structure of okadaic acid binding protein 2.1 (OABP2.1) isolated from H. okadai; it has strong affinity for OA and limited sequence homology to other proteins. The structure revealed that OABP2.1 consists of two α-helical domains, with the OA molecule deeply buried inside the protein. In addition, the global fold of OABP2.1 was unexpectedly similar to that of aequorin, a jellyfish photoprotein. The presence of structural homologues suggested that, by using similar protein scaffolds, marine invertebrates have developed diverse survival systems adapted to their living environments.

  20. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization.

    PubMed

    Binas, B; Danneberg, H; McWhir, J; Mullins, L; Clark, A J

    1999-05-01

    Nonenzymatic cytosolic fatty acid binding proteins (FABPs) are abundantly expressed in many animal tissues with high rates of fatty acid metabolism. No physiological role has been demonstrated for any FABP, although these proteins have been implicated in transport of free long-chain fatty acids (LCFAs) and protection against LCFA toxicity. We report here that mice lacking heart-type FABP (H-FABP) exhibit a severe defect of peripheral (nonhepatic, non-fat) LCFA utilization. In these mice, the heart is unable to efficiently take up plasma LCFAs, which are normally its main fuel, and switches to glucose usage. Altered plasma levels of LCFAs, glucose, lactate and beta-hydroxybutyrate are consistent with depressed peripheral LCFA utilization, intensified carbohydrate usage, and increased hepatic LCFA oxidation; these changes are most pronounced under conditions favoring LCFA oxidation. H-FABP deficiency is only incompletely compensated, however, causing acute exercise intolerance and, at old age, a localized cardiac hypertrophy. These data establish a requirement for H-FABP in cardiac intracellular lipid transport and fuel selection and a major role in metabolic homeostasis. This new animal model should be particularly useful for investigating the significance of peripheral LCFA utilization for heart function, insulin sensitivity, and blood pressure.

  1. Beta-galactosidase and selective neutrality. [amino acid composition of proteins

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1979-01-01

    Three hypotheses to explain the amino acid composition of proteins are inconsistent (about 10 to the minus 9th) with the experimental data for beta-galactosidase from Escherichia coli. The exceptional length of this protein, 1021 residues, permits rigorous tests of these hypotheses without complication from statistical artifacts. Either this protein is not at compositional equilibrium, which is unlikely from knowledge about other proteins, or the evolution of this protein and its coding gene have not been selectively neutral. However, the composition of approximately 60% of the molecule is consistent with either a selectively neutral or nonneutral evolutionary process.

  2. Amino acid sequences of proteins from Leptospira serovar pomona.

    PubMed

    Alves, S F; Lefebvre, R B; Probert, W

    2000-01-01

    This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.

  3. Primary structures of three highly acidic ribosomal proteins S6, S12 and S15 from the archaebacterium Halobacterium marismortui.

    PubMed

    Kimura, J; Arndt, E; Kimura, M

    1987-11-16

    The amino acid sequences of three extremely acidic ribosomal proteins, S6, S12, and S15, from Halobacterium marismortui have been determined. The sequences were obtained by the sequence analysis of peptides derived by enzymatic digestion with trypsin. Stapylococcus aureus protease and chymotrypsin, as well as by cleavage with dilute HCl. The proteins, S6, S12 and S15, consist of 116, 147 and 102 amino acid residues, and have molecular masses of 12,251, 16,440 and 11,747 Da, respectively. Comparison of the amino acid sequences of these proteins with ribosomal protein sequences of other organisms revealed that halobacterial protein S12 has homology with the eukaryotic protein S16A from Saccharomyces cerevisiae, while S15 is significantly related to the Xenopus laevis S19 protein. No homology was found between these halobacterial proteins and any eubacterial ribosomal proteins.

  4. Quality consistency evaluation of Melissa officinalis L. commercial herbs by HPLC fingerprint and quantitation of selected phenolic acids.

    PubMed

    Arceusz, Agnieszka; Wesolowski, Marek

    2013-09-01

    To evaluate the quality consistency of commercial medicinal herbs, a simple and reliable HPLC method with UV-vis detector was developed, both for fingerprint analysis and quantitation of some pharmacologically active constituents (marker compounds). Melissa officinalis L. (lemon balm) was chosen for this study because it is widely used as an aromatic, culinary and medicine remedy. About fifty peaks were found in each chromatogram of a lemon balm extract, including twelve satisfactorily resolved characteristic peaks. A reference chromatographic fingerprint for the studied medicinal herb was calculated using Matlab 9.1 software as a result of analysing all the 19 lemon balm samples obtained from 12 Polish manufacturers. The similarity values and the results of principal component analysis revealed that all the samples were highly correlated with the reference fingerprint and could be accurately classified in relation to their quality consistency. Next, a quantitation of selected phenolic acids in the studied samples was performed. The results have shown that the levels of phenolic acids, i.e. gallic, chlorogenic, syringic, caffeic, ferulic and rosmarinic were as follows (mg/g of dry weight): 0.001-0.067, 0.010-0.333, 0.007-0.553, 0.047-0.705, 0.006-1.589 and 0.158-48.608, respectively. Statistical analysis indicated that rosmarinic acid occurs in M. officinalis at the highest level, whereas gallic acid in the lowest. A detailed inspection of these data has also revealed that reference chromatographic fingerprints combined with quantitation of pharmacologically active constituents of the plant could be used as an efficient strategy for monitoring of the lemon balm quality consistency. PMID:23770780

  5. Quality consistency evaluation of Melissa officinalis L. commercial herbs by HPLC fingerprint and quantitation of selected phenolic acids.

    PubMed

    Arceusz, Agnieszka; Wesolowski, Marek

    2013-09-01

    To evaluate the quality consistency of commercial medicinal herbs, a simple and reliable HPLC method with UV-vis detector was developed, both for fingerprint analysis and quantitation of some pharmacologically active constituents (marker compounds). Melissa officinalis L. (lemon balm) was chosen for this study because it is widely used as an aromatic, culinary and medicine remedy. About fifty peaks were found in each chromatogram of a lemon balm extract, including twelve satisfactorily resolved characteristic peaks. A reference chromatographic fingerprint for the studied medicinal herb was calculated using Matlab 9.1 software as a result of analysing all the 19 lemon balm samples obtained from 12 Polish manufacturers. The similarity values and the results of principal component analysis revealed that all the samples were highly correlated with the reference fingerprint and could be accurately classified in relation to their quality consistency. Next, a quantitation of selected phenolic acids in the studied samples was performed. The results have shown that the levels of phenolic acids, i.e. gallic, chlorogenic, syringic, caffeic, ferulic and rosmarinic were as follows (mg/g of dry weight): 0.001-0.067, 0.010-0.333, 0.007-0.553, 0.047-0.705, 0.006-1.589 and 0.158-48.608, respectively. Statistical analysis indicated that rosmarinic acid occurs in M. officinalis at the highest level, whereas gallic acid in the lowest. A detailed inspection of these data has also revealed that reference chromatographic fingerprints combined with quantitation of pharmacologically active constituents of the plant could be used as an efficient strategy for monitoring of the lemon balm quality consistency.

  6. Protein quality of supplements and meal replacements. Amino acids and calculated indicators of protein quality.

    PubMed

    Marable, N L; Hinners, M L; Hardison, N W; Kehrberg, N L

    1980-09-01

    The amino acid composition of several types of dietary supplements and meal replacements was measured and compared with label values when available and to published values for egg. Calculated indicators of protein quality, such as chemical score, protein calorie:total calorie ratio, individual essential amino acid:total essential amino acid ratio, and total essential amino acid:total amino acid ratio were also compared for products, egg, and the estimated pattern of adult requirements. Predigested liquid protein products were notably lower in protein quality than other products. All non-predigested products compared favorably with egg in terms of protein quality, but were more expensive and had no advantages over regular meals in terms of protein quality as reducing aids or protein supplements.

  7. Protein and amino acid metabolism and requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells of the body. Enzymes, membrane carriers, blood transport molecules, intracellular matrix, and even hair and fingernails are proteins, as are many hormones. Proteins also constitute a major portion of all membranes, and the cons...

  8. Phosphate acceptor amino acid residues in structural proteins of rhabdoviruses.

    PubMed

    Sokol, F; Tan, K B; McFalls, M L; Madore, P

    1974-07-01

    Partial acid hydrolysates of the [(32)P]phosphate- or [(3)H]serine-labeled proteins of purified vesicular stomatitis, rabies, Lagos bat, Mokola, or spring viremia of carp virions and of purified intracellular nucleocapsids of these viruses have been analyzed by paper electrophoresis for the presence of phosphorylated amino acids. Both phosphoserine and phosphothreonine, with the former predominant, were present in virion and nucleocapsid preparations that contained phosphoproteins. An exception was the fish rhabdovirus, which contained only phosphoserine. When vesicular stomatitis or rabies virus proteins were phosphorylated in a cell-free system by the virion-associated protein kinase and analyzed for the presence of phosphorylated amino acid residues, phosphoserine was again found to be more abundant than phosphothreonine. After in vitro protein phosphorylation, another phospho-compound, possibly a third phosphoamino acid, was detected in the partial acid hydrolysates of these viruses. PMID:4365328

  9. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-01-01

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample.

  10. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  11. Lipoteichoic acid-binding and biological properties of T protein of group A streptococcus.

    PubMed

    Johnson, R H; Simpson, W A; Dale, J B; Ofek, I; Beachey, E H

    1980-08-01

    T protein was extracted with trypsin from an avirulent, M protein-deficient, type 1 group A Streptococcus and purified by ammonium sulfate precipitation and anion-exchange chromatography. The latter procedure removed contaminating lipoteichoic acid (LTA) from the T protein, which consisted of a heterogeneous mixture of polypeptides resistant to digestion by trypsin and ranged in molecular size from 160,000 to 200,000 daltons. Threonine, aspartic acid, glutamic acid, lysine, and valine were the most predominant amino acids. The binding of LTA to an affinity column of T protein was reversible with increasing concentrations of ethanol but not with increasing ionic strength. T protein bound less palmitic acid and LTA than did fatty acid-free bovine albumin and did not stimulate human peripheral lymphocytes. Because the surface and cell wall distribution of the T proteins and LTA appear similar, the possibility exists that T proteins and LTA may interact in situ by weakly hydrophobic bonds. Such ligand-ligand interaction may be indirectly involved in the adherence of group A streptococci to host cell membranes that is known to be mediated by LTA.

  12. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  13. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  14. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  15. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    SciTech Connect

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-06-18

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.

  16. WXG100 Protein Superfamily Consists of Three Subfamilies and Exhibits an α-Helical C-Terminal Conserved Residue Pattern

    PubMed Central

    Poulsen, Christian; Panjikar, Santosh; Holton, Simon J.; Wilmanns, Matthias; Song, Young-Hwa

    2014-01-01

    Members of the WXG100 protein superfamily form homo- or heterodimeric complexes. The most studied proteins among them are the secreted T-cell antigens CFP-10 (10 kDa culture filtrate protein, EsxB) and ESAT-6 (6 kDa early secreted antigen target, EsxA) from Mycobacterium tuberculosis. They are encoded on an operon within a gene cluster, named as ESX-1, that encodes for the Type VII secretion system (T7SS). WXG100 proteins are secreted in a full-length form and it is known that they adopt a four-helix bundle structure. In the current work we discuss the evolutionary relationship between the homo- and heterodimeric WXG100 proteins, the basis of the oligomeric state and the key structural features of the conserved sequence pattern of WXG100 proteins. We performed an iterative bioinformatics analysis of the WXG100 protein superfamily and correlated this with the atomic structures of the representative WXG100 proteins. We find, firstly, that the WXG100 protein superfamily consists of three subfamilies: CFP-10-, ESAT-6- and sagEsxA-like proteins (EsxA proteins similar to that of Streptococcus agalactiae). Secondly, that the heterodimeric complexes probably evolved from a homodimeric precursor. Thirdly, that the genes of hetero-dimeric WXG100 proteins are always encoded in bi-cistronic operons and finally, by combining the sequence alignments with the X-ray data we identify a conserved C-terminal sequence pattern. The side chains of these conserved residues decorate the same side of the C-terminal α-helix and therefore form a distinct surface. Our results lead to a putatively extended T7SS secretion signal which combines two reported T7SS recognition characteristics: Firstly that the T7SS secretion signal is localized at the C-terminus of T7SS substrates and secondly that the conserved residues YxxxD/E are essential for T7SS activity. Furthermore, we propose that the specific α-helical surface formed by the conserved sequence pattern including YxxxD/E motif is a key

  17. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  18. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  19. Protein and amino acid metabolism in the human newborn.

    PubMed

    Kalhan, Satish C; Bier, Dennis M

    2008-01-01

    Birth and adaptation to extrauterine life involve major shifts in the protein and energy metabolism of the human newborn. These include a shift from a state of continuous supply of nutrients including amino acids from the mother to cyclic periodic oral intake, a change in the redox state of organs, thermogenesis, and a significant change in the mobilization and use of oxidative substrates. The development of safe, stable isotopic tracer methods has allowed the study of protein and amino acid metabolism not only in the healthy newborn but also in those born prematurely and of low birth weight. These studies have identified the unique and quantitative aspects of amino acid/protein metabolism in the neonate, thus contributing to rational nutritional care of these babies. The present review summarizes the contemporary data on some of the significant developments in essential and dispensable amino acids and their relationship to overall protein metabolism. Specifically, the recent data of kinetics of leucine, phenylalanine, glutamine, sulfur amino acid, and threonine and their relation to whole-body protein turnover are presented. Finally, the physiological rationale and the impact of nutrient (amino acids) interventions on the dynamics of protein metabolism are discussed.

  20. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used. PMID:6490659

  1. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  2. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads.

    PubMed

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-07-03

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory's isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method.

  3. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  4. Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction.

    PubMed

    Ortwerth, B J; Olesen, P R

    1988-08-31

    The incubation of calf lens extracts with 20 mM ascorbic acid under sterile conditions for 8 weeks caused extensive protein crosslinking, which was not observed with either 20 mM sorbitol or 20 mM glucose. While no precipitation was observed, ascorbic acid did induce the formation of high-molecular-weight protein aggregates as determined by Agarose A-5m chromatography. Proteins modified by ascorbic acid bound strongly to a boronate affinity column, however, crosslinked proteins were present mainly in the unbound fraction. These observations suggest that the cis-diol groups of ascorbic acid were present in the primary adduct, but were either lost during the crosslinking reaction or sterically hindered from binding to the column matrix. The amino acid composition of the ascorbic acid-modified proteins was identical to controls except for a 15% decrease in lysine. Amino acid analysis after borohydride reduction, however, showed a 25% decrease in lysine, a 7% decrease in arginine and an additional peak which eluted between phenylalanine and histidine. Extensive browning occurred during the ascorbic acid-modification reaction. This resulted in protein-bound chromophores with a broad absorption spectrum from 300 to 400 nm, and protein-bound fluorophores with excitation/emission maxima of 350/450 nm. A 4 week incubation of dialyzed crude lens extract with [1-14C]ascorbic acid showed increased incorporation for 2 weeks, followed by a decrease over the next 2 weeks as crosslinking was initiated. The addition of cyanoborohydride to the reaction mixture completely inhibited crosslinking and increased [1-14C]ascorbic acid incorporation to a plateau value of 180 nmol per mg protein. Amino acid analysis showed a 50% loss of lysine, and 8% decrease in arginine and the presence of a new peak which eluted slightly earlier than methionine. These data are consistent with the non-enzymatic glycation of lens proteins by either ascorbic acid or an oxidation product of ascorbic acid via

  5. Conformational Changes in the Hepatitis B Virus Core Protein Are Consistent with a Role for Allostery in Virus Assembly

    SciTech Connect

    Packianathan, Charles; Katen, Sarah P.; Dann, III, Charles E.; Zlotnick, Adam

    2010-01-12

    In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of the hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of some antibodies and the activities of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses.

  6. Nasopharyngeal carcinomas frequently lack the p16/MTS1 tumor suppressor protein but consistently express the retinoblastoma gene product.

    PubMed Central

    Gulley, M. L.; Nicholls, J. M.; Schneider, B. G.; Amin, M. B.; Ro, J. Y.; Geradts, J.

    1998-01-01

    The p16/MTS1 gene is altered by deletion, mutation, or hypermethylation in a wide variety of human cancers. As a result of deficient p16 protein, these cancers lack a critical mechanism for halting G1/S cell cycle progression. In the current study, 59 cases of nasopharyngeal carcinoma were evaluated for expression of the p16 tumor suppressor protein by immunohistochemical analysis of paraffin-embedded tissue. There was no detectable p16 in 38/59 cases (64%), which implies a very high rate of p16 inactivation in this type of cancer. On the other hand, the retinoblastoma gene product, which also regulates the G1 to S phase transition of the cell cycle, was consistently expressed in nasopharyngeal carcinomas by immunohistochemical analysis. These results implicate p16 inactivation but not Rb alteration in the stepwise progression of nasopharyngeal carcinogenesis. Images Figure 1 Figure 2 PMID:9546345

  7. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and

  8. Predicting protein disorder by analyzing amino acid sequence

    PubMed Central

    Yang, Jack Y; Yang, Mary Qu

    2008-01-01

    Background Many protein regions and some entire proteins have no definite tertiary structure, presenting instead as dynamic, disorder ensembles under different physiochemical circumstances. These proteins and regions are known as Intrinsically Unstructured Proteins (IUP). IUP have been associated with a wide range of protein functions, along with roles in diseases characterized by protein misfolding and aggregation. Results Identifying IUP is important task in structural and functional genomics. We exact useful features from sequences and develop machine learning algorithms for the above task. We compare our IUP predictor with PONDRs (mainly neural-network-based predictors), disEMBL (also based on neural networks) and Globplot (based on disorder propensity). Conclusion We find that augmenting features derived from physiochemical properties of amino acids (such as hydrophobicity, complexity etc.) and using ensemble method proved beneficial. The IUP predictor is a viable alternative software tool for identifying IUP protein regions and proteins. PMID:18831799

  9. Molecular Evolution Directs Protein Translation Using Unnatural Amino Acids.

    PubMed

    Cox, Vanessa E; Gaucher, Eric A

    2015-12-02

    Unnatural amino acids have in recent years established their importance in a wide range of fields, from pharmaceuticals to polymer science. Unnatural amino acids can increase the number of chemical groups within proteins and thus expand or enhance biological function. Our ability to utilize these important building blocks, however, has been limited by the inherent difficulty in incorporating these molecules into proteins. To address this challenge, researchers have examined how the canonical twenty amino acids are incorporated, regulated, and modified in nature. This review focuses on achievements and techniques used to engineer the ribosomal protein-translation machinery, including the introduction of orthogonal translation components, how directed evolution enhances the incorporation of unnatural amino acids, and the potential utility of ancient biomolecules for this process.

  10. Chemical approaches to detect and analyze protein sulfenic acids

    PubMed Central

    Furdui, Cristina M.; Poole, Leslie B.

    2013-01-01

    Orchestration of many processes relying on intracellular signal transduction is recognized to require the generation of hydrogen peroxide as a second messenger, yet relatively few molecular details of how this oxidant acts to regulate protein function are currently understood. This review describes emerging chemical tools and approaches that can be applied to study protein oxidation in biological systems, with a particular emphasis on a key player in protein redox regulation, cysteine sulfenic acid. While sulfenic acids (within purified proteins or simple mixtures) are detectable by physical approaches like X-ray crystallography, nuclear magnetic resonance and mass spectrometry, the propensity of these moieties to undergo further modification in complex biological systems has necessitated the development of chemical probes, reporter groups and analytical approaches to allow for their selective detection and quantification. Provided is an overview of techniques that are currently available for the study of sulfenic acids, and some of the biologically meaningful data that have been collected using such approaches. PMID:24105931

  11. Chemical approaches to detect and analyze protein sulfenic acids.

    PubMed

    Furdui, Cristina M; Poole, Leslie B

    2014-01-01

    Orchestration of many processes relying on intracellular signal transduction is recognized to require the generation of hydrogen peroxide as a second messenger, yet relatively few molecular details of how this oxidant acts to regulate protein function are currently understood. This review describes emerging chemical tools and approaches that can be applied to study protein oxidation in biological systems, with a particular emphasis on a key player in protein redox regulation, cysteine sulfenic acid. While sulfenic acids (within purified proteins or simple mixtures) are detectable by physical approaches like X-ray crystallography, nuclear magnetic resonance and mass spectrometry, the propensity of these moieties to undergo further modification in complex biological systems has necessitated the development of chemical probes, reporter groups and analytical approaches to allow for their selective detection and quantification. Provided is an overview of techniques that are currently available for the study of sulfenic acids, and some of the biologically meaningful data that have been collected using such approaches.

  12. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    PubMed

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  13. Influence of Polyphosphoric Acid on the Consistency and Composition of Formulated Bitumen: Standard Characterization and NMR Insights.

    PubMed

    Varanda, Catarina; Portugal, Inês; Ribeiro, Jorge; Silva, Artur M S; Silva, Carlos M

    2016-01-01

    Over the recent years, bitumen modification with polymers, acids, or mineral fillers has gained relevance to adjust its performance properties. This work reports the use of polyphosphoric acid (PPA) for the modification of formulated bitumen. With this objective, an in-depth literature review on PPA modification was firstly performed. Subsequently, five individual refinery components were selected for the preparation of bitumen blends, namely, asphaltic residue, vacuum residue, and three lube oils extracts. Seven binary/ternary bitumen blends were prepared and then treated with PPA. Afterwards, the five components and the unmodified and PPA-modified bitumen were characterized by standard methods (penetration, softening point, and penetration index), SARA analysis, elemental analysis, and (31)P and (1)H nuclear magnetic resonance (NMR) spectroscopy. The results evidenced higher asphaltenes and lower saturates/resins contents in PPA-modified bitumen. The NMR data suggest that the paraffinic chains became longer, the content of condensed aromatics increased, more substituted aromatic structures appeared, and α-hydrogen in aromatic structures diminished. These findings disclosed the improved consistency and oxidation stability of PPA-modified bitumen blends. PMID:27579214

  14. Influence of Polyphosphoric Acid on the Consistency and Composition of Formulated Bitumen: Standard Characterization and NMR Insights.

    PubMed

    Varanda, Catarina; Portugal, Inês; Ribeiro, Jorge; Silva, Artur M S; Silva, Carlos M

    2016-01-01

    Over the recent years, bitumen modification with polymers, acids, or mineral fillers has gained relevance to adjust its performance properties. This work reports the use of polyphosphoric acid (PPA) for the modification of formulated bitumen. With this objective, an in-depth literature review on PPA modification was firstly performed. Subsequently, five individual refinery components were selected for the preparation of bitumen blends, namely, asphaltic residue, vacuum residue, and three lube oils extracts. Seven binary/ternary bitumen blends were prepared and then treated with PPA. Afterwards, the five components and the unmodified and PPA-modified bitumen were characterized by standard methods (penetration, softening point, and penetration index), SARA analysis, elemental analysis, and (31)P and (1)H nuclear magnetic resonance (NMR) spectroscopy. The results evidenced higher asphaltenes and lower saturates/resins contents in PPA-modified bitumen. The NMR data suggest that the paraffinic chains became longer, the content of condensed aromatics increased, more substituted aromatic structures appeared, and α-hydrogen in aromatic structures diminished. These findings disclosed the improved consistency and oxidation stability of PPA-modified bitumen blends.

  15. Improved consistency in DNPH-mediated pyruvic acid analysis of onion juice by modifying the sample processing order.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S

    2011-01-01

    Onion pungency is commonly measured on absorbency of the wine pink color that results from adding NaOH to the heated mixture of dinitrophenylhydrazine (DNPH) and onion juice. However, significant variation exists among several modifications of the original Schwimmer and Weston (SW) method. We observed differences in pyruvic acid concentrations of 20%-30% between our automated method and a batch method with manual absorbency readings. To determine the source of the differences, we examined the heating time and waiting time of the sample-DNPH mixtures and found no differences. The differences were caused by differential color degradation between the pyruvic acid standards and onion juice samples. These differences could be minimized by reading the absorbency within 1 min of NaOH addition. Using this information, we devised the one-by-one method to control the reading time at 30 s. We compared 5 different analysis methods of 40 onion samples representing 4 onion colors. The automated, high-performance liquid chromatography, and SW methods had similar results, with only about a 5% difference. However, the batch method resulted in differences of approximately 24% as compared to the automated method. The one-by-one method produced very comparable results, within 5%, to the automated method. By modifying the procedure to ensure a uniform and fast reading time, we increased the consistency between the pungency analysis methods. Therefore, fast and uniform absorbency reading time is essential for an accurate measurement of pungency in undiluted onion juice.

  16. Influence of Polyphosphoric Acid on the Consistency and Composition of Formulated Bitumen: Standard Characterization and NMR Insights

    PubMed Central

    Varanda, Catarina; Ribeiro, Jorge

    2016-01-01

    Over the recent years, bitumen modification with polymers, acids, or mineral fillers has gained relevance to adjust its performance properties. This work reports the use of polyphosphoric acid (PPA) for the modification of formulated bitumen. With this objective, an in-depth literature review on PPA modification was firstly performed. Subsequently, five individual refinery components were selected for the preparation of bitumen blends, namely, asphaltic residue, vacuum residue, and three lube oils extracts. Seven binary/ternary bitumen blends were prepared and then treated with PPA. Afterwards, the five components and the unmodified and PPA-modified bitumen were characterized by standard methods (penetration, softening point, and penetration index), SARA analysis, elemental analysis, and 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. The results evidenced higher asphaltenes and lower saturates/resins contents in PPA-modified bitumen. The NMR data suggest that the paraffinic chains became longer, the content of condensed aromatics increased, more substituted aromatic structures appeared, and α-hydrogen in aromatic structures diminished. These findings disclosed the improved consistency and oxidation stability of PPA-modified bitumen blends. PMID:27579214

  17. Nucleic acid compositions and the encoding proteins

    SciTech Connect

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  18. Mapping protein and nucleic acid structure

    NASA Astrophysics Data System (ADS)

    Bednyakov, I. V.; Zrelov, P. V.; Ivanov, V. V.; Polozov, R. V.; Sivozhelezov, V. S.; Stepanenko, V. A.; Chirgadze, Yu. N.

    2013-09-01

    Methods and algorithms to analyze surfaces of globular and fibrillar proteins, DNA, and RNA have been developed. These methods for the construction of maps of fragments of these objects in the original cylindrical projection developed herein essentially broaden the possibilities for studying the distribution of charges and surface topography of biological structures. This approach significantly supplements the qualitative characteristics of methods of visualizing biopolymer structures.

  19. Generation and characterization of a recombinant chimeric protein (rCpLi) consisting of B-cell epitopes of a dermonecrotic protein from Loxosceles intermedia spider venom.

    PubMed

    Mendes, T M; Oliveira, D; Figueiredo, L F M; Machado-de-Avila, R A; Duarte, C G; Dias-Lopes, C; Guimarães, G; Felicori, L; Minozzo, J C; Chávez-Olortegui, C

    2013-06-01

    A chimeric protein was constructed expressing three epitopes of LiD1, a dermonecrotic toxin from the venom of Loxosceles intermedia spider. This species is responsible for a large number of accidents involving spiders in Brazil. We demonstrated that the chimeric protein (rCpLi) generated is atoxic and that antibodies previously developed in rabbits against synthetic epitopes reactive with rCpLi in ELISA and immunoblot assays. The antibody response in rabbits against the rCpLi was evaluated by ELISA and we have detected an antibody response in all immunized animals. Overlapping peptides covering the amino acid sequence of the rCpLi were synthesized on a cellulose membrane, and their recognition by rabbit anti-rCpLi serum assessed. Three different antigenic regions were identified. The percentage of inhibition of the dermonecrotic, hemorrhagic and edematogenic activities caused by the recombinant protein LiD1r in naïve rabbits was assessed by pre-incubation with anti-rCpLi antibodies. Anti-rCpLi induced good dermonecrotic and hemorrhagic protection. The levels of protection were similar to the antiboides anti-LiD1r. In summary, we have developed a polyepitope recombinant chimeric protein capable of inducing multiple responses of neutralizing antibodies in a rabbit model. This engineered protein may be a promising candidate for therapeutic serum development or vaccination.

  20. Review: the liver bile acid-binding proteins.

    PubMed

    Monaco, Hugo L

    2009-12-01

    The liver bile acid-binding proteins, L-BABPs, formerly called the liver "basic" fatty acid-binding proteins, are a subfamily of the fatty acid-binding proteins, FABPs. All the members of this protein group share the same fold: a 10 stranded beta barrel in which two short helices are inserted in between the first and the second strand of antiparallel beta sheet. The barrel encloses the ligand binding cavity of the protein while the two helices are believed to be involved in ligand accessibility to the binding site. The L-BABP subfamily has been found to be present in the liver of several vertebrates: fish, amphibians, reptiles, and birds but not in mammals. The members of the FABP family present in mammals that appear to be more closely related to the L-BABPs are the liver FABPs and the ileal BABPs, both very extensively studied. Several L-BABP X-ray structures are available and chicken L-BABP has also been studied using NMR spectroscopy. The stoichiometry of ligand binding for bile acids, first determined by X-ray crystallography for the chicken liver protein, is of two cholates per protein molecule with the only exception of zebrafish L-BABP which, due to the presence of a disulfide bridge, has a stoichiometry of 1:1. The stoichiometry of ligand binding for fatty acids, determined with several different techniques, is 1:1. An unanswered question of great relevance is the identity of the protein that in mammals performs the function that in other vertebrates is carried out by the L-BABPS.

  1. An information-theoretic classification of amino acids for the assessment of interfaces in protein-protein docking.

    PubMed

    Jardin, Christophe; Stefani, Arno G; Eberhardt, Martin; Huber, Johannes B; Sticht, Heinrich

    2013-09-01

    Docking represents a versatile and powerful method to predict the geometry of protein-protein complexes. However, despite significant methodical advances, the identification of good docking solutions among a large number of false solutions still remains a difficult task. We have previously demonstrated that the formalism of mutual information (MI) from information theory can be adapted to protein docking, and we have now extended this approach to enhance its robustness and applicability. A large dataset consisting of 22,934 docking decoys derived from 203 different protein-protein complexes was used for an MI-based optimization of reduced amino acid alphabets representing the protein-protein interfaces. This optimization relied on a clustering analysis that allows one to estimate the mutual information of whole amino acid alphabets by considering all structural features simultaneously, rather than by treating them individually. This clustering approach is fast and can be applied in a similar fashion to the generation of reduced alphabets for other biological problems like fold recognition, sequence data mining, or secondary structure prediction. The reduced alphabets derived from the present work were converted into a scoring function for the evaluation of docking solutions, which is available for public use via the web service score-MI: http://score-MI.biochem.uni-erlangen.de.

  2. [Fractional and amino acid composition of krill proteins and the potential for obtaining protein preparations].

    PubMed

    Orlova, T A; Churina, E E; Kuranova, L K

    1985-01-01

    Studies of the fractional composition of krill proteins demonstrated that the content of protein fractions changes depending on the time of krill catch. The highest amount of water-soluble proteins is contained by krill caught in December (64%), of salt-soluble by krill caught in June (12%), base-soluble by krill caught in May, September and February (34%). Krill protein contains from 50 to 60% of water- and salt-soluble fractions. Analysis of the amino acid composition of krill proteins showed that it does not differ essentially from that of adequate food proteins.

  3. Proteins, Peptides and Amino Acids: Role in Infant Nutrition.

    PubMed

    Nutten, Sophie

    2016-01-01

    Proteins are polymers composed of 30 or more amino acids; some of them are essential dietary components, since they are not synthetized by human metabolic processes. They are crucial for healthy growth and development and influence major functions of the body. The infant's first year is a critical time of rapid growth and development, which must be supported by a high rate of protein synthesis. Breast milk, as a single specific food source in the first months of life, is providing the total protein and essential amino acids required. Infant formulas have been designed for infants who cannot be breastfed. They should be similar to breast milk in their composition and their functional outcomes, insuring appropriate growth, optimal development, maturation of the immune system, easy digestion and healthy metabolic programming. By modifying their protein components, specific infant formulas have also been developed for specific needs. For example, partially hydrolyzed (prevention of atopic dermatitis) and extensively hydrolyzed or amino-acid-based infant formulas (reduction in allergy symptoms) have been designed for the management of cow's milk protein allergy. In conclusion, proteins provided via breast milk or infant formula are essential components of the infant's diet; therefore, the specific quality, quantity and conformation of proteins are of utmost importance for healthy growth and development. PMID:27336588

  4. Proteins, Peptides and Amino Acids: Role in Infant Nutrition.

    PubMed

    Nutten, Sophie

    2016-01-01

    Proteins are polymers composed of 30 or more amino acids; some of them are essential dietary components, since they are not synthetized by human metabolic processes. They are crucial for healthy growth and development and influence major functions of the body. The infant's first year is a critical time of rapid growth and development, which must be supported by a high rate of protein synthesis. Breast milk, as a single specific food source in the first months of life, is providing the total protein and essential amino acids required. Infant formulas have been designed for infants who cannot be breastfed. They should be similar to breast milk in their composition and their functional outcomes, insuring appropriate growth, optimal development, maturation of the immune system, easy digestion and healthy metabolic programming. By modifying their protein components, specific infant formulas have also been developed for specific needs. For example, partially hydrolyzed (prevention of atopic dermatitis) and extensively hydrolyzed or amino-acid-based infant formulas (reduction in allergy symptoms) have been designed for the management of cow's milk protein allergy. In conclusion, proteins provided via breast milk or infant formula are essential components of the infant's diet; therefore, the specific quality, quantity and conformation of proteins are of utmost importance for healthy growth and development.

  5. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    PubMed Central

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states. PMID:25004958

  6. A general method of protein purification for recombinant unstructured non-acidic proteins.

    PubMed

    Campos, Francisco; Guillén, Gabriel; Reyes, José L; Covarrubias, Alejandra A

    2011-11-01

    Typical late embryogenesis abundant (LEA) proteins accumulate in response to water deficit imposed by the environment or by plant developmental programs. Because of their physicochemical properties, they can be considered as hydrophilins and as a paradigm of intrinsically unstructured proteins (IUPs) in plants. To study their biophysical and biochemical characteristics large quantities of highly purified protein are required. In this work, we report a fast and simple purification method for non-acidic recombinant LEA proteins that does not need the addition of tags and that preserves their in vitro protective activity. The method is based on the enrichment of the protein of interest by boiling the bacterial protein extract, followed by a differential precipitation with trichloroacetic acid (TCA). Using this procedure we have obtained highly pure recombinant LEA proteins of groups 1, 3, and 4 and one recombinant bacterial hydrophilin. This protocol will facilitate the purification of this type of IUPs, and could be particularly useful in proteomic projects/analyses.

  7. Expression and purification of a chimeric protein consisting of the ectodomains of M and GP5 proteins of porcine reproductive and respiratory syndrome virus (PRRSV).

    PubMed

    Hu, Jianzhong; Ni, Yanyan; Meng, X J; Zhang, Chenming

    2012-12-12

    Porcine reproductive and respiratory syndrome (PRRS) is the most economically important infectious disease currently affecting the swine industry worldwide. In the US alone, it causes economic losses of more than 560 million dollars every year. Although killed-virus and modified-live PRRS vaccines are commercially available, the unsatisfactory efficacy and safety of current vaccines drives the impetus of developing novel PRRSV vaccines. To fulfill this purpose, we designed a chimeric protein consisting of the ectodomains of viral GP5 and M protein, the two most widely studied subunit vaccine targets, and expressed it in E. coli. An optimized purification/refolding process composed of immobilized metal ion affinity chromatography, dialysis refolding and anion exchange chromatography was developed to purify the chimeric protein from the inclusion bodies. This process could recover approximately 12mgprotein/l E. coli broth with near 100% purity and very low endotoxin level. In addition, the purified protein is antigenic, can bind to a cellular receptor for the virus (heparan sulfate), and can block virus infection of susceptible cells. Therefore, the chimeric protein is a promising subunit vaccine candidate against PRRSV.

  8. A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells.

    PubMed

    Pelttari, J; Hoja, M R; Yuan, L; Liu, J G; Brundell, E; Moens, P; Santucci-Darmanin, S; Jessberger, R; Barbero, J L; Heyting, C; Höög, C

    2001-08-01

    The behavior of meiotic chromosomes differs in several respects from that of their mitotic counterparts, resulting in the generation of genetically distinct haploid cells. This has been attributed in part to a meiosis-specific chromatin-associated protein structure, the synaptonemal complex. This complex consist of two parallel axial elements, each one associated with a pair of sister chromatids, and a transverse filament located between the synapsed homologous chromosomes. Recently, a different protein structure, the cohesin complex, was shown to be associated with meiotic chromosomes and to be required for chromosome segregation. To explore the functions of the two different protein structures, the synaptonemal complex and the cohesin complex, in mammalian male meiotic cells, we have analyzed how absence of the axial element affects early meiotic chromosome behavior. We find that the synaptonemal complex protein 3 (SCP3) is a main determinant of axial-element assembly and is required for attachment of this structure to meiotic chromosomes, whereas SCP2 helps shape the in vivo structure of the axial element. We also show that formation of a cohesin-containing chromosomal core in meiotic nuclei does not require SCP3 or SCP2. Our results also suggest that the cohesin core recruits recombination proteins and promotes synapsis between homologous chromosomes in the absence of an axial element. A model for early meiotic chromosome pairing and synapsis is proposed. PMID:11463847

  9. Acidic Shell Proteins of the Mediterranean Fan Mussel Pinna nobilis.

    PubMed

    Marin, Frédéric; Narayanappa, Prabakaran; Motreuil, Sébastien

    2011-01-01

    In molluscs, the shell secretion process is controlled by a set of extracellular macromolecules collectively called the shell matrix. The shell matrix, which is produced by the mantle epithelial cells during mineralization, is predominantly composed of proteins, glycoproteins, acidic polysaccharides, and chitin that precisely regulate the deposition of calcium carbonate outside the mantle cells. In the present paper, we focus on the shell of Pinna nobilis, the giant Mediterranean fan mussel, usually considered as a model for studying molluscan biomineralization processes. P. nobilis exhibits indeed a nacro-prismatic shell, the outer layer of which is constituted of the so-called "regular simple calcitic prisms," according to Carter and Clark (1985). We review here the microstructural characteristics of the prisms and nacre and the biochemical properties of their associated matrices. In particular, the calcitic prisms of P. nobilis are characterized by a cortege of unusually acidic intraprismatic proteins, while the ones of the nacreous layer seem less acidic. A brief description of the molecular characterization of three acidic proteins, caspartin, calprismin and mucoperlin, is given. In particular, we show that extremely acidic intracrystalline proteins such as caspartin interact with calcium carbonate at different scales, from micrometric to crystal lattice levels.

  10. Analysis of single nucleic acid molecules with protein nanopores

    PubMed Central

    Maglia, Giovanni; Heron, Andrew J.; Stoddart, David; Japrung, Deanpen; Bayley, Hagan

    2011-01-01

    We describe the methods used in our laboratory for the analysis of single nucleic acid molecules with protein nanopores. The technical section is preceded by a review of the variety of experiments that can be done with protein nanopores. The end goal of much of this work is single-molecule DNA sequencing, although sequencing is not discussed explicitly here. The technical section covers the equipment required for nucleic acid analysis, the preparation and storage of the necessary materials, and aspects of signal processing and data analysis. PMID:20627172

  11. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress.

  12. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry.

    PubMed

    Hilbert, Manuel; Erat, Michèle C; Hachet, Virginie; Guichard, Paul; Blank, Iris D; Flückiger, Isabelle; Slater, Leanne; Lowe, Edward D; Hatzopoulos, Georgios N; Steinmetz, Michel O; Gönczy, Pierre; Vakonakis, Ioannis

    2013-07-01

    Centrioles are evolutionary conserved organelles that give rise to cilia and flagella as well as centrosomes. Centrioles display a characteristic ninefold symmetry imposed by the spindle assembly abnormal protein 6 (SAS-6) family. SAS-6 from Chlamydomonas reinhardtii and Danio rerio was shown to form ninefold symmetric, ring-shaped oligomers in vitro that were similar to the cartwheels observed in vivo during early steps of centriole assembly in most species. Here, we report crystallographic and EM analyses showing that, instead, Caenorhabotis elegans SAS-6 self-assembles into a spiral arrangement. Remarkably, we find that this spiral arrangement is also consistent with ninefold symmetry, suggesting that two distinct SAS-6 oligomerization architectures can direct the same output symmetry. Sequence analysis suggests that SAS-6 spirals are restricted to specific nematodes. This oligomeric arrangement may provide a structural basis for the presence of a central tube instead of a cartwheel during centriole assembly in these species.

  13. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  14. The interaction of amino acids, peptides, and proteins with DNA.

    PubMed

    Solovyev, Andrey Y; Tarnovskaya, Svetlana I; Chernova, Irina A; Shataeva, Larisa K; Skorik, Yury A

    2015-01-01

    Amino acids that carry charges on their side groups can bind to double stranded DNA (dsDNA) and change the strength of the double helix. Measurement of the DNA melting temperature (Tm) confirmed that acidic amino acids (Glu, Asp) weaken the H-bonds between DNA strands, whereas basic amino acids (Arg, Lys) strengthen the interaction between the strands. A rank correlation exists between the amino acid isoelectric points and the observed changes in Tm. A similar dependence of the hyperchromic effect on the isoelectric point of a protein (pepsin, insulin, cortexin, and protamine) was observed for DNA-protein complexes at room temperature. Short peptides (KE, AEDG, and KEDP) containing a mixture of acidic and basic amino acid residues also affect Tm and the stability of the double helix. A model for binding Glu and Lys to dsDNA was explored by a docking simulation. The model shows that Glu, in an untwisted shape, binds to dsDNA in its major groove and disrupts three H-bonds between the strands, thereby destabilizing the double helix. Lys, in an untwisted shape, binds to the external side of the dsDNA and forms two bonds with O atoms of neighboring phosphodiester groups, thereby strengthening the DNA helix.

  15. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    PubMed

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145492

  16. Model of β-Sheet of Muscle Fatty Acid Binding Protein of Locusta migratoria Displays Characteristic Topology

    PubMed Central

    Kizilbash, Nadeem A; Hai, Abdul; Alruwaili, Jamal

    2013-01-01

    The β-sheet of muscle fatty acid binding protein of Locusta migratoria (Lm-FABP) was modeled by employing 2-D NMR data and the Rigid Body Assembly method. The model shows the β-sheet to comprise ten β-strands arranged anti-parallel to each other. There is a β-bulge between Ser 13 and Gln 14 which is a difference from the published structure of β-sheet of bovine heart Fatty Acid Binding Protein. Also, a hydrophobic patch consisting of Ile 45, Phe 51, Phe 64 and Phe 66 is present on the surface which is characteristic of most Fatty Acid Binding Proteins. A “gap” is present between βD and βE that provides evidence for the presence of a portal or opening between the polypeptide chains which allows ligand fatty acids to enter the protein cavity and bind to the protein. PMID:24497726

  17. Minimum protein intake for the preterm neonate determined by protein and amino acid kinetics.

    PubMed

    Zello, Gordon A; Menendez, Cesar E; Rafii, Mahroukh; Clarke, Ruth; Wykes, Linda J; Ball, Ronald O; Pencharz, Paul B

    2003-02-01

    Lower limits of protein needs in prematurely born neonates have not been adequately studied, yet providing protein in amounts maximizing accretion without excess is a goal in these infants' nutritional care. We hypothesized that with the use of amino acid oxidation methodology, it would be possible to define minimum protein requirement. Our objective was to investigate protein kinetics during short-term changes in protein intake by measurement of nitrogen balance and amino acid flux and oxidation using [(15)N]glycine, [(13)C]phenylalanine, and [(13)C]leucine tracers. Protein kinetics were examined in 21 preterm infants (gestational age: 29 +/- 3 wk; birth weight: 1091 +/- 324 g) at five protein intakes (1.0, 1.5, 2.0, 2.5, and 3.0 g x kg(-1) x d(-1)) with 1 d of adaptation to the test intakes. From nitrogen balance data, a protein need of 0.74 g x kg(-1 x -1) was estimated to achieve zero balance. For all three amino acids, flux and oxidation estimates were not different across protein intakes. Whole-body protein synthesis and breakdown estimates from [(15)N]ammonia data were 14.6 +/- 3.4 and 14.4 +/- 4.1 g x kg(-1) x d(-1), respectively. Glycine flux (680 +/- 168 micromol x kg(-1) x h(-1)) was greater than leucine flux (323 +/- 115 micromol x kg(-1) x h(-1)), which was greater than phenylalanine flux (84.3 +/- 35.2 micromol x kg(-1) x h(-1)). Leucine oxidation (36.7 +/- 15.6 micromol x kg(-1) x h(-1)) was also greater than phenylalanine oxidation (6.64 +/- 4.41 micromol x kg(-1) x h(-1)). Infants in our study were able to adapt to short-term changes in protein intake with little consequence to the overall whole-body protein economy, as measured by the three test amino acids.

  18. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes.

    PubMed

    Xu, Y J; Yau, L; Yu, L P; Elimban, V; Zahradka, P; Dhalla, N S

    1996-12-13

    Phosphatidic acid (PA) was observed to stimulate protein synthesis in adult cardiomyocytes in a time- and concentration-dependent manner. The maximal stimulation in protein synthesis (142 +/- 12% vs 100% as the control) was achieved at 10 microM PA within 60 min and was inhibited by actinomycin D (107 +/- 4% of the control) or cycloheximide (105 +/- 6% of the control). The increase in protein synthesis due to PA was attenuated or abolished by preincubation of cardiomyocytes with a tyrosine kinase inhibitor, genistein (94 +/- 9% of the control), phospholipase C inhibitors 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate or carbon-odithioic acid O-(octahydro-4,7-methanol-1H-inden-5-yl (101 +/- 6 and 95 +/- 5% of the control, respectively), protein kinase C inhibitors staurosporine or polymyxin B (109 +/- 3 and 93 +/- 3% of the control), and chelators of extracellular and intracellular free Ca2+ EGTA or BAPTA/AM (103 +/- 6 and 95 +/- 6% of the control, respectively). PA at different concentrations (0.1 to 100 microM) also caused phosphorylation of a cell surface protein of approximately 24 kDa. In addition, mitogen-activated protein kinase was stimulated by PA in a concentration-dependent manner; maximal stimulation (217 +/- 6% of the control) was seen at 10 microM PA. These data suggest that PA increases protein synthesis in adult rat cardiomyocytes and thus may play an important role in the development of cardiac hypertrophy.

  19. Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: Biological implications

    PubMed Central

    Wu, Tiyun; Datta, Siddhartha A.K.; Mitra, Mithun; Gorelick, Robert J.; Rein, Alan; Levin, Judith G.

    2010-01-01

    The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with “nucleic acid-driven multimerization” of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template (“roadblock” mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems. PMID:20655566

  20. [Photochemistry and UV Spectroscopy of Proteins and Nucleic Acids].

    PubMed

    Wierzchowski, Kazimierz Lech

    2015-01-01

    The article presents a short history of David Shugar studies in the field of photochemistry and UV spectroscopy of proteins and nucleic acids, carried out since the late 1940s. to the beginning of the 1970s. of the 20th century, with some references to the state of related research in those days.

  1. Role of fatty acid binding protein on hepatic palmitate uptake.

    PubMed

    Burczynski, F J; Zhang, M N; Pavletic, P; Wang, G Q

    1997-12-01

    Expression of hepatic fatty acid binding protein (FABP) mRNA is regulated by growth hormone. In the absence of growth hormone, there is a 60% reduction in FABP mRNA levels (S.A. Berry, J.-B Yoon, U. List, and S. Seelig. J. Am. Coll. Nutr. 12:638-642. 1995). Previous work in our laboratory focused on the role of extracellular binding proteins in the hepatic uptake of long chain fatty acids. In the present study we were interested to determine the role of FABP in the transmembrane flux of long chain fatty acids. Using hepatocyte monolayers from control (n = 9) and hypophysectomized (n = 6) rats, we investigated the uptake of [3H]palmitate in the presence and absence of albumin. In the absence of albumin, total hepatocyte [3H]palmitate clearance rates from control (17.2 +/- 1.5 microL.mg-1 protein.s-1; mean +/- SEM; n = 9) and hypophysectomized (15.5 +/- 2.1 microL.mg-1 protein.s-1; n = 6) animals were similar (p > 0.05). In the presence of 2 microM albumin the total [3H]palmitate clearance rate from control hepatocytes (1.63 +/- 0.11 microL.mg-1 protein.s-1; n = 9) was significantly larger (40%) than from hepatocytes obtained from hypophysectomized (0.97 +/- 0.15 microL.mg-1 protein.s-1; n = 6; p < 0.01) animals. SDS-PAGE electrophoresis revealed that plasma membrane FABP levels from control and hypophysectomized animals were similar. However, there was a 49% decrease in the cytosolic FABP levels of hepatocytes isolated from hypophysectomized as compared with control animals. The decreased cytosolic FABB levels paralleled the decrease in palmitate uptake. We conclude that in the absence of extracellular binding proteins the rate-limiting step in the overall uptake of long chain fatty acids is diffusion to the cell surface. However, in the presence of albumin, the rate of palmitate uptake is determined primarily by cytosolic FABP levels.

  2. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  3. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  4. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  5. Amino acid and protein changes in tilapia and Spanish mackerel after irradiation and storage

    NASA Astrophysics Data System (ADS)

    Al-Kahtani, Hassan A.; Abu-Tarboush, Hamza M.; Atia, Mohamed; Bajaber, Adnan S.; Ahmed, Mohamed A.; El-Mojaddidi, Mohamed A.

    1998-01-01

    Some amino acids in tilapia decreased while some others increased when subjected to doses up to 10.0 kGy. However, 10 kGy contributed to a significant reduction in all amino acids of Spanish mackerel. Variations in amino acid contents continued during post-irradiation storage with no consistant trend of increase or decrease. SDS-PAGE of protein from both fish showed 27 bands of subunits with MW < 14.0-94.0 KD. Isoelectric focusing patterns of sarcoplasmic protein of unirradiated and irradiated fish showed no charge in the number of bands, while some changes were observed in the intensities of the anodic and cathodic bands depending on isoelectric points (pIs).

  6. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  7. In Silico Classification of Proteins from Acidic and Neutral Cytoplasms

    PubMed Central

    Fang, Yaping; Middaugh, C. Russell; Fang, Jianwen

    2012-01-01

    Protein acidostability is a common problem in biopharmaceutical and other industries. However, it remains a great challenge to engineer proteins for enhanced acidostability because our knowledge of protein acidostabilization is still very limited. In this paper, we present a comparative study of proteins from bacteria with acidic (AP) and neutral cytoplasms (NP) using an integrated statistical and machine learning approach. We construct a set of 393 non-redundant AP-NP ortholog pairs and calculate a total of 889 sequence based features for these proteins. The pairwise alignments of these ortholog pairs are used to build a residue substitution propensity matrix between APs and NPs. We use Gini importance provided by the Random Forest algorithm to rank the relative importance of these features. A scoring function using the 10 most significant features is developed and optimized using a hill climbing algorithm. The accuracy of the score function is 86.01% in predicting AP-NP ortholog pairs and is 76.65% in predicting non-ortholog AP-NP pairs, suggesting that there are significant differences between APs and NPs which can be used to predict relative acidostability of proteins. The overall trends uncovered in the study can be used as general guidelines for designing acidostable proteins. To best of our knowledge, this work represents the first systematic comparative study of the acidostable proteins and their non-acidostable orthologs. PMID:23049817

  8. Transcriptional regulation of muscle fatty acid-binding protein.

    PubMed Central

    Carey, J O; Neufer, P D; Farrar, R P; Veerkamp, J H; Dohm, G L

    1994-01-01

    Heart fatty acid-binding protein (H-FABP) is present in a wide variety of tissues but is found in the highest concentration in cardiac and red skeletal muscle. It has been proposed that the expression of H-FABP correlates directly with the fatty acid-oxidative capacity of the tissue. In the present study, the expression of H-FABP was measured in red and white skeletal muscle under two conditions in which fatty acid utilization is known to be increased: streptozotocin-induced diabetes and fasting. Protein concentration, mRNA concentration and transcription rate were measured under both conditions. The level of both protein and mRNA increased approximately 2-fold under each condition. The transcription rate was higher in red skeletal muscle than in white muscle, was increased 2-fold during fasting, but was unchanged by streptozotocin-induced diabetes. In addition to supporting the hypothesis that H-FABP is induced during conditions of increased fatty acid utilization, these findings demonstrate that the regulation of H-FABP expression may or may not be at the level of transcription depending on the stimulus. Images Figure 2 Figure 3 PMID:8141774

  9. An acidic matrix protein, Pif, is a key macromolecule for nacre formation.

    PubMed

    Suzuki, Michio; Saruwatari, Kazuko; Kogure, Toshihiro; Yamamoto, Yuya; Nishimura, Tatsuya; Kato, Takashi; Nagasawa, Hiromichi

    2009-09-11

    The mollusk shell is a hard tissue consisting of calcium carbonate crystals and an organic matrix. The nacre of the shell is characterized by a stacked compartment structure with a uniformly oriented c axis of aragonite crystals in each compartment. Using a calcium carbonate-binding assay, we identified an acidic matrix protein, Pif, in the pearl oyster Pinctada fucata that specifically binds to aragonite crystals. The Pif complementary DNA (cDNA) encoded a precursor protein, which was posttranslationally cleaved to produce Pif 97 and Pif 80. The results from immunolocalization, a knockdown experiment that used RNA interference, and in vitro calcium carbonate crystallization studies strongly indicate that Pif regulates nacre formation.

  10. The intracellular Ca(2+)-pump inhibitors thapsigargin and cyclopiazonic acid induce stress proteins in mammalian chondrocytes.

    PubMed

    Cheng, T C; Benton, H P

    1994-07-15

    Primary cultures of mammalian articular chondrocytes respond to treatment with the intracellular Ca(2+)-pump inhibitors thapsigargin (TG) and cyclopiazonic acid by specific changes in protein synthesis consistent with a stress response. Two-dimensional gel electrophoresis of newly synthesized proteins confirmed that the response was consistent with the induction of glucose-regulated proteins. The effects of low-dose TG (10 nM), measured by changes in [35S]methionine labelling of newly synthesized proteins, can first be observed by 10 h and are maximal by 24 h. The pattern of changes induced by TG is shared with cyclopiazonic acid, but effects of both perturbants differ significantly from changes induced by heat shock. Upon removal of TG, normal protein synthesis is restored by 48 h. Immunoblots showed increased concentrations of the stress proteins HSP90, HSP72/73 and HSP60 in chondrocytes treated with TG, but induction of newly synthesized heat-shock proteins by TG was not apparent on [35S]methionine-labelled gels. The alterations in protein synthesis induced by Ca(2+)-pump inhibitors were unaffected by BAPTA-AM loading, which clamped cytosolic Ca2+ at resting levels. We conclude that inhibition of intracellular Ca(2+)-pump activity can elicit a stress response, which has important implications for the interpretation of chronic use of Ca(2+)-pump inhibitors. In particular, the activation of the cellular shock response should be considered in interpreting the regulation of protein synthesis and cell survival by Ca(2+)-pump inhibitors such as TG. PMID:8043004

  11. Protein and amino acid requirements in human nutrition.

    PubMed

    2007-01-01

    The World Health Organization and the Food and Agriculture Organization have worked to quantify the energy and nutrient needs of populations since 1949. This is the latest in a series of reports that aim to provide: updates on protein and amino acid requirements in health and disease for all age groups and pregnant and lactating mothers; recommendations on protein requirements in health and disease, including their implications for developing countries; recommendations on protein quality and labelling for worldwide use. This report provides the tools to address practical questions on the adequacy of food supplies, targets for food and nutrition policy, and labelling of protein quality. It contains specific recommendations for infant, child and adult nutrition. This report is an essential reference for those who need to determine the adequacy of population food intakes; set national food and nutrition guidelines and regulations on the protein and amino acid content of industrially processed foods; determine nutrient needs, and evaluate and ensure the adequacy of rations for vulnerable groups. The tools in this report can also be used to map and monitor global food shortages and under-nutrition through early warning systems.

  12. Fatty acid binding protein in the intestine of the chicken.

    PubMed

    Katongole, J B; March, B E

    1979-03-01

    The mucosa of the mesenteric intestine of the chicken has been found to contain a fatty acid binding protein (FABP) with a molecular weight of less than 12,400. The protein is present in the newly hatched chick before ingestion of feed and in the adult bird. When a low-fat diet is fed, the concentration of the FABP is highest in the proximal portion of the intestine and decreases posteriorly. When a high-fat diet is fed, an increase occurs in the amount of FABP in the lower section of the intestine.

  13. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

    PubMed Central

    Nguyen, Chi; Haushalter, Robert W.; Lee, D. John; Markwick, Phineus R. L.; Bruegger, Joel; Caldara-Festin, Grace; Finzel, Kara; Jackson, David R.; Ishikawa, Fumihiro; O’Dowd, Bing; McCammon, J. Andrew; Opella, Stanley J.; Tsai, Shiou-Chuan; Burkart, Michael D.

    2015-01-01

    Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS enzymes operate upon ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain.2 The transient nature of ACP-enzyme interactions imposes a major obstacle to gaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to properly study protein-protein interactions. In this work, we describe the application of a mechanism-based probe that allows site-selective covalent crosslinking of AcpP to FabA, the E. coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase. We report the 1.9 Å crystal structure of the crosslinked AcpP=FabA complex as a homo-dimer, in which AcpP exhibits two different conformations likely representing snapshots of ACP in action: the 4′-phosphopantetheine (PPant) group of AcpP first binds an arginine-rich groove of FabA, followed by an AcpP helical conformational change that locks the AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution NMR techniques, including chemical shift perturbations and RDC measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. Combined with molecular dynamics simulations, we show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies will prove general for fatty acid, polyketide and non-ribosomal biosyntheses. Here the foundation is laid for defining the dynamic action of carrier protein activity in primary and secondary metabolism, providing insight into pathways that can play major roles in the treatment of cancer, obesity and infectious

  14. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  15. Protein sequence analysis by incorporating modified chaos game and physicochemical properties into Chou's general pseudo amino acid composition.

    PubMed

    Xu, Chunrui; Sun, Dandan; Liu, Shenghui; Zhang, Yusen

    2016-10-01

    In this contribution we introduced a novel graphical method to compare protein sequences. By mapping a protein sequence into 3D space based on codons and physicochemical properties of 20 amino acids, we are able to get a unique P-vector from the 3D curve. This approach is consistent with wobble theory of amino acids. We compute the distance between sequences by their P-vectors to measure similarities/dissimilarities among protein sequences. Finally, we use our method to analyze four datasets and get better results compared with previous approaches. PMID:27375218

  16. Fatty acid hydroperoxide lyase is a heme protein.

    PubMed

    Shibata, Y; Matsui, K; Kajiwara, T; Hatanaka, A

    1995-02-01

    Fatty acid hydroperoxide lyase (HPO lyase) is an enzyme that cleaves hydroperoxides of polyunsaturated fatty acids to form short chain aldehydes and omega-oxoacids. Spectrophotometric analyses of HPO lyase highly purified from green bell pepper fruits indicate that it is a heme protein. The heme species was revealed to be heme b (protoheme IX) from the absorption spectrum of the pyridine hemochromogen. Although the spectrum highly resembles that of a plant cytochrome P450, allene oxide synthase from flaxseed, CO treatment of the enzyme caused no appearance of a peak at 450 nm, which is an essential diagnostic feature of a cytochrome P450. Internal amino acid sequences determined with peptide fragments obtained from the lyase showed no homology with any reported sequences.

  17. Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria.

    PubMed

    Thomas, Mark E; Harris, Kevin P G; Walls, John; Furness, Peter N; Brunskill, Nigel J

    2002-10-01

    The role of the albumin-carried fatty acids in the induction of tubulointerstitial injury was studied in protein-overload proteinuria. Rats were injected with fatty acid-carrying BSA [FA(+)BSA], fatty acid-depleted BSA [FA(-)BSA], or saline. Macrophage infiltration was measured by immunohistochemical staining, apoptotic cells were detected by in situ end labeling, and proliferating cells were identified by in situ hybridization for histone mRNA. Macrophage infiltration was significantly greater in the FA(+)BSA group than in the FA(-)BSA and saline groups. The infiltrate was largely restricted to the outer cortex. Apoptosis was greater in the FA(+)BSA group than in the FA(-)BSA and saline groups. Compared with the saline group, apoptosis was significantly increased in the FA(+)BSA group but not in the FA(-)BSA group. Cortical cells proliferated significantly more in the FA(+)BSA and FA(-)BSA groups than in the saline group. FA(+)BSA is therefore a more potent inducer of macrophage infiltration and cell death than FA(-)BSA. The fatty acids carried on albumin may be the chief instigators of tubulointerstitial injury in protein-overload proteinuria. PMID:12217854

  18. Conformational and nucleic acid binding studies on the synthetic nucleocapsid protein of HIV-1.

    PubMed

    Surovoy, A; Dannull, J; Moelling, K; Jung, G

    1993-01-01

    A 55 residue peptide corresponding to the nucleocapsid protein of HIV-1 (NCp7) containing two zinc binding domains as well as three truncated peptides were synthesized by Fmoc-based solid phase synthesis using the fragment condensation approach. Circular dichroism (CD) data support a conformational model in trifluoroethanol/buffer solution consisting of two helical segments at the chain ends with two Zn-modules in the center of the molecule. CD titration experiments show that the synthetic protein binds two equivalents of Zn2+ stoichiometrically, and the Zn2+ induced conformational changes are completely reversible by addition of EDTA. NCp7 and its S-acetamidomethylated analog (NCp7-Acm), devoid of the zinc co-ordination centers, exhibit preferential binding to RNA with a Kd = approximately 10(-9) M irrespective of the cysteine modification as determined by filter binding assays. The binding affinity of the NCp7 protein to single-stranded DNA is lower than to RNA. Binding to double-stranded DNA is lower than to ssDNA. The NCp7-Acm protein exhibits reduced single-stranded DNA binding affinity compared to the unmodified protein. Nucleic acid binding analyses with the fragments of NCp7 protein suggest that two basic amino acid stretches are involved in RNA binding of the NCp7.

  19. Characterization of hybrid proteins consisting of the catalytic domains of Clostridium and Ruminococcus endoglucanases, fused to Pseudomonas non-catalytic cellulose-binding domains.

    PubMed Central

    Poole, D M; Durrant, A J; Hazlewood, G P; Gilbert, H J

    1991-01-01

    The N-terminal 160 or 267 residues of xylanase A from Pseudomonas fluorescens subsp. cellulosa, containing a non-catalytic cellulose-binding domain (CBD), were fused to the N-terminus of the catalytic domain of endoglucanase E (EGE') from Clostridium thermocellum. A further hybrid enzyme was constructed consisting of the 347 N-terminal residues of xylanase C (XYLC) from P. fluorescens subsp. cellulosa, which also constitutes a CBD, fused to the N-terminus of endoglucanase A (EGA) from Ruminococcus albus. The three hybrid enzymes bound to insoluble cellulose, and could be eluted such that cellulose-binding capacity and catalytic activity were retained. The catalytic properties of the fusion enzymes were similar to EGE' and EGA respectively. Residues 37-347 and 34-347 of XYLC were fused to the C-terminus of EGE' and the 10 amino acids encoded by the multiple cloning sequence of pMTL22p respectively. The two hybrid proteins did not bind cellulose, although residues 39-139 of XYLC were shown previously to constitute a functional CBD. The putative role of the P. fluorescens subsp. cellulosa CBD in cellulase action is discussed. Images Fig. 2. Fig. 3. Fig. 4. PMID:1953672

  20. Amino acid alphabet reduction preserves fold information contained in contact interactions in proteins.

    PubMed

    Solis, Armando D

    2015-12-01

    To reduce complexity, understand generalized rules of protein folding, and facilitate de novo protein design, the 20-letter amino acid alphabet is commonly reduced to a smaller alphabet by clustering amino acids based on some measure of similarity. In this work, we seek the optimal alphabet that preserves as much of the structural information found in long-range (contact) interactions among amino acids in natively-folded proteins. We employ the Information Maximization Device, based on information theory, to partition the amino acids into well-defined clusters. Numbering from 2 to 19 groups, these optimal clusters of amino acids, while generated automatically, embody well-known properties of amino acids such as hydrophobicity/polarity, charge, size, and aromaticity, and are demonstrated to maintain the discriminative power of long-range interactions with minimal loss of mutual information. Our measurements suggest that reduced alphabets (of less than 10) are able to capture virtually all of the information residing in native contacts and may be sufficient for fold recognition, as demonstrated by extensive threading tests. In an expansive survey of the literature, we observe that alphabets derived from various approaches-including those derived from physicochemical intuition, local structure considerations, and sequence alignments of remote homologs-fare consistently well in preserving contact interaction information, highlighting a convergence in the various factors thought to be relevant to the folding code. Moreover, we find that alphabets commonly used in experimental protein design are nearly optimal and are largely coherent with observations that have arisen in this work. PMID:26407535

  1. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1.

    PubMed

    Nelson, Cara H; Peng, Chi-Chi; Lutz, Justin D; Yeung, Catherine K; Zelter, Alex; Isoherranen, Nina

    2016-08-01

    Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.

  2. Phytic acid reduction in soy protein improves zinc bioavailability

    SciTech Connect

    Zhou, J.R.; Wong, M.S.; Burns, R.A.; Erdman, J.W. Jr. Mead Johnson Research Center, Evansville, IN )

    1991-03-15

    The objective of this study was to confirm previous studies that have suggested that reduction of phytic acid in soy improved zinc bioavailability (BV). Two commercially-produced soybean isolates containing either a normal phytic acid level or a reduced level were formulated into diets so as to provide 6 or 9 ppm zinc. Control diets were egg white protein-based and contained 3, 6 or 9 ppm zinc from zinc carbonate. Weanling male rats were fed these diets for 21 days and food intake and weight gain monitored. Slope ratio analysis of total tibia zinc content compared to total zinc intake revealed that zinc BV from reduced phytic acid soy isolate-containing diets was indistinguishable from control egg white diets. In contrast, zinc BV from normal soy isolate diets was significantly reduced compared to reduced phytic acid and control diets. These results coupled with other results indicate that phytic acid is the inhibitory factor in soybean products that results in reduced zinc BV.

  3. Characterization of a fatty acid-binding protein from rat heart.

    PubMed

    Offner, G D; Troxler, R F; Brecher, P

    1986-04-25

    A fatty acid-binding protein has been isolated from rat heart and purified by gel filtration chromatography on Sephadex G-75 and anion-exchange chromatography on DE52. The circular dichroic spectrum of this protein was not affected by protein concentration, suggesting that it does not aggregate into multimers. Computer analyses of the circular dichroic spectrum predicted that rat heart fatty acid-binding protein contains approximately 22% alpha-helix, 45% beta-form and 33% unordered structure. Immunological studies showed that the fatty acid-binding proteins from rat heart and rat liver are immunochemically unrelated. The amino acid composition and partial amino acid sequence of the heart protein indicated that it is structurally related to, but distinct from, other fatty acid-binding proteins from liver, intestine, and 3T3 adipocytes. Using a binding assay which measures the transfer of fatty acids between donor liposomes and protein (Brecher, P., Saouaf, R., Sugarman, J. M., Eisenberg, D., and LaRosa, K. (1984) J. Biol. Chem. 259, 13395-13401), it was shown that both rat heart and liver fatty acid-binding proteins bind 2 mol of oleic acid or palmitic acid/mol of protein. The structural and functional relationship of rat heart fatty acid-binding protein to fatty acid-binding proteins from other tissues is discussed. PMID:3957934

  4. Characterisation of a cell wall-anchored protein of Staphylococcus saprophyticus associated with linoleic acid resistance

    PubMed Central

    2012-01-01

    Background The Gram-positive bacterium Staphylococcus saprophyticus is the second most frequent causative agent of community-acquired urinary tract infections (UTI), accounting for up to 20% of cases. A common feature of staphylococci is colonisation of the human skin. This involves survival against innate immune defenses including antibacterial unsaturated free fatty acids such as linoleic acid which act by disrupting bacterial cell membranes. Indeed, S. saprophyticus UTI is usually preceded by perineal skin colonisation. Results In this study we identified a previously undescribed 73.5 kDa cell wall-anchored protein of S. saprophyticus, encoded on plasmid pSSAP2 of strain MS1146, which we termed S. saprophyticus surface protein F (SssF). The sssF gene is highly prevalent in S. saprophyticus clinical isolates and we demonstrate that the SssF protein is expressed at the cell surface. However, unlike all other characterised cell wall-anchored proteins of S. saprophyticus, we were unable to demonstrate a role for SssF in adhesion. SssF shares moderate sequence identity to a surface protein of Staphylococcus aureus (SasF) recently shown to be an important mediator of linoleic acid resistance. Using a heterologous complementation approach in a S. aureus sasF null genetic background, we demonstrate that SssF is associated with resistance to linoleic acid. We also show that S. saprophyticus strains lacking sssF are more sensitive to linoleic acid than those that possess it. Every staphylococcal genome sequenced to date encodes SssF and SasF homologues. Proteins in this family share similar predicted secondary structures consisting almost exclusively of α-helices in a probable coiled-coil formation. Conclusions Our data indicate that SssF is a newly described and highly prevalent surface-localised protein of S. saprophyticus that contributes to resistance against the antibacterial effects of linoleic acid. SssF is a member of a protein family widely disseminated

  5. Formation, reactivity and detection of protein sulfenic acids

    PubMed Central

    Kettenhofen, Nicholas J.; Wood, Matthew J.

    2010-01-01

    It has become clear in recent decades that the post-translational modification of protein cysteine residues is a crucial regulatory event in biology. Evidence supports the reversible oxidation of cysteine thiol groups as a mechanism of redox-based signal transduction while the accumulation of proteins with irreversible thiol oxidations is a hallmark of stress-induced cellular damage. The initial formation of cysteine sulfenic acid (SOH) derivatives, along with the reactive properties of this functional group, serves as a crossroads whereby the local redox environment may dictate the progression of either regulatory or pathological outcomes. Protein-SOH are established as transient intermediates in the formation of more stable cysteine oxidation products both under basal conditions and in response to several redox-active extrinsic compounds. This review details both direct and multi-step chemical routes proposed to generate protein-SOH, the spectrum of secondary reactions that may follow their initial formation and the arsenal of experimental tools available for their detection. Both the pioneering studies that have provided a framework for our current understanding of protein-SOH as well as state-of-the-art proteomic strategies designed for global assessments of this post-translational modification are highlighted. PMID:20845928

  6. Modelling and Characterization of Glial Fibrillary Acidic Protein

    PubMed Central

    Deka, Hemchandra; Sarmah, Rajeev; Sharma, Ankita; Biswas, Sagarika

    2015-01-01

    Glial Fibrillary Acidic Protein (GFAP) is an intermediate-filament (IF) protein that maintains the astrocytes of the Central Nervous System in Human. This is differentially expressed during serological studies in inflamed condition such as Rheumatoid Arthritis (RA). Therefore, it is of interest to glean molecular insight using a model of GFAP (49.88 kDa) due to its crystallographic nonavailability. The present study has been taken into consideration to construct computational protein model using Modeller 9.11. The structural relevance of the protein was verified using Gromacs 4.5 followed by validation through PROCHECK, Verify 3D, WHAT-IF, ERRAT and PROVE for reliability. The constructed three dimensional (3D) model of GFAP protein had been scrutinized to reveal the associated functions by identifying ligand binding sites and active sites. Molecular level interaction study revealed five possible surface cavities as active sites. The model finds application in further computational analysis towards drug discovery in order to minimize the effect of inflammation. PMID:26420920

  7. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis.

    PubMed

    Morrison, Erin N; Knowles, Sarah; Hayward, Allison; Thorn, R Greg; Saville, Barry J; Emery, R J N

    2015-01-01

    The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed.

  8. Self-consistent field theory investigation of the behavior of hyaluronic acid chains in aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Nogovitsin, E. A.; Budkov, Yu. A.

    2012-04-01

    In this work we continue to develop a field-theoretic methodology, which combines the technique of Gaussian equivalent representation for the calculation of functional integrals with the continuous Gaussian thread model of flexible polymers for solving statistical-mechanical problems of polyelectrolyte solutions. We present new analytic expressions for the osmotic pressure, the potential of mean force, and the monomer-monomer pair distribution function, and employ them to investigate the structural and thermodynamic quantities of the polyelectrolyte system. We demonstrate the applicability of the method for systems of polyelectrolyte chains in which the monomers interact via a Yukawa-type pair potential. As a specific example, the present work focuses on aqueous solutions of hyaluronic acid with added salts NaCl and CaCl2. Hyaluronic acid is a high molecular weight linear polysaccharide, which has a multitude of roles in biological tissues. We conclude that the effect of sodium chloride and calcium chloride on the osmotic properties of hyaluronic acid solutions can be accounted for by their contributions to the ionic strength. Nevertheless, the effects of coiling and self-association can be stimulated in solution by added salt.

  9. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  10. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation. PMID:6283503

  11. Amino Acid Substitutions in Cold-Adapted Proteins from Halorubrum lacusprofundi, an Extremely Halophilic Microbe from Antarctica

    PubMed Central

    DasSarma, Shiladitya; Capes, Melinda D.; Karan, Ram; DasSarma, Priya

    2013-01-01

    The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs) were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a) glutamic acid with aspartic acid or alanine; (b) small polar residues with other small polar or non-polar amino acids; (c) small non-polar residues with other small non-polar residues; (d) aromatic residues, especially tryptophan, with other aromatic residues; and (e) some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere. PMID:23536799

  12. Foamy Virus Protein-Nucleic Acid Interactions during Particle Morphogenesis.

    PubMed

    Hamann, Martin V; Lindemann, Dirk

    2016-01-01

    Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786

  13. Using self-consistent Gibbs free energy surfaces to calculate size distributions of neutral and charged clusters for the sulfuric acid-water binary system

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Froyd, K. D.; Toon, O. B.

    2012-12-01

    We construct tables of reaction enthalpies and entropies for the association reactions involving sulfuric acid vapor, water vapor, and the bisulfate ion. These tables are created from experimental measurements and quantum chemical calculations for molecular clusters and a classical thermodynamic model for larger clusters. These initial tables are not thermodynamically consistent. For example, the Gibbs free energy of associating a cluster consisting of one acid molecule and two water molecules depends on the order in which the cluster was assembled: add two waters and then the acid or add an acid and a water and then the second water. We adjust the values within the tables using the method of Lagrange multipliers to minimize the adjustments and produce self-consistent Gibbs free energy surfaces for the neutral clusters and the charged clusters. With the self-consistent Gibbs free energy surfaces, we calculate size distributions of neutral and charged clusters for a variety of atmospheric conditions. Depending on the conditions, nucleation can be dominated by growth along the neutral channel or growth along the ion channel followed by ion-ion recombination.

  14. Effects of protein deficiency and food restriction on lung ascorbic acid and glutathione in rats exposed to ozone

    SciTech Connect

    Dubick, M.A.; Heng, H.; Rucker, R.B.

    1985-08-01

    Weanling (52 +/- 4 g) or adult (259 +/- 16 g) male Sprague-Dawley rats were fed ad libitum casein-based diets containing 4 or 16% protein. A third group (food restricted) was fed daily the 16% protein diet, but at the food intake level of the 4% protein group. After 3 wk (weanling) or 5 wk (adults), half of the rats in each group were continuously exposed to 0.64 ppm ozone for 7 d. Ascorbic acid and reduced glutathione levels were then measured. In the heart and liver from weanling rats, ascorbic acid concentrations were lower in the protein-deficient group than in either control group. In the liver from weanling rats glutathione concentrations were also reduced in response to protein deficiency. Exposure to ozone produced no additional response. For adult rats the response for liver glutathione was similar to that of the weanlings. The liver ascorbate concentration, however, was consistently lower in adult rats compared to weanlings exposed to ozone. In lungs from adult rats, the ascorbic acid concentration was lower in the protein-deficient group than in either control group. On a whole-organ basis, both ascorbic acid and glutathione were usually higher in lungs from rats exposed to ozone than from those exposed to air. Interestingly, protein deficiency did not appear to compromise the lung's ability to maintain, in relative terms, the ascorbic acid or glutathione concentration in response to ozone.

  15. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh.

    PubMed

    Shaheen, Nazma; Islam, Saiful; Munmun, Sarah; Mohiduzzaman, Md; Longvah, Thingnganing

    2016-12-15

    Concentrations of standard amino acids were determined in the composite samples (representing 30 agro-ecological zones of Bangladesh) of six prioritized key dietary protein sources: Oryza sativa (rice), Triticum aestivum (wheat flour), Lens culinaris (lentils), Pangusius pangusius (pangas), Labeo rohita (rohu) and Oreochromis mossambicus (tilapia). Digestible indispensable amino acid scores (DIAAS) was calculated using published data on amino acids' digestibility to evaluate the protein quality of these foods. Indispensable amino acid (IAA) contents (mg IAA/g protein), found to be highest in pangas (430) and lowest in wheat (336), of all these analyzed foods exceeded the FAO recommended daily allowance (277mg IAA/g protein) and contributed on average 40% to total amino acid contents. Untruncated DIAAS values ranged from 51% (lysine) in wheat to 106% (histidine) in pangas and distinguished pangas, rohu, and tilapia containing 'excellent quality' protein (DIAAS>100%) with potential to complement lower quality protein of cereals, fruits, and vegetables. PMID:27451158

  16. Immunocytochemical localization of glial fibrillary acidic protein (GFAP) in the area postrema of the cat - Light and electron microscopic study

    NASA Technical Reports Server (NTRS)

    Damelio, F. E.; Gibbs, M. A.; Mehler, W. R.; Eng, L. F.

    1985-01-01

    Glial fibrillary acidic protein (GFAP) was demonstrated in the cytoplasm and processes of ependymal cells and astroglial components of the area postrema of the cat. These observations differ from the findings in the ependyma of the ventricular cavities which are consistently negative for the protein. Since some studies have suggested sensory functions of the glial cells in this emetic chemoreceptor trigger zone, a careful consideration of morphological and biochemical attributes of these cells seems appropriate.

  17. Cloning and characterization of a complementary deoxyribonucleic acid encoding haploid-specific alanine-rich acidic protein located on chromosome-X.

    PubMed

    Uchida, K; Tsuchida, J; Tanaka, H; Koga, M; Nishina, Y; Nozaki, M; Yoshinaga, K; Toshimori, K; Matsumiya, K; Okuyama, A; Nishimune, Y

    2000-10-01

    We have isolated a cDNA clone encoding a germ cell-specific protein from an expression cDNA library prepared from the mouse testis using testis-specific polyclonal antibodies. Northern blot analysis showed a transcript of 1.1 kilobases exclusively expressed in haploid germ cells of the testis. Sequence analysis of the cDNA revealed one long open reading frame consisting of 238 deduced amino acids, rich in basic amino acids in the N-terminal one-third that also contained the nuclear localization signal, and rich in acidic amino acids, including two type of acidic alanine-rich repeats, in the rest of the deduced protein. The protein having a molecular weight of approximately 55 kDa and an isoelectric point of pH 4.3-4.7 was also exclusively detected in the testis by Western blot analysis. As the cDNA was located on chromosome-X, Halap-X (haploid-specific alanine-rich acidic protein located on chromosome-X) was proposed for the name of the protein encoded by the cDNA. Immunohistochemical observation revealed that the Halap-X protein was predominantly present in the nucleoplasm of round spermatids but gradually decreased as spermatids matured, followed by the subsequent appearance in the cytoplasm of elongating spermatids. Thus, the Halap-X protein was transferred from the nuclei to the cytoplasm during the spermatid maturation when the chromatin condensation and transformation of the nuclei occurred. The Halap-X may facilitate specific association of nuclear DNA with some basic chromosomal proteins and play important roles in the process of chromatin condensation. PMID:10993819

  18. Nucleic acid and protein synthesis during lateral root initiation in Marsilea quadrifolia (Marsileaceae)

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    The pattern of DNA, RNA, and protein synthesis during lateral root initiation in Marsilea quadrifolia L. was monitored by autoradiography of incorporated of 3H-thymidine, 3H-uridine, and 3H-leucine, respectively. DNA synthesis was associated with the enlargement of the lateral root initial prior to its division. Consistent with histological studies, derivatives of the lateral root initial as well as the cells of the adjacent inner cortex and pericycle of the parent root also continued to synthesize DNA. RNA and protein synthetic activities were found to be higher in the lateral root initials than in the endodermal initials of the same longitudinal layer. The data suggest a role for nucleic acid and protein synthesis during cytodifferentiation of a potential endodermal cell into a lateral root initial.

  19. An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and Arabinoxylan Covalently Linked to an Arabinogalactan Protein[W

    PubMed Central

    Tan, Li; Eberhard, Stefan; Pattathil, Sivakumar; Warder, Clayton; Glushka, John; Yuan, Chunhua; Hao, Zhangying; Zhu, Xiang; Avci, Utku; Miller, Jeffrey S.; Baldwin, David; Pham, Charles; Orlando, Ronald; Darvill, Alan; Hahn, Michael G.; Kieliszewski, Marcia J.; Mohnen, Debra

    2013-01-01

    Plant cell walls are comprised largely of the polysaccharides cellulose, hemicellulose, and pectin, along with ∼10% protein and up to 40% lignin. These wall polymers interact covalently and noncovalently to form the functional cell wall. Characterized cross-links in the wall include covalent linkages between wall glycoprotein extensins between rhamnogalacturonan II monomer domains and between polysaccharides and lignin phenolic residues. Here, we show that two isoforms of a purified Arabidopsis thaliana arabinogalactan protein (AGP) encoded by hydroxyproline-rich glycoprotein family protein gene At3g45230 are covalently attached to wall matrix hemicellulosic and pectic polysaccharides, with rhamnogalacturonan I (RG I)/homogalacturonan linked to the rhamnosyl residue in the arabinogalactan (AG) of the AGP and with arabinoxylan attached to either a rhamnosyl residue in the RG I domain or directly to an arabinosyl residue in the AG glycan domain. The existence of this wall structure, named ARABINOXYLAN PECTIN ARABINOGALACTAN PROTEIN1 (APAP1), is contrary to prevailing cell wall models that depict separate protein, pectin, and hemicellulose polysaccharide networks. The modified sugar composition and increased extractability of pectin and xylan immunoreactive epitopes in apap1 mutant aerial biomass support a role for the APAP1 proteoglycan in plant wall architecture and function. PMID:23371948

  20. Photolabeling of brain membrane proteins by lysergic acid diethylamide

    SciTech Connect

    Mahon, A.C.; Hartig, P.R.

    1982-04-05

    /sup 3/H-Lysergic acid diethylamide (/sup 3/H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a sub-population of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. /sup 3/H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays.

  1. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts.

  2. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  3. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. PMID:26762189

  4. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  5. Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets

    PubMed Central

    2010-01-01

    Background Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure (RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the clustering. Results We demonstrate the robustness of RCM with reduced alphabets in clustering of protein sequences into families in a simulated dataset and seven well-characterized protein datasets. On protein datasets, crotonases, mandelate racemases, nucleotidyl cyclases and glycoside hydrolase family 2 were clustered into subfamilies with 100% accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal oxygen chelates could be assigned to subfamilies with 97.2%, 96.9% and 92.2% accuracies, respectively. Conclusions The overall combination of methods in this paper is useful for clustering protein families into subtypes based on solely protein sequence information. The method is also flexible and computationally fast because it does not require multiple alignment of sequences. PMID:20718947

  6. Separation of membranes from acid-solubilized fish muscle proteins with the aid of calcium ions and organic acids.

    PubMed

    Liang, Yong; Hultin, Herbert O

    2005-04-20

    Calcium chloride, and to a lesser extent MgCl2, aided in the separation of membranes by centrifugation from cod (Gadus morhua) muscle homogenates solubilized at pH 3 in the presence of citric acid or malic acid but not lactic acid. Adding citric acid and Ca2+ before solubilizing the cod muscle homogenates was needed for the effect. At 1 mM citric acid, 70-80% of the phospholipid and 25-30% of the protein were removed at 10 mM Ca2+. At 8 mM Ca2+, citric acid showed an optimal effect on phospholipid removal at 5 mM with 90% of the phospholipid and 35% of the protein removed. The treatment with citric acid and Ca2+ was also effective in separating the membrane from solubilized herring (Clupea harengus) muscle homogenate. Ca2+ and citric acid might exert their influence by disconnecting linkages between membranes and cytoskeletal proteins.

  7. A fusion protein consisting of the exopeptidases PepN and PepX-production, characterization, and application.

    PubMed

    Stressler, Timo; Pfahler, Nina; Merz, Michael; Hubschneider, Larissa; Lutz-Wahl, Sabine; Claaßen, Wolfgang; Fischer, Lutz

    2016-09-01

    Nowadays, general and specific aminopeptidases are of great interest, especially for protein hydrolysis in the food industry. As shown previously, it is confirmed that the general aminopeptidase N (PepN; EC 3.4.11.2) and the proline-specific peptidase PepX (EC 3.4.14.11) from Lactobacillus helveticus ATCC 12046 show a synergistic effect during protein hydrolysis which results in high degrees of hydrolysis and reduced bitterness. To combine both activities, the enzymes were linked and a fusion protein called PepN-L1-PepX (FUS-PepN-PepX) was created. After production and purification, the fusion protein was characterized. Some of its biochemical characteristics were altered in favor for an application compared to the single enzymes. As an example, the optimum temperature for the PepN activity increased from 30 °C for the single enzyme to 35 °C for FUS-PepN. In addition, the temperature stability of PepX was higher for FUS-PepX than for the single enzyme (50 % compared to 40 % residual activity at 50 °C after 14 days, respectively). In addition, the disulfide bridge-reducing reagent β-mercaptoethanol did not longer inactivate the FUS-PepN activity. Furthermore, the K M values decreased for both enzyme activities in the fusion protein. Finally, it was found that the synergistic hydrolysis performance in a casein hydrolysis was not reduced for the fusion protein. The increase of the relative degree of hydrolysis of a prehydrolyzed casein solution was the same as it was for the single enzymes. As a benefit, the resulting hydrolysate showed a strong antioxidative capacity (ABTS-IC50 value: 5.81 μg mL(-1)). PMID:27037692

  8. Molecular evolution of monotreme and marsupial whey acidic protein genes.

    PubMed

    Sharp, Julie A; Lefèvre, Christophe; Nicholas, Kevin R

    2007-01-01

    Whey acidic protein (WAP), a major whey protein present in milk of a number of mammalian species has characteristic cysteine-rich domains known as four-disulfide cores (4-DSC). Eutherian WAP, expressed in the mammary gland throughout lactation, has two 4-DSC domains, (DI-DII) whereas marsupial WAP, expressed only during mid-late lactation, contains an additional 4-DSC (DIII), and has a DIII-D1-DII configuration. We report the expression and evolution of echidna (Tachyglossus aculeatus) and platypus (Onithorhynchus anatinus) WAP cDNAs. Predicted translation of monotreme cDNAs showed echidna WAP contains two 4-DSC domains corresponding to DIII-DII, whereas platypus WAP contains an additional domain at the C-terminus with homology to DII and has the configuration DIII-DII-DII. Both monotreme WAPs represent new WAP protein configurations. We propose models for evolution of the WAP gene in the mammalian lineage either through exon loss from an ancient ancestor or by rapid evolution via the process of exon shuffling. This evolutionary outcome may reflect differences in lactation strategy between marsupials, monotremes, and eutherians, and give insight to biological function of the gene products. WAP four-disulfide core domain 2 (WFDC2) proteins were also identified in echidna, platypus and tammar wallaby (Macropus eugenii) lactating mammary cells. WFDC2 proteins are secreted proteins not previously associated with lactation. Mammary gland expression of tammar WFDC2 during the course of lactation showed WFDC2 was elevated during pregnancy, reduced in early lactation and absent in mid-late lactation.

  9. Oral administration of cobalt acetate alters milk fatty acid composition, consistent with an inhibition of stearoyl-coenzyme A desaturase in lactating ewes.

    PubMed

    Frutos, P; Toral, P G; Ramos-Morales, E; Shingfield, K J; Belenguer, A; Hervás, G

    2014-02-01

    Previous investigations have shown that cobalt (Co) modifies milk fat composition in cattle, consistent with an inhibition of stearoyl-coenzyme A desaturase (SCD) activity, but it remains unclear whether other ruminant species are also affected. The present study examined the effects of oral administration of Co acetate on intake, rumen function, and milk production and fatty acid (FA) composition in sheep. Twenty lactating Assaf ewes were allocated into 1 of 4 groups and used in a continuous randomized block design that involved a 15-d adaptation, a 6-d treatment, and a 10-d posttreatment period. During the treatment period, animals received an oral drench supplying 0 (control), 3 (Co3), 6 (Co6), and 9 (Co9) mg of Co/kg of BW per day, administered in 3 equal doses at 8-h intervals. Cobalt acetate had no influence on intake or milk fat and protein concentrations, whereas treatments Co6 and Co9 tended to lower milk yield. Results on rumen parameters showed no effects on rumen fermentation, FA composition, or bacterial community structure. Administration of Co acetate decreased milk concentrations of FA containing a cis-9 double bond and SCD product:substrate ratios, consistent with an inhibition of SCD activity in the ovine mammary gland. Temporal changes in milk fat composition indicated that the effects of treatments were evident within 3d of dosing, with further changes being apparent after 6d and reverting to pretreatment values by d 6 after administration. Effect on milk FA composition did not differ substantially in response to incremental doses of Co acetate. On average, Co decreased milk cis-9 10:1/10:0, cis-9 12:1/12:0, cis-9 14:1/14:0, cis-9 16:1/16:0, cis-9 17:1/17:0, cis-9 18:1/18:0, and cis-9,trans-11 18:2/trans-11 18:1 concentration ratios by 30, 32, 38, 33, 21, 24, and 25%, respectively. Changes in milk fat cis-9 10:1, cis-9 12:1, and cis-9 14:1 concentrations to Co treatment indicated that 51% of cis-9 18:1 and cis-9,trans-11 18:2 secreted in milk

  10. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle.

    PubMed Central

    Biolo, G; Declan Fleming, R Y; Wolfe, R R

    1995-01-01

    We have investigated the mechanisms of the anabolic effect of insulin on muscle protein metabolism in healthy volunteers, using stable isotopic tracers of amino acids. Calculations of muscle protein synthesis, breakdown, and amino acid transport were based on data obtained with the leg arteriovenous catheterization and muscle biopsy. Insulin was infused (0.15 mU/min per 100 ml leg) into the femoral artery to increase femoral venous insulin concentration (from 10 +/- 2 to 77 +/- 9 microU/ml) with minimal systemic perturbations. Tissue concentrations of free essential amino acids decreased (P < 0.05) after insulin. The fractional synthesis rate of muscle protein (precursor-product approach) increased (P < 0.01) after insulin from 0.0401 +/- 0.0072 to 0.0677 +/- 0.0101%/h. Consistent with this observation, rates of utilization for protein synthesis of intracellular phenylalanine and lysine (arteriovenous balance approach) also increased from 40 +/- 8 to 59 +/- 8 (P < 0.05) and from 219 +/- 21 to 298 +/- 37 (P < 0.08) nmol/min per 100 ml leg, respectively. Release from protein breakdown of phenylalanine, leucine, and lysine was not significantly modified by insulin. Local hyperinsulinemia increased (P < 0.05) the rates of inward transport of leucine, lysine, and alanine, from 164 +/- 22 to 200 +/- 25, from 126 +/- 11 to 221 +/- 30, and from 403 +/- 64 to 595 +/- 106 nmol/min per 100 ml leg, respectively. Transport of phenylalanine did not change significantly. We conclude that insulin promoted muscle anabolism, primarily by stimulating protein synthesis independently of any effect on transmembrane transport. Images PMID:7860765

  11. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.

    PubMed

    van Bergen, Laura A H; Roos, Goedele; De Proft, Frank

    2014-08-01

    Hydrogen peroxide is a natural oxidant that can oxidize protein thiols (RSH) via sulfenic acid (RSOH) and sulfinic acid (RSO2H) to sulfonic acid (RSO3H). In this paper, we study the complete anionic and neutral oxidation pathway from thiol to sulfonic acid. Reaction barriers and reaction free energies for all three oxidation steps are computed, both for the isolated substrates and for the substrates in the presence of different model ligands (CH4, H2O, NH3) mimicking the enzymatic environment. We found for all three barriers that the anionic thiolate is more reactive than the neutral thiol. However, the assistance of the environment in the neutral pathway in a solvent-assisted proton-exchange (SAPE) mechanism can lower the reaction barrier noticeably. Polar ligands can decrease the reaction barriers, whereas apolar ligands do not influence the barrier heights. The same holds for the reaction energies: they decrease (become more negative) in the presence of polar ligands whereas apolar ligands do not have an influence. The consistently negative consecutive reaction energies for the oxidation in the anionic pathway when going from thiolate over sulfenic and sulfinic acid to sulfonic acid are in agreement with biological reversibility.

  12. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  13. Acid-degradable polyurethane particles for protein-based vaccines

    PubMed Central

    Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Paramonov, Sergey E.; Dashe, Jesse; Fréchet, Jean M. J.

    2009-01-01

    Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation by-product of the particles was synthesized and tested in vitro for toxicity indicating an LC50 of 12,500 μg/ml. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation by-product inside RAW macrophages was at its highest level after 24 hours of culture and was efficiently exocytosed until it was no longer detectable after four days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with non-toxic by-products, which may find use in various biomedical applications including protein-based vaccines. PMID:18710254

  14. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  15. Shedding light on proteins, nucleic acids, cells, humans and fish.

    PubMed

    Setlow, Richard B

    2002-03-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  16. Identification of Biofilm Matrix-Associated Proteins from an Acid Mine Drainage Microbial Community

    SciTech Connect

    Jiao, Yongqin; D'Haeseleer, Patrik M; Dill, Brian; Shah, Manesh B; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.; Thelen, Michael P.

    2011-01-01

    In microbial communities, extracellular polymeric substances (EPS), also called the extracellular matrix, provide the spatial organization and structural stability during biofilm development. One of the major components of EPS is protein, but it is not clear what specific functions these proteins contribute to the extracellular matrix or to microbial physiology. To investigate this in biofilms from an extremely acidic environment, we used shotgun proteomics analyses to identify proteins associated with EPS in biofilms at two developmental stages, designated DS1 and DS2. The proteome composition of the EPS was significantly different from that of the cell fraction, with more than 80% of the cellular proteins underrepresented or undetectable in EPS. In contrast, predicted periplasmic, outer membrane, and extracellular proteins were overrepresented by 3- to 7-fold in EPS. Also, EPS proteins were more basic by 2 pH units on average and about half the length. When categorized by predicted function, proteins involved in motility, defense, cell envelope, and unknown functions were enriched in EPS. Chaperones, such as histone-like DNA binding protein and cold shock protein, were overrepresented in EPS. Enzymes, such as protein peptidases, disulfide-isomerases, and those associated with cell wall and polysaccharide metabolism, were also detected. Two of these enzymes, identified as -N-acetylhexosaminidase and cellulase, were confirmed in the EPS fraction by enzymatic activity assays. Compared to the differences between EPS and cellular fractions, the relative differences in the EPS proteomes between DS1 and DS2 were smaller and consistent with expected physiological changes during biofilm development.

  17. Investigation of protein-fatty acid interactions in zein films

    NASA Astrophysics Data System (ADS)

    Wang, Qin

    Zein, the prolamin of corn, has shown potential as industrial biopolymer for packaging and agricultural uses. Previous researchers plasticized zein with oleic acid and extruded it into sheets and films. Such products showed reasonable tensile and water barrier properties. However, those properties were affected by film structure, which is believed controlled by the interaction between zein and plasticizer. The nature of those interactions is still not well understood. Protein-fatty acid interactions in zein resin films were investigated by surface plasmon resonance and atomic force microscopy in this work. Preliminary research was conducted to establish the effect of solvent systems on the plasticization of zein by oleic acid. Although slight differences were observed, it was concluded that the use of 75% ethanol or 75% 2-propanol produced similar results. Surface plasmon resonance was employed to investigate zein static and dynamic adsorption on surfaces of hydrophilic and hydrophobic self-assembled monolayers (SAMs) generated by 11-mercaptoundecanoic acid or 1-octanethiol, respectively, and representing the two end groups of oleic acid. Results indicated that zein was adsorbed to both surfaces but showed higher affinity for hydrophilic groups. The corresponding thickness of zein specific binding layer on hydrophilic and hydrophobic SAMs was around 4.7 nm and 4.6 nm. Zein exhibited higher affinity for hydrophilic than for hydrophobic SAMs evidenced from the higher initial adsorption rate and ultimate surface coverage at all zein concentrations. Flushing surface with buffer would leave an apparent monolayer of zein, which is 5 times higher for hydrophilic than hydrophobic SAMs. This observation suggested that zein may use different sides of its molecule to interact with hydrophobic or hydrophilic groups. The surface topography of zein deposits on both SAMs was examined by atomic force microscopy. It was found that zein formed distinct ring-shaped structures with

  18. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  19. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues.

    PubMed

    Myers, Jennifer S; von Lersner, Ariana K; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  20. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues.

    PubMed

    Myers, Jennifer S; von Lersner, Ariana K; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  1. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  2. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  3. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids.

    PubMed

    Miyata, Masaaki; Yamakawa, Hiroki; Hayashi, Kenjiro; Kuribayashi, Hideaki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2013-08-15

    The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen. In ABPC-treated mice, enterobacteria-biotransformed bile acid, taurodeoxycholic acid (TDCA) and cholic acid (CA) levels were decreased, whereas taurocholic acid (TCA) and tauro-β-muricholic acid levels were increased in the intestinal lumen. Ileal ASBT protein levels in brush-border membrane vesicles (BBMVs), but not ileal Asbt mRNA levels, were significantly increased in the ABPC-treated mice, and the extent of ubiquitination of the ileal ASBT protein was reduced in the ABPC-treated mice. Treatment of ABPC-pretreated mice with CA or TDCA, but not TCA, significantly decreased ileal ASBT protein levels and increased the extent of ubiquitination of ileal ASBT protein. Treatment of mice with the lysosome inhibitor, chloroquine, or the proteasome inhibitor, MG132, increased ileal ASBT protein levels in BBMVs. CA-mediated reduction of ASBT protein levels in the ABPC-pretreated mice was attenuated by co-treatment with chloroquine or MG132. These results suggest that ileal ASBT protein is degraded by a ubiquitin-dependent pathway in response to enterobacteria-associated bile acids. PMID:23872411

  4. Prediction of protein-protein interactions with clustered amino acids and weighted sparse representation.

    PubMed

    Huang, Qiaoying; You, Zhuhong; Zhang, Xiaofeng; Zhou, Yong

    2015-01-01

    With the completion of the Human Genome Project, bioscience has entered into the era of the genome and proteome. Therefore, protein-protein interactions (PPIs) research is becoming more and more important. Life activities and the protein-protein interactions are inseparable, such as DNA synthesis, gene transcription activation, protein translation, etc. Though many methods based on biological experiments and machine learning have been proposed, they all spent a long time to learn and obtained an imprecise accuracy. How to efficiently and accurately predict PPIs is still a big challenge. To take up such a challenge, we developed a new predictor by incorporating the reduced amino acid alphabet (RAAA) information into the general form of pseudo-amino acid composition (PseAAC) and with the weighted sparse representation-based classification (WSRC). The remarkable advantages of introducing the reduced amino acid alphabet is being able to avoid the notorious dimensionality disaster or overfitting problem in statistical prediction. Additionally, experiments have proven that our method achieved good performance in both a low- and high-dimensional feature space. Among all of the experiments performed on the PPIs data of Saccharomyces cerevisiae, the best one achieved 90.91% accuracy, 94.17% sensitivity, 87.22% precision and a 83.43% Matthews correlation coefficient (MCC) value. In order to evaluate the prediction ability of our method, extensive experiments are performed to compare with the state-of-the-art technique, support vector machine (SVM). The achieved results show that the proposed approach is very promising for predicting PPIs, and it can be a helpful supplement for PPIs prediction. PMID:25984606

  5. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  6. An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media.

    PubMed

    Venditti, Vincenzo; Fawzi, Nicolas L; Clore, G Marius

    2012-03-01

    The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR field. Here, we describe a novel protocol for incorporating unnatural amino acids into fully deuterated proteins using glucose-based media (which are relevant to the production, for example, of amino acid-specific methyl-labeled proteins used in the study of large molecular weight systems). The method consists of pre-induction of the pEVOL plasmid encoding the tRNA/aminoacyl-tRNA synthetase pair in a rich, H(2)O-based medium prior to exchanging the culture into a D(2)O-based medium. Our protocol results in high level of isotopic incorporation (~95%) and retains the high expression level of the target protein observed in Luria-Bertani medium. PMID:22350951

  7. Synthesis and phosphorylation of the glial fibrillary acidic protein during brain development: A tissue slice study

    SciTech Connect

    Noetzel, M.J. )

    1990-01-01

    Brain slices were incubated with either (3H) amino acids or (32P) orthophosphate in order to characterize the synthesis and phosphorylation of the glial fibrillary acidic protein (GFAP) in the rat nervous system. The incorporation of (3H) amino acids into GFAP was found to increase significantly during early postnatal development, reaching a peak of activity on day 5 of life and then declining over the next 2 weeks. Concomitant with this peak of synthetic activity the content of GFAP in rat brain was also observed to increase dramatically. GFAP continued to accumulate in brain through postnatal day 30 despite a decrease in the synthesis of the protein. These results indicate that the increase in GFAP during the first month of life cannot be ascribed solely to the rate of GFAP synthesis. The findings are consistent with the hypothesis that during later stages of astrocytic development the accumulation of GFAP may be primarily dependent upon a low rate of protein degradation. The pattern of GFAP phosphorylation in the developing rat brain differed from that observed for the incorporation of (3H) amino acids. The peak incorporation of 32P into GFAP occurred on postnatal day 10 at a time when synthesis of the protein had declined by 43%. These findings suggest that during development phosphorylation of GFAP is mediated by factors different from those directing its synthesis. In addition, phosphorylation of GFAP did not alter its solubility in cytoskeletal preparations indicating that GFAP phosphorylation is probably not a major regulatory mechanism in disassembly of the astroglial filaments.

  8. Free amino acids in crocodilians fed proteins of different biological value.

    PubMed

    Herbert, J D; Coulson, R A

    1975-05-01

    Changes in plasma levels of amino acids derived from fed protein were determined by feeding crocodilians (Caiman crocodilus crocodilus and Alligator mississipiensis) 7.5 g protein/kg body weight and by monitoring the plasma free amino acids for several days. Zein and several other vegetable proteins produced no rise in plasma amino acids and were excreted intact in the feces. Casein and fish muscle were rapidly digested but produced little rise in plasma amino acids, and the increases showed no relationship to the composition of the protein fed. Gelatin feeding led to large increases in plasma amino acids that persisted for more than a week, and the resulting pattern was nearly identical to the composition of gelatin with the exception of aspartic and glutamic acids, and several animals died. Equivalent quantities of fish muscle protein were assimilated without difficulty by the crocodilians. Endogenous protein secreted into the gut apparently contributed little to the amino acid mixture absorbed.

  9. Mitogen-activated protein kinase and abscisic acid signal transduction.

    PubMed

    Heimovaara-Dijkstra, S; Testerink, C; Wang, M

    2000-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), calcium, potassium, pH and a transient activation of MAP kinase. The ABA signal transduction cascades have been shown to be tissue-specific, the transient activation of MAP kinase has until now only been found in barley aleurone cells. However, type 2C phosphatases are involved in the induction of most ABA responses, as shown by the PP2C-deficient abi-mutants. These phosphatases show high homology with phosphatases that regulate MAP kinase activity in yeast. In addition, the role of farnesyl transferase as a negative regulator of ABA responses also indicates towards involvement of MAP kinase in ABA signal transduction. Farnesyl transferase is known to regulate Ras proteins, Ras proteins in turn are known to regulate MAP kinase activation. Interestingly, Ras-like proteins were detected in barley aleurone cells. Further establishment of the involvement of MAP kinase in ABA signal transduction and its role therein, still awaits more study.

  10. Nucleic Acids for Ultra-Sensitive Protein Detection

    PubMed Central

    Janssen, Kris P. F.; Knez, Karel; Spasic, Dragana; Lammertyn, Jeroen

    2013-01-01

    Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. PMID:23337338

  11. Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids.

    PubMed

    Bobkova, Ekaterina V; Liu, Wallace H; Colayco, Sharon; Rascon, Justin; Vasile, Stefan; Gasior, Carlton; Critton, David A; Chan, Xochella; Dahl, Russell; Su, Ying; Sergienko, Eduard; Chung, Thomas D Y; Mustelin, Tomas; Page, Rebecca; Tautz, Lutz

    2011-02-01

    Protein tyrosine phosphatases (PTPs) have only recently become the focus of attention in the search for novel drug targets despite the fact that they play vital roles in numerous cellular processes and are implicated in many human diseases. The hematopoietic protein tyrosine phosphatase (HePTP) is often found dysregulated in preleukemic myelodysplastic syndrome (MDS), as well as in acute myelogenous leukemia (AML). Physiological substrates of HePTP include the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Specific modulators of HePTP catalytic activity will be useful for elucidating mechanisms of MAPK regulation in hematopietic cells, and may also provide treatments for hematopoietic malignancies such as AML. Here we report the discovery of phenoxyacetic acids as inhibitors of HePTP. Structure-activity relationship (SAR) analysis and in silico docking studies reveal the molecular basis of HePTP inhibition by these compounds. We also show that these compounds are able to penetrate cell membranes and inhibit HePTP in human T lymphocytes.

  12. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase. PMID:16631439

  13. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  14. Dietary soy protein isolate modifies hepatic retinoic acid receptor-beta proteins and inhibits their DNA binding activity in rats.

    PubMed

    Xiao, Chao Wu; Mei, Jie; Huang, Wenxin; Wood, Carla; L'abbé, Mary R; Gilani, G Sarwar; Cooke, Gerard M; Curran, Ivan H

    2007-01-01

    Retinoic acid receptors (RAR) belong to the same nuclear receptor superfamily as thyroid hormone receptors (TR) that were previously shown to be modulated by dietary soy protein isolate (SPI). This study has examined the effect of dietary SPI and isoflavones (ISF) on hepatic RAR gene expression and DNA binding activity. In Expt. 1, Sprague-Dawley rats were fed diets containing 20% casein or 20% alcohol-washed SPI in the absence or presence of increasing amounts of ISF (5-1250 mg/kg diet) for 70, 190, or 310 d. In Expt. 2, weanling Sprague-Dawley rats were fed diets containing 20% casein with or without supplemental ISF (50 mg/kg diet) or increasing amounts of alcohol-washed SPI (5, 10, and 20%) for 90 d. Intake of soy proteins significantly elevated hepatic RARbeta2 protein content dose-dependently compared with a casein diet, whereas supplemental ISF had no consistent effect. Neither RARbeta protein in the other tissues measured nor the other RAR (RARalpha and RARgamma) in the liver were affected by dietary SPI, indicating a tissue and isoform-specific effect of SPI. RARbeta2 mRNA abundances were not different between dietary groups except that its expression was markedly suppressed in male rats fed SPI for 310 d. DNA binding activity of nuclear RARbeta was significantly attenuated and the isoelectric points of RARbeta2 were shifted by dietary SPI. Overall, these results show for the first time, to our knowledge, that dietary soy proteins affect hepatic RARbeta2 protein content and RARbeta DNA binding activity, which may contribute to the suppression of retinoid-induced hypertriglyceridemia by SPI as reported.

  15. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  16. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary protein provides essential amino acids (EAA) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to post-prandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  17. Limiting amino acid for protein synthesis with mammary cells in tissue culture.

    PubMed

    Park, C S; Chandler, P T; Norman, A W

    1976-05-01

    To identify the limiting amino acid in the minimal essential medium as published by Eagle (Science 130:432, 1959) for milk protein synthesis in rat mammary cells in tissue culture, two different experimental approaches were used. The first study involved the reduction of amino acids singly from the total amino acid complement of the medium for milk protein synthesis. The second study was to investigate the effect on milk protein synthesis of single amino acid addition to the basic complement of amino acids. Order of limiting amino acids was lysine (first) and possible methionine, valine, or arginine (second).

  18. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-01

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  19. Protein utilization and amino acid digestibility of canola meal in response to phytase in broiler chickens.

    PubMed

    Kong, C; Adeola, O

    2011-07-01

    The regression method was used in a 14-d broiler chicken study to determine the true ileal digestibility of amino acid (AA) and protein utilization in canola meal (CM, 388 g of CP/kg) without or with added phytase. Experimental treatments consisted of 2 factors, phytase at 2 levels (0 or 1,500 phytase units/kg) and CM at 3 levels (125, 250, or 375 g/kg). Birds received a standard starter diet from d 1 to 8 and the assay diets from d 8 to 22 posthatch. On d 8, a total of 384 birds were allocated to 6 dietary treatments in a randomized complete block design; excreta were collected from d 12 to 14 and d 19 to 21, and ileal digesta were collected on d 22 posthatch. True ileal indispensable AA digestibility of CM were derived from the regression of AA flow (mg/kg of DM intake) at the terminal ileum against the intake of AA (mg/kg of dietary DM) of birds fed diets without or with phytase. Body weight gain (BWG), protein gain, and protein intake increased linearly (P < 0.001) with increasing CM level, regardless of phytase supplementation. Effects of phytase (P < 0.05) were observed on BWG and the protein efficiency ratio from d 8 to 15, whereas effects of phytase (P < 0.05) were observed on BWG and protein gain from d 15 to 22. There was no effect of phytase on protein intake and net protein utilization from d 8 to 22. Phytase supplementation at 1,500 phytase units/kg did not affect true ileal digestibility of any AA in CM. In conclusion, the results of this study indicated that phytase supplementation improved the protein efficiency ratio of birds fed diets containing CM as the sole protein source from d 8 to 15 posthatch but did not affect the true ileal digestibility of AA in CM as determined by the regression method.

  20. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  1. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  2. Site-specific incorporation of redox active amino acids into proteins

    SciTech Connect

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  3. Site-specific incorporation of redox active amino acids into proteins

    SciTech Connect

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  4. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans—A Nucleic Acid Binding Protein with Broad Substrate Specificity

    PubMed Central

    Olszewski, Marcin; Balsewicz, Jan; Nowak, Marta; Maciejewska, Natalia; Cyranka-Czaja, Anna; Zalewska-Piątek, Beata; Piątek, Rafał; Kur, Józef

    2015-01-01

    Background SSB (single-stranded DNA-binding) proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis. Results This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein). This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity). The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7±1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100°C and melting temperature (Tm) is 100.2°C as shown by differential scanning calorimetry (DSC) analysis. Conclusion NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids. PMID:25973760

  5. Interconnection between the protein solubility and amino acid and dipeptide compositions.

    PubMed

    Niu, Xiaohui; Li, Nana; Chen, Dinyan; Wang, Zengzhen

    2013-01-01

    Obtaining soluble proteins in sufficient concentrations helps increase the overall success rate in various experimental studies. Protein solubility is an individual trait ultimately determined by its primary protein sequence. Exploring the interconnection between the protein solubility and the compositions of protein sequence is instrumental for setting priorities on targets in large scale proteomics projects. In this paper, amino acid composition (20 dimensions) and the dipeptide composition (400 dimensions) were extracted to form the total candidate feature pool (420 dimensions), and each feature was selected into the feature vectors one by one, which were sorted by the absolute value of the correlation coefficient. Finally, we evaluated and recorded the 420 results of Support Vector Machine (SVM) as the prediction engine. According to the results of SVM, the first 208 features were chosen from the 420 dimensions, which were considered as the efficient ones. By analyzing the composition of the former 208 features, we found that the protein solubility was significantly influenced by the occurrence frequencies of the acidic amino acids, basic amino acids, non-polar hydrophobic amino acids and the two polar neutral amino acids(C, Q) in the protein sequences. Additionally, we detected that the dipeptides composed by the acidic amino acids (D, E) and basic amino acids (K, R and H), especially the dipeptide composed by the acidic amino acids (D, E), had strong interconnection with the protein solubility.

  6. On combining protein sequences and nucleic acid sequences in phylogenetic analysis: the homeobox protein case.

    PubMed

    Agosti, D; Jacobs, D; DeSalle, R

    1996-01-01

    Amino acid encoding genes contain character state information that may be useful for phylogenetic analysis on at least two levels. The nucleotide sequence and the translated amino acid sequences have both been employed separately as character states for cladistic studies of various taxa, including studies of the genealogy of genes in multigene families. In essence, amino acid sequences and nucleic acid sequences are two different ways of character coding the information in a gene. Silent positions in the nucleotide sequence (first or third positions in codons that can accrue change without changing the identity of the amino acid that the triplet codes for) may accrue change relatively rapidly and become saturated, losing the pattern of historical divergence. On the other hand, non-silent nucleotide alterations and their accompanying amino acid changes may evolve too slowly to reveal relationships among closely related taxa. In general, the dynamics of sequence change in silent and non-silent positions in protein coding genes result in homoplasy and lack of resolution, respectively. We suggest that the combination of nucleic acid and the translated amino acid coded character states into the same data matrix for phylogenetic analysis addresses some of the problems caused by the rapid change of silent nucleotide positions and overall slow rate of change of non-silent nucleotide positions and slowly changing amino acid positions. One major theoretical problem with this approach is the apparent non-independence of the two sources of characters. However, there are at least three possible outcomes when comparing protein coding nucleic acid sequences with their translated amino acids in a phylogenetic context on a codon by codon basis. First, the two character sets for a codon may be entirely congruent with respect to the information they convey about the relationships of a certain set of taxa. Second, one character set may display no information concerning a phylogenetic

  7. Clustering amino acid contents of protein domains: biochemical functions of proteins and implications for origin of biological macromolecules.

    PubMed

    Torshin, I Y

    2001-04-01

    Structural classes of protein domains correlate with their amino acid compositions. Several successful algorithms (that use only amino acid composition) have been elaborated for the prediction of structural class or potential biochemical significance. This work deals with dynamic classification (clustering) of the domains on the basis of their amino acid composition. Amino acid contents of domains from a non-redundant PDB set were clustered in 20-dimensional space of amino acid contents. Despite the variations of an empirical parameter and non-redundancy of the set, only one large cluster (tens-hundreds of proteins) surrounded by hundreds of small clusters (1-5 proteins), was identified. The core of the largest cluster contains at least 64% DNA (nucleotide)-interacting protein domains from various sources. About 90% of the proteins of the core are intracellular proteins. 83% of the DNA/nucleotide interacting domains in the core belong to the mixed alpha-beta folds (a+b, a/b), 14% are all-alpha (mostly helices) and all-beta (mostly beta-strands) proteins. At the same time, when core domains that belong to one organism (E.coli) are considered, over 80% of them prove to be DNA/nucleotide interacting proteins. The core is compact: amino acid contents of domains from the core lie in relatively narrow and specific ranges. The core also contains several Fe-S cluster-binding domains, amino acid contents of the core overlap with ferredoxin and CO-dehydrogenase clusters, the oldest known proteins. As Fe-S clusters are thought to be the first biocatalysts, the results are discussed in relation to contemporary experiments and models dealing with the origin of biological macromolecules. The origin of most primordial proteins is considered here to be a result of co-adsorption of nucleotides and amino acids on specific clays, followed by en-block polymerization of the adsorbed mixtures of amino acids.

  8. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein.

    PubMed Central

    Finkelstein, R R; Wang, M L; Lynch, T J; Rao, S; Goodman, H M

    1998-01-01

    Arabidopsis abscisic acid (ABA)-insensitive abi4 mutants have pleiotropic defects in seed development, including decreased sensitivity to ABA inhibition of germination and altered seed-specific gene expression. This phenotype is consistent with a role for ABI4 in regulating seed responses to ABA and/or seed-specific signals. We isolated the ABI4 gene by positional cloning and confirmed its identity by complementation analysis. The predicted protein product shows homology to a plant-specific family of transcriptional regulators characterized by a conserved DNA binding domain, the APETALA 2 domain. The single mutant allele identified has a single base pair deletion, resulting in a frameshift that should disrupt the C-terminal half of the protein but leave the presumed DNA binding domain intact. Expression analyses showed that despite the seed-specific nature of the mutant phenotype, ABI4 expression is not seed specific. PMID:9634591

  9. Articular-cartilage matrix gamma-carboxyglutamic acid-containing protein. Characterization and immunolocalization.

    PubMed Central

    Loeser, R; Carlson, C S; Tulli, H; Jerome, W G; Miller, L; Wallin, R

    1992-01-01

    Matrix gamma-carboxyglutamic acid (Gla)-containing protein (MGP) was found to be present in articular cartilage by Western-blot analysis of guanidinium chloride extracts of human and bovine cartilage and was further localized by immunohistochemical studies on human and monkey specimens. In newborn articular cartilage MGP was present diffusely throughout the matrix, whereas in growth-plate cartilage it was seen mainly in late hypertrophic and calcifying-zone chondrocytes. In adult articular cartilage MGP was present primarily in chondrocytes and the pericellular matrix. Immunoelectron microscopy studies revealed an association between MGP and vesicular structures with an appearance consistent with matrix vesicles. MGP may be an important regulator of cartilage calcification because of its localization in cartilage and the known affinity of Gla-containing proteins for Ca2+ and hydroxyapatite. Images Fig. 1. Fig. 2. Fig. 3. PMID:1540125

  10. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  11. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  12. Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function.

    PubMed

    Lu, Zhongping; Chen, Yong; Aponte, Angel M; Battaglia, Valentina; Gucek, Marjan; Sack, Michael N

    2015-01-23

    Although Sirtuin 3 (SIRT3), a mitochondrially enriched deacetylase and activator of fat oxidation, is down-regulated in response to high fat feeding, the rate of fatty acid oxidation and mitochondrial protein acetylation are invariably enhanced in this dietary milieu. These paradoxical data implicate that additional acetylation modification-dependent levels of regulation may be operational under nutrient excess conditions. Because the heat shock protein (Hsp) Hsp10-Hsp60 chaperone complex mediates folding of the fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase, we tested whether acetylation-dependent mitochondrial protein folding contributes to this regulatory discrepancy. We demonstrate that Hsp10 is a functional SIRT3 substrate and that, in response to prolonged fasting, SIRT3 levels modulate mitochondrial protein folding. Acetyl mutagenesis of Hsp10 lysine 56 alters Hsp10-Hsp60 binding, conformation, and protein folding. Consistent with Hsp10-Hsp60 regulation of fatty acid oxidation enzyme integrity, medium-chain acyl-CoA dehydrogenase activity and fat oxidation are elevated by Hsp10 acetylation. These data identify acetyl modification of Hsp10 as a nutrient-sensing regulatory node controlling mitochondrial protein folding and metabolic function. PMID:25505263

  13. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression.

    PubMed

    Cruz, Tiago M D; Carvalho, Raquel F; Richardson, Dale N; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  14. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  15. Coffee bean arabinogalactans: acidic polymers covalently linked to protein.

    PubMed

    Redgwell, Robert J; Curti, Delphine; Fischer, Monica; Nicolas, Pierre; Fay, Laurent B

    2002-02-11

    The arabinogalactan content of green coffee beans (Coffea arabica var. Yellow Caturra) was released by a combination of chemical extraction and enzymatic hydrolysis of the mannan-cellulose component of the wall. Several arabinogalactan fractions were isolated, purified by gel-permeation and ion-exchange chromatography and characterised by compositional and linkage analysis. The AG fractions contained between 6 and 8% glucuronic acid, and gave a positive test for the beta-glucosyl-Yariv reagent, a stain specific for arabinogalactan-proteins. The protein component accounted for between 0.5 and 2.0% of the AGPs and contained between 7 and 12% hydroxyproline. The AG moieties displayed considerable heterogeneity with regard to their degree of arabinosylation and the extent and composition of their side-chains. They possessed a MW average of 650 kDa which ranged between 150 and 2000 kDa. An investigation of the structural features of the major AG fraction, released following enzymatic hydrolysis of the mannan-cellulose polymers, allowed a partial structure of coffee arabinogalactan to be proposed.

  16. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    PubMed Central

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  17. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  18. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    NASA Astrophysics Data System (ADS)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  19. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  20. Identification of Acidic pH-dependent Ligands of Pentameric C-reactive Protein*

    PubMed Central

    Hammond, David J.; Singh, Sanjay K.; Thompson, James A.; Beeler, Bradley W.; Rusiñol, Antonio E.; Pangburn, Michael K.; Potempa, Lawrence A.; Agrawal, Alok

    2010-01-01

    C-reactive protein (CRP) is a phylogenetically conserved protein; in humans, it is present in the plasma and at sites of inflammation. At physiological pH, native pentameric CRP exhibits calcium-dependent binding specificity for phosphocholine. In this study, we determined the binding specificities of CRP at acidic pH, a characteristic of inflammatory sites. We investigated the binding of fluid-phase CRP to six immobilized proteins: complement factor H, oxidized low-density lipoprotein, complement C3b, IgG, amyloid β, and BSA immobilized on microtiter plates. At pH 7.0, CRP did not bind to any of these proteins, but, at pH ranging from 5.2 to 4.6, CRP bound to all six proteins. Acidic pH did not monomerize CRP but modified the pentameric structure, as determined by gel filtration, 1-anilinonaphthalene-8-sulfonic acid-binding fluorescence, and phosphocholine-binding assays. Some modifications in CRP were reversible at pH 7.0, for example, the phosphocholine-binding activity of CRP, which was reduced at acidic pH, was restored after pH neutralization. For efficient binding of acidic pH-treated CRP to immobilized proteins, it was necessary that the immobilized proteins, except factor H, were also exposed to acidic pH. Because immobilization of proteins on microtiter plates and exposure of immobilized proteins to acidic pH alter the conformation of immobilized proteins, our findings suggest that conformationally altered proteins form a CRP-ligand in acidic environment, regardless of the identity of the protein. This ligand binding specificity of CRP in its acidic pH-induced pentameric state has implications for toxic conditions involving protein misfolding in acidic environments and favors the conservation of CRP throughout evolution. PMID:20843812

  1. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  2. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  3. Effect of branched chain amino acid infusions on body protein metabolism in cirrhosis of liver.

    PubMed Central

    Wright, P D; Holdsworth, J D; Dionigi, P; Clague, M B; James, O F

    1986-01-01

    Thirty seven patients with established cirrhosis of the liver were subjected to measurement of body protein metabolism using L-(1-14C) labelled leucine as a tracer. The effects of disease severity and those of solutions containing 0%, 16%, 35%, 53%, and 100% branched chain amino acids were evaluated. Significant increases in protein synthesis were noted with solutions containing 35%, 53%, and 100% branched chain amino acids, but in patients receiving 100% branched chain amino acids without additional essential amino acid supplement the increase in synthesis was matched by a significant increase in protein breakdown. Protein balance was thus improved only in patients receiving 35% and 53% branched chain amino acids. It was concluded that the high increase in protein breakdown in patients receiving 100% branched chain amino acids was undesirable, and such a solution should not be recommended for clinical use. PMID:3539714

  4. Amino-acid-dependent main-chain torsion-energy terms for protein systems.

    PubMed

    Sakae, Yoshitake; Okamoto, Yuko

    2013-02-14

    Many commonly used force fields for protein systems such as AMBER, CHARMM, GROMACS, OPLS, and ECEPP have amino-acid-independent force-field parameters for main-chain torsion-energy terms. Here, we propose a new type of amino-acid-dependent torsion-energy terms in the force fields. As an example, we applied this approach to AMBER ff03 force field and determined new amino-acid-dependent parameters for ψ (N-C(α)-C-N) and ζ (C(β)-C(α)-C-N) angles for each amino acid by using our optimization method, which is one of the knowledge-based approach. In order to test the validity of the new force-field parameters, we then performed folding simulations of α-helical and β-hairpin peptides, using the optimized force field. The results showed that the new force-field parameters gave structures more consistent with the experimental implications than the original AMBER ff03 force field.

  5. Comparative Analysis of Barophily-Related Amino Acid Content in Protein Domains of Pyrococcus abyssi and Pyrococcus furiosus

    PubMed Central

    Yafremava, Liudmila S.; Di Giulio, Massimo; Caetano-Anollés, Gustavo

    2013-01-01

    Amino acid substitution patterns between the nonbarophilic Pyrococcus furiosus and its barophilic relative P. abyssi confirm that hydrostatic pressure asymmetry indices reflect the extent to which amino acids are preferred by barophilic archaeal organisms. Substitution patterns in entire protein sequences, shared protein domains defined at fold superfamily level, domains in homologous sequence pairs, and domains of very ancient and very recent origin now provide further clues about the environment that led to the genetic code and diversified life. The pyrococcal proteomes are very similar and share a very early ancestor. Relative amino acid abundance analyses showed that biases in the use of amino acids are due to their shared fold superfamilies. Within these repertoires, only two of the five amino acids that are preferentially barophilic, aspartic acid and arginine, displayed this preference significantly and consistently across structure and in domains appearing in the ancestor. The more primordial asparagine, lysine and threonine displayed a consistent preference for nonbarophily across structure and in the ancestor. Since barophilic preferences are already evident in ancient domains that are at least ~3 billion year old, we conclude that barophily is a very ancient trait that unfolded concurrently with genetic idiosyncrasies in convergence towards a universal code. PMID:24187517

  6. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail. PMID:27452282

  7. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail.

  8. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability

    PubMed Central

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-01-01

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability. PMID:26056817

  9. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  10. Effects of dietary cottonseed oil and tannin supplements on protein and fatty acid composition of bovine milk.

    PubMed

    Aprianita, Aprianita; Donkor, Osaana N; Moate, Peter J; Williams, S Richard O; Auldist, Martin J; Greenwood, Jae S; Hannah, Murray C; Wales, William J; Vasiljevic, Todor

    2014-05-01

    This experiment was conducted to determine the effects of diets supplemented with cottonseed oil, Acacia mearnsii-condensed tannin extract, and a combination of both on composition of bovine milk. Treatment diets included addition of cottonseed oil (800 g/d; CSO), condensed tannin from Acacia mearnsii (400 g/d; TAN) or a combination of cottonseed oil (800 g/d) and condensed tannin (400 g/d; CPT) with a diet consisting of 6·0 kg dry matter (DM) of concentrates and alfalfa hay ad libitum, which also served as the control diet (CON). Relative to the CON diet, feeding CSO and CPT diets had a minor impact on feed intake and yield of lactose in milk. These diets increased yields of milk and protein in milk. In contrast to the TAN diet, the CSO and CPT diets significantly decreased milk fat concentration and altered milk fatty acid composition by decreasing the proportion of saturated fatty acids but increasing proportions of monounsaturated and polyunsaturated fatty acids. The CPT diet had a similar effect to the CSO diet in modifying fatty acid profile. Overall, reduction in milk fat concentration and changes in milk fatty acid profile were probably due to supplementation of linoleic acid-rich cottonseed oil. The TAN diet had no effect on feed intake, milk yield and milk protein concentration. However, a reduction in the yields of protein and lactose occurred when cows were fed this diet. Supplemented tannin had no significant effect on fat concentration and changes in fatty acid profile in milk. All supplemented diets did not affect protein concentration or composition, nitrogen concentration, or casein to total protein ratio of the resulting milk.

  11. The immune evasion function of J and Beilong virus V proteins is distinct from that of other paramyxoviruses, consistent with their inclusion in the proposed genus Jeilongvirus.

    PubMed

    Audsley, Michelle D; Marsh, Glenn A; Lieu, Kim G; Tachedjian, Mary; Joubert, D Albert; Wang, Lin-Fa; Jans, David A; Moseley, Gregory W

    2016-03-01

    IFN-antagonist function is a major determinant of pathogenicity and cross-species infection by viruses, but remains poorly defined for many potentially zoonotic viruses resident in animal species. The paramyxovirus family contains several zoonotic viruses, including highly pathogenic viruses such as Nipah virus and Hendra virus, and an increasing number of largely uncharacterized animal viruses. Here, we report the characterization of IFN antagonism by the rodent viruses J virus (JPV) and Beilong virus (BeiPV) of the proposed genus Jeilongvirus of the paramyxoviruses. Infection of cells by JPV and BeiPV was found to inhibit IFN-activated nuclear translocation of signal transducer and activator of transcription 1 (STAT1). However, in contrast to most other paramyxoviruses, the JPV and BeiPV V proteins did not interact with or inhibit signalling by STAT1 or STAT2, suggesting that JPV/BeiPV use an atypical V protein-independent strategy to target STATs, consistent with their inclusion in a separate genus. Nevertheless, the V proteins of both viruses interacted with melanoma differentiation-associated protein 5 (MDA5) and robustly inhibited MDA5-dependent activation of the IFN-β promoter. This supports a growing body of evidence that MDA5 is a universal target of paramyxovirus V proteins, such that the V-MDA5 interaction represents a potential target for broad-spectrum antiviral approaches.

  12. Effects of antinutritional factors on protein digestibility and amino acid availability in foods.

    PubMed

    Gilani, G Sarwar; Cockell, Kevin A; Sepehr, Estatira

    2005-01-01

    Digestibility of protein in traditional diets from developing countries such as India, Guatemala, and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94%). The presence of less digestible protein fractions, high levels of insoluble fiber, and high concentrations of antinutritional factors in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, are responsible for poor digestibility of protein. The effects of the presence of some of the important antinutritional factors on protein and amino digestibilities of food and feed products are reviewed in this chapter. Food and feed products may contain a number of antinutritional factors that may adversely affect protein digestibility and amino acid availability. Antinutritional factors may occur naturally, such as glucosinolates in mustard and rapeseed protein products, trypsin inhibitors and hemagglutinins in legumes, tannins in legumes and cereals, phytates in cereals and oilseeds, and gossypol in cottonseed protein products. Antinutritional factors may also be formed during heat/alkaline processing of protein products, yielding Maillard compounds, oxidized forms of sulfur amino acids, D-amino acids, and lysinoalanine (LAL, an unnatural amino acid derivative). The presence of high levels of dietary trypsin inhibitors from soybeans, kidney beans, or other grain legumes can cause substantial reductions in protein and amino acid digestibilities (up to 50%) in rats and pigs. Similarly, the presence of high levels of tannins in cereals, such as sorghum, and grain legumes, such as fababean (Vicia faba L.), can result in significantly reduced protein and amino acid digestibilities (up to 23%) in rats, poultry, and pigs. Studies involving phytase supplementation of production rations for swine or poultry have provided indirect evidence that normally encountered levels of phytates in cereals and legumes

  13. Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells.

    PubMed

    Tu, Lan N; Zhao, Amy H; Hussein, Mahmoud; Stocco, Douglas M; Selvaraj, Vimal

    2016-03-01

    Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism.

  14. Retinal functional alterations in mice lacking intermediate filament proteins glial fibrillary acidic protein and vimentin.

    PubMed

    Wunderlich, Kirsten A; Tanimoto, Naoyuki; Grosche, Antje; Zrenner, Eberhart; Pekny, Milos; Reichenbach, Andreas; Seeliger, Mathias W; Pannicke, Thomas; Perez, Maria-Thereza

    2015-12-01

    Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.

  15. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    PubMed

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown. PMID:17264222

  16. Experimentally Testing the Hypothesis of a Limited Amino Acid Repertoire in Primitive Proteins

    NASA Astrophysics Data System (ADS)

    Akanuma, S.; Nakajima, Y.; Yokobori, S.; Yamagishi, A.

    2013-11-01

    It has been argued that a fewer amino acids were used in primitive proteins and later the repertoire increased up to 20. To test this hypothesis experimentally, we restricted the amino acid usage of a reconstructed, ancestral protein to reduced sets.

  17. Labeling proteins via hole burning of their aromatic amino acids: pressure tuning spectroscopy of BPTI.

    PubMed Central

    Stübner, Markus; Hecht, Christoph; Friedrich, Josef

    2002-01-01

    We demonstrate hole burning on a protein by using an intrinsic aromatic amino acid as a probe. The protein is bovine pancreatic trypsin inhibitor (BPTI), the labeled amino acid is tyrosine. Only one of the four tyrosines could be burned. As an application we present pressure tuning experiments from which the local compressibility around the burned tyrosine probe is determined. PMID:12496122

  18. Identifying recommended dietary allowances for protein and amino acids: a critique of the 2007 WHO/FAO/UNU report.

    PubMed

    Millward, D Joe

    2012-08-01

    The WHO/FAO/UNU (2007) report examines dietary protein and amino acid requirements for all age groups, protein requirements during pregnancy, lactation and catch-up growth in children, the implications of these requirements for developing countries and protein quality evaluation. Requirements were defined as the minimum dietary intake which satisfies the metabolic demand and achieves nitrogen equilibrium and maintenance of the body protein mass, plus the needs for growth in children and pregnancy and lactation in healthy women. Insufficient evidence was identified to enable recommendations for specific health outcomes. A meta analysis of nitrogen balance studies identifies protein requirements for adults 10 % higher than previous values with no influence of gender or age, consistent with a subsequently published comprehensive study. A new factorial model for infants and children, validated on the basis of the adequacy of breast milk protein intakes and involving a lower maintenance requirement value, no provision for saltatory growth and new estimates of protein deposition identifies lower protein requirements than in previous reports. Higher values for adult amino acid requirements, derived from a re-evaluation of nitrogen balance studies and new stable isotope studies, identify some cereal-based diets as being inadequate for lysine. The main outstanding issues relate to the biological implausibility of the very low efficiencies of protein utilisation used in the factorial models for protein requirements for all population groups especially pregnancy when requirements may be overestimated. Also considerable uncertainty remains about the design and interpretation of most of the studies used to identify amino acid requirement values.

  19. Intra-molecular cross-linking of acidic residues for protein structure studies.

    PubMed

    Novak, Petr; Kruppa, Gary H

    2008-01-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would help to develop structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine (lysine, the amino terminus) selective reagents. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution and solvent accessibility of the lysines in the protein sequence. To overcome these limitations, we have investigated the use of cross-linking reagents that can react with other reactive side chains in proteins. We used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E) and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO side chains can react to form "zero-length" cross-links with nearby primary amine containing residues, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO side chains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker arm of variable length. Using these reagents, we have found three new "zero-length" cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18 and K63-E64). Using the dihydrazide cross-linkers, we have identified two new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 A. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry

  20. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  1. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  2. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition.

    PubMed

    Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen

    2016-09-01

    With the explosive growth of protein sequences entering into protein data banks in the post-genomic era, it is highly demanded to develop automated methods for rapidly and effectively identifying the protein-protein binding sites (PPBSs) based on the sequence information alone. To address this problem, we proposed a predictor called iPPBS-PseAAC, in which each amino acid residue site of the proteins concerned was treated as a 15-tuple peptide segment generated by sliding a window along the protein chains with its center aligned with the target residue. The working peptide segment is further formulated by a general form of pseudo amino acid composition via the following procedures: (1) it is converted into a numerical series via the physicochemical properties of amino acids; (2) the numerical series is subsequently converted into a 20-D feature vector by means of the stationary wavelet transform technique. Formed by many individual "Random Forest" classifiers, the operation engine to run prediction is a two-layer ensemble classifier, with the 1st-layer voting out the best training data-set from many bootstrap systems and the 2nd-layer voting out the most relevant one from seven physicochemical properties. Cross-validation tests indicate that the new predictor is very promising, meaning that many important key features, which are deeply hidden in complicated protein sequences, can be extracted via the wavelets transform approach, quite consistent with the facts that many important biological functions of proteins can be elucidated with their low-frequency internal motions. The web server of iPPBS-PseAAC is accessible at http://www.jci-bioinfo.cn/iPPBS-PseAAC , by which users can easily acquire their desired results without the need to follow the complicated mathematical equations involved.

  3. Vaccination of mice with a soluble protein fraction of Mycobacterium leprae provides consistent and long-term protection against M. leprae infection.

    PubMed Central

    Gelber, R H; Murray, L; Siu, P; Tsang, M

    1992-01-01

    Groups of BALB/c mice were vaccinated intradermally with either Freund's incomplete adjuvant (FIA) alone, 10(7) heat-killed Mycobacterium leprae organisms in FIA, or a number of fractions of M. leprae containing soluble and/or cell wall components. At 1, 3, 6, 9, and 12 months later, vaccinated mice were challenged in the right hind footpad with 5,000 live M. leprae organisms, and vaccine protection was assessed 6 to 8 months later, at the peak of M. leprae multiplication in the negative control (FIA alone), by the two-sample rank-sum test. In these studies, a cell wall fraction rich in peptidoglycan was consistently ineffective. Both heat-killed M. leprae and a fraction containing cell wall and fixed proteins generally protected when the interval between vaccination and challenge was 1 or 3 months but not subsequently. On the other hand, soluble proteins of M. leprae alone or in combination (with cell wall fractions) consistently (14 of 14 instances) afforded highly significant protection (P less than or equal to 0.01) at all challenge intervals up to 1 year after vaccination. These results suggest that the soluble protein fraction of M. leprae offers promise for a vaccine against leprosy. PMID:1563772

  4. Influence of dietary protein type and iron source on the absorption of amino acids and minerals.

    PubMed

    Pérez-Llamas, F; Garaulet, M; Martínez, J A; Marín, J F; Larqué, E; Zamora, S

    2001-12-01

    The apparent digestibility coefficient (ADC) of amino acids and the balance of minerals (calcium, phosphorus, magnesium and iron) has been determined in rats fed four diets differing in the protein type (casein or soy protein) and iron source (ferrous sulphate or lactate) in order to study the possible interactions of these nutrients. The availability of amino acids, especially essential amino acids, was greater in the diet made with animal protein (casein). The iron source also affected the absorption of most amino acids in all the diets assayed with ferrous sulphate being greater. The balance of iron, magnesium and phosphorus was higher in the diets containing animal protein. The retention of calcium and magnesium was significantly greater when ferrous sulphate was used as iron source. These results demonstrate the important interaction between amino acids and minerals and between the minerals themselves, which must be carefully studied when selecting different types of protein or mineral sources in human or animal nutrition.

  5. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans.

  6. A Novel Fatty Acid-Binding Protein-Like Carotenoid-Binding Protein from the Gonad of the New Zealand Sea Urchin Evechinus chloroticus

    PubMed Central

    Pilbrow, Jodi; Sabherwal, Manya; Garama, Daniel; Carne, Alan

    2014-01-01

    A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9′-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid. PMID:25192378

  7. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus.

    PubMed

    Pilbrow, Jodi; Sabherwal, Manya; Garama, Daniel; Carne, Alan

    2014-01-01

    A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9'-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid.

  8. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus.

    PubMed

    Pilbrow, Jodi; Sabherwal, Manya; Garama, Daniel; Carne, Alan

    2014-01-01

    A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9'-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid. PMID:25192378

  9. Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition.

    PubMed

    Wang, Meng; Yang, Jie; Liu, Guo-Ping; Xu, Zhi-Jie; Chou, Kuo-Chen

    2004-06-01

    Membrane proteins are generally classified into the following five types: (1) type I membrane proteins, (2) type II membrane proteins, (3) multipass transmembrane proteins, (4) lipid chain-anchored membrane proteins and (5) GPI-anchored membrane proteins. Prediction of membrane protein types has become one of the growing hot topics in bioinformatics. Currently, we are facing two critical challenges in this area: first, how to take into account the extremely complicated sequence-order effects, and second, how to deal with the highly uneven sizes of the subsets in a training dataset. In this paper, stimulated by the concept of using the pseudo-amino acid composition to incorporate the sequence-order effects, the spectral analysis technique is introduced to represent the statistical sample of a protein. Based on such a framework, the weighted support vector machine (SVM) algorithm is applied. The new approach has remarkable power in dealing with the bias caused by the situation when one subset in the training dataset contains many more samples than the other. The new method is particularly useful when our focus is aimed at proteins belonging to small subsets. The results obtained by the self-consistency test, jackknife test and independent dataset test are encouraging, indicating that the current approach may serve as a powerful complementary tool to other existing methods for predicting the types of membrane proteins.

  10. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  11. The evolution of proteins from random amino acid sequences: II. Evidence from the statistical distributions of the lengths of modern protein sequences.

    PubMed

    White, S H

    1994-04-01

    This paper continues an examination of the hypothesis that modern proteins evolved from random heteropeptide sequences. In support of the hypothesis, White and Jacobs (1993, J Mol Evol 36:79-95) have shown that any sequence chosen randomly from a large collection of nonhomologous proteins has a 90% or better chance of having a lengthwise distribution of amino acids that is indistinguishable from the random expectation regardless of amino acid type. The goal of the present study was to investigate the possibility that the random-origin hypothesis could explain the lengths of modern protein sequences without invoking specific mechanisms such as gene duplication or exon splicing. The sets of sequences examined were taken from the 1989 PIR database and consisted of 1,792 "super-family" proteins selected to have little sequence identity, 623 E. coli sequences, and 398 human sequences. The length distributions of the proteins could be described with high significance by either of two closely related probability density functions: The gamma distribution with parameter 2 or the distribution for the sum of two exponential random independent variables. A simple theory for the distributions was developed which assumes that (1) protoprotein sequences had exponentially distributed random independent lengths, (2) the length dependence of protein stability determined which of these protoproteins could fold into compact primitive proteins and thereby attain the potential for biochemical activity, (3) the useful protein sequences were preserved by the primitive genome, and (4) the resulting distribution of sequence lengths is reflected by modern proteins. The theory successfully predicts the two observed distributions which can be distinguished by the functional form of the dependence of protein stability on length. The theory leads to three interesting conclusions. First, it predicts that a tetra-nucleotide was the signal for primitive translation termination. This prediction is

  12. Allied Health Chemistry Laboratory: Amino Acids, Insulin, Proteins, and Skin

    ERIC Educational Resources Information Center

    Dever, David F.

    1975-01-01

    Presents a laboratory experiment specifically designed for allied health students. The students construct molecular models of amino acids, extract amino acids from their skin with hot water, and chromatographically analyze the skin extract and hydrolyzed insulin. (MLH)

  13. Performance of Broiler Chickens Fed Low Protein, Limiting Amino Acid Supplemented Diets Formulated Either on Total or Standardized Ileal Digestible Amino Acid Basis

    PubMed Central

    Kumar, C. Basavanta; Gloridoss, R. G.; Singh, K. C.; Prabhu, T. M.; Suresh, B. N.

    2016-01-01

    The aim of present experiment was to investigate the effect of protein reduction in commercial broiler chicken rations with incorporation of de-oiled rice bran (DORB) and supplementation of limiting amino acids (valine, isoleucine, and/or tryptophan) with ration formulation either on total amino acid (TAA) or standardized ileal digestible amino acids (SIDAA). The experimental design consisted of T1, TAA control; T2 and T3, 0.75% and 1.5% protein reduction by 3% and 6% DORB incorporation, respectively by replacing soybean meal with supplemental limiting amino acids to meet TAA requirement; T4, SIDAA control, T5 and T6, 0.75% and 1.5% protein reduction by DORB incorporation (3% and 6%) with supplemental limiting amino acids on SIDAA basis. A total of 360 d-old fast growing broiler chicks (Vencobb-400) were divided into 36 homogenous groups of ten chicks each, and six dietary treatments described were allocated randomly with six replications. During 42 days trial, the feed intake was significantly (p<0.05) reduced by TAA factor compared to SIDAA factor and protein factor significantly (p<0.05) reduced the feed intake at 1.5% reduction compared to normal protein group. This was observed only during pre-starter phase but not thereafter. The cumulative body weight gain (BWG) was significantly (p<0.05) reduced in TAA formulations with protein step-down of 1.5% (T3, 1,993 g) compared to control (T1, 2,067 g), while under SIDAA formulations, BWG was not affected with protein reduction of 1.5% (T6, 2,076 g) compared to T4 (2,129 g). The feed conversion ratio (FCR) was significantly (p<0.05) reduced in both TAA and SIDAA formulations with 1.5% protein step-down (T3, 1.741; T6, 1.704) compared to respective controls (T1, 1.696; T4, 1.663). The SIDAA formulation revealed significantly (p<0.05) higher BWG (2,095 g) and better FCR (1.684) compared to TAA formulation (2,028 g; 1.721). Intake of crude protein and all limiting amino acids (SID basis) was higher in SIDAA group than

  14. Properties of low moisture composite materials consisting of oil droplets dispersed in a protein-carbohydrate-glycerol matrix: effect of continuous phase composition.

    PubMed

    Gu, Yeun Suk; Corradini, Maria G; McClements, D Julian; Desrochers, Julia

    2006-01-25

    The influence of continuous phase composition on the properties of low moisture (<3% water) composite materials consisting of oil droplets dispersed in a protein-carbohydrate-glycerol matrix was investigated. These composites were produced by blending canola oil (62.3%), whey protein concentrate (1.7%, WPC), and corn syrup and glycerol together (36.0% combined) using a high speed mixer equipped with a whisk. The polyol composition was varied by changing the ratio of corn syrup to glycerol in the system while keeping the total concentration of these two polyol components constant. Some composites were analyzed directly after preparation ("unbaked"), while others were analyzed after heating at 176 degrees C for 10 min to simulate baking of a food product ("baked"). The "lightness" of the composites was greater before baking (higher L value), but the color intensity of the composites was greater after baking (higher b value), which was attributed to Maillard browning reactions. The brownness of the baked composites increased with increasing corn syrup concentration, which was attributed to Maillard browning reactions. Squeezing flow viscometry indicated that the consistency and yield stress of the composites increased with baking, which was attributed to whey protein unfolding and aggregation. These rheological parameters also increased with increasing corn syrup concentration, which was attributed to its influence on the continuous phase rheology and on the interactions between the whey proteins. This study shows that the continuous phase composition and thermal history of low moisture composite materials have a large impact on their final physicochemical properties. PMID:16417299

  15. Amino acid rating method for evaluating protein adequacy of infant formulas.

    PubMed

    Sarwar, G; Botting, H G; Peace, R W

    1989-01-01

    Amino acid profiles and/or protein digestibility (by the rat balance method) were determined for various forms (powder, ready-to-use, liquid concentrate, etc.) of cow's milk- and soy-based infant formulas obtained from 4 manufacturers. The essential amino acid data of the formulas were compared with that of human milk for the calculation of amino acid scores (based on the single most limiting amino acid). The product of amino acid score and total protein (g/100 kcal) was then termed "amino acid rating." Amino acid scores for the milk- and soy-based formulas ranged from 59 to 90 and from 59 to 81%, respectively, due to deficiencies in sulfur amino acids and/or tryptophan. Because of significantly higher total protein contents (g/100 kcal) of soy- (2.65-3.68) and milk-based (2.20-2.95) infant formulas compared to human milk (1.5), the relative amino acid ratings (human milk = 100) for all infant formulas except 2 liquid concentrates (having values of 87%) were above 100%. Values for true digestibility of protein in milk- and soy-based formulas ranged from 87 to 97 and from 92 to 95%, respectively. When corrected for protein digestibility, the relative amino acid ratings for all the milk-based liquid concentrates were below 100% (77-98%).

  16. Optimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity

    PubMed Central

    Yan, Zhiqiang; Wang, Jin

    2013-01-01

    Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions) for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions. PMID:24098651

  17. Free fatty acid particles in protein formulations, part 2: contribution of polysorbate raw material.

    PubMed

    Siska, Christine C; Pierini, Christopher J; Lau, Hollis R; Latypov, Ramil F; Fesinmeyer, R Matthew; Litowski, Jennifer R

    2015-02-01

    Polysorbate 20 (PS20) is a nonionic surfactant frequently used to stabilize protein biopharmaceuticals. During the development of mAb formulations containing PS20, small clouds of particles were observed in solutions stored in vials. The degree of particle formation was dependent on PS20 concentration. The particles were characterized by reversed-phase HPLC after dissolution and labeling with the fluorescent dye 1-pyrenyldiazomethane. The analysis showed that the particles consisted of free fatty acids (FFAs), with the distribution of types consistent with those found in the PS20 raw material. Protein solutions formulated with polysorbate 80, a chemically similar nonionic surfactant, showed a substantial delay in particle formation over time compared with PS20. Multiple lots of polysorbates were evaluated for FFA levels, each exhibiting differences based on polysorbate type and lot. Polysorbates purchased in more recent years show a greater distribution and quantity of FFA and also a greater propensity to form particles. This work shows that the quality control of polysorbate raw materials could play an important role in biopharmaceutical product quality.

  18. Biophysical and computational methods to analyze amino acid interaction networks in proteins.

    PubMed

    O'Rourke, Kathleen F; Gorman, Scott D; Boehr, David D

    2016-01-01

    Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies. PMID:27441044

  19. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  20. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  1. Safety and Health Benefits of Novel Dietary Supplements Consisting Multiple Phytochemicals, Vitamins, Minerals and Essential Fatty Acids in High Fat Diet Fed Rats.

    PubMed

    Ramprasath, Vanu Ramkumar; Jones, Peter J H

    2016-01-01

    The objective was to determine safety and efficacy of health supplements "Beyond Tangy Tangerine," a multivitamin/mineral complex and combination of multivitamin/mineral complex, "Osteofx," a bone healthy supplement and "Ultimate Essential Fatty Acids" in Sprague Dawley rats consuming high-fat diets. Initially a pilot study was conducted which confirmed palatability and acceptability of supplements. In a second study, rats (n = 15/group) were randomized to Control; Multivitamin/mineral complex (2 g/kg BW) or Combination (2 g Multivitamin/mineral complex, 1.5 g Bone healthy supplement and 0.34 g Essential fatty acids/kg BW). No differences were observed in BW change, feed intake, organ weights or bone mineral composition with supplementations compared to control. Multivitamin/mineral complex supplementation decreased abdominal white adipose tissue weights (WAT) (p = .005), total (p = .033) and fat mass (p = .040), plasma IL-6 (p = .016) and ALKP (p = .038) and elevated plasma calcium (p < .001), phosphorus (p = .038), total protein (p = .002), albumin (p = .014) and globulin (p = .018), compared to control. Similarly, combination supplementation reduced WAT (p < .001), total (p = .023) and fat mass (p = .045), plasma triglycerides (p = .018), IL-6 (p = .002) and ALKP (p < .001) with increases in plasma calcium (p = .031), phosphorus (p < .001) compared to control. Results indicate that consuming either supplement can be considered safe and improves overall health by reducing inflammation, abdominal fat mass and plasma triglycerides, as well as promote bone health.

  2. Safety and Health Benefits of Novel Dietary Supplements Consisting Multiple Phytochemicals, Vitamins, Minerals and Essential Fatty Acids in High Fat Diet Fed Rats.

    PubMed

    Ramprasath, Vanu Ramkumar; Jones, Peter J H

    2016-01-01

    The objective was to determine safety and efficacy of health supplements "Beyond Tangy Tangerine," a multivitamin/mineral complex and combination of multivitamin/mineral complex, "Osteofx," a bone healthy supplement and "Ultimate Essential Fatty Acids" in Sprague Dawley rats consuming high-fat diets. Initially a pilot study was conducted which confirmed palatability and acceptability of supplements. In a second study, rats (n = 15/group) were randomized to Control; Multivitamin/mineral complex (2 g/kg BW) or Combination (2 g Multivitamin/mineral complex, 1.5 g Bone healthy supplement and 0.34 g Essential fatty acids/kg BW). No differences were observed in BW change, feed intake, organ weights or bone mineral composition with supplementations compared to control. Multivitamin/mineral complex supplementation decreased abdominal white adipose tissue weights (WAT) (p = .005), total (p = .033) and fat mass (p = .040), plasma IL-6 (p = .016) and ALKP (p = .038) and elevated plasma calcium (p < .001), phosphorus (p = .038), total protein (p = .002), albumin (p = .014) and globulin (p = .018), compared to control. Similarly, combination supplementation reduced WAT (p < .001), total (p = .023) and fat mass (p = .045), plasma triglycerides (p = .018), IL-6 (p = .002) and ALKP (p < .001) with increases in plasma calcium (p = .031), phosphorus (p < .001) compared to control. Results indicate that consuming either supplement can be considered safe and improves overall health by reducing inflammation, abdominal fat mass and plasma triglycerides, as well as promote bone health. PMID:26317447

  3. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations.

    PubMed

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-27

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8-6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  4. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L.) Proteins and Protein Fractionations

    PubMed Central

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-01

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa. PMID:24473146

  5. Identification of thermophilic proteins by incorporating evolutionary and acid dissociation information into Chou's general pseudo amino acid composition.

    PubMed

    Fan, Guo-Liang; Liu, Yan-Ling; Wang, Hui

    2016-10-21

    Thermophilic proteins can thrive stalely at the high temperatures. Identification of thermophilic protein could be helpful to learn the function of protein. Automated prediction of thermophilic protein is an important tool for genome annotation. In this work, a powerful predictor is proposed by combining amino acid composition, evolutionary information, and acid dissociation constant. The overall prediction accuracy of 93.53% was obtained for using the algorithm of support vector machine. In order to check the performance of our method, two low-similarity independent testing datasets are used to test the proposed method. Comparisons with other methods show that the prediction results were better than other existing methods in literature. This indicates that our approach was effective to predict thermophilic proteins. PMID:27396359

  6. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  7. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  8. Amino acid sequence of the encephalitogenic basic protein from human myelin

    PubMed Central

    Carnegie, P. R.

    1971-01-01

    Myelin from the central nervous system contains an unusual basic protein, which can induce experimental autoimmune encephalomyelitis. The basic protein from human brain was digested with trypsin and other enzymes and the sequence of the 170 amino acids was determined. The localization of the encephalitogenic determinants was described. Possible roles for the protein in the structure and function of myelin are discussed. PMID:4108501

  9. Parameters of proteome evolution from histograms of amino-acid sequence identities of paralogous proteins

    PubMed Central

    Axelsen, Jacob Bock; Yan, Koon-Kiu; Maslov, Sergei

    2007-01-01

    Background The evolution of the full repertoire of proteins encoded in a given genome is mostly driven by gene duplications, deletions, and sequence modifications of existing proteins. Indirect information about relative rates and other intrinsic parameters of these three basic processes is contained in the proteome-wide distribution of sequence identities of pairs of paralogous proteins. Results We introduce a simple mathematical framework based on a stochastic birth-and-death model that allows one to extract some of this information and apply it to the set of all pairs of paralogous proteins in H. pylori, E. coli, S. cerevisiae, C. elegans, D. melanogaster, and H. sapiens. It was found that the histogram of sequence identities p generated by an all-to-all alignment of all protein sequences encoded in a genome is well fitted with a power-law form ~ p-γ with the value of the exponent γ around 4 for the majority of organisms used in this study. This implies that the intra-protein variability of substitution rates is best described by the Gamma-distribution with the exponent α ≈ 0.33. Different features of the shape of such histograms allow us to quantify the ratio between the genome-wide average deletion/duplication rates and the amino-acid substitution rate. Conclusion We separately measure the short-term ("raw") duplication and deletion rates rdup∗, rdel∗ which include gene copies that will be removed soon after the duplication event and their dramatically reduced long-term counterparts rdup, rdel. High deletion rate among recently duplicated proteins is consistent with a scenario in which they didn't have enough time to significantly change their functional roles and thus are to a large degree disposable. Systematic trends of each of the four duplication/deletion rates with the total number of genes in the genome were analyzed. All but the deletion rate of recent duplicates rdel∗ were shown to systematically increase with Ngenes. Abnormally flat shapes

  10. Amino acid metabolism, substrate availability and the control of protein dynamics in the human kidney.

    PubMed

    Garibotto, G; Tessari, P; Sacco, P; Deferrari, G

    1999-01-01

    The mechanisms controlling protein metabolism in the human kidney are not well understood. During adult life, kidney protein content and the size of the kidney remain fairly constant, indicating that protein synthesis and degradation within the kidney are tightly regulated. However, kidney protein turnover may change in response to stimuli such as alterations in substrate availability, hormones or growth factors, acid-base balance, renal work or renal injury with a progressive decrease in the number of nephrons. These factors have been evaluated mainly in animals, in vitro or in vivo. Amino acids, the kidneys substrates for protein synthesis, are provided by several routes. Like in other organs, amino acids can reach the kidney cells through the arterial blood flow. However, they may also come from the degradation of reabsorbed low-molecular weight proteins filtered by the glomerulus. The human kidney has high rates of protein turnover and leucine oxidation. The magnitude of the protein turnover across the human kidney suggests that the protein dynamics is partly determined by intrarenal protein catabolism. As evaluated by a steady-state leucine multiple compartment analysis, kidney protein synthesis is dependent to a similar extent on intrarenal generation of amino acids from protein breakdown and from amino acids taken up from the arterial blood. Kidney mass may therefore depend not only on the availability of free amino acids, but also on filtered proteins which are degraded within the kidney. Future studies could define the mechanisms, metabolic pathways and mediators influencing kidney protein turnover in humans, with a view to better comprehension of the mechanisms of disease. PMID:10493563

  11. [Antinociceptive effect of docosahexaenoic acid (DHA) through long fatty acid receptor G protein-coupled receptor 40 (GPR40)].

    PubMed

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Tokuyama, Shogo

    2014-01-01

    Fatty acids, one class of essential nutrients for humans, are an important source of energy and an essential component of cell membranes. They also function as signal transduction molecules in a variety of biological phenomena. The important functional role of fatty acids in both onset and suppression of pain has become increasingly apparent in recent years. Recently, we have also demonstrated that the release of an endogenous opioid peptide, β-endorphin, plays an important role in the induction of docosahexaenoic acid (DHA)-induced antinociception. It is well known that fatty acids affect intracellular and intercellular signaling as well as the membrane fluidity of neurons. In addition to intracellular actions, unbound free fatty acids (FFAs) can also carry out extracellular signaling by stimulating the G protein-coupled receptor (GPCR). Among these receptors, G protein-coupled receptor 40 (GPR40) has been reported to be activated by long-chain fatty acids such as DHA, eicosapentaenoic acid (EPA) and arachidonic acid. In the peripheral area, GPR40 is preferentially expressed in pancreatic β-cells and is known to relate to the secretion of hormone and peptides. On the other hand, even though this receptor is widely distributed in the central nervous system, reports studying the role and functions of GPR40 in the brain have not been found. In this review, we summarize the findings of our recent study about the long-chain fatty acid receptor GPR40 as a novel pain regulatory system. PMID:24584021

  12. Fast computational methods for predicting protein structure from primary amino acid sequence

    DOEpatents

    Agarwal, Pratul Kumar

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  13. Drosophila Fatty Acid Transport Protein Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival

    PubMed Central

    Dourlen, Pierre; Bertin, Benjamin; Chatelain, Gilles; Robin, Marion; Napoletano, Francesco; Roux, Michel J.; Mollereau, Bertrand

    2012-01-01

    Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance. PMID:22844251

  14. Predicting Reaction Mechanisms and Potentials in Acid and Base from Self-Consistent Quantum Theory: H(ads) and OH(ads) Deposition on the Pt(111) Electrode.

    PubMed

    Zhao, Meng; Anderson, Alfred B

    2016-02-18

    It has been shown recently that when reactants and products are well modeled within a comprehensive self-consistent theory for the electrochemical interface, accurate predictions are possible for reversible potentials, Urev, in acid electrolyte for reactions such as reduction of H(+)(aq) to form under potential deposited H(ads) and oxidation of an OH bond of H2O(ads) to deposit OH(ads). Predictions are based on calculated Gibbs energies for the reactant and product being equal at the reversible potential, which is the potential at the crossing point for reaction and product Gibbs energies, plotted as functions of electrode potential. In this Letter, it is demonstrated that the same capability holds for these reactions in basic electrolyte. This demonstration opens up the opportunity for predictions of reversible potentials and mechanisms for other electrocatalytic reactions in base.

  15. Target-driven self-assembly of stacking deoxyribonucleic acids for highly sensitive assay of proteins.

    PubMed

    Cao, Ya; Chen, Weiwei; Han, Peng; Wang, Zhuxin; Li, Genxi

    2015-08-26

    In this paper, we report a new signal amplification strategy for highly sensitive and enzyme-free method to assay proteins based on the target-driven self-assembly of stacking deoxyribonucleic acids (DNA) on an electrode surface. In the sensing procedure, binding of target protein with the aptamer probe is used as a starting point for a scheduled cycle of DNA hairpin assembly, which consists of hybridization, displacement and target regeneration. Following numbers of the assembly repeats, a great deal of DNA duplexes can accordingly be formed on the electrode surface, and then switch on a succeeding propagation of self-assembled DNA concatemers that provide further signal enhancement. In this way, each target binding event can bring out two cascaded DNA self-assembly processes, namely, stacking DNA self-assembly, and therefore can be converted into remarkably intensified electrochemical signals by associating with silver nanoparticle-based readout. Consequently, highly sensitive detection of target proteins can be achieved. Using interferon-gamma as a model, the assay method displays a linear range from 1 to 500 pM with a detection limit of 0.57 pM, which is comparable or even superior to other reported amplified assays. Moreover, the proposed method eliminates the involvement of any enzymes, thereby enhancing the feasibility in clinical diagnosis.

  16. Detection of D-amino acids in purified proteins synthesized in Escherichia coli.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Homma, Hiroshi; Masaki, Haruhiko

    2010-05-01

    It has long been believed that amino acids comprising proteins of all living organisms are only of the L-configuration, except for Gly. However, peptidyl D-amino acids were observed in hydrolysates of soluble high molecular weight fractions extracted from cells or tissues of various organisms. This strongly suggests that significant amounts of D-amino acids are naturally present in usual proteins. Thus we analyzed the D-amino acid contents of His-tag-purified beta-galactosidase and human urocortin, which were synthesized by Escherichia coli grown in controlled synthetic media. After acidic hydrolysis for various times at 110 degrees C, samples were derivatized with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole (NBD-F) and separated on a reverse-phase column followed by a chiral column into D- and L-enantiomers. The contents of D-enantiomers of Ala, Leu, Phe, Val, Asp, and Glu were determined by plotting index D/(D + L) against the incubation time for hydrolysis and extrapolating the linear regression line to 0 h to eliminate the effect of racemization of amino acids during the incubation. Significant contents of D-amino acids were reproducibly detected, the D-amino acid profile being specific to an individual protein. This finding indicated the likelihood that D-amino acids are in fact present in the purified proteins. On the other hand, the D-amino acid contents of proteins were hardly influenced by the addition of D- or L-amino acids to the cultivation medium, whereas intracellular free D-amino acids sensitively varied according to the extracellular conditions. The origin of these D-amino acids detected in proteins was discussed.

  17. Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status.

    PubMed

    Tomás-Barberán, Francisco A; García-Villalba, Rocío; González-Sarrías, Antonio; Selma, María V; Espín, Juan C

    2014-07-16

    Three phenotypes for urolithin production after ellagitannin and ellagic acid intake are consistently observed in different human intervention trials. Subjects can be stratified into three urolithin-producing groups. "Phenotype A" produced only urolithin A conjugates, which included between 25 and 80% of the volunteers in the different trials. "Phenotype B" produced isourolithin A and/or urolithin B in addition to urolithin A, this being the second relevant group (10-50%). "Phenotype 0" (5-25%) was that in which these urolithins were not detected. The three phenotypes were observed independently of the volunteers' health status and demographic characteristics (age, gender, body mass index (BMI)) and of the amount or type of ellagitannin food source ingested (walnuts and other nuts, strawberries, raspberries, and other berries or pomegranates). Interestingly, a higher percentage of phenotype B was observed in those volunteers with chronic illness (metabolic syndrome or colorectal cancer) associated with gut microbial imbalance (dysbiosis). These urolithin phenotypes could show differences in the human gut microbiota and should be considered in intervention trials dealing with health benefits of ellagitannins or ellagic acid. Whether this phenotypic variation could be a biomarker related to differential health benefits or illness predisposition deserves further research.

  18. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  19. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins.

    PubMed

    Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos

    2015-08-11

    The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson-Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software.

  20. Regulation of protein synthesis by amino acids in muscle of neonates.

    PubMed

    Suryawan, Agus; Davis, Teresa A

    2011-01-01

    The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent that regulates protein synthesis. mTORC1, which controls protein synthesis, has been implicated as a target for leucine. Until recently, there have been few studies exploring the role of amino acids in enhancing muscle protein synthesis in vivo. In this review, we discuss amino acid-induced protein synthesis in muscle in the neonate, focusing on current knowledge of the role of amino acids in the activation of mTORC1 leading to mRNA translation. The role of the amino acid transporters, SNAT2, LAT1, and PAT, in the modulation of mTORC1 activation and the role of amino acids in the activation of putative regulators of mTORC1, i.e., raptor, Rheb, MAP4K3, Vps34, and Rag GTPases, are discussed.

  1. Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria.

    PubMed

    Schönfeld, P; Struy, H

    1999-08-27

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), a branched chain fatty acid accumulating in Refsum disease to high levels throughout the body, induces uncoupling of rat liver mitochondria similar to non-branched fatty acids (e.g. palmitic acid), but the contribution of the ADP/ATP carrier or the aspartate/glutamate carrier in phytanic acid-induced uncoupling is of minor importance. Possible deleterious effects of phytanic acid on membrane-linked energy coupling processes were studied by ESR spectroscopy using rat liver mitochondria and a membrane preparation labeled with the lipid-specific spin probe 5-doxylstearic acid (5-DSA) or the protein-specific spin probe MAL-TEMPO (4-maleimido-2,2,6, 6-tetramethyl-piperidine-1-oxyl). The effects of phytanic acid on phospholipid molecular dynamics and on the physical state of membrane proteins were quantified by estimation of the order parameter or the ratio of the amplitudes of the weakly to strongly immobilized MAL-TEMPO binding sites (W/S ratio), respectively. It was found, that phytanic acid (1) increased the mobility of phospholipid molecules (indicated by a decrease in the order parameter) and (2) altered the conformational state and/or the segmental mobility of membrane proteins (indicated by a drastic decrease in the W/S ratio). Unsaturated fatty acids with multiple cis-double bonds (e.g. linolenic or arachidonic acid), but not non-branched FFA (ranging from chain length C10:0 to C18:0), also decrease the W/S ratio. It is hypothesized that the interaction of phytanic acid with transmembrane proteins might stimulate the proton permeability through the mitochondrial inner membrane according to a mechanism, different to a protein-supported fatty acid cycling.

  2. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  3. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein.

    PubMed

    Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael

    2009-11-15

    Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. PMID:19603488

  4. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein.

    PubMed

    Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael

    2009-11-15

    Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex.

  5. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats.

    PubMed

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping

  6. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  7. Amino acid residues in the laminin G domains of protein S involved in tissue factor pathway inhibitor interaction.

    PubMed

    Somajo, Sofia; Ahnström, Josefin; Fernandez-Recio, Juan; Gierula, Magdalena; Villoutreix, Bruno O; Dahlbäck, Björn

    2015-05-01

    Protein S functions as a cofactor for tissue factor pathway inhibitor (TFPI) and activated protein C (APC). The sex hormone binding globulin (SHBG)-like region of protein S, consisting of two laminin G-like domains (LG1 and LG2), contains the binding site for C4b-binding protein (C4BP) and TFPI. Furthermore, the LG-domains are essential for the TFPI-cofactor function and for expression of full APC-cofactor function. The aim of the current study was to localise functionally important interaction sites in the protein S LG-domains using amino acid substitutions. Four protein S variants were created in which clusters of surface-exposed amino acid residues within the LG-domains were substituted. All variants bound normally to C4BP and were fully functional as cofactors for APC in plasma and in pure component assays. Two variants, SHBG2 (E612A, I614A, F265A, V393A, H453A), involving residues from both LG-domains, and SHBG3 (K317A, I330A, V336A, D365A) where residues in LG1 were substituted, showed 50-60 % reduction in enhancement of TFPI in FXa inhibition assays. For SHBG3 the decreased TFPI cofactor function was confirmed in plasma based thrombin generation assays. Both SHBG variants bound to TFPI with decreased affinity in surface plasmon resonance experiments. The TFPI Kunitz 3 domain is known to contain the interaction site for protein S. Using in silico analysis and protein docking exercises, preliminary models of the protein S SHBG/TFPI Kunitz domain 3 complex were created. Based on a combination of experimental and in silico data we propose a binding site for TFPI on protein S, involving both LG-domains.

  8. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress

    PubMed Central

    Shu, Sheng; Yuan, Yinghui; Chen, Jie; Sun, Jin; Zhang, Wenhua; Tang, Yuanyuan; Zhong, Min; Guo, Shirong

    2015-01-01

    Polyamines can alleviate the inhibitory effects of salinity on plant growth by regulating photosynthetic efficiency. However, little information is available to explain the specific mechanisms underlying the contribution of polyamines to salt tolerance of the photosynthetic apparatus. Here, we investigated the role of putrescine (Put) on the photosynthetic apparatus of cucumber seedlings under salt stress. We found that NaCl stress resulted in severe ion toxicity and oxidative stress in cucumber chloroplasts. In addition, salinity caused a significant increase in the saturated fatty acid contents of thylakoid membranes. Put altered unsaturated fatty acid content, thereby alleviating the disintegration of thylakoid grana lamellae and reducing the number of plastoglobuli in thylakoid membranes. BN-PAGE revealed Put up-regulated the expression of ATP synthase, CP47, D1, Qb, and psbA proteins and down-regulated CP24, D2, and LHCII type III in NaCl-stressed thylakoid membranes. qRT-PCR analysis of gene expression was used to compare transcript and protein accumulation among 10 candidate proteins. For five of these proteins, induced transcript accumulation was consistent with the pattern of induced protein accumulation. Our results suggest that Put regulates protein expression at transcriptional and translational levels by increasing endogenous polyamines levels in thylakoid membranes, which may stabilise photosynthetic apparatus under salt stress. PMID:26435404

  9. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress.

    PubMed

    Shu, Sheng; Yuan, Yinghui; Chen, Jie; Sun, Jin; Zhang, Wenhua; Tang, Yuanyuan; Zhong, Min; Guo, Shirong

    2015-01-01

    Polyamines can alleviate the inhibitory effects of salinity on plant growth by regulating photosynthetic efficiency. However, little information is available to explain the specific mechanisms underlying the contribution of polyamines to salt tolerance of the photosynthetic apparatus. Here, we investigated the role of putrescine (Put) on the photosynthetic apparatus of cucumber seedlings under salt stress. We found that NaCl stress resulted in severe ion toxicity and oxidative stress in cucumber chloroplasts. In addition, salinity caused a significant increase in the saturated fatty acid contents of thylakoid membranes. Put altered unsaturated fatty acid content, thereby alleviating the disintegration of thylakoid grana lamellae and reducing the number of plastoglobuli in thylakoid membranes. BN-PAGE revealed Put up-regulated the expression of ATP synthase, CP47, D1, Qb, and psbA proteins and down-regulated CP24, D2, and LHCII type III in NaCl-stressed thylakoid membranes. qRT-PCR analysis of gene expression was used to compare transcript and protein accumulation among 10 candidate proteins. For five of these proteins, induced transcript accumulation was consistent with the pattern of induced protein accumulation. Our results suggest that Put regulates protein expression at transcriptional and translational levels by increasing endogenous polyamines levels in thylakoid membranes, which may stabilise photosynthetic apparatus under salt stress. PMID:26435404

  10. Comparison of Quantum Mechanics and Molecular Mechanics Dimerization Energy Landscapes for Pairs of Ring-Containing Amino Acids in Proteins

    SciTech Connect

    Morozov, Alexandre V.; Misura M. S., Kira; Tsemekhman, Kiril; Baker, David

    2004-06-17

    A promising approach to developing improved potential functions for modeling macromolecular interactions consists of combining protein structural analysis, quantum mechanical calculations on small molecule models, and molecular mechanics potential decomposition. Here we apply this approach to the interactions of pairs of ring-containing amino acids in proteins. We find reasonable qualitative agreement between molecular mechanics and quantum chemistry calculations, both over one-dimensional projections of the binding free energy landscape for amino acid homodimers and over a set of homodimers and heterodimers from experimentally observed protein crystal structures. The molecular mechanics landscapes are a sum of charge-charge and Lennard-Jones contributions; short-range quantum mechanical effects such as charge transfer appear not to be significant in ring side chain interactions. We also find a reasonable degree of correlation between the molecular mechanics energy landscapes and the distributions of dimer geometries observed in protein structures, suggesting that the intrinsic dimer interaction energies do contribute to packing of side chains in proteins rather than being overwhelmed by the numerous interactions with other protein atoms and solvent. These results demonstrate that interactions involving aromatic residues and proline can be fairly well modeled using current molecular mechanics force fields, but there is still room for improvement, particularly for interactions involving proline and tyrosine.

  11. How the folding rates of two- and multistate proteins depend on the amino acid properties.

    PubMed

    Huang, Jitao T; Huang, Wei; Huang, Shanran R; Li, Xin

    2014-10-01

    Proteins fold by either two-state or multistate kinetic mechanism. We observe that amino acids play different roles in different mechanism. Many residues that are easy to form regular secondary structures (α helices, β sheets and turns) can promote the two-state folding reactions of small proteins. Most of hydrophilic residues can speed up the multistate folding reactions of large proteins. Folding rates of large proteins are equally responsive to the flexibility of partial amino acids. Other properties of amino acids (including volume, polarity, accessible surface, exposure degree, isoelectric point, and phase transfer energy) have contributed little to folding kinetics of the proteins. Cysteine is a special residue, it triggers two-state folding reaction and but inhibits multistate folding reaction. These findings not only provide a new insight into protein structure prediction, but also could be used to direct the point mutations that can change folding rate.

  12. Intestinal transport of sulfanilic acid in rats immunized with protein-sulfanilic acid conjugate.

    PubMed

    Yamamoto, A; Kawaratani, T; Kawashima, K; Hashida, M; Sezaki, H

    1990-07-01

    Intestinal transport of sulfanilic acid was examined by means of an in vitro everted sac technique in rats immunized with a bovine gamma-globulin-sulfanilic acid conjugate. At a low concentration of sulfanilic acid, the intestinal transport of sulfanilic acid was decreased in rats immunized with bovine gamma-globulin-sulfanilic acid conjugate. This phenomenon was dose dependent and antigen specific, since there was no difference in the transport of sulfanilic acid at a high concentration and of an unrelated hapten. These results suggested that parenteral immunization impaired not only the intestinal transport of macromolecular antigens, as previously shown, but also the transport of the low molecular weight hapten, sulfanilic acid.

  13. Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation.

    PubMed

    Sánchez-Reyes, Omar B; Romero-Ávila, M Teresa; Castillo-Badillo, Jean A; Takei, Yoshinori; Hirasawa, Akira; Tsujimoto, Gozoh; Villalobos-Molina, Rafael; García-Sáinz, J Adolfo

    2014-01-15

    GPR120, free fatty acid receptor 4, is a recently deorphanized G protein-coupled receptor that seems to play cardinal roles in the regulation of metabolism and in the pathophysiology of inflammatory and metabolic disorders. In the present work a GPR120-Venus fusion protein was expressed in HEK293 Flp-In T-REx cells and its function (increase in intracellular calcium) and phosphorylation were studied. It was observed that the fusion protein migrated in sodium dodecyl sulfate-polyacrylamide gels as a band with a mass of ≈70-75kDa, although other bands of higher apparent weight (>130kDa) were also detected. Cell stimulation with docosahexaenoic acid or α-linolenic acid induced concentration-dependent increases in intracellular calcium and GPR120 phosphorylation. Activation of protein kinase C with phorbol esters also induced a marked receptor phosphorylation but did not alter the ability of 1µM docosahexaenoic acid to increase the intracellular calcium concentration. Phorbol ester-induced GPR120 phosphorylation, but not that induced with docosahexaenoic acid, was blocked by protein kinase C inhibitors (bis-indolyl-maleimide I and Gö 6976) suggesting that conventional kinase isoforms mediate this action. The absence of effect of protein kinase C inhibitors on agonist-induced GPR120 phosphorylation indicates that this kinase does not play a major role in agonist-induced receptor phosphorylation. Docosahexaenoic acid action was associated with marked GPR120 internalization whereas that induced with phorbol esters was smaller at early times. PMID:24239485

  14. Quantifying Protein-Fatty Acid Interactions Using Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Lan; Kitova, Elena N.; Klassen, John S.

    2011-02-01

    The application of the direct electrospray ionization mass spectrometry (ESI-MS) assay to quantify interactions between bovine β-lactoglobulin (Lg) and a series of fatty acids (FA), CH3(CH2)xCOOH, where x = 6 (caprylic acid, CpA), 8 (capric acid, CA), 10 (lauric acid, LA), 12 (myristic acid, MA), 14 (palmitic acid, PA) and 16 (stearic acid, SA), is described. Control ESI-MS binding measurements performed on the Lg-PA interaction revealed that both the protonated and deprotonated gas phase ions of the (Lg + PA) complex are prone to dissociate in the ion source, which leads to artificially small association constants ( K a ). The addition of imidazole, a stabilizing solution additive, at high concentration (10 mM) increased the relative abundance of (Lg + PA) complex measured by ESI-MS in both positive and negative ion modes. The K a value measured in negative ion mode and using sampling conditions that minimize in-source dissociation is in good agreement with a value determined using a competitive fluorescence assay. The K a values measured by ESI-MS for the Lg interactions with MA and SA are also consistent with values expected based on the fluorescence measurements. However, the K a values measured using optimal sampling conditions in positive ion mode are significantly lower than those measured in negative ion mode for all of the FAs investigated. It is concluded that the protonated gaseous ions of the (Lg + FA) complexes are kinetically less stable than the deprotonated ions. In-source dissociation was significant for the complexes of Lg with the shorter FAs (CpA, CA, and LA) in both modes and, in the case of CpA, no binding could be detected by ESI-MS. The affinities of Lg for CpA, CA, and LA determined using the reference ligand ESI-MS assay, a method for quantifying labile protein-ligand complexes that are prone to in-source dissociation, were found to be in good agreement with reported values.

  15. Vaccination of Gerbils with Bm-103 and Bm-RAL-2 Concurrently or as a Fusion Protein Confers Consistent and Improved Protection against Brugia malayi Infection

    PubMed Central

    Arumugam, Sridhar; Wei, Junfei; Liu, Zhuyun; Abraham, David; Bell, Aaron; Bottazzi, Maria Elena; Hotez, Peter J.; Zhan, Bin; Lustigman, Sara; Klei, Thomas R.

    2016-01-01

    Background The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. Methodology and Principle Findings Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. Conclusion Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted. PMID:27045170

  16. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis.

    PubMed

    Bordewick, U; Heese, M; Börchers, T; Robenek, H; Spener, F

    1989-03-01

    Fatty-acid-binding proteins are known to occur in the cytosol of mammalian cells and to bind fatty acids and their CoA-esters. Application of the postembedding protein A-gold labeling method with antibody against the hepatic type fatty-acid-binding protein (hFABP) to cross-sections of liver cells and a newly developed gel-chromatographic immunofluorescence assay established qualitatively (1) that hFABP in mitochondria was confined to outer mitochondrial membranes, (2) the presence of this protein in microsomes and (3) that nuclei were also filled with hFABP. Quantitative data elaborated with a non-competitive ELISA confirmed these results. A significant difference to the distribution of cardiac FABP in heart muscle cells, where this type of protein was found in cytosol, matrix and nuclei, was observed (Börchers et al. (1989) Biochim. Biophys. Acta, in the press). hFABP-containing rat liver microsomes were incubated with long-chain acyl-CoAs in the presence of hFABP (isolated from rat liver cytosol) in a study on the acylation of sn-glycerol-3-phosphate and lysophosphatidic acid. Both acyltransferases were stimulated by addition of hFABP to the incubation medium. The morphological, immunochemical as well as kinetic data infer a direct interaction of hFABP with microsomal membranes in liver cells.

  17. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  18. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate. PMID:25085083

  19. Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs antagonist.

    PubMed

    Itoh, Yukihiro; Ishikawa, Minoru; Kitaguchi, Risa; Okuhira, Keiichiro; Naito, Mikihiko; Hashimoto, Yuichi

    2012-07-01

    Protein knockdown can be achieved by the use of a small molecule that possesses affinity for both the target protein and ubiquitin ligase. We have designed such a degradation-inducing molecule targeting cIAP1 and CRABP-II, which are involved in proliferation of several cancer cell lines and in neuroblastoma growth, respectively. As a CRABP-II-recognizing moiety, all-trans retinoic acid (ATRA, 3), a physiological ligand of CRABP, was chosen. As a cIAP1-recognizing moiety, MV1 (5), which is a cIAP1/cIAP2/XIAP pan-ligand, was chosen. Although cIAP1 itself possesses ubiquitin ligase activity, we expected that its decomposition would be efficiently mediated by related molecules, including cIAP2 and XIAP, which also possess ubiquitin ligase activity. The designed degradation inducer 6, in which ATRA (3) and MV1 (5) moieties are connected via a linker, was synthesized and confirmed to induce efficient degradation of both cIAP1 and CRABP-II. It showed potently inhibited the proliferation of IMR32 cells.

  20. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  1. Relationship between amino acid scores and protein quality indices based on rat growth.

    PubMed

    Sarwar, G; Peace, R W; Botting, H G; Brulé, D

    1989-01-01

    Protein efficiency ratio (PER), relative PER (RPER), net protein ratio (NPR) and relative NPR (RNPR) values, and amino acid scores were calculated for 20 food products (casein, casein + Met, beef salami, skim milk, tuna, chicken frankfuters, sausage, heated skim milk, peanut butter, rolled oats, soy isolate, chick peas, pea concentrate, kidney beans, wheat cereal, pinto bean, lentils, rice-wheat gluten cereal, macaroni-cheese, and beef stew). In most cases, PER, RPER, NPR or RNPR ranked the products in the same order and positive correlations among the protein quality methods were highly significant (r = 0.98-0.99). Amino acid scores (based on the first limiting amino acid, Lys-Met-Cys, Lys-Met-Cys-Trp or lys-Met-Cys-Trp-Thr) were positively correlated to the PER, RPER, NPR or RNPR data (r = 0.61-0.75). Inclusion of the correction for true digestibility of protein improved the correlations between amino acid scores and the indices based on rat growth. The correlations were especially high between Lys-Met-Cys scores (corrected for true digestibility of protein) and PER, RPER, NPR or RNPR (r = 0.86-0.91). Inclusion of the correction for true digestibility of individual amino acids did not result in further improvements of the correlations in most cases. It is concluded that adjusting amino acid scores for true digestibility of protein would be sufficient and further correction for digestibility of amino acids would be unnecessary in mixed diets. PMID:2710751

  2. Natural vs. random protein sequences: Discovering combinatorics properties on amino acid words.

    PubMed

    Santoni, Daniele; Felici, Giovanni; Vergni, Davide

    2016-02-21

    Casual mutations and natural selection have driven the evolution of protein amino acid sequences that we observe at present in nature. The question about which is the dominant force of proteins evolution is still lacking of an unambiguous answer. Casual mutations tend to randomize protein sequences while, in order to have the correct functionality, one expects that selection mechanisms impose rigid constraints on amino acid sequences. Moreover, one also has to consider that the space of all possible amino acid sequences is so astonishingly large that it could be reasonable to have a well tuned amino acid sequence indistinguishable from a random one. In order to study the possibility to discriminate between random and natural amino acid sequences, we introduce different measures of association between pairs of amino acids in a sequence, and apply them to a dataset of 1047 natural protein sequences and 10,470 random sequences, carefully generated in order to preserve the relative length and amino acid distribution of the natural proteins. We analyze the multidimensional measures with machine learning techniques and show that, to a reasonable extent, natural protein sequences can be differentiated from random ones.

  3. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  4. Natural vs. random protein sequences: Discovering combinatorics properties on amino acid words.

    PubMed

    Santoni, Daniele; Felici, Giovanni; Vergni, Davide

    2016-02-21

    Casual mutations and natural selection have driven the evolution of protein amino acid sequences that we observe at present in nature. The question about which is the dominant force of proteins evolution is still lacking of an unambiguous answer. Casual mutations tend to randomize protein sequences while, in order to have the correct functionality, one expects that selection mechanisms impose rigid constraints on amino acid sequences. Moreover, one also has to consider that the space of all possible amino acid sequences is so astonishingly large that it could be reasonable to have a well tuned amino acid sequence indistinguishable from a random one. In order to study the possibility to discriminate between random and natural amino acid sequences, we introduce different measures of association between pairs of amino acids in a sequence, and apply them to a dataset of 1047 natural protein sequences and 10,470 random sequences, carefully generated in order to preserve the relative length and amino acid distribution of the natural proteins. We analyze the multidimensional measures with machine learning techniques and show that, to a reasonable extent, natural protein sequences can be differentiated from random ones. PMID:26656109

  5. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  6. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions. PMID:26862880

  7. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.

  8. Correlations Between Amino Acids at Different Sites in Local Sequences of Protein Fragments with Given Structural Patterns

    NASA Astrophysics Data System (ADS)

    Lu, Wen; Liu, Hai-yan

    2007-02-01

    Ample evidence suggests that the local structures of peptide fragments in native proteins are to some extent encoded by their local sequences. Detecting such local correlations is important but it is still an open question what would be the most appropriate method. This is partly because conventional sequence analyses treat amino acid preferences at each site of a protein sequence independently, while it is often the inter-site interactions that bring about local sequence-structure correlations. Here a new scheme is introduced to capture the correlation between amino acid preferences at different sites for different local structure types. A library of nine-residue fragments is constructed, and the fragments are divided into clusters based on their local structures. For each local structure cluster or type, chi-square tests are used to identify correlated preferences of amino acid combinations at pairs of sites. A score function is constructed including both the single site amino acid preferences and the dual-site amino acid combination preferences, which can be used to identify whether a sequence fragment would have a strong tendency to form a particular local structure in native proteins. The results show that, given a local structure pattern, dual-site amino acid combinations contain different information from single site amino acid preferences. Representative examples show that many of the statistically identified correlations agree with previously-proposed heuristic rules about local sequence-structure correlations, or are consistent with physical-chemical interactions required to stabilize particular local structures. Results also show that such dual-site correlations in the score function significantly improves the Z-score matching a sequence fragment to its native local structure relative to non-native local structures, and certain local structure types are highly predictable from the local sequence alone if inter-site correlations are considered.

  9. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2013-03-12

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel sythetases molecules, methods for identifying and making the novel synthetases, methods for producing containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lapidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  10. Amino Acid Distribution Rules Predict Protein Fold: Protein Grammar for Beta-Strand Sandwich-Like Structures

    PubMed Central

    Kister, Alexander

    2015-01-01

    We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198

  11. Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.

    PubMed

    Landete, José M; Langa, Susana; Revilla, Concepción; Margolles, Abelardo; Medina, Margarita; Arqués, Juan L

    2015-08-01

    Lactic acid bacteria (LAB) are commonly used in the production of fermented and probiotic foods. Development of molecular tools to discriminate the strains of interest from the endogenous microbiota in complex environments like food or gut is of high interest. Green fluorescent protein (GFP)-like chromophores strictly requires molecular oxygen for maturation of fluorescence, which restrict the study of microorganisms in low-oxygen environments. In this work, we have developed a noninvasive cyan-green fluorescent based reporter system for real-time tracking of LAB that is functional under anoxic conditions. The evoglow-Pp1 was cloned downstream from the promoters D-alanyl-D-alanine carboxypeptidase and elongation factor Tu of Lactobacillus reuteri CECT925 using pNZ8048 and downstream of the lactococcal P1 promoter using pT1NX. The classical gfp was also cloned in pT1NX. These recombinant expression vectors were electroporated into Lactococccus, Lactobacillus, and Enterococcus strains with biotechnological and/or probiotic interests to assess and compare their functionality under different conditions of oxygen and pH. The expression was analyzed by imaging and fluorometric methods as well as by flow cytometry. We demonstrate that reporter systems pNZ:TuR-aFP and pT1-aFP are two versatile molecular markers for monitoring LAB in food and fecal environments without the potential problems caused by oxygen and pH limitations, which could be exploited for in vivo studies. Production of the fluorescent protein did not disturb any important physiological properties of the parental strains, such as growth rate, reuterin, or bacteriocin production.

  12. RNA-binding protein QKI regulates Glial fibrillary acidic protein expression in human astrocytes.

    PubMed

    Radomska, Katarzyna J; Halvardson, Jonatan; Reinius, Björn; Lindholm Carlström, Eva; Emilsson, Lina; Feuk, Lars; Jazin, Elena

    2013-04-01

    Linkage, association and expression studies previously pointed to the human QKI, KH domain containing, RNA-binding (QKI) as a candidate gene for schizophrenia. Functional studies of the mouse orthologue Qk focused mainly on its role in oligodendrocyte development and myelination, while its function in astroglia remained unexplored. Here, we show that QKI is highly expressed in human primary astrocytes and that its splice forms encode proteins targeting different subcellular localizations. Uncovering the role of QKI in astrocytes is of interest in light of growing evidence implicating astrocyte dysfunction in the pathogenesis of several disorders of the central nervous system. We selectively silenced QKI splice variants in human primary astrocytes and used RNA sequencing to identify differential expression and splice variant composition at the genome-wide level. We found that an mRNA expression of Glial fibrillary acidic protein (GFAP), encoding a major component of astrocyte intermediate filaments, was down-regulated after QKI7 splice variant silencing. Moreover, we identified a potential QKI-binding site within the 3' untranslated region of human GFAP. This sequence was not conserved between mice and humans, raising the possibility that GFAP is a target for QKI in humans but not rodents. Haloperidol treatment of primary astrocytes resulted in coordinated increases in QKI7 and GFAP expression. Taken together, our results provide the first link between QKI and GFAP, two genes with alterations previously observed independently in schizophrenic patients. Our findings for QKI, together with its well-known role in myelination, suggest that QKI is a hub regulator of glia function in humans.

  13. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  14. Single-molecule pull-down for investigating protein-nucleic acid interactions.

    PubMed

    Fareh, Mohamed; Loeff, Luuk; Szczepaniak, Malwina; Haagsma, Anna C; Yeom, Kyu-Hyeon; Joo, Chirlmin

    2016-08-01

    The genome and transcriptome are constantly modified by proteins in the cell. Recent advances in single-molecule techniques allow for high spatial and temporal observations of these interactions between proteins and nucleic acids. However, due to the difficulty of obtaining functional protein complexes, it remains challenging to study the interactions between macromolecular protein complexes and nucleic acids. Here, we combined single-molecule fluorescence with various protein complex pull-down techniques to determine the function and stoichiometry of ribonucleoprotein complexes. Through the use of three examples of protein complexes from eukaryotic cells (Drosha, Dicer, and TUT4 protein complexes), we provide step-by-step guidance for using novel single-molecule techniques. Our single-molecule methods provide sub-second and nanometer resolution and can be applied to other nucleoprotein complexes that are essential for cellular processes. PMID:27017911

  15. Cellular fatty acid and soluble protein composition of Actinobacillus actinomycetemcomitans and related organisms.

    PubMed Central

    Calhoon, D A; Mayberry, W R; Slots, J

    1981-01-01

    The cellular fatty acid and protein content of twenty-five representative strains of Actinobacillus actinomycetecomitans isolated from juvenile and adult periodontitis patients was compared to that of 15 reference strains of oral and nonoral Actinobacillus species and Haemophilus aphrophilus. Trimethylsilyl derivatives of the fatty acid methyl esters were analyzed by gas-liquid chromatography. The predominant fatty acids of all 40 strains examined were 14:0, 3-OH 14:0, 16 delta, and 16:0. Actinobacillus seminis (ATCC 15768) was unlike the other strains examined because of a greater amount of 14:0 detected. The soluble protein analysis using polyacrylamide gel electrophoresis revealed that A. actinomycetemcomitans, H. aphrophilus, and nonoral Actinobacillus species possessed distinct protein profiles attesting to the validity of separating these organisms into different species. Established biotypes of A. actinomycetemcomitans could not be differentiated on the basis of fatty acid or protein profiles. PMID:7287893

  16. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  17. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  18. Isolation and characterization of a fatty acid- and retinoid-binding protein from the cereal cyst nematode Heterodera avenae.

    PubMed

    Le, Xiuhu; Wang, Xuan; Guan, Tinglong; Ju, Yuliang; Li, Hongmei

    2016-08-01

    A gene encoding fatty acid- and retinoid-binding protein was isolated from the cereal cyst nematode Heterodera avenae and the biochemical function of the protein that it encodes was analysed. The full-length cDNA of the Ha-far-1 gene is 827 bp long and includes a 22- nucleotide trans-spliced leader sequence (SL1) at its 5-end. The genomic clone of Ha-far-1 consists of eight exons separated by seven introns, which range in size from 48 to 186 bp. The Ha-far-1 cDNA contains an open reading frame encoding a 191 amino acid protein, with a predicted secretory signal peptide. Sequence analysis showed that Ha-FAR-1 has highest similarity to the Gp-FAR-1 protein from the potato cyst nematode, Globodera pallida and that the protein was grouped with all homologues from other plant-parasitic nematodes in a phylogenetic analysis. Fluorescence-based ligand binding analysis confirmed that the recombinant Ha-FAR-1 protein was able to bind fatty acids and retinol. Spatial and temporal expression assays showed that the transcripts of Ha-far-1 accumulated mainly in the hypodermis and that the gene is most highly expressed in third-stage juveniles of H. avenae. Fluorescence immunolocalization showed that the Ha-FAR-1 protein was present on the surface of the infective second-stage juveniles of H. avenae. Nematodes treated with dsRNA corresponding to Ha-far-1 showed significantly reduced reproduction compared to nematodes exposed to dsRNA from a non-endogenous gene, suggesting that Ha-far-1 may be an effective target gene for control of H. avenae using an RNAi strategy. PMID:27240755

  19. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    SciTech Connect

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  20. Metabolism of Nonessential N15-Labeled Amino Acids and the Measurement of Human Whole-Body Protein Synthesis Rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Dempsey, D. T.; Melnick, G.

    1991-01-01

    Eight N-15 labeled nonessential amino acids plus (15)NH4Cl were administered over a 10 h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted (Kendall coefficient of concordance W = 0.83, P is less than 0.01). Protein synthesis rates were calculated from the urinary ammonia plateau enrichment and the cumulative excretion of N-15. Glycine was one of the few amino acids that gave similar values by both methods.

  1. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone.

    PubMed

    Meeus, Joke; Chen, Xinyong; Scurr, David J; Ciarnelli, Valeria; Amssoms, Katie; Roberts, Clive J; Davies, Martyn C; van Den Mooter, Guy

    2012-09-01

    Injectable controlled-release formulations are of increasing interest for the treatment of chronic diseases. This study aims to develop and characterize a polymeric matrix for intramuscular or subcutaneous injection, consisting of two biocompatible polymers, particularly suitable for formulating poorly soluble drugs. For this matrix, the water-insoluble polymer poly(lactic-co-glycolic acid) (PLGA) is combined with the water-soluble polymer polyvinylpyrrolidone (PVP). Microparticles of these two polymers were prepared by spray drying. The phase behavior of the samples was studied by means of modulated differential scanning calorimetry and the results showed that phase separation occurred in the bulk sample through evidence of two mixed amorphous phases, namely, a PLGA-rich phase and a PVP-rich phase. Characterization of the samples by scanning electron microscopy demonstrated that the spray-dried particles were hollow with a thin shell. Because of the importance in relation to stability and drug release, information about the surface of the microparticles was collected by different complementary surface analysis techniques. Atomic force microscopy gathered information about the morphology and phase behavior of the microparticle surface. Time-of-flight secondary ion mass spectrometry analysis of the particles revealed that the surface consisted mainly of the PLGA-rich phase. This was confirmed by X-ray photoelectron spectroscopy at an increased sampling depth (≈ 10 nm). Nanothermal analysis proved to be an innovative way to thermally detect the presence of the PLGA-dominated surface layer and the underlying PVP phase. Taken together, this information provides a rational basis for predicting the likely drug release behavior this formulation will display.

  2. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    PubMed

    Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  3. Tables of critical values for examining compositional non-randomness in proteins and nucleic acids

    NASA Technical Reports Server (NTRS)

    Laird, M.; Holmquist, R.

    1975-01-01

    A binomially distributed statistic is defined to show whether or not the proportion of a particular amino acid in a protein deviates from random expectation. An analogous statistic is derived for nucleotides in nucleic acids. These new statistics are simply related to the classical chi-squared test. They explicitly account for the compositional fluctuations imposed by the finite length of proteins, and they are more accurate than previous tables.

  4. Highly efficient extraction of cellular nucleic acid associated proteins in vitro with magnetic oxidized carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Wei, Xiaoluan; Cheng, Kai; Liu, Fangjie; Wu, Ren'an; Zou, Hanfa

    2012-12-01

    Nucleic acid associated proteins (NAaP) play the essential roles in gene regulation and protein expression. The global analysis of cellular NAaP would give a broad insight to understand the interaction between nucleic acids and the associated proteins, such as the important proteinous regulation factors on nucleic acids. Proteomic analysis presents a novel strategy to investigate a group of proteins. However, the large scale analysis of NAaP is yet impossible due to the lack of approaches to harvest target protein groups with a high efficiency. Herein, a simple and efficient method was developed to collect cellular NAaP using magnetic oxidized carbon nanotubes based on the strong interaction between carbon nanotubes and nucleic acids along with corresponding associated proteins. We found that the magnetic oxidized carbon nanotubes demonstrated a nearly 100% extraction efficiency for intracellular nucleic acids from cells in vitro. Importantly, the proteins associated on nucleic acids could be highly efficiently harvested using magnetic oxidized carbon nanotubes due to the binding of NAaP on nucleic acids. 1594 groups of nuclear NAaP and 2595 groups of cellular NAaP were extracted and identified from about 1,000,000 cells, and 803 groups of NAaP were analyzed with only about 10,000 cells, showing a promising performance for the proteomic analysis of NAaP from minute cellular samples. This highly efficient extraction strategy for NAaP is a simple approach to identify cellular nucleic acid associated proteome, and we believed this strategy could be further applied in systems biology to understand the gene expression and regulation.

  5. Sialic Acid within the Glycosylphosphatidylinositol Anchor Targets the Cellular Prion Protein to Synapses.

    PubMed

    Bate, Clive; Nolan, William; McHale-Owen, Harriet; Williams, Alun

    2016-08-12

    Although the cellular prion protein (PrP(C)) is concentrated at synapses, the factors that target PrP(C) to synapses are not understood. Here we demonstrate that exogenous PrP(C) was rapidly targeted to synapses in recipient neurons derived from Prnp knock-out((0/0)) mice. The targeting of PrP(C) to synapses was dependent upon both neuronal cholesterol concentrations and the lipid and glycan composition of its glycosylphosphatidylinositol (GPI) anchor. Thus, the removal of either an acyl chain or sialic acid from the GPI anchor reduced the targeting of PrP(C) to synapses. Isolated GPIs (derived from PrP(C)) were also targeted to synapses, as was IgG conjugated to these GPIs. The removal of sialic acid from GPIs prevented the targeting of either the isolated GPIs or the IgG-GPI conjugate to synapses. Competition studies showed that pretreatment with sialylated GPIs prevented the targeting of PrP(C) to synapses. These results are consistent with the hypothesis that the sialylated GPI anchor attached to PrP(C) acts as a synapse homing signal. PMID:27325697

  6. Nucleic acid-based fluorescence sensors for detecting proteins.

    PubMed

    Heyduk, Ewa; Heyduk, Tomasz

    2005-02-15

    We report here development of a rapid, homogeneous, aptamer-based fluorescence assay ("molecular beacons") for detecting proteins. The assay involves protein-induced coassociation of two aptamers recognizing two distinct epitopes of the protein. The aptamers contain short fluorophore-labeled complementary "signaling" oligonucleotides attached to the aptamer by non-DNA linker. Coassociation of the two aptamers with the protein results in bringing the two "signaling" oligonucleotides into proximity, producing a large change of fluorescence resonance energy transfer between the fluorophores. We used thrombin as a model system to provide proof-of-principle evidence validating this molecular beacon design. Thrombin beacon was capable of detecting the protein with high selectivity (also in complex biological mixtures), picomolar sensitivity, and high signal-to-background ratio. This is a homogeneous assay requiring no sample manipulation. Since the design of molecular beacons described here is not limited to any specific protein, it will be possible to develop these beacons to detect a variety of target proteins of biomedical importance.

  7. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    PubMed Central

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    SUMMARY Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have difference functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. PMID:25458898

  8. Using self-consistent-field theory to understand enhanced steric stabilization by casein-like copolymers at low surface coverage in mixed protein layers.

    PubMed

    Parkinson, Emma L; Ettelaie, Rammile; Dickinson, Eric

    2005-01-01

    We present a statistical mechanical approach to predicting the properties of mixed copolymer layers using the Scheutjens-Fleer self-consistent-field theory. Our model copolymers are based on the primary structures of the major bovine casein monomers, alpha(s1)-casein and beta-casein. Numerical calculations have been carried out to determine the polymer segment density profiles at an isolated hydrophobic surface and the interaction forces as a pair of polymer-coated surfaces is brought to close interlayer separation. For a copolymer model containing hydrophilic and hydrophobic segments, we show how the steric stabilizing capacity of a casein-like macromolecule at very low surface coverage is enhanced in the presence of a thin dense layer of shorter tethered amphiphilic chains. Using a more refined protein model, which also distinguishes between the charged and uncharged hydrophilic segments along the chain, we clearly demonstrate that the enhanced steric repulsion from beta-casein exceeds that from alpha(s1)-casein. These calculations explain how the replacement of just a few percent of beta-lactoglobulin by casein can inhibit the heat-induced thickening and flocculation behavior observed experimentally with some whey protein-stabilized oil-in-water emulsions.

  9. Protein meta-functional signatures from combining sequence, structure, evolution, and amino acid property information.

    PubMed

    Wang, Kai; Horst, Jeremy A; Cheng, Gong; Nickle, David C; Samudrala, Ram

    2008-09-26

    Protein function is mediated by different amino acid residues, both their positions and types, in a protein sequence. Some amino acids are responsible for the stability or overall shape of the protein, playing an indirect role in protein function. Others play a functionally important role as part of active or binding sites of the protein. For a given protein sequence, the residues and their degree of functional importance can be thought of as a signature representing the function of the protein. We have developed a combination of knowledge- and biophysics-based function prediction approaches to elucidate the relationships between the structural and the functional roles of individual residues and positions. Such a meta-functional signature (MFS), which is a collection of continuous values representing the functional significance of each residue in a protein, may be used to study proteins of known function in greater detail and to aid in experimental characterization of proteins of unknown function. We demonstrate the superior performance of MFS in predicting protein functional sites and also present four real-world examples to apply MFS in a wide range of settings to elucidate protein sequence-structure-function relationships. Our results indicate that the MFS approach, which can combine multiple sources of information and also give biological interpretation to each component, greatly facilitates the understanding and characterization of protein function.

  10. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels.

    PubMed

    Shu, Kai; Chen, Qian; Wu, Yaorong; Liu, Ruijun; Zhang, Huawei; Wang, Pengfei; Li, Yanli; Wang, Shengfu; Tang, Sanyuan; Liu, Chunyan; Yang, Wenyu; Cao, Xiaofeng; Serino, Giovanna; Xie, Qi

    2016-02-01

    Abscisic acid (ABA) and gibberellins (GAs) are plant hormones which antagonistically mediate numerous physiological processes, and their optimal balance is essential for normal plant development. However, the molecular mechanism underlying ABA and GA antagonism still needs to be determined. Here, we report that ABA-INSENSITIVE 4 (ABI4) is a central factor in GA/ABA homeostasis and antagonism in post-germination stages. ABI4 overexpression in Arabidopsis (OE-ABI4) leads to developmental defects including a decrease in plant height and poor seed production. The transcription of a key ABA biosynthetic gene, NCED6, and of a key GA catabolic gene, GA2ox7, is significantly enhanced by ABI4 overexpression. ABI4 activates NCED6 and GA2ox7 transcription by directly binding to the promoters, and genetic analysis revealed that mutation in these two genes partially rescues the dwarf phenotype of ABI4 overexpressing plants. Consistently, ABI4 overexpressing seedlings have a lower GA/ABA ratio than the wild type. We further show that ABA induces GA2ox7 transcription while GA represses NCED6 expression in an ABI4-dependent manner; and that ABA stabilizes the ABI4 protein whereas GA promotes its degradation. Taken together, these results suggest that ABA and GA antagonize each other by oppositely acting on ABI4 transcript and protein levels.

  11. Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats.

    PubMed

    Tomassoni, Daniele; Avola, Roberto; Di Tullio, Maria Antonietta; Sabbatini, Maurizio; Vitaioli, Lucia; Amenta, Francesco

    2004-05-01

    Astrogliosis, consisting in astroglial proliferation and increased expression of the specific cytoskeletal protein glial fibrillary acid protein (GFAP) is common in several situations of brain damage. Arterial hypertension, which induces cerebrovascular changes, can cause also brain damage, neurodegeneration and dementia (vascular dementia). This study was designed to assess astroglial reaction in different brain areas (frontal cortex, occipital cortex, hippocampus and striatum) of spontaneously hypertensive rats (SHR) in the pre-hypertensive phase (2 months of age), in the developing phase of hypertension (4 months of age) and in established hypertension (6 months of age). SHR were compared to age-matched normotensive Wistar-Kyoto (WKY) rats. Analysis included reverse transcription-polymerase chain reaction (RT-PCR) of GFAP mRNA, GFAP immunochemistry (Western blot analysis) and immunohistochemistry. A significant increase of GFAP mRNA and an increase of GFAP immunoreactivity were noticeable in different brain areas of SHR compared to normotensive WKY rats at 6, but not at 2 or 4 months of age. Immunohistochemistry revealed a numerical augmentation (hyperplasia) and an increase in size (hypertrophy) of GFAP-immunoreactive astrocytes in frontal cortex, occipital cortex and striatum of SHR. In the hippocampus of SHR only a numerical increase of GFAP-immunoreactive astrocytes was found. These finding demonstrating the occurrence of astrogliosis in the brain of SHR with established hypertension suggest that hypertension induces a condition of brain suffering enough to increase biosynthesis and expression of GFAP similarly as reported in several neurodegenerative disorders and in brain ischemia.

  12. Identification of secreted bacterial proteins by noncanonical amino acid tagging

    PubMed Central

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.

    2014-01-01

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637

  13. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  14. Cold shock domain protein from Philosamia ricini prefers single-stranded nucleic acids binding.

    PubMed

    Mani, Ashutosh; Yadava, P K; Gupta, Dwijendra K

    2012-01-01

    The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.

  15. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids.

    PubMed

    Hesse, Almut; Weller, Michael G

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  16. Nucleic acid chaperons: a theory of an RNA-assisted protein folding

    PubMed Central

    Biro, Jan C

    2005-01-01

    Background Proteins are assumed to contain all the information necessary for unambiguous folding (Anfinsen's principle). However, ab initio structure prediction is often not successful because the amino acid sequence itself is not sufficient to guide between endless folding possibilities. It seems to be a logical to try to find the "missing" information in nucleic acids, in the redundant codon base. Results mRNA energy dot plots and protein residue contact maps were found to be rather similar. The structure of mRNA is also conserved if the protein structure is conserved, even if the sequence similarity is low. These observations led me to suppose that some similarity might exist between nucleic acid and protein folding. I found that amino acid pairs, which are co-located in the protein structure, are preferentially coded by complementary codons. This codon complementarity is not perfect; it is suboptimal where the 1st and 3rd codon residues are complementary to each other in reverse orientation, while the 2nd codon letters may be, but are not necessarily, complementary. Conclusion Partial complementary coding of co-locating amino acids in protein structures suggests that mRNA assists in protein folding and functions not only as a template but even as a chaperon during translation. This function explains the role of wobble bases and answers the mystery of why we have a redundant codon base. PMID:16137324

  17. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  18. Molecular analysis of Xenopus laevis SPARC (Secreted Protein, Acidic, Rich in Cysteine). A highly conserved acidic calcium-binding extracellular-matrix protein.

    PubMed Central

    Damjanovski, S; Liu, F; Ringuette, M

    1992-01-01

    SPARC (Secreted Protein, Acidic, Rich in Cysteine) is expressed as a 1.6 kb mRNA in Xenopus laevis. On the basis of cDNA sequence analysis, Xenopus SPARC has a core Mr of 32643, with one potential N-glycosylation site. Western analysis of SPARC isolated from Xenopus long bone indicates that the mature protein has an Mr of 43,000. At the amino acid level, Xenopus SPARC has 78-79% sequence similarity to mouse, bovine and human SPARC. The least-conserved region is found within the N-terminal glutamic acid-rich domain, with the C-terminal Ca(2+)-binding domain being the most conserved. Adult Xenopus tissues show the same pattern of tissue-specific distribution of SPARC mRNAs as adult mouse. Images Fig. 1. Fig. 5. PMID:1736898

  19. Comparison of Two Serologically Distinct Ribonucleic Acid Bacteriophages II. Properties of the Nucleic Acids and Coat Proteins

    PubMed Central

    Overby, L. R.; Barlow, G. H.; Doi, R. H.; Jacob, Monique; Spiegelman, S.

    1966-01-01

    Overby, L. R. (University of Illinois, Urbana), G. H. Barlow, R. H. Doi, Monique Jacob, and S. Spiegelman. Comparison of two serologically distinct ribonucleic acid bacteriophages. II. Properties of the nucleic acids and coat proteins. J. Bacteriol. 92:739–745. 1966.—The ribonucleic acid (RNA) molecules and coat proteins of two RNA coliphages, MS-2 and Qβ, have been characterized. MS-2 RNA shows an S20,w of 25.8 and a molecular weight by light scattering of 106. The corresponding parameters for Qβ-RNA were 28.9 and 0.9 × 106. A difference in base composition was reflected in the adenine-uracil ratio, which was 0.95 for MS-2 and 0.75 for Qβ. The two RNA preparations are readily separated by chromatography on columns of methylated albumin. Both gave identical bouyant densities in cesium sulfate of 1.64 g/ml. The coat protein subunits were of similar molecular weights: 15,500 (Qβ) and 14,000 (MS-2). They differed, however, in that the Qβ-protein lacked tryptophan and histidine, whereas the MS-2 protein lacked only histidine. Images PMID:5922545

  20. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.

    PubMed

    Pey, Angel L

    2013-12-01

    Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.

  1. The value of short amino acid sequence matches for prediction of protein allergenicity.

    PubMed

    Silvanovich, Andre; Nemeth, Margaret A; Song, Ping; Herman, Rod; Tagliani, Laura; Bannon, Gary A

    2006-03-01

    Typically, genetically engineered crops contain traits encoded by one or a few newly expressed proteins. The allergenicity assessment of newly expressed proteins is an important component in the safety evaluation of genetically engineered plants. One aspect of this assessment involves sequence searches that compare the amino acid sequence of the protein to all known allergens. Analyses are performed to determine the potential for immunologically based cross-reactivity where IgE directed against a known allergen could bind to the protein and elicit a clinical reaction in sensitized individuals. Bioinformatic searches are designed to detect global sequence similarity and short contiguous amino acid sequence identity. It has been suggested that potential allergen cross-reactivity may be predicted by identifying matches as short as six to eight contiguous amino acids between the protein of interest and a known allergen. A series of analyses were performed, and match probabilities were calculated for different size peptides to determine if there was a scientifically justified search window size that identified allergen sequence characteristics. Four probability modeling methods were tested: (1) a mock protein and a mock allergen database, (2) a mock protein and genuine allergen database, (3) a genuine allergen and genuine protein database, and (4) a genuine allergen and genuine protein database combined with a correction for repeating peptides. These analyses indicated that searches for short amino acid sequence matches of eight amino acids or fewer to identify proteins as potential cross-reactive allergens is a product of chance and adds little value to allergy assessments for newly expressed proteins.

  2. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  3. In vitro enantioselective displacement of propranolol from protein binding sites by acetyl salicylic acid and salicylic acid.

    PubMed

    Rezaei, Z; Khabnadideh, S; Hemmateenejad, B; Dehghani, Z

    2007-09-01

    The influences of acetyl salicylic acid (ASA) and salicylic acid (SA) on the enantioselective binding of propranolol (PL) and its enantiomers to plasma proteins and human serum albumin (HSA) were investigated. The equilibrium dialysis was employed for protein binding studies. We observed statistically significant displacement of racemic-PL, (+)-(R)-PL, and (-)-(S)-PL (0.1-10 microM) from their protein binding sites by ASA (200 microg/ml) and SA (100 microg/ml). ASA and SA displaced PL stereoselectivly from its binding sites. We concluded that ASA and its metabolite SA could change R/S ratio of PL unbound fractions and they might affect pharmacokinetic properties of PL.

  4. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  5. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions.

    PubMed

    Vickers, Timothy A; Crooke, Stanley T

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  6. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    ERIC Educational Resources Information Center

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  7. Acid diet (high meat protein) effects on calcium metabolism and bone health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: Update recent advancements regarding the effect of high animal protein on calcium utilization and bone health. Recent findings: Increased potential renal acid load resulting from a high protein (meat) intake has been closely associated with increased urinary calcium excretion. How...

  8. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic hydrolysis was performed for extracting protein to prepare umami taste amino acids from defatted tomato seed meal (DTSM) which is a by-product of tomato processing. Papain was used as an enzyme for the hydrolysis of DTSM. The particle size distribution of DTSM, protein concentration and fr...

  9. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  10. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions

    PubMed Central

    Vickers, Timothy A.; Crooke, Stanley T.

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  11. Site-specific fatty acid-conjugation to prolong protein half-life in vivo.

    PubMed

    Lim, Sung In; Mizuta, Yukina; Takasu, Akinori; Hahn, Young S; Kim, Yong Hwan; Kwon, Inchan

    2013-09-10

    Therapeutic proteins are indispensable in treating numerous human diseases. However, therapeutic proteins often suffer short serum half-life. In order to extend the serum half-life, a natural albumin ligand (a fatty acid) has been conjugated to small therapeutic peptides resulting in a prolonged serum half-life via binding to patients' serum albumin in vivo. However, fatty acid-conjugation has limited applicability due to lack of site-specificity resulting in the heterogeneity of conjugated proteins and a significant loss in pharmaceutical activity. In order to address these issues, we exploited the site-specific fatty acid-conjugation to a permissive site of a protein, using copper-catalyzed alkyne-azide cycloaddition, by linking a fatty acid derivative to p-ethynylphenylalanine incorporated into a protein using an engineered pair of yeast tRNA/aminoacyl tRNA synthetase. As a proof-of-concept, we show that single palmitic acid conjugated to superfolder green fluorescent protein (sfGFP) in a site-specific manner enhanced a protein's albumin-binding in vitro about 20 times and the serum half-life in vivo 5 times when compared to those of the unmodified sfGFP. Furthermore, the fatty acid conjugation did not cause a significant reduction in the fluorescence of sfGFP. Therefore, these results clearly indicate that the site-specific fatty acid-conjugation is a very promising strategy to prolong protein serum half-life in vivo without compromising its folded structure and activity.

  12. Nucleic acid encoding DS-CAM proteins and products related thereto

    SciTech Connect

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  13. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  14. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein

    SciTech Connect

    Shaikh, Afshan; Shaikh, Afshan S.; Tang, Yinjie; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2008-06-27

    {sup 13}C-based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly-expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism E. coli expressing a plasmid-borne, his-tagged Green Fluorescent Protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities.

  15. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein.

    PubMed

    Shaikh, Afshan S; Tang, Yinjie J; Mukhopadhyay, Aindrila; Keasling, Jay D

    2008-02-01

    13C-Based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus, metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism Escherichia coli expressing a plasmid-borne, His-tagged green fluorescent protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities.

  16. Recent advances in determining protein and amino acid requirements in humans.

    PubMed

    Elango, Rajavel; Ball, Ronald O; Pencharz, Paul B

    2012-08-01

    During the past 25 years a significant amount of research has been conducted to determine amino acid requirements in humans. This is primarily due to advancements in the application of stable isotopes to examine amino acid requirements. The indicator amino acid oxidation (IAAO) method has emerged as a robust and minimally invasive technique to identify requirements. The IAAO method is based on the concept that when one indispensable dietary amino acid (IDAA) is deficient for protein synthesis, then the excess of all other IDAA, including the indicator amino acid, will be oxidized. With increasing intakes of the limiting amino acid, IAAO will decrease, reflecting increasing incorporation into protein. Once the requirement for the limiting amino acid is met there will be no further change in the indicator oxidation. The IAAO method has been systematically applied to determine most IDAA requirements in adults. The estimates are comparable to the values obtained using the more elaborate 24h-indicator amino acid oxidation and balance (24h-IAAO/IAAB) model. Due to its non-invasive nature the IAAO method has also been used to determine requirements for amino acids in neonates, children and in disease. The IAAO model has recently been applied to determine total protein requirements in humans. The IAAO method is rapid, reliable and has been used to determine amino acid requirements in different species, across the life cycle and in disease. The recent application of IAAO to determine protein requirements in humans is novel and has significant implications for dietary protein intake recommendations globally.

  17. Structural and functional analysis of fatty acid-binding proteins

    PubMed Central

    Storch, Judith; McDermott, Lindsay

    2009-01-01

    The mammalian FA-binding proteins (FABPs) bind long-chain FA with high affinity. The large number of FABP types is suggestive of distinct functions in specific tissues. Multiple experimental approaches have shown that individual FABPs possess both unique and overlapping functions, some of which are based on specific elements in the protein structure. Although FA binding affinities for all FABPs tend to correlate directly with FA hydrophobicity, structure-function studies indicate that subtle three-dimensional changes that occur upon ligand binding may promote specific protein-protein or protein-membrane interactions that ultimately determine the function of each FABP. The conformational changes are focused in the FABP helical/portal domain, a region that was identified by in vitro studies to be vital for the FA transport properties of the FABPs. Thus, the FABPs modulate intracellular lipid homeostasis by regulating FA transport in the nuclear and extra-nuclear compartments of the cell; in so doing, they also impact systemic energy homeostasis. PMID:19017610

  18. A Sialylated Glycan Microarray Reveals Novel Interactions of Modified Sialic Acids with Proteins and Viruses*

    PubMed Central

    Song, Xuezheng; Yu, Hai; Chen, Xi; Lasanajak, Yi; Tappert, Mary M.; Air, Gillian M.; Tiwari, Vinod K.; Cao, Hongzhi; Chokhawala, Harshal A.; Zheng, Haojie; Cummings, Richard D.; Smith, David F.

    2011-01-01

    Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in β-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2–3- and α2–6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2–6- and α2–3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-d-glycero-d-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2–6-linked Neu5Ac9Lt or α2–6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions. PMID:21757734

  19. Abscisic acid-responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants.

    PubMed

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M

    2013-12-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography-multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼ 350 million guard cell protoplasts from ∼ 30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca(2+)-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1.

  20. [Glial fibrillary acidic protein: the component of intermediate filaments in the vertebrate brain astrocytes].

    PubMed

    Sukhorukova, E G; Kruzhevskiĭ, D É; Alekseeva, O S

    2015-01-01

    Glial fibrillary acidic protein (GFAP) refers to the type III intermediate filament proteins and is the essential component of the cytoskeleton in astrocytes of all vertebrates. This review presents current data on the molecular organization of GFAP in a comparative aspect. The results of most relevant studies using immunocytochemical labeling of the protein are summarized. The data on the changes in expression of GFAP in Alexander disease caused by the primary pathology of astrocytes are presented.

  1. Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets.

    PubMed

    Schaafsma, Gertjan

    2012-08-01

    PDCAAS is a widely used assay for evaluating protein quality. It is a chemical score, which is derived from the ratio between the first limiting amino acid in a test protein and the corresponding amino acid in a reference amino acid pattern and corrected for true faecal N digestibility. Chemical scores exceeding 100 % are truncated to 100 %. The advantages of the PDCAAS are its simplicity and direct relationship to human protein requirements. The limitations are as follows: the reference pattern is based on the minimum amino acid requirements for tissue growth and maintenance and does not necessarily reflect the optimum intake. Truncated PDCAAS of high-quality proteins do not give any information about the power of these proteins to compensate, as a supplement, for low levels of dietary essential amino acids in low-quality proteins. It is likely that faecal N digestibility does not take into account the loss from the colon of indispensable amino acids that were not absorbed in the ileum. Anti-nutritional factors, such as lectins and trypsin inhibitors, in several plant protein sources can cause heightened endogenous losses of amino acids, an issue which is particularly relevant in animal feedstuffs. The assumption that amino acid supplementation can completely restore biological efficiency of the protein source is incorrect since the kinetics of digestion and absorption between supplemented free amino acids and amino acids present in dietary proteins, are different. PMID:23107546

  2. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    SciTech Connect

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  3. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  4. Fluoro amino acids: a rarity in nature, yet a prospect for protein engineering.

    PubMed

    Odar, Corinna; Winkler, Margit; Wiltschi, Birgit

    2015-03-01

    Fluoro amino acids are highly valuable compounds constantly gaining relevance in diverse fields of the biosciences as well as in the pharmaceutical industry. The value of these compounds can be attributed to the properties of the extremely electronegative fluorine atom. This atom forms a highly polarized bond of extraordinary strength with carbon. The formation of the fluorine-carbon bond is challenging: its chemical synthesis demands harsh reaction conditions and to date only one class of enzyme has been found capable of introducing the fluoride ion into an organic compound. Most of these fluorinating enzymes participate in the biosynthesis of 4-fluoro-L-threonine, the only fluoro amino acid of natural origin discovered so far. Despite their scarcity in nature, fluoro amino acids are valuable tools to fluorinate proteins. The fluoro protein variants often show improved stability and folding as well as altered activity and fluorescence characteristics. This review details the biosynthesis of 4-fluoro-L-threonine with a special focus on the fluorinating enzymes. Moreover, we elaborate on the application of fluoro amino acids as building blocks for fluorinated protein variants. Insight into different techniques to incorporate fluoro amino acids into proteins is also provided. We highlight prospects and the current relevance of fluoro amino acids as a tool to engineer proteins with novel traits.

  5. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  6. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  7. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running.

    PubMed

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d₃-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  8. Determination of seleno-amino acids bound to proteins in extra virgin olive oils.

    PubMed

    Torres, Sabier; Gil, Raul; Silva, María Fernanda; Pacheco, Pablo

    2016-04-15

    An analytical method has been developed to determine seleno-amino acids in proteins extracted from extra virgin olive oils (EVOOs). Different aqueous/organic solvents were tested to isolate proteins, an acetone:n-hexane combination being the best protein precipitant. In a first dimension chromatography, extracted proteins were analysed by size exclusion chromatography (SEC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) to identify S and Se associations as proteins marker. Two fractions of 66 kDa (A) and 443 kDa (B) were identified. These fractions were submitted to microwave-assisted acid hydrolysis (MAAH) to release seleno-amino acids. In a second dimension chromatography seleno-amino acids were determined by reversed-phase chromatography (RPC) coupled to ICP-MS. Seleno-methylselenocysteine was determined with values ranging from 1.03-2.03±0.2 μg kg(-1) and selenocysteine at a concentration of 1.47±0.1 μg kg(-1). Variations of protein and seleno-amino acid concentrations were observed between EVOO varieties, contributing to EVOO cultivar differentiation. PMID:26616967

  9. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox?

    PubMed Central

    Hackney, Kyle J.; English, Kirk L.

    2014-01-01

    Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids) stimulate anabolic pathways (e.g., muscle protein synthesis) both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%–15% of total energy intake (≤1.4 g∙kg−1∙day−1) and spaceflight is associated with reduced energy intake (~20%), which enhances muscle catabolism. Increasing protein intake to 1.5–2.0 g∙kg−1∙day−1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake. PMID:25370374

  10. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; Boulton, Stephen; Zanzoni, Serena; Melacini, Giuseppe; Molinari, Henriette; Ragona, Laura

    2015-11-01

    Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off.

  11. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium[S

    PubMed Central

    Rudolph, Michael C.; Wellberg, Elizabeth A.; Lewis, Andrew S.; Terrell, Kristina L.; Merz, Andrea L.; Maluf, N. Karl; Serkova, Natalie J.; Anderson, Steven M.

    2014-01-01

    Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [13C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed. PMID:24771867

  12. Dual capacity for nutrient uptake in Tetrahymena. V. Utilization of amino acids and proteins.

    PubMed

    Orias, E; Rasmussen, L

    1979-04-01

    We investigated the relative contributions of phagocytosis and plasma membrane transport to the uptake of amino acids and a protein (egg albumin) in amounts which allow Tetrahymena thermophila to grow and multiply. We used a mutant capable of indefinite growth without food vacuole formation (phagocytosis) and its wild type (phagocytosis-competent) isogenic parental strain. Our results suggest that phagocytosis is not required for free amino acid uptake, most or all of which can be attributed to carrier-mediated transport systems, apparently located on the plasma membrane. In contrast, phagocytosis is required for utilization of the protein. Proteins can supply required amino acids in amounts sufficient for growth only when food vacuoles are formed. We conclude that Tetrahymena thermophila either possesses no endocytic mechanisms at the cell surface other than food vacuole formation or, if it does, these putative mechanisms are not capable of nutritionally meaningful rates of protein uptake.

  13. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET

    PubMed Central

    Cox, Daniel J.; Wilf, Nabil M.; Lang, Kathrin; Wallace, Stephen; Mehl, Ryan A.; Chin, Jason W.

    2015-01-01

    The ability to introduce different biophysical probes into defined positions in target proteins will provide powerful approaches for interrogating protein structure, function and dynamics. However, methods for site-specifically incorporating multiple distinct unnatural amino acids are hampered by their low efficiency. Here we provide a general solution to this challenge by developing an optimized orthogonal translation system that uses amber and evolved quadruplet-decoding transfer RNAs to encode numerous pairs of distinct unnatural amino acids into a single protein expressed in Escherichia coli with a substantial increase in efficiency over previous methods. We also provide a general strategy for labelling pairs of encoded unnatural amino acids with different probes via rapid and spontaneous reactions under physiological conditions. We demonstrate the utility of our approach by genetically directing the labelling of several pairs of sites in calmodulin with fluorophores and probing protein structure and dynamics by Förster resonance energy transfer. PMID:24755590

  14. Solution synthesis and biological activity of human pleiotrophin, a novel heparin-binding neurotrophic factor consisting of 136 amino acid residues with five disulfide bonds.

    PubMed

    Inui, T; Nakao, M; Nishio, H; Nishiuchi, Y; Kojima, S; Muramatsu, T; Kimura, T

    2000-05-01

    Human pleiotrophin (hPTN), a novel heparin-binding neurotrophic factor consisting of 136 amino acid residues with five intramolecular disulfide bonds, was synthesized by solution procedure in order to demonstrate the utility of our strategy using our newly developed solvent system, a mixture of trifluoroethanol (TFE) and dichloromethane (DCM) or chloroform (CHL). The final protected peptide was synthesized by coupling two larger protected intermediates, Boc-(1-64)-OH and H-(65-136)-OBzl, in CHL/TFE (3:1; v/v) using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) in the presence of 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HOOBt). After removal of all protecting groups using the HF procedure followed by treatment with Hg(OAc)2, the fully deprotected peptide was subjected to an oxidative folding reaction. The product was confirmed as having the correct disulfide structure by examining the cystine peptides obtained by enzymatic digestions, and as possessing the same biological activities as those of the natural product. The N- and C-terminal half domains (1-64 and 65-136) were also synthesized, and measurement of their biological activities indicated that the C-terminal half domain displays almost all the activities of the full-length molecule, whereas the N-terminal half domain shows almost no activity. From these results, we were able to confirm that the C-terminal half domain is responsible for the expression of biological activities in the same manner as human midkine (hMK), another heparin-binding neurotrophic growth factor.

  15. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads.

    PubMed Central

    Timm, A; Steinbüchel, A

    1990-01-01

    Pseudomonas aeruginosa PAO and 15 other strains of this species synthesized a polyester with 3-hydroxydecanoate as the main constituent (55 to 76 mol%) if the cells were cultivated in the presence of gluconate and if the nitrogen source was exhausted; 3-hydroxyhexanoate, 3-hydroxyoctanoate, and 3-hydroxydodecanoate were minor constituents of the polymer. The polymer was deposited in granules within the cell and amounted to 70% of the cell dry matter in some strains. Among 55 different strains of 41 Pseudomonas species tested, P. aureofaciens (21.6% of cellular dry matter), P. citronellolis (78.0%), P. chlororaphis (8.5%), P. marginalis (11.4%), P. mendocina (50.7%), P. putida (33.5%), and Pseudomonas sp. strain DSM 1650 (54.6%) accumulated this type of polymer at significant levels (greater than 5%) during cultivation on gluconate. In two strains of P. facilis and P. fluorescens, as well as in one strain of P. syringae, this polymer was detected as a minor constituent (much less than 5%). All other strains accumulated either poly(3-hydroxybutyrate) or a polymer consisting mainly of 3-hydroxyoctanoate with octanoate but no polyester with gluconate as the carbon source. Only a few species (e.g., P. stutzeri) were unable to accumulate poly(hydroxyalkanoic acids) (PHA) at all. These results indicated that the formation of PHA depends on a pathway which is distinct from all other known PHA-biosynthetic pathways. The polyesters accumulated by gluconate- or octanoate-grown cells of recombinant strains of P. aeruginosa and P. putida, which harbored the Alcaligenes eutrophus poly(3-hydroxybutyrate)biosynthetic genes, contained 3-hydroxybutyrate as an additional constituent. Images PMID:2125185

  16. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  17. Use of a hybrid protein consisting of the variable region of the Borrelia burgdorferi flagellin and part of the 83-kDa protein as antigen for serodiagnosis of Lyme disease.

    PubMed

    Rasiah, C; Rauer, S; Gassmann, G S; Vogt, A

    1994-04-01

    A hybrid protein consisting of the variable region of the Borrelia burgdorferi flagellin (an 18-kDa fragment) and a 59-kDa fragment (lacking the N-terminal part) of the 83-kDa protein has been constructed by genetic engineering. It was expressed as a nonfusion protein of an apparent molecular weight of 77,000 in Escherichia coli. The suitability of this new antigen for the diagnosis of Lyme disease was tested by immunoblotting; for comparison, the recombinant variable region of the flagellin, the 18-kDa fragment (p18), and the whole recombinant 83-kDa protein (p83), both expressed in E. coli, were used. A total of 120 serum samples from various stages of Lyme disease, which were positive in two serological assays, a passive hemagglutination assay and an indirect immunofluorescence assay, were tested. By indirect immunofluorescence, 74 samples were positive for immunoglobulin G (IgG) antibodies and 72 were positive for IgM antibodies. Of these serum samples, 69 of 74 (93%) contained IgG antibodies against p18 and/or p83, and IgG antibodies were detected by the hybrid protein in 67 (90%) samples. IgM antibodies against p18 and/or p83 were detected in 60 of 72 (83%) serum samples, and 57 (79%) serum samples were reactive with the hybrid protein. Twenty serum samples of patients with a history of syphilis and 40 serum samples, negative in routine B. burgdorferi serology, were tested as controls. The hybrid protein, made up of specific epitopes of an early (p18) and late (p83) antigen, is recognized by almost the same number of patient serum samples as the individual antigens.

  18. Amino acid sequence and structural properties of protein p12, an African swine fever virus attachment protein.

    PubMed Central

    Alcamí, A; Angulo, A; López-Otín, C; Muñoz, M; Freije, J M; Carrascosa, A L; Viñuela, E

    1992-01-01

    The gene encoding the African swine fever virus protein p12, which is involved in virus attachment to the host cell, has been mapped and sequenced in the genome of the Vero-adapted virus strain BA71V. The determination of the N-terminal amino acid sequence and the hybridization of oligonucleotide probes derived from this sequence to cloned restriction fragments allowed the mapping of the gene in fragment EcoRI-O, located in the central region of the viral genome. The DNA sequence of an EcoRI-XbaI fragment showed an open reading frame which is predicted to encode a polypeptide of 61 amino acids. The expression of this open reading frame in rabbit reticulocyte lysates and in Escherichia coli gave rise to a 12-kDa polypeptide that was immunoprecipitated with a monoclonal antibody specific for protein p12. The hydrophilicity profile indicated the existence of a stretch of 22 hydrophobic residues in the central part that may anchor the protein in the virus envelope. Three forms of the protein with apparent molecular masses of 17, 12, and 10 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis have been observed, depending on the presence of 2-mercaptoethanol and alkylation with 4-vinylpyridine, indicating that disulfide bonds are responsible for the multimerization of the protein. This result was in agreement with the existence of a cysteine-rich domain in the C-terminal region of the predicted amino acid sequence. The protein was synthesized at late times of infection, and no posttranslational modifications such as glycosylation, phosphorylation, or fatty acid acylation were detected. Images PMID:1583732

  19. Laser-based optical activity detection of amino acids and proteins

    SciTech Connect

    Reitsma, B.H.

    1987-08-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. Four free amino acids were resolved using cation-exchange chromatography followed by detection with refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (uv) for tyrosine and phenylalanine. Amino acid detection by refractive index is not sensitive and uv absorbance detects only three amino acids. Derivatization of amino acids to make them detectable by uv absorbance enhances the applicability of OA/uv for the determination of enantiomeric ratios. The separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/uv is illustrated. Calculation of the specific rotation of 22 dansyl-L-amino acids shows that derivatization enhances the OA detectability of some amino acids but degrades that of others. RP-HPLC of proteins is a rapidly developing technique. Several researchers have reported the detection of multiple peaks when a pure protein is subjected to HPLC under certain conditions. These multiple peaks have been determined to be different conformations of the same protein. Since proteins are optically active, OA is a suitable detector. The RP-HPLC separation of conformers of soybean trypsin inhibitor is illustrated. Detection by OA/uv provides insights from the chromatogram unavailable from uv absorbance detection alone. In addition, identification of impurities is simplified with OA/uv. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation. 163 refs., 13 figs., 9 tabs.

  20. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.

  1. Glial fibrillary acidic protein as a biomarker for brain injury in neonatal CHD.

    PubMed

    McKenney, Stephanie L; Mansouri, Fahad F; Everett, Allen D; Graham, Ernest M; Burd, Irina; Sekar, Priya

    2016-10-01

    Neonates with critical CHD have evidence, by imaging, of preoperative brain injury, although the timing is unknown. We used circulating postnatal serum glial fibrillary acidic protein as a measure of acute perinatal brain injury in neonates with CHD. Glial fibrillary acidic protein was measured on admission and daily for the first 4 days of life in case and control groups; we included two control groups in this study - non-brain-injured newborns and brain-injured newborns. Comparisons were performed using the Kruskal-Wallis test with Dunn's multiple comparisons, Student's t-test, and χ2 test of independence where appropriate. In aggregate, there were no significant differences in overall glial fibrillary acidic protein levels between CHD patients (n=56) and negative controls (n=23) at any time point. By day 4 of life, 7/56 (12.5%) CHD versus 0/23 (0%) normal controls had detectable glial fibrillary acidic protein levels. Although not statistically significant, the 5/10 (50%) left heart obstruction group versus 1/17 (6%) conoventricular, 0/13 (0%) right heart, and 1/6 (17%) septal defect patients trended towards elevated levels of glial fibrillary acidic protein at day 4 of life. Overall, glial fibrillary acidic protein reflected no evidence for significant peripartum brain injury in neonates with CHD, but there was a trend for elevation by postnatal day 4 in neonates with left heart obstruction. This pilot study suggests that methods such as monitoring glial fibrillary acidic protein levels may provide new tools to optimise preoperative care and neuroprotection in high-risk neonates with specific types of CHD.

  2. Thermoformed protein based composites in presence of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World industrialization has generated substantial quantities of petroleum-based plastics over many years, which are non biodegradable. There is a growing demand for the use of renewable agricultural sources to develop eco-friendly biobased composites. Agriculture-sourced proteins and starches are b...

  3. 3-d structure-based amino acid sequence alignment of esterases, lipases and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.; Cygler, M.; Schrag, J.D.; Sussman, J.L.

    1993-05-13

    Acetylcholinesterase and butyrylcholinesterase, enzymes with potential as pretreatment drugs for organophosphate toxicity, are members of a larger family of homologous proteins that includes carboxylesterases, cholesterol esterases, lipases, and several nonhydrolytic proteins. A computer-generated alignment of 18 of the proteins, the acetylcholinesases, butyrylcholinesterases, carboxylesterases, some esterases, and the nonenzymatic proteins has been previously presented. More recently, the three-dimensional structures of two enzymes enzymes in this group, acetylcholinesterase from Torpedo californica and lipase from Geotrichum candidum, have been determined. Based on the x-ray structures and the superposition of these two enzymes, it was possible to obtain an improved amino acid sequence alignment of 32 members of this family of proteins. Examination of this alignment reveals that 24 amino acids are invariant in all of the hydrolytic proteins, and an additional 49 are well conserved. Conserved amino acids include those of the active site, the disulfide bridges, the salt bridges, in the core of the proteins, and at the edges of secondary structural elements. Comparison of the three-dimensional structures makes it possible to find a well-defined structural basis for the conservation of many of these amino acids.

  4. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats.

    PubMed

    Kabasakal Cetin, Arzu; Dasgin, Halil; Gülec, Atila; Onbasilar, İlyas; Akyol, Asli

    2015-12-01

    Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring's plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring's plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development.

  5. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats

    PubMed Central

    Kabasakal Cetin, Arzu; Dasgin, Halil; Gülec, Atila; Onbasilar, İlyas; Akyol, Asli

    2015-01-01

    Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring’s plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring’s plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development. PMID:26633475

  6. Antihypertensive action of 2-hydroxyoleic acid in SHRs via modulation of the protein kinase A pathway and Rho kinase.

    PubMed

    Alemany, Regina; Vögler, Oliver; Terés, Silvia; Egea, Carolina; Baamonde, Carmela; Barceló, Francisca; Delgado, Carlos; Jakobs, Karl H; Escribá, Pablo V

    2006-08-01

    Olive oil consumption leads to high monounsaturated fatty acid intake, especially oleic acid, and has been associated with a reduced risk of hypertension. However, the molecular mechanisms and contribution of its different components to lower blood pressure (BP) require further evaluation. Here, we examined whether a synthetic, non-beta-oxidation-metabolizable derivative of oleic acid, 2-hydroxyoleic acid (2-OHOA), can normalize BP in adult spontaneously hypertensive rats (SHRs) and whether its antihypertensive action involves cAMP-dependent protein kinase A (PKA) and Rho kinase, two major regulators of vascular smooth muscle contraction. Oral administration of 2-OHOA to SHRs induced sustained systolic BP decreases in a time-dependent (1-7 days) and dose-dependent (100-900 mg/kg every 12 h) manner. After 7 days of treatment with 2-OHOA (600 mg/kg), the systolic BP of SHRs was similar to that of normotensive Wistar Kyoto rats, returning to its initial hypertensive level after withdrawal of 2-OHOA. This treatment strongly increased the protein expression of the catalytic and regulatory RIalpha and RIIalpha PKA subunits as well as PKA activity in aortas from SHRs. Consistently, administration of the PKA inhibitor 8-bromo adenosine-3',5'-cyclic monophosphorothioate, Rp isomer, to 2-OHOA-treated SHRs induced a pronounced reversal (up to 59%) of the antihypertensive effect of 2-OHOA. Additionally, 2-OHOA completely reversed the pathological overexpression of aortic Rho kinase found in SHRs, suppressing the vasoconstrictory Rho kinase pathway.

  7. Single-Cell Protein Production by the Acid-Tolerant Fungus Scytalidium acidophilum from Acid Hydrolysates of Waste Paper †

    PubMed Central

    Ivarson, K. C.; Morita, H.

    1982-01-01

    The bioconversion of waste paper to single-cell protein at pH <1 by Scytalidium acidophilum is described. Waste paper pretreated with 72% H2SO4 at 4°C was diluted with water to a pH of <0.1 and hydrolyzed. This yielded an adequate sugar-containing substrate for the growth of the fungus. A total of 97% of the sugars (glucose, galactose, mannose, xylose, arabinose) in the hydrolysates were converted to cell biomass. Microbial contamination was not observed. Based on the sugars consumed, S. acidophilum produced higher yields in shake cultures than many other Fungi Imperfecti. In aerated cultures, productivity increased, and yields of 43 to 46% containing 44 to 47% crude protein were obtained. This compares favorably with Candida utilis, a yeast used commercially to produce single-cell protein. The chemical constituents and the essential amino acids of the fungal cells were similar to those of other fungi. The nucleic acid content was characteristic of microbes containing low levels of nucleic acid. The advantages of using S. acidophilum for single-cell protein production are discussed. PMID:16345970

  8. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  9. Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye.

    PubMed

    Summers, Jody A; Harper, Angelica R; Feasley, Christa L; Van-Der-Wel, Hanke; Byrum, Jennifer N; Hermann, Marcela; West, Christopher M

    2016-09-01

    All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth.

  10. Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye.

    PubMed

    Summers, Jody A; Harper, Angelica R; Feasley, Christa L; Van-Der-Wel, Hanke; Byrum, Jennifer N; Hermann, Marcela; West, Christopher M

    2016-09-01

    All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth. PMID:27402828

  11. Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein.

    PubMed

    Kraschnefski, Mark J; Bugarcic, Andrea; Fleming, Fiona E; Yu, Xing; von Itzstein, Mark; Coulson, Barbara S; Blanchard, Helen

    2009-03-01

    The rotavirus spike protein VP4 mediates attachment to host cells and subsequent membrane penetration. The VP8(*) domain of VP4 forms the spike tips and is proposed to recognize host-cell surface glycans. For sialidase-sensitive rotaviruses such as rhesus (RRV), this recognition involves terminal sialic acids. We show here that the RRV VP8(*)(64-224) protein competes with RRV infection of host cells, demonstrating its relevance to infection. In addition, we observe that the amino acids revealed by X-ray crystallography to be in direct contact with the bound sialic acid derivative methyl alpha-D-N-acetylneuraminide, and that are highly conserved amongst sialidase-sensitive rotaviruses, are residues that are also important in interactions with host-cell carbohydrates. Residues Arg101 and Ser190 of the RRV VP8(*) carbohydrate-binding site were mutated to assess their importance for binding to the sialic acid derivative and their competition with RRV infection of host cells. The crystallographic structure of the Arg(101)Ala mutant crystallized in the presence of the sialic acid derivative was determined at 295 K to a resolution of 1.9 A. Our multidisciplinary study using X-ray crystallography, saturation transfer difference nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, and competitive virus infectivity assays to investigate RRV wild-type and mutant VP8(*) proteins has provided the first evidence that the carbohydrate-binding cavity in RRV VP8(*) is used for host-cell recognition, and this interaction is not only with the sialic acid portion but also with other parts of the glycan structure.

  12. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  13. Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in rat liver after protein restriction.

    PubMed Central

    Andersson, G M; von der Decken, A

    1975-01-01

    Rats were fed for 6 days on a diet containing either 3 or 20% high-quality protein. Nuclei were isolated from liver and DNA-dependent RNA polymerases (EC 2.7.7.6) extracted with 1 M-(NH4)2SO4. The proteins were then precipitated with 3.5 M-(NH4)2SO4 and after dialysis applied to a DEAE-Sephadex column. The column was developed with a gradient of (NH4)2SO4. Polymerase I separated well from alpha-amanitin-sensitive polymerase II. The enzyme activities were compared between the two dietary groups. Rats that had received 3% protein showed a lower polymerase I activity per g wet wt. of liver, per mg of DNA and per mg of protein. Polymerase II was lower in activity per g wet wt. of liver and per mg of DNA, but was higher per mg of protein. Polyacrylamide-gel electrophoretograms showed a higher proportion of contaminating proteins in polymerase II fractions isolated from 20%-protein-fed rats. The data explain the lower activity obtained per mg of protein in these rats. It is concluded that a decrease in dietary protein content from 20 to 3% induces a fall in content and specific activity of RNA polymerase I and II in liver. PMID:1156400

  14. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein.

    PubMed Central

    Kirk, W R; Kurian, E; Prendergast, F G

    1996-01-01

    1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity. PMID:8770188

  15. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles

    SciTech Connect

    Mendz, G.L. ); Brown, L.R. ); Martenson, R.E. )

    1990-03-06

    The interactions of myelin basic protein and peptides derived from it with detergent micelles of lysophosphatidylglycerol, lysophosphatidylserine, palmitoyllysophosphatidic acid, and sodium lauryl sulfate, and with mixed micelles of the neutral detergent dodecylphosphocholine and the negatively charged detergent palmitoyllysophosphatidic acid, were investigated by {sup 1}H NMR spectroscopy and circular dichroic spectropolarimetry. The results with single detergents suggested that there are discrete interaction sites in the protein molecule for neutral and anionic detergent micelles and that at least some of these sites are different for each type of detergent. The data on the binding of the protein and peptides to mixed detergent micelles suggested that intramolecular interactions in the intact protein and in one of the longer peptides limited the formation of helices and also that a balance between hydrophobic and ionic forces is achieved in the interactions of the peptides with the detergents. At high detergent/protein molar ratios, hydrophobic interactions appeared to be favored.

  16. [Effect of extrusion on the retention of amino acids and the nutritional value of the protein].

    PubMed

    Martinchik, A N; Sharikov, A Yu

    2015-01-01

    The data of the literature on the impact factors of the extrusion cooking on physical and chemical properties of food proteins, biological value and digestibility have been discussed. Extrusion cooking is a high temperature short-time process, characterizing by a minimal loss of nutrients. and biologically active substances compared to other methods of heat treatment of food. Studies of the properties of protein-containing products, protein isolates and concentrates in the extrusion are examined in different ways: the inactivation of antinutritional factors; improvement in digestibility and availability; changes in the content and chemical modification of amino acids; Maillard reactions involving amino acids; mutual enrichment of protein mixtures during the composite food extrusion; formation of functional technological properties of the extruded protein products.

  17. Palmitic acid increase levels of pancreatic duodenal homeobox-1 and p38/stress-activated protein kinase in islets from rats maintained on a low protein diet.

    PubMed

    Arantes, Vanessa C; Reis, Marise A B; Latorraca, Márcia Q; Ferreira, Fabiano; Stoppiglia, Luiz Fabrízio; Carneiro, Everardo M; Boschero, Antonio C

    2006-12-01

    A severe reduction in insulin release in response to glucose is consistently noticed in protein-deprived rats and is attributed partly to the chronic exposure to elevated levels of NEFA. Since the pancreatic and duodenal transcription factor homeobox 1 (PDX-1) is important for the maintenance of beta-cell physiology, and since PDX-1 expression is altered in the islets of rats fed a low protein (LP) diet and that rats show high NEFA levels, we assessed PDX-1 and insulin mRNA expression, as well as PDX-1 and p38/stress activated protein kinase 2 (SAPK2) protein expression, in islets from young rats fed low (6%) or normal (17%; control) protein diets and maintained for 48 h in culture medium containing 5.6 mmol/l glucose, with or without 0.6 mmol/l palmitic acid. We also measured glucose-induced insulin secretion and glucose metabolism. Insulin secretion by isolated islets in response to 16.7 mmol/l glucose was reduced in LP compared with control rats. In the presence of NEFA, there was an increase in insulin secretion in both groups. At 2.8 mmol/l glucose, the metabolism of this sugar was reduced in LP islets, regardless of the presence of this fatty acid. However, when challenged with 16.7 mmol/l glucose, LP and control islets showed a severe reduction in glucose oxidation in the presence of NEFA. The PDX-1 and insulin mRNA were significantly higher when NEFA was added to the culture medium in both groups of islets. The effect of palmitic acid on PDX-1 and p38/SAPK2 protein levels was similar in LP and control islets, but the increase was much more evident in LP islets. These results demonstrate the complex interrelationship between nutrients in the control of insulin release and support the view that fatty acids play an important role in glucose homeostasis by affecting molecular mechanisms and stimulus/secretion coupling pathways. PMID:17181874

  18. Ribonucleic Acid, Deoxyribonucleic Acid, and Protein Content of Cells of Different Ages of Mycobacterium tuberculosis and the Relationship to Immunogenicity

    PubMed Central

    Youmans, Anne S.; Youmans, Guy P.

    1968-01-01

    The amount of ribonucleic acid (RNA), protein, and deoxyribonucleic acid (DNA) was determined in pellicle cultures of different ages of the H37Ra strain of Mycobacterium tuberculosis, grown on a synthetic medium. We found that the highest content of RNA and protein was present in 2-week-old cultures, indicating that these cells were in the logarithmic phase of growth. DNA content was highest at 1 and 2 weeks. The amount of all three compounds then decreased about 50% during the following 6 weeks. Two-week-old cells should therefore be used for preparation of the immunogenic ribosomal fraction. The optimal concentration of zinc chloride increased RNA and protein synthesis, and also improved the appearance of the pellicle growth. Two-week-old cells, which contained the largest amount of RNA and protein, immunized mice significantly better than older cells. Since protein and DNA are not involved in the production of immunity, a correlation could be made between amount of RNA and the capacity of viable H37Ra cells to immunize mice. The immunizing capacity of these cells was not affected by ribonuclease, probably because the ribonuclease did not penetrate into the whole cells. PMID:4966539

  19. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis.

    PubMed

    Ye, Shixin; Köhrer, Caroline; Huber, Thomas; Kazmi, Manija; Sachdev, Pallavi; Yan, Elsa C Y; Bhagat, Aditi; RajBhandary, Uttam L; Sakmar, Thomas P

    2008-01-18

    G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-L-phenylalanine (Acp) and p-benzoyl-L-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reactive keto groups at three specific positions. We obtained functional mutant CCR5, at levels up to approximately 50% of wild type as judged by immunoblotting, cell surface expression, and ligand-dependent calcium flux. Rhodopsin containing Acp at three different sites was also purified in high yield (0.5-2 microg/10(7) cells) and reacted with fluorescein hydrazide in vitro to produce fluorescently labeled rhodopsin. The incorporation of reactive keto groups such as Acp or Bzp into GPCRs allows their reaction with different reagents to introduce a variety of spectroscopic and other probes. Bzp also provides the possibility of photo-cross-linking to identify precise sites of protein-protein interactions, including GPCR binding to G proteins and arrestins, and for understanding the molecular basis of ligand recognition by chemokine receptors. PMID:17993461

  20. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm.

    PubMed

    Fulks, R M; Li, J B; Goldberg, A L

    1975-01-10

    A simple method is described for measuring rates of protein synthesis and degradation in isolated rat diaphragm. Muscles incubated in Krebs-Ringer bicarbonate buffer showed a linear rate of synthesis for 3 hours. At the same time, the muscle released tyrosine and ninhydrin-positive material, primarily amino acids, at a linear rate. This release was not a nonspecific leakage of material from the intracellular pools, but reflected net protein degradation. Tyrosine was chosen for studies of protein turnover, since it rapidly equilibrates between intracellular pools and the medium, it can be measured fluorometrically, and it is neither synthesized nor degraded by this tissue. To follow protein degradation independently of synthesis, muscles were incubated in the presence of cycloheximide. Under these conditions, the amount of tyrosine in the intracellular pools was constant, while the muscle released tyrosine at a linear rate. This tyrosine release was used as a measure of degradation. This preparation was used to study the influence of various factors known to be important for muscle growth on protein synthesis and degradation. Similar effects were obtained with diaphragms of normal and fasted rats although the latter showed decreased synthesis and increased protein degradation. Insulin by itself not only stimulated synthesis but also inhibited protein degradation (even in the presence of cycloheximide). These two effects served to reduce the net release of tyrosine from muscle protein to comparable extents. Effects of insulin on synthesis and degradation were greater when glucose was also present in the medium. Glucose by itself inhibited protein degradation but in the absence of insulin glucose had no significant effect on synthesis. Nevertheless, glucose stimulated incorporation of radioactivive tyrosine into protein, but this effect was due to an increased intracellular specific activity. Unlike glucose neither beta-hydroxybutyrate or octanoic acid had any

  1. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression.

  2. Determination of de novo synthesized amino acids in cellular proteins revisited by 13C NMR spectroscopy.

    PubMed

    Flögel, U; Willker, W; Leibfritz, D

    1997-04-01

    13C nuclear magnetic resonance spectroscopy was used to determine the absolute amounts to de novo synthesized amino acids in both the perchloric acid extracts and the hydrolyzed protein fractions of F98 glioma cells incubated for 2 h with 5 mmol/l [U-13C]glucose. 13C NMR spectra of the hydrolyzed protein fraction revealed a marked incorporation of 13C-labelled alanine, aspartate and glutamate into the proteins of F98 cells within the incubation period. Additionally, small amounts of 13C-labelled glycine, proline and serine could unambiguously be identified in the protein fraction. Astonishingly, approximately equal amounts of 13C-labelled glutamate and aspartate were incorporated into the cellular proteins, although the cytosolic steady-state concentration of aspartate was below 13C NMR detectability. Hypertonic stress decreased the incorporation of 13C-labelled amino acids into the total protein, albeit their cytosolic concentrations were increased, which reflects an inhibition of protein synthesis under these conditions. On the other hand, hypotonic stress increased the amount of 13C-labelled proline incorporated into the cellular proteins even though the cytosolic concentration of 13C-labelled proline was largely decreased. Apparently, hypoosmotic conditions stimulate the synthesis of proteins or peptides with a high proline content. The results show that already after 2 h of incubation with [U-13C]glucose there is a pronounced flux of 13C label into the cellular proteins, which is usually disregarded if cytosolic fluids are examined only. This means that calculations of metabolic fluxes based on 13C NMR spectroscopic data obtained from perchloric acid extracts of cells or tissues and also from in vivo measurements consider only the labelled 'NMR visible' cytosolic metabolites, which may have to be corrected for fast label flowing off into other compartments.

  3. Rh polypeptide is a major fatty acid-acylated erythrocyte membrane protein

    SciTech Connect

    de Vetten, M.P.; Agre, P.

    1988-12-05

    The erythrocyte Rh antigens contain an Mr = 32,000 integral protein which is thought to contribute in some way to the organization of surrounding phospholipid. To search for possible fatty acid acylation of the Rh polypeptide, intact human erythrocytes were incubated with (3H)palmitic acid prior to preparation of membranes and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Several membrane proteins were labeled, but none corresponded to the glycophorins or membrane proteins 1-8. An Mr = 32,000 band was prominently labeled on Rh (D)-negative and -positive erythrocytes and could be precipitated from the latter with anti-D. No similar protein was labeled on membranes from Rhmod erythrocytes, a rare phenotype lacking Rh antigens. Labeling of the Rh polypeptide most likely represents palmitic acid acylation through thioester linkages. The 3H label was not extracted with chloroform/methanol, but was quantitatively eluted with hydroxylamine and co-chromatographed with palmitohydroxamate and free palmitate by thin layer chromatography. The fatty acid acylations occurred independent of protein synthesis and were completely reversed by chase with unlabeled palmitate. It is concluded that the Rh polypeptide is fatty acid-acylated, being a major substrate of an acylation-deacylation mechanism associated with the erythrocyte membrane.

  4. A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.

    PubMed

    Chen, Duo; Wang, Jiasong; Yan, Ming; Bao, Forrest Sheng

    2016-08-01

    Computationally assessing the functional similarity between proteins is an important task of bioinformatics research. It can help molecular biologists transfer knowledge on certain proteins to others and hence reduce the amount of tedious and costly benchwork. Representation of amino acids, the building blocks of proteins, plays an important role in achieving this goal. Compared with symbolic representation, representing amino acids numerically can expand our ability to analyze proteins, including comparing the functional similarity of them. Among the state-of-the-art methods, electro-ion interaction pseudopotential (EIIP) is widely adopted for the numerical representation of amino acids. However, it could suffer from degeneracy that two different amino acid sequences have the same numerical representation, due to the design of EIIP. In light of this challenge, we propose a complex prime numerical representation (CPNR) of amino acids, inspired by the similarity between a pattern among prime numbers and the number of codons of amino acids. To empirically assess the effectiveness of the proposed method, we compare CPNR against EIIP. Experimental results demonstrate that the proposed method CPNR always achieves better performance than EIIP. We also develop a framework to combine the advantages of CPNR and EIIP, which enables us to improve the performance and study the unique characteristics of different representations. PMID:27249328

  5. Polymerization and nucleic acid-binding properties of human L1 ORF1 protein.

    PubMed

    Callahan, Kathryn E; Hickman, Alison B; Jones, Charles E; Ghirlando, Rodolfo; Furano, Anthony V

    2012-01-01

    The L1 (LINE 1) retrotransposable element encodes two proteins, ORF1p and ORF2p. ORF2p is the L1 replicase, but the role of ORF1p is unknown. Mouse ORF1p, a coiled-coil-mediated trimer of ∼42-kDa monomers, binds nucleic acids and has nucleic acid chaperone activity. We purified human L1 ORF1p expressed in insect cells and made two findings that significantly advance our knowledge of the protein. First, in the absence of nucleic acids, the protein polymerizes under the very conditions (0.05 M NaCl) that are optimal for high (∼1 nM)-affinity nucleic acid binding. The non-coiled-coil C-terminal half mediates formation of the polymer, an active conformer that is instantly resolved to trimers, or multimers thereof, by nucleic acid. Second, the protein has a biphasic effect on mismatched double-stranded DNA, a proxy chaperone substrate. It protects the duplex from dissociation at 37°C before eventually melting it when largely polymeric. Therefore, polymerization of ORF1p seemingly affects its interaction with nucleic acids. Additionally, polymerization of ORF1p at its translation site could explain the heretofore-inexplicable phenomenon of cis preference-the favored retrotransposition of the actively translated L1 transcript, which is essential for L1 survival. PMID:21937507

  6. Uniformly 13C-labeled algal protein used to determine amino acid essentiality in vivo.

    PubMed Central

    Berthold, H K; Hachey, D L; Reeds, P J; Thomas, O P; Hoeksema, S; Klein, P D

    1991-01-01

    The edible alga Spirulina platensis was uniformly labeled with 13C by growth in an atmosphere of pure 13CO2. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly 13C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo. Images PMID:11607211

  7. Use of gel retardation to analyze protein-nucleic acid interactions.

    PubMed Central

    Lane, D; Prentki, P; Chandler, M

    1992-01-01

    Protein-nucleic acid interactions are crucial in the regulation of many fundamental cellular processes. The nature of these interactions is susceptible to analysis by a variety of methods, but the combination of high analytical power and technical simplicity offered by the gel retardation (band shift) technique has made this perhaps the most widely used such method over the last decade. This procedure is based on the observation that the formation of protein-nucleic complexes generally reduces the electrophoretic mobility of the nucleic acid component in the gel matrix. This review attempts to give a simplified account of the physical basis of the behavior of protein-nucleic acid complexes in gels and an overview of many of the applications in which the technique has proved especially useful. The factors which contribute most to the resolution of the complex from the naked nucleic acid are the gel pore size, the relative mass of protein compared with nucleic acid, and changes in nucleic acid conformation (bending) induced by binding. The consequences of induced bending on the mobility of double-strand DNA fragments are similar to those arising from sequence-directed bends, and the latter can be used to help characterize the angle and direction of protein-induced bends. Whether a complex formed in solution is actually detected as a retarded band on a gel depends not only on resolution but also on complex stability within the gel. This is strongly influenced by the composition and, particularly, the ionic strength of the gel buffer. We discuss the applications of the technique to analyzing complex formation and stability, including characterizing cooperative binding, defining binding sites on nucleic acids, analyzing DNA conformation in complexes, assessing binding to supercoiled DNA, defining protein complexes by using cell extracts, and analyzing biological processes such as transcription and splicing. Images PMID:1480106

  8. A modified PCR protocol for consistent amplification of fatty acid desaturase (FAD) alleles in marker-assisted backcross breeding for high oleic trait in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High oleic acid, such as is found in olive oil, is desirable for the healthy cholesterol-lowering benefits. The oxidative stability of the oil with high oleic acid also gives longer “shelve life” for peanut products. These benefits drive the breeding effort toward developing high oleic peanuts worl...

  9. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  10. A coupled reagent of o-phthalaldehyde and sulfanilic acid for protein detection based on the measurements of light scattering signals with a common spectrofluorometer.

    PubMed

    Li, Yuan Fang; Shen, Xiao Wei; Huang, Cheng Zhi

    2008-05-30

    A rapid and sensitive method for the determination of proteins is proposed with a coupled reagent of o-phthalaldehyde and sulfanilic acid by measuring the light scattering (LS) signals with a common spectrofluorometer. Mechanism investigations showed that o-phthalaldehyde couples at first with sulfanilic acid with fast speed and forms a new synthesized Schiff base dye, which then interacts with protein rapidly on acidic condition, resulting in greatly enhanced LS signals with the maximum peak located at 344 nm. Based on the linear relationship between enhanced LS intensities and concentrations of proteins, a novel assay of HSA and BSA is established in the linear range of 0.1-25.0 microg ml(-1) with the limits of detection (3sigma) being 13 ng ml(-1) depending on the concentration of the reagent. Results for sample detections of our method were consistent with the documented spectrophotometric method with CBB G250 assay.

  11. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  12. Stabilisation of proteins via mixtures of amino acids during spray drying.

    PubMed

    Ajmera, Ankur; Scherließ, Regina

    2014-03-10

    Biologicals are often formulated as solids in an effort to preserve stability which generally requires stabilising excipients for proper drying. The purpose of this study was to screen amino acids and their combinations for their stabilising effect on proteins during spray drying. Catalase, as model protein, was spray dried in 1+1 or 1+2 ratios with amino acids. Some amino acids namely arginine, glycine and histidine showed good retention of catalase functionality after spray drying and subsequent storage stress. A 1+1 combination of arginine and glycine in a 1+2 ratio with catalase resulted in a tremendously good stabilising effect. Storage at high temperature/humidity also showed beneficial effects of this combination. To evaluate whether this was a general principle, these findings were transferred to an antigenic protein of comparable size and supramolecular structure (haemagglutinin) as well as to a smaller enzyme (lysozyme). Upon spray drying with the combination of amino acids it could be shown that both proteins remain more stable especially after storage compared to the unprotected protein. The combination of arginine and glycine is tailored to the needs of protein stabilisation during spray drying and may hence be utilised in dry powder formulation of biomolecules with superior stability characteristics. PMID:24412336

  13. Augmentation of protein-derived acetic acid production by heat-alkaline-induced changes in protein structure and conformation.

    PubMed

    Wang, Xu; Li, Yanbo; Liu, Junxin; Ren, Nan-Qi; Qu, Jiuhui

    2016-01-01

    Waste-derived acetic acid (HAc) is an attractive feedstock for microbe-mediated biofuel production. However, fermentative conversion of HAc from waste-activated sludge (WAS) has low yield because of the high concentration of proteins not readily utilizable by microorganisms without prior hydrolysis. We investigated a combined technology for HAc augmentation during sludge protein fermentation. The maximal HAc yield increased over two-fold, reaching 0.502 ± 0.021 g/g protein (0.36 ± 0.01 g COD/g COD, ∼52% of the total volatile fatty acids) when synthetic sludge protein was heated at 120 °C for 30 min, treated at pH 12 for 24 h, and fermented at pH 9 for 72 h. Comprehensive analysis illustrated that the heat-alkaline pretreatment significantly induced protein fragmentation, simultaneously increasing the efficiency of protein biohydrolysis (from 35.5% to 85.9%) by inducing conformational changes indicative of protein unfolding. Consequently, the native α-helix content was decreased from 67.3% to 32.5% by conversion to an unordered shape, whose content increased from 27.5% to 45.5%; disulfide bonds were cleaved, whereas the main S-S stretching pattern was altered from gauche-gauche-gauche to gauche-gauche-trans, consequently causing increased protein susceptibility to proteolytic hydrolysis (76.3% vs. 47.0%). Economic analysis indicated that anaerobic fermentation with appropriate heat-alkaline pretreatment is a cost-effective approach for waste conversion to energy sources such as HAc.

  14. Olive oils modulate fatty acid content and signaling protein expression in apolipoprotein E knockout mice brain.

    PubMed

    Alemany, Regina; Navarro, María A; Vögler, Oliver; Perona, Javier S; Osada, Jesús; Ruiz-Gutiérrez, Valentina

    2010-01-01

    Atherosclerosis contributes to disruption of neuronal signaling pathways by producing lipid-dependent modifications of brain plasma membranes, neuroinflammation and oxidative stress. We investigated whether long-term (11 weeks) consumption of refined- (ROO) and pomace- (POO) olive oil modulated the fatty acid composition and the levels of membrane signaling proteins in the brain of apolipoprotein E (apoE) knockout (KO) mice, an animal model of atherosclerosis. Both of these oils are rich in bioactive molecules with anti-inflammatory and antioxidant effects. ROO and POO long-term consumption increased the proportion of monounsaturated fatty acids (MUFAs), particularly of oleic acid, while reducing the level of the saturated fatty acids (SFAs) palmitic and stearic acid. As a result, the MUFA:SFA ratio was higher in apoE KO mice brain fed with ROO and POO. Furthermore, both oils reduced the level of arachidonic and eicosapentaenoic acid, suggesting a decrease in the generation of pro- and anti-inflammatory eicosanoids. Finally, ROO and POO induced an increase in the density of membrane proteins implicated in both the Galphas/PKA and Galphaq/PLCbeta1/PKCalpha signaling pathways. The combined effects of long-term ROO and POO consumption on fatty acid composition and the level of signaling proteins involved in PKA and PKC activation, suggest positive effects on neuroinflammation and brain function in apoE KO mice brain, and convert these oils into promising functional foods in diseases involving apoE deficiency.

  15. Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in northwest Mexico.

    PubMed

    Caire-Juvera, Graciela; Vázquez-Ortiz, Francisco A; Grijalva-Haro, Maria I

    2013-01-01

    A better knowledge of the amino acid composition of foods commonly consumed in different regions is essential to calculate their scores and, therefore, to predict their protein quality. This paper presents the amino acid composition, amino acid score and in vitro protein digestibility of fifteen foods that are commonly consumed in Northwest Mexico. The foods were prepared by the traditional methods and were analyzed by reverse-phase HPLC. The chemical score for each food was determined using the recommendations for children of 1-2 years of age, and the digestibility was evaluated using a multienzyme technique. Lysine was the limiting amino acid in cereal-based products (scores 15 to 54), and methionine and cysteine were limiting in legume products (scores 41 to 47), boiled beef (score = 75) and hamburger (score = 82). The method of preparation had an effect on the content of certain amino acids, some of them increased and others decreased their content. Meat products and regional cheese provided a high amino acid score (scores 67 to 91) and digestibility (80.7 to 87.8%). Bologna, a processed meat product, had a lower digestibility (75.4%). Data on the amino acid composition of foods commonly consumed in Mexico can be used to provide valuable information on food analysis and protein quality, and to contribute to nutrition and health research and health programs.

  16. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance.

    PubMed

    Baier, L J; Sacchettini, J C; Knowler, W C; Eads, J; Paolisso, G; Tataranni, P A; Mochizuki, H; Bennett, P H; Bogardus, C; Prochazka, M

    1995-03-01

    The intestinal fatty acid binding protein locus (FABP2) was investigated as a possible genetic factor in determining insulin action in the Pima Indian population. A polymorphism at codon 54 of FABP2 was identified that results in an alanine-encoding allele (frequency 0.71) and a threonine-encoding allele (frequency 0.29). Pimas who were homozygous or heterozygous for the threonine-encoding allele were found to have a higher mean fasting plasma insulin concentration, a lower mean insulin-stimulated glucose uptake rate, a higher mean insulin response to oral glucose and a mixed meal, and a higher mean fat oxidation rate compared with Pimas who were homozygous for the alanine-encoding allele. Since the FABP2 threonine-encoding allele was found to be associated with insulin resistance and increased fat oxidation in vivo, we further analyzed the FABP2 gene products for potential functional differences. Titration microcalorimetry studies with purified recombinant protein showed that the threonine-containing protein had a twofold greater affinity for long-chain fatty acids than the alanine-containing protein. We conclude that the threonine-containing protein may increase absorption and/or processing of dietary fatty acids by the intestine and thereby increase fat oxidation, which has been shown to reduce insulin action. PMID:7883976

  17. Immunocytochemical staining for glial fibrillary acidic protein and the metabolism of cytoskeletal proteins in experimental allergic encephalomyelitis.

    PubMed

    Smith, M E; Somera, F P; Eng, L F

    1983-04-01

    Spinal cord sections from Lewis rats with acute experimental allergic encephalomyelitis (EAE) showed greatly increased staining of astrocytes when stained immunocytochemically for glial fibrillary acidic protein (GFAP). Fibrous processes in white matter were heavily stained early in the course of the disease when paralysis was first evident (10-12 days after injection of guinea pig spinal cord myelin), then protoplasmic astrocytes were stained in the gray matter and became more heavily stained at 20 days post-injection. The stained astrocytes were evenly distributed throughout the tissue, and did not correspond to the sites of the lesions. Spinal cord slices of control and EAE rats were incubated with [3H]amino acids, then cytoskeletal proteins were prepared in an enriched fraction, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the protein bands counted for radioactivity. In the EAE rat all cytoskeletal proteins, including the neurofilaments, vimentin, microtubules, GFAP and actin, showed increased uptake of radioactive amino acids. Immunoprecipitation of GFAP with specific antiserum showed increased radioactivity in the complex beginning at day 10 when cellular infiltration was beginning in the EAE animals. As the disease became acute, the radioactivity in the immunoprecipitated GFAP increased, in some cases to very high levels, then by day 18 when recovery was underway, the radioactivity had fallen to normal levels. Possible agents causing metabolic activation of protein synthesis in EAE animals include stimulating substances elaborated by infiltrating lymphoid cells, and the generalized edema accompanying the demyelinative condition. The activation of GFAP protein staining and metabolism in EAE might serve as a model for the activated growth of astrocyte processes which cause the severe gliosis seen in multiple sclerosis.

  18. Increasing dietary crude protein does not increase the essential amino acid requirements of kittens.

    PubMed

    Strieker, M J; Morris, J G; Rogers, Q R

    2006-08-01

    Essential amino acid (EAA) requirements of omnivores and herbivores (e.g. chicks, lambs, pigs and rats) are directly related to the concentration of dietary crude protein (CP). When an EAA is limiting in the diet, addition of a mixture of EAA lacking the limiting one (which increases dietary CP) results in a decrease in food intake and weight gain. This interaction has been referred to as an AA imbalance and has not been studied in depth in strict carnivores. The objectives of these experiments were to examine the effects on growing kittens (2-week periods) of the addition to diets of a mixture of AA lacking the limiting one. The control diets were at the requirement of the respective limiting EAA (or about 85% of the 1986 National Research Council requirement). In experiment 1, with the dietary EAAs at the minimally determined requirements, the concentration of the essential or dispensable amino acids was increased to determine if CP or an EAA was limiting. Results of growth rates (n = 12) and plasma AA concentrations indicated that tryptophan was limiting, but increased body weight gain also occurred when the concentration of CP was increased as dispensable amino acids without additional tryptophan. Experiment 1 was repeated in experiment 2 using a crossover design. Again, when tryptophan was limiting additional concentrations of dispensable AAs increased body weight gain. This response is the opposite of that in herbivores and omnivores. Experiment 3 consisted of 10 separate crossover trials, one for each of the 10 EAA and examined the effect of two concentrations of dietary CP (200 and 300 g CP/kg diet) on body weight gain of kittens (n = 8) offered diets limiting in each respective EAA. Body weight gain was numerically greater when diets contained 300 g CP/kg than 200 g CP/kg for eight of 10 EAAs (p < 0.05 for only isoleucine and threonine) when each amino acid was limiting. This response is the reverse of that which occurs in chicks, lambs, pigs and rats when

  19. Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae.

    PubMed

    Brody, S; Oh, C; Hoja, U; Schweizer, E

    1997-05-19

    The yeast gene, ACP1, encoding the mitochondrial acyl carrier protein, was deleted by gene replacement. The resulting acp1-deficient mutants had only 5-10% of the wild-type lipoic acid content remaining, and exhibited a respiratory-deficient phenotype. Upon meiosis, the lipoate deficiency co-segregated with the acp1 deletion. The role of ACP1 in long-chain fatty acid synthesis was studied in fast and fas2 null mutants completely lacking cytoplasmic fatty acid synthase. When grown on odd-chain (13:0 and 15:0) fatty acids, these cells showed less than 1% of C-16 and C-18 acids in their total lipids. Mitochondrial ACP is therefore suggested to be involved with the biosynthesis of octanoate, a precursor to lipoic acid. PMID:9187370

  20. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... fixer, and then incubate for 5 minutes in Tris-buffered saline (TBS): 200 mM NaCL, 60 mM Tris-HCl to pH...) Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto,...

  1. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... fixer, and then incubate for 5 minutes in Tris-buffered saline (TBS): 200 mM NaCL, 60 mM Tris-HCl to pH...) Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto,...

  2. Effect of maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids on liver fatty acid desaturases and transport proteins in Wistar rats.

    PubMed

    Wadhwani, Nisha S; Manglekar, Rupali R; Dangat, Kamini D; Kulkarni, Asmita V; Joshi, Sadhana R

    2012-01-01

    A disturbed fatty acid metabolism increases the risk of adult non-communicable diseases. This study examines the effect of maternal micronutrients on the fatty acid composition, desaturase activity, mRNA levels of fatty acid desaturases and transport proteins in the liver. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B(12). The vitamin B(12) deficient groups were supplemented with omega 3 fatty acid. An imbalance of maternal micronutrients reduces liver docosahexaenoic acid, increases Δ5 desaturase activity but decreases mRNA levels, decreases Δ6 desaturase activity but not mRNA levels as compared to control. mRNA level of Δ5 desaturase reverts back to the levels of the control group as a result of omega 3 fatty acid supplementation. Our data for the first time indicates that maternal micronutrients differentially alter the activity and expression of fatty acid desaturases in the liver.

  3. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress. PMID:24702262

  4. Effect of increased protein intake on renal acid load and renal hemodynamic responses.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; van Baak, Marleen A

    2016-03-01

    Increased protein intake versus maltodextrin intake for 4 weeks lowers blood pressure. Concerns exist that high-protein diets reduce renal function. Effects of acute and 4-week protein intake versus maltodextrin intake on renal acid load, glomerular filtration rate and related parameters were compared in this study. Seventy-nine overweight individuals with untreated elevated blood pressure and normal kidney function were randomized to consume a mix of protein isolates (60 g/day) or maltodextrin (60 g/day) for 4 weeks in energy balance. Twenty-four-hour urinary potential renal acid load (uPRAL) was compared between groups. A subgroup (maltodextrin N = 27, protein mix N = 25) participated in extra test days investigating fasting levels and postprandial effects of meals supplemented with a moderate protein- or maltodextrin-load on glomerular filtration rate, effective renal plasma flow, plasma renin, aldosterone, pH, and bicarbonate. uPRAL was significantly higher in the protein group after 4 weeks (P ≤ 0.001). Postprandial filtration fraction decreased further after the protein-supplemented breakfast than after the maltodextrin-supplemented breakfast after 4 weeks of supplementation (P ≤ 0.001). Fasting and postprandial levels of glomerular filtration rate, effective renal plasma flow, renin, aldosterone, angiotensin-converting enzyme, pH and bicarbonate did not differ between groups. In conclusion, 4 weeks on an increased protein diet (25% of energy intake) increased renal acid load, but did not affect renal function. Postprandial changes, except for filtration fraction, also did not differ between groups. These data suggest that a moderate increase in protein intake by consumption of a protein mix for 4 weeks causes no (undesirable) effects on kidney function in overweight and obese individuals with normal kidney function. PMID:26997623

  5. Effect of increased protein intake on renal acid load and renal hemodynamic responses.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; van Baak, Marleen A

    2016-03-01

    Increased protein intake versus maltodextrin intake for 4 weeks lowers blood pressure. Concerns exist that high-protein diets reduce renal function. Effects of acute and 4-week protein intake versus maltodextrin intake on renal acid load, glomerular filtration rate and related parameters were compared in this study. Seventy-nine overweight individuals with untreated elevated blood pressure and normal kidney function were randomized to consume a mix of protein isolates (60 g/day) or maltodextrin (60 g/day) for 4 weeks in energy balance. Twenty-four-hour urinary potential renal acid load (uPRAL) was compared between groups. A subgroup (maltodextrin N = 27, protein mix N = 25) participated in extra test days investigating fasting levels and postprandial effects of meals supplemented with a moderate protein- or maltodextrin-load on glomerular filtration rate, effective renal plasma flow, plasma renin, aldosterone, pH, and bicarbonate. uPRAL was significantly higher in the protein group after 4 weeks (P ≤ 0.001). Postprandial filtration fraction decreased further after the protein-supplemented breakfast than after the maltodextrin-supplemented breakfast after 4 weeks of supplementation (P ≤ 0.001). Fasting and postprandial levels of glomerular filtration rate, effective renal plasma flow, renin, aldosterone, angiotensin-converting enzyme, pH and bicarbonate did not differ between groups. In conclusion, 4 weeks on an increased protein diet (25% of energy intake) increased renal acid load, but did not affect renal function. Postprandial changes, except for filtration fraction, also did not differ between groups. These data suggest that a moderate increase in protein intake by consumption of a protein mix for 4 weeks causes no (undesirable) effects on kidney function in overweight and obese individuals with normal kidney function.

  6. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  7. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly

    PubMed Central

    2013-01-01

    Background Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960’s, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear. We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex. Results We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different. Conclusions Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction

  8. Protein content and amino acids profile of pseudocereals.

    PubMed

    Mota, Carla; Santos, Mariana; Mauro, Raul; Samman, Norma; Matos, Ana Sofia; Torres, Duarte; Castanheira, Isabel

    2016-02-15

    Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and buckwheat (Fagopyrum esculentum) represent the main protein source in several diets, although these pseudocereals are not currently present in the FCDB nutrient profile information. The aim of this work is to characterise the AA profile of these pseudocereals and compare them with rice. Total protein content revealed to vary from 16.3g/100g (quinoa Salta) to 13.1g/100g (buckwheat) and lower values were found in rice samples (6.7g/100g). For pseudocereals the most abundant essential AA was leucine. Quinoa-Salta evidences the highest leucine content (1013mg/100g) and the minor methionine content (199mg/100g). Buckwheat was the cereal with the highest phenylalanine content (862mg/100g). Rice (Oryza sativa) presents the lowest content for all AA. Results showed pseudocereals as the best source of AA. EuroFIR guidelines where strictly followed and proved to be a crucial tool to guarantee data interchangeability and comparability. PMID:26433287

  9. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins.

    PubMed

    Peitzsch, R M; McLaughlin, S

    1993-10-01

    We studied the binding of fatty acids and acylated peptides to phospholipid vesicles by making electrophoretic mobility and equilibrium dialysis measurements. The binding energies of the anionic form of the fatty acids and the corresponding acylated glycines were identical; the energies increased by 0.8 kcal/mol per number of carbons in the acyl chain (Ncarbon = 10, 12, 14, 16), a value identical to that for the classical entropy-driven hydrophobic effect discussed by Tanford [The Hydrophobic Effect (1980) Wiley, New York]. The unitary Gibbs free binding energy, delta Gou, of myristoylated glycine, 8 kcal/mol, is independent of the nature of the electrically neutral lipids used to form the vesicles. Similar binding energies were obtained with other myristoylated peptides (e.g., Gly-Ala, Gly-Ala-Ala). The 8 kcal/mol, which corresponds to an effective dissociation constant of 10(-4) M for myristoylated peptides with lipids, provides barely enough energy to attach a myristoylated protein in the cytoplasm to the plasma membrane. Thus, other factors that reduce (e.g., hydrophobic interaction of myristate with the covalently attached protein) or enhance (e.g., electrostatic interactions of basic residues with acidic lipids; protein-protein interactions with intrinsic receptor proteins) the interaction of myristoylated proteins with membranes are likely to be important and may cause reversible translocation of these proteins to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Amyloid protein precursor stimulates excitatory amino acid transport. Implications for roles in neuroprotection and pathogenesis.

    PubMed

    Masliah, E; Raber, J; Alford, M; Mallory, M; Mattson, M P; Yang, D; Wong, D; Mucke, L

    1998-05-15

    Excitatory neurotransmitters such as glutamate are required for the normal functioning of the central nervous system but can trigger excitotoxic neuronal injury if allowed to accumulate to abnormally high levels. Their extracellular levels are controlled primarily by transmitter uptake into astrocytes. Here, we demonstrate that the amyloid protein precursor may participate in the regulation of this important process. The amyloid protein precursor has been well conserved through evolution, and a number of studies indicate that it may function as an endogenous excitoprotectant. However, the mechanisms underlying this neuroprotective capacity remain largely unknown. At moderate levels of expression, human amyloid protein precursors increased glutamate/aspartate uptake in brains of transgenic mice, with the 751-amino acid isoform showing greater potency than the 695-amino acid isoform. Cerebral glutamate/aspartate transporter protein levels were higher in transgenic mice than in non-transgenic controls, whereas transporter mRNA levels were unchanged. Amyloid protein precursor-dependent stimulation of aspartate uptake by cultured primary astrocytes was associated with increases in protein kinase A and C activity and could be blocked by inhibitors of these kinases. The stimulation of astroglial excitatory amino acid transport by amyloid protein precursors could protect the brain against excitotoxicity and may play an important role in neurotransmission. PMID:9575214

  11. Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements

    PubMed Central

    Wang, Y.; Jin, L.; Wen, Q. N.; Kopparapu, N. K.; Liu, J.; Liu, X. L.; Zhang, Y. G.

    2016-01-01

    The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a 4×4 Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established. PMID:26732449

  12. Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements.

    PubMed

    Wang, Y; Jin, L; Wen, Q N; Kopparapu, N K; Liu, J; Liu, X L; Zhang, Y G

    2016-02-01

    The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a 4×4 Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established.

  13. PROTEIN NUCLEIC ACID INTERACTIONS GRANT # DE-FG02-96ER62166 FINAL REPORT

    SciTech Connect

    Berman, Helen M.; Thornton, Janet

    2005-02-17

    The overall goal of this collaborative project is to develop methods for analyzing protein-nucleic acid interactions. Nucleic acid-binding proteins have a central role in all aspects of genetic activity within an organism, such as transcription, replication, and repair. Thus, it is extremely important to examine the nature of complexes that are formed between proteins and nucleic acids, as they form the basis of our understanding of how these processes take place. Over the past decade, the world has witnessed a great expansion in the determination of high-quality structures of nucleic acid-binding proteins. As a result, the number of such structures has seen a constant increase in the Protein Data Bank (PDB) (1) and the Nucleic Acid Database (NDB) (2). These structures, especially those of proteins in complex with DNA, have provided valuable insight into the stereochemical principles of binding, including how particular base sequences are recognized and how the nucleic acid structure is quite often modified on binding. In this project, we designed several approaches to characterize and classify the properties of both protein-DNA and protein-RNA complexes. In work done in the previous grant period, we developed methods to use experimental data to evaluate nucleic acid crystal structures in order to ensure that the structures utilized in future studies would be of high quality. The methodology was collated in the standalone software package SFCHECK (3) [A], and an applied survey of structures in the NDB produced very positive results. With this quality control mechanism in place, we then analyzed DNA-binding sites on proteins by studying the distortions observed in DNA structures bound to protein. From our observations, we found that DNA-binding proteins present a very different binding surface to those that bind other proteins and defined three modes of protein binding [B]. Following this survey, we classified DNA-binding proteins into eight different structural

  14. Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels.

    PubMed

    He, Sha; Zhang, Yi; Wang, Pei; Xu, Xingzhi; Zhu, Kui; Pan, Wenying; Liu, Wenwen; Cai, Kaiyong; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2015-01-01

    This work develops a high-throughput, high-efficiency and straightforward microfluidic blotting method for analyzing proteins and nucleic acids. Sample solutions containing antibodies (for protein detection) or hybridization probes (for nucleic acid detection) are introduced into the parallel, serpentine microchannels to specifically recognize the immobilized targets on the substrate, achieving the identification of multiple targets in multiple samples simultaneously. The loading control, molecular weight markers, and antigen/antibody titration are designed and integrated into the microfluidic chip, thus allowing for the quantification of proteins and nucleic acids. Importantly, we could easily distinguish the adjacent blotting bands inside parallel microchannels, which may be difficult to achieve in conventional blotting. The small dimensions of microfluidic channels also help to reduce the amount of probing molecules and to accelerate the biochemical reaction. Our microfluidic blotting could bypass the steps of blocking and washing, further reducing the operation time and complexity.

  15. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids.

    PubMed

    Ashkenazy, Haim; Erez, Elana; Martz, Eric; Pupko, Tal; Ben-Tal, Nir

    2010-07-01

    It is informative to detect highly conserved positions in proteins and nucleic acid sequence/structure since they are often indicative of structural and/or functional importance. ConSurf (http://consurf.tau.ac.il) and ConSeq (http://conseq.tau.ac.il) are two well-established web servers for calculating the evolutionary conservation of amino acid positions in proteins using an empirical Bayesian inference, starting from protein structure and sequence, respectively. Here, we present the new version of the ConSurf web server that combines the two independent servers, providing an easier and more intuitive step-by-step interface, while offering the user more flexibility during the process. In addition, the new version of ConSurf calculates the evolutionary rates for nucleic acid sequences. The new version is freely available at: http://consurf.tau.ac.il/.

  16. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism.

    PubMed

    Reidy, Paul T; Rasmussen, Blake B

    2016-02-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on

  17. Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications

    NASA Astrophysics Data System (ADS)

    Hendy, Erica J.; Tomiak, Peter J.; Collins, Matthew J.; Hellstrom, John; Tudhope, Alexander W.; Lough, Janice M.; Penkman, Kirsty E. H.

    2012-06-01

    Over 500 Free Amino Acid (FAA) and corresponding Total Hydrolysed Amino Acid (THAA) analyses were completed from eight independently-dated, multi-century coral cores of massive Porites sp. colonies. This dataset allows us to re-evaluate the application of amino acid racemization (AAR) for dating late Holocene coral material, 20 years after Goodfriend et al. (GCA56 (1992), 3847) first showed AAR had promise for developing chronologies in coral cores. This re-assessment incorporates recent method improvements, including measurement by RP-HPLC, new quality control approaches (e.g. sampling and sub-sampling protocols, statistically-based data screening criteria), and cleaning steps to isolate the intra-crystalline skeletal protein. We show that the removal of the extra-crystalline contaminants and matrix protein is the most critical step for reproducible results and recommend a protocol of bleaching samples in NaOCl for 48 h to maximise removal of open system proteins while minimising the induced racemization. We demonstrate that AAR follows closed system behaviour in the intra-crystalline fraction of the coral skeletal proteins. Our study is the first to assess the natural variability in intra-crystalline AAR between colonies, and we use coral cores taken from the Great Barrier Reef, Australia, and Jarvis Island in the equatorial Pacific to explore variability associated with different environmental conditions and thermal histories. Chronologies were developed from THAA Asx D/L, Ala D/L, Glx D/L and FAA Asx D/L for each core and least squares Monte Carlo modelling applied in order to quantify uncertainty of AAR age determinations and assess the level of dating resolution possible over the last 5 centuries. AAR within colonies follow consistent stratigraphic aging. However, there are systematic differences in rates between the colonies, which would preclude direct comparison from one colony to another for accurate age estimation. When AAR age models are developed from

  18. Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications.

    PubMed

    Hendy, Erica J; Tomiak, Peter J; Collins, Matthew J; Hellstrom, John; Tudhope, Alexander W; Lough, Janice M; Penkman, Kirsty E H

    2012-06-01

    Over 500 Free Amino Acid (FAA) and corresponding Total Hydrolysed Amino Acid (THAA) analyses were completed from eight independently-dated, multi-century coral cores of massive Porites sp. colonies. This dataset allows us to re-evaluate the application of amino acid racemization (AAR) for dating late Holocene coral material, 20 years after Goodfriend et al. (GCA56 (1992), 3847) first showed AAR had promise for developing chronologies in coral cores. This re-assessment incorporates recent method improvements, including measurement by RP-HPLC, new quality control approaches (e.g. sampling and sub-sampling protocols, statistically-based data screening criteria), and cleaning steps to isolate the intra-crystalline skeletal protein. We show that the removal of the extra-crystalline contaminants and matrix protein is the most critical step for reproducible results and recommend a protocol of bleaching samples in NaOCl for 48 h to maximise removal of open system proteins while minimising the induced racemization. We demonstrate that AAR follows closed system behaviour in the intra-crystalline fraction of the coral skeletal proteins. Our study is the first to assess the natural variability in intra-crystalline AAR between colonies, and we use coral cores taken from the Great Barrier Reef, Australia, and Jarvis Island in the equatorial Pacific to explore variability associated with different environmental conditions and thermal histories. Chronologies were developed from THAA Asx D/L, Ala D/L, Glx D/L and FAA Asx D/L for each core and least squares Monte Carlo modelling applied in order to quantify uncertainty of AAR age determinations and assess the level of dating resolution possible over the last 5 centuries. AAR within colonies follow consistent stratigraphic aging. However, there are systematic differences in rates between the colonies, which would preclude direct comparison from one colony to another for accurate age estimation. When AAR age models are developed

  19. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria.

    PubMed

    Scheffel, André; Gruska, Manuela; Faivre, Damien; Linaroudis, Alexandros; Plitzko, Jürgen M; Schüler, Dirk

    2006-03-01

    Magnetotactic bacteria are widespread aquatic microorganisms that use unique intracellular organelles to navigate along the Earth's magnetic field. These organelles, called magnetosomes, consist of membrane-enclosed magnetite crystals that are thought to help to direct bacterial swimming towards growth-favouring microoxic zones at the bottom of natural waters. Questions in the study of magnetosome formation include understanding the factors governing the size and redox-controlled synthesis of the nano-sized magnetosomes and their assembly into a regular chain in order to achieve the maximum possible magnetic moment, against the physical tendency of magnetosome agglomeration. A deeper understanding of these mechanisms is expected from studying the genes present in the identified chromosomal 'magnetosome island', for which the connection with magnetosome synthesis has become evident. Here we use gene deletion in Magnetospirillum gryphiswaldense to show that magnetosome alignment is coupled to the presence of the mamJ gene product. MamJ is an acidic protein associated with a novel filamentous structure, as revealed by fluorescence microscopy and cryo-electron tomography. We suggest a mechanism in which MamJ interacts with the magnetosome surface as well as with a cytoskeleton-like structure. According to our hypothesis, magnetosome architecture represents one of the highest structural levels achieved in prokaryotic cells.

  20. Determination of free acidic and alkaline residues of protein via moving reaction boundary titration in microdevice electrophoresis.

    PubMed

    Wang, Hou-yu; Li, Si; Tang, Yun-yun; Dong, Jing-yu; Fan, Liu-yin; Cao, Cheng-xi

    2013-06-21

    As two important physico-chemical parameters, the acidic and alkaline residues of protein are of evident significance for the evaluation of protein properties and the design of relevant separation and analysis. However, there is still no electrophoretic method used for the direct detection of free acidic and alkaline residues of protein. Herein, we developed the concepts of moving reaction boundary (MRB) and MRB titration, relevant MRB titration theory, and the method of microdevice electrophoresis for the determination of free acidic and alkaline residues of protein. In the MRB titration, the boundary was created with acid or alkali and target protein immobilized via highly cross-linked polyacrylamide gel (PAG). It was theoretically revealed that the number of free acidic or alkaline residues of protein was as a function of MRB displacement in the electrophoretic titration system. As a proof of concept, seven model proteins were chosen for the determination of acidic or alkaline residues of protein via MRB titration. The results showed that the numbers of free acidic and alkaline residues of proteins detected were in good agreement with those obtained from the relevant amino sequences in the NCBI database, demonstrating the feasibility of the developed concept, theory and technique. The general methodology of MRB titration has potential application for inexpensive, facilitative and informative protein structure analysis of free acidic or alkaline residues of protein.

  1. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    SciTech Connect

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  2. Fatty acid binding protein 7 and n-3 poly unsaturated fatty acid supply in early rat brain development.

    PubMed

    Maximin, Elise; Langelier, Bénédicte; Aïoun, Josiane; Al-Gubory, Kaïs H; Bordat, Christian; Lavialle, Monique; Heberden, Christine

    2016-03-01

    Fatty acid binding protein 7 (FABP7), abundant in the embryonic brain, binds with the highest affinity to docosahexaenoic acid (DHA) and is expressed in the early stages of embryogenesis. Here, we have examined the consequences of the exposure to different DHA levels and of the in utero depletion of FABP7 on early rat brain development. Neurodevelopment was evaluated through the contents of two proteins, connexin 43 (Cx43) and cyclin-dependent kinase 5 (CDK5), both involved in neuroblast proliferation, differentiation, and migration. The dams were fed with diets presenting different DHA contents, from deficiency to supplementation. DHA brain embryos contents already differed at embryonic day 11.5 and the differences kept increasing with time. Cx43 and CDK5 contents were positively associated with the brain DHA levels. When FABP7 was depleted in vivo by injections of siRNA in the telencephalon, the enhancement of the contents of both proteins was lost in supplemented animals, but FABP7 depletion did not modify phospholipid compositions regardless of the diets. Thus, FABP7 is a necessary mediator of the effect of DHA on these proteins synthesis, but its role in DHA uptake is not critical, although FABP7 is localized in phospholipid-rich areas. Our study shows that high contents of DHA associated with FABP7 are necessary to promote early brain development, which prompted us to recommend DHA supplementation early in pregnancy.

  3. "Click" Chemistry-Tethered Hyaluronic Acid-Based Contact Lens Coatings Improve Lens Wettability and Lower Protein Adsorption.

    PubMed

    Deng, Xudong; Korogiannaki, Myrto; Rastegari, Banafsheh; Zhang, Jianfeng; Chen, Mengsu; Fu, Qiang; Sheardown, Heather; Filipe, Carlos D M; Hoare, Todd

    2016-08-31

    Improving the wettability of and reducing the protein adsorption to contact lenses may be beneficial for improving wearer comfort. Herein, we describe a simple "click" chemistry approach to surface functionalize poly(2-hydroxyethyl methacrylate) (pHEMA)-based contact lenses with hyaluronic acid (HA), a carbohydrate naturally contributing to the wettability of the native tear film. A two-step preparation technique consisting of laccase/TEMPO-mediated oxidation followed by covalent grafting of hydrazide-functionalized HA via simple immersion resulted in a model lens surface that is significantly more wettable, more water retentive, and less protein binding than unmodified pHEMA while maintaining the favorable transparency, refractive, and mechanical properties of a native lens. The dipping/coating method we developed to covalently tether the HA wetting agent is simple, readily scalable, and a highly efficient route for contact lens modification. PMID:27509015

  4. The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation.

    PubMed

    Dunlop, Rachael Anne; Cox, Paul Alan; Banack, Sandra Anne; Rodgers, Kenneth John

    2013-01-01

    Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and Progressive Supranuclear Palsy (PSP). Some forms of neurodegenerative illness are associated with mutations in genes which control assembly of disease related proteins. For example, the mouse sticky mutation sti, which results in undetected mischarging of tRNA(Ala) with serine resulting in the substitution of serine for alanine in proteins causes cerebellar Purkinje cell loss and ataxia in laboratory animals. Replacement of serine 422 with glutamic acid in tau increases the propensity of tau aggregation associated with neurodegeneration. However, the possibility that environmental factors can trigger abnormal folding in proteins remains relatively unexplored. We here report that a non-protein amino acid, β-N-methylamino-L-alanine (BMAA), can be misincorporated in place of L-serine into human proteins. We also report that this misincorporation can be inhibited by L-serine. Misincorporation of BMAA into human neuroproteins may shed light on putative associations between human exposure to BMAA produced by cyanobacteria and an increased incidence of ALS. PMID:24086518

  5. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  6. Protein and energy intake during weaning. III. Effects on plasma amino acids.

    PubMed

    Axelsson, I; Borulf, S; Abildskov, K; Heird, W; Räihä, N

    1988-01-01

    Preprandial plasma amino acid concentrations were measured at 5 and 6 months of age in 30 healthy term infants who were either breast-fed ad libitum or fed one of two different formulas (1.9 g of protein per 100 ml with a whey:casein ratio of 50:50; 2.9 g of protein per 100 ml with a whey:casein ratio of 20:80) ad libitum, plus the same supplementary food regimen. The mean plasma concentrations of total amino acids and especially total essential amino acids were higher in the formula-fed infants. Those fed formula also had plasma concentrations of methionine, isoleucine, phenylalanine, leucine, valine, threonine, aspartate, proline, lysine, tyrosine, histidine that exceeded plasma concentrations of breast-fed infants by 2 or more standard deviations. Concentrations of arginine, glutamic acid, glutamine, ornithine, serine, cystine did not differ and taurine was higher in the breast-fed infants. The data indicate that formulas in common use today during weaning (4-6 months) provide excessive protein intakes when compared to the breast-fed control infants. A lowering of protein concentration and a further manipulation of the whey:casein ratio is necessary if plasma amino acid patterns similar to those found in breast-fed infants is to be achieved with artificial feeding.

  7. Identification of amino acid residues important for the function of Agrobacterium tumefaciens Irr protein.

    PubMed

    Bhubhanil, Sakkarin; Ruangkiattikul, Nantaporn; Niamyim, Phettree; Chamsing, Jareeya; Ngok-Ngam, Patchara; Sukchawalit, Rojana; Mongkolsuk, Skorn

    2012-10-01

    The key amino acid residues that influence the function of the Agrobacterium tumefaciens iron response regulator protein (Irr(At) ) were investigated. Several Irr(At) mutant proteins containing substitutions in amino acids corresponding to candidate metal- and haem-binding sites were constructed. The ability of the mutant proteins to repress the promoter of the membrane bound ferritin (mbfA) gene was investigated using a promoter-lacZ fusion assay. A single mutation at residue H94 significantly decreased the repressive activity of Irr(At) . Multiple mutation analysis revealed the importance of H45, H65, the HHH motif (H92, H93 and H94) and H127 for the repressor function of Irr(At) . H94 is essential for the iron responsiveness of Irr(At) . Furthermore, the Irr(At) mutant proteins showed differential abilities to complement the H(2) O(2) -hyper-resistant phenotype of an irr mutant. PMID:22817265

  8. Alkali and Acid Solubilization Effects on Rheological Properties of Horse Mackerel Muscle Proteins

    NASA Astrophysics Data System (ADS)

    Campo-Deaño, L.; Tovar, C. A.

    2008-07-01

    Influence of the acid (Type A) and alkali (Type B) solubilization of muscle proteins in the viscoelastic properties of surimi and surimi gels made from horse mackerel (Trachurus trachurus) muscle were evaluated. Stress and frequency sweep tests showed that surimi from method B presents higher viscoelastic moduli, lowest values of phase angle and minimum viscoelastic moduli dependence with frequency than surimi A. These results show a high inicial protein aggregation in surimi B, that could explain the greater firmness and hardness of this sample, showing a more compact network structure. From static and dynamic tests, gel developed from alkali solubilization resulted in higher gel strength and more rigid network than that from acidic pH, despite the incial protein aggregation of surimi B its protein keeps better gelation capacity. The less structural quality of GA gel is likely due to the more lipid content on the surimi as compared to alkali treatment.

  9. Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin.

    PubMed

    Yamashita, H; Theerasilp, S; Aiuchi, T; Nakaya, K; Nakamura, Y; Kurihara, Y

    1990-09-15

    A new taste-modifying protein named curculin was extracted with 0.5 M NaCl from the fruits of Curculigo latifolia and purified by ammonium sulfate fractionation, CM-Sepharose ion-exchange chromatography, and gel filtration. Purified curculin thus obtained gave a single band having a Mr of 12,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea. The molecular weight determined by low-angle laser light scattering was 27,800. These results suggest that native curculin is a dimer of a 12,000-Da polypeptide. The complete amino acid sequence of curculin was determined by automatic Edman degradation. Curculin consists of 114 residues. Curculin itself elicits a sweet taste. After curculin, water elicits a sweet taste, and sour substances induce a stronger sense of sweetness. No protein with both sweet-tasting and taste-modifying activities has ever been found. There are five sets of tripeptides common to miraculin (a taste-modifying protein), six sets of tripeptides common to thaumatin (a sweet protein), and two sets of tripeptides common to monellin (a sweet protein). Anti-miraculin serum was not immunologically reactive with curculin. The mechanism of the taste-modifying action of curculin is discussed. PMID:2394746

  10. Probing the structural dynamics of proteins and nucleic acids with optical tweezers.

    PubMed

    Ritchie, Dustin B; Woodside, Michael T

    2015-10-01

    Conformational changes are an essential feature of most molecular processes in biology. Optical tweezers have emerged as a powerful tool for probing conformational dynamics at the single-molecule level because of their high resolution and sensitivity, opening new windows on phenomena ranging from folding and ligand binding to enzyme function, molecular machines, and protein aggregation. By measuring conformational changes induced in a molecule by forces applied by optical tweezers, new insight has been gained into the relationship between dynamics and function. We discuss recent advances from studies of how structure forms in proteins and RNA, including non-native structures, fluctuations in disordered proteins, and interactions with chaperones assisting native folding. We also review the development of assays probing the dynamics of complex protein-nucleic acid and protein-protein assemblies that reveal the dynamic interactions between biomolecular machines and their substrates.

  11. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  12. Protein fatty acid acylation: enzymatic synthesis of an N-myristoylglycyl peptide

    SciTech Connect

    Towler, D.; Glaser, L.

    1986-05-01

    Incubation of Saccharomyces cerevisiae strain JR153 with either (/sup 3/H)myristate or (/sup 3/H)palmitate demonstrates the synthesis of proteins that contain covalently bound fatty acids. A unique set of proteins is labeled by each fatty acid. Detailed analysis of a 20-kDa protein labeled with myristic acid demonstrates that myristate is linked to the amino-terminal glycine. We describe an enzymatic activity in yeast that will transfer myristic acid to the amino terminus of the octapeptide Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg, whose sequence was derived from a known N-myristoylated acyl protein, the catalytic subunit of cAMP-dependent protein kinase of bovine cardiac muscle. The acylation reaction is dependent on ATP and CoA, is enriched in a crude membrane fraction, and will use myristate but not palmitate as the acyl donor. Specificity of the glycyl peptide substrate is demonstrated by the observation that other glycyl peptides do not competitively inhibit myristoylation of Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg.

  13. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    SciTech Connect

    Biedermannová, Lada Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  14. Cross-comparison of Protein Recognition of Sialic Acid Diversity on Two Novel Sialoglycan Microarrays*

    PubMed Central

    Padler-Karavani, Vered; Song, Xuezheng; Yu, Hai; Hurtado-Ziola, Nancy; Huang, Shengshu; Muthana, Saddam; Chokhawala, Harshal A.; Cheng, Jiansong; Verhagen, Andrea; Langereis, Martijn A.; Kleene, Ralf; Schachner, Melitta; de Groot, Raoul J.; Lasanajak, Yi; Matsuda, Haruo; Schwab, Richard; Chen, Xi; Smith, David F.; Cummings, Richard D.; Varki, Ajit

    2012-01-01

    DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature. However, although it is assumed that biologically significant protein-glycan binding is robustly detected by glycan microarrays, there are wide variations in the methods used to produce, present, couple, and detect glycans, and systematic cross-comparisons are lacking. We address these issues by comparing two arrays that together represent the marked diversity of sialic acid modifications, linkages, and underlying glycans in nature, including some identical motifs. We compare and contrast binding interactions with various known and novel plant, vertebrate, and viral sialic acid-recognizing proteins and present a technical advance for assessing specificity using mild periodate oxidation of the sialic acid chain. These data demonstrate both the diversity of sialic acids and the analytical power of glycan arrays, showing that different presentations in different formats provide useful and complementary interpretations of glycan-binding protein specificity. They also highlight important challenges and questions for the future of glycan array technology and suggest that glycan arrays with similar glycan structures cannot be simply assumed to give similar results. PMID:22549775

  15. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.

    PubMed

    Wang, Pengcheng; Xue, Liang; Batelli, Giorgia; Lee, Shinyoung; Hou, Yueh-Ju; Van Oosten, Michael J; Zhang, Huiming; Tao, W Andy; Zhu, Jian-Kang

    2013-07-01

    Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.

  16. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action

    PubMed Central

    Wang, Pengcheng; Xue, Liang; Batelli, Giorgia; Lee, Shinyoung; Hou, Yueh-Ju; Van Oosten, Michael J.; Zhang, Huiming; Tao, W. Andy; Zhu, Jian-Kang

    2013-01-01

    Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments. PMID:23776212

  17. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase.

    PubMed

    Choi, Yong-Geun; Park, Chin-Ju; Kim, Hee-Eun; Seo, Yeo-Jin; Lee, Ae-Ree; Choi, Seo-Ree; Lee, Shim Sung; Lee, Joon-Hwa

    2015-02-01

    Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 3(10)-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.

  18. Meal composition and plasma amino acid ratios: Effect of various proteins or carbohydrates, and of various protein concentrations

    NASA Technical Reports Server (NTRS)

    Yokogoshi, Hidehiko; Wurtman, Richard J.

    1986-01-01

    The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein

  19. Adhesion and structure properties of protein nanomaterials containing hydrophobic and charged amino acids.

    PubMed

    Shen, Xinchun; Mo, Xiaoqun; Moore, Robyn; Frazier, Shawnalea J; Iwamoto, Takeo; Tomich, John M; Sun, Xiuzhi Susan

    2006-03-01

    Protein polymers are being used or considered for biobased adhesives and coating materials. Most adhesives derived from macro protein molecules work through receptors or cross-links to bring about adhesion. The adhesion mechanism of protein polymers would lead to better understanding of adhesives and the discovery of new practical properties of protein polymers at both nano- and macro-scales. The objective of this research work was to study adhesion properties of protein polymers at nanoscale (a peptide adhesive with nanometer-scale units that range in size of several nanometers, defined as protein nanomaterial). Seven protein nanomaterial samples with different degrees of adhesive strength were designed and synthesized using solid phase chemistries. All protein nanomaterials contain a common hydrophobic core flanked by charged amino acid sequences. The adhesion properties of the protein nanomaterials were investigated at different pH values and curing temperatures. The protein nanomaterials self aggregate and interact with the wood surface. The protein nanomaterial KKK-FLIVIGSII-KKK identified in this study had high adhesive strength toward wood. It had the highest shear strength at pH 12, with an amino acid sequence that was very hydrophobic and uncharged. This protein nanomaterial underwent structural analyses using circular dichroism, laser-Fourier transform infrared, and laser desorption mass spectrometry. At pH 12 this peptide adopted a pH-induced beta-like conformation. Adhesive strength reflects contributions of both hydrogen bonding and van der Waals interactions. Ionic and covalent bonds do not appear to be significant factors for adhesion in this study.

  20. Incorporating significant amino acid pairs to identify O-linked glycosylation sites on transmembrane proteins and non-transmembrane proteins

    PubMed Central

    2010-01-01

    Background While occurring enzymatically in biological systems, O-linked glycosylation affects protein folding, localization and trafficking, protein solubility, antigenicity, biological activity, as well as cell-cell interactions on membrane proteins. Catalytic enzymes involve glycotransferases, sugar-transferring enzymes and glycosidases which trim specific monosaccharides from precursors to form intermediate structures. Due to the difficulty of experimental identification, several works have used computational methods to identify glycosylation sites. Results By investigating glycosylated sites that contain various motifs between Transmembrane (TM) and non-Transmembrane (non-TM) proteins, this work presents a novel method, GlycoRBF, that implements radial basis function (RBF) networks with significant amino acid pairs (SAAPs) for identifying O-linked glycosylated serine and threonine on TM proteins and non-TM proteins. Additionally, a membrane topology is considered for reducing the false positives on glycosylated TM proteins. Based on an evaluation using five-fold cross-validation, the consideration of a membrane topology can reduce 31.4% of the false positives when identifying O-linked glycosylation sites on TM proteins. Via an independent test, GlycoRBF outperforms previous O-linked glycosylation site prediction schemes. Conclusion A case study of Cyclic AMP-dependent transcription factor ATF-6 alpha was presented to demonstrate the effectiveness of GlycoRBF. Web-based GlycoRBF, which can be accessed at http://GlycoRBF.bioinfo.tw, can identify O-linked glycosylated serine and threonine effectively and efficiently. Moreover, the structural topology of Transmembrane (TM) proteins with glycosylation sites is provided to users. The stand-alone version of GlycoRBF is also available for high throughput data analysis. PMID:21034461

  1. Studies on the protein and sulfur amino acid requirements of young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1977-01-01

    Four experiments were conducted with purified diets to examine the influence of protein level and to estimate the sulfur amino acid (S.A.A.) requirement of young Bobwhite quail (Colinus virginianus). These studies demonstrated (I) that 26% protein was sufficient for rapid growth when the diet was supplemented with methionine; (2) that diets containing higher levels of protein (29.3% and 31.3%) failed to support satisfactory growth unless they contained supplemental methionine; and (3) that young Bobwhite quail require no more than 1.0% sulfur-containing amino acids for optimal growth and efficiency of feed utilization. A fifth experiment was conducted to examine the protein and S.A.A. requirements of young Bobwhite quail using practical rations and to compare results with those obtained with purified diets. Diets containing 24%, 26% and 28% protein were supplied with and without supplemental methionine in a five week study. Results showed significant growth responses to protein and supplemental methionine. Responses showed that Bobwhite quail require no more than 26% protein for maximum growth and efficiency of feed utilization when the S.A.A. level of the diet was approximately 1.0%. The results were in close agreement with those obtained with purified diets. These findings define more precisely than had been known the quantitative requirements of young Bobwhite quail for protein and for the S.A.A. necessary for optimal growth.

  2. Nucleic acid aptamers stabilize proteins against different types of stress conditions.

    PubMed

    Jetani, Hardik C; Bhadra, Ankan Kumar; Jain, Nishant Kumar; Roy, Ipsita

    2014-01-01

    It has been observed that the same osmolyte cannot provide protection to a protein exposed to more than one stress condition. We wanted to study the effect of nucleic acid aptamers on the stabilization of proteins against a variety of stress conditions. Adjuvanted tetanus toxoid was exposed to thermal, freeze-thawing, and agitation stress. The stability and antigenicity of the toxoid were measured. Using nucleic acid aptamers selected against tetanus toxoid, we show that these specific RNA sequences were able to stabilize alumina-adsorbed tetanus toxoid against thermal-, agitation-, and freeze-thawing-induced stress. Binding affinity of the aptamer-protein complex did not show any significant change at elevated temperature as compared with that at room temperature, indicating that the aptamer protected the protein by remaining bound to it under stress conditions and did not allow either the protein to unfold or to promote protein-protein interaction. Thus, we show that by changing the stabilization strategy from a solvent-centric to a protein-centric approach, the same molecule can be employed as a stabilizer against more than one stress condition and thus probably reduce the cost of the product during its formulation.

  3. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers.

    PubMed

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.

  4. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa.

    PubMed

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine.

  5. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa

    PubMed Central

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine. PMID:27066169

  6. Predicting the types of J-proteins using clustered amino acids.

    PubMed

    Feng, Pengmian; Lin, Hao; Chen, Wei; Zuo, Yongchun

    2014-01-01

    J-proteins are molecular chaperones and present in a wide variety of organisms from prokaryote to eukaryote. Based on their domain organizations, J-proteins can be classified into 4 types, that is, Type I, Type II, Type III, and Type IV. Different types of J-proteins play distinct roles in influencing cancer properties and cell death. Thus, reliably annotating the types of J-proteins is essential to better understand their molecular functions. In the present work, a support vector machine based method was developed to identify the types of J-proteins using the tripeptide composition of reduced amino acid alphabet. In the jackknife cross-validation, the maximum overall accuracy of 94% was achieved on a stringent benchmark dataset. We also analyzed the amino acid compositions by using analysis of variance and found the distinct distributions of amino acids in each family of the J-proteins. To enhance the value of the practical applications of the proposed model, an online web server was developed and can be freely accessed.