Science.gov

Sample records for acid protein gfap

  1. Autoantibodies against glial fibrillary acidic protein (GFAP) in cerebrospinal fluids from Pug dogs with necrotizing meningoencephalitis.

    PubMed

    Shibuya, Masahiro; Matsuki, Naoaki; Fujiwara, Kaori; Imajoh-Ohmi, Shinobu; Fukuda, Hiroyuki; Pham, Ngoc T; Tamahara, Satoshi; Ono, Kenichiro

    2007-03-01

    Cerebrospinal fluids (CSFs) from 9 Pug dogs with necrotizing meningoencephalitis (NME: Pug dog encephalitis) were examined to identify the antigens for anti-astrocyte autoantibodies. Each CSF exhibited a positive reaction to the cytoplasm of cultured canine astrocytes by an indirect fluorescent antibody test. In an immunoblotting analysis on normal canine brain proteins, eight of 9 CSFs showed a common band of 52 kDa, corresponding to glial fibrillary acidic protein (GFAP), and all of 9 CSFs reacted with purified bovine GFAP. From these results, GFAP is one of the common autoantigens in Pug dogs with NME. On the other hand, the reactivity of CSFs to chymotrypsin-digested bovine GFAP fragments were variable among dogs, indicating that the antibodies in the CSFs recognized different epitopes on GFAP.

  2. Prospective evaluation of serum glial fibrillary acidic protein (GFAP) as a diagnostic marker for glioblastoma.

    PubMed

    Tichy, Julia; Spechtmeyer, Sabrina; Mittelbronn, Michel; Hattingen, Elke; Rieger, Johannes; Senft, Christian; Foerch, Christian

    2016-01-01

    Glioblastoma (GBM) is the most common malignant primary brain tumor. Although clinical presentation and brain imaging might be suggestive, histopathological evaluation by means of a brain biopsy is routinely performed to establish the diagnosis. A serum marker indicative of GBM may simplify the diagnostic work-up of patients suspected to having a brain tumor. We prospectively examined 113 patients with newly diagnosed single supratentorial or infratentorial space-occupying brain lesions. Glial fibrillary acidic protein (GFAP) levels were determined from venous blood samples via a prototype ELISA assay prior to any invasive procedures. Serum levels of GFAP were correlated with histopathological findings and MRI parameters. GFAP values were significantly higher in GBM patients (n = 33) compared to all other tumors (p < 0.001). A GFAP serum concentration of ≥0.01 µg/L revealed a sensitivity of 85 % and a specificity of 70 % for differentiating GBM from other entities. By applying a GFAP cut-off point of 0.20 µg/L, specificity was maximized (99 %), but sensitivity dropped to 27 %. In GBM patients, serum GFAP values were significantly correlated with tumor volume. GBM patients with high GFAP levels showed more in vivo GFAP expression as well as more necrosis and perilesional edema compared to GBM patients having low or non-detectable GFAP levels. GFAP serum concentrations differentiated between patients with GBM and patients with cerebral mass lesions of other entities with a moderate diagnostic accuracy. Serum GFAP levels in GBM patients were positively correlated with tumor volume and histopathological tumor characteristics.

  3. Glial fibrillary acidic protein (GFAP) shows circadian oscillations in crayfish Procambarus clarkii putative pacemakers.

    PubMed

    Rodríguez-Muñoz, María de la Paz; Escamilla-Chimal, Elsa G

    2015-01-01

    Although several studies of glia have examined glial fibrillary acid protein (GFAP) and its relationship to the circadian rhythms of different organisms, they have not explored the daily GFAP oscillations in the putative pacemakers of the crayfish Procambarus clarkii or in other crustaceans. In this study we investigated the daily variations in GFAP concentrations in the eyestalk and brain, which are considered to be putative pacemakers in adult P. clarkii. In both structures, the glial GFAP was quantified using the indirect enzyme-linked immunosorbent assay (ELISA), and double labeling immunofluorescence was used to detect it and its co-localization with protein Period (PER), an important component of the circadian clock, in various regions of both structures. The ELISA results were analyzed using Cosinor and one-way ANOVA with Bonferroni and Scheffé's post hoc tests. The results of this analysis showed that the GFAP levels present circadian oscillations in both structures. Moreover, GFAP was localized in different structures of the eyestalk and brain; however, co-localization with PER occurred only in the lamina ganglionaris, specifically in the cartridges of the eyestalk and in some of the cluster 9 brain cells. These results suggest that as in other invertebrates and vertebrates, glial cells could be involved in the circadian system of P. clarkii; however, thus far we cannot know whether the glial cells are only effectors, participate in afferent pathways, or are part of the circadian clock.

  4. Immunocytochemical localization of glial fibrillary acidic protein (GFAP) in the area postrema of the cat - Light and electron microscopic study

    NASA Technical Reports Server (NTRS)

    Damelio, F. E.; Gibbs, M. A.; Mehler, W. R.; Eng, L. F.

    1985-01-01

    Glial fibrillary acidic protein (GFAP) was demonstrated in the cytoplasm and processes of ependymal cells and astroglial components of the area postrema of the cat. These observations differ from the findings in the ependyma of the ventricular cavities which are consistently negative for the protein. Since some studies have suggested sensory functions of the glial cells in this emetic chemoreceptor trigger zone, a careful consideration of morphological and biochemical attributes of these cells seems appropriate.

  5. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system.

    PubMed

    Hol, Elly M; Pekny, Milos

    2015-02-01

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a reactive phenotype in acute CNS trauma, ischemia, and in neurodegenerative diseases. This coincides with an upregulation and rearrangement of the IFs, which form a highly complex system composed of GFAP (10 isoforms), vimentin, synemin, and nestin. We begin to unravel the function of the IF system of astrocytes and in this review we discuss its role as an important crisis-command center coordinating cell responses in situations connected to cellular stress, which is a central component of many neurological diseases.

  6. Immunohistochemical characterization of glial fibrillary acidic protein (GFAP)-expressing cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA).

    PubMed

    Tennakoon, Anusha Hemamali; Izawa, Takeshi; Wijesundera, Kavindra Kumara; Murakami, Hiroshi; Katou-Ichikawa, Chisa; Tanaka, Miyuu; Golbar, Hossain M; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-01-01

    Hepatic stellate cells, the principal fibrogenic cell type in the liver, are known to express the astrocyte marker glial fibrillary acidic protein (GFAP). However, the exact role of GFAP-expressing cells in liver fibrosis remains to be elucidated. In this study, cellular properties of GFAP-expressing cells were investigated in a rat model of liver cirrhosis. Six-week-old male F344 rats were injected intraperitoneally with thioacetamide (100 mg/kg BW, twice a week) and examined at post first injection weeks 5, 10, 15, 20 and 25. Appearance of GFAP-expressing myofibroblasts peaked at week 15, associated with fibrosis progression. The majority of GFAP-expressing myofibroblasts co-expressed vimentin, desmin and alpha-smooth muscle actin. Some GFAP-positive myofibroblasts co-expressed nestin (neural stem cell marker), while a few co-expressed A3 (mesenchymal stem cell marker) and Thy-1 (immature mesenchymal cell marker). A few GFAP expressing cells underwent both mitosis and apoptosis. These results indicate that there is a dynamic participation of GFAP-expressing myofibroblasts in rat liver cirrhosis, and that they are mainly derived from hepatic stellate cells, and partly from cells in the stem cell lineage. These findings, which were shown for the first time in detail, would be useful to understand the role of GFAP-expressing myofibroblasts in the pathogenesis of chemically induced liver cirrhosis.

  7. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA).

    PubMed

    Tennakoon, Anusha H; Izawa, Takeshi; Wijesundera, Kavindra K; Katou-Ichikawa, Chisa; Tanaka, Miyuu; Golbar, Hossain M; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-06-01

    Glial fibrillary acidic protein (GFAP), a type III intermediate filament protein, is expressed in hepatic stellate cells (HSCs), the principal fibrogenic cell type in the liver. Further, GFAP could be a marker for hepatic progenitor cells (HPCs). In this study, the participation of GFAP-expressing cells in HPC expansion/ductular reaction was investigated in a rat model of liver cirrhosis. Six-week-old male F344 rats were injected intraperitoneally with thioacetamide (100mg/kg BW, twice a week) and examined at post-first injection weeks 5, 10, 15, 20 and 25. Fibrosis-related proliferation of ductular cells was observed as demonstrated by CK19 immunostaining. Some of these cells were stained with GFAP. No co-staining was observed between CK19 and α-smooth muscle actin (α-SMA; myofibroblast marker). There were proliferating ductular cells stained with α-fetoprotein or β-catenin; the ductular reaction was related to increased expression of hepatocarcinogenesis-related factors (Wnt2, Wnt4 and glypican-3). These results for the first time show the participation of GFAP-positive HPCs in ductular reaction in a chemically induced rodent model. Though the ductular cells were chaperoned by myofibroblasts, they show no direct evidence for epithelial to mesenchymal transition. These findings shed new light in understanding the roles of GFAP-expressing HPCs in liver cirrhosis and provide further evidence of interaction between newly-formed bile ductules and HSCs, suggesting that both cells could be in the common lineage of HPCs.

  8. Characterization of glial fibrillary acidic protein (GFAP)-expressing hepatic stellate cells and myofibroblasts in thioacetamide (TAA)-induced rat liver injury.

    PubMed

    Tennakoon, Anusha Hemamali; Izawa, Takeshi; Wijesundera, Kavindra Kumara; Golbar, Hossain M; Tanaka, Miyuu; Ichikawa, Chisa; Kuwamura, Mitsuru; Yamate, Jyoji

    2013-11-01

    Hepatic stellate cells (HSCs), which can express glial fibrillary acidic protein (GFAP) in normal rat livers, play important roles in hepatic fibrogenesis through the conversion into myofibroblasts (MFs). Cellular properties and possible derivation of GFAP-expressing MFs were investigated in thioacetamide (TAA)-induced rat liver injury and subsequent fibrosis. Seven-week-old male F344 rats were injected with TAA (300mg/kg BW, once, intraperitoneally), and were examined on post single injection (PSI) days 1-10 by the single and double immunolabeling with MF and stem cell marker antibodies. After hepatocyte injury in the perivenular areas on PSI days 1 and 2, the fibrotic lesion consisting of MF developed at a peak on PSI day 3, and then recovered gradually by PSI day 10. MFs expressed GFAP, and also showed co-expressions such cytoskeletons (MF markers) as vimentin, desmin and α-SMA in varying degrees. Besides MFs co-expressing vimentin/desmin, desmin/α-SMA or α-SMA/vimentin, some GFAP positive MFs co-expressed with nestin or A3 (both, stem cell markers), and there were also MFs co-expressing nestin/A3. However, there were no GFAP positive MFs co-expressing RECA-1 (endothelial marker) or Thy-1 (immature mesenchymal cell marker). GFAP positive MFs showed the proliferating activity, but they did not undergo apoptosis. However, α-SMA positive MFs underwent apoptosis. These findings indicate that HSCs can proliferate and then convert into MFs with co-expressing various cytoskeletons for MF markers, and that the converted MFs may be derived partly from the stem cell lineage. Additionally, well-differentiated MFs expressing α-SMA may disappear by apoptosis for healing. These findings shed some light on the pathogenesis of chemically induced hepatic fibrosis.

  9. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging.

    PubMed

    McMahon, Paul J; Panczykowski, David M; Yue, John K; Puccio, Ava M; Inoue, Tomoo; Sorani, Marco D; Lingsma, Hester F; Maas, Andrew I R; Valadka, Alex B; Yuh, Esther L; Mukherjee, Pratik; Manley, Geoffrey T; Okonkwo, David O

    2015-04-15

    Glial fibrillary acidic protein and its breakdown products (GFAP-BDP) are brain-specific proteins released into serum as part of the pathophysiological response after traumatic brain injury (TBI). We performed a multi-center trial to validate and characterize the use of GFAP-BDP levels in the diagnosis of intracranial injury in a broad population of patients with a positive clinical screen for head injury. This multi-center, prospective, cohort study included patients 16-93 years of age presenting to three level 1 trauma centers with suspected TBI (loss of consciousness, post-trauma amnesia, and so on). Serum GFAP-BDP levels were drawn within 24 h and analyzed, in a blinded fashion, using sandwich enzyme-linked immunosorbent assay. The ability of GFAP-BDP to predict intracranial injury on admission computed tomography (CT) as well as delayed magnetic resonance imaging was analyzed by multiple regression and assessed by the area under the receiver operating characteristic curve (AUC). Utility of GFAP-BDP to predict injury and reduce unnecessary CT scans was assessed utilizing decision curve analysis. A total of 215 patients were included, of which 83% suffered mild TBI, 4% moderate, and 12% severe; mean age was 42.1±18 years. Evidence of intracranial injury was present in 51% of the sample (median Rotterdam Score, 2; interquartile range, 2). GFAP-BDP demonstrated very good predictive ability (AUC=0.87) and demonstrated significant discrimination of injury severity (odds ratio, 1.45; 95% confidence interval, 1.29-1.64). Use of GFAP-BDP yielded a net benefit above clinical screening alone and a net reduction in unnecessary scans by 12-30%. Used in conjunction with other clinical information, rapid measurement of GFAP-BDP is useful in establishing or excluding the diagnosis of radiographically apparent intracranial injury throughout the spectrum of TBI. As an adjunct to current screening practices, GFAP-BDP may help avoid unnecessary CT scans without sacrificing

  10. Measurement of the Glial Fibrillary Acidic Protein and Its Breakdown Products GFAP-BDP Biomarker for the Detection of Traumatic Brain Injury Compared to Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    McMahon, Paul J.; Panczykowski, David M.; Yue, John K.; Puccio, Ava M.; Inoue, Tomoo; Sorani, Marco D.; Lingsma, Hester F.; Maas, Andrew I.R.; Valadka, Alex B.; Yuh, Esther L.; Mukherjee, Pratik; Manley, Geoffrey T.; Casey, Scott S.; Cheong, Maxwell; Cooper, Shelly R.; Dams-O'Connor, Kristen; Gordon, Wayne A.; Hricik, Allison J.; Lawless, Kerri; Menon, David; Schnyer, David M.; Vassar, Mary J.

    2015-01-01

    Abstract Glial fibrillary acidic protein and its breakdown products (GFAP-BDP) are brain-specific proteins released into serum as part of the pathophysiological response after traumatic brain injury (TBI). We performed a multi-center trial to validate and characterize the use of GFAP-BDP levels in the diagnosis of intracranial injury in a broad population of patients with a positive clinical screen for head injury. This multi-center, prospective, cohort study included patients 16–93 years of age presenting to three level 1 trauma centers with suspected TBI (loss of consciousness, post-trauma amnesia, and so on). Serum GFAP-BDP levels were drawn within 24 h and analyzed, in a blinded fashion, using sandwich enzyme-linked immunosorbent assay. The ability of GFAP-BDP to predict intracranial injury on admission computed tomography (CT) as well as delayed magnetic resonance imaging was analyzed by multiple regression and assessed by the area under the receiver operating characteristic curve (AUC). Utility of GFAP-BDP to predict injury and reduce unnecessary CT scans was assessed utilizing decision curve analysis. A total of 215 patients were included, of which 83% suffered mild TBI, 4% moderate, and 12% severe; mean age was 42.1±18 years. Evidence of intracranial injury was present in 51% of the sample (median Rotterdam Score, 2; interquartile range, 2). GFAP-BDP demonstrated very good predictive ability (AUC=0.87) and demonstrated significant discrimination of injury severity (odds ratio, 1.45; 95% confidence interval, 1.29–1.64). Use of GFAP-BDP yielded a net benefit above clinical screening alone and a net reduction in unnecessary scans by 12–30%. Used in conjunction with other clinical information, rapid measurement of GFAP-BDP is useful in establishing or excluding the diagnosis of radiographically apparent intracranial injury throughout the spectrum of TBI. As an adjunct to current screening practices, GFAP-BDP may help avoid unnecessary CT scans without

  11. Lipopolysaccharides (LPS), up-regulate the IL-1-mRNA and down-regulate the glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS)-mRNAs in astroglial primary cultures.

    PubMed

    Letournel-Boulland, M L; Fages, C; Rolland, B; Tardy, M

    1994-01-01

    The effect of lipopolysaccharides (LPS), a component of gram-negative bacteria, has been studied in both exponentially growing and confluent morphologically differentiated astroglial cells in primary cultures. The expression of glial fibrillary acidic protein (GFAP) and Glutamine Synthetase (GS) were investigated in parallel with proliferation and expression of IL-1 beta-mRNA. During the exponential growth, proliferation was severely inhibited by LPS. The effect was time- and dose-dependent. On confluent differentiated cells LPS induced an inhibition of cell proliferation which was associated with a down-regulation of GFAP-mRNA, GS-mRNA and GS expressions and with a transitory increase in IL-1 beta mRNA expression. The observed effects might interact with the astroglial developmental program and with the astroglial function.

  12. Glial fibrillary acidic protein (GFAP) immunoreactivity correlates with cortical perfusion parameters determined by bolus tracking arterial spin labelling (bt-ASL) magnetic resonance (MR) imaging in the Wistar Kyoto rat.

    PubMed

    Gormley, Shane; Rouine, Jennifer; McIntosh, Allison; Kerskens, Christian; Harkin, Andrew

    2016-06-01

    Alterations in astrocyte number and function have been implicated in the pathophysiology of a number of psychiatric disorders. The development of magnetic resonance imaging (MRI) as a tool in the animal laboratory has enabled an investigation of the relationship between pathological and neuroimaging markers in animal models. However the physiological processes which underlie these markers and their role in mediating behavioural deficits is still poorly understood. Rodent models have provided us with important insights into physiological and cellular mechanisms which may mediate anxiety and depression-related behaviours. The Wistar-Kyoto (WKY) rat is a strain which endogenously expresses highly anxious and depressive-like behaviours and has previously been reported to exhibit alterations in immunoreactivity for the astrocytic marker glial fibrillary acidic protein (GFAP) in brain sub-regions relative to more stress resilient out-bred strains. Here we report that the depressive and anxiety-like behaviours exhibited by the WKY rat strain are associated with alterations in brain morphology including a decrease in hippocampal volume, coupled with reduced resting state frontal cortical perfusion as assessed by MR bolus tracking arterial spin labelling (bt-ASL) relative to the out-bred Wistar strain. Pre-limbic cortical GFAP immunoreactivity and astrocyte cell number were positively correlated with cortical blood perfusion in the WKY strain. These experiments provide a link between pathological and neuroimaging markers of aberrant astrocytic function and add validity to the WKY rat as a model for co-morbid anxiety and depression.

  13. [Glial fibrillary acidic protein: the component of intermediate filaments in the vertebrate brain astrocytes].

    PubMed

    Sukhorukova, E G; Kruzhevskiĭ, D É; Alekseeva, O S

    2015-01-01

    Glial fibrillary acidic protein (GFAP) refers to the type III intermediate filament proteins and is the essential component of the cytoskeleton in astrocytes of all vertebrates. This review presents current data on the molecular organization of GFAP in a comparative aspect. The results of most relevant studies using immunocytochemical labeling of the protein are summarized. The data on the changes in expression of GFAP in Alexander disease caused by the primary pathology of astrocytes are presented.

  14. Glial Fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker

    PubMed Central

    Yang, Zhihui; Wang, Kevin K.W.

    2015-01-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament-III protein uniquely found in astrocytes in the CNS, non-myelinating Schwann cells in the PNS and enteric glial cells. GFAP mRNA expressions are regulated by several nuclear-receptor hormones, growth factors and lipopolysaccharides. GFAP is also subjected to a number of post-translational modifications while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglia cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP protein and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders. PMID:25975510

  15. Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease.

    PubMed

    LaPash Daniels, Christine M; Paffenroth, Elizabeth; Austin, Elizabeth V; Glebov, Konstantin; Lewis, Diana; Walter, Jochen; Messing, Albee

    2015-01-01

    Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway for protein degradation. In addition, lithium has also been reported to decrease activation of the transcription factor STAT3, which is a regulator of GFAP transcription and astrogliogenesis. Here we tested whether lithium treatment would decrease levels of GFAP in a mouse model of Alexander disease. Mice with the Gfap-R236H point mutation were fed lithium food pellets for 4 to 8 weeks. Four weeks of treatment with LiCl at 0.5% in food pellets decreased GFAP protein and transcripts in several brain regions, although with mild side effects and some mortality. Extending the duration of treatment to 8 weeks resulted in higher mortality, and again with a decrease in GFAP in the surviving animals. Indicators of autophagy, such as LC3, were not increased, suggesting that lithium may decrease levels of GFAP through other pathways. Lithium reduced the levels of phosphorylated STAT3, suggesting this as one pathway mediating the effects on GFAP. In conclusion, lithium has the potential to decrease GFAP levels in Alexander disease, but with a narrow therapeutic window separating efficacy and toxicity.

  16. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker.

    PubMed

    Yang, Zhihui; Wang, Kevin K W

    2015-06-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.

  17. Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide.

    PubMed

    Brahmachari, Saurav; Fung, Yiu K; Pahan, Kalipada

    2006-05-01

    Increased expression of glial fibrillary acidic protein (GFAP) represents astroglial activation and gliosis during neurodegeneration. However, the molecular mechanism behind increased expression of GFAP in astrocytes is poorly understood. The present study was undertaken to explore the role of nitric oxide (NO) in the expression of GFAP. Bacterial lipopolysachharides (LPSs) induced the production of NO and the expression of GFAP in mouse primary astrocytes. Either a scavenger of NO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)] or an inhibitor of inducible nitric oxide synthase [l-N6-(I-iminoethyl)-lysine hydrochloride] blocked this induction of GFAP expression. Similarly, other inducers of NO production such as interferon-gamma, interleukin-1beta, human immunodeficiency virus type 1 gp120, fibrillar amyloid beta peptides, and double-stranded RNA (polyinosinic-polycytidilic acid) also induced the expression of GFAP through NO. The role of NO in the expression of GFAP was supported further by increased expression of GFAP by S-nitroso glutathione (GSNO), an NO donor. Interestingly, inhibition of nuclear factor kappaB (NF-kappaB) suppressed LPS- but not GSNO-induced expression of GFAP, suggesting that NO does not require NF-kappaB to induce GFAP and that NF-kappaB functions upstream of NO production. However, inhibition of LPS- and GSNO-induced expression of GFAP either by NS-2028 [a specific inhibitor of guanylate cyclase (GC)] or by KT5823 [a specific inhibitor of cGMP-activated protein kinase (PKG)], and induction of GFAP expression by either 8-Br cGMP (a cell-permeable cGMP analog) or MY-5445 (a specific inhibitor of cGMP phosphodiesterase) suggests that NO induces GFAP via GC-cGMP-PKG. This study illustrates a novel biological role of NO in regulating the expression of GFAP in astrocytes through the GC-cGMP-PKG pathway that may participate in the pathogenesis of neurodegenerative disorders.

  18. Changes in the morphology and proliferation of astrocytes induced by two modalities of chemically functionalized single-walled carbon nanotubes are differentially mediated by glial fibrillary acidic protein.

    PubMed

    Gottipati, Manoj K; Bekyarova, Elena; Brenner, Michael; Haddon, Robert C; Parpura, Vladimir

    2014-07-01

    Alterations in glial fibrillary acidic protein (GFAP) levels accompany the changes in the morphology and proliferation of astrocytes induced by colloidal solutes and films of carbon nanotubes (CNTs). To determine if GFAP is required for the effects of CNTs on astrocytes, we used astrocytes isolated from GFAP null mice. We find that selected astrocytic changes induced by CNTs are mediated by GFAP, i.e., perimeter, shape, and cell death for solutes, and proliferation for films.

  19. Synthesis and phosphorylation of the glial fibrillary acidic protein during brain development: A tissue slice study

    SciTech Connect

    Noetzel, M.J. )

    1990-01-01

    Brain slices were incubated with either (3H) amino acids or (32P) orthophosphate in order to characterize the synthesis and phosphorylation of the glial fibrillary acidic protein (GFAP) in the rat nervous system. The incorporation of (3H) amino acids into GFAP was found to increase significantly during early postnatal development, reaching a peak of activity on day 5 of life and then declining over the next 2 weeks. Concomitant with this peak of synthetic activity the content of GFAP in rat brain was also observed to increase dramatically. GFAP continued to accumulate in brain through postnatal day 30 despite a decrease in the synthesis of the protein. These results indicate that the increase in GFAP during the first month of life cannot be ascribed solely to the rate of GFAP synthesis. The findings are consistent with the hypothesis that during later stages of astrocytic development the accumulation of GFAP may be primarily dependent upon a low rate of protein degradation. The pattern of GFAP phosphorylation in the developing rat brain differed from that observed for the incorporation of (3H) amino acids. The peak incorporation of 32P into GFAP occurred on postnatal day 10 at a time when synthesis of the protein had declined by 43%. These findings suggest that during development phosphorylation of GFAP is mediated by factors different from those directing its synthesis. In addition, phosphorylation of GFAP did not alter its solubility in cytoskeletal preparations indicating that GFAP phosphorylation is probably not a major regulatory mechanism in disassembly of the astroglial filaments.

  20. How Relevant Are GFAP Autoantibodies in Autism and Tourette Syndrome?

    ERIC Educational Resources Information Center

    Kirkman, Nikki J.; Libbey, Jane E.; Sweeten, Thayne L.; Coon, Hilary H.; Miller, Judith N.; Stevenson, Edward K.; Lainhart, Janet E.; McMahon, William M.; Fujinami, Robert S.

    2008-01-01

    Controversy exists over the role of autoantibodies to central nervous system antigens in autism and Tourette Syndrome. We investigated plasma autoantibody titers to glial fibrillary acidic protein (GFAP) in children with classic onset (33) and regressive onset (26) autism, controls (25, healthy age- and gender-matched) and individuals with…

  1. IL-1β induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury-associated apoptosis in rat brain striatum via NFκB/Ca²⁺-calmodulin/ERK mitogen-activated protein kinase signaling pathway.

    PubMed

    Sticozzi, C; Belmonte, G; Meini, A; Carbotti, P; Grasso, G; Palmi, M

    2013-11-12

    Reactive astrogliosis, a feature of neuro-inflammation is induced by a number of endogenous mediators including cytokines. Despite interleukin-1 beta (IL-1β) stands out as the major inducer of this process, the underlying mechanism and its role on neuronal viability remain elusive. We investigated in human astrocytoma cells and the rat brain striatum, the role of the nuclear factor-kB (NF-kB) intracellular Ca(2+) concentration ([Ca(2+)]i) calmodulin (CaM) and extracellular regulated mitogen-activated protein kinases (ERK1/2) in IL-1β-induced expression of glial fibrillary acidic protein (GFAP) and neuronal apoptosis associated to a brain trauma. Cell data showed that IL-1β (1 ng/ml) increased NF-kB, pERK1/2 and GFAP expression. Nevertheless, further increase in IL-1β levels reversed progressively these responses. Preventing ERK1/2 activation with 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthiol]-butadiene antagonized IL-1β-induced GFAP expression while inhibiting selectively nuclear translocation of NF-kB with caffeic-acid phenethyl-ester down-regulated both ERK1/2 and GFAP expression induced by IL-1β. The GFAP response was also prevented by antagonizing selectively increase in [Ca(2+)]i, CaM activity or inducible nitric oxide synthase expression with respectively ryanodine plus 2-aminoethoxydiphenyl-borate, N-(6-aminohexyl)-5-chloro-1-naphthalensulfonamide hydrochloride and N-[(3-(aminomethyl)-phenyl]methyl]-ethanimidamide dihydrochloride. Data in vivo supported these findings and showed that GFAP expression induced by IL-1β (50 ng/ml) correlated with attenuated glial scar formation and reduced neuronal apoptosis. Our data identified the NF-kB/Ca(2+)-CaM/ERK signaling pathway as a novel in vivo key regulator of IL-1β-induced astrogliosis which may represent a potential target in neurodegeneration. PMID:23928073

  2. IL-1β induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury-associated apoptosis in rat brain striatum via NFκB/Ca²⁺-calmodulin/ERK mitogen-activated protein kinase signaling pathway.

    PubMed

    Sticozzi, C; Belmonte, G; Meini, A; Carbotti, P; Grasso, G; Palmi, M

    2013-11-12

    Reactive astrogliosis, a feature of neuro-inflammation is induced by a number of endogenous mediators including cytokines. Despite interleukin-1 beta (IL-1β) stands out as the major inducer of this process, the underlying mechanism and its role on neuronal viability remain elusive. We investigated in human astrocytoma cells and the rat brain striatum, the role of the nuclear factor-kB (NF-kB) intracellular Ca(2+) concentration ([Ca(2+)]i) calmodulin (CaM) and extracellular regulated mitogen-activated protein kinases (ERK1/2) in IL-1β-induced expression of glial fibrillary acidic protein (GFAP) and neuronal apoptosis associated to a brain trauma. Cell data showed that IL-1β (1 ng/ml) increased NF-kB, pERK1/2 and GFAP expression. Nevertheless, further increase in IL-1β levels reversed progressively these responses. Preventing ERK1/2 activation with 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthiol]-butadiene antagonized IL-1β-induced GFAP expression while inhibiting selectively nuclear translocation of NF-kB with caffeic-acid phenethyl-ester down-regulated both ERK1/2 and GFAP expression induced by IL-1β. The GFAP response was also prevented by antagonizing selectively increase in [Ca(2+)]i, CaM activity or inducible nitric oxide synthase expression with respectively ryanodine plus 2-aminoethoxydiphenyl-borate, N-(6-aminohexyl)-5-chloro-1-naphthalensulfonamide hydrochloride and N-[(3-(aminomethyl)-phenyl]methyl]-ethanimidamide dihydrochloride. Data in vivo supported these findings and showed that GFAP expression induced by IL-1β (50 ng/ml) correlated with attenuated glial scar formation and reduced neuronal apoptosis. Our data identified the NF-kB/Ca(2+)-CaM/ERK signaling pathway as a novel in vivo key regulator of IL-1β-induced astrogliosis which may represent a potential target in neurodegeneration.

  3. Effect of retinoic acid and ethanol on retinoic acid receptor beta and glial fibrillary acidic protein mRNA expression in human astrocytoma cells.

    PubMed

    Grummer, M A; Salih, Z N; Zachman, R D

    2000-11-17

    This work explores the hypothesis that perturbations caused by ethanol on the regulatory role of retinoids in brain development may be a mechanism involved in the neuropathology of fetal alcohol syndrome. The interaction of ethanol and retinoic acid (RA) on RA receptor (RAR) beta and glial fibrillary acidic protein (GFAP) mRNA expression is evaluated. In the U-373 MG astrocytoma, mRNA expression of RAR beta was increased and GFAP was decreased by RA. Ethanol decreased the expression of RAR beta mRNA, but increased that of GFAP. The RA-stimulated increase in RAR beta was not affected by the presence of ethanol. RA prevented the ethanol-induced increase in GFAP mRNA. Cycloheximide abolished only the GFAP response to ethanol. This work shows that an interrelationship between ethanol and RA exists in the astrocyte. PMID:11058790

  4. Chronic psychotropic drug treatment causes differential expression of connexin 43 and GFAP in frontal cortex of rats.

    PubMed

    Fatemi, S Hossein; Folsom, Timothy D; Reutiman, Teri J; Pandian, Twinkle; Braun, Natalie N; Haug, Kari

    2008-09-01

    Astrocytic markers glial fibrillary acidic protein (GFAP) and connexin 43 (CX43) are known to have altered expression in brains of subjects with psychiatric disorders including autism and major depression. The current study investigated whether GFAP and CX43 expressions are affected by several commonly used psychotropic medications (clozapine, fluoxetine, haloperidol, lithium, olanzapine, and valproic acid). Using SDS-PAGE and western blotting technique, we observed that CX43 protein expression in prefrontal cortex was significantly increased following chronic treatment with fluoxetine and clozapine, while it was significantly decreased by haloperidol and lithium. GFAP protein expression was significantly decreased following chronic treatment with clozapine and valproic acid. These results suggest that astroglial markers GFAP and CX43 could be potential targets for therapeutic intervention.

  5. GFAP and its role in Alexander Disease

    PubMed Central

    Quinlan, Roy A; Brenner, Michael; Goldman, James E.; Messing, Albee

    2009-01-01

    Here we review how GFAP mutations cause Alexander disease. The current data suggest that a combination of events cause the disease. These include: i) the accumulation of GFAP and the formation of characteristic aggregates, called Rosenthal fibres, ii) the sequestration of the protein chaperones αB-crystallin and HSP27 into Rosenthal fibres, and iii) the activation of both Jnk and the stress response. These then set in motion events that lead to Alexander disease. We discuss parallels with other intermediate filament diseases and assess potential therapies as part of this review as well as emerging trends in disease diagnosis and other aspects concerning GFAP. PMID:17498694

  6. [Glial fibrillary acidic protein in patients with symptoms of acute stroke: diagnostic marker of cerebral hemorrhage].

    PubMed

    Foerch, C; Pfeilschifter, W; Zeiner, P; Brunkhorst, R

    2014-08-01

    Glial fibrillary acidic protein (GFAP) is a highly brain-specific protein that is expressed in large quantities in astrocytes and has important functions in terms of maintaining and stabilizing the cytoskeleton. Acute intracerebral hemorrhage leads to an immediate mechanical destruction of astroglial cells with the subsequent release of GFAP into the extracellular space and the bloodstream. On the other hand, necrosis, cytolysis and GFAP release does not occur before 6-12 h after symptom onset in ischemic stroke. Thus, in the early hours after stroke increased GFAP values could indicate intracerebral hemorrhage. This review article describes the underlying pathophysiology of the test and guides the reader through the available data. Potential implications regarding the prehospital triage of acute stroke patients are discussed, including the possibility to initiate hyperacute treatment, such as blood pressure reduction in patients with intracerebral hemorrhage. Other areas of interest for a potential GFAP test include traumatic brain injury and malignant gliomas.

  7. Glial fibrillary acidic protein as a marker of astrocytic activation in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis.

    PubMed

    Benninger, Felix; Glat, Micaela J; Offen, Daniel; Steiner, Israel

    2016-04-01

    Glial fibrillary acidic protein (GFAP) has been shown to be increased in the cerebrospinal fluid (CSF) of patients suffering from neurological diseases involving the activation of astrocytes, but has not been studied in amyotrophic lateral sclerosis (ALS) patients to our knowledge. CSF samples of patients with definite ALS and of those with other neurological diseases were evaluated for their GFAP concentrations. CSF-GFAP concentrations of patients with ALS were significantly elevated by 53% compared to patients with other neurologic diseases. GFAP might serve as a biomarker in ALS. Our findings support the concept that astrocytes play a role in ALS pathogenesis.

  8. GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury

    PubMed Central

    Berdugo-Vega, G; Arias-Gil, G; Rodriguez-Niedenführ, M; Davies, D C; Vázquez, T; Pascual-Font, A

    2014-01-01

    Changes that occur in astroglial populations of the nucleus ambiguus after recurrent (RLN) or superior (SLN) laryngeal nerve injury have hitherto not been fully characterised. In the present study, rat RLN and SLN were lesioned. After 3, 7, 14, 28 or 56 days of survival, the nucleus ambiguus was investigated by means of glial fibrillary acidic protein (GFAP) immunofluorescence or a combination of GFAP immunofluorescence and the application of retrograde tracers. GFAP immunoreactivity was significantly increased 3 days after RLN resection and it remained significantly elevated until after 28 days post injury (dpi). By 56 dpi it had returned to basal levels. In contrast, following RLN transection with repair, GFAP immunoreactivity was significantly elevated at 7 dpi and remained significantly elevated until 14 dpi. It had returned to basal levels by 28 dpi. Topographical analysis of the distribution of GFAP immunoreactivity revealed that after RLN injury, GFAP immunoreactivity was increased beyond the area of the nucleus ambiguus within which RLN motor neuron somata were located. GFAP immunoreactivity was also observed in the vicinity of neuronal somata that project into the uninjured SLN. Similarly, lesion of the SLN resulted in increased GFAP immunoreactivity around the neuronal somata projecting into it and also in the vicinity of the motor neuron somata projecting into the RLN. The increase in GFAP immunoreactivity outside of the region containing the motor neurons projecting into the injured nerve, may reflect the onset of a regenerative process attempting to compensate for impairment of one of the laryngeal nerves and may occur because of the dual innervation of the posterior cricoarytenoid muscle. This dual innervation of a very specialised muscle could provide a useful model system for studying the molecular mechanisms underlying axonal regeneration process and the results of the current study could provide the basis for studies into functional regeneration

  9. Comparative Analysis of Human, Mouse, and Pig Glial Fibrillary Acidic Protein Gene Structures.

    PubMed

    Eun, Kiyoung; Hwang, Seon-Ung; Jeon, Hye-Min; Hyun, Sang-Hwan; Kim, Hyunggee

    2016-01-01

    Comparing the coding and regulatory sequences of genes in different species provides information on whether proteins translated from genes have conserved functions or gene expressions are regulated by analogical mechanisms. Herein, we compared the coding and regulatory sequences of glial fibrillary acidic protein (GFAP) from humans, mice, and pigs. The GFAP gene encodes a class III intermediate filament protein expressed specifically in astrocytes of the central nervous system. On comparing the mRNA, regulatory region (promoter), and protein sequences of GFAP gene in silico, we found that GFAP mRNA 3'-untranslated region (3'-UTR), promoter, and amino acid sequences showed higher similarities between humans and pigs than between humans and mice. In addition, the promoter-luciferase reporter gene assay revealed that the pig GFAP promoter functioned in human astrocytes. Notably, the 1.8-kb promoter fragment upstream from transcription initiation site showed strongest transcriptional activity compared to 5.2-kb DNA fragment or other regions of GFAP promoter. We also found that pig GFAP mRNA and promoter activity increased in pig fibroblasts by human IL-1β treatment. Taken together, these results suggest that the regulatory mechanisms and functions of pig genes might be more similar to those of humans than mice, indicating that pigs, particularly miniature pigs, are a useful model for studying human biological and pathological events. PMID:26913554

  10. Comparative Analysis of Human, Mouse, and Pig Glial Fibrillary Acidic Protein Gene Structures.

    PubMed

    Eun, Kiyoung; Hwang, Seon-Ung; Jeon, Hye-Min; Hyun, Sang-Hwan; Kim, Hyunggee

    2016-01-01

    Comparing the coding and regulatory sequences of genes in different species provides information on whether proteins translated from genes have conserved functions or gene expressions are regulated by analogical mechanisms. Herein, we compared the coding and regulatory sequences of glial fibrillary acidic protein (GFAP) from humans, mice, and pigs. The GFAP gene encodes a class III intermediate filament protein expressed specifically in astrocytes of the central nervous system. On comparing the mRNA, regulatory region (promoter), and protein sequences of GFAP gene in silico, we found that GFAP mRNA 3'-untranslated region (3'-UTR), promoter, and amino acid sequences showed higher similarities between humans and pigs than between humans and mice. In addition, the promoter-luciferase reporter gene assay revealed that the pig GFAP promoter functioned in human astrocytes. Notably, the 1.8-kb promoter fragment upstream from transcription initiation site showed strongest transcriptional activity compared to 5.2-kb DNA fragment or other regions of GFAP promoter. We also found that pig GFAP mRNA and promoter activity increased in pig fibroblasts by human IL-1β treatment. Taken together, these results suggest that the regulatory mechanisms and functions of pig genes might be more similar to those of humans than mice, indicating that pigs, particularly miniature pigs, are a useful model for studying human biological and pathological events.

  11. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease.

    PubMed

    Kamphuis, Willem; Middeldorp, Jinte; Kooijman, Lieneke; Sluijs, Jacqueline A; Kooi, Evert-Jan; Moeton, Martina; Freriks, Michel; Mizee, Mark R; Hol, Elly M

    2014-03-01

    In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of astrocytes and that impose different properties to the intermediate filament network. We studied transcript levels and protein expression patterns of all known GFAP isoforms in human hippocampal AD tissue at different stages of the disease. Ten different transcripts for GFAP isoforms were detected at different abundancies. Transcript levels of most isoforms increased with AD progression. GFAPδ-immunopositive astrocytes were observed in subgranular zone, hilus, and stratum-lacunosum-moleculare. GFAPδ-positive cells also stained for GFAPα. In AD donors, astrocytes near plaques displayed increased staining of both GFAPα and GFAPδ. The reading-frame-shifted isoform, GFAP(+1), staining was confined to a subset of astrocytes with long processes, and their number increased in the course of AD. In conclusion, the various GFAP isoforms show differential transcript levels and are upregulated in a concerted manner in AD. The GFAP(+1) isoform defines a unique subset of astrocytes, with numbers increasing with AD progression. These data indicate the need for future exploration of underlying mechanisms concerning the functions of GFAPδ and GFAP(+1) isoforms in astrocytes and their possible role in AD pathology.

  12. Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats.

    PubMed

    Tomassoni, Daniele; Avola, Roberto; Di Tullio, Maria Antonietta; Sabbatini, Maurizio; Vitaioli, Lucia; Amenta, Francesco

    2004-05-01

    Astrogliosis, consisting in astroglial proliferation and increased expression of the specific cytoskeletal protein glial fibrillary acid protein (GFAP) is common in several situations of brain damage. Arterial hypertension, which induces cerebrovascular changes, can cause also brain damage, neurodegeneration and dementia (vascular dementia). This study was designed to assess astroglial reaction in different brain areas (frontal cortex, occipital cortex, hippocampus and striatum) of spontaneously hypertensive rats (SHR) in the pre-hypertensive phase (2 months of age), in the developing phase of hypertension (4 months of age) and in established hypertension (6 months of age). SHR were compared to age-matched normotensive Wistar-Kyoto (WKY) rats. Analysis included reverse transcription-polymerase chain reaction (RT-PCR) of GFAP mRNA, GFAP immunochemistry (Western blot analysis) and immunohistochemistry. A significant increase of GFAP mRNA and an increase of GFAP immunoreactivity were noticeable in different brain areas of SHR compared to normotensive WKY rats at 6, but not at 2 or 4 months of age. Immunohistochemistry revealed a numerical augmentation (hyperplasia) and an increase in size (hypertrophy) of GFAP-immunoreactive astrocytes in frontal cortex, occipital cortex and striatum of SHR. In the hippocampus of SHR only a numerical increase of GFAP-immunoreactive astrocytes was found. These finding demonstrating the occurrence of astrogliosis in the brain of SHR with established hypertension suggest that hypertension induces a condition of brain suffering enough to increase biosynthesis and expression of GFAP similarly as reported in several neurodegenerative disorders and in brain ischemia.

  13. Serum glial fibrillary acidic protein as a specific marker for necrotizing meningoencephalitis in Pug dogs.

    PubMed

    Miyake, Hizuru; Inoue, Akiko; Tanaka, Miho; Matsuki, Naoaki

    2013-11-01

    To evaluate the ability of serum glial fibrillary acidic protein (GFAP) concentration as a diagnostic marker for canine central nervous system (CNS) disorders, sera from dogs with various CNS (n=47) and non-CNS (n=56) disorders were measured for GFAP by using an ELISA kit. Healthy Beagles (n=15) and Pug dogs (n=12) were also examined as controls. Interestingly, only Pug dogs with necrotizing meningoencephalitis (NME) showed elevated serum GFAP concentrations (<0.01 to 1.14 ng/ml), while other breeds of dogs with NME did not. Among the Pug dogs with NME, serum GFAP concentrations did not correlate with their clinical features, such as ages or survival times. Our data indicate the usefulness of serum GFAP as a novel marker for Pug dogs with NME.

  14. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer's disease, dementia with Lewy bodies, and frontotemporal lobar degeneration.

    PubMed

    Ishiki, Aiko; Kamada, Maki; Kawamura, Yuki; Terao, Chiaki; Shimoda, Fumiko; Tomita, Naoki; Arai, Hiroyuki; Furukawa, Katsutoshi

    2016-01-01

    Biomarkers in the cerebrospinal fluid (CSF) are currently regarded as indispensable indicators for accurate differential diagnosis of neurodegenerative disorders. Although high levels of astrocyte-secreted glial fibrillar acidic protein (GFAP) in the CSF of patients with Alzheimer's disease (AD) have been reported, the levels of GFAP in the CSF have not been fully investigated in other neurological disorders that cause dementia, such as dementia with Lewy bodies (DLB) and frontotemporal lobar degeneration (FTLD). In this study, we determined the levels of GFAP in the CSF of healthy control subjects and AD, DLB, and FTLD patients to address two questions: (i) Do the levels of GFAP differ among these disorders? and (ii) Can GFAP be used as a biomarker for the differential diagnosis of these neurodegenerative disorders? The levels of GFAP in AD, DLB, and FTLD patients were significantly higher than those in the healthy control subjects. Although the levels of GFAP were not significantly different between AD and DLB patients, a higher level of GFAP was observed in FTLD patients than in AD and DLB patients. It is concluded that representative neurological disorders causing dementia were associated with higher levels of GFAP in the CSF. We propose the following mechanism concerning the amount of glial fibrillar acidic protein (GFAP) in the cerebrospinal fluid (CSF) in Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD). The increase in the release of GFAP into CSF is considered to reflect the sum of degeneration of astrocytes and astrocytosis. The sum of degeneration and astrocytosis or the GFAP release could be in the order of FTLD > DLB > AD > normal condition.

  15. Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer's disease brains.

    PubMed

    Ishigami, Akihito; Masutomi, Hirofumi; Handa, Setsuko; Nakamura, Megumi; Nakaya, Shuuichi; Uchida, Yoshiaki; Saito, Yuko; Murayama, Shigeo; Jang, Byungki; Jeon, Yong-Chul; Choi, Eun-Kyoung; Kim, Yong-Sun; Kasahara, Yasushi; Maruyama, Naoki; Toda, Tosifusa

    2015-11-01

    Peptidylarginine deiminases (PADs) are posttranslational modification enzymes that convert protein arginine to citrulline residues in a calcium ion-dependent manner. Previously, we reported the abnormal accumulation of citrullinated proteins and the increase in the amount of PAD2 in hippocampi from Alzheimer's disease (AD) patients. Moreover, glial fibrillary acidic protein (GFAP), an astrocyte-specific marker protein, and vimentin were identified as citrullinated proteins by using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. To clarify the substrate specificity of PADs against GFAP, we prepared recombinant human (rh)PAD1, rhPAD2, rhPAD3, rhPAD4, and rhGFAP. After incubation of rhGFAP with rhPAD1, rhPAD2, rhPAD3, and rhPAD4, citrullinated (cit-)rhGFAP was detected by Western blotting. The citrullination of rhGFAP by rhPAD2 was unique, specific, and time dependent; additionally, rhPAD1 slightly citrullinated rhGFAP. We then generated eight anti-cit-rhGFAP monoclonal antibodies, CTGF-125, -128, -129, -1212, -1213, -1221, -122R, and -1224R, which reacted specifically with cit-rhGFAP. Two of those eight monoclonal antibodies, CTGF-122R and -1224R, reacted with both cit-rhGFAP and rhGFAP in Western blots. By using the CTGF-1221 antibody and a tandem mass spectrometer, we identified the two independent citrullination sites (R270Cit and R416Cit) of cit-rhGFAP. Immunohistochemical analysis with CTGF-1221 antibody revealed cit-GFAP staining in the hippocampus of AD brain, and the cit-GFAP-positive cells appeared to be astrocyte-like cells. These collective results strongly suggest that PAD2 is responsible for the citrullination of GFAP in the progression of AD and that the monoclonal antibody CTGF-1221, reacting with cit-GFAP at R270Cit and R416Cit, is useful for immunohistochemical investigation of AD brains.

  16. Molecular cloning and primary structure of human glial fibrillary acidic protein

    SciTech Connect

    Reeves, S.A.; Helman, L.J.; Allison, A.; Israel, M.A. )

    1989-07-01

    Glial fibrillary acidic protein (GFAP) is an intermediate-filament (IF) protein that is highly specific for cells of astroglial lineage, although its tissue-specific role is speculative. Determination of the primary structure of this protein should be of importance for understanding the functional role it plays in astroglia. Therefore, the authors isolated a cDNA clone encoding this protein and determined its nucleotide sequence. The predicted amino acid sequence indicates that GFAP shares structural similarities-particularly in the central rod domain and to a lesser degree in the carboxyl-terminal domain-with other IF proteins found in nonepithelial cell types. Considerable sequence divergence in the amino-terminal region of GFAP suggests that the tissue-specific functions of this IF protein might be mediated through this region of the molecule. In contrast, conservation of structural characteristics and a moderate degree of sequence conservation in the carboxyl-terminal region suggest functional similarities. Blot hybridization analysis using the GFAP cDNA as a probe failed to detect GFAP mRNA in both normal and neoplastic human tissues in which IF proteins other than GFAP are known to be expressed.

  17. Müller cell GFAP expression exhibits gradient from focus of photoreceptor light damage.

    PubMed

    Burns, M S; Robles, M

    1990-05-01

    High intensity (ca. 150 foot-candles), cumulative fluorescent light exposure regimes of 40 or 60 minutes to pigmented Long Evans rats were sufficient to elicit glial fibrillary acidic protein immunoreactivity (GFAP-IR) in Müller cells, when the animals are sacrificed 7 days post-exposure. Exposure to only 20 minutes of cumulative light or sacrifice immediately after exposure was not sufficient to initiate GFAP-IR in Müller cells. A gradient of GFAP-IR was observed extending from an approximately circular focus superior to the optic disc to the peripheral retina, whether or not there was morphological damage to the photoreceptors observable at the light microscopic level. Photoreceptor lesions produced by laser photocoagulation elicited the same gradient of GFAP-IR, and showed that GFAP-IR was not a reflection of a central to peripheral gradient of light received by the retina. Excessive light exposure initiated a signal which induced GFAP expression in Müller cells. This signal appeared to require a dark period and may be a diffusible factor that moves through extracellular pathways. PMID:2200639

  18. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion.

    PubMed Central

    Liedtke, W.; Edelmann, W.; Chiu, F. C.; Kucherlapati, R.; Raine, C. S.

    1998-01-01

    Insights into the role of the astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP), have only recently emerged with reports on subtle abnormalities in GFAP-deficient mice, including the documentation of defective long-term maintenance of central nervous system myelination. Here, we extend these observations by examining the astroglial response in GFAP-/- mice with autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. Clinically, the monophasic disease was more severe in GFAP-/- mice than in wild-type littermates despite increased remyelination in the former. More in keeping with the clinical course was the observation of an infiltrative EAE lesion in GFAP-/- mice. GFAP-/- astrocytes had a reduced cytoarchitectural stability as evidenced by less abundant and irregularly spaced hemidesmosomes. The blunt GFAP-/- astrocyte processes possessed intermediate filaments consisting mainly of vimentin, though to a lesser degree than in the wild-type. In contrast, in wild-type littermates, GFAP was most abundant and nestin occurred at lower levels. Taken together, the present study introduces the novel concepts that GFAP plays an important role in the control of clinical disease associated with formation of a clearly defined edge to the EAE lesion and that GFAP is operative in the regulation of the intermediate filament components in reactive fibrillary astrogliosis. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:9422542

  19. Changes in glial fibrillary acidic protein immunoreactivity in the dentate gyrus and hippocampus proper of adult and aged dogs.

    PubMed

    Hwang, In Koo; Choi, Jung Hoon; Li, Hua; Yoo, Ki-Yeon; Kim, Dae Won; Lee, Choong Hyun; Yi, Sun Shin; Seong, Je Kyung; Lee, In Se; Yoon, Yeo Sung; Won, Moo-Ho

    2008-09-01

    Astrocytes perform neuron-supportive tasks, repair and scarring process in the central nervous system. In this study, we observed glial fibrillary acidic protein (GFAP), a marker for astrocytes, immunoreactivity in the dentate gyrus and hippocampus proper (CA1-3 region) of adult (2-3 years of age) and aged (10-12 years of age) dogs. In the adult group, GFAP immunoreactive astrocytes were distributed in all layers of the dentate gyrus and CA1-3 region, except in the stratum pyramidale of the CA1-3 region. In the aged group, GFAP immunoreactivity decreased markedly in the molecular layer of the dentate gyrus. However, GFAP immunoreactivity in the CA1-3 region increased in all layers, and the cytoplasm of GFAP immunoreactive astrocytes was hypertrophied. GFAP protein levels in the aged dentate gyrus decreased; however, GFAP levels in the CA1-3 region increased. These results suggest that the morphology of astrocytes and GFAP protein levels in the hippocampal dentate gyrus and CA1 region are changed, respectively, with age.

  20. Elevated glial fibrillary acidic protein levels in the cerebrospinal fluid of patients with narcolepsy.

    PubMed

    Feneberg, Emily; Steinacker, Petra; Lehnert, Stefan; Böhm, Bernhard; Mayer, Geert; Otto, Markus

    2013-07-01

    Glial fibrillary acidic protein (GFAP) is an established indicator of astrogliosis. Therefore, variable cerebrospinal fluid (CSF) concentrations of this protein might reflect disease-specific pathologic profiles. In patients with narcolepsy, a loss of hypocretin-1 (hcrt-1) neurons in the brain and low concentrations of hcrt-1 in CSF have been reported. We performed a commercially available enzyme-linked immunosorbent assay to investigate if GFAP also is altered in the CSF of these patients. Here we detected significantly higher CSF levels of GFAP in patients with low hcrt-1 levels, of which the majority had a diagnosis of narcolepsy and cataplexy (NC); however, this finding was not observed in patients with hcrt-1 levels that were within reference range. In conclusion, GFAP may be useful as an additional disease biomarker in patients with narcolepsy, and this hypothesis should be investigated in larger studies.

  1. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    PubMed Central

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  2. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    PubMed

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  3. Striatal Injury with 6-OHDA Transiently Increases Cerebrospinal GFAP and S100B

    PubMed Central

    Batassini, Cristiane; Broetto, Núbia; Tortorelli, Lucas Silva; Borsoi, Milene; Zanotto, Caroline; Galland, Fabiana; Souza, Tadeu Mello; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2015-01-01

    Both glial fibrillary acidic protein (GFAP) and S100B have been used as markers of astroglial plasticity, particularly in brain injury; however, they do not necessarily change in the same time frame or direction. Herein, we induced a Parkinson's disease (PD) model via a 6-OHDA intrastriatal injection in rats and investigated the changes in GFAP and S100B using ELISA in the substantia nigra (SN), striatum, and cerebrospinal fluid on the 1st, 7th, and 21st days following the injection. The model was validated using measurements of rotational behaviour induced by methylphenidate and tyrosine hydroxylase in the dopaminergic pathway. To our knowledge, this is the first measurement of cerebrospinal fluid S100B and GFAP in the 6-OHDA model of PD. Gliosis (based on a GFAP increase) was identified in the striatum, but not in the SN. We identified a transitory increment of cerebrospinal fluid S100B and GFAP on the 1st and 7th days, respectively. This initial change in cerebrospinal fluid S100B was apparently related to the mechanical lesion. However, the 6-OHDA-induced S100B secretion was confirmed in astrocyte cultures. Current data reinforce the idea that glial changes precede neuronal damage in PD; however, these findings also indicate that caution is necessary regarding the interpretation of data in this PD model. PMID:26090233

  4. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder.

    PubMed

    Cobb, J A; O'Neill, K; Milner, J; Mahajan, G J; Lawrence, T J; May, W L; Miguel-Hidalgo, J; Rajkowska, G; Stockmeier, C A

    2016-03-01

    Neuroimaging and postmortem studies of subjects with major depressive disorder (MDD) reveal smaller hippocampal volume with lengthening duration of illness. Pathology in astrocytes may contribute significantly to this reduced volume and to the involvement of the hippocampus in MDD. Postmortem hippocampal tissues were collected from 17 subjects with MDD and 17 psychiatrically-normal control subjects. Sections from the body of the hippocampus were immunostained for glial fibrillary acidic protein (GFAP), a marker of intermediate filament protein expressed in astrocytes. The density of GFAP-immunoreactive astrocytes was measured in the hippocampus using 3-dimensional cell counting. Hippocampal subfields were also assessed for GFAP-immunoreactive area fraction. In CA1, there was a significant positive correlation between age and either density or area fraction in MDD. The density of astrocytes in the hilus, but not CA1 or CA2/3, was significantly decreased only in depressed subjects not taking an antidepressant drug, but not for depressed subjects taking an antidepressant drug. The area fraction of GFAP-immunoreactivity was significantly decreased in the dentate gyrus in women but not men with depression. In CA2/3, the area fraction of GFAP-immunoreactivity was inversely correlated with the duration of depression in suicide victims. Astrocyte contributions to neuronal function in the hilus may be compromised in depressed subjects not taking antidepressant medication. Due to the cross-sectional nature of the present study of postmortem brain tissue, it remains to be determined whether antidepressant drug treatment prevented a decrease in GFAP-immunoreactive astrocyte density or restored cell density to normal levels.

  5. Retinal functional alterations in mice lacking intermediate filament proteins glial fibrillary acidic protein and vimentin.

    PubMed

    Wunderlich, Kirsten A; Tanimoto, Naoyuki; Grosche, Antje; Zrenner, Eberhart; Pekny, Milos; Reichenbach, Andreas; Seeliger, Mathias W; Pannicke, Thomas; Perez, Maria-Thereza

    2015-12-01

    Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.

  6. STAT3 and its phosphorylation are involved in HIV-1 Tat-induced transactivation of glial fibrillary acidic protein.

    PubMed

    Fan, Yan; Timani, Khalid Amine; He, Johnny J

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) Tat protein is a major pathogenic factor in HIV-associated neurological diseases; it exhibits direct neurotoxicity and indirect astrocyte-mediated neurotoxicity. We have shown that Tat alone is capable of activating glial fibrillary acidic protein (GFAP) expression and inducing astrocytosis involving sequential activation of early growth response protein 1 (Egr-1) and p300. In this study, we determined the roles of signal transducer and activator of transcription 3 (STAT3) in Tat-induced GFAP transactivation. STAT3 expression and phosphorylation led to significant increases in GFAP transcription and protein expression. Tat expression was associated with increased STAT3 expression and phosphorylation in Tat-expressing astrocytes and HIV-infected astrocytes. GFAP, Egr-1 and p300 transcription and protein expression all showed positive response to STAT3 and its phosphorylation. Importantly, knockdown of STAT3 resulted in significant decreases in Tat-induced GFAP and Egr-1 transcription and protein expression. Taken together, these findings show that STAT3 is involved in and acts upstream of Egr1 and p300 in the Tat-induced GFAP transactivation cascade and suggest important roles of STAT3 in controlling astrocyte proliferation and activation in the HIV-infected central nervous system.

  7. Glial fibrillary acidic protein expression during HSV-1 infection in mouse cornea.

    PubMed

    Zhao, Ge; Chen, Hao; Song, Zicheng; Yin, Hongmei; Xu, Yuanyuan; Chen, Min

    2014-02-01

    This study aimed to investigate the dynamic expression of glial fibrillary acidic protein (GFAP), a common neural factor, in cornea and stromal cells during herpes simplex virus-1 (HSV-1) infection. For each anesthetized BALB/c mouse, the cornea in one eye was inoculated with 1 × 10(5) plaque forming unit (PFU) of HSV-1, while the contralateral cornea was mock-infected as the control. At different timepoints post-infection, corneal lesion examination by slit-lamp biomicroscopy, corneal histology and HSV-1 DNA detection by real-time PCR were performed to estimate the different stage of HSV-1 infection. The expression of GFAP was examined using real-time PCR, western blotting and immunofluorescence staining. After infected with HSV-1 for 15 days, the mouse corneas began to become clear, the corneal pathology recovered to normal, and HSV-1 DNA almost could not be detected, indicating that HSV-1 was entering a relative quiescent state from the acute infection. The expression of GFAP in HSV-1-infected corneas was comparatively low on day 3, increased slightly on day 7, and further increased thereafter, higher than that in mock-infected corneas on day 15. GFAP detection on the cellular level also indicated that the expression was downregulated in acute HSV-1 infection. GFAP was found to be downregulated in HSV-1 acute infection in cornea and upregulated in late stage, suggesting that GFAP might play some role during HSV-1 infection in cornea.

  8. Serum Glial Fibrillary Acidic Protein Predicts Tissue Glial Fibrillary Acidic Protein Break-Down Products and Therapeutic Efficacy after Penetrating Ballistic-Like Brain Injury.

    PubMed

    Boutté, Angela M; Deng-Bryant, Ying; Johnson, David; Tortella, Frank C; Dave, Jitendra R; Shear, Deborah A; Schmid, Kara E

    2016-01-01

    Acute traumatic brain injury (TBI) is associated with neurological dysfunction, changes in brain proteins, and increased serum biomarkers. However, the relationship between these brain proteins and serum biomarkers, and the ability of these serum biomarkers to indicate a neuroprotective/therapeutic response, remains elusive. Penetrating ballistic-like brain injury (PBBI) was used to systematically analyze several key TBI biomarkers, glial fibrillary acidic protein (GFAP) and its break-down products (BDPs)-ubiquitin C-terminal hydrolase-L1 (UCH-L1), α-II spectrin, and α-II spectrin BDPs (SBDPs)-in brain tissues and serum during an extended acute-subacute time-frame. In addition, neurological improvement and serum GFAP theranostic value was evaluated after neuroprotective treatment. In brain tissues, total GFAP increased more than three-fold 2 to 7 d after PBBI. However, this change was primarily due to GFAP-BDPs which increased to 2.7-4.8 arbitrary units (AU). Alpha-II spectrin was nearly ablated 3 d after PBBI, but somewhat recovered after 7 d. In conjunction with α-II spectrin loss, SBDP-145/150 increased approximately three-fold 2 to 7 d after PBBI (vs. sham, p<0.05). UCH-L1 protein levels were slightly decreased 7 d after PBBI but otherwise were unaffected. Serum GFAP was elevated by 3.2- to 8.8-fold at 2 to 4 h (vs. sham; p<0.05) and the 4 h increase was strongly correlated to 3 d GFAP-BDP abundance (r=0.66; p<0.05). Serum GFAP showed such a strong injury effect that it also was evaluated after therapeutic intervention with cyclosporin A (CsA). Administration of 2.5 mg/kg CsA significantly reduced serum GFAP elevation by 22.4-fold 2 h after PBBI (vs. PBBI+vehicle; p<0.05) and improved neurological function 1 d post-injury. Serum biomarkers, particularly GFAP, may be correlative tools of brain protein changes and feasible theranostic markers of TBI progression and recovery.

  9. Modelling and Characterization of Glial Fibrillary Acidic Protein

    PubMed Central

    Deka, Hemchandra; Sarmah, Rajeev; Sharma, Ankita; Biswas, Sagarika

    2015-01-01

    Glial Fibrillary Acidic Protein (GFAP) is an intermediate-filament (IF) protein that maintains the astrocytes of the Central Nervous System in Human. This is differentially expressed during serological studies in inflamed condition such as Rheumatoid Arthritis (RA). Therefore, it is of interest to glean molecular insight using a model of GFAP (49.88 kDa) due to its crystallographic nonavailability. The present study has been taken into consideration to construct computational protein model using Modeller 9.11. The structural relevance of the protein was verified using Gromacs 4.5 followed by validation through PROCHECK, Verify 3D, WHAT-IF, ERRAT and PROVE for reliability. The constructed three dimensional (3D) model of GFAP protein had been scrutinized to reveal the associated functions by identifying ligand binding sites and active sites. Molecular level interaction study revealed five possible surface cavities as active sites. The model finds application in further computational analysis towards drug discovery in order to minimize the effect of inflammation. PMID:26420920

  10. Deficits in Adult Neurogenesis, Contextual Fear Conditioning, and Spatial Learning in a Gfap Mutant Mouse Model of Alexander Disease

    PubMed Central

    Paylor, Richard; Messing, Albee

    2013-01-01

    Glial fibrillary acidic protein (GFAP) is the major intermediate filament of mature astrocytes in the mammalian CNS. Dominant gain of function mutations in GFAP lead to the fatal neurodegenerative disorder, Alexander disease (AxD), which is characterized by cytoplasmic protein aggregates known as Rosenthal fibers along with variable degrees of leukodystrophy and intellectual disability. The mechanisms by which mutant GFAP leads to these pleiotropic effects are unknown. In addition to astrocytes, GFAP is also expressed in other cell types, particularly neural stem cells that form the reservoir supporting adult neurogenesis in the hippocampal dentate gyrus and subventricular zone of the lateral ventricles. Here, we show that mouse models of AxD exhibit significant pathology in GFAP-positive radial glia-like cells in the dentate gyrus, and suffer from deficits in adult neurogenesis. In addition, they display impairments in contextual learning and spatial memory. This is the first demonstration of cognitive phenotypes in a model of primary astrocyte disease. PMID:24259590

  11. Alexander disease: a leukodystrophy caused by a mutation in GFAP.

    PubMed

    Johnson, Anne B

    2004-05-01

    Alexander disease, a rare fatal disorder of the central nervous system, causes progressive loss of motor and mental function. Until recently it was of unknown etiology, almost all cases were sporadic, and there was no effective treatment. It was most common in an infantile form, somewhat less so in a juvenile form, and was rarely seen in an adult-onset form. A number of investigators have now shown that almost all cases of Alexander disease have a dominant mutation in one allele of the gene for glial fibrillary acidic protein (GFAP) that causes replacement of one amino acid for another. Only in very rare cases of the adult-onset form is the mutation present in either parent. Thus, in almost all cases, the mutation arises as a spontaneous event, possibly in the germ cell of one parent.

  12. Immunocytochemical staining for glial fibrillary acidic protein and the metabolism of cytoskeletal proteins in experimental allergic encephalomyelitis.

    PubMed

    Smith, M E; Somera, F P; Eng, L F

    1983-04-01

    Spinal cord sections from Lewis rats with acute experimental allergic encephalomyelitis (EAE) showed greatly increased staining of astrocytes when stained immunocytochemically for glial fibrillary acidic protein (GFAP). Fibrous processes in white matter were heavily stained early in the course of the disease when paralysis was first evident (10-12 days after injection of guinea pig spinal cord myelin), then protoplasmic astrocytes were stained in the gray matter and became more heavily stained at 20 days post-injection. The stained astrocytes were evenly distributed throughout the tissue, and did not correspond to the sites of the lesions. Spinal cord slices of control and EAE rats were incubated with [3H]amino acids, then cytoskeletal proteins were prepared in an enriched fraction, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the protein bands counted for radioactivity. In the EAE rat all cytoskeletal proteins, including the neurofilaments, vimentin, microtubules, GFAP and actin, showed increased uptake of radioactive amino acids. Immunoprecipitation of GFAP with specific antiserum showed increased radioactivity in the complex beginning at day 10 when cellular infiltration was beginning in the EAE animals. As the disease became acute, the radioactivity in the immunoprecipitated GFAP increased, in some cases to very high levels, then by day 18 when recovery was underway, the radioactivity had fallen to normal levels. Possible agents causing metabolic activation of protein synthesis in EAE animals include stimulating substances elaborated by infiltrating lymphoid cells, and the generalized edema accompanying the demyelinative condition. The activation of GFAP protein staining and metabolism in EAE might serve as a model for the activated growth of astrocyte processes which cause the severe gliosis seen in multiple sclerosis.

  13. DISTRIBUTION OF GLIAL FIBRILLARY ACIDIC PROTEIN IN DIFFERENT PARTS OF THE RAT BRAIN UNDER CADMIUM EXPOSURE.

    PubMed

    Kovalchuk, Yu P; Prischepa, I V; Si, U; Nedzvetsky, V S; Kot, Y G; Persky, E E; Ushakova, G A

    2015-01-01

    The chronic effects of low doses of cadmium on the distribution of soluble and filament forms of glial fibrillary acidic protein (GFAP) and their polypeptide fragments in different parts of the rat brain were investigated. Obtained results showed dose-dependent effect of cadmium on the soluble form of GFAP and more pronounced effect on the filament form and composition of the polypeptide fragments of the protein in the rat brain. Prolonged intoxication by cadmium ions in a dose of 1.0 μg/kg of body weight induced a significant decrease in soluble GFAP and an increase in the filament form in the rat brain, pointing to the development of reactive astrogliosis and the risk of neurodegeneration.

  14. RNA-binding protein QKI regulates Glial fibrillary acidic protein expression in human astrocytes.

    PubMed

    Radomska, Katarzyna J; Halvardson, Jonatan; Reinius, Björn; Lindholm Carlström, Eva; Emilsson, Lina; Feuk, Lars; Jazin, Elena

    2013-04-01

    Linkage, association and expression studies previously pointed to the human QKI, KH domain containing, RNA-binding (QKI) as a candidate gene for schizophrenia. Functional studies of the mouse orthologue Qk focused mainly on its role in oligodendrocyte development and myelination, while its function in astroglia remained unexplored. Here, we show that QKI is highly expressed in human primary astrocytes and that its splice forms encode proteins targeting different subcellular localizations. Uncovering the role of QKI in astrocytes is of interest in light of growing evidence implicating astrocyte dysfunction in the pathogenesis of several disorders of the central nervous system. We selectively silenced QKI splice variants in human primary astrocytes and used RNA sequencing to identify differential expression and splice variant composition at the genome-wide level. We found that an mRNA expression of Glial fibrillary acidic protein (GFAP), encoding a major component of astrocyte intermediate filaments, was down-regulated after QKI7 splice variant silencing. Moreover, we identified a potential QKI-binding site within the 3' untranslated region of human GFAP. This sequence was not conserved between mice and humans, raising the possibility that GFAP is a target for QKI in humans but not rodents. Haloperidol treatment of primary astrocytes resulted in coordinated increases in QKI7 and GFAP expression. Taken together, our results provide the first link between QKI and GFAP, two genes with alterations previously observed independently in schizophrenic patients. Our findings for QKI, together with its well-known role in myelination, suggest that QKI is a hub regulator of glia function in humans.

  15. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

    PubMed Central

    Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23%) and dentate gyrus (−48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  16. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.

    PubMed

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  17. Supra- and infratentorial pediatric ependymomas differ significantly in NeuN, p75 and GFAP expression.

    PubMed

    Hagel, Christian; Treszl, András; Fehlert, Julia; Harder, Jonas; von Haxthausen, Franziska; Kern, Meike; von Bueren, André O; Kordes, Uwe

    2013-04-01

    Ependymomas comprise 8 % of all intracranial tumors in children <15 years. Recent studies revealed that some supratentorial ependymomas express neuronal antigens and that high expression of neurofilament protein light polypeptide (NEFL) correlates with better clinical outcome. We retrospectively analyzed an expanded panel of proteins in 6 supratentorial, 15 posterior fossa and 4 spinal pediatric ependymomas by immunohistochemistry. Expression of high and low affinity neurotrophin receptors TrkA (NTRK1) and p75 (NGFR), pan-neuronal markers NeuN (RBFOX3) and synaptophysin, radial glial marker SOX9, adhesion molecules CD56 (NCAM) and CD44, junctional protein connexin 43 (GJA1), glial fibrillary acidic protein (GFAP), epithelial membrane antigen and proliferation associated antigen Ki-67 were evaluated in a semi-quantitative or quantitative (Ki-67 and NeuN-index) fashion. We found p75 and NeuN to be expressed at significantly higher levels in supratentorial versus infratentorial tumors and GFAP to be expressed at significantly higher levels in infratentorial lesions. In conclusion, immunohistochemical expression of p75, NeuN and GFAP differed in ependymomas depending on tumor topography supporting the view of divergent cells of origin. However, because of the small sample size the results are of preliminary nature and replication in a larger cohort would be desirable.

  18. Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions.

    PubMed

    Sousa, Vivian de Oliveira; Romão, Luciana; Neto, Vivaldo Moura; Gomes, Flávia Carvalho Alcantara

    2004-04-01

    The expression of glial fibrillary acidic protein (GFAP), the major intermediate filament protein of mature astrocytes, is regulated under developmental and pathological conditions. Recently, we have investigated GFAP gene modulation by using a transgenic mouse bearing part of the GFAP gene promoter linked to the beta-galactosidase reporter gene. We demonstrated that cerebral cortex neurons activate the GFAP gene promoter, inducing transforming growth factor-beta 1 (TGF-beta 1) secretion by astrocytes. Here, we report that cortical neurons or conditioned medium derived from them do not activate the GFAP gene promoter of transgenic astrocytes derived from midbrain and cerebellum suggesting a neuroanatomical regional specificity of this phenomenon. Surprisingly, they do induce synthesis of TGF-beta 1 by these cells. Western blot and immunocytochemistry assays revealed wild distribution of TGF receptor in all subpopulations of astrocytes and expression of TGF-beta 1 in neurons derived from all regions, thus indicating that the unresponsiveness of the cerebellar and midbrain GFAP gene to TGF-beta 1 is not due to a defect in TGF-beta 1 signalling. Together, our data highlight the great complexity of neuron-glia interactions and might suggest a distinct mechanism underlying modulation of the GFAP gene in the heterogeneous population of astrocytes throughout the central nervous system.

  19. Expression of GFAP immunoreactivity during development of long fiber tracts in the rat CNS.

    PubMed

    Valentino, K L; Jones, E G; Kane, S A

    1983-09-01

    Astrocyte maturation in the developing corpus callosum and dorsal columns of the spinal cord was studied immunocytochemically in the rat, using antiserum to glial fibrillary acidic protein (GFAP) with a view to determining the relationships of astrocytes to the advancing axons of the corpus callosum and corticospinal tract. Between the eighteenth and nineteenth days of gestation, when the corpus callosum commences forming, most of the GFAP staining in the cerebral hemispheres is contained in radial processes, but some staining of glial cell bodies is also seen in the ventricular zone. At the region of interhemispheric fusion, where the corpus callosum will form, an accumulation of astrocytic processes demonstrable electron microscopically shows light immunocytochemical staining for GFAP. These processes do not adopt a stereotyped orientation. Rather, the overall impression as one moves towards the midline, is of radially disposed processes being disrupted and disoriented by the growing callosal axons at the fusion of the hemispheres. At no time can any orderly arrangement of GFAP-containing processes be seen which might indicate that the processes are serving to guide the growing axons across the midline. There is no immunoreactive staining of cell bodies or processes ventral to the corpus callosum, except in postnatal animals. Prior to the arrival of corticospinal axons in the spinal cord on the first postnatal day (PO)21, GFAP immunoreactivity is greatest in radial processes of the lateral funiculi and in the dorsal median septum. Oblique or vertical processes increase in the cuneate fasciculus from P0 tot P4 but do not appear in the gracile fasciculus until P4. Virtually no stained processes appear in the region to be traversed by the principal corticospinal tract, nor later in the tract itself until late in postnatal development. Only by 3 weeks postnatal is the adult pattern of GFAP staining observed in the corticospinal tract. These results also indicate that

  20. Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS.

    PubMed

    Coleman, Elaine; Judd, Robert; Hoe, Lori; Dennis, John; Posner, Philip

    2004-11-01

    Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. The cellular mechanisms responsible for the increased risk of these disorders are incompletely understood. Astrocytes are proving critical for normal CNS function, and alterations in their activity could contribute to diabetes-related disturbances in the brain. We examined the effects of streptozotocin (STZ)-induced diabetes in rats on the level of the astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP), number of astrocytes, and levels of the astrocyte glutamate transporters, glutamate transporter-1 (GLT-1) and glutamate/aspartate transporter (GLAST), in the cerebral cortex, hippocampus, and cerebellum by Western blotting (WB) and immunohistochemistry (IH). Studies were carried out at 4 and 8 weeks of diabetes duration. Diabetes resulted in a significant decrease in GFAP protein levels (WB) in the hippocampus and cerebellum at 4 weeks and in the cerebral cortex, hippocampus and cerebellum by 8 weeks. Attenuated GFAP immunoreactivity (IH) was evident in the hippocampus, cerebellum and white matter regions such as the corpus callosum and external capsule at both 4 and 8 weeks of diabetes. Astrocyte cell counts of adjacent sections immunoreactive for S-100B were not different between control and diabetic animals. No significant differences were noted in astrocyte glutamate transporter levels in the cerebral cortex, hippocampus, or cerebellum at either time period (WB, IH). With the expanding list of astrocyte functions in the CNS, the role of astrocytes in diabetes-induced CNS disorders clearly warrants further investigation.

  1. Amino acids and proteins.

    PubMed

    van Goudoever, Johannes B; Vlaardingerbroek, Hester; van den Akker, Chris H; de Groof, Femke; van der Schoor, Sophie R D

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional requirements are not met, resulting in a postnatal growth restriction. However, current knowledge on adequate levels of both amino acid as well as protein intake can avoid under nutrition in the direct postnatal phase, avoid the need for subsequent catch-up growth and improve later outcome.

  2. The role of S100B protein, neuron-specific enolase, and glial fibrillary acidic protein in the evaluation of hypoxic brain injury in acute carbon monoxide poisoning.

    PubMed

    Akdemir, H U; Yardan, T; Kati, C; Duran, L; Alacam, H; Yavuz, Y; Okuyucu, A

    2014-11-01

    The main purpose of this study was to assess the role of S100B protein, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP) in the evaluation of hypoxic brain injury in acute carbon monoxide (CO)-poisoned patients. This cross-sectional study was conducted among the patients with acute CO poisoning who referred to the emergency department in a 1-year period. Serum levels of S100B protein, NSE, and GFAP were determined on admission. A total of 55 CO-poisoned patients (mean age ± standard deviation, 45 ± 20.3 years; 60% women) were included in the study. The control group consisted of 25 healthy adults. The patients were divided into two groups according to whether they were conscious or unconscious. The serum levels of S100B, NSE, and GFAP were higher in patients than that in the control group. There was no significant difference between unconscious and conscious patients with respect to these markers. There was a statistically significant difference between the conscious and unconscious patients and the control group in terms of S100B and NSE levels. There was also a statistically significant difference between the unconscious patients and the control group in terms of GFAP levels. Increased serum S100B, NSE, and GFAP levels are associated with acute CO poisoning. These biomarkers can be useful in assessing the clinical status of patients with CO poisoning.

  3. Effects of endurance exercise on expressions of glial fibrillary acidic protein and myelin basic protein in developing rats with maternal infection-induced cerebral palsy.

    PubMed

    Kim, Kijeong; Shin, Mal-Soon; Cho, Han-Sam; Kim, Young-Pyo

    2014-02-01

    Periventricular leukomalacia (PVL) is a common white matter lesion affecting the neonatal brain. PVL is closely associated with cerebral palsy (CP) and characterized by increase in the number of astrocytes, which can be detected by positivity for glial fibrillary acidic protein (GFAP). Change in myelin basic protein (MBP) is an early sign of white matter abnormality. Maternal or placental infection can damage the neonatal brain. In the present study, we investigated the effects of treadmill walking exercise on GFAP and MBP expressions in rats with maternal lipopolysaccharide (LPS)-induced PVL. Immunohistochemistry was performed for the detection of GFAP and MBP. The present results showed that intracervical maternal LPS injection during pregnancy increased GFAP expression in the striatum and decreased MBP expression in the corpus callosum of rats. The results also showed that treadmill walking exercise suppressed GFAP expression and enhanced MBP expression in the brains of rats with maternal LPS-induced PVL. The present study revealed that treadmill walking exercise is effective for the suppressing astrogliosis and hypomyelination associated with PVL. Here in this study, we showed that treadmill walking exercise may be effective therapeutic strategy for alleviating the detrimental effects of CP.

  4. Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.

    PubMed

    Torres-Platas, S G; Nagy, C; Wakid, M; Turecki, G; Mechawar, N

    2016-04-01

    There is mounting evidence to suggest aberrant astrocytic function in depression and suicide. Independent studies have reported astrocytic abnormalities in certain brain regions, but it remains unclear whether this is a brain-wide phenomenon. The present study examined this question by measuring glial fibrillary acidic protein (GFAP) expression in postmortem brain samples from suicide completers and matched non-psychiatric controls. Suicide completers were selected based on their recent characterization as low GFAP expressors in the prefrontal cortex, (Brodmann areas 8/9 and 10). Real-time PCR and immunoblotting were used to measure GFAP gene expression and protein levels in BA4 (primary motor cortex), BA17 (primary visual cortex), cerebellar cortex, mediodorsal thalamus and caudate nucleus. We found downregulation of GFAP mRNA and protein in the mediodorsal thalamus and caudate nucleus of depressed suicides compared with controls, whereas GFAP expression in other brain regions was similar between groups. Furthermore, a regional comparison including all samples revealed that GFAP expression in both subcortical regions was, on average, between 11- and 15-fold greater than in cerebellum and neocortex. Examining astrocyte morphology by immunohistochemistry showed that astrocytes in both thalamus and caudate displayed larger cell bodies and extended more ramified processes across larger domains than the previously described cortical astrocytes. This study reveals that astrocytic abnormalities are not brain wide and suggests that they are restricted to cortical and subcortical networks known to be affected in mood disorders. Additionally, our results show a greater diversity in human astrocytic phenotypes than previously thought.

  5. Scorpion Venom Heat-Resistant Peptide Attenuates Glial Fibrillary Acidic Protein Expression via c-Jun/AP-1.

    PubMed

    Cao, Zhen; Wu, Xue-Fei; Peng, Yan; Zhang, Rui; Li, Na; Yang, Jin-Yi; Zhang, Shu-Qin; Zhang, Wan-Qin; Zhao, Jie; Li, Shao

    2015-11-01

    Scorpion venom has been used in the Orient to treat central nervous system diseases for many years, and the protein/peptide toxins in Buthus martensii Karsch (BmK) venom are believed to be the effective components. Scorpion venom heat-resistant peptide (SVHRP) is an active component of the scorpion venom extracted from BmK. In a previous study, we found that SVHRP could inhibit the formation of a glial scar, which is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, in the epileptic hippocampus. However, the cellular and molecular mechanisms underlying this process remain to be clarified. The results of the present study indicate that endogenous GFAP expression in primary rat astrocytes was attenuated by SVHRP. We further demonstrate that the suppression of GFAP was primarily mediated by inhibiting both c-Jun expression and its binding with AP-1 DNA binding site and other factors at the GFAP promoter. These results support that SVHRP contributes to reducing GFAP at least in part by decreasing the activity of the transcription factor AP-1. In conclusion, the effects of SVHRP on astrocytes with respect to the c-Jun/AP-1 signaling pathway in vitro provide a practical basis for studying astrocyte activation and inhibition and a scientific basis for further studies of traditional medicine.

  6. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease.

    PubMed

    Petzold, Axel

    2015-03-10

    This review on the role of glial fibrillary acidic protein (GFAP) as a biomarker for astroglial pathology in neurological diseases provides background to protein synthesis, assembly, function and degeneration. Qualitative and quantitative analytical techniques for the investigation of human tissue and biological fluid samples are discussed including partial lack of parallelism and multiplexing capabilities. Pathological implications are reviewed in view of immunocytochemical, cell-culture and genetic findings. Particular emphasis is given to neurodegeneration related to autoimmune astrocytopathies and to genetic gain of function mutations. The current literature on body fluid levels of GFAP in human disease is summarised and illustrated by disease specific meta-analyses. In addition to the role of GFAP as a diagnostic biomarker for chronic disease, there are important data on the prognostic value for acute conditions. The published evidence permits to classify the dominant GFAP signatures in biological fluids. This classification may serve as a template for supporting diagnostic criteria of autoimmune astrocytopathies, monitoring disease progression in toxic gain of function mutations, clinical treatment trials (secondary outcome and toxicity biomarker) and provide prognostic information in neurocritical care if used within well defined time-frames.

  7. Nicotinamide treatment provides acute neuroprotection and GFAP regulation following fluid percussion injury.

    PubMed

    Holland, Michael A; Tan, Arlene A; Smith, Douglas C; Hoane, Michael R

    2008-02-01

    Previous studies in our laboratory have demonstrated the preclinical efficacy of nicotinamide (NAM; vitamin B3) treatment following fluid percussion injury (FPI). At a dose of 500 or 50 mg/kg, NAM significantly facilitated recovery of function on a variety of motor and sensorimotor tasks in rodents, and the 500 mg/kg dose improved cognitive performance. The purpose of the present study was to examine the acute neuroprotective ability of NAM following FPI. Rats were given a moderate FPI (1.8 atm) or sham injury. NAM (500 or 50 mg/kg) or saline was administered 15 min and 20 h after FPI. Rats were sacrificed at 24 h or 7 days following injury and prepared for histological analysis. Systematic volumetric measurements were conducted to examine cortical loss in a series of cresyl violet stained slices to examine the development of the injury cavity. To assess the extent of astrocytic activity and neurodegeneration, triple labeling with glial fibrillary acidic protein (GFAP), Fluoro-Jade B (FJ), and DAPI was performed. GFAP(+) astrocytes and FJ(+) neurons in the ipsilateral and contralateral cortex, and ipsilateral hippocampus and thalamus were assessed. While not significant at 24 h, NAM significantly attenuated cortical tissue loss at 7 days. At 24 h, the number of GFAP(+) astrocytes was significantly reduced by NAM. However, the inverse was observed at 7 days where NAM treatment significantly increased the number of GFAP(+) astrocytes. Both doses of NAM also significantly reduced FJ expression at the 24-h and 7-day time intervals. The results of this study suggest that NAM has strong neuroprotective abilities in the injured brain and may have therapeutic potential for brain injury.

  8. Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in the developing brains of neonatal mice.

    PubMed

    Fatemi, S H; Emamian, E S; Sidwell, R W; Kist, D A; Stary, J M; Earle, J A; Thuras, P

    2002-01-01

    Epidemiological reports describe a strong association between prenatal human influenza viral infection and later development of schizophrenia. Postmodern human brain studies, however, indicate a lack of gliosis in schizophrenic brains presumably secondary to absence of glial cells during the second trimester viral infection in utero. We hypothesized that human influenza infection in day 9 pregnant mice would alter the expression of glial fibrillary acidic protein (GFAP, an important marker of gliosis, neuron migration, and reactive injury) in developing brains of postnatal days 0, 14 and 35 mice. Determination of cellular GFAP immunoreactivity (IR) expressed as cell density in cortex and hippocampus of control and experimental brains showed increases in GFAP-positive density in exposed cortical (P = 0.03 day 14 vs control) and hippocampal cells (P = 0.035 day 14, P = 0.034 day 35). Similarly, ependymal cell layer GFAP-IR cell counts showed increases with increasing brain age from day 0, to days 14 and 35 in infected groups (P = 0.037, day 14) vs controls. The GFAP-positive cells in prenatally exposed brains showed 'hypertrophy' and more stellate morphology. These results implicate a significant role of prenatal human influenza viral infection on subsequent gliosis, which persists throughout brain development in mice from birth to adolescence.

  9. Glial fibrillary acidic protein-immunoreactive enteroglial cells in the jejunum of cattle.

    PubMed

    Costagliola, Anna

    2015-07-01

    Enteroglial cells (EGCs) play critical roles in human health and disease, however, EGC-dependent neuropathies also affect commercially important animal species. Due to the lack of data on the distribution and phenotypic characterization of the EGCs throughout the bovine gastrointestinal tract, in this study the topographic localization of EGCs in the jejunum of healthy cattle was investigated by immunofluorescence using the glial specific marker glial fibrillary acidic protein (GFAP) and the panneuronal marker PGP 9.5. This analysis was conducted on both cryosections and whole mount preparations including the myenteric and the submucous plexuses of the bovine jejunum. The results obtained showed the presence of a large subpopulation of GFAP-expressing EGCs in the main plexuses and within the muscle layers, whereas only few GFAP-positive glial processes were found within the deeper layer of the mucosa, and they never reached the mucosal epithelium. Three different EGC subtypes, namely I, III and IV types were recognized in the examined tract of the bovine intestine. Overall, our results provide the basis for future investigations aimed at elucidating the functional role of the GFAP-containing EGCs which is crucial for a better understanding of the physio-pathology of the bovine intestine.

  10. GFAP expression and social deficits in transgenic mice overexpressing human sAPPα

    PubMed Central

    Bailey, Antoinette R; Hou, Huayan; Song, Min; Obregon, Demian F; Portis, Samantha; Barger, Steven; Shytle, Doug; Stock, Saundra; Mori, Takashi; Sanberg, Paul G; Murphy, Tanya; Tan, Jun

    2013-01-01

    Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPPα), the product of α-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism-like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL-6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild-type mice treated with sAPPα, displayed suppressed β-tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment. PMID:23840007

  11. GFAP expression and social deficits in transgenic mice overexpressing human sAPPα.

    PubMed

    Bailey, Antoinette R; Hou, Huayan; Song, Min; Obregon, Demian F; Portis, Samantha; Barger, Steven; Shytle, Doug; Stock, Saundra; Mori, Takashi; Sanberg, Paul G; Murphy, Tanya; Tan, Jun

    2013-09-01

    Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPPα), the product of α-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism-like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL-6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild-type mice treated with sAPPα, displayed suppressed β-tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment. PMID:23840007

  12. Retroperitoneal schwannoma is characterized by a high incidence of cellular type and GFAP-immunoreactivity.

    PubMed

    Hirose, Takanori; Ishizawa, Keisuke; Sakaki, Mika; Fujii, Yoshiyuki

    2012-07-01

    To clarify the clinicopathologic characteristics of retroperitoneal schwannomas, which are sometimes confused with other spindle cell tumors, 27 cases were studied microscopically and immunohistochemically. The 27 cases consisted of 17 females and 10 males, the ages of whom ranged from 31-79 (mean 57.4) years. Gross examination revealed well-demarcated, encapsulated tumors, 3-15 cm (mean 8 cm) in diameter. Microscopic review divided them into 13 cases of cellular/fascicular, 3 of conventional, 6 of intermediate, and 5 of ancient type. Cellular/fascicular schwannomas were composed of cellular fascicles of spindle cells, in which nuclear palisading, Antoni B area and cyst were unclear, while numerous foamy cells were intermingled. Immunohistochemical investigation revealed diffuse, strong positivity for S-100 protein and Sox10 in all tumors studied. In addition, glial fibrillary acidic protein (GFAP) was extensively expressed in 92% of the cellular/fascicular type, while it was less prominent in others. The present study suggests that retroperitoneal schwannoma often occurs in the middle-aged woman, grows to a large size, exhibits cellular/fascicular microscopic features in half of the cases, and may arise from GFAP-positive Schwann cells. The presence of hyalinized vessels and dense infiltration of foamy macrophages as well as diffuse immunoreactivity for S-100 protein and Sox10 are helpful for the differential diagnosis.

  13. Role of Sigma Receptor in Cocaine-Mediated Induction of Glial Fibrillary Acidic Protein: Implications for HAND.

    PubMed

    Yang, Lu; Yao, Honghong; Chen, Xufeng; Cai, Yu; Callen, Shannon; Buch, Shilpa

    2016-03-01

    Cocaine abuse has been shown to accelerate the progression of human immunodeficiency virus (HIV)-1-associated neurological disorders (HANDs) partially through increasing neuroinflammatory response mediated by activated astrocytes; however, the detailed molecular mechanism of cocaine-mediated astrocyte activation is unclear. In the current study, we demonstrated increased astrogliosis in the cortical regions of brains from HIV(+) cocaine abusers compared with the HIV(+) group without cocaine abuse. We next sought to explore whether cocaine exposure could result in increased expression of glial fibrillary acidic protein (GFAP), a filament protein critical for astrocyte activation. Exposure of cocaine to astrocytes resulted in rapid translocation of sigma receptor to the plasma membrane with subsequent activation of downstream signaling pathways. Using a pharmacological approach, we provide evidence that cocaine-mediated upregulation of GFAP expression involved activation of mitogen-activated protein kinase (MAPK) signaling with subsequent downstream activation of the early growth response gene 1 (Egr-1). Egr-1 activation, in turn, caused transcriptional regulation of GFAP. Corroboration of these findings in vivo demonstrated increased expression of GFAP in the cortical region of mice treated with cocaine compared with the saline injected controls. A thorough understanding of how cocaine mediates astrogliosis could have implications for the development of therapeutic interventions aimed at HIV-infected cocaine abusers.

  14. GFAP-BDP as an Acute Diagnostic Marker in Traumatic Brain Injury: Results from the Prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study

    PubMed Central

    Yue, John K.; Puccio, Ava M.; Panczykowski, David M.; Inoue, Tomoo; McMahon, Paul J.; Sorani, Marco D.; Yuh, Esther L.; Lingsma, Hester F.; Maas, Andrew I.R.; Valadka, Alex B.; Manley, Geoffrey T.; Casey, Scott S.; Cheong, Maxwell; Cooper, Shelly R.; Dams-O'Connor, Kristen; Gordon, Wayne A.; Hricik, Allison J.; Hochberger, Kerri; Menon, David K.; Mukherjee, Pratik; Sinha, Tuhin K.; Schnyer, David M.; Vassar, Mary J.

    2013-01-01

    Abstract Reliable diagnosis of traumatic brain injury (TBI) is a major public health need. Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system, and breakdown products (GFAP-BDP) are released following parenchymal brain injury. Here, we evaluate the diagnostic accuracy of elevated levels of plasma GFAP-BDP in TBI. Participants were identified as part of the prospective Transforming Research And Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. Acute plasma samples (<24 h post-injury) were collected from patients presenting with brain injury who had CT imaging. The ability of GFAP-BDP level to discriminate patients with demonstrable traumatic lesions on CT, and with failure to return to pre-injury baseline at 6 months, was evaluated by the area under the receiver operating characteristic curve (AUC). Of the 215 patients included for analysis, 83% had mild, 4% had moderate, and 13% had severe TBI; 54% had acute traumatic lesions on CT. The ability of GFAP-BDP level to discriminate patients with traumatic lesions on CT as evaluated by AUC was 0.88 (95% confidence interval [CI], 0.84–0.93). The optimal cutoff of 0.68 ng/mL for plasma GFAP-BDP level was associated with a 21.61 odds ratio for traumatic findings on head CT. Discriminatory ability of unfavorable 6 month outcome was lower, AUC 0.65 (95% CI, 0.55–0.74), with a 2.07 odds ratio. GFAP-BDP levels reliably distinguish the presence and severity of CT scan findings in TBI patients. Although these findings confirm and extend prior studies, a larger prospective trial is still needed to validate the use of GFAP-BDP as a routine diagnostic biomarker for patient care and clinical research. The term “mild” continues to be a misnomer for this patient population, and underscores the need for evolving classification strategies for TBI targeted therapy. (ClinicalTrials.gov number NCT01565551; NIH Grant 1RC2 NS069409) PMID:23489259

  15. GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study.

    PubMed

    Okonkwo, David O; Yue, John K; Puccio, Ava M; Panczykowski, David M; Inoue, Tomoo; McMahon, Paul J; Sorani, Marco D; Yuh, Esther L; Lingsma, Hester F; Maas, Andrew I R; Valadka, Alex B; Manley, Geoffrey T

    2013-09-01

    Reliable diagnosis of traumatic brain injury (TBI) is a major public health need. Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system, and breakdown products (GFAP-BDP) are released following parenchymal brain injury. Here, we evaluate the diagnostic accuracy of elevated levels of plasma GFAP-BDP in TBI. Participants were identified as part of the prospective Transforming Research And Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. Acute plasma samples (<24 h post-injury) were collected from patients presenting with brain injury who had CT imaging. The ability of GFAP-BDP level to discriminate patients with demonstrable traumatic lesions on CT, and with failure to return to pre-injury baseline at 6 months, was evaluated by the area under the receiver operating characteristic curve (AUC). Of the 215 patients included for analysis, 83% had mild, 4% had moderate, and 13% had severe TBI; 54% had acute traumatic lesions on CT. The ability of GFAP-BDP level to discriminate patients with traumatic lesions on CT as evaluated by AUC was 0.88 (95% confidence interval [CI], 0.84-0.93). The optimal cutoff of 0.68 ng/mL for plasma GFAP-BDP level was associated with a 21.61 odds ratio for traumatic findings on head CT. Discriminatory ability of unfavorable 6 month outcome was lower, AUC 0.65 (95% CI, 0.55-0.74), with a 2.07 odds ratio. GFAP-BDP levels reliably distinguish the presence and severity of CT scan findings in TBI patients. Although these findings confirm and extend prior studies, a larger prospective trial is still needed to validate the use of GFAP-BDP as a routine diagnostic biomarker for patient care and clinical research. The term "mild" continues to be a misnomer for this patient population, and underscores the need for evolving classification strategies for TBI targeted therapy. (ClinicalTrials.gov number NCT01565551; NIH Grant 1RC2 NS069409).

  16. Aquaporin 4-dependent expression of glial fibrillary acidic protein and tenascin-C in activated astrocytes in stab wound mouse brain and in primary culture.

    PubMed

    Ikeshima-Kataoka, Hiroko; Abe, Yoichiro; Yasui, Masato

    2015-01-01

    We previously reported that aquaporin 4 (AQP4) has a neuroimmunological function via astrocytes and microglial cells involving osteopontin. AQP4 is a water channel localized in the endofoot of astrocytes in the brain, and its expression is upregulated after a stab wound to the mouse brain or the injection of methylmercury in common marmosets. In this study, the correlation between the expression of AQP4 and the expression of glial fibrillary acidic protein (GFAP) or tenascin-C (TN-C) in reactive astrocytes was examined in primary cultures and brain tissues of AQP4-deficient mice (AQP4/KO). In the absence of a stab wound to the brain or of any stimulation of the cells, the expressions of both GFAP and TN-C were lower in astrocytes from AQP4/KO mice than in those from wild-type (WT) mice. High levels of GFAP and TN-C expression were observed in activated astrocytes after a stab wound to the brain in WT mice; however, the expressions of GFAP and TN-C were insignificant in AQP4/KO mice. Furthermore, lipopolysaccharide (LPS) stimulation activated primary culture of astrocytes and upregulated GFAP and TN-C expression in cells from WT mice, whereas the expressions of GFAP and TN-C were slightly upregulated in cells from AQP4/KO mice. Moreover, the stimulation of primary culture of astrocytes with LPS also upregulated inflammatory cytokines in cells from WT mice, whereas modest increases were observed in cells from AQP4/KO mice. These results suggest that AQP4 expression accelerates GFAP and TN-C expression in activated astrocytes induced by a stab wound in the mouse brain and LPS-stimulated primary culture of astrocytes.

  17. Differential response of GFAP-positive astrocytes in the rat prefrontal cortex following ethanol self-administration

    PubMed Central

    Bull, Cecilia; Syed, Wahab A.; Minter, Sabrina C.; Bowers, M. Scott

    2015-01-01

    Background Prefrontal cortex (PFC) dysfunction is believed to contribute to the transition from controlled substance use to abuse. Because astrocytes have been suggested to play a key role in the development and maintenance of drug-seeking behaviors, we sought to determine if PFC astrocytes are affected by ethanol self-administration. Methods Ethanol consumption was modeled in rats by three self-administration paradigms where ethanol was made concurrently available with water in the home cage either continuously (CEA) or intermittently (IEA). In the third paradigm, ethanol was only available in the operant chamber (OEA). To avoid the potential confound of acute ethanol effects, all rats were sacrificed either 24 h or 3 wks abstinence. In all groups, the effect of ethanol consumption on PFC astrocytes was measured using unbiased stereological counting of cells expressing the astrocyte marker glial fibrillary acidic protein (GFAP). GFAP immunoreactivity commonly changes in response to pharmacological insult or injury. Results GFAP-positive astrocyte number increased in the prelimbic and anterior cingulate cortex regions of the PFC after IEA. No change was found in the infralimbic or orbitofrontal cortex after IEA. After 3 weeks abstinence, there was a reduction of astrocytes in the prelimbic and orbitofrontal cortex of the CEA cohort as well as a reduction in the orbitofrontal cortex of the OEA cohort. Conclusion These findings demonstrate that discrete PFC subregions contain GFAP-positive astrocyte populations that respond differentially to distinct ethanol consumption paradigms. A better understanding of how specific astrocyte populations uniquely adapt to ethanol consumption could provide insight for targeted therapeutic interventions. PMID:25833026

  18. The cannabinoid CB2 receptor agonist AM1241 enhances neurogenesis in GFAP/Gp120 transgenic mice displaying deficits in neurogenesis

    PubMed Central

    Avraham, Hava Karsenty; Jiang, Shuxian; Fu, Yigong; Rockenstein, Edward; Makriyannis, Alexandros; Zvonok, Alexander; Masliah, Eliezer; Avraham, Shalom

    2014-01-01

    Background and Purpose: HIV-1 glycoprotein Gp120 induces apoptosis in rodent and human neurons in vitro and in vivo. HIV-1/Gp120 is involved in the pathogenesis of HIV-associated dementia (HAD) and inhibits proliferation of adult neural progenitor cells (NPCs) in glial fibrillary acidic protein (GFAP)/Gp120 transgenic (Tg) mice. As cannabinoids exert neuroprotective effects in several model systems, we examined the protective effects of the CB2 receptor agonist AM1241 on Gp120-mediated insults on neurogenesis. Experimental Approach: We assessed the effects of AM1241 on survival and apoptosis in cultures of human and murine NPCs with immunohistochemical and TUNEL techniques. Neurogenesis in the hippocampus of GFAP/Gp120 transgenic mice in vivo was also assessed by immunohistochemistry. Key Results: AM1241 inhibited in vitro Gp120-mediated neurotoxicity and apoptosis of primary human and murine NPCs and increased their survival. AM1241 also promoted differentiation of NPCs to neuronal cells. While GFAP/Gp120 Tg mice exhibited impaired neurogenesis, as indicated by reduction in BrdU+ cells and doublecortin+ (DCX+) cells, and a decrease in cells with proliferating cell nuclear antigen (PCNA), administration of AM1241 to GFAP/Gp120 Tg mice resulted in enhanced in vivo neurogenesis in the hippocampus as indicated by increase in neuroblasts, neuronal cells, BrdU+ cells and PCNA+ cells. Astrogliosis and gliogenesis were decreased in GFAP/Gp120 Tg mice treated with AM1241, compared with those treated with vehicle. Conclusions and Implications: The CB2 receptor agonist rescued impaired neurogenesis caused by HIV-1/Gp120 insult. Thus, CB2 receptor agonists may act as neuroprotective agents, restoring impaired neurogenesis in patients with HAD. PMID:24148086

  19. Effect of stress and peripheral immune activation on astrocyte activation in transgenic bioluminescent Gfap-luc mice.

    PubMed

    Biesmans, Steven; Acton, Paul D; Cotto, Carlos; Langlois, Xavier; Ver Donck, Luc; Bouwknecht, Jan A; Aelvoet, Sarah-Ann; Hellings, Niels; Meert, Theo F; Nuydens, Rony

    2015-07-01

    Neuroinflammation and the accompanying activation of glial cells is an important feature of many neurodegenerative conditions. It is known that factors such as peripheral infections and stress can influence immune processes in the brain. However, the effect of these stressors on astrocyte activation in vivo remains elusive. In this study, transgenic Gfap-luc mice expressing the luciferase gene under the transcriptional control of the glial fibrillary acidic protein promoter were used to quantify the kinetics of in vivo astrocyte activation following immune challenges relevant to clinical inflammation. It was found that astrocytes respond rapidly to peripheral immune activation elicited by either bacterial lipopolysaccharide (LPS) or the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)). By measuring bioluminescence and 18-kDa translocator protein radioligand binding in the same animal it was observed that LPS induces both astrocyte as well as microglial activation at 6 h post-administration. Furthermore, the astrocyte response decreased upon repeated systemic LPS injections, indicating development of tolerance to the LPS challenge. Finally, restraining Gfap-luc mice for 1 h daily on 5 consecutive days did not affect brain bioluminescence, thereby indicating that sub-chronic stress does not influence astrocyte activation under unchallenged conditions. However, stressed animals showed a reduced response to a subsequent systemic LPS injection, suggesting that the immune system is compromised in these animals. Here, we demonstrate that Gfap-luc mice can be used to study astrocyte activation in response to stimuli relevant for clinical inflammation and that this approach may provide a more complete characterization of existing and novel models of neuroinflammation

  20. Effects of hypothermia on S100B and glial fibrillary acidic protein in asphyxia rats after cardiopulmonary resuscitation.

    PubMed

    Liu, Sha; Zhang, Yibing; Zhao, Yong; Cui, Haifeng; Cao, Chunyu; Guo, Jianyou

    2015-01-01

    The aim of the study was to investigate the effects of hypothermia on S100B and glial fibrillary acidic protein (GFAP) in serum and hippocampus CA1 area in asphyxiated rats after cardiopulmonary resuscitation (CPR). A total of 100 SD rats were designated into four groups: group A, sham operation group; group B, rats received conventional resuscitation; group C, rats received conventional resuscitation and hypothermia at cardiac arrest; group D, rats received conventional resuscitation and hypothermia at 30 min after restoration of spontaneous circulation (ROSC). Rats were then killed by cardiac arrest at 2 and 4 h after ROSC; brain tissue was taken to observe dynamic changes of S100B and GFAP in serum and hippocampus CA1 area. Following ROSC, S100B levels increased from 2 to 4 h in group B, C, and D. In addition, S100B in serum and hippocampus CA1 area was all significantly increased at different time points compared with group A (P < 0.05). Following ROSC, serum S100B level at 2 h in group C was significantly decreased compared with group B, but the difference was not statistically significant (P > 0.05). Moreover, S100B in serum at 4 h after ROSC was significantly decreased (P < 0.05), S100B in cortex was significantly decreased (P < 0.05). The expression of GFAP was also examined. GFAP level in hippocampus CA1 area was significantly decreased in group B, C, and D at 4 h after ROSC compared with group A (P < 0.05). S100B and GFAP were expressed in rat serum and hippocampus CA2 area at early stage after ROSC, which can be used as sensitive markers for brain injury diagnosis and prognosis prediction. Hypothermia is also shown to reduce brain injury after CPR.

  1. Plasmatic retinol-binding protein 4 and glial fibrillary acidic protein as biomarkers to differentiate ischemic stroke and intracerebral hemorrhage.

    PubMed

    Llombart, Víctor; García-Berrocoso, Teresa; Bustamante, Alejandro; Giralt, Dolors; Rodriguez-Luna, David; Muchada, Marian; Penalba, Anna; Boada, Cristina; Hernández-Guillamon, Mar; Montaner, Joan

    2016-01-01

    A rapid differentiation of acute ischemic stroke and intracerebral hemorrhage (ICH) is essential for an adequate treatment and to promote a better outcome. Our aim was to identify new plasma biomarkers to differentiate stroke subtypes and to combine their diagnostic ability with other biomarkers already described for this clinical indication. Plasma samples of ischemic stroke patients (36) and ICH patients (10) were screened using a 177 antibodies library, and 11 showed different concentrations among stroke subtypes (p < 0.05), mainly chemokines, growth factors and angiogenic factors. Five proteins were selected for replication in 16 ischemic stroke patients and 16 ICH patients, and retinol-binding protein 4 (RPB4), apolipoprotein B100 and pigment epithelial-derived factor were replicated (p < 0.05). These proteins, together with glial fibrillary acidic protein (GFAP) and receptor for advanced glycation end product, were tested in 38 ischemic stroke and 28 ICH samples. Finally, RBP4 >61 μg/mL and GFAP <0.07 ng/mL showed a specificity of 100% for both subtypes. Moreover, after multivariate logistic regression analysis, RBP4 >48.75 μg/mL (ORadj : 6.09 (1.3-28.57), p = 0.02) and GFAP <0.07 ng/mL (ORadj : 0.03 (0.003-0.31), p = 0.003) resulted in independent predictors of stroke subtype, improving discrimination by 29% (p < 0.0001). Both biomarkers might be useful as diagnostic biomarkers to differentiate ischemic stroke and ICH. A rapid differentiation of ischemic stroke from intracerebral hemorrhage is essential to provide the appropriate treatment. We describe the discovery and subsequent replications of RBP4 and its combination with circulating GFAP as plasmatic biomarkers for hyperacute stroke subtype differentiation. The combination of these biomarkers and others might aid to speed up the discrimination of both stroke subtypes improving the outcome of patients.

  2. S100B and Glial Fibrillary Acidic Protein as Indexes to Monitor Damage Severity in an In Vitro Model of Traumatic Brain Injury.

    PubMed

    Di Pietro, Valentina; Amorini, Angela Maria; Lazzarino, Giacomo; Yakoub, Kamal Makram; D'Urso, Serafina; Lazzarino, Giuseppe; Belli, Antonio

    2015-05-01

    Traumatic brain injury (TBI) is a leading and rising cause of death and disability worldwide. There is great interest in S100B and Glial Fibrillary Acid Protein (GFAP) as candidate biomarkers of TBI for diagnosis, triage, prognostication and drug development. However, conflicting results especially on S100B hamper their routine application in clinical practice. To try to address this question, we mimicked TBI damage utilizing a well-validated, simplified in vitro model of graded stretch injury induced in rat organotypic hippocampal slice cultures (OHSC). Different severities of trauma, from mild to severe, have been tested by using an equi-biaxial stretch of the OHSCs at a specified Lagrangian strain of 0 (controls), 5, 10, 20 and 50 %. OHSC were analysed at 3, 6, 18, 24, 48 and 96 h post-injury. Cell death, gene expressions and release into the culture medium of S100B and GFAP were determined at each time point. Gene expression and release of S100B slightly increased only in 20 and 50 % stretched OHSC. GFAP over-expression occurred in 10, 20 and 50 % and was inversely correlated with time post-injury. GFAP release significantly increased with time at any level of injury (p < 0.01 with respect to controls). Consequently, the total amount of GFAP released showed a strong linear relationship with the severity of injury (R(2) = 0.7662; p < 0.001). Under these experimental conditions, S100B seems to be useful in diagnosing only moderate to severe TBI-like injuries. Differently, GFAP demonstrates adequate biomarker requisites since its cellular release is affected by all grades of injury severity.

  3. LPS induces mediators of neuroinflammation, cell proliferation, and GFAP expression in human astrocytoma cells U373MG: the anti-inflammatory and anti-proliferative effect of guggulipid.

    PubMed

    Niranjan, Rituraj; Nagarajan, Rajasekar; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2014-03-01

    Neuroinflammation has been considered to be an integrated part of human neurodegenerative diseases. In this study, we examined the effect of guggulipid on cell proliferation, nitrite release, interleukin IL-6 and IL-1 beta release, and expression of COX-2 and glial fibrillary acidic protein (GFAP) in LPS-stimulated U373MG cells. LPS significantly stimulated human astrocytoma cells U373MG by up-regulating these neuroinflammatory mediators. Guggulipid alone had no effect on the cell proliferation of U373MG cells. The up regulation in nitrite release, cell proliferation, and release of IL-6 and IL-1 beta in LPS stimulated human astrocytoma cells were dose-dependently inhibited by co-treatment with guggulipid. The expression level of COX-2 and GFAP proteins was up regulated by LPS but the increased level of COX-2 and GFAP was significantly down regulated by treatment with guggulipid. These data indicate that guggulipid has a modulatory effect on all these parameters, which might explain its beneficial effect in the treatment of neuroinflammation-associated disorders directly relating to human aspects.

  4. Lentiviral-mediated silencing of glial fibrillary acidic protein and vimentin promotes anatomical plasticity and functional recovery after spinal cord injury.

    PubMed

    Desclaux, Mathieu; Perrin, Florence E; Do-Thi, Anh; Prieto-Cappellini, Monica; Gimenez Y Ribotta, Minerva; Mallet, Jacques; Privat, Alain

    2015-01-01

    In spinal cord injury (SCI), absence of functional recovery and lack of spontaneous axonal regeneration are attributed, among other factors, to the formation of a glial scar that forms both physical and chemical barriers. The glial scar is composed mainly of reactive astrocytes that overexpress two intermediate filament proteins, glial fibrillary acidic protein (GFAP) and vimentin (VIM). To promote regeneration and sprouting of spared axons after spinal cord trauma and with the objective of translation to clinics, we designed an original in vivo gene transfer strategy to reduce glial scar formation after SCI, based on the RNA interference (RNAi)-mediated inhibition of GFAP and VIM. We first show that direct injection of lentiviral vectors expressing short hairpin RNA (shRNA) against GFAP and VIM in a mouse model of SCI allows efficient and specific targeting of astrocytes. We then demonstrate that the lentiviral-mediated and stable expression of shGFAP and shVIM leads to a strong reduction of astrogliosis, improves functional motor recovery, and promotes axonal regrowth and sprouting of spared axons. This study thus examplifies how the nonneuronal environment might be a major target within the lesioned central nervous system to promote axonal regeneration (and sprouting) and validates the use of lentiviral-mediated RNAi in SCI.

  5. The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis.

    PubMed

    Daugherty, Daniel J; Chechneva, Olga; Mayrhofer, Florian; Deng, Wenbin

    2016-03-01

    The mitochondrial translocator protein (TSPO) has been implicated in CNS diseases. Here, we sought to determine the specific role of TSPO in experimental autoimmune encephalomyelitis (EAE), the most studied animal model of multiple sclerosis (MS). To fundamentally elucidate the functions of TSPO, we first developed a viable TSPO knockout mouse. A conditional TSPO knockout mouse was generated by utilizing the Cre-Lox system. We generated a TSPO floxed mouse, and then crossed this mouse with a Cre recombinase expressing mouse driven by the human glial fibrillary acidic protein (hGFAP) promoter. The resultant mouse was a neural linage line specific TSPO knockout. The loss of TSPO in the CNS did not result in overt developmental defects or phenotypes. The TSPO-/- mouse showed a decrease in GFAP expression, correlating with a decrease in astrogliosis in response to neural injury during EAE. This decrease in astrogliosis was also witnessed in the lessening of severity of EAE clinical scoring, indicating an in vivo functional role for TSPO in suppressing EAE. The TSPO-/- mouse could be a useful tool in better understanding the role of TSPO in CNS disease, and our results implicate TSPO as a potential therapeutic target in MS.

  6. The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis

    PubMed Central

    Daugherty, Daniel J.; Chechneva, Olga; Mayrhofer, Florian; Deng, Wenbin

    2016-01-01

    The mitochondrial translocator protein (TSPO) has been implicated in CNS diseases. Here, we sought to determine the specific role of TSPO in experimental autoimmune encephalomyelitis (EAE), the most studied animal model of multiple sclerosis (MS). To fundamentally elucidate the functions of TSPO, we first developed a viable TSPO knockout mouse. A conditional TSPO knockout mouse was generated by utilizing the Cre-Lox system. We generated a TSPO floxed mouse, and then crossed this mouse with a Cre recombinase expressing mouse driven by the human glial fibrillary acidic protein (hGFAP) promoter. The resultant mouse was a neural linage line specific TSPO knockout. The loss of TSPO in the CNS did not result in overt developmental defects or phenotypes. The TSPO−/− mouse showed a decrease in GFAP expression, correlating with a decrease in astrogliosis in response to neural injury during EAE. This decrease in astrogliosis was also witnessed in the lessening of severity of EAE clinical scoring, indicating an in vivo functional role for TSPO in suppressing EAE. The TSPO−/− mouse could be a useful tool in better understanding the role of TSPO in CNS disease, and our results implicate TSPO as a potential therapeutic target in MS. PMID:26925573

  7. Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products

    PubMed Central

    Mondello, Stefania; Newsom, Kimberly J.; Yang, Zhihui; Yang, Boxuan; Kobeissy, Firas; Guingab, Joy; Glushakova, Olena; Robicsek, Steven; Heaton, Shelley; Buki, Andras; Hannay, Julia; Gold, Mark S.; Rubenstein, Richard; Lu, Xi-chun May; Dave, Jitendra R.; Schmid, Kara; Tortella, Frank; Robertson, Claudia S.; Wang, Kevin K. W.

    2014-01-01

    The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38–50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0–1 days) to late (7–10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients. PMID:24667434

  8. Exercise, but not antioxidants, reversed ApoE4-associated motor impairments in adult GFAP-ApoE mice.

    PubMed

    Chaudhari, Kiran; Wong, Jessica M; Vann, Philip H; Sumien, Nathalie

    2016-05-15

    Motor dysfunction has been found to be predictive of cognitive dysfunction in Alzheimer's disease and to occur earlier than cognitive impairments. While apolipoprotein (Apo) E4 has been associated with cognitive impairments, it remains unclear whether it also increases risk for motor dysfunction. Exercise and antioxidants are often recommended to reduce cognitive declines, however it is unclear whether they can successfully improve motor impairments. This study was designed to determine the extent of the impact of apolipoprotein genotype on motor function, and whether interventions such as exercise and antioxidant intake can improve motor function. This study is the first to identify the nature of the interaction between antioxidant intake and exercise using a mouse model expressing either the human ApoE3 or ApoE4 isoforms under glial fibrillary acid protein promoter (GFAP-ApoE3 and GFAP-ApoE4 mice). The mice were fed either a control diet or the control diet supplemented with vitamins E and C (1.12 IU/g diet α-tocopheryl acetate and 1.65mg/g ascorbic acid). Each genotype/diet group was further divided into a sedentary group or a group that followed a 6 days a week exercise regimen. After 8 weeks on their respective treatment, the mice were administered a battery of motor tests to measure reflexes, strength, coordination and balance. GFAP-ApoE4 mice exhibited impaired motor learning and diminished strength compared to the GFAP-ApoE3 mice. Exercise alone was more efficient at improving motor function and reversing ApoE4-associated impairments than antioxidants alone, even though improvements were rather subtle. Contrarily to expected outcomes, combination of antioxidants and exercise did not yield further improvements of motor function. Interestingly, antioxidants antagonized the beneficial effects of exercise on strength. These data suggest that environmental and genetic factors influence the outcome of interventions on motor function and should be investigated

  9. Age-related impairments in neuronal plasticity markers and astrocytic GFAP and their reversal by late-onset short term dietary restriction.

    PubMed

    Kaur, Manpreet; Sharma, Sandeep; Kaur, Gurcharan

    2008-12-01

    Recent studies on the effects of dietary restriction (DR) in rodents and primates have shown that even late-onset short-term regimens can bring about comparable beneficial changes seen in animals subjected to life-long DR. We studied the effect of aging on the expression of neural cell adhesion molecule (NCAM), its polysialylated form PSA-NCAM and astrocytic marker glial fibrillary acidic protein (GFAP) by immunohistofluorescent staining and immunoblotting in 1, 3, 6, 18 and 24 months old male wistar rats. Maximum expression of NCAM and PSA-NCAM was observed in sub-granular zone (SGZ) or granular cell layer (GCL) of hippocampus, arcuate region and paraventricular area of hypothalamus and piriform cortex layer II from 1 and 3 months old rats, thereafter, gradual downregulation was observed in 6, 18 and 24 months old rats. Progressive increase in astrocytic GFAP expression was noticed in these regions of brain with age. We further addressed whether DR initiated in late adulthood in 24 months old rats confers beneficial effects and can reverse changes in expression of NCAM, PSA-NCAM and GFAP. These results suggest that even late-onset short term DR regimen in old rats can have beneficial effects on neuroplasticity.

  10. Profiling of dynamically changed gene expression in dorsal root ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acidic protein in maintenance of pain behaviors [corrected].

    PubMed

    Kim, Doo-Sik; Figueroa, Katherine W; Li, Kang-Wu; Boroujerdi, Amin; Yolo, Tim; Luo, Z David

    2009-05-01

    To explore cellular changes in sensory neurons after nerve injury and to identify potential target genes contributing to different stages of neuropathic pain development, we used Affymetrix oligo arrays to profile gene expression patterns in L5/6 dorsal root ganglia (DRG) from the neuropathic pain model of left L5/6 spinal nerve ligation at different stages of neuropathic pain development. Our data indicated that nerve injury induced changes in expression of genes with similar biological functions in a temporal specific manner that correlates with particular stages of neuropathic pain development, indicating dynamic neuroplasticity in the DRG in response to peripheral nerve injury and during neuropathic pain development. Data from post-array validation indicated that there was a temporal correlation between injury-induced expression of the glial fibrillary acidic protein (GFAP), a marker for activated astrocytes, and neuropathic pain development. Spinal nerve ligation injury in GFAP knockout mice resulted in neuropathic pain states with similar onset, but a shortened duration compared with that in age, and gender-matched wild-type littermates. Intrathecal GFAP antisense oligonucleotide treatment in injured rats with neuropathic pain states reversed injury-induced behavioral hypersensitivity and GFAP upregulation in DRG and spinal cord. Together, these findings indicate that injury-induced GFAP upregulation not only serves as a marker for astrocyte activation, but it may also play a critical, but yet identified, role in the maintenance of neuropathic pain states. PMID:19307059

  11. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury.

    PubMed

    Mondello, Stefania; Kobeissy, Firas; Vestri, Annarita; Hayes, Ronald L; Kochanek, Patrick M; Berger, Rachel P

    2016-06-20

    Objective reliable markers to assess traumatic brain injury (TBI) and predict outcome soon after injury are a highly needed tool for optimizing management of pediatric TBI. We assessed serum concentrations of Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in a cohort of 45 children with clinical diagnosis of TBI (Glasgow Coma Scale [GCS] 3-15) and 40 healthy subjects, evaluated their associations with clinical characteristics and outcomes, and compared their performance to previously published data on two well-studied blood biomarkers, S100B and MBP. We observed higher serum levels of GFAP and UCH-L1 in brain-injured children compared with controls and also demonstrated a step-wise increase of biomarker concentrations over the continuum of severity from mild to severe TBI. Furthermore, while we found that only the neuronal biomarker UCH-L1 holds potential to detect acute intracranial lesions as assessed by computed tomography (CT), both markers were substantially increased in TBI patients even with a normal CT suggesting the presence of undetected microstructural injuries. Serum UCH-L1 and GFAP concentrations also strongly predicted poor outcome and performed better than S100B and MBP. Our results point to a role of GFAP and UCH-L1 as candidate biomarkers for pediatric TBI. Further studies are warranted.

  12. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury.

    PubMed

    Mondello, Stefania; Kobeissy, Firas; Vestri, Annarita; Hayes, Ronald L; Kochanek, Patrick M; Berger, Rachel P

    2016-01-01

    Objective reliable markers to assess traumatic brain injury (TBI) and predict outcome soon after injury are a highly needed tool for optimizing management of pediatric TBI. We assessed serum concentrations of Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in a cohort of 45 children with clinical diagnosis of TBI (Glasgow Coma Scale [GCS] 3-15) and 40 healthy subjects, evaluated their associations with clinical characteristics and outcomes, and compared their performance to previously published data on two well-studied blood biomarkers, S100B and MBP. We observed higher serum levels of GFAP and UCH-L1 in brain-injured children compared with controls and also demonstrated a step-wise increase of biomarker concentrations over the continuum of severity from mild to severe TBI. Furthermore, while we found that only the neuronal biomarker UCH-L1 holds potential to detect acute intracranial lesions as assessed by computed tomography (CT), both markers were substantially increased in TBI patients even with a normal CT suggesting the presence of undetected microstructural injuries. Serum UCH-L1 and GFAP concentrations also strongly predicted poor outcome and performed better than S100B and MBP. Our results point to a role of GFAP and UCH-L1 as candidate biomarkers for pediatric TBI. Further studies are warranted. PMID:27319802

  13. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury

    PubMed Central

    Mondello, Stefania; Kobeissy, Firas; Vestri, Annarita; Hayes, Ronald L.; Kochanek, Patrick M.; Berger, Rachel P.

    2016-01-01

    Objective reliable markers to assess traumatic brain injury (TBI) and predict outcome soon after injury are a highly needed tool for optimizing management of pediatric TBI. We assessed serum concentrations of Glial Fibrillary Acidic Protein (GFAP) and Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in a cohort of 45 children with clinical diagnosis of TBI (Glasgow Coma Scale [GCS] 3–15) and 40 healthy subjects, evaluated their associations with clinical characteristics and outcomes, and compared their performance to previously published data on two well-studied blood biomarkers, S100B and MBP. We observed higher serum levels of GFAP and UCH-L1 in brain-injured children compared with controls and also demonstrated a step-wise increase of biomarker concentrations over the continuum of severity from mild to severe TBI. Furthermore, while we found that only the neuronal biomarker UCH-L1 holds potential to detect acute intracranial lesions as assessed by computed tomography (CT), both markers were substantially increased in TBI patients even with a normal CT suggesting the presence of undetected microstructural injuries. Serum UCH-L1 and GFAP concentrations also strongly predicted poor outcome and performed better than S100B and MBP. Our results point to a role of GFAP and UCH-L1 as candidate biomarkers for pediatric TBI. Further studies are warranted. PMID:27319802

  14. The effects of early life lead exposure on the expression of interleukin (IL) 1β, IL-6, and glial fibrillary acidic protein in the hippocampus of mouse pups.

    PubMed

    Li, N; Liu, X; Zhang, P; Qiao, M; Li, H; Li, X; Zhang, H; Yu, Z

    2015-04-01

    The present study was undertaken to investigate the effects of maternal lead (Pb) exposure on the expression of interleukin (IL) 1β, IL 6, and glial fibrillary acidic protein (GFAP) in hippocampus of mice offspring. Pb exposure initiated from the beginning of gestation to weaning. Lead acetate (PbAc) administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1, 0.5 and 1% groups ,respectively. On the postnatal day 21, the Pb levels in their blood and hippocampus were determined by graphite furnace atomic absorption spectrometry. The expression of IL 1β, IL 6, and GFAP in hippocampus was measured by immunohistochemistry and Western blotting. The Pb levels in blood and hippocampus of all Pb-exposed groups were significantly higher than that of the control group (p < 0.05). The expression of IL-1β, IL-6, and GFAP was increased in Pb-exposed groups in comparison with the control group (p < 0.05). The high expression of IL-1β, IL-6, and GFAP in the hippocampus of pups may contribute to the neurotoxicity associated with maternal Pb exposure.

  15. Proteins and acids from petroleum.

    PubMed

    Zaki, D; el-Badrawy, S

    1978-01-01

    The wax distillate fraction (boiling range 300 up to 400 degrees C) from the crude oil "El-Alameen" was found to be a good substrate for the biosynthesis of proteins and/or amino acids by bacteria under special culture conditions. The fermentation processes were accompanied by a refining effect to the oil fraction, elevating its refraction index and lowering its melting point, giving dewaxing effect to the oil fraction. PMID:735504

  16. Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model

    PubMed Central

    Wang, Liqun; Colodner, Kenneth J.; Feany, Mel B.

    2011-01-01

    Although alterations in glial structure and function commonly accompany death of neurons in neurodegenerative diseases, the role glia play in modulating neuronal loss is poorly understood. We have created a model of Alexander disease in Drosophila by expressing disease-linked mutant versions of glial fibrillary acidic protein (GFAP) in fly glia. We find aggregation of mutant human GFAP into inclusions bearing the hallmarks of authentic Rosenthal fibers. We also observe significant toxicity of mutant human GFAP to glia, which is mediated by protein aggregation and oxidative stress. Both protein aggregation and oxidative stress contribute to activation of a robust autophagic response in glia. Toxicity of mutant GFAP to glial cells induces a non-cell autonomous stress response and subsequent apoptosis in neurons, which is dependent on glial glutamate transport. Our findings thus establish a simple genetic model of Alexander disease and further identify cellular pathways critical for glial-induced neurodegeneration. PMID:21414908

  17. Effects of enriched environment on alterations in the prefrontal cortex GFAP- and S100B-immunopositive astrocytes and behavioral deficits in MK-801-treated rats.

    PubMed

    Rahati, M; Nozari, M; Eslami, H; Shabani, M; Basiri, M

    2016-06-21

    A plethora of studies have indicated that enriched environment (EE) paradigm provokes plastic and morphological changes in astrocytes with accompanying increments of their density and positively affects the behavior of rodents. We also previously documented that EE could be employed to preclude several behavioral abnormalities, mainly cognitive deficits, attributed to postnatal N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801) treatment, as a rodent model of schizophrenia (SCH) aspects. Given this, the current study quantitatively investigated the number of cells, presumed to be astrocytes, expressing two astroglia-associated proteins (S100B and glial fibrillary acidic protein (GFAP)) by immunohistochemistry in the prefrontal cortex (PFC), along with anxiety and passive avoidance (PA) learning behaviors by utilizing elevated plus maze (EPM) and shuttle-box tests, in MK-801-treated male wistar rats submitted to EE and non-EE rats. Following a treatment regime of sub-chronic MK-801 (1.0mg/kg i.p. daily for five consecutive days from postnatal day (P) 6), S-100B-positive cells and anxiety level were markedly increased, while the GFAP-positive cells and PA learning were notably attenuated. The trend of diminished GFAP-immunopositive cells and elevated S100B-immunostained cells in the PFC was reversed in the SCH-like rats by exposure of animals to EE, commencing from birth up to the time of experiments on P28-85. Additionally, EE exhibited an ameliorating effect on the behavioral abnormalities evoked by MK-801. Overall, present findings support that improper astrocyte functioning and behavioral changes, reminiscent of the many facets of SCH, occur consequential to repetitive administration of MK-801 and that raising rat pups in an EE mitigates these alterations.

  18. The use of serum glial fibrillary acidic protein test as a promising tool for intracerebral hemorrhage diagnosis in Chinese patients and prediction of the short-term functional outcomes.

    PubMed

    Xiong, Lijun; Yang, Yan; Zhang, Mei; Xu, Wuping

    2015-11-01

    The objective of this study was to explore the efficacy of glial fibrillary acidic protein (GFAP) in differentiating intracerebral hemorrhage (ICH) from ischemic stroke (IS). Suspicious patients of acute stroke were screened and finally diagnosed by computed tomography and magnetic resonance imaging. Blood samples were collected within 2-6 h after onset of symptoms, and serum GFAP level was determined by ELISA assay. The functional outcome for the patients was determined by modified Rankin Scale (mRS) 90 days after onset of symptoms. 43 ICH patients and 65 IS patients were enrolled. GFAP concentration in ICH group was significantly higher than in IS group (p < 0.001). Significant correlation was found when comparing GFAP with National Institutes of Health Stroke Scale (NIHSS) (r = 0.418, p = 0.005) and hemorrhage volume (r = 0.840, p < 0.001) in ICH group, while such correlation was not observed in IS group. ROC analysis indicated that GFAP level at the cut-point of 0.7 ng/ml yielded an AUC of 0.901 (95 % CI 0.828-0.950) with high sensitivity (86.0 %) and specificity (76.9 %) to differentiate ICH from IS. Patients with higher serum GFAP concentration in ICH group experienced poorer functional disability (r = 0.755, p < 0.001), while this phenomenon was not observed in IS group (r = -0.114, p = 0.368). ROC curve analysis found that GFAP level at the cut-point of 1.04 ng/ml yielded an AUC of 0.936 (95 % CI 0.817-0.988) in identifying patients with poor functional outcome, at the sensitivity and specificity of 95.7 and 80.0 %, respectively. GFAP test is a promising technique for diagnosis of ICH from IS and prediction of short-term functional outcomes.

  19. In Children and Youth with Mild and Moderate Traumatic Brain Injury, Glial Fibrillary Acidic Protein Out-Performs S100β in Detecting Traumatic Intracranial Lesions on Computed Tomography.

    PubMed

    Papa, Linda; Mittal, Manoj K; Ramirez, Jose; Ramia, Michelle; Kirby, Sara; Silvestri, Salvatore; Giordano, Philip; Weber, Kurt; Braga, Carolina F; Tan, Ciara N; Ameli, Neema J; Lopez, Marco; Zonfrillo, Mark

    2016-01-01

    In adults, glial fibrillary acidic protein (GFAP) has been shown to out-perform S100β in detecting intracranial lesions on computed tomography (CT) in mild traumatic brain injury (TBI). This study examined the ability of GFAP and S100β to detect intracranial lesions on CT in children and youth involved in trauma. This prospective cohort study enrolled a convenience sample of children and youth at two pediatric and one adult Level 1 trauma centers following trauma, including both those with and without head trauma. Serum samples were obtained within 6 h of injury. The primary outcome was the presence of traumatic intracranial lesions on CT scan. There were 155 pediatric trauma patients enrolled, 114 (74%) had head trauma and 41 (26%) had no head trauma. Out of the 92 patients who had a head CT, eight (9%) had intracranial lesions. The area under the receiver operating characteristic curve (AUC) for distinguishing head trauma from no head trauma for GFAP was 0.84 (0.77-0.91) and for S100β was 0.64 (0.55-0.74; p<0.001). Similarly, the AUC for predicting intracranial lesions on CT for GFAP was 0.85 (0.72-0.98) versus 0.67 (0.50-0.85) for S100β (p=0.013). Additionally, we assessed the performance of GFAP and S100β in predicting intracranial lesions in children ages 10 years or younger and found the AUC for GFAP was 0.96 (95% confidence interval [CI] 0.86-1.00) and for S100β was 0.72 (0.36-1.00). In children younger than 5 years old, the AUC for GFAP was 1.00 (95% CI 0.99-1.00) and for S100β 0.62 (0.15-1.00). In this population with mild TBI, GFAP out-performed S100β in detecting head trauma and predicting intracranial lesions on head CT. This study is among the first published to date to prospectively compare these two biomarkers in children and youth with mild TBI.

  20. Protein biosynthesis with conformationally restricted amino acids

    SciTech Connect

    Mendel, D. Lawrence Berkeley Lab., CA ); Ellman, J.; Schultz, P.G. )

    1993-05-19

    The incorporation of conformationally constrained amino acids into peptides is a powerful approach for generating structurally defined peptides as conformational probes and bioactive agents. The ability to site-specifically introduce constrained amino acids into large polypeptide chains would provide a similar opportunity to probe the flexibility, conformation, folding and stability of proteins. To this end, we have examined the competence of the Escherichia coli protein biosynthetic machinery to incorporate a number of these unnatural amino acids into the 164 residue protein T4 lysozyme (T4L). Results clearly demonstrate that the protein biosynthetic machinery can accommodate a wide variety of conformationally constrained amino acids. The expansion of structural motifs that can be biosynthetically incorporated into proteins to include a large number of conformationally constrained amino acids significantly increases the power of mutagenesis methods as probes of protein structure and function and provides additional insights into the steric requirements of the translational machinery. 13 refs., 2 figs.

  1. Distinguishing proteins from arbitrary amino acid sequences.

    PubMed

    Yau, Stephen S-T; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  2. Adalimumab (tumor necrosis factor-blocker) reduces the expression of glial fibrillary acidic protein immunoreactivity increased by exogenous tumor necrosis factor alpha in an organotypic culture of porcine neuroretina

    PubMed Central

    Garcia-Gutierrez, M.T.; Srivastava, G.K.; Gayoso, M.J.; Gonzalo-Orden, J.M.; Pastor, J.C.

    2013-01-01

    Purpose To determine if exogenous addition of tumor necrosis factor alpha (TNFα) exacerbates retinal reactive gliosis in an organotypic culture of porcine neuroretina and to evaluate if concomitant adalimumab, a TNF-blocker, diminishes it. Methods Porcine retinal explants from 20 eyeballs were cultured. Cultures with 100 pg/ml TNFα, 10 µg/ml adalimumab, 100 pg/ml TNFα plus 10 µg/ml adalimumab, or controls without additives were maintained for 9 days. Freshly detached retinas were processed in parallel. TNFα levels in control culture supernatants were quantified with enzyme-linked immunosorbent assay. Cryostat sections were doubly immunostained for glial fibrillary acidic protein (GFAP), a marker for reactive gliosis, and cellular retinaldehyde-binding protein (CRALBP), a marker for Müller cells. Sections were also labeled with the isolectin IB4, a label for microglia/macrophages. Results TNFα in control culture supernatants was detected only at day 1. Compared to the fresh neuroretinal samples, upregulation of GFAP and downregulation of CRALBP occurred during the 9 days of culture. Exogenous TNFα stimulated glial cells to upregulate GFAP and downregulate CRALBP immunoreactivity. TNFα-treated cultures also initiated the growth of gliotic membranes and underwent retinal disorganization. Adalimumab inhibited the spontaneous increases in GFAP and maintained CRALBP. In combination with TNFα, adalimumab reduced GFAP expression and conserved CRALBP, with only slight retinal disorganization. No appreciable changes in IB4 labeling were observed under the different culture conditions. Conclusions In cultured porcine neuroretina, spontaneous reactive gliosis and retinal disorganization were exacerbated by exogenous TNFα. Adalimumab reduced spontaneous changes and those induced by TNFα. Therefore, inhibiting TNFα may represent a novel approach to controlling retinal fibrosis observed in some human diseases. PMID:23687426

  3. Reduction of glial fibrillary acidic protein-immunoreactive astrocytes in some brain areas of old hairless rhino-j mice (hr-rh-j).

    PubMed

    San Jose, I; García-Atares, N; Pelaez, B; Cabo, R; Esteban, I; Vega, J A; Represa, J

    2001-08-24

    Mutations in the hairless (hr) gene of mice result in hair follicle and other epithelial defects. The hr gene is expressed at high levels in the brain where it probably participates in the survival and maintenance of some neuronal populations, but whether it also supports glial populations of the central nervous system has been not investigated. To clarify this, quantitative immunohistochemistry for astrocytes (glial fibrillary acidic protein (GFAP)) and microglial cells (CD11b macrophage antigen) was used in the brain of a mutant mouse strain, the hairless (hr-rh-j) type, which carries the homozygous hr gene rhino mutation. The glial cell density was assessed in the cerebral cortex, hippocampus, striatum, hypothalamus and cerebellum of young (3 months) and old (9 months) hr-rh-j mice. No significant differences were found between young wild-type and hr-rh-j mice. The density of GFAP immunoreactive astrocytes normally increased as a function of age, but in older hr-rh-j mice there was a severe reduction (P<0.01) in the striatum, hypothalamus, and hippocampus. Conversely, the microglial cells were insensible to aging or to hr-rh-j mutation. These results suggest that the hr gene is involved in the maintenance of the GFAP immunoreactive cells in some cerebral areas. Nevertheless, because these animals do not show any neurological signs, the functional significance of the present findings remains to be established.

  4. Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice.

    PubMed

    Anderova, Miroslava; Benesova, Jana; Mikesova, Michaela; Dzamba, David; Honsa, Pavel; Kriska, Jan; Butenko, Olena; Novosadova, Vendula; Valihrach, Lukas; Kubista, Mikael; Dmytrenko, Lesia; Cicanic, Michal; Vargova, Lydia

    2014-01-01

    Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+) and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+) clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K(+). As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+), α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+). PMID:25426721

  5. Altered Astrocytic Swelling in the Cortex of α-Syntrophin-Negative GFAP/EGFP Mice

    PubMed Central

    Anderova, Miroslava; Benesova, Jana; Mikesova, Michaela; Dzamba, David; Honsa, Pavel; Kriska, Jan; Butenko, Olena; Novosadova, Vendula; Valihrach, Lukas; Kubista, Mikael; Dmytrenko, Lesia; Cicanic, Michal; Vargova, Lydia

    2014-01-01

    Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K+. PMID:25426721

  6. A new acidic protein in porcine brain.

    PubMed

    Ishioka, N; Isobe, T; Okuyama, T; Numata, Y; Wada, H

    1980-10-21

    An extremely acidic protein has been isolated in a purified form from porcine rain extract, by (NH4)2SO4 fractionation followed by column chromatography on DEAE-Sephadex A-50 and on Sephadex G-75. The purified protein was tentatively named as glutamic acid-rich protein because it was characterized by its remarkably high content of glutamic acid which accounted for 49% of the total amino acid composition. The protein appeared to be a single polypeptide chain with a molecular weight of 56 000-58 000, and had an isoelectric point of 4.6. The N-terminal amino acid sequence was Asp-Glu-Pro-Pro-Ser-Glu-Gly. The immunochemical analysis using rabbit antiserum prepared to the porcine protein has suggested that it is present in the brain of human, cow, cat, dog and goat as well as in various goat organs including liver, kidney, heart, small intestine and spleen.

  7. Tuberal hypothalamic expression of the glial intermediate filaments, glial fibrillary acidic protein and vimentin across the turkey hen (Meleagris gallopavo) reproductive cycle: Further evidence for a role of glial structural plasticity in seasonal reproduction.

    PubMed

    Steinman, Michael Q; Valenzuela, Anthony E; Siopes, Thomas D; Millam, James R

    2013-11-01

    Glia regulate the hypothalamic-pituitary-gonadal (HPG) axis in birds and mammals. This is accomplished mechanically by ensheathing gonadotrophin-releasing hormone I (GnRH) nerve terminals thereby blocking access to the pituitary blood supply, or chemically in a paracrine manner. Such regulation requires appropriate spatial associations between glia and nerve terminals. Female turkeys (Meleagris gallopavo) use day length as a primary breeding cue. Long days activate the HPG-axis until the hen enters a photorefractory state when previously stimulatory day lengths no longer support HPG-axis activity. Hens must then be exposed to short days before reactivation of the reproductive axis occurs. As adult hens have discrete inactive reproductive states in addition to a fertile state, they are useful for examining the glial contribution to reproductive function. We immunostained tuberal hypothalami from short and long-day photosensitive hens, plus long-day photorefractory hens to examine expression of two intermediate filaments that affect glial morphology: glial fibrillary acidic protein (GFAP) and vimentin. GFAP expression was drastically reduced in the central median eminence of long day photosensitive hens, especially within the internal zone. Vimentin expression was similar among groups. However, vimentin-immunoreactive fibers abutting the portal vasculature were significantly negatively correlated with GFAP expression in the median eminence, which is consistent with our hypothesis for a reciprocal relationship between GFAP and vimentin expression. It appears that up-regulation of GFAP expression in the central median eminence of turkey hens is associated with periods of reproductive quiescence and that photofractoriness is associated with the lack of a glial cytoskeletal response to long days.

  8. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury.

    PubMed

    Welch, Robert D; Ayaz, Syed I; Lewis, Lawrence M; Unden, Johan; Chen, James Y; Mika, Valerie H; Saville, Ben; Tyndall, Joseph A; Nash, Marshall; Buki, Andras; Barzo, Pal; Hack, Dallas; Tortella, Frank C; Schmid, Kara; Hayes, Ronald L; Vossough, Arastoo; Sweriduk, Stephen T; Bazarian, Jeffrey J

    2016-01-15

    Head computed tomography (CT) imaging is still a commonly obtained diagnostic test for patients with minor head injury despite availability of clinical decision rules to guide imaging use and recommendations to reduce radiation exposure resulting from unnecessary imaging. This prospective multicenter observational study of 251 patients with suspected mild to moderate traumatic brain injury (TBI) evaluated three serum biomarkers' (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1] and S100B measured within 6 h of injury) ability to differentiate CT negative and CT positive findings. Of the 251 patients, 60.2% were male and 225 (89.6%) had a presenting Glasgow Coma Scale score of 15. A positive head CT (intracranial injury) was found in 36 (14.3%). UCH-L1 was 100% sensitive and 39% specific at a cutoff value >40 pg/mL. To retain 100% sensitivity, GFAP was 0% specific (cutoff value 0 pg/mL) and S100B had a specificity of only 2% (cutoff value 30 pg/mL). All three biomarkers had similar values for areas under the receiver operator characteristic curve: 0.79 (95% confidence interval; 0.70-0.88) for GFAP, 0.80 (0.71-0.89) for UCH-L1, and 0.75 (0.65-0.85) for S100B. Neither GFAP nor UCH-L1 curve values differed significantly from S100B (p = 0.21 and p = 0.77, respectively). In our patient cohort, UCH-L1 outperformed GFAP and S100B when the goal was to reduce CT use without sacrificing sensitivity. UCH-L1 values <40 pg/mL could potentially have aided in eliminating 83 of the 215 negative CT scans. These results require replication in other studies before the test is used in actual clinical practice.

  9. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.

    PubMed

    Sharma, Saroj; Nag, Tapas C; Thakar, Alok; Bhardwaj, Daya N; Roy, Tara Sankar

    2014-03-01

    The human auditory system is highly susceptible to environmental and metabolic insults which further affect the biochemical and physiological milieu of the cells that may contribute to progressive, hearing loss with aging. The cochlear nucleus (CN) is populated by morphologically diverse types of neurons with discrete physiological and neurochemical properties. Between the dorsal and the ventral cochlear nucleus (DCN and VCN), the VCN is further sub-divided into the rostral (rVCN) and caudal (cVCN) sub-divisions. Although, information is available on the age related neurochemical changes in the mammalian CN similar reports on human CN is still sparse. The morphometry and semiquantitative analysis of intensity of expression of glial fibrillary acidic protein (GFAP), calcium binding proteins (calbindin, calretinin and parvalbumin), gamma amino butyric acid (GABA) and nicotinic acetyl choline receptor (nAchR) beta 2 immunostaining were carried out in all three sub-divisions of the human CN from birth to 90 years. There was increased GFAP immunoreactivity in decades 2 and 3 in comparison to decade 1 in the CN. But no change was observed in rVCN from decade 4 onwards, whereas intense staining was also observed in decades 5 and 6 in cVCN and DCN. All three calcium binding proteins were highly expressed in early to middle ages, whereas a significant reduction was found in later decades in the VCN. GABA and nAchR beta 2 expressions were unchanged throughout in all the decades. The middle age may represent a critical period of onset and progression of aging changes in the CN and these alterations may add to the deterioration of hearing responses in the old age.

  10. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.

    PubMed

    Sharma, Saroj; Nag, Tapas C; Thakar, Alok; Bhardwaj, Daya N; Roy, Tara Sankar

    2014-03-01

    The human auditory system is highly susceptible to environmental and metabolic insults which further affect the biochemical and physiological milieu of the cells that may contribute to progressive, hearing loss with aging. The cochlear nucleus (CN) is populated by morphologically diverse types of neurons with discrete physiological and neurochemical properties. Between the dorsal and the ventral cochlear nucleus (DCN and VCN), the VCN is further sub-divided into the rostral (rVCN) and caudal (cVCN) sub-divisions. Although, information is available on the age related neurochemical changes in the mammalian CN similar reports on human CN is still sparse. The morphometry and semiquantitative analysis of intensity of expression of glial fibrillary acidic protein (GFAP), calcium binding proteins (calbindin, calretinin and parvalbumin), gamma amino butyric acid (GABA) and nicotinic acetyl choline receptor (nAchR) beta 2 immunostaining were carried out in all three sub-divisions of the human CN from birth to 90 years. There was increased GFAP immunoreactivity in decades 2 and 3 in comparison to decade 1 in the CN. But no change was observed in rVCN from decade 4 onwards, whereas intense staining was also observed in decades 5 and 6 in cVCN and DCN. All three calcium binding proteins were highly expressed in early to middle ages, whereas a significant reduction was found in later decades in the VCN. GABA and nAchR beta 2 expressions were unchanged throughout in all the decades. The middle age may represent a critical period of onset and progression of aging changes in the CN and these alterations may add to the deterioration of hearing responses in the old age. PMID:24412669

  11. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study.

    PubMed

    Wang, Kevin K W; Yang, Zhihui; Yue, John K; Zhang, Zhiqun; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Lingsma, Hester F; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Manley, Geoffrey T; Cooper, Shelly R; Dams-O'Connor, Kristen; Hricik, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Sinha, Tuhin K; Vassar, Mary J

    2016-07-01

    We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906). These data suggest that while exposure to TBI may trigger the AutoAb[GFAP] response, circulating antibodies are elevated specifically in acute TBI patients with a history of TBI. AutoAb[GFAP] levels for participants with chronic TBI (average post-TBI time 176 days or 6.21 months) were also significantly higher (15.08 ± 2.82; n = 21) than healthy controls (p < 0.001). These data suggest a persistent upregulation of the autoimmune response to specific brain antigen(s) in the subacute to chronic phase after TBI, as well as after repeated TBI insults. Hence, AutoAb[GFAP] may be a sensitive assay to study the dynamic interactions between post-injury brain and patient-specific autoimmune responses across acute and chronic settings after TBI.

  12. Enhancement of Colorimetric Response of Enzymatic Reactions by Thermally Evaporated Plasmonic Thin Films: Application to Glial Fibrillary Acidic Protein

    PubMed Central

    Abel, Biebele; Kabir, Tabassum S.; Odukoya, Babatunde; Mohammed, Muzaffer; Aslan, Kadir

    2015-01-01

    We report the enhancement of the colorimetric response of horseradish peroxidase (HRP) and alkaline phosphatase (AP) in bioassays by thermally evaporated silver, gold, copper and nickel thin films. In this regard, a model bioassay based on biotin-avidin interactions was employed. Biotin groups and enzymes were introduced to all surfaces using a biotinylated linker molecule and avidin, respectively. The colorimetric response of HRP in the model bioassay carried out on the plasmonic thin films were up to 4.4-fold larger as compared to control samples (i.e., no plasmonic thin films), where the largest enhancement of colorimetric response was observed on silver thin films. The colorimetric response of AP on plasmonic thin films was found to be similar to those observed on control samples, which was attributed to the loss of enzymes from the surface during the bioassay steps. The extent of enzymes immobilized on to plasmonic thin films was found to affect the colorimetric response of the model bioassay. These findings allowed us to demonstrate the use of silver thin films for the detection of glial fibrillary acidic protein (GFAP), where the colorimetric response of the standard bioassays for GFAP was enhanced up to 67% as compared to bioassays on glass slides. PMID:25663850

  13. BIOPOLYMERS FROM POLYLACTIC ACID AND MILK PROTEINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polylactic acid (PLA) is a commercially available biodegradable polymer derived from lactic acid and is used in many nonfood products as an alternative to petrochemical-derived polymers. However, its physical properties limit its use in many applications. Using dairy proteins to substitute for por...

  14. Probing protein stability with unnatural amino acids

    SciTech Connect

    Mendel, D.; Ellman, J.A.; Zhiyuh Chang; Veenstra, D.L.; Kollman, P.A.; Schultz, P.G. )

    1992-06-26

    Unnatural amino acid mutagenesis, in combination with molecular modeling and simulation techniques, was used to probe the effect of side chain structure on protein stability. Specific replacements at position 133 in T4 lysozyme included (1) leucine (wt), norvaline, ethylglycine, and alanine to measure the cost of stepwise removal of methyl groups from the hydrophobic core, (2) norvaline and O-methyl serine to evaluate the effects of side chain solvation, and (3) leucine, S,S-2-amino-4-methylhexanoic acid, and S-2-amino-3-cyclopentylpropanoic acid to measure the influence of packing density and side chain conformational entropy on protein stability. All of these factors (hydrophobicity, packing, conformational entropy, and cavity formation) significantly influence protein stability and must be considered when analyzing any structural change to proteins.

  15. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  16. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  17. Quantitative Analysis of Glutamate Receptors in Glial Cells from the Cortex of GFAP/EGFP Mice Following Ischemic Injury: Focus on NMDA Receptors.

    PubMed

    Dzamba, David; Honsa, Pavel; Valny, Martin; Kriska, Jan; Valihrach, Lukas; Novosadova, Vendula; Kubista, Mikael; Anderova, Miroslava

    2015-11-01

    Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP(+)) glial cells in the cortex of young adult mice. Most of the analyzed cells expressed mRNA for glutamate receptor subunits, the expression of which, in most cases, even increased after ischemic injury. Data analyses disclosed several classes of GFAP/EGFP(+) glial cells with respect to glutamate receptors and revealed in what manner their expression correlates with the expression of glial markers prior to and after ischemia. Furthermore, we also examined the protein expression and functional significance of NMDA receptors in glial cells. Immunohistochemical analyses of all seven NMDA receptor subunits provided direct evidence that the GluN3A subunit is present in GFAP/EGFP(+) glial cells and that its expression is increased after ischemia. In situ and in vitro Ca(2+) imaging revealed that Ca(2+) elevations evoked by the application of NMDA were diminished in GFAP/EGFP(+) glial cells following ischemia. Our results provide a comprehensive description of glutamate receptors in cortical GFAP/EGFP(+) glial cells and may serve as a basis for further research on glial cell physiology and pathophysiology.

  18. Alimentary proteins, amino acids and cholesterolemia.

    PubMed

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  19. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    SciTech Connect

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal . E-mail: iahmad@unmc.edu

    2006-01-13

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.

  20. Effects of subcytotoxic cadmium on morphology of glial fibrillary acidic protein network in astrocytes derived from murine neural stem/progenitor cells.

    PubMed

    Mori, Hideki; Sasaki, Go; Nishikawa, Mayu; Hara, Masayuki

    2015-09-01

    The susceptibility of mouse neural stem/progenitor cells (NSPCs) to heavy-metal cytotoxicity was assessed by measuring cell viability following exposure to heavy metal chlorides (ZnCl2, CdCl2, CuCl2, and HgCl2, respectively). We determined half-maximal inhibitory concentration (IC50) values, subcytotoxic doses, capacity for neural differentiation, and morphological features of glial fibrillary acidic protein (GFAP) network at the subcytotoxic doses of heavy metal ions. Experiments were performed using two protocols for the exposure at subcytotoxic doses of heavy metal ions; these protocols included simultaneous exposure with the induction of NSPC differentiation and sequential exposure after the induction for 1 week. Exposure to HgCl2 using both protocols reduced the ratio of neuronal NSPC differentiation. Although sequential exposure to CdCl2 reduced the size of GFAP network, simultaneous exposure did not induce any change. In conclusion, image analyses of the cytoskeletal morphology of NSPCs as a novel tool for assessing neurodevelopmental cytotoxicity enabled us to obtain new information about the localization of cytoskeletal proteins.

  1. Protein and Amino Acid Requirements during Pregnancy.

    PubMed

    Elango, Rajavel; Ball, Ronald O

    2016-07-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg(-1) · d(-1), respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg(-1) · d(-1) during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14-18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. PMID:27422521

  2. Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic.

    PubMed

    Boczek, Nicole J; Sigafoos, Ashley N; Zimmermann, Michael T; Maus, Rachel L; Cousin, Margot A; Blackburn, Patrick R; Urrutia, Raul; Clark, Karl J; Patterson, Marc C; Wick, Myra J; Klee, Eric W

    2016-09-01

    A de novo GFAP variant, p.R376W, was identified in a child presenting with hypotonia, developmental delay, and abnormal brain MRI. Following the 2015 ACMG variant classification guidelines and the functional studies showing protein aggregate formation in vitro, p.R376W should be classified as a pathogenic variant, causative for Alexander disease.

  3. Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic.

    PubMed

    Boczek, Nicole J; Sigafoos, Ashley N; Zimmermann, Michael T; Maus, Rachel L; Cousin, Margot A; Blackburn, Patrick R; Urrutia, Raul; Clark, Karl J; Patterson, Marc C; Wick, Myra J; Klee, Eric W

    2016-09-01

    A de novo GFAP variant, p.R376W, was identified in a child presenting with hypotonia, developmental delay, and abnormal brain MRI. Following the 2015 ACMG variant classification guidelines and the functional studies showing protein aggregate formation in vitro, p.R376W should be classified as a pathogenic variant, causative for Alexander disease. PMID:27648269

  4. Elevations in plasmatic titers of corticosterone and aldosterone, in the absence of changes in ACTH, testosterone, or glial fibrillary acidic protein, 72 h following D,L-fenfluramine or D-fenfluramine administration to rats.

    PubMed

    Williams, M T; Morford, L L; McCrea, A E; Inman-Wood, S L; Vorhees, C V

    2001-01-01

    Studies in both humans and animals demonstrate that D,L- and D-fenfluramine (D,L-FEN and D-FEN, respectively) can activate the hypothalamic-pituitary-adrenal axis following an acute dose. No data exist showing a prolonged effect of either drug, although two studies have hinted at increased adrenal activity. There are also considerable differences in the literature pertaining to the neurotoxic effects of D,L- and D-FEN. Some possible explanations for these differences include: activation of different neurotransmitter systems, the temperature at which the animals were maintained during exposure, or the substance sampled in each study. We investigated the effects of either D,L-FEN or D-FEN on pituitary, adrenal, and gonadal hormones 72 h after drug exposure. Furthermore, using a dosing regimen adapted from studies on methamphetamine (e.g., four times every 2 h in a single day) known to produce elevations in glial fibrillary acidic protein (GFAP) under hyperthermic conditions, we examined the effects of D- and D,L-FEN (15 mg/kg, four times) on GFAP content when the animals were dosed at ambient temperatures of 21 or 32 degrees C. Approximately fivefold increases of corticosterone and threefold increases of aldosterone were found 72 h later under resting conditions following both D- and D,L-FEN. Nonetheless, when animals were dosed with D-FEN at 32 degrees C, no significant elevation in corticosterone was detected. No effect was observed for ACTH, testosterone, or GFAP following D- or D,L-FEN treatment. These data suggest that: (1) FEN treatment causes prolonged elevations in adrenal cortical hormones; (2) FEN-treated animals displayed hormonal characteristics similar to animals undergoing a chronic stressor as suggested by no difference in ACTH titers; (3) D,L-FEN treatment or D-FEN treatment (as reported previously) is not similar to other substituted amphetamines in that it does not increase GFAP, even under hyperthermic conditions.

  5. Increased in vitro glial fibrillary acidic protein expression, telomerase activity, and telomere length after productive human immunodeficiency virus-1 infection in murine astrocytes.

    PubMed

    Ojeda, Diego; López-Costa, Juan José; Sede, Mariano; López, Ester María; Berria, María Isabel; Quarleri, Jorge

    2014-02-01

    Although HIV-associated neurocognitive disorders (HAND) result from injury and loss of neurons, productive infection routinely takes place in cells of macrophage lineage. In such a complex context, astrocytosis induced by local chemokines/cytokines is one of the hallmarks of HIV neuropathology. Whether this sustained astrocyte activation is able to alter telomere-aging process is unknown. We hypothesized that interaction of HIV with astrocytes may impact astrocyte telomerase activity (TA) and telomere length in a scenario of astrocytic activation measured by expression of glial fibrillary acidic protein (GFAP). To test this hypothesis, cultured murine astrocytes were challenged with pseudotyped HIV/vesicular stomatitis virus (HIV/VSV) to circumvent the absence of viral receptors; and GFAP, telomerase activity, and telomere length were quantified. As an early and transient event after HIV infection, both TA activity and telomere length were significantly augmented (P < 0.001). Later, a strong negative correlation (-0.8616, P < 0.0001) between virus production and telomerase activity was demonstrated. Once HIV production had reached a peak (7 dpi), the TA decreased, showing levels similar to those of noninfected cells. In contrast, the astrocyte became activated, exhibiting significantly increased levels of GFAP expression directly related to the level of HIV/VSV replication (P < 0.0001). Our results suggest that HIV-infected astrocytes exhibit early disturbance in their cellular functions, such as telomerase activity and telomere length, that may attenuate cell proliferation and enhance the astrocyte dysregulation, contributing to HIV neuropathogenesis. Understanding the mechanisms involved in HIV-mediated persistence by altering the telomere-related aging processes could aid in the development of therapeutic modalities for neurological complications of HIV infection.

  6. Environmental impacts on the developing CNS: CD15, NCAM-L1, and GFAP expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Sulkowski, G. M.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl- N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which

  7. Environmental impacts on the developing CNS: CD15, NCAM-L1, and GFAP expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Sulkowski, G. M.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl-N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which

  8. Amino Acid Recycling in Relation to Protein Turnover 1

    PubMed Central

    Davies, David D.; Humphrey, Thomas J.

    1978-01-01

    Methods of measuring amino acid recycling in Lemna minor are described. The extent to which the recycling of individual amino acids may underestimate protein turnover has been measured for a number of amino acids. The methods have been used to study the relationship between protein turnover and amino acid recycling during nitrogen starvation. It is concluded that following the removal of nitrate from the environment, protein turnover is enhanced, the partitioning of amino acids between protein synthesis and amino acid metabolism is relatively constant, but the total amount of amino acids recycling is increased. PMID:16660236

  9. Protein and Amino Acid Profiles of Different Whey Protein Supplements.

    PubMed

    Almeida, Cristine C; Alvares, Thiago S; Costa, Marion P; Conte-Junior, Carlos A

    2016-01-01

    Whey protein (WP) supplements have received increasing attention by consumers due to the high nutritional value of the proteins and amino acids they provide. However, some WP supplements may not contain the disclosed amounts of the ingredients listed on the label, compromising the nutritional quality and the effectiveness of these supplements. The aim of this study was to evaluate and compare the contents of total protein (TP), α-lactalbumin (α-LA), β-lactoglobulin (β-LG), free essential amino acids (free EAA), and free branched-chain amino acids (free BCAA), amongst different WP supplements produced by U.S. and Brazilian companies. Twenty commercial brands of WP supplements were selected, ten manufactured in U.S. (WP-USA) and ten in Brazil (WP-BRA). The TP was analyzed using the Kjeldahl method, while α-LA, β-LG, free EAA, and free BCAA were analyzed using HPLC system. There were higher (p < 0.05) concentrations of TP, α-LA, β-LG, and free BCAA in WP-USA supplements, as compared to the WP-BRA supplements; however, there was no difference (p > 0.05) in the content of free EAA between WP-USA and WP-BRA. Amongst the 20 brands evaluated, four WP-USA and seven WP-BRA had lower (p < 0.05) values of TP than those specified on the label. In conclusion, the WP-USA supplements exhibited better nutritional quality, evaluated by TP, α-LA, β-LG, and free BCAA when compared to WP-BRA.

  10. Glial fibrillary acidic protein promoters direct adenovirus early 1A gene and human telomerase reverse transcriptase promoters direct sodium iodide symporter expression for malignant glioma radioiodine therapy.

    PubMed

    Li, Wei; Tan, Jian; Wang, Peng; Li, Ning; Li, Chengxia

    2015-01-01

    Malignant glioma can be treated with radioiodine following transfection with human sodium iodide symporter (hNIS) gene. Ad-Tp-E1A-Gp-NIS is engineered with human telomerase reverse transcriptase (hTERT) and glial fibrillary acidic protein (GFAP) promoters to express early region 1A (E1A) and hNIS genes, which may be useful in targeted gene therapy. The Ad-Tp-E1A-Gp-NIS was constructed and purified using the E1A and hNIS genes regulated by the hTERT and GFAP promoters, respectively. Glioma cells were infected by Ad-Tp-E1A-Gp-NIS. Selective replication ability of Ad-Tp-E1A-Gp-NIS was then evaluated by plaque forming assay, transgene expression by Western blot, (125)I-iodide uptake and efflux, clonogenicity following (131)I-iodide treatment in the tumor cells, and radioiodine therapy using nude mouse model. The Ad-Tp-E1A-Gp-NIS could selectively replicate; the hNIS gene was successfully expressed under the GFAP promoter. Western blot analyses using E1A- and hNIS-specific antibodies revealed two bands of approximately 40 and 70 kDa. In addition, the cells showed about 93.4 and 107.1 times higher (125)I uptake in U251 and U87 cells than in the control cells, respectively. Clonogenic assay indicated that >90% of cells transfected with Ad-Tp-E1A-Gp-NIS were killed. The Ad-Tp-E1A-Gp-NIS-transfected and 2 mCi (131)I-injected U87 xenograft nude mice survived the longest among the three groups. Ad-Tp-E1A-Gp-NIS has a good ability of selective replication and strong antitumor selectivity. An effective therapy of (131)I was achieved activity in malignant glioma cells after induction of tumor-specific iodide uptake activity by GFAP promoter-directed hNIS gene expression in vitro and in vivo.

  11. Liver Fatty Acid Binding Protein and Obesity

    PubMed Central

    Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15 member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP, or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair-fed a high fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity. PMID:20537520

  12. Impaired neurogenesis by HIV-1-Gp120 is rescued by genetic deletion of fatty acid amide hydrolase enzyme

    PubMed Central

    Avraham, H K; Jiang, S; Fu, Y; Rockenstein, E; Makriyannis, A; Wood, J; Wang, L; Masliah, E; Avraham, S

    2015-01-01

    Background and Purpose The HIV-envelope glycoprotein Gp120 is involved in neuronal injury and is associated with neuro-AIDS pathogenesis in the brain. Endocannabinoids are important lipid ligands in the CNS regulating neural functions, and their degeneration is controlled by hydrolysing enzymes such as the fatty acid amide hydrolase (FAAH). Here, we examined whether in vivo genetic deletion of Faah gene prevents HIV-1 Gp120-mediated effects on neurogenesis. Experimental Approach We generated new GFAP/Gp120 transgenic (Tg) mice that have genetic deletion of Faah gene by mating glial fribillary acidic protein (GFAP)/Gp120 Tg mice with Faah−/− mice. Neurogenesis and cell death were assessed by immunocytochemical analysis. Key Results Endocannabinoid levels in the brain of the double GFAP/Gp120//Faah−/− mice were similar to those observed in Faah−/− mice. However, unlike the impaired neurogenesis observed in GFAP/Gp120 Tg mice and Faah−/− mice, these GFAP/Gp120//Faah-/ mice showed significantly improved neurogenesis in the hippocampus, indicated by a significant increase in neuroblasts and neuronal cells, an increase in BrdU+ cells and doublecortin positive cells (DCX+), and an increase in the number of PCNA. Furthermore, a significant decrease in astrogliosis and gliogenesis was observed in GFAP/Gp120//Faah−/−mice and neurogenesis was stimulated by neural progenitor cells (NPCs) and/or the newly formed NPC niches characterized by increased COX-2 expression and elevated levels of PGE2. Conclusions and Implications In vivo genetic ablation of Faah, resulted in enhanced neurogenesis through modulation of the newly generated NPC niches in GFAP/Gp120//Faah−/− mice. This suggests a novel approach of using FAAH inhibitors to enhance neurogenesis in HIV-1 infected brain. PMID:24571443

  13. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  14. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury.

    PubMed

    Welch, Robert D; Ayaz, Syed I; Lewis, Lawrence M; Unden, Johan; Chen, James Y; Mika, Valerie H; Saville, Ben; Tyndall, Joseph A; Nash, Marshall; Buki, Andras; Barzo, Pal; Hack, Dallas; Tortella, Frank C; Schmid, Kara; Hayes, Ronald L; Vossough, Arastoo; Sweriduk, Stephen T; Bazarian, Jeffrey J

    2016-01-15

    Head computed tomography (CT) imaging is still a commonly obtained diagnostic test for patients with minor head injury despite availability of clinical decision rules to guide imaging use and recommendations to reduce radiation exposure resulting from unnecessary imaging. This prospective multicenter observational study of 251 patients with suspected mild to moderate traumatic brain injury (TBI) evaluated three serum biomarkers' (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1] and S100B measured within 6 h of injury) ability to differentiate CT negative and CT positive findings. Of the 251 patients, 60.2% were male and 225 (89.6%) had a presenting Glasgow Coma Scale score of 15. A positive head CT (intracranial injury) was found in 36 (14.3%). UCH-L1 was 100% sensitive and 39% specific at a cutoff value >40 pg/mL. To retain 100% sensitivity, GFAP was 0% specific (cutoff value 0 pg/mL) and S100B had a specificity of only 2% (cutoff value 30 pg/mL). All three biomarkers had similar values for areas under the receiver operator characteristic curve: 0.79 (95% confidence interval; 0.70-0.88) for GFAP, 0.80 (0.71-0.89) for UCH-L1, and 0.75 (0.65-0.85) for S100B. Neither GFAP nor UCH-L1 curve values differed significantly from S100B (p = 0.21 and p = 0.77, respectively). In our patient cohort, UCH-L1 outperformed GFAP and S100B when the goal was to reduce CT use without sacrificing sensitivity. UCH-L1 values <40 pg/mL could potentially have aided in eliminating 83 of the 215 negative CT scans. These results require replication in other studies before the test is used in actual clinical practice. PMID:26467555

  15. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury

    PubMed Central

    Ayaz, Syed I.; Lewis, Lawrence M.; Unden, Johan; Chen, James Y.; Mika, Valerie H.; Saville, Ben; Tyndall, Joseph A.; Nash, Marshall; Buki, Andras; Barzo, Pal; Hack, Dallas; Tortella, Frank C.; Schmid, Kara; Hayes, Ronald L.; Vossough, Arastoo; Sweriduk, Stephen T.; Bazarian, Jeffrey J.

    2016-01-01

    Abstract Head computed tomography (CT) imaging is still a commonly obtained diagnostic test for patients with minor head injury despite availability of clinical decision rules to guide imaging use and recommendations to reduce radiation exposure resulting from unnecessary imaging. This prospective multicenter observational study of 251 patients with suspected mild to moderate traumatic brain injury (TBI) evaluated three serum biomarkers' (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1] and S100B measured within 6 h of injury) ability to differentiate CT negative and CT positive findings. Of the 251 patients, 60.2% were male and 225 (89.6%) had a presenting Glasgow Coma Scale score of 15. A positive head CT (intracranial injury) was found in 36 (14.3%). UCH-L1 was 100% sensitive and 39% specific at a cutoff value >40 pg/mL. To retain 100% sensitivity, GFAP was 0% specific (cutoff value 0 pg/mL) and S100B had a specificity of only 2% (cutoff value 30 pg/mL). All three biomarkers had similar values for areas under the receiver operator characteristic curve: 0.79 (95% confidence interval; 0.70–0.88) for GFAP, 0.80 (0.71–0.89) for UCH-L1, and 0.75 (0.65–0.85) for S100B. Neither GFAP nor UCH-L1 curve values differed significantly from S100B (p = 0.21 and p = 0.77, respectively). In our patient cohort, UCH-L1 outperformed GFAP and S100B when the goal was to reduce CT use without sacrificing sensitivity. UCH-L1 values <40 pg/mL could potentially have aided in eliminating 83 of the 215 negative CT scans. These results require replication in other studies before the test is used in actual clinical practice. PMID:26467555

  16. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  1. Regulation of intestinal protein metabolism by amino acids.

    PubMed

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  2. Protein, amino acids and the control of food intake.

    PubMed

    Tome, Daniel

    2004-08-01

    The influence of protein and amino acid on the control of food intake and the specific control of protein and amino acid intakes remains incompletely understood. The most commonly accepted conclusions are: (1) the existence of an aversive response to diets deficient in or devoid of protein or deficient in at least one essential amino acid; (2) the existence of a mechanism that enables attainment of the minimum requirement for N and essential amino acids by increasing intake of a low-protein diet; (3) a decrease in the intake of a high-protein diet is associated with different processes, including the high satiating effect of protein. Ingested proteins are believed to generate pre- and post-absorptive signals that contribute to the control of gastric kinetics, pancreatic secretion and food intake. At the brain level, two major afferent pathways are involved in protein and amino acid monitoring: the indirect neuro-mediated (mainly vagus-mediated) pathway and the direct blood pathway. The neuro-mediated pathway transfers pre-absorptive and visceral information. This information is for the main part transferred through the vagus nerve that innervates part of the oro-sensory zone: the stomach, the duodenum and the liver. Other information is directly monitored in the blood. It is likely that the system responds precisely when protein and essential amino acid intake is inadequate, but in contrast allows a large range of adaptive capacities through amino acid degradation and substrate interconversion.

  3. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  4. Protective effect of chronic caffeine intake on gene expression of brain derived neurotrophic factor signaling and the immunoreactivity of glial fibrillary acidic protein and Ki-67 in Alzheimer's disease.

    PubMed

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Abo El-Khair, Salwa M; Helaly, Ahmed M N; Mahmoud, El-Hassanin M; Elshafey, Saad H

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with progressive degeneration of the hippocampal and cortical neurons. This study was designed to demonstrate the protective effect of caffeine on gene expression of brain derived neurotrophic factor (BDNF) and its receptor neural receptor protein-tyrosine kinase-β (TrkB) as well as glial fibrillary acidic protein (GFAP) and Ki-67 immunoreactivity in Aluminum chloride (AlCl3) induced animal model of AD. Fifty adult rats included in this study were classified into 5 group (10 rats each); negative and positive control groups (I&II), AD model group (III), group treated with caffeine from the start of AD induction (IV) and group treated with caffeine two weeks before AD induction (V). Hippocampal tissue BDNF and its receptor (TrkB) gene expression by real time RT-PCR in addition to immunohistochemical study of GFAP and Ki67 immunoreactivity were performed for all rats in the study. The results of this study revealed that caffeine has protective effect through improving the histological and immunohistochemical findings induced by AlCl3 as well as BDNF and its receptor gene expression. It could be concluded from the current study, that chronic caffeine consumption in a dose of 1.5 mg/kg body weight daily has a potentially good protective effect against AD.

  5. Protective effect of chronic caffeine intake on gene expression of brain derived neurotrophic factor signaling and the immunoreactivity of glial fibrillary acidic protein and Ki-67 in Alzheimer’s disease

    PubMed Central

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Abo El-khair, Salwa M; Helaly, Ahmed MN; Mahmoud, El-Hassanin M; Elshafey, Saad H

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive degeneration of the hippocampal and cortical neurons. This study was designed to demonstrate the protective effect of caffeine on gene expression of brain derived neurotrophic factor (BDNF) and its receptor neural receptor protein-tyrosine kinase-β (TrkB) as well as glial fibrillary acidic protein (GFAP) and Ki-67 immunoreactivity in Aluminum chloride (AlCl3) induced animal model of AD. Fifty adult rats included in this study were classified into 5 group (10 rats each); negative and positive control groups (I&II), AD model group (III), group treated with caffeine from the start of AD induction (IV) and group treated with caffeine two weeks before AD induction (V). Hippocampal tissue BDNF and its receptor (TrkB) gene expression by real time RT-PCR in addition to immunohistochemical study of GFAP and Ki67 immunoreactivity were performed for all rats in the study. The results of this study revealed that caffeine has protective effect through improving the histological and immunohistochemical findings induced by AlCl3 as well as BDNF and its receptor gene expression. It could be concluded from the current study, that chronic caffeine consumption in a dose of 1.5 mg/kg body weight daily has a potentially good protective effect against AD. PMID:26339337

  6. Amino acid sequences of proteins from Leptospira serovar pomona.

    PubMed

    Alves, S F; Lefebvre, R B; Probert, W

    2000-01-01

    This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.

  7. Electron microscopic features of brain edema in rodent cerebral malaria in relation to glial fibrillary acidic protein expression.

    PubMed

    Ampawong, Sumate; Chaisri, Urai; Viriyavejakul, Parnpen; Nontprasert, Apichart; Grau, Georges E; Pongponratn, Emsri

    2014-01-01

    The mechanisms leading to cerebral malaria (CM) are not completely understood. Brain edema has been suggested as having an important role in experimental CM. In this study, CBA/CaH mice were infected with Plasmodium berghei ANKA blood-stage and when typical symptoms of CM developed on day 7, brain tissues were processed for electron-microscopic and immunohistochemical studies. The study demonstrated ultrastructural hallmarks of cerebral edema by perivascular edema and astroglial dilatation confirming existing evidence of vasogenic and cytogenic edema. This correlates closely with the clinical features of CM. An adaptive response of astrocytic activity, represented by increasing glial fibrillary acidic protein (GFAP) expression in the perivascular area and increasing numbers of large astrocyte clusters were predominately found in the CM mice. The presence of multivesicular and lamellar bodies indicates the severity of cerebral damage in experimental CM. Congestion of the microvessels with occluded white blood cells (WBCs), parasitized red blood cells (PRBCs) and platelets is also a crucial covariate role for CM pathogenesis.

  8. Protein quality of supplements and meal replacements. Amino acids and calculated indicators of protein quality.

    PubMed

    Marable, N L; Hinners, M L; Hardison, N W; Kehrberg, N L

    1980-09-01

    The amino acid composition of several types of dietary supplements and meal replacements was measured and compared with label values when available and to published values for egg. Calculated indicators of protein quality, such as chemical score, protein calorie:total calorie ratio, individual essential amino acid:total essential amino acid ratio, and total essential amino acid:total amino acid ratio were also compared for products, egg, and the estimated pattern of adult requirements. Predigested liquid protein products were notably lower in protein quality than other products. All non-predigested products compared favorably with egg in terms of protein quality, but were more expensive and had no advantages over regular meals in terms of protein quality as reducing aids or protein supplements.

  9. Protein and amino acid metabolism and requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells of the body. Enzymes, membrane carriers, blood transport molecules, intracellular matrix, and even hair and fingernails are proteins, as are many hormones. Proteins also constitute a major portion of all membranes, and the cons...

  10. Phosphate acceptor amino acid residues in structural proteins of rhabdoviruses.

    PubMed

    Sokol, F; Tan, K B; McFalls, M L; Madore, P

    1974-07-01

    Partial acid hydrolysates of the [(32)P]phosphate- or [(3)H]serine-labeled proteins of purified vesicular stomatitis, rabies, Lagos bat, Mokola, or spring viremia of carp virions and of purified intracellular nucleocapsids of these viruses have been analyzed by paper electrophoresis for the presence of phosphorylated amino acids. Both phosphoserine and phosphothreonine, with the former predominant, were present in virion and nucleocapsid preparations that contained phosphoproteins. An exception was the fish rhabdovirus, which contained only phosphoserine. When vesicular stomatitis or rabies virus proteins were phosphorylated in a cell-free system by the virion-associated protein kinase and analyzed for the presence of phosphorylated amino acid residues, phosphoserine was again found to be more abundant than phosphothreonine. After in vitro protein phosphorylation, another phospho-compound, possibly a third phosphoamino acid, was detected in the partial acid hydrolysates of these viruses. PMID:4365328

  11. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-01-01

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample.

  12. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  13. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., the brain, is associated with astrocytic hypertrophy at the site of damage (see O'Callaghan, 1988 in... describes the conduct of a radioimmunoassay for measurement of the amount of GFAP in the brain of vehicle... described by Jahn et al. (1984) in paragraph (e)(2) of this section. Briefly, brain tissue samples...

  14. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  15. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria.

    PubMed

    Nakano, Shigeru; Fukaya, Masahiro

    2008-06-30

    Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.

  16. Protein and amino acid metabolism in the human newborn.

    PubMed

    Kalhan, Satish C; Bier, Dennis M

    2008-01-01

    Birth and adaptation to extrauterine life involve major shifts in the protein and energy metabolism of the human newborn. These include a shift from a state of continuous supply of nutrients including amino acids from the mother to cyclic periodic oral intake, a change in the redox state of organs, thermogenesis, and a significant change in the mobilization and use of oxidative substrates. The development of safe, stable isotopic tracer methods has allowed the study of protein and amino acid metabolism not only in the healthy newborn but also in those born prematurely and of low birth weight. These studies have identified the unique and quantitative aspects of amino acid/protein metabolism in the neonate, thus contributing to rational nutritional care of these babies. The present review summarizes the contemporary data on some of the significant developments in essential and dispensable amino acids and their relationship to overall protein metabolism. Specifically, the recent data of kinetics of leucine, phenylalanine, glutamine, sulfur amino acid, and threonine and their relation to whole-body protein turnover are presented. Finally, the physiological rationale and the impact of nutrient (amino acids) interventions on the dynamics of protein metabolism are discussed.

  17. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used. PMID:6490659

  18. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  19. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads.

    PubMed

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-07-03

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory's isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method.

  20. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  1. Predicting protein disorder by analyzing amino acid sequence

    PubMed Central

    Yang, Jack Y; Yang, Mary Qu

    2008-01-01

    Background Many protein regions and some entire proteins have no definite tertiary structure, presenting instead as dynamic, disorder ensembles under different physiochemical circumstances. These proteins and regions are known as Intrinsically Unstructured Proteins (IUP). IUP have been associated with a wide range of protein functions, along with roles in diseases characterized by protein misfolding and aggregation. Results Identifying IUP is important task in structural and functional genomics. We exact useful features from sequences and develop machine learning algorithms for the above task. We compare our IUP predictor with PONDRs (mainly neural-network-based predictors), disEMBL (also based on neural networks) and Globplot (based on disorder propensity). Conclusion We find that augmenting features derived from physiochemical properties of amino acids (such as hydrophobicity, complexity etc.) and using ensemble method proved beneficial. The IUP predictor is a viable alternative software tool for identifying IUP protein regions and proteins. PMID:18831799

  2. IR-UV photochemistry of protein-nucleic acid systems

    SciTech Connect

    Kozub, J.; Edwards, G.

    1995-12-31

    UV light has often been used to induce the formation of covalent bonds between DNA (or RNA) and tightly-bound protein molecules. However, the internal photoreactions of nucleic acids and proteins limit the yield and complicate the analysis of intermolecular crosslinks. In an ongoing search for improved reaction specificity or new photoreactions in these systems, we have employed UV photons from a Nd:YAG-pumped dye laser and mid-IR photons from the Vanderbilt FEL. Having crosslinked several protein-nucleic acid systems with nanosecond UV laser pulses, we are currently studying the effect of various IR wavelengths on a model system (gene 32 protein and poly[dT]). We have found that irradiation with sufficiently intense FEL macropulses creates an altered form of gene 32 protein which was not observed with UV-only irradiation. The electrophoretic nobility of the product is consistent with the formation of a specific protein-protein crosslink. No evidence of the non-specific protein damage typically induced by UV light is found. The yield of the new photoproduct is apparently enhanced by exposure to FEL macropulses which are synchronized with UV laser pulses. With ideal exposure parameters, the two-color reaction effectively competes with UV-only reactions. Experiments designed to determine the reaction mechanism and to demonstrate FEL-induced reactions in other protein-nucleic acid systems are currently underway.

  3. Molecular Evolution Directs Protein Translation Using Unnatural Amino Acids.

    PubMed

    Cox, Vanessa E; Gaucher, Eric A

    2015-12-02

    Unnatural amino acids have in recent years established their importance in a wide range of fields, from pharmaceuticals to polymer science. Unnatural amino acids can increase the number of chemical groups within proteins and thus expand or enhance biological function. Our ability to utilize these important building blocks, however, has been limited by the inherent difficulty in incorporating these molecules into proteins. To address this challenge, researchers have examined how the canonical twenty amino acids are incorporated, regulated, and modified in nature. This review focuses on achievements and techniques used to engineer the ribosomal protein-translation machinery, including the introduction of orthogonal translation components, how directed evolution enhances the incorporation of unnatural amino acids, and the potential utility of ancient biomolecules for this process.

  4. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  5. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    PubMed Central

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts. PMID:10639127

  6. Chemical approaches to detect and analyze protein sulfenic acids

    PubMed Central

    Furdui, Cristina M.; Poole, Leslie B.

    2013-01-01

    Orchestration of many processes relying on intracellular signal transduction is recognized to require the generation of hydrogen peroxide as a second messenger, yet relatively few molecular details of how this oxidant acts to regulate protein function are currently understood. This review describes emerging chemical tools and approaches that can be applied to study protein oxidation in biological systems, with a particular emphasis on a key player in protein redox regulation, cysteine sulfenic acid. While sulfenic acids (within purified proteins or simple mixtures) are detectable by physical approaches like X-ray crystallography, nuclear magnetic resonance and mass spectrometry, the propensity of these moieties to undergo further modification in complex biological systems has necessitated the development of chemical probes, reporter groups and analytical approaches to allow for their selective detection and quantification. Provided is an overview of techniques that are currently available for the study of sulfenic acids, and some of the biologically meaningful data that have been collected using such approaches. PMID:24105931

  7. Chemical approaches to detect and analyze protein sulfenic acids.

    PubMed

    Furdui, Cristina M; Poole, Leslie B

    2014-01-01

    Orchestration of many processes relying on intracellular signal transduction is recognized to require the generation of hydrogen peroxide as a second messenger, yet relatively few molecular details of how this oxidant acts to regulate protein function are currently understood. This review describes emerging chemical tools and approaches that can be applied to study protein oxidation in biological systems, with a particular emphasis on a key player in protein redox regulation, cysteine sulfenic acid. While sulfenic acids (within purified proteins or simple mixtures) are detectable by physical approaches like X-ray crystallography, nuclear magnetic resonance and mass spectrometry, the propensity of these moieties to undergo further modification in complex biological systems has necessitated the development of chemical probes, reporter groups and analytical approaches to allow for their selective detection and quantification. Provided is an overview of techniques that are currently available for the study of sulfenic acids, and some of the biologically meaningful data that have been collected using such approaches.

  8. Nucleic acid compositions and the encoding proteins

    SciTech Connect

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  9. Mapping protein and nucleic acid structure

    NASA Astrophysics Data System (ADS)

    Bednyakov, I. V.; Zrelov, P. V.; Ivanov, V. V.; Polozov, R. V.; Sivozhelezov, V. S.; Stepanenko, V. A.; Chirgadze, Yu. N.

    2013-09-01

    Methods and algorithms to analyze surfaces of globular and fibrillar proteins, DNA, and RNA have been developed. These methods for the construction of maps of fragments of these objects in the original cylindrical projection developed herein essentially broaden the possibilities for studying the distribution of charges and surface topography of biological structures. This approach significantly supplements the qualitative characteristics of methods of visualizing biopolymer structures.

  10. FLU, an amino acid substitution model for influenza proteins

    PubMed Central

    2010-01-01

    Background The amino acid substitution model is the core component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Although several general amino acid substitution models have been estimated from large and diverse protein databases, they remain inappropriate for analyzing specific species, e.g., viruses. Emerging epidemics of influenza viruses raise the need for comprehensive studies of these dangerous viruses. We propose an influenza-specific amino acid substitution model to enhance the understanding of the evolution of influenza viruses. Results A maximum likelihood approach was applied to estimate an amino acid substitution model (FLU) from ~113, 000 influenza protein sequences, consisting of ~20 million residues. FLU outperforms 14 widely used models in constructing maximum likelihood phylogenetic trees for the majority of influenza protein alignments. On average, FLU gains ~42 log likelihood points with an alignment of 300 sites. Moreover, topologies of trees constructed using FLU and other models are frequently different. FLU does indeed have an impact on likelihood improvement as well as tree topologies. It was implemented in PhyML and can be downloaded from ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/FLU or included in PhyML 3.0 server at http://www.atgc-montpellier.fr/phyml/. Conclusions FLU should be useful for any influenza protein analysis system which requires an accurate description of amino acid substitutions. PMID:20384985

  11. Review: the liver bile acid-binding proteins.

    PubMed

    Monaco, Hugo L

    2009-12-01

    The liver bile acid-binding proteins, L-BABPs, formerly called the liver "basic" fatty acid-binding proteins, are a subfamily of the fatty acid-binding proteins, FABPs. All the members of this protein group share the same fold: a 10 stranded beta barrel in which two short helices are inserted in between the first and the second strand of antiparallel beta sheet. The barrel encloses the ligand binding cavity of the protein while the two helices are believed to be involved in ligand accessibility to the binding site. The L-BABP subfamily has been found to be present in the liver of several vertebrates: fish, amphibians, reptiles, and birds but not in mammals. The members of the FABP family present in mammals that appear to be more closely related to the L-BABPs are the liver FABPs and the ileal BABPs, both very extensively studied. Several L-BABP X-ray structures are available and chicken L-BABP has also been studied using NMR spectroscopy. The stoichiometry of ligand binding for bile acids, first determined by X-ray crystallography for the chicken liver protein, is of two cholates per protein molecule with the only exception of zebrafish L-BABP which, due to the presence of a disulfide bridge, has a stoichiometry of 1:1. The stoichiometry of ligand binding for fatty acids, determined with several different techniques, is 1:1. An unanswered question of great relevance is the identity of the protein that in mammals performs the function that in other vertebrates is carried out by the L-BABPS.

  12. [Fractional and amino acid composition of krill proteins and the potential for obtaining protein preparations].

    PubMed

    Orlova, T A; Churina, E E; Kuranova, L K

    1985-01-01

    Studies of the fractional composition of krill proteins demonstrated that the content of protein fractions changes depending on the time of krill catch. The highest amount of water-soluble proteins is contained by krill caught in December (64%), of salt-soluble by krill caught in June (12%), base-soluble by krill caught in May, September and February (34%). Krill protein contains from 50 to 60% of water- and salt-soluble fractions. Analysis of the amino acid composition of krill proteins showed that it does not differ essentially from that of adequate food proteins.

  13. Proteins, Peptides and Amino Acids: Role in Infant Nutrition.

    PubMed

    Nutten, Sophie

    2016-01-01

    Proteins are polymers composed of 30 or more amino acids; some of them are essential dietary components, since they are not synthetized by human metabolic processes. They are crucial for healthy growth and development and influence major functions of the body. The infant's first year is a critical time of rapid growth and development, which must be supported by a high rate of protein synthesis. Breast milk, as a single specific food source in the first months of life, is providing the total protein and essential amino acids required. Infant formulas have been designed for infants who cannot be breastfed. They should be similar to breast milk in their composition and their functional outcomes, insuring appropriate growth, optimal development, maturation of the immune system, easy digestion and healthy metabolic programming. By modifying their protein components, specific infant formulas have also been developed for specific needs. For example, partially hydrolyzed (prevention of atopic dermatitis) and extensively hydrolyzed or amino-acid-based infant formulas (reduction in allergy symptoms) have been designed for the management of cow's milk protein allergy. In conclusion, proteins provided via breast milk or infant formula are essential components of the infant's diet; therefore, the specific quality, quantity and conformation of proteins are of utmost importance for healthy growth and development. PMID:27336588

  14. Proteins, Peptides and Amino Acids: Role in Infant Nutrition.

    PubMed

    Nutten, Sophie

    2016-01-01

    Proteins are polymers composed of 30 or more amino acids; some of them are essential dietary components, since they are not synthetized by human metabolic processes. They are crucial for healthy growth and development and influence major functions of the body. The infant's first year is a critical time of rapid growth and development, which must be supported by a high rate of protein synthesis. Breast milk, as a single specific food source in the first months of life, is providing the total protein and essential amino acids required. Infant formulas have been designed for infants who cannot be breastfed. They should be similar to breast milk in their composition and their functional outcomes, insuring appropriate growth, optimal development, maturation of the immune system, easy digestion and healthy metabolic programming. By modifying their protein components, specific infant formulas have also been developed for specific needs. For example, partially hydrolyzed (prevention of atopic dermatitis) and extensively hydrolyzed or amino-acid-based infant formulas (reduction in allergy symptoms) have been designed for the management of cow's milk protein allergy. In conclusion, proteins provided via breast milk or infant formula are essential components of the infant's diet; therefore, the specific quality, quantity and conformation of proteins are of utmost importance for healthy growth and development.

  15. A general method of protein purification for recombinant unstructured non-acidic proteins.

    PubMed

    Campos, Francisco; Guillén, Gabriel; Reyes, José L; Covarrubias, Alejandra A

    2011-11-01

    Typical late embryogenesis abundant (LEA) proteins accumulate in response to water deficit imposed by the environment or by plant developmental programs. Because of their physicochemical properties, they can be considered as hydrophilins and as a paradigm of intrinsically unstructured proteins (IUPs) in plants. To study their biophysical and biochemical characteristics large quantities of highly purified protein are required. In this work, we report a fast and simple purification method for non-acidic recombinant LEA proteins that does not need the addition of tags and that preserves their in vitro protective activity. The method is based on the enrichment of the protein of interest by boiling the bacterial protein extract, followed by a differential precipitation with trichloroacetic acid (TCA). Using this procedure we have obtained highly pure recombinant LEA proteins of groups 1, 3, and 4 and one recombinant bacterial hydrophilin. This protocol will facilitate the purification of this type of IUPs, and could be particularly useful in proteomic projects/analyses.

  16. Acidic Shell Proteins of the Mediterranean Fan Mussel Pinna nobilis.

    PubMed

    Marin, Frédéric; Narayanappa, Prabakaran; Motreuil, Sébastien

    2011-01-01

    In molluscs, the shell secretion process is controlled by a set of extracellular macromolecules collectively called the shell matrix. The shell matrix, which is produced by the mantle epithelial cells during mineralization, is predominantly composed of proteins, glycoproteins, acidic polysaccharides, and chitin that precisely regulate the deposition of calcium carbonate outside the mantle cells. In the present paper, we focus on the shell of Pinna nobilis, the giant Mediterranean fan mussel, usually considered as a model for studying molluscan biomineralization processes. P. nobilis exhibits indeed a nacro-prismatic shell, the outer layer of which is constituted of the so-called "regular simple calcitic prisms," according to Carter and Clark (1985). We review here the microstructural characteristics of the prisms and nacre and the biochemical properties of their associated matrices. In particular, the calcitic prisms of P. nobilis are characterized by a cortege of unusually acidic intraprismatic proteins, while the ones of the nacreous layer seem less acidic. A brief description of the molecular characterization of three acidic proteins, caspartin, calprismin and mucoperlin, is given. In particular, we show that extremely acidic intracrystalline proteins such as caspartin interact with calcium carbonate at different scales, from micrometric to crystal lattice levels.

  17. Analysis of single nucleic acid molecules with protein nanopores

    PubMed Central

    Maglia, Giovanni; Heron, Andrew J.; Stoddart, David; Japrung, Deanpen; Bayley, Hagan

    2011-01-01

    We describe the methods used in our laboratory for the analysis of single nucleic acid molecules with protein nanopores. The technical section is preceded by a review of the variety of experiments that can be done with protein nanopores. The end goal of much of this work is single-molecule DNA sequencing, although sequencing is not discussed explicitly here. The technical section covers the equipment required for nucleic acid analysis, the preparation and storage of the necessary materials, and aspects of signal processing and data analysis. PMID:20627172

  18. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress.

  19. Serum glial fibrillary acidic protein as a diagnostic biomarker in dogs with progressive myelomalacia.

    PubMed

    Sato, Yasunori; Shimamura, Shunsuke; Mashita, Tadahisa; Kobayashi, Saori; Okamura, Yasuhiko; Katayama, Masaaki; Kamishina, Hiroaki; Sato, Reeko; Uzuka, Yuji; Yasuda, Jun

    2013-07-31

    In humans, increased levels of GFAP in the CSF and blood have been reported with various neural diseases. However, there has been no study describing the usefulness of GFAP in the blood for disease of the spinal cord in dogs. The aim of this study was to describe the utility of GFAP in serum for a diagnosis of progressive myelomalacia. Fifty-six dogs with acute thoracolumbar IVDD diagnosed by computed tomography with myelography or MRI were included. Serum specimens were collected at initial presentation from all cases and at follow-up examinations from some cases. Serum samples were assayed for GFAP concentrations using a commercially available GFAP ELISA Kit. Progressive myelomalacia was the final diagnosis in 8/51 cases (15.6%). Eight dogs had clinical signs suggestive of progressive myelomalacia, of which 6 were positive and 2 were negative by GFAP. Seven dogs had a detectable level of serum GFAP, of which 6 had the onset of progressive myelomalacia. The sensitivity and specificity of the GFAP to progressive myelomalacia were 75% and 97.7%, respectively. The results suggest the utility of GFAP in serum in the diagnosis of progressive myelomalacia.

  20. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  1. The interaction of amino acids, peptides, and proteins with DNA.

    PubMed

    Solovyev, Andrey Y; Tarnovskaya, Svetlana I; Chernova, Irina A; Shataeva, Larisa K; Skorik, Yury A

    2015-01-01

    Amino acids that carry charges on their side groups can bind to double stranded DNA (dsDNA) and change the strength of the double helix. Measurement of the DNA melting temperature (Tm) confirmed that acidic amino acids (Glu, Asp) weaken the H-bonds between DNA strands, whereas basic amino acids (Arg, Lys) strengthen the interaction between the strands. A rank correlation exists between the amino acid isoelectric points and the observed changes in Tm. A similar dependence of the hyperchromic effect on the isoelectric point of a protein (pepsin, insulin, cortexin, and protamine) was observed for DNA-protein complexes at room temperature. Short peptides (KE, AEDG, and KEDP) containing a mixture of acidic and basic amino acid residues also affect Tm and the stability of the double helix. A model for binding Glu and Lys to dsDNA was explored by a docking simulation. The model shows that Glu, in an untwisted shape, binds to dsDNA in its major groove and disrupts three H-bonds between the strands, thereby destabilizing the double helix. Lys, in an untwisted shape, binds to the external side of the dsDNA and forms two bonds with O atoms of neighboring phosphodiester groups, thereby strengthening the DNA helix.

  2. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    PubMed

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145492

  3. Characterization and amino acid sequence of a fatty acid-binding protein from human heart.

    PubMed Central

    Offner, G D; Brecher, P; Sawlivich, W B; Costello, C E; Troxler, R F

    1988-01-01

    The complete amino acid sequence of a fatty acid-binding protein from human heart was determined by automated Edman degradation of CNBr, BNPS-skatole [3'-bromo-3-methyl-2-(2-nitrobenzenesulphenyl)indolenine], hydroxylamine, Staphylococcus aureus V8 proteinase, tryptic and chymotryptic peptides, and by digestion of the protein with carboxypeptidase A. The sequence of the blocked N-terminal tryptic peptide from citraconylated protein was determined by collisionally induced decomposition mass spectrometry. The protein contains 132 amino acid residues, is enriched with respect to threonine and lysine, lacks cysteine, has an acetylated valine residue at the N-terminus, and has an Mr of 14768 and an isoelectric point of 5.25. This protein contains two short internal repeated sequences from residues 48-54 and from residues 114-119 located within regions of predicted beta-structure and decreasing hydrophobicity. These short repeats are contained within two longer repeated regions from residues 48-60 and residues 114-125, which display 62% sequence similarity. These regions could accommodate the charged and uncharged moieties of long-chain fatty acids and may represent fatty acid-binding domains consistent with the finding that human heart fatty acid-binding protein binds 2 mol of oleate or palmitate/mol of protein. Detailed evidence for the amino acid sequences of the peptides has been deposited as Supplementary Publication SUP 50143 (23 pages) at the British Library Lending Division, Boston Spa, Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5. PMID:3421901

  4. Minimum protein intake for the preterm neonate determined by protein and amino acid kinetics.

    PubMed

    Zello, Gordon A; Menendez, Cesar E; Rafii, Mahroukh; Clarke, Ruth; Wykes, Linda J; Ball, Ronald O; Pencharz, Paul B

    2003-02-01

    Lower limits of protein needs in prematurely born neonates have not been adequately studied, yet providing protein in amounts maximizing accretion without excess is a goal in these infants' nutritional care. We hypothesized that with the use of amino acid oxidation methodology, it would be possible to define minimum protein requirement. Our objective was to investigate protein kinetics during short-term changes in protein intake by measurement of nitrogen balance and amino acid flux and oxidation using [(15)N]glycine, [(13)C]phenylalanine, and [(13)C]leucine tracers. Protein kinetics were examined in 21 preterm infants (gestational age: 29 +/- 3 wk; birth weight: 1091 +/- 324 g) at five protein intakes (1.0, 1.5, 2.0, 2.5, and 3.0 g x kg(-1) x d(-1)) with 1 d of adaptation to the test intakes. From nitrogen balance data, a protein need of 0.74 g x kg(-1 x -1) was estimated to achieve zero balance. For all three amino acids, flux and oxidation estimates were not different across protein intakes. Whole-body protein synthesis and breakdown estimates from [(15)N]ammonia data were 14.6 +/- 3.4 and 14.4 +/- 4.1 g x kg(-1) x d(-1), respectively. Glycine flux (680 +/- 168 micromol x kg(-1) x h(-1)) was greater than leucine flux (323 +/- 115 micromol x kg(-1) x h(-1)), which was greater than phenylalanine flux (84.3 +/- 35.2 micromol x kg(-1) x h(-1)). Leucine oxidation (36.7 +/- 15.6 micromol x kg(-1) x h(-1)) was also greater than phenylalanine oxidation (6.64 +/- 4.41 micromol x kg(-1) x h(-1)). Infants in our study were able to adapt to short-term changes in protein intake with little consequence to the overall whole-body protein economy, as measured by the three test amino acids.

  5. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes.

    PubMed

    Xu, Y J; Yau, L; Yu, L P; Elimban, V; Zahradka, P; Dhalla, N S

    1996-12-13

    Phosphatidic acid (PA) was observed to stimulate protein synthesis in adult cardiomyocytes in a time- and concentration-dependent manner. The maximal stimulation in protein synthesis (142 +/- 12% vs 100% as the control) was achieved at 10 microM PA within 60 min and was inhibited by actinomycin D (107 +/- 4% of the control) or cycloheximide (105 +/- 6% of the control). The increase in protein synthesis due to PA was attenuated or abolished by preincubation of cardiomyocytes with a tyrosine kinase inhibitor, genistein (94 +/- 9% of the control), phospholipase C inhibitors 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate or carbon-odithioic acid O-(octahydro-4,7-methanol-1H-inden-5-yl (101 +/- 6 and 95 +/- 5% of the control, respectively), protein kinase C inhibitors staurosporine or polymyxin B (109 +/- 3 and 93 +/- 3% of the control), and chelators of extracellular and intracellular free Ca2+ EGTA or BAPTA/AM (103 +/- 6 and 95 +/- 6% of the control, respectively). PA at different concentrations (0.1 to 100 microM) also caused phosphorylation of a cell surface protein of approximately 24 kDa. In addition, mitogen-activated protein kinase was stimulated by PA in a concentration-dependent manner; maximal stimulation (217 +/- 6% of the control) was seen at 10 microM PA. These data suggest that PA increases protein synthesis in adult rat cardiomyocytes and thus may play an important role in the development of cardiac hypertrophy.

  6. [Photochemistry and UV Spectroscopy of Proteins and Nucleic Acids].

    PubMed

    Wierzchowski, Kazimierz Lech

    2015-01-01

    The article presents a short history of David Shugar studies in the field of photochemistry and UV spectroscopy of proteins and nucleic acids, carried out since the late 1940s. to the beginning of the 1970s. of the 20th century, with some references to the state of related research in those days.

  7. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.

    PubMed

    Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea

    2013-02-01

    The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable. PMID:22362332

  8. Role of fatty acid binding protein on hepatic palmitate uptake.

    PubMed

    Burczynski, F J; Zhang, M N; Pavletic, P; Wang, G Q

    1997-12-01

    Expression of hepatic fatty acid binding protein (FABP) mRNA is regulated by growth hormone. In the absence of growth hormone, there is a 60% reduction in FABP mRNA levels (S.A. Berry, J.-B Yoon, U. List, and S. Seelig. J. Am. Coll. Nutr. 12:638-642. 1995). Previous work in our laboratory focused on the role of extracellular binding proteins in the hepatic uptake of long chain fatty acids. In the present study we were interested to determine the role of FABP in the transmembrane flux of long chain fatty acids. Using hepatocyte monolayers from control (n = 9) and hypophysectomized (n = 6) rats, we investigated the uptake of [3H]palmitate in the presence and absence of albumin. In the absence of albumin, total hepatocyte [3H]palmitate clearance rates from control (17.2 +/- 1.5 microL.mg-1 protein.s-1; mean +/- SEM; n = 9) and hypophysectomized (15.5 +/- 2.1 microL.mg-1 protein.s-1; n = 6) animals were similar (p > 0.05). In the presence of 2 microM albumin the total [3H]palmitate clearance rate from control hepatocytes (1.63 +/- 0.11 microL.mg-1 protein.s-1; n = 9) was significantly larger (40%) than from hepatocytes obtained from hypophysectomized (0.97 +/- 0.15 microL.mg-1 protein.s-1; n = 6; p < 0.01) animals. SDS-PAGE electrophoresis revealed that plasma membrane FABP levels from control and hypophysectomized animals were similar. However, there was a 49% decrease in the cytosolic FABP levels of hepatocytes isolated from hypophysectomized as compared with control animals. The decreased cytosolic FABB levels paralleled the decrease in palmitate uptake. We conclude that in the absence of extracellular binding proteins the rate-limiting step in the overall uptake of long chain fatty acids is diffusion to the cell surface. However, in the presence of albumin, the rate of palmitate uptake is determined primarily by cytosolic FABP levels.

  9. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  10. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains

    PubMed Central

    Takahashi, Nobutaka; Matsuzaki, Yasunori; Kishi, Shoji; Hirai, Hirokazu

    2016-01-01

    Adeno-associated virus (AAV) vectors are small in diameter, diffuse easily in the brain, and represent a highly efficient means by which to transfer a transgene to the brain of a large animal. A major demerit of AAV vectors is their limited accommodation capacity for transgenes. Thus, a compact promoter is useful when delivering large transgenes via AAV vectors. In the present study, we aimed to identify the shortest astrocyte-specific GFAP promoter region that could be used for AAV-vector-mediated transgene expression in the marmoset brain. The 2.0-kb promoter region upstream of the GFAP gene was cloned from the marmoset genome, and short promoters (1.6 kb, 1.4 kb, 0.6 kb, 0.3 kb and 0.2 kb) were obtained by progressively deleting the original 2.0-kb promoter from the 5’ end. The short promoters were screened in the mouse cerebellum in terms of their strength and astrocyte specificity. We found that the 0.3-kb promoter maintained 40% of the strength of the original 2.0-kb promoter, and approximately 90% of its astrocyte specificity. These properties were superior to those of the 1.4-kb, 0.6-kb (20% promoter strength) and 0.2-kb (70% astrocyte specificity) promoters. Then, we verified whether the 0.3-kb GFAP promoter retained astrocyte specificity in the marmoset cerebral cortex. Injection of viral vectors carrying the 0.3-kb marmoset GFAP promoter specifically transduced astrocytes in both the cerebral cortex and cerebellar cortex of the marmoset. These results suggest that the compact 0.3-kb promoter region serves as an astrocyte-specific promoter in the marmoset brain, which permits us to express a large gene by AAV vectors that have a limited accommodation capacity. PMID:27571575

  11. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  12. In Silico Classification of Proteins from Acidic and Neutral Cytoplasms

    PubMed Central

    Fang, Yaping; Middaugh, C. Russell; Fang, Jianwen

    2012-01-01

    Protein acidostability is a common problem in biopharmaceutical and other industries. However, it remains a great challenge to engineer proteins for enhanced acidostability because our knowledge of protein acidostabilization is still very limited. In this paper, we present a comparative study of proteins from bacteria with acidic (AP) and neutral cytoplasms (NP) using an integrated statistical and machine learning approach. We construct a set of 393 non-redundant AP-NP ortholog pairs and calculate a total of 889 sequence based features for these proteins. The pairwise alignments of these ortholog pairs are used to build a residue substitution propensity matrix between APs and NPs. We use Gini importance provided by the Random Forest algorithm to rank the relative importance of these features. A scoring function using the 10 most significant features is developed and optimized using a hill climbing algorithm. The accuracy of the score function is 86.01% in predicting AP-NP ortholog pairs and is 76.65% in predicting non-ortholog AP-NP pairs, suggesting that there are significant differences between APs and NPs which can be used to predict relative acidostability of proteins. The overall trends uncovered in the study can be used as general guidelines for designing acidostable proteins. To best of our knowledge, this work represents the first systematic comparative study of the acidostable proteins and their non-acidostable orthologs. PMID:23049817

  13. Transcriptional regulation of muscle fatty acid-binding protein.

    PubMed Central

    Carey, J O; Neufer, P D; Farrar, R P; Veerkamp, J H; Dohm, G L

    1994-01-01

    Heart fatty acid-binding protein (H-FABP) is present in a wide variety of tissues but is found in the highest concentration in cardiac and red skeletal muscle. It has been proposed that the expression of H-FABP correlates directly with the fatty acid-oxidative capacity of the tissue. In the present study, the expression of H-FABP was measured in red and white skeletal muscle under two conditions in which fatty acid utilization is known to be increased: streptozotocin-induced diabetes and fasting. Protein concentration, mRNA concentration and transcription rate were measured under both conditions. The level of both protein and mRNA increased approximately 2-fold under each condition. The transcription rate was higher in red skeletal muscle than in white muscle, was increased 2-fold during fasting, but was unchanged by streptozotocin-induced diabetes. In addition to supporting the hypothesis that H-FABP is induced during conditions of increased fatty acid utilization, these findings demonstrate that the regulation of H-FABP expression may or may not be at the level of transcription depending on the stimulus. Images Figure 2 Figure 3 PMID:8141774

  14. Differential Acute and Chronic Effects of Leptin on Hypothalamic Astrocyte Morphology and Synaptic Protein Levels

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Burgos-Ramos, Emma; Granado, Miriam; Frago, Laura M.; Barrios, Vicente; Horvath, Tamas

    2011-01-01

    Astrocytes participate in neuroendocrine functions partially through modulation of synaptic input density in the hypothalamus. Indeed, glial ensheathing of neurons is modified by specific hormones, thus determining the availability of neuronal membrane space for synaptic inputs, with the loss of this plasticity possibly being involved in pathological processes. Leptin modulates synaptic inputs in the hypothalamus, but whether astrocytes participate in this action is unknown. Here we report that astrocyte structural proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are induced and astrocyte morphology modified by chronic leptin administration (intracerebroventricular, 2 wk), with these changes being inversely related to modifications in synaptic protein densities. Similar changes in glial structural proteins were observed in adult male rats that had increased body weight and circulating leptin levels due to neonatal overnutrition (overnutrition: four pups/litter vs. control: 12 pups/litter). However, acute leptin treatment reduced hypothalamic GFAP levels and induced synaptic protein levels 1 h after administration, with no effect on vimentin. In primary hypothalamic astrocyte cultures leptin also reduced GFAP levels at 1 h, with an induction at 24 h, indicating a possible direct effect of leptin. Hence, one mechanism by which leptin may affect metabolism is by modifying hypothalamic astrocyte morphology, which in turn could alter synaptic inputs to hypothalamic neurons. Furthermore, the responses to acute and chronic leptin exposure are inverse, raising the possibility that increased glial activation in response to chronic leptin exposure could be involved in central leptin resistance. PMID:21343257

  15. Protein and amino acid requirements in human nutrition.

    PubMed

    2007-01-01

    The World Health Organization and the Food and Agriculture Organization have worked to quantify the energy and nutrient needs of populations since 1949. This is the latest in a series of reports that aim to provide: updates on protein and amino acid requirements in health and disease for all age groups and pregnant and lactating mothers; recommendations on protein requirements in health and disease, including their implications for developing countries; recommendations on protein quality and labelling for worldwide use. This report provides the tools to address practical questions on the adequacy of food supplies, targets for food and nutrition policy, and labelling of protein quality. It contains specific recommendations for infant, child and adult nutrition. This report is an essential reference for those who need to determine the adequacy of population food intakes; set national food and nutrition guidelines and regulations on the protein and amino acid content of industrially processed foods; determine nutrient needs, and evaluate and ensure the adequacy of rations for vulnerable groups. The tools in this report can also be used to map and monitor global food shortages and under-nutrition through early warning systems.

  16. Fatty acid binding protein in the intestine of the chicken.

    PubMed

    Katongole, J B; March, B E

    1979-03-01

    The mucosa of the mesenteric intestine of the chicken has been found to contain a fatty acid binding protein (FABP) with a molecular weight of less than 12,400. The protein is present in the newly hatched chick before ingestion of feed and in the adult bird. When a low-fat diet is fed, the concentration of the FABP is highest in the proximal portion of the intestine and decreases posteriorly. When a high-fat diet is fed, an increase occurs in the amount of FABP in the lower section of the intestine.

  17. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

    PubMed Central

    Nguyen, Chi; Haushalter, Robert W.; Lee, D. John; Markwick, Phineus R. L.; Bruegger, Joel; Caldara-Festin, Grace; Finzel, Kara; Jackson, David R.; Ishikawa, Fumihiro; O’Dowd, Bing; McCammon, J. Andrew; Opella, Stanley J.; Tsai, Shiou-Chuan; Burkart, Michael D.

    2015-01-01

    Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS enzymes operate upon ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain.2 The transient nature of ACP-enzyme interactions imposes a major obstacle to gaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to properly study protein-protein interactions. In this work, we describe the application of a mechanism-based probe that allows site-selective covalent crosslinking of AcpP to FabA, the E. coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase. We report the 1.9 Å crystal structure of the crosslinked AcpP=FabA complex as a homo-dimer, in which AcpP exhibits two different conformations likely representing snapshots of ACP in action: the 4′-phosphopantetheine (PPant) group of AcpP first binds an arginine-rich groove of FabA, followed by an AcpP helical conformational change that locks the AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution NMR techniques, including chemical shift perturbations and RDC measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. Combined with molecular dynamics simulations, we show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies will prove general for fatty acid, polyketide and non-ribosomal biosyntheses. Here the foundation is laid for defining the dynamic action of carrier protein activity in primary and secondary metabolism, providing insight into pathways that can play major roles in the treatment of cancer, obesity and infectious

  18. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  19. Fatty acid hydroperoxide lyase is a heme protein.

    PubMed

    Shibata, Y; Matsui, K; Kajiwara, T; Hatanaka, A

    1995-02-01

    Fatty acid hydroperoxide lyase (HPO lyase) is an enzyme that cleaves hydroperoxides of polyunsaturated fatty acids to form short chain aldehydes and omega-oxoacids. Spectrophotometric analyses of HPO lyase highly purified from green bell pepper fruits indicate that it is a heme protein. The heme species was revealed to be heme b (protoheme IX) from the absorption spectrum of the pyridine hemochromogen. Although the spectrum highly resembles that of a plant cytochrome P450, allene oxide synthase from flaxseed, CO treatment of the enzyme caused no appearance of a peak at 450 nm, which is an essential diagnostic feature of a cytochrome P450. Internal amino acid sequences determined with peptide fragments obtained from the lyase showed no homology with any reported sequences.

  20. Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria.

    PubMed

    Thomas, Mark E; Harris, Kevin P G; Walls, John; Furness, Peter N; Brunskill, Nigel J

    2002-10-01

    The role of the albumin-carried fatty acids in the induction of tubulointerstitial injury was studied in protein-overload proteinuria. Rats were injected with fatty acid-carrying BSA [FA(+)BSA], fatty acid-depleted BSA [FA(-)BSA], or saline. Macrophage infiltration was measured by immunohistochemical staining, apoptotic cells were detected by in situ end labeling, and proliferating cells were identified by in situ hybridization for histone mRNA. Macrophage infiltration was significantly greater in the FA(+)BSA group than in the FA(-)BSA and saline groups. The infiltrate was largely restricted to the outer cortex. Apoptosis was greater in the FA(+)BSA group than in the FA(-)BSA and saline groups. Compared with the saline group, apoptosis was significantly increased in the FA(+)BSA group but not in the FA(-)BSA group. Cortical cells proliferated significantly more in the FA(+)BSA and FA(-)BSA groups than in the saline group. FA(+)BSA is therefore a more potent inducer of macrophage infiltration and cell death than FA(-)BSA. The fatty acids carried on albumin may be the chief instigators of tubulointerstitial injury in protein-overload proteinuria. PMID:12217854

  1. Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study

    PubMed Central

    2011-01-01

    Background Fragile X syndrome is caused by loss of function of the fragile X mental retardation 1 (FMR1) gene and shares multiple phenotypes with autism. We have previously found reduced expression of the protein product of FMR1 (FMRP) in vermis of adults with autism. Methods In the current study, we have investigated levels of FMRP in the superior frontal cortex of people with autism and matched controls using Western blot analysis. Because FMRP regulates the translation of multiple genes, we also measured protein levels for downstream molecules metabotropic glutamate receptor 5 (mGluR5) and γ-aminobutyric acid (GABA) A receptor β3 (GABRβ3), as well as glial fibrillary acidic protein (GFAP). Results We observed significantly reduced levels of protein for FMRP in adults with autism, significantly increased levels of protein for mGluR5 in children with autism and significantly increased levels of GFAP in adults and children with autism. We found no change in expression of GABRβ3. Our results for FMRP, mGluR5 and GFAP confirm our previous work in the cerebellar vermis of people with autism. Conclusion These changes may be responsible for cognitive deficits and seizure disorder in people with autism. PMID:21548960

  2. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1.

    PubMed

    Nelson, Cara H; Peng, Chi-Chi; Lutz, Justin D; Yeung, Catherine K; Zelter, Alex; Isoherranen, Nina

    2016-08-01

    Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.

  3. Phytic acid reduction in soy protein improves zinc bioavailability

    SciTech Connect

    Zhou, J.R.; Wong, M.S.; Burns, R.A.; Erdman, J.W. Jr. Mead Johnson Research Center, Evansville, IN )

    1991-03-15

    The objective of this study was to confirm previous studies that have suggested that reduction of phytic acid in soy improved zinc bioavailability (BV). Two commercially-produced soybean isolates containing either a normal phytic acid level or a reduced level were formulated into diets so as to provide 6 or 9 ppm zinc. Control diets were egg white protein-based and contained 3, 6 or 9 ppm zinc from zinc carbonate. Weanling male rats were fed these diets for 21 days and food intake and weight gain monitored. Slope ratio analysis of total tibia zinc content compared to total zinc intake revealed that zinc BV from reduced phytic acid soy isolate-containing diets was indistinguishable from control egg white diets. In contrast, zinc BV from normal soy isolate diets was significantly reduced compared to reduced phytic acid and control diets. These results coupled with other results indicate that phytic acid is the inhibitory factor in soybean products that results in reduced zinc BV.

  4. Characterization of a fatty acid-binding protein from rat heart.

    PubMed

    Offner, G D; Troxler, R F; Brecher, P

    1986-04-25

    A fatty acid-binding protein has been isolated from rat heart and purified by gel filtration chromatography on Sephadex G-75 and anion-exchange chromatography on DE52. The circular dichroic spectrum of this protein was not affected by protein concentration, suggesting that it does not aggregate into multimers. Computer analyses of the circular dichroic spectrum predicted that rat heart fatty acid-binding protein contains approximately 22% alpha-helix, 45% beta-form and 33% unordered structure. Immunological studies showed that the fatty acid-binding proteins from rat heart and rat liver are immunochemically unrelated. The amino acid composition and partial amino acid sequence of the heart protein indicated that it is structurally related to, but distinct from, other fatty acid-binding proteins from liver, intestine, and 3T3 adipocytes. Using a binding assay which measures the transfer of fatty acids between donor liposomes and protein (Brecher, P., Saouaf, R., Sugarman, J. M., Eisenberg, D., and LaRosa, K. (1984) J. Biol. Chem. 259, 13395-13401), it was shown that both rat heart and liver fatty acid-binding proteins bind 2 mol of oleic acid or palmitic acid/mol of protein. The structural and functional relationship of rat heart fatty acid-binding protein to fatty acid-binding proteins from other tissues is discussed. PMID:3957934

  5. Modulation of extracellular signal-related kinase, cyclin D1, glial fibrillary acidic protein, and vimentin expression in estradiol-pretreated astrocyte cultures treated with competence and progression growth factors.

    PubMed

    Bramanti, Vincenzo; Grasso, Sonia; Tibullo, Daniele; Giallongo, Cesarina; Raciti, Giuseppina; Viola, Maria; Avola, Roberto

    2015-09-01

    The present study seeks to elucidate the interactions between the "competence" growth factor basic fibroblast growth factor (bFGF) and/or estrogen 17β-estradiol and the "progression" growth factors epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and insulin (INS) on DNA labeling and also cyclin D1, extracellular signal-related kinase 1/2 (ERK1/2), glial fibrillary acidic protein (GFAP), and vimentin expression in astroglial cultures under different experimental conditions. Pretreatment for 24 hr with bFGF and subsequent exposure for 36 hr to estradiol (E2 ) and EGF, IGF-I, or INS stimulated DNA labeling in the last 12 hr, especially when the cultures were treated with progression growth factors. bFGF pretreatment and subsequent treatment with E2 for 36 hr stimulated DNA labeling. The 36-hr E2 treatment alone did not significantly decrease DNA labeling, but contemporary addition of E2 with two or three growth factors stimulated DNA labeling remarkably. When E2 was coadded with growth factors, a significantly increased DNA labeling was observed, demonstrating an astroglial synergistic mitogenic effect evoked by contemporary treatment with growth factors in the presence of estrogens. Cyclin D1 expression was markedly increased when astrocyte cultures were pretreated for 36 hr with E2 and subsequently treated with two or three competence and progression growth factors. A highly significant increase of ERK1/2 expression was observed after all the treatments (EGF, bFGF, INS, IGF-I alone or in combination with two or three growth factors). GFAP and vimentin expression was markedly increased when the cultures were treated with two or three growth factors. In conclusion, our data demonstrate estradiol-growth factor cross-talk during astroglial cell proliferation and differentiation in culture.

  6. Formation, reactivity and detection of protein sulfenic acids

    PubMed Central

    Kettenhofen, Nicholas J.; Wood, Matthew J.

    2010-01-01

    It has become clear in recent decades that the post-translational modification of protein cysteine residues is a crucial regulatory event in biology. Evidence supports the reversible oxidation of cysteine thiol groups as a mechanism of redox-based signal transduction while the accumulation of proteins with irreversible thiol oxidations is a hallmark of stress-induced cellular damage. The initial formation of cysteine sulfenic acid (SOH) derivatives, along with the reactive properties of this functional group, serves as a crossroads whereby the local redox environment may dictate the progression of either regulatory or pathological outcomes. Protein-SOH are established as transient intermediates in the formation of more stable cysteine oxidation products both under basal conditions and in response to several redox-active extrinsic compounds. This review details both direct and multi-step chemical routes proposed to generate protein-SOH, the spectrum of secondary reactions that may follow their initial formation and the arsenal of experimental tools available for their detection. Both the pioneering studies that have provided a framework for our current understanding of protein-SOH as well as state-of-the-art proteomic strategies designed for global assessments of this post-translational modification are highlighted. PMID:20845928

  7. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  8. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation. PMID:6283503

  9. Foamy Virus Protein-Nucleic Acid Interactions during Particle Morphogenesis.

    PubMed

    Hamann, Martin V; Lindemann, Dirk

    2016-01-01

    Compared with orthoretroviruses, our understanding of the molecular and cellular replication mechanism of foamy viruses (FVs), a subfamily of retroviruses, is less advanced. The FV replication cycle differs in several key aspects from orthoretroviruses, which leaves established retroviral models debatable for FVs. Here, we review the general aspect of the FV protein-nucleic acid interactions during virus morphogenesis. We provide a summary of the current knowledge of the FV genome structure and essential sequence motifs required for RNA encapsidation as well as Gag and Pol binding in combination with details about the Gag and Pol biosynthesis. This leads us to address open questions in FV RNA engagement, binding and packaging. Based on recent findings, we propose to shift the point of view from individual glycine-arginine-rich motifs having functions in RNA interactions towards envisioning the FV Gag C-terminus as a general RNA binding protein module. We encourage further investigating a potential new retroviral RNA packaging mechanism, which seems more complex in terms of the components that need to be gathered to form an infectious particle. Additional molecular insights into retroviral protein-nucleic acid interactions help us to develop safer, more specific and more efficient vectors in an era of booming genome engineering and gene therapy approaches. PMID:27589786

  10. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh.

    PubMed

    Shaheen, Nazma; Islam, Saiful; Munmun, Sarah; Mohiduzzaman, Md; Longvah, Thingnganing

    2016-12-15

    Concentrations of standard amino acids were determined in the composite samples (representing 30 agro-ecological zones of Bangladesh) of six prioritized key dietary protein sources: Oryza sativa (rice), Triticum aestivum (wheat flour), Lens culinaris (lentils), Pangusius pangusius (pangas), Labeo rohita (rohu) and Oreochromis mossambicus (tilapia). Digestible indispensable amino acid scores (DIAAS) was calculated using published data on amino acids' digestibility to evaluate the protein quality of these foods. Indispensable amino acid (IAA) contents (mg IAA/g protein), found to be highest in pangas (430) and lowest in wheat (336), of all these analyzed foods exceeded the FAO recommended daily allowance (277mg IAA/g protein) and contributed on average 40% to total amino acid contents. Untruncated DIAAS values ranged from 51% (lysine) in wheat to 106% (histidine) in pangas and distinguished pangas, rohu, and tilapia containing 'excellent quality' protein (DIAAS>100%) with potential to complement lower quality protein of cereals, fruits, and vegetables. PMID:27451158

  11. Photolabeling of brain membrane proteins by lysergic acid diethylamide

    SciTech Connect

    Mahon, A.C.; Hartig, P.R.

    1982-04-05

    /sup 3/H-Lysergic acid diethylamide (/sup 3/H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a sub-population of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. /sup 3/H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays.

  12. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts.

  13. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  14. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. PMID:26762189

  15. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  16. Separation of membranes from acid-solubilized fish muscle proteins with the aid of calcium ions and organic acids.

    PubMed

    Liang, Yong; Hultin, Herbert O

    2005-04-20

    Calcium chloride, and to a lesser extent MgCl2, aided in the separation of membranes by centrifugation from cod (Gadus morhua) muscle homogenates solubilized at pH 3 in the presence of citric acid or malic acid but not lactic acid. Adding citric acid and Ca2+ before solubilizing the cod muscle homogenates was needed for the effect. At 1 mM citric acid, 70-80% of the phospholipid and 25-30% of the protein were removed at 10 mM Ca2+. At 8 mM Ca2+, citric acid showed an optimal effect on phospholipid removal at 5 mM with 90% of the phospholipid and 35% of the protein removed. The treatment with citric acid and Ca2+ was also effective in separating the membrane from solubilized herring (Clupea harengus) muscle homogenate. Ca2+ and citric acid might exert their influence by disconnecting linkages between membranes and cytoskeletal proteins.

  17. Molecular evolution of monotreme and marsupial whey acidic protein genes.

    PubMed

    Sharp, Julie A; Lefèvre, Christophe; Nicholas, Kevin R

    2007-01-01

    Whey acidic protein (WAP), a major whey protein present in milk of a number of mammalian species has characteristic cysteine-rich domains known as four-disulfide cores (4-DSC). Eutherian WAP, expressed in the mammary gland throughout lactation, has two 4-DSC domains, (DI-DII) whereas marsupial WAP, expressed only during mid-late lactation, contains an additional 4-DSC (DIII), and has a DIII-D1-DII configuration. We report the expression and evolution of echidna (Tachyglossus aculeatus) and platypus (Onithorhynchus anatinus) WAP cDNAs. Predicted translation of monotreme cDNAs showed echidna WAP contains two 4-DSC domains corresponding to DIII-DII, whereas platypus WAP contains an additional domain at the C-terminus with homology to DII and has the configuration DIII-DII-DII. Both monotreme WAPs represent new WAP protein configurations. We propose models for evolution of the WAP gene in the mammalian lineage either through exon loss from an ancient ancestor or by rapid evolution via the process of exon shuffling. This evolutionary outcome may reflect differences in lactation strategy between marsupials, monotremes, and eutherians, and give insight to biological function of the gene products. WAP four-disulfide core domain 2 (WFDC2) proteins were also identified in echidna, platypus and tammar wallaby (Macropus eugenii) lactating mammary cells. WFDC2 proteins are secreted proteins not previously associated with lactation. Mammary gland expression of tammar WFDC2 during the course of lactation showed WFDC2 was elevated during pregnancy, reduced in early lactation and absent in mid-late lactation.

  18. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  19. Acid-degradable polyurethane particles for protein-based vaccines

    PubMed Central

    Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Paramonov, Sergey E.; Dashe, Jesse; Fréchet, Jean M. J.

    2009-01-01

    Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation by-product of the particles was synthesized and tested in vitro for toxicity indicating an LC50 of 12,500 μg/ml. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation by-product inside RAW macrophages was at its highest level after 24 hours of culture and was efficiently exocytosed until it was no longer detectable after four days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with non-toxic by-products, which may find use in various biomedical applications including protein-based vaccines. PMID:18710254

  20. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  1. Shedding light on proteins, nucleic acids, cells, humans and fish.

    PubMed

    Setlow, Richard B

    2002-03-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  2. Investigation of protein-fatty acid interactions in zein films

    NASA Astrophysics Data System (ADS)

    Wang, Qin

    Zein, the prolamin of corn, has shown potential as industrial biopolymer for packaging and agricultural uses. Previous researchers plasticized zein with oleic acid and extruded it into sheets and films. Such products showed reasonable tensile and water barrier properties. However, those properties were affected by film structure, which is believed controlled by the interaction between zein and plasticizer. The nature of those interactions is still not well understood. Protein-fatty acid interactions in zein resin films were investigated by surface plasmon resonance and atomic force microscopy in this work. Preliminary research was conducted to establish the effect of solvent systems on the plasticization of zein by oleic acid. Although slight differences were observed, it was concluded that the use of 75% ethanol or 75% 2-propanol produced similar results. Surface plasmon resonance was employed to investigate zein static and dynamic adsorption on surfaces of hydrophilic and hydrophobic self-assembled monolayers (SAMs) generated by 11-mercaptoundecanoic acid or 1-octanethiol, respectively, and representing the two end groups of oleic acid. Results indicated that zein was adsorbed to both surfaces but showed higher affinity for hydrophilic groups. The corresponding thickness of zein specific binding layer on hydrophilic and hydrophobic SAMs was around 4.7 nm and 4.6 nm. Zein exhibited higher affinity for hydrophilic than for hydrophobic SAMs evidenced from the higher initial adsorption rate and ultimate surface coverage at all zein concentrations. Flushing surface with buffer would leave an apparent monolayer of zein, which is 5 times higher for hydrophilic than hydrophobic SAMs. This observation suggested that zein may use different sides of its molecule to interact with hydrophobic or hydrophilic groups. The surface topography of zein deposits on both SAMs was examined by atomic force microscopy. It was found that zein formed distinct ring-shaped structures with

  3. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  4. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  5. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids.

    PubMed

    Miyata, Masaaki; Yamakawa, Hiroki; Hayashi, Kenjiro; Kuribayashi, Hideaki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2013-08-15

    The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen. In ABPC-treated mice, enterobacteria-biotransformed bile acid, taurodeoxycholic acid (TDCA) and cholic acid (CA) levels were decreased, whereas taurocholic acid (TCA) and tauro-β-muricholic acid levels were increased in the intestinal lumen. Ileal ASBT protein levels in brush-border membrane vesicles (BBMVs), but not ileal Asbt mRNA levels, were significantly increased in the ABPC-treated mice, and the extent of ubiquitination of the ileal ASBT protein was reduced in the ABPC-treated mice. Treatment of ABPC-pretreated mice with CA or TDCA, but not TCA, significantly decreased ileal ASBT protein levels and increased the extent of ubiquitination of ileal ASBT protein. Treatment of mice with the lysosome inhibitor, chloroquine, or the proteasome inhibitor, MG132, increased ileal ASBT protein levels in BBMVs. CA-mediated reduction of ASBT protein levels in the ABPC-pretreated mice was attenuated by co-treatment with chloroquine or MG132. These results suggest that ileal ASBT protein is degraded by a ubiquitin-dependent pathway in response to enterobacteria-associated bile acids. PMID:23872411

  6. Prediction of protein-protein interactions with clustered amino acids and weighted sparse representation.

    PubMed

    Huang, Qiaoying; You, Zhuhong; Zhang, Xiaofeng; Zhou, Yong

    2015-01-01

    With the completion of the Human Genome Project, bioscience has entered into the era of the genome and proteome. Therefore, protein-protein interactions (PPIs) research is becoming more and more important. Life activities and the protein-protein interactions are inseparable, such as DNA synthesis, gene transcription activation, protein translation, etc. Though many methods based on biological experiments and machine learning have been proposed, they all spent a long time to learn and obtained an imprecise accuracy. How to efficiently and accurately predict PPIs is still a big challenge. To take up such a challenge, we developed a new predictor by incorporating the reduced amino acid alphabet (RAAA) information into the general form of pseudo-amino acid composition (PseAAC) and with the weighted sparse representation-based classification (WSRC). The remarkable advantages of introducing the reduced amino acid alphabet is being able to avoid the notorious dimensionality disaster or overfitting problem in statistical prediction. Additionally, experiments have proven that our method achieved good performance in both a low- and high-dimensional feature space. Among all of the experiments performed on the PPIs data of Saccharomyces cerevisiae, the best one achieved 90.91% accuracy, 94.17% sensitivity, 87.22% precision and a 83.43% Matthews correlation coefficient (MCC) value. In order to evaluate the prediction ability of our method, extensive experiments are performed to compare with the state-of-the-art technique, support vector machine (SVM). The achieved results show that the proposed approach is very promising for predicting PPIs, and it can be a helpful supplement for PPIs prediction. PMID:25984606

  7. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  8. Free amino acids in crocodilians fed proteins of different biological value.

    PubMed

    Herbert, J D; Coulson, R A

    1975-05-01

    Changes in plasma levels of amino acids derived from fed protein were determined by feeding crocodilians (Caiman crocodilus crocodilus and Alligator mississipiensis) 7.5 g protein/kg body weight and by monitoring the plasma free amino acids for several days. Zein and several other vegetable proteins produced no rise in plasma amino acids and were excreted intact in the feces. Casein and fish muscle were rapidly digested but produced little rise in plasma amino acids, and the increases showed no relationship to the composition of the protein fed. Gelatin feeding led to large increases in plasma amino acids that persisted for more than a week, and the resulting pattern was nearly identical to the composition of gelatin with the exception of aspartic and glutamic acids, and several animals died. Equivalent quantities of fish muscle protein were assimilated without difficulty by the crocodilians. Endogenous protein secreted into the gut apparently contributed little to the amino acid mixture absorbed.

  9. Mitogen-activated protein kinase and abscisic acid signal transduction.

    PubMed

    Heimovaara-Dijkstra, S; Testerink, C; Wang, M

    2000-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), calcium, potassium, pH and a transient activation of MAP kinase. The ABA signal transduction cascades have been shown to be tissue-specific, the transient activation of MAP kinase has until now only been found in barley aleurone cells. However, type 2C phosphatases are involved in the induction of most ABA responses, as shown by the PP2C-deficient abi-mutants. These phosphatases show high homology with phosphatases that regulate MAP kinase activity in yeast. In addition, the role of farnesyl transferase as a negative regulator of ABA responses also indicates towards involvement of MAP kinase in ABA signal transduction. Farnesyl transferase is known to regulate Ras proteins, Ras proteins in turn are known to regulate MAP kinase activation. Interestingly, Ras-like proteins were detected in barley aleurone cells. Further establishment of the involvement of MAP kinase in ABA signal transduction and its role therein, still awaits more study.

  10. Nucleic Acids for Ultra-Sensitive Protein Detection

    PubMed Central

    Janssen, Kris P. F.; Knez, Karel; Spasic, Dragana; Lammertyn, Jeroen

    2013-01-01

    Major advancements in molecular biology and clinical diagnostics cannot be brought about strictly through the use of genomics based methods. Improved methods for protein detection and proteomic screening are an absolute necessity to complement to wealth of information offered by novel, high-throughput sequencing technologies. Only then will it be possible to advance insights into clinical processes and to characterize the importance of specific protein biomarkers for disease detection or the realization of “personalized medicine”. Currently however, large-scale proteomic information is still not as easily obtained as its genomic counterpart, mainly because traditional antibody-based technologies struggle to meet the stringent sensitivity and throughput requirements that are required whereas mass-spectrometry based methods might be burdened by significant costs involved. However, recent years have seen the development of new biodetection strategies linking nucleic acids with existing antibody technology or replacing antibodies with oligonucleotide recognition elements altogether. These advancements have unlocked many new strategies to lower detection limits and dramatically increase throughput of protein detection assays. In this review, an overview of these new strategies will be given. PMID:23337338

  11. Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids.

    PubMed

    Bobkova, Ekaterina V; Liu, Wallace H; Colayco, Sharon; Rascon, Justin; Vasile, Stefan; Gasior, Carlton; Critton, David A; Chan, Xochella; Dahl, Russell; Su, Ying; Sergienko, Eduard; Chung, Thomas D Y; Mustelin, Tomas; Page, Rebecca; Tautz, Lutz

    2011-02-01

    Protein tyrosine phosphatases (PTPs) have only recently become the focus of attention in the search for novel drug targets despite the fact that they play vital roles in numerous cellular processes and are implicated in many human diseases. The hematopoietic protein tyrosine phosphatase (HePTP) is often found dysregulated in preleukemic myelodysplastic syndrome (MDS), as well as in acute myelogenous leukemia (AML). Physiological substrates of HePTP include the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Specific modulators of HePTP catalytic activity will be useful for elucidating mechanisms of MAPK regulation in hematopietic cells, and may also provide treatments for hematopoietic malignancies such as AML. Here we report the discovery of phenoxyacetic acids as inhibitors of HePTP. Structure-activity relationship (SAR) analysis and in silico docking studies reveal the molecular basis of HePTP inhibition by these compounds. We also show that these compounds are able to penetrate cell membranes and inhibit HePTP in human T lymphocytes.

  12. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase. PMID:16631439

  13. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  14. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  15. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary protein provides essential amino acids (EAA) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to post-prandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  16. Limiting amino acid for protein synthesis with mammary cells in tissue culture.

    PubMed

    Park, C S; Chandler, P T; Norman, A W

    1976-05-01

    To identify the limiting amino acid in the minimal essential medium as published by Eagle (Science 130:432, 1959) for milk protein synthesis in rat mammary cells in tissue culture, two different experimental approaches were used. The first study involved the reduction of amino acids singly from the total amino acid complement of the medium for milk protein synthesis. The second study was to investigate the effect on milk protein synthesis of single amino acid addition to the basic complement of amino acids. Order of limiting amino acids was lysine (first) and possible methionine, valine, or arginine (second).

  17. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-01

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  18. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization.

    PubMed

    Binas, B; Danneberg, H; McWhir, J; Mullins, L; Clark, A J

    1999-05-01

    Nonenzymatic cytosolic fatty acid binding proteins (FABPs) are abundantly expressed in many animal tissues with high rates of fatty acid metabolism. No physiological role has been demonstrated for any FABP, although these proteins have been implicated in transport of free long-chain fatty acids (LCFAs) and protection against LCFA toxicity. We report here that mice lacking heart-type FABP (H-FABP) exhibit a severe defect of peripheral (nonhepatic, non-fat) LCFA utilization. In these mice, the heart is unable to efficiently take up plasma LCFAs, which are normally its main fuel, and switches to glucose usage. Altered plasma levels of LCFAs, glucose, lactate and beta-hydroxybutyrate are consistent with depressed peripheral LCFA utilization, intensified carbohydrate usage, and increased hepatic LCFA oxidation; these changes are most pronounced under conditions favoring LCFA oxidation. H-FABP deficiency is only incompletely compensated, however, causing acute exercise intolerance and, at old age, a localized cardiac hypertrophy. These data establish a requirement for H-FABP in cardiac intracellular lipid transport and fuel selection and a major role in metabolic homeostasis. This new animal model should be particularly useful for investigating the significance of peripheral LCFA utilization for heart function, insulin sensitivity, and blood pressure.

  19. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  20. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  1. Site-specific incorporation of redox active amino acids into proteins

    SciTech Connect

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  2. Site-specific incorporation of redox active amino acids into proteins

    SciTech Connect

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  3. Interconnection between the protein solubility and amino acid and dipeptide compositions.

    PubMed

    Niu, Xiaohui; Li, Nana; Chen, Dinyan; Wang, Zengzhen

    2013-01-01

    Obtaining soluble proteins in sufficient concentrations helps increase the overall success rate in various experimental studies. Protein solubility is an individual trait ultimately determined by its primary protein sequence. Exploring the interconnection between the protein solubility and the compositions of protein sequence is instrumental for setting priorities on targets in large scale proteomics projects. In this paper, amino acid composition (20 dimensions) and the dipeptide composition (400 dimensions) were extracted to form the total candidate feature pool (420 dimensions), and each feature was selected into the feature vectors one by one, which were sorted by the absolute value of the correlation coefficient. Finally, we evaluated and recorded the 420 results of Support Vector Machine (SVM) as the prediction engine. According to the results of SVM, the first 208 features were chosen from the 420 dimensions, which were considered as the efficient ones. By analyzing the composition of the former 208 features, we found that the protein solubility was significantly influenced by the occurrence frequencies of the acidic amino acids, basic amino acids, non-polar hydrophobic amino acids and the two polar neutral amino acids(C, Q) in the protein sequences. Additionally, we detected that the dipeptides composed by the acidic amino acids (D, E) and basic amino acids (K, R and H), especially the dipeptide composed by the acidic amino acids (D, E), had strong interconnection with the protein solubility.

  4. On combining protein sequences and nucleic acid sequences in phylogenetic analysis: the homeobox protein case.

    PubMed

    Agosti, D; Jacobs, D; DeSalle, R

    1996-01-01

    Amino acid encoding genes contain character state information that may be useful for phylogenetic analysis on at least two levels. The nucleotide sequence and the translated amino acid sequences have both been employed separately as character states for cladistic studies of various taxa, including studies of the genealogy of genes in multigene families. In essence, amino acid sequences and nucleic acid sequences are two different ways of character coding the information in a gene. Silent positions in the nucleotide sequence (first or third positions in codons that can accrue change without changing the identity of the amino acid that the triplet codes for) may accrue change relatively rapidly and become saturated, losing the pattern of historical divergence. On the other hand, non-silent nucleotide alterations and their accompanying amino acid changes may evolve too slowly to reveal relationships among closely related taxa. In general, the dynamics of sequence change in silent and non-silent positions in protein coding genes result in homoplasy and lack of resolution, respectively. We suggest that the combination of nucleic acid and the translated amino acid coded character states into the same data matrix for phylogenetic analysis addresses some of the problems caused by the rapid change of silent nucleotide positions and overall slow rate of change of non-silent nucleotide positions and slowly changing amino acid positions. One major theoretical problem with this approach is the apparent non-independence of the two sources of characters. However, there are at least three possible outcomes when comparing protein coding nucleic acid sequences with their translated amino acids in a phylogenetic context on a codon by codon basis. First, the two character sets for a codon may be entirely congruent with respect to the information they convey about the relationships of a certain set of taxa. Second, one character set may display no information concerning a phylogenetic

  5. Clustering amino acid contents of protein domains: biochemical functions of proteins and implications for origin of biological macromolecules.

    PubMed

    Torshin, I Y

    2001-04-01

    Structural classes of protein domains correlate with their amino acid compositions. Several successful algorithms (that use only amino acid composition) have been elaborated for the prediction of structural class or potential biochemical significance. This work deals with dynamic classification (clustering) of the domains on the basis of their amino acid composition. Amino acid contents of domains from a non-redundant PDB set were clustered in 20-dimensional space of amino acid contents. Despite the variations of an empirical parameter and non-redundancy of the set, only one large cluster (tens-hundreds of proteins) surrounded by hundreds of small clusters (1-5 proteins), was identified. The core of the largest cluster contains at least 64% DNA (nucleotide)-interacting protein domains from various sources. About 90% of the proteins of the core are intracellular proteins. 83% of the DNA/nucleotide interacting domains in the core belong to the mixed alpha-beta folds (a+b, a/b), 14% are all-alpha (mostly helices) and all-beta (mostly beta-strands) proteins. At the same time, when core domains that belong to one organism (E.coli) are considered, over 80% of them prove to be DNA/nucleotide interacting proteins. The core is compact: amino acid contents of domains from the core lie in relatively narrow and specific ranges. The core also contains several Fe-S cluster-binding domains, amino acid contents of the core overlap with ferredoxin and CO-dehydrogenase clusters, the oldest known proteins. As Fe-S clusters are thought to be the first biocatalysts, the results are discussed in relation to contemporary experiments and models dealing with the origin of biological macromolecules. The origin of most primordial proteins is considered here to be a result of co-adsorption of nucleotides and amino acids on specific clays, followed by en-block polymerization of the adsorbed mixtures of amino acids.

  6. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  7. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  8. Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression.

    PubMed

    Cruz, Tiago M D; Carvalho, Raquel F; Richardson, Dale N; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  9. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  10. Coffee bean arabinogalactans: acidic polymers covalently linked to protein.

    PubMed

    Redgwell, Robert J; Curti, Delphine; Fischer, Monica; Nicolas, Pierre; Fay, Laurent B

    2002-02-11

    The arabinogalactan content of green coffee beans (Coffea arabica var. Yellow Caturra) was released by a combination of chemical extraction and enzymatic hydrolysis of the mannan-cellulose component of the wall. Several arabinogalactan fractions were isolated, purified by gel-permeation and ion-exchange chromatography and characterised by compositional and linkage analysis. The AG fractions contained between 6 and 8% glucuronic acid, and gave a positive test for the beta-glucosyl-Yariv reagent, a stain specific for arabinogalactan-proteins. The protein component accounted for between 0.5 and 2.0% of the AGPs and contained between 7 and 12% hydroxyproline. The AG moieties displayed considerable heterogeneity with regard to their degree of arabinosylation and the extent and composition of their side-chains. They possessed a MW average of 650 kDa which ranged between 150 and 2000 kDa. An investigation of the structural features of the major AG fraction, released following enzymatic hydrolysis of the mannan-cellulose polymers, allowed a partial structure of coffee arabinogalactan to be proposed.

  11. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    PubMed Central

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  12. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    NASA Astrophysics Data System (ADS)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  13. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  14. Identification of Acidic pH-dependent Ligands of Pentameric C-reactive Protein*

    PubMed Central

    Hammond, David J.; Singh, Sanjay K.; Thompson, James A.; Beeler, Bradley W.; Rusiñol, Antonio E.; Pangburn, Michael K.; Potempa, Lawrence A.; Agrawal, Alok

    2010-01-01

    C-reactive protein (CRP) is a phylogenetically conserved protein; in humans, it is present in the plasma and at sites of inflammation. At physiological pH, native pentameric CRP exhibits calcium-dependent binding specificity for phosphocholine. In this study, we determined the binding specificities of CRP at acidic pH, a characteristic of inflammatory sites. We investigated the binding of fluid-phase CRP to six immobilized proteins: complement factor H, oxidized low-density lipoprotein, complement C3b, IgG, amyloid β, and BSA immobilized on microtiter plates. At pH 7.0, CRP did not bind to any of these proteins, but, at pH ranging from 5.2 to 4.6, CRP bound to all six proteins. Acidic pH did not monomerize CRP but modified the pentameric structure, as determined by gel filtration, 1-anilinonaphthalene-8-sulfonic acid-binding fluorescence, and phosphocholine-binding assays. Some modifications in CRP were reversible at pH 7.0, for example, the phosphocholine-binding activity of CRP, which was reduced at acidic pH, was restored after pH neutralization. For efficient binding of acidic pH-treated CRP to immobilized proteins, it was necessary that the immobilized proteins, except factor H, were also exposed to acidic pH. Because immobilization of proteins on microtiter plates and exposure of immobilized proteins to acidic pH alter the conformation of immobilized proteins, our findings suggest that conformationally altered proteins form a CRP-ligand in acidic environment, regardless of the identity of the protein. This ligand binding specificity of CRP in its acidic pH-induced pentameric state has implications for toxic conditions involving protein misfolding in acidic environments and favors the conservation of CRP throughout evolution. PMID:20843812

  15. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  16. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  17. Effect of branched chain amino acid infusions on body protein metabolism in cirrhosis of liver.

    PubMed Central

    Wright, P D; Holdsworth, J D; Dionigi, P; Clague, M B; James, O F

    1986-01-01

    Thirty seven patients with established cirrhosis of the liver were subjected to measurement of body protein metabolism using L-(1-14C) labelled leucine as a tracer. The effects of disease severity and those of solutions containing 0%, 16%, 35%, 53%, and 100% branched chain amino acids were evaluated. Significant increases in protein synthesis were noted with solutions containing 35%, 53%, and 100% branched chain amino acids, but in patients receiving 100% branched chain amino acids without additional essential amino acid supplement the increase in synthesis was matched by a significant increase in protein breakdown. Protein balance was thus improved only in patients receiving 35% and 53% branched chain amino acids. It was concluded that the high increase in protein breakdown in patients receiving 100% branched chain amino acids was undesirable, and such a solution should not be recommended for clinical use. PMID:3539714

  18. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail. PMID:27452282

  19. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail.

  20. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice.

  1. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability

    PubMed Central

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-01-01

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability. PMID:26056817

  2. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  3. Effects of antinutritional factors on protein digestibility and amino acid availability in foods.

    PubMed

    Gilani, G Sarwar; Cockell, Kevin A; Sepehr, Estatira

    2005-01-01

    Digestibility of protein in traditional diets from developing countries such as India, Guatemala, and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94%). The presence of less digestible protein fractions, high levels of insoluble fiber, and high concentrations of antinutritional factors in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, are responsible for poor digestibility of protein. The effects of the presence of some of the important antinutritional factors on protein and amino digestibilities of food and feed products are reviewed in this chapter. Food and feed products may contain a number of antinutritional factors that may adversely affect protein digestibility and amino acid availability. Antinutritional factors may occur naturally, such as glucosinolates in mustard and rapeseed protein products, trypsin inhibitors and hemagglutinins in legumes, tannins in legumes and cereals, phytates in cereals and oilseeds, and gossypol in cottonseed protein products. Antinutritional factors may also be formed during heat/alkaline processing of protein products, yielding Maillard compounds, oxidized forms of sulfur amino acids, D-amino acids, and lysinoalanine (LAL, an unnatural amino acid derivative). The presence of high levels of dietary trypsin inhibitors from soybeans, kidney beans, or other grain legumes can cause substantial reductions in protein and amino acid digestibilities (up to 50%) in rats and pigs. Similarly, the presence of high levels of tannins in cereals, such as sorghum, and grain legumes, such as fababean (Vicia faba L.), can result in significantly reduced protein and amino acid digestibilities (up to 23%) in rats, poultry, and pigs. Studies involving phytase supplementation of production rations for swine or poultry have provided indirect evidence that normally encountered levels of phytates in cereals and legumes

  4. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    SciTech Connect

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina; Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya; Pessoa-Pureur, Regina

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative

  5. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    PubMed

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown. PMID:17264222

  6. Experimentally Testing the Hypothesis of a Limited Amino Acid Repertoire in Primitive Proteins

    NASA Astrophysics Data System (ADS)

    Akanuma, S.; Nakajima, Y.; Yokobori, S.; Yamagishi, A.

    2013-11-01

    It has been argued that a fewer amino acids were used in primitive proteins and later the repertoire increased up to 20. To test this hypothesis experimentally, we restricted the amino acid usage of a reconstructed, ancestral protein to reduced sets.

  7. Labeling proteins via hole burning of their aromatic amino acids: pressure tuning spectroscopy of BPTI.

    PubMed Central

    Stübner, Markus; Hecht, Christoph; Friedrich, Josef

    2002-01-01

    We demonstrate hole burning on a protein by using an intrinsic aromatic amino acid as a probe. The protein is bovine pancreatic trypsin inhibitor (BPTI), the labeled amino acid is tyrosine. Only one of the four tyrosines could be burned. As an application we present pressure tuning experiments from which the local compressibility around the burned tyrosine probe is determined. PMID:12496122

  8. Expression of the whey acidic protein in transgenic pigs impairs mammary development.

    PubMed

    Shamay, A; Pursel, V G; Wilkinson, E; Wall, R J; Hennighausen, L

    1992-05-01

    The whey acidic protein has been found in milk of mice, rats, rabbits and camels, and its gene is expressed specifically in mammary tissue at late pregnancy and throughout lactation. A characteristic of whey acidic protein is the 'four-disulfide-core' signature which is also present in proteins involved in organ development. We have generated six lines of transgenic pigs which carry a mouse whey acidic protein transgene and express it at high levels in their mammary glands. Transgenic sows from three lines could not produce sufficient quantities of milk to support normal development of healthy offspring. This phenotype appears to be similar, if not identical, to the milchlos phenotype exhibited by mice expressing whey acidic protein transgenes. Mammary tissue from post-partum milchlos sows had an immature histological appearance, which was distinct from that observed during normal development or involution. Expression of the whey acidic protein transgene was found in mammary tissue from sexually immature pigs from milchlos lines, but not in sows from lines that appeared to lactate normally. We suggest that precocious synthesis of whey acidic protein impairs mammary development and function. Impaired mammary development due to inappropriate timing of whey acidic protein expression is consistent with the notion that proteins with the 'four-disulfide-core' signature participate in tissue formation. PMID:1284481

  9. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  10. Influence of dietary protein type and iron source on the absorption of amino acids and minerals.

    PubMed

    Pérez-Llamas, F; Garaulet, M; Martínez, J A; Marín, J F; Larqué, E; Zamora, S

    2001-12-01

    The apparent digestibility coefficient (ADC) of amino acids and the balance of minerals (calcium, phosphorus, magnesium and iron) has been determined in rats fed four diets differing in the protein type (casein or soy protein) and iron source (ferrous sulphate or lactate) in order to study the possible interactions of these nutrients. The availability of amino acids, especially essential amino acids, was greater in the diet made with animal protein (casein). The iron source also affected the absorption of most amino acids in all the diets assayed with ferrous sulphate being greater. The balance of iron, magnesium and phosphorus was higher in the diets containing animal protein. The retention of calcium and magnesium was significantly greater when ferrous sulphate was used as iron source. These results demonstrate the important interaction between amino acids and minerals and between the minerals themselves, which must be carefully studied when selecting different types of protein or mineral sources in human or animal nutrition.

  11. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans.

  12. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  13. Housing Complexity Alters GFAP-Immunoreactive Astrocyte Morphology in the Rat Dentate Gyrus

    PubMed Central

    Salois, Garrick; Smith, Jeffrey S.

    2016-01-01

    Rats used in research are typically housed singly in cages with limited sensory stimulation. There is substantial evidence that housing rats in these conditions lead to numerous neuroanatomical and behavioral abnormalities. Alternatively, rats can be housed in an enriched environment in which rats are housed in groups and given room for exercise and exploration. Enriched environments result in considerable neuroplasticity in the rodent brain. In the dentate gyrus of the hippocampus, enriched environments evoke especially profound neural changes, including increases in the number of neurons and the number of dendritic spines. However, whether changes in astrocytes, a type of glia increasingly implicated in mediating neuroplasticity, are concurrent with these neural changes remains to be investigated. In order to assess morphological changes among astrocytes of the rat dentate gyrus, piSeeDB was used to optically clear 250 μm sections of tissue labeled using GFAP immunohistochemistry. Confocal imaging and image analysis were then used to measure astrocyte morphology. Astrocytes from animals housed in EE demonstrated a reduced distance between filament branch points. Furthermore, the most complex astrocytes were significantly more complex among animals housed in EE compared to standard environments. PMID:26989515

  14. Allied Health Chemistry Laboratory: Amino Acids, Insulin, Proteins, and Skin

    ERIC Educational Resources Information Center

    Dever, David F.

    1975-01-01

    Presents a laboratory experiment specifically designed for allied health students. The students construct molecular models of amino acids, extract amino acids from their skin with hot water, and chromatographically analyze the skin extract and hydrolyzed insulin. (MLH)

  15. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes.

    PubMed Central

    Baker, R T; Board, P G

    1991-01-01

    Complementary DNA clones encoding ubiquitin fused to a 52 amino acid tail protein were isolated from human placental and adrenal gland cDNA libraries. The deduced human 52 amino acid tail protein is very similar to the homologous protein from other species, including the conservation of the putative metal-binding, nucleic acid-binding domain observed in these proteins. Northern blot analysis with a tail-specific probe indicated that the previously identified UbA mRNA species most likely represents comigrating transcripts of the 52 amino acid tail (UbA52) and 80 amino acid tail (UbA80) ubiquitin fusion genes. The UbA52 gene was isolated from a human genomic library and consists of five exons distributed over 3400 base pairs. One intron is in the 5' non-coding region, two interrupt the single ubiquitin coding unit, and the fourth intron is within the tail coding region. Several members of the Alu family of repetitive DNA are associated with the gene. The UbA52 promoter has several features in common with mammalian ribosomal protein genes, including its location in a CpG-rich island, initiation of transcription within a polypyrimidine tract, the lack of a consensus TATA motif, and the presence of Sp1 binding sites, observations that are consistent with the recent identification of the ubiquitin-free tail proteins as ribosomal proteins. Thus, in spite of its unusual feature of being translationally fused to ubiquitin, the 52 amino acid tail ribosomal protein is expressed from a structurally typical ribosomal protein gene. Images PMID:1850507

  16. Amino acid rating method for evaluating protein adequacy of infant formulas.

    PubMed

    Sarwar, G; Botting, H G; Peace, R W

    1989-01-01

    Amino acid profiles and/or protein digestibility (by the rat balance method) were determined for various forms (powder, ready-to-use, liquid concentrate, etc.) of cow's milk- and soy-based infant formulas obtained from 4 manufacturers. The essential amino acid data of the formulas were compared with that of human milk for the calculation of amino acid scores (based on the single most limiting amino acid). The product of amino acid score and total protein (g/100 kcal) was then termed "amino acid rating." Amino acid scores for the milk- and soy-based formulas ranged from 59 to 90 and from 59 to 81%, respectively, due to deficiencies in sulfur amino acids and/or tryptophan. Because of significantly higher total protein contents (g/100 kcal) of soy- (2.65-3.68) and milk-based (2.20-2.95) infant formulas compared to human milk (1.5), the relative amino acid ratings (human milk = 100) for all infant formulas except 2 liquid concentrates (having values of 87%) were above 100%. Values for true digestibility of protein in milk- and soy-based formulas ranged from 87 to 97 and from 92 to 95%, respectively. When corrected for protein digestibility, the relative amino acid ratings for all the milk-based liquid concentrates were below 100% (77-98%).

  17. Optimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity

    PubMed Central

    Yan, Zhiqiang; Wang, Jin

    2013-01-01

    Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions) for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions. PMID:24098651

  18. Biophysical and computational methods to analyze amino acid interaction networks in proteins.

    PubMed

    O'Rourke, Kathleen F; Gorman, Scott D; Boehr, David D

    2016-01-01

    Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies. PMID:27441044

  19. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  20. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  1. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations.

    PubMed

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-27

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8-6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  2. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L.) Proteins and Protein Fractionations

    PubMed Central

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-01

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa. PMID:24473146

  3. Identification of thermophilic proteins by incorporating evolutionary and acid dissociation information into Chou's general pseudo amino acid composition.

    PubMed

    Fan, Guo-Liang; Liu, Yan-Ling; Wang, Hui

    2016-10-21

    Thermophilic proteins can thrive stalely at the high temperatures. Identification of thermophilic protein could be helpful to learn the function of protein. Automated prediction of thermophilic protein is an important tool for genome annotation. In this work, a powerful predictor is proposed by combining amino acid composition, evolutionary information, and acid dissociation constant. The overall prediction accuracy of 93.53% was obtained for using the algorithm of support vector machine. In order to check the performance of our method, two low-similarity independent testing datasets are used to test the proposed method. Comparisons with other methods show that the prediction results were better than other existing methods in literature. This indicates that our approach was effective to predict thermophilic proteins. PMID:27396359

  4. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  5. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  6. Amino acid sequence of the encephalitogenic basic protein from human myelin

    PubMed Central

    Carnegie, P. R.

    1971-01-01

    Myelin from the central nervous system contains an unusual basic protein, which can induce experimental autoimmune encephalomyelitis. The basic protein from human brain was digested with trypsin and other enzymes and the sequence of the 170 amino acids was determined. The localization of the encephalitogenic determinants was described. Possible roles for the protein in the structure and function of myelin are discussed. PMID:4108501

  7. Amino acid metabolism, substrate availability and the control of protein dynamics in the human kidney.

    PubMed

    Garibotto, G; Tessari, P; Sacco, P; Deferrari, G

    1999-01-01

    The mechanisms controlling protein metabolism in the human kidney are not well understood. During adult life, kidney protein content and the size of the kidney remain fairly constant, indicating that protein synthesis and degradation within the kidney are tightly regulated. However, kidney protein turnover may change in response to stimuli such as alterations in substrate availability, hormones or growth factors, acid-base balance, renal work or renal injury with a progressive decrease in the number of nephrons. These factors have been evaluated mainly in animals, in vitro or in vivo. Amino acids, the kidneys substrates for protein synthesis, are provided by several routes. Like in other organs, amino acids can reach the kidney cells through the arterial blood flow. However, they may also come from the degradation of reabsorbed low-molecular weight proteins filtered by the glomerulus. The human kidney has high rates of protein turnover and leucine oxidation. The magnitude of the protein turnover across the human kidney suggests that the protein dynamics is partly determined by intrarenal protein catabolism. As evaluated by a steady-state leucine multiple compartment analysis, kidney protein synthesis is dependent to a similar extent on intrarenal generation of amino acids from protein breakdown and from amino acids taken up from the arterial blood. Kidney mass may therefore depend not only on the availability of free amino acids, but also on filtered proteins which are degraded within the kidney. Future studies could define the mechanisms, metabolic pathways and mediators influencing kidney protein turnover in humans, with a view to better comprehension of the mechanisms of disease. PMID:10493563

  8. [Antinociceptive effect of docosahexaenoic acid (DHA) through long fatty acid receptor G protein-coupled receptor 40 (GPR40)].

    PubMed

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Tokuyama, Shogo

    2014-01-01

    Fatty acids, one class of essential nutrients for humans, are an important source of energy and an essential component of cell membranes. They also function as signal transduction molecules in a variety of biological phenomena. The important functional role of fatty acids in both onset and suppression of pain has become increasingly apparent in recent years. Recently, we have also demonstrated that the release of an endogenous opioid peptide, β-endorphin, plays an important role in the induction of docosahexaenoic acid (DHA)-induced antinociception. It is well known that fatty acids affect intracellular and intercellular signaling as well as the membrane fluidity of neurons. In addition to intracellular actions, unbound free fatty acids (FFAs) can also carry out extracellular signaling by stimulating the G protein-coupled receptor (GPCR). Among these receptors, G protein-coupled receptor 40 (GPR40) has been reported to be activated by long-chain fatty acids such as DHA, eicosapentaenoic acid (EPA) and arachidonic acid. In the peripheral area, GPR40 is preferentially expressed in pancreatic β-cells and is known to relate to the secretion of hormone and peptides. On the other hand, even though this receptor is widely distributed in the central nervous system, reports studying the role and functions of GPR40 in the brain have not been found. In this review, we summarize the findings of our recent study about the long-chain fatty acid receptor GPR40 as a novel pain regulatory system. PMID:24584021

  9. Fast computational methods for predicting protein structure from primary amino acid sequence

    DOEpatents

    Agarwal, Pratul Kumar

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  10. Detection of D-amino acids in purified proteins synthesized in Escherichia coli.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Homma, Hiroshi; Masaki, Haruhiko

    2010-05-01

    It has long been believed that amino acids comprising proteins of all living organisms are only of the L-configuration, except for Gly. However, peptidyl D-amino acids were observed in hydrolysates of soluble high molecular weight fractions extracted from cells or tissues of various organisms. This strongly suggests that significant amounts of D-amino acids are naturally present in usual proteins. Thus we analyzed the D-amino acid contents of His-tag-purified beta-galactosidase and human urocortin, which were synthesized by Escherichia coli grown in controlled synthetic media. After acidic hydrolysis for various times at 110 degrees C, samples were derivatized with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole (NBD-F) and separated on a reverse-phase column followed by a chiral column into D- and L-enantiomers. The contents of D-enantiomers of Ala, Leu, Phe, Val, Asp, and Glu were determined by plotting index D/(D + L) against the incubation time for hydrolysis and extrapolating the linear regression line to 0 h to eliminate the effect of racemization of amino acids during the incubation. Significant contents of D-amino acids were reproducibly detected, the D-amino acid profile being specific to an individual protein. This finding indicated the likelihood that D-amino acids are in fact present in the purified proteins. On the other hand, the D-amino acid contents of proteins were hardly influenced by the addition of D- or L-amino acids to the cultivation medium, whereas intracellular free D-amino acids sensitively varied according to the extracellular conditions. The origin of these D-amino acids detected in proteins was discussed.

  11. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  12. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins.

    PubMed

    Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos

    2015-08-11

    The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson-Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software.

  13. Regulation of protein synthesis by amino acids in muscle of neonates.

    PubMed

    Suryawan, Agus; Davis, Teresa A

    2011-01-01

    The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent that regulates protein synthesis. mTORC1, which controls protein synthesis, has been implicated as a target for leucine. Until recently, there have been few studies exploring the role of amino acids in enhancing muscle protein synthesis in vivo. In this review, we discuss amino acid-induced protein synthesis in muscle in the neonate, focusing on current knowledge of the role of amino acids in the activation of mTORC1 leading to mRNA translation. The role of the amino acid transporters, SNAT2, LAT1, and PAT, in the modulation of mTORC1 activation and the role of amino acids in the activation of putative regulators of mTORC1, i.e., raptor, Rheb, MAP4K3, Vps34, and Rag GTPases, are discussed.

  14. Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria.

    PubMed

    Schönfeld, P; Struy, H

    1999-08-27

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), a branched chain fatty acid accumulating in Refsum disease to high levels throughout the body, induces uncoupling of rat liver mitochondria similar to non-branched fatty acids (e.g. palmitic acid), but the contribution of the ADP/ATP carrier or the aspartate/glutamate carrier in phytanic acid-induced uncoupling is of minor importance. Possible deleterious effects of phytanic acid on membrane-linked energy coupling processes were studied by ESR spectroscopy using rat liver mitochondria and a membrane preparation labeled with the lipid-specific spin probe 5-doxylstearic acid (5-DSA) or the protein-specific spin probe MAL-TEMPO (4-maleimido-2,2,6, 6-tetramethyl-piperidine-1-oxyl). The effects of phytanic acid on phospholipid molecular dynamics and on the physical state of membrane proteins were quantified by estimation of the order parameter or the ratio of the amplitudes of the weakly to strongly immobilized MAL-TEMPO binding sites (W/S ratio), respectively. It was found, that phytanic acid (1) increased the mobility of phospholipid molecules (indicated by a decrease in the order parameter) and (2) altered the conformational state and/or the segmental mobility of membrane proteins (indicated by a drastic decrease in the W/S ratio). Unsaturated fatty acids with multiple cis-double bonds (e.g. linolenic or arachidonic acid), but not non-branched FFA (ranging from chain length C10:0 to C18:0), also decrease the W/S ratio. It is hypothesized that the interaction of phytanic acid with transmembrane proteins might stimulate the proton permeability through the mitochondrial inner membrane according to a mechanism, different to a protein-supported fatty acid cycling.

  15. Crystal Structure of Okadaic Acid Binding Protein 2.1: A Sponge Protein Implicated in Cytotoxin Accumulation.

    PubMed

    Ehara, Haruhiko; Makino, Marie; Kodama, Koichiro; Konoki, Keiichi; Ito, Takuhiro; Sekine, Shun-ichi; Fukuzawa, Seketsu; Yokoyama, Shigeyuki; Tachibana, Kazuo

    2015-07-01

    Okadaic acid (OA) is a marine polyether cytotoxin that was first isolated from the marine sponge Halichondria okadai. OA is a potent inhibitor of protein serine/threonine phosphatases (PP) 1 and 2A, and the structural basis of phosphatase inhibition has been well investigated. However, the role and mechanism of OA retention in the marine sponge have remained elusive. We have solved the crystal structure of okadaic acid binding protein 2.1 (OABP2.1) isolated from H. okadai; it has strong affinity for OA and limited sequence homology to other proteins. The structure revealed that OABP2.1 consists of two α-helical domains, with the OA molecule deeply buried inside the protein. In addition, the global fold of OABP2.1 was unexpectedly similar to that of aequorin, a jellyfish photoprotein. The presence of structural homologues suggested that, by using similar protein scaffolds, marine invertebrates have developed diverse survival systems adapted to their living environments.

  16. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  17. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats.

    PubMed

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping

  18. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  19. How the folding rates of two- and multistate proteins depend on the amino acid properties.

    PubMed

    Huang, Jitao T; Huang, Wei; Huang, Shanran R; Li, Xin

    2014-10-01

    Proteins fold by either two-state or multistate kinetic mechanism. We observe that amino acids play different roles in different mechanism. Many residues that are easy to form regular secondary structures (α helices, β sheets and turns) can promote the two-state folding reactions of small proteins. Most of hydrophilic residues can speed up the multistate folding reactions of large proteins. Folding rates of large proteins are equally responsive to the flexibility of partial amino acids. Other properties of amino acids (including volume, polarity, accessible surface, exposure degree, isoelectric point, and phase transfer energy) have contributed little to folding kinetics of the proteins. Cysteine is a special residue, it triggers two-state folding reaction and but inhibits multistate folding reaction. These findings not only provide a new insight into protein structure prediction, but also could be used to direct the point mutations that can change folding rate.

  20. Intestinal transport of sulfanilic acid in rats immunized with protein-sulfanilic acid conjugate.

    PubMed

    Yamamoto, A; Kawaratani, T; Kawashima, K; Hashida, M; Sezaki, H

    1990-07-01

    Intestinal transport of sulfanilic acid was examined by means of an in vitro everted sac technique in rats immunized with a bovine gamma-globulin-sulfanilic acid conjugate. At a low concentration of sulfanilic acid, the intestinal transport of sulfanilic acid was decreased in rats immunized with bovine gamma-globulin-sulfanilic acid conjugate. This phenomenon was dose dependent and antigen specific, since there was no difference in the transport of sulfanilic acid at a high concentration and of an unrelated hapten. These results suggested that parenteral immunization impaired not only the intestinal transport of macromolecular antigens, as previously shown, but also the transport of the low molecular weight hapten, sulfanilic acid.

  1. Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation.

    PubMed

    Sánchez-Reyes, Omar B; Romero-Ávila, M Teresa; Castillo-Badillo, Jean A; Takei, Yoshinori; Hirasawa, Akira; Tsujimoto, Gozoh; Villalobos-Molina, Rafael; García-Sáinz, J Adolfo

    2014-01-15

    GPR120, free fatty acid receptor 4, is a recently deorphanized G protein-coupled receptor that seems to play cardinal roles in the regulation of metabolism and in the pathophysiology of inflammatory and metabolic disorders. In the present work a GPR120-Venus fusion protein was expressed in HEK293 Flp-In T-REx cells and its function (increase in intracellular calcium) and phosphorylation were studied. It was observed that the fusion protein migrated in sodium dodecyl sulfate-polyacrylamide gels as a band with a mass of ≈70-75kDa, although other bands of higher apparent weight (>130kDa) were also detected. Cell stimulation with docosahexaenoic acid or α-linolenic acid induced concentration-dependent increases in intracellular calcium and GPR120 phosphorylation. Activation of protein kinase C with phorbol esters also induced a marked receptor phosphorylation but did not alter the ability of 1µM docosahexaenoic acid to increase the intracellular calcium concentration. Phorbol ester-induced GPR120 phosphorylation, but not that induced with docosahexaenoic acid, was blocked by protein kinase C inhibitors (bis-indolyl-maleimide I and Gö 6976) suggesting that conventional kinase isoforms mediate this action. The absence of effect of protein kinase C inhibitors on agonist-induced GPR120 phosphorylation indicates that this kinase does not play a major role in agonist-induced receptor phosphorylation. Docosahexaenoic acid action was associated with marked GPR120 internalization whereas that induced with phorbol esters was smaller at early times. PMID:24239485

  2. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis.

    PubMed

    Bordewick, U; Heese, M; Börchers, T; Robenek, H; Spener, F

    1989-03-01

    Fatty-acid-binding proteins are known to occur in the cytosol of mammalian cells and to bind fatty acids and their CoA-esters. Application of the postembedding protein A-gold labeling method with antibody against the hepatic type fatty-acid-binding protein (hFABP) to cross-sections of liver cells and a newly developed gel-chromatographic immunofluorescence assay established qualitatively (1) that hFABP in mitochondria was confined to outer mitochondrial membranes, (2) the presence of this protein in microsomes and (3) that nuclei were also filled with hFABP. Quantitative data elaborated with a non-competitive ELISA confirmed these results. A significant difference to the distribution of cardiac FABP in heart muscle cells, where this type of protein was found in cytosol, matrix and nuclei, was observed (Börchers et al. (1989) Biochim. Biophys. Acta, in the press). hFABP-containing rat liver microsomes were incubated with long-chain acyl-CoAs in the presence of hFABP (isolated from rat liver cytosol) in a study on the acylation of sn-glycerol-3-phosphate and lysophosphatidic acid. Both acyltransferases were stimulated by addition of hFABP to the incubation medium. The morphological, immunochemical as well as kinetic data infer a direct interaction of hFABP with microsomal membranes in liver cells.

  3. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  4. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate. PMID:25085083

  5. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  6. Relationship between amino acid scores and protein quality indices based on rat growth.

    PubMed

    Sarwar, G; Peace, R W; Botting, H G; Brulé, D

    1989-01-01

    Protein efficiency ratio (PER), relative PER (RPER), net protein ratio (NPR) and relative NPR (RNPR) values, and amino acid scores were calculated for 20 food products (casein, casein + Met, beef salami, skim milk, tuna, chicken frankfuters, sausage, heated skim milk, peanut butter, rolled oats, soy isolate, chick peas, pea concentrate, kidney beans, wheat cereal, pinto bean, lentils, rice-wheat gluten cereal, macaroni-cheese, and beef stew). In most cases, PER, RPER, NPR or RNPR ranked the products in the same order and positive correlations among the protein quality methods were highly significant (r = 0.98-0.99). Amino acid scores (based on the first limiting amino acid, Lys-Met-Cys, Lys-Met-Cys-Trp or lys-Met-Cys-Trp-Thr) were positively correlated to the PER, RPER, NPR or RNPR data (r = 0.61-0.75). Inclusion of the correction for true digestibility of protein improved the correlations between amino acid scores and the indices based on rat growth. The correlations were especially high between Lys-Met-Cys scores (corrected for true digestibility of protein) and PER, RPER, NPR or RNPR (r = 0.86-0.91). Inclusion of the correction for true digestibility of individual amino acids did not result in further improvements of the correlations in most cases. It is concluded that adjusting amino acid scores for true digestibility of protein would be sufficient and further correction for digestibility of amino acids would be unnecessary in mixed diets. PMID:2710751

  7. Natural vs. random protein sequences: Discovering combinatorics properties on amino acid words.

    PubMed

    Santoni, Daniele; Felici, Giovanni; Vergni, Davide

    2016-02-21

    Casual mutations and natural selection have driven the evolution of protein amino acid sequences that we observe at present in nature. The question about which is the dominant force of proteins evolution is still lacking of an unambiguous answer. Casual mutations tend to randomize protein sequences while, in order to have the correct functionality, one expects that selection mechanisms impose rigid constraints on amino acid sequences. Moreover, one also has to consider that the space of all possible amino acid sequences is so astonishingly large that it could be reasonable to have a well tuned amino acid sequence indistinguishable from a random one. In order to study the possibility to discriminate between random and natural amino acid sequences, we introduce different measures of association between pairs of amino acids in a sequence, and apply them to a dataset of 1047 natural protein sequences and 10,470 random sequences, carefully generated in order to preserve the relative length and amino acid distribution of the natural proteins. We analyze the multidimensional measures with machine learning techniques and show that, to a reasonable extent, natural protein sequences can be differentiated from random ones.

  8. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  9. Natural vs. random protein sequences: Discovering combinatorics properties on amino acid words.

    PubMed

    Santoni, Daniele; Felici, Giovanni; Vergni, Davide

    2016-02-21

    Casual mutations and natural selection have driven the evolution of protein amino acid sequences that we observe at present in nature. The question about which is the dominant force of proteins evolution is still lacking of an unambiguous answer. Casual mutations tend to randomize protein sequences while, in order to have the correct functionality, one expects that selection mechanisms impose rigid constraints on amino acid sequences. Moreover, one also has to consider that the space of all possible amino acid sequences is so astonishingly large that it could be reasonable to have a well tuned amino acid sequence indistinguishable from a random one. In order to study the possibility to discriminate between random and natural amino acid sequences, we introduce different measures of association between pairs of amino acids in a sequence, and apply them to a dataset of 1047 natural protein sequences and 10,470 random sequences, carefully generated in order to preserve the relative length and amino acid distribution of the natural proteins. We analyze the multidimensional measures with machine learning techniques and show that, to a reasonable extent, natural protein sequences can be differentiated from random ones. PMID:26656109

  10. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  11. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions. PMID:26862880

  12. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.

  13. Lipoteichoic acid-binding and biological properties of T protein of group A streptococcus.

    PubMed

    Johnson, R H; Simpson, W A; Dale, J B; Ofek, I; Beachey, E H

    1980-08-01

    T protein was extracted with trypsin from an avirulent, M protein-deficient, type 1 group A Streptococcus and purified by ammonium sulfate precipitation and anion-exchange chromatography. The latter procedure removed contaminating lipoteichoic acid (LTA) from the T protein, which consisted of a heterogeneous mixture of polypeptides resistant to digestion by trypsin and ranged in molecular size from 160,000 to 200,000 daltons. Threonine, aspartic acid, glutamic acid, lysine, and valine were the most predominant amino acids. The binding of LTA to an affinity column of T protein was reversible with increasing concentrations of ethanol but not with increasing ionic strength. T protein bound less palmitic acid and LTA than did fatty acid-free bovine albumin and did not stimulate human peripheral lymphocytes. Because the surface and cell wall distribution of the T proteins and LTA appear similar, the possibility exists that T proteins and LTA may interact in situ by weakly hydrophobic bonds. Such ligand-ligand interaction may be indirectly involved in the adherence of group A streptococci to host cell membranes that is known to be mediated by LTA.

  14. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2013-03-12

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel sythetases molecules, methods for identifying and making the novel synthetases, methods for producing containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lapidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  15. Amino Acid Distribution Rules Predict Protein Fold: Protein Grammar for Beta-Strand Sandwich-Like Structures

    PubMed Central

    Kister, Alexander

    2015-01-01

    We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198

  16. Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.

    PubMed

    Landete, José M; Langa, Susana; Revilla, Concepción; Margolles, Abelardo; Medina, Margarita; Arqués, Juan L

    2015-08-01

    Lactic acid bacteria (LAB) are commonly used in the production of fermented and probiotic foods. Development of molecular tools to discriminate the strains of interest from the endogenous microbiota in complex environments like food or gut is of high interest. Green fluorescent protein (GFP)-like chromophores strictly requires molecular oxygen for maturation of fluorescence, which restrict the study of microorganisms in low-oxygen environments. In this work, we have developed a noninvasive cyan-green fluorescent based reporter system for real-time tracking of LAB that is functional under anoxic conditions. The evoglow-Pp1 was cloned downstream from the promoters D-alanyl-D-alanine carboxypeptidase and elongation factor Tu of Lactobacillus reuteri CECT925 using pNZ8048 and downstream of the lactococcal P1 promoter using pT1NX. The classical gfp was also cloned in pT1NX. These recombinant expression vectors were electroporated into Lactococccus, Lactobacillus, and Enterococcus strains with biotechnological and/or probiotic interests to assess and compare their functionality under different conditions of oxygen and pH. The expression was analyzed by imaging and fluorometric methods as well as by flow cytometry. We demonstrate that reporter systems pNZ:TuR-aFP and pT1-aFP are two versatile molecular markers for monitoring LAB in food and fecal environments without the potential problems caused by oxygen and pH limitations, which could be exploited for in vivo studies. Production of the fluorescent protein did not disturb any important physiological properties of the parental strains, such as growth rate, reuterin, or bacteriocin production.

  17. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  18. Single-molecule pull-down for investigating protein-nucleic acid interactions.

    PubMed

    Fareh, Mohamed; Loeff, Luuk; Szczepaniak, Malwina; Haagsma, Anna C; Yeom, Kyu-Hyeon; Joo, Chirlmin

    2016-08-01

    The genome and transcriptome are constantly modified by proteins in the cell. Recent advances in single-molecule techniques allow for high spatial and temporal observations of these interactions between proteins and nucleic acids. However, due to the difficulty of obtaining functional protein complexes, it remains challenging to study the interactions between macromolecular protein complexes and nucleic acids. Here, we combined single-molecule fluorescence with various protein complex pull-down techniques to determine the function and stoichiometry of ribonucleoprotein complexes. Through the use of three examples of protein complexes from eukaryotic cells (Drosha, Dicer, and TUT4 protein complexes), we provide step-by-step guidance for using novel single-molecule techniques. Our single-molecule methods provide sub-second and nanometer resolution and can be applied to other nucleoprotein complexes that are essential for cellular processes. PMID:27017911

  19. Cellular fatty acid and soluble protein composition of Actinobacillus actinomycetemcomitans and related organisms.

    PubMed Central

    Calhoon, D A; Mayberry, W R; Slots, J

    1981-01-01

    The cellular fatty acid and protein content of twenty-five representative strains of Actinobacillus actinomycetecomitans isolated from juvenile and adult periodontitis patients was compared to that of 15 reference strains of oral and nonoral Actinobacillus species and Haemophilus aphrophilus. Trimethylsilyl derivatives of the fatty acid methyl esters were analyzed by gas-liquid chromatography. The predominant fatty acids of all 40 strains examined were 14:0, 3-OH 14:0, 16 delta, and 16:0. Actinobacillus seminis (ATCC 15768) was unlike the other strains examined because of a greater amount of 14:0 detected. The soluble protein analysis using polyacrylamide gel electrophoresis revealed that A. actinomycetemcomitans, H. aphrophilus, and nonoral Actinobacillus species possessed distinct protein profiles attesting to the validity of separating these organisms into different species. Established biotypes of A. actinomycetemcomitans could not be differentiated on the basis of fatty acid or protein profiles. PMID:7287893

  20. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  1. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  2. Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction.

    PubMed

    Ortwerth, B J; Olesen, P R

    1988-08-31

    The incubation of calf lens extracts with 20 mM ascorbic acid under sterile conditions for 8 weeks caused extensive protein crosslinking, which was not observed with either 20 mM sorbitol or 20 mM glucose. While no precipitation was observed, ascorbic acid did induce the formation of high-molecular-weight protein aggregates as determined by Agarose A-5m chromatography. Proteins modified by ascorbic acid bound strongly to a boronate affinity column, however, crosslinked proteins were present mainly in the unbound fraction. These observations suggest that the cis-diol groups of ascorbic acid were present in the primary adduct, but were either lost during the crosslinking reaction or sterically hindered from binding to the column matrix. The amino acid composition of the ascorbic acid-modified proteins was identical to controls except for a 15% decrease in lysine. Amino acid analysis after borohydride reduction, however, showed a 25% decrease in lysine, a 7% decrease in arginine and an additional peak which eluted between phenylalanine and histidine. Extensive browning occurred during the ascorbic acid-modification reaction. This resulted in protein-bound chromophores with a broad absorption spectrum from 300 to 400 nm, and protein-bound fluorophores with excitation/emission maxima of 350/450 nm. A 4 week incubation of dialyzed crude lens extract with [1-14C]ascorbic acid showed increased incorporation for 2 weeks, followed by a decrease over the next 2 weeks as crosslinking was initiated. The addition of cyanoborohydride to the reaction mixture completely inhibited crosslinking and increased [1-14C]ascorbic acid incorporation to a plateau value of 180 nmol per mg protein. Amino acid analysis showed a 50% loss of lysine, and 8% decrease in arginine and the presence of a new peak which eluted slightly earlier than methionine. These data are consistent with the non-enzymatic glycation of lens proteins by either ascorbic acid or an oxidation product of ascorbic acid via

  3. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    SciTech Connect

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  4. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  5. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Nguon, K.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion molecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  6. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    PubMed

    Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  7. Tables of critical values for examining compositional non-randomness in proteins and nucleic acids

    NASA Technical Reports Server (NTRS)

    Laird, M.; Holmquist, R.

    1975-01-01

    A binomially distributed statistic is defined to show whether or not the proportion of a particular amino acid in a protein deviates from random expectation. An analogous statistic is derived for nucleotides in nucleic acids. These new statistics are simply related to the classical chi-squared test. They explicitly account for the compositional fluctuations imposed by the finite length of proteins, and they are more accurate than previous tables.

  8. Highly efficient extraction of cellular nucleic acid associated proteins in vitro with magnetic oxidized carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Wei, Xiaoluan; Cheng, Kai; Liu, Fangjie; Wu, Ren'an; Zou, Hanfa

    2012-12-01

    Nucleic acid associated proteins (NAaP) play the essential roles in gene regulation and protein expression. The global analysis of cellular NAaP would give a broad insight to understand the interaction between nucleic acids and the associated proteins, such as the important proteinous regulation factors on nucleic acids. Proteomic analysis presents a novel strategy to investigate a group of proteins. However, the large scale analysis of NAaP is yet impossible due to the lack of approaches to harvest target protein groups with a high efficiency. Herein, a simple and efficient method was developed to collect cellular NAaP using magnetic oxidized carbon nanotubes based on the strong interaction between carbon nanotubes and nucleic acids along with corresponding associated proteins. We found that the magnetic oxidized carbon nanotubes demonstrated a nearly 100% extraction efficiency for intracellular nucleic acids from cells in vitro. Importantly, the proteins associated on nucleic acids could be highly efficiently harvested using magnetic oxidized carbon nanotubes due to the binding of NAaP on nucleic acids. 1594 groups of nuclear NAaP and 2595 groups of cellular NAaP were extracted and identified from about 1,000,000 cells, and 803 groups of NAaP were analyzed with only about 10,000 cells, showing a promising performance for the proteomic analysis of NAaP from minute cellular samples. This highly efficient extraction strategy for NAaP is a simple approach to identify cellular nucleic acid associated proteome, and we believed this strategy could be further applied in systems biology to understand the gene expression and regulation.

  9. Nucleic acid-based fluorescence sensors for detecting proteins.

    PubMed

    Heyduk, Ewa; Heyduk, Tomasz

    2005-02-15

    We report here development of a rapid, homogeneous, aptamer-based fluorescence assay ("molecular beacons") for detecting proteins. The assay involves protein-induced coassociation of two aptamers recognizing two distinct epitopes of the protein. The aptamers contain short fluorophore-labeled complementary "signaling" oligonucleotides attached to the aptamer by non-DNA linker. Coassociation of the two aptamers with the protein results in bringing the two "signaling" oligonucleotides into proximity, producing a large change of fluorescence resonance energy transfer between the fluorophores. We used thrombin as a model system to provide proof-of-principle evidence validating this molecular beacon design. Thrombin beacon was capable of detecting the protein with high selectivity (also in complex biological mixtures), picomolar sensitivity, and high signal-to-background ratio. This is a homogeneous assay requiring no sample manipulation. Since the design of molecular beacons described here is not limited to any specific protein, it will be possible to develop these beacons to detect a variety of target proteins of biomedical importance.

  10. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    PubMed Central

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    SUMMARY Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have difference functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. PMID:25458898

  11. Protein meta-functional signatures from combining sequence, structure, evolution, and amino acid property information.

    PubMed

    Wang, Kai; Horst, Jeremy A; Cheng, Gong; Nickle, David C; Samudrala, Ram

    2008-09-26

    Protein function is mediated by different amino acid residues, both their positions and types, in a protein sequence. Some amino acids are responsible for the stability or overall shape of the protein, playing an indirect role in protein function. Others play a functionally important role as part of active or binding sites of the protein. For a given protein sequence, the residues and their degree of functional importance can be thought of as a signature representing the function of the protein. We have developed a combination of knowledge- and biophysics-based function prediction approaches to elucidate the relationships between the structural and the functional roles of individual residues and positions. Such a meta-functional signature (MFS), which is a collection of continuous values representing the functional significance of each residue in a protein, may be used to study proteins of known function in greater detail and to aid in experimental characterization of proteins of unknown function. We demonstrate the superior performance of MFS in predicting protein functional sites and also present four real-world examples to apply MFS in a wide range of settings to elucidate protein sequence-structure-function relationships. Our results indicate that the MFS approach, which can combine multiple sources of information and also give biological interpretation to each component, greatly facilitates the understanding and characterization of protein function.

  12. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  13. Identification of secreted bacterial proteins by noncanonical amino acid tagging

    PubMed Central

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.

    2014-01-01

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637

  14. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  15. Cold shock domain protein from Philosamia ricini prefers single-stranded nucleic acids binding.

    PubMed

    Mani, Ashutosh; Yadava, P K; Gupta, Dwijendra K

    2012-01-01

    The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.

  16. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids.

    PubMed

    Hesse, Almut; Weller, Michael G

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  17. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  18. Nucleic acid chaperons: a theory of an RNA-assisted protein folding

    PubMed Central

    Biro, Jan C

    2005-01-01

    Background Proteins are assumed to contain all the information necessary for unambiguous folding (Anfinsen's principle). However, ab initio structure prediction is often not successful because the amino acid sequence itself is not sufficient to guide between endless folding possibilities. It seems to be a logical to try to find the "missing" information in nucleic acids, in the redundant codon base. Results mRNA energy dot plots and protein residue contact maps were found to be rather similar. The structure of mRNA is also conserved if the protein structure is conserved, even if the sequence similarity is low. These observations led me to suppose that some similarity might exist between nucleic acid and protein folding. I found that amino acid pairs, which are co-located in the protein structure, are preferentially coded by complementary codons. This codon complementarity is not perfect; it is suboptimal where the 1st and 3rd codon residues are complementary to each other in reverse orientation, while the 2nd codon letters may be, but are not necessarily, complementary. Conclusion Partial complementary coding of co-locating amino acids in protein structures suggests that mRNA assists in protein folding and functions not only as a template but even as a chaperon during translation. This function explains the role of wobble bases and answers the mystery of why we have a redundant codon base. PMID:16137324

  19. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  20. Molecular analysis of Xenopus laevis SPARC (Secreted Protein, Acidic, Rich in Cysteine). A highly conserved acidic calcium-binding extracellular-matrix protein.

    PubMed Central

    Damjanovski, S; Liu, F; Ringuette, M

    1992-01-01

    SPARC (Secreted Protein, Acidic, Rich in Cysteine) is expressed as a 1.6 kb mRNA in Xenopus laevis. On the basis of cDNA sequence analysis, Xenopus SPARC has a core Mr of 32643, with one potential N-glycosylation site. Western analysis of SPARC isolated from Xenopus long bone indicates that the mature protein has an Mr of 43,000. At the amino acid level, Xenopus SPARC has 78-79% sequence similarity to mouse, bovine and human SPARC. The least-conserved region is found within the N-terminal glutamic acid-rich domain, with the C-terminal Ca(2+)-binding domain being the most conserved. Adult Xenopus tissues show the same pattern of tissue-specific distribution of SPARC mRNAs as adult mouse. Images Fig. 1. Fig. 5. PMID:1736898

  1. Comparison of Two Serologically Distinct Ribonucleic Acid Bacteriophages II. Properties of the Nucleic Acids and Coat Proteins

    PubMed Central

    Overby, L. R.; Barlow, G. H.; Doi, R. H.; Jacob, Monique; Spiegelman, S.

    1966-01-01

    Overby, L. R. (University of Illinois, Urbana), G. H. Barlow, R. H. Doi, Monique Jacob, and S. Spiegelman. Comparison of two serologically distinct ribonucleic acid bacteriophages. II. Properties of the nucleic acids and coat proteins. J. Bacteriol. 92:739–745. 1966.—The ribonucleic acid (RNA) molecules and coat proteins of two RNA coliphages, MS-2 and Qβ, have been characterized. MS-2 RNA shows an S20,w of 25.8 and a molecular weight by light scattering of 106. The corresponding parameters for Qβ-RNA were 28.9 and 0.9 × 106. A difference in base composition was reflected in the adenine-uracil ratio, which was 0.95 for MS-2 and 0.75 for Qβ. The two RNA preparations are readily separated by chromatography on columns of methylated albumin. Both gave identical bouyant densities in cesium sulfate of 1.64 g/ml. The coat protein subunits were of similar molecular weights: 15,500 (Qβ) and 14,000 (MS-2). They differed, however, in that the Qβ-protein lacked tryptophan and histidine, whereas the MS-2 protein lacked only histidine. Images PMID:5922545

  2. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.

    PubMed

    Pey, Angel L

    2013-12-01

    Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.

  3. The value of short amino acid sequence matches for prediction of protein allergenicity.

    PubMed

    Silvanovich, Andre; Nemeth, Margaret A; Song, Ping; Herman, Rod; Tagliani, Laura; Bannon, Gary A

    2006-03-01

    Typically, genetically engineered crops contain traits encoded by one or a few newly expressed proteins. The allergenicity assessment of newly expressed proteins is an important component in the safety evaluation of genetically engineered plants. One aspect of this assessment involves sequence searches that compare the amino acid sequence of the protein to all known allergens. Analyses are performed to determine the potential for immunologically based cross-reactivity where IgE directed against a known allergen could bind to the protein and elicit a clinical reaction in sensitized individuals. Bioinformatic searches are designed to detect global sequence similarity and short contiguous amino acid sequence identity. It has been suggested that potential allergen cross-reactivity may be predicted by identifying matches as short as six to eight contiguous amino acids between the protein of interest and a known allergen. A series of analyses were performed, and match probabilities were calculated for different size peptides to determine if there was a scientifically justified search window size that identified allergen sequence characteristics. Four probability modeling methods were tested: (1) a mock protein and a mock allergen database, (2) a mock protein and genuine allergen database, (3) a genuine allergen and genuine protein database, and (4) a genuine allergen and genuine protein database combined with a correction for repeating peptides. These analyses indicated that searches for short amino acid sequence matches of eight amino acids or fewer to identify proteins as potential cross-reactive allergens is a product of chance and adds little value to allergy assessments for newly expressed proteins.

  4. Rosmarinic acid prevents against memory deficits in ischemic mice.

    PubMed

    Fonteles, Analu Aragão; de Souza, Carolina Melo; de Sousa Neves, Julliana Catharina; Menezes, Ana Paula Fontenele; Santos do Carmo, Marta Regina; Fernandes, Francisco Diego Pinheiro; de Araújo, Patrícia Rodrigues; de Andrade, Geanne Matos

    2016-01-15

    Polyphenols have neuroprotective effects after brain ischemia. It has been demonstrated that rosmarinic acid (RA), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. To evaluate the effectiveness of RA against memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) mice were treated with RA (0.1, 1, and 20mg/kg/day, i.p. before ischemia and during 5 days). Animals were evaluated for locomotor activity and working memory 72 h after pMCAO, and spatial and recognition memories 96 h after pMCAO. In addition, in another set of experiments brain infarction, neurological deficit score and myeloperoxidase (MPO) activity were evaluates 24h after the pMCAO. Finally, immunohistochemistry, and western blot, and ELISA assay were used to analyze glial fibrillary acidic protein (GFAP), and synaptophysin (SYP) expression, and BDNF level, respectively. The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20mg/kg). RA reduced infarct size and neurological deficits caused by acute ischemia. The mechanism for RA neuroprotection involved, neuronal loss suppression, and increase of synaptophysin expression, and increase of BDNF. Furthermore, the increase of MPO activity and GFAP immunireactivity were prevented in MCAO group treated with RA. These results suggest that RA exerts memory protective effects probably due to synaptogenic activity and anti-inflammatory action.

  5. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  6. In vitro enantioselective displacement of propranolol from protein binding sites by acetyl salicylic acid and salicylic acid.

    PubMed

    Rezaei, Z; Khabnadideh, S; Hemmateenejad, B; Dehghani, Z

    2007-09-01

    The influences of acetyl salicylic acid (ASA) and salicylic acid (SA) on the enantioselective binding of propranolol (PL) and its enantiomers to plasma proteins and human serum albumin (HSA) were investigated. The equilibrium dialysis was employed for protein binding studies. We observed statistically significant displacement of racemic-PL, (+)-(R)-PL, and (-)-(S)-PL (0.1-10 microM) from their protein binding sites by ASA (200 microg/ml) and SA (100 microg/ml). ASA and SA displaced PL stereoselectivly from its binding sites. We concluded that ASA and its metabolite SA could change R/S ratio of PL unbound fractions and they might affect pharmacokinetic properties of PL.

  7. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  8. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions.

    PubMed

    Vickers, Timothy A; Crooke, Stanley T

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  9. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    ERIC Educational Resources Information Center

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  10. Acid diet (high meat protein) effects on calcium metabolism and bone health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: Update recent advancements regarding the effect of high animal protein on calcium utilization and bone health. Recent findings: Increased potential renal acid load resulting from a high protein (meat) intake has been closely associated with increased urinary calcium excretion. How...

  11. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic hydrolysis was performed for extracting protein to prepare umami taste amino acids from defatted tomato seed meal (DTSM) which is a by-product of tomato processing. Papain was used as an enzyme for the hydrolysis of DTSM. The particle size distribution of DTSM, protein concentration and fr...

  12. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  13. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions

    PubMed Central

    Vickers, Timothy A.; Crooke, Stanley T.

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  14. Site-specific fatty acid-conjugation to prolong protein half-life in vivo.

    PubMed

    Lim, Sung In; Mizuta, Yukina; Takasu, Akinori; Hahn, Young S; Kim, Yong Hwan; Kwon, Inchan

    2013-09-10

    Therapeutic proteins are indispensable in treating numerous human diseases. However, therapeutic proteins often suffer short serum half-life. In order to extend the serum half-life, a natural albumin ligand (a fatty acid) has been conjugated to small therapeutic peptides resulting in a prolonged serum half-life via binding to patients' serum albumin in vivo. However, fatty acid-conjugation has limited applicability due to lack of site-specificity resulting in the heterogeneity of conjugated proteins and a significant loss in pharmaceutical activity. In order to address these issues, we exploited the site-specific fatty acid-conjugation to a permissive site of a protein, using copper-catalyzed alkyne-azide cycloaddition, by linking a fatty acid derivative to p-ethynylphenylalanine incorporated into a protein using an engineered pair of yeast tRNA/aminoacyl tRNA synthetase. As a proof-of-concept, we show that single palmitic acid conjugated to superfolder green fluorescent protein (sfGFP) in a site-specific manner enhanced a protein's albumin-binding in vitro about 20 times and the serum half-life in vivo 5 times when compared to those of the unmodified sfGFP. Furthermore, the fatty acid conjugation did not cause a significant reduction in the fluorescence of sfGFP. Therefore, these results clearly indicate that the site-specific fatty acid-conjugation is a very promising strategy to prolong protein serum half-life in vivo without compromising its folded structure and activity.

  15. Nucleic acid encoding DS-CAM proteins and products related thereto

    SciTech Connect

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  16. Beta-galactosidase and selective neutrality. [amino acid composition of proteins

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1979-01-01

    Three hypotheses to explain the amino acid composition of proteins are inconsistent (about 10 to the minus 9th) with the experimental data for beta-galactosidase from Escherichia coli. The exceptional length of this protein, 1021 residues, permits rigorous tests of these hypotheses without complication from statistical artifacts. Either this protein is not at compositional equilibrium, which is unlikely from knowledge about other proteins, or the evolution of this protein and its coding gene have not been selectively neutral. However, the composition of approximately 60% of the molecule is consistent with either a selectively neutral or nonneutral evolutionary process.

  17. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  18. An information-theoretic classification of amino acids for the assessment of interfaces in protein-protein docking.

    PubMed

    Jardin, Christophe; Stefani, Arno G; Eberhardt, Martin; Huber, Johannes B; Sticht, Heinrich

    2013-09-01

    Docking represents a versatile and powerful method to predict the geometry of protein-protein complexes. However, despite significant methodical advances, the identification of good docking solutions among a large number of false solutions still remains a difficult task. We have previously demonstrated that the formalism of mutual information (MI) from information theory can be adapted to protein docking, and we have now extended this approach to enhance its robustness and applicability. A large dataset consisting of 22,934 docking decoys derived from 203 different protein-protein complexes was used for an MI-based optimization of reduced amino acid alphabets representing the protein-protein interfaces. This optimization relied on a clustering analysis that allows one to estimate the mutual information of whole amino acid alphabets by considering all structural features simultaneously, rather than by treating them individually. This clustering approach is fast and can be applied in a similar fashion to the generation of reduced alphabets for other biological problems like fold recognition, sequence data mining, or secondary structure prediction. The reduced alphabets derived from the present work were converted into a scoring function for the evaluation of docking solutions, which is available for public use via the web service score-MI: http://score-MI.biochem.uni-erlangen.de.

  19. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein

    SciTech Connect

    Shaikh, Afshan; Shaikh, Afshan S.; Tang, Yinjie; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2008-06-27

    {sup 13}C-based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly-expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism E. coli expressing a plasmid-borne, his-tagged Green Fluorescent Protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities.

  20. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein.

    PubMed

    Shaikh, Afshan S; Tang, Yinjie J; Mukhopadhyay, Aindrila; Keasling, Jay D

    2008-02-01

    13C-Based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus, metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism Escherichia coli expressing a plasmid-borne, His-tagged green fluorescent protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities.

  1. Recent advances in determining protein and amino acid requirements in humans.

    PubMed

    Elango, Rajavel; Ball, Ronald O; Pencharz, Paul B

    2012-08-01

    During the past 25 years a significant amount of research has been conducted to determine amino acid requirements in humans. This is primarily due to advancements in the application of stable isotopes to examine amino acid requirements. The indicator amino acid oxidation (IAAO) method has emerged as a robust and minimally invasive technique to identify requirements. The IAAO method is based on the concept that when one indispensable dietary amino acid (IDAA) is deficient for protein synthesis, then the excess of all other IDAA, including the indicator amino acid, will be oxidized. With increasing intakes of the limiting amino acid, IAAO will decrease, reflecting increasing incorporation into protein. Once the requirement for the limiting amino acid is met there will be no further change in the indicator oxidation. The IAAO method has been systematically applied to determine most IDAA requirements in adults. The estimates are comparable to the values obtained using the more elaborate 24h-indicator amino acid oxidation and balance (24h-IAAO/IAAB) model. Due to its non-invasive nature the IAAO method has also been used to determine requirements for amino acids in neonates, children and in disease. The IAAO model has recently been applied to determine total protein requirements in humans. The IAAO method is rapid, reliable and has been used to determine amino acid requirements in different species, across the life cycle and in disease. The recent application of IAAO to determine protein requirements in humans is novel and has significant implications for dietary protein intake recommendations globally.

  2. Structural and functional analysis of fatty acid-binding proteins

    PubMed Central

    Storch, Judith; McDermott, Lindsay

    2009-01-01

    The mammalian FA-binding proteins (FABPs) bind long-chain FA with high affinity. The large number of FABP types is suggestive of distinct functions in specific tissues. Multiple experimental approaches have shown that individual FABPs possess both unique and overlapping functions, some of which are based on specific elements in the protein structure. Although FA binding affinities for all FABPs tend to correlate directly with FA hydrophobicity, structure-function studies indicate that subtle three-dimensional changes that occur upon ligand binding may promote specific protein-protein or protein-membrane interactions that ultimately determine the function of each FABP. The conformational changes are focused in the FABP helical/portal domain, a region that was identified by in vitro studies to be vital for the FA transport properties of the FABPs. Thus, the FABPs modulate intracellular lipid homeostasis by regulating FA transport in the nuclear and extra-nuclear compartments of the cell; in so doing, they also impact systemic energy homeostasis. PMID:19017610

  3. A Sialylated Glycan Microarray Reveals Novel Interactions of Modified Sialic Acids with Proteins and Viruses*

    PubMed Central

    Song, Xuezheng; Yu, Hai; Chen, Xi; Lasanajak, Yi; Tappert, Mary M.; Air, Gillian M.; Tiwari, Vinod K.; Cao, Hongzhi; Chokhawala, Harshal A.; Zheng, Haojie; Cummings, Richard D.; Smith, David F.

    2011-01-01

    Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in β-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2–3- and α2–6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2–6- and α2–3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-d-glycero-d-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2–6-linked Neu5Ac9Lt or α2–6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions. PMID:21757734

  4. Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets.

    PubMed

    Schaafsma, Gertjan

    2012-08-01

    PDCAAS is a widely used assay for evaluating protein quality. It is a chemical score, which is derived from the ratio between the first limiting amino acid in a test protein and the corresponding amino acid in a reference amino acid pattern and corrected for true faecal N digestibility. Chemical scores exceeding 100 % are truncated to 100 %. The advantages of the PDCAAS are its simplicity and direct relationship to human protein requirements. The limitations are as follows: the reference pattern is based on the minimum amino acid requirements for tissue growth and maintenance and does not necessarily reflect the optimum intake. Truncated PDCAAS of high-quality proteins do not give any information about the power of these proteins to compensate, as a supplement, for low levels of dietary essential amino acids in low-quality proteins. It is likely that faecal N digestibility does not take into account the loss from the colon of indispensable amino acids that were not absorbed in the ileum. Anti-nutritional factors, such as lectins and trypsin inhibitors, in several plant protein sources can cause heightened endogenous losses of amino acids, an issue which is particularly relevant in animal feedstuffs. The assumption that amino acid supplementation can completely restore biological efficiency of the protein source is incorrect since the kinetics of digestion and absorption between supplemented free amino acids and amino acids present in dietary proteins, are different. PMID:23107546

  5. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    SciTech Connect

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  6. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  7. Fluoro amino acids: a rarity in nature, yet a prospect for protein engineering.

    PubMed

    Odar, Corinna; Winkler, Margit; Wiltschi, Birgit

    2015-03-01

    Fluoro amino acids are highly valuable compounds constantly gaining relevance in diverse fields of the biosciences as well as in the pharmaceutical industry. The value of these compounds can be attributed to the properties of the extremely electronegative fluorine atom. This atom forms a highly polarized bond of extraordinary strength with carbon. The formation of the fluorine-carbon bond is challenging: its chemical synthesis demands harsh reaction conditions and to date only one class of enzyme has been found capable of introducing the fluoride ion into an organic compound. Most of these fluorinating enzymes participate in the biosynthesis of 4-fluoro-L-threonine, the only fluoro amino acid of natural origin discovered so far. Despite their scarcity in nature, fluoro amino acids are valuable tools to fluorinate proteins. The fluoro protein variants often show improved stability and folding as well as altered activity and fluorescence characteristics. This review details the biosynthesis of 4-fluoro-L-threonine with a special focus on the fluorinating enzymes. Moreover, we elaborate on the application of fluoro amino acids as building blocks for fluorinated protein variants. Insight into different techniques to incorporate fluoro amino acids into proteins is also provided. We highlight prospects and the current relevance of fluoro amino acids as a tool to engineer proteins with novel traits.

  8. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  9. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  10. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running.

    PubMed

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d₃-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  11. Determination of seleno-amino acids bound to proteins in extra virgin olive oils.

    PubMed

    Torres, Sabier; Gil, Raul; Silva, María Fernanda; Pacheco, Pablo

    2016-04-15

    An analytical method has been developed to determine seleno-amino acids in proteins extracted from extra virgin olive oils (EVOOs). Different aqueous/organic solvents were tested to isolate proteins, an acetone:n-hexane combination being the best protein precipitant. In a first dimension chromatography, extracted proteins were analysed by size exclusion chromatography (SEC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) to identify S and Se associations as proteins marker. Two fractions of 66 kDa (A) and 443 kDa (B) were identified. These fractions were submitted to microwave-assisted acid hydrolysis (MAAH) to release seleno-amino acids. In a second dimension chromatography seleno-amino acids were determined by reversed-phase chromatography (RPC) coupled to ICP-MS. Seleno-methylselenocysteine was determined with values ranging from 1.03-2.03±0.2 μg kg(-1) and selenocysteine at a concentration of 1.47±0.1 μg kg(-1). Variations of protein and seleno-amino acid concentrations were observed between EVOO varieties, contributing to EVOO cultivar differentiation. PMID:26616967

  12. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox?

    PubMed Central

    Hackney, Kyle J.; English, Kirk L.

    2014-01-01

    Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids) stimulate anabolic pathways (e.g., muscle protein synthesis) both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%–15% of total energy intake (≤1.4 g∙kg−1∙day−1) and spaceflight is associated with reduced energy intake (~20%), which enhances muscle catabolism. Increasing protein intake to 1.5–2.0 g∙kg−1∙day−1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake. PMID:25370374

  13. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; Boulton, Stephen; Zanzoni, Serena; Melacini, Giuseppe; Molinari, Henriette; Ragona, Laura

    2015-11-01

    Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off.

  14. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    PubMed

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  15. Dual capacity for nutrient uptake in Tetrahymena. V. Utilization of amino acids and proteins.

    PubMed

    Orias, E; Rasmussen, L

    1979-04-01

    We investigated the relative contributions of phagocytosis and plasma membrane transport to the uptake of amino acids and a protein (egg albumin) in amounts which allow Tetrahymena thermophila to grow and multiply. We used a mutant capable of indefinite growth without food vacuole formation (phagocytosis) and its wild type (phagocytosis-competent) isogenic parental strain. Our results suggest that phagocytosis is not required for free amino acid uptake, most or all of which can be attributed to carrier-mediated transport systems, apparently located on the plasma membrane. In contrast, phagocytosis is required for utilization of the protein. Proteins can supply required amino acids in amounts sufficient for growth only when food vacuoles are formed. We conclude that Tetrahymena thermophila either possesses no endocytic mechanisms at the cell surface other than food vacuole formation or, if it does, these putative mechanisms are not capable of nutritionally meaningful rates of protein uptake.

  16. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET

    PubMed Central

    Cox, Daniel J.; Wilf, Nabil M.; Lang, Kathrin; Wallace, Stephen; Mehl, Ryan A.; Chin, Jason W.

    2015-01-01

    The ability to introduce different biophysical probes into defined positions in target proteins will provide powerful approaches for interrogating protein structure, function and dynamics. However, methods for site-specifically incorporating multiple distinct unnatural amino acids are hampered by their low efficiency. Here we provide a general solution to this challenge by developing an optimized orthogonal translation system that uses amber and evolved quadruplet-decoding transfer RNAs to encode numerous pairs of distinct unnatural amino acids into a single protein expressed in Escherichia coli with a substantial increase in efficiency over previous methods. We also provide a general strategy for labelling pairs of encoded unnatural amino acids with different probes via rapid and spontaneous reactions under physiological conditions. We demonstrate the utility of our approach by genetically directing the labelling of several pairs of sites in calmodulin with fluorophores and probing protein structure and dynamics by Förster resonance energy transfer. PMID:24755590

  17. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  18. Amino acid sequence and structural properties of protein p12, an African swine fever virus attachment protein.

    PubMed Central

    Alcamí, A; Angulo, A; López-Otín, C; Muñoz, M; Freije, J M; Carrascosa, A L; Viñuela, E

    1992-01-01

    The gene encoding the African swine fever virus protein p12, which is involved in virus attachment to the host cell, has been mapped and sequenced in the genome of the Vero-adapted virus strain BA71V. The determination of the N-terminal amino acid sequence and the hybridization of oligonucleotide probes derived from this sequence to cloned restriction fragments allowed the mapping of the gene in fragment EcoRI-O, located in the central region of the viral genome. The DNA sequence of an EcoRI-XbaI fragment showed an open reading frame which is predicted to encode a polypeptide of 61 amino acids. The expression of this open reading frame in rabbit reticulocyte lysates and in Escherichia coli gave rise to a 12-kDa polypeptide that was immunoprecipitated with a monoclonal antibody specific for protein p12. The hydrophilicity profile indicated the existence of a stretch of 22 hydrophobic residues in the central part that may anchor the protein in the virus envelope. Three forms of the protein with apparent molecular masses of 17, 12, and 10 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis have been observed, depending on the presence of 2-mercaptoethanol and alkylation with 4-vinylpyridine, indicating that disulfide bonds are responsible for the multimerization of the protein. This result was in agreement with the existence of a cysteine-rich domain in the C-terminal region of the predicted amino acid sequence. The protein was synthesized at late times of infection, and no posttranslational modifications such as glycosylation, phosphorylation, or fatty acid acylation were detected. Images PMID:1583732

  19. Laser-based optical activity detection of amino acids and proteins

    SciTech Connect

    Reitsma, B.H.

    1987-08-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. Four free amino acids were resolved using cation-exchange chromatography followed by detection with refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (uv) for tyrosine and phenylalanine. Amino acid detection by refractive index is not sensitive and uv absorbance detects only three amino acids. Derivatization of amino acids to make them detectable by uv absorbance enhances the applicability of OA/uv for the determination of enantiomeric ratios. The separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/uv is illustrated. Calculation of the specific rotation of 22 dansyl-L-amino acids shows that derivatization enhances the OA detectability of some amino acids but degrades that of others. RP-HPLC of proteins is a rapidly developing technique. Several researchers have reported the detection of multiple peaks when a pure protein is subjected to HPLC under certain conditions. These multiple peaks have been determined to be different conformations of the same protein. Since proteins are optically active, OA is a suitable detector. The RP-HPLC separation of conformers of soybean trypsin inhibitor is illustrated. Detection by OA/uv provides insights from the chromatogram unavailable from uv absorbance detection alone. In addition, identification of impurities is simplified with OA/uv. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation. 163 refs., 13 figs., 9 tabs.

  20. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.

  1. Glial fibrillary acidic protein as a biomarker for brain injury in neonatal CHD.

    PubMed

    McKenney, Stephanie L; Mansouri, Fahad F; Everett, Allen D; Graham, Ernest M; Burd, Irina; Sekar, Priya

    2016-10-01

    Neonates with critical CHD have evidence, by imaging, of preoperative brain injury, although the timing is unknown. We used circulating postnatal serum glial fibrillary acidic protein as a measure of acute perinatal brain injury in neonates with CHD. Glial fibrillary acidic protein was measured on admission and daily for the first 4 days of life in case and control groups; we included two control groups in this study - non-brain-injured newborns and brain-injured newborns. Comparisons were performed using the Kruskal-Wallis test with Dunn's multiple comparisons, Student's t-test, and χ2 test of independence where appropriate. In aggregate, there were no significant differences in overall glial fibrillary acidic protein levels between CHD patients (n=56) and negative controls (n=23) at any time point. By day 4 of life, 7/56 (12.5%) CHD versus 0/23 (0%) normal controls had detectable glial fibrillary acidic protein levels. Although not statistically significant, the 5/10 (50%) left heart obstruction group versus 1/17 (6%) conoventricular, 0/13 (0%) right heart, and 1/6 (17%) septal defect patients trended towards elevated levels of glial fibrillary acidic protein at day 4 of life. Overall, glial fibrillary acidic protein reflected no evidence for significant peripartum brain injury in neonates with CHD, but there was a trend for elevation by postnatal day 4 in neonates with left heart obstruction. This pilot study suggests that methods such as monitoring glial fibrillary acidic protein levels may provide new tools to optimise preoperative care and neuroprotection in high-risk neonates with specific types of CHD.

  2. Thermoformed protein based composites in presence of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World industrialization has generated substantial quantities of petroleum-based plastics over many years, which are non biodegradable. There is a growing demand for the use of renewable agricultural sources to develop eco-friendly biobased composites. Agriculture-sourced proteins and starches are b...

  3. 3-d structure-based amino acid sequence alignment of esterases, lipases and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.; Cygler, M.; Schrag, J.D.; Sussman, J.L.

    1993-05-13

    Acetylcholinesterase and butyrylcholinesterase, enzymes with potential as pretreatment drugs for organophosphate toxicity, are members of a larger family of homologous proteins that includes carboxylesterases, cholesterol esterases, lipases, and several nonhydrolytic proteins. A computer-generated alignment of 18 of the proteins, the acetylcholinesases, butyrylcholinesterases, carboxylesterases, some esterases, and the nonenzymatic proteins has been previously presented. More recently, the three-dimensional structures of two enzymes enzymes in this group, acetylcholinesterase from Torpedo californica and lipase from Geotrichum candidum, have been determined. Based on the x-ray structures and the superposition of these two enzymes, it was possible to obtain an improved amino acid sequence alignment of 32 members of this family of proteins. Examination of this alignment reveals that 24 amino acids are invariant in all of the hydrolytic proteins, and an additional 49 are well conserved. Conserved amino acids include those of the active site, the disulfide bridges, the salt bridges, in the core of the proteins, and at the edges of secondary structural elements. Comparison of the three-dimensional structures makes it possible to find a well-defined structural basis for the conservation of many of these amino acids.

  4. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats.

    PubMed

    Kabasakal Cetin, Arzu; Dasgin, Halil; Gülec, Atila; Onbasilar, İlyas; Akyol, Asli

    2015-12-01

    Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring's plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring's plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development.

  5. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats

    PubMed Central

    Kabasakal Cetin, Arzu; Dasgin, Halil; Gülec, Atila; Onbasilar, İlyas; Akyol, Asli

    2015-01-01

    Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring’s plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring’s plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development. PMID:26633475

  6. Single-Cell Protein Production by the Acid-Tolerant Fungus Scytalidium acidophilum from Acid Hydrolysates of Waste Paper †

    PubMed Central

    Ivarson, K. C.; Morita, H.

    1982-01-01

    The bioconversion of waste paper to single-cell protein at pH <1 by Scytalidium acidophilum is described. Waste paper pretreated with 72% H2SO4 at 4°C was diluted with water to a pH of <0.1 and hydrolyzed. This yielded an adequate sugar-containing substrate for the growth of the fungus. A total of 97% of the sugars (glucose, galactose, mannose, xylose, arabinose) in the hydrolysates were converted to cell biomass. Microbial contamination was not observed. Based on the sugars consumed, S. acidophilum produced higher yields in shake cultures than many other Fungi Imperfecti. In aerated cultures, productivity increased, and yields of 43 to 46% containing 44 to 47% crude protein were obtained. This compares favorably with Candida utilis, a yeast used commercially to produce single-cell protein. The chemical constituents and the essential amino acids of the fungal cells were similar to those of other fungi. The nucleic acid content was characteristic of microbes containing low levels of nucleic acid. The advantages of using S. acidophilum for single-cell protein production are discussed. PMID:16345970

  7. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  8. Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye.

    PubMed

    Summers, Jody A; Harper, Angelica R; Feasley, Christa L; Van-Der-Wel, Hanke; Byrum, Jennifer N; Hermann, Marcela; West, Christopher M

    2016-09-01

    All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth.

  9. Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye.

    PubMed

    Summers, Jody A; Harper, Angelica R; Feasley, Christa L; Van-Der-Wel, Hanke; Byrum, Jennifer N; Hermann, Marcela; West, Christopher M

    2016-09-01

    All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth. PMID:27402828

  10. Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein.

    PubMed

    Kraschnefski, Mark J; Bugarcic, Andrea; Fleming, Fiona E; Yu, Xing; von Itzstein, Mark; Coulson, Barbara S; Blanchard, Helen

    2009-03-01

    The rotavirus spike protein VP4 mediates attachment to host cells and subsequent membrane penetration. The VP8(*) domain of VP4 forms the spike tips and is proposed to recognize host-cell surface glycans. For sialidase-sensitive rotaviruses such as rhesus (RRV), this recognition involves terminal sialic acids. We show here that the RRV VP8(*)(64-224) protein competes with RRV infection of host cells, demonstrating its relevance to infection. In addition, we observe that the amino acids revealed by X-ray crystallography to be in direct contact with the bound sialic acid derivative methyl alpha-D-N-acetylneuraminide, and that are highly conserved amongst sialidase-sensitive rotaviruses, are residues that are also important in interactions with host-cell carbohydrates. Residues Arg101 and Ser190 of the RRV VP8(*) carbohydrate-binding site were mutated to assess their importance for binding to the sialic acid derivative and their competition with RRV infection of host cells. The crystallographic structure of the Arg(101)Ala mutant crystallized in the presence of the sialic acid derivative was determined at 295 K to a resolution of 1.9 A. Our multidisciplinary study using X-ray crystallography, saturation transfer difference nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, and competitive virus infectivity assays to investigate RRV wild-type and mutant VP8(*) proteins has provided the first evidence that the carbohydrate-binding cavity in RRV VP8(*) is used for host-cell recognition, and this interaction is not only with the sialic acid portion but also with other parts of the glycan structure.

  11. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  12. Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in rat liver after protein restriction.

    PubMed Central

    Andersson, G M; von der Decken, A

    1975-01-01

    Rats were fed for 6 days on a diet containing either 3 or 20% high-quality protein. Nuclei were isolated from liver and DNA-dependent RNA polymerases (EC 2.7.7.6) extracted with 1 M-(NH4)2SO4. The proteins were then precipitated with 3.5 M-(NH4)2SO4 and after dialysis applied to a DEAE-Sephadex column. The column was developed with a gradient of (NH4)2SO4. Polymerase I separated well from alpha-amanitin-sensitive polymerase II. The enzyme activities were compared between the two dietary groups. Rats that had received 3% protein showed a lower polymerase I activity per g wet wt. of liver, per mg of DNA and per mg of protein. Polymerase II was lower in activity per g wet wt. of liver and per mg of DNA, but was higher per mg of protein. Polyacrylamide-gel electrophoretograms showed a higher proportion of contaminating proteins in polymerase II fractions isolated from 20%-protein-fed rats. The data explain the lower activity obtained per mg of protein in these rats. It is concluded that a decrease in dietary protein content from 20 to 3% induces a fall in content and specific activity of RNA polymerase I and II in liver. PMID:1156400

  13. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles

    SciTech Connect

    Mendz, G.L. ); Brown, L.R. ); Martenson, R.E. )

    1990-03-06

    The interactions of myelin basic protein and peptides derived from it with detergent micelles of lysophosphatidylglycerol, lysophosphatidylserine, palmitoyllysophosphatidic acid, and sodium lauryl sulfate, and with mixed micelles of the neutral detergent dodecylphosphocholine and the negatively charged detergent palmitoyllysophosphatidic acid, were investigated by {sup 1}H NMR spectroscopy and circular dichroic spectropolarimetry. The results with single detergents suggested that there are discrete interaction sites in the protein molecule for neutral and anionic detergent micelles and that at least some of these sites are different for each type of detergent. The data on the binding of the protein and peptides to mixed detergent micelles suggested that intramolecular interactions in the intact protein and in one of the longer peptides limited the formation of helices and also that a balance between hydrophobic and ionic forces is achieved in the interactions of the peptides with the detergents. At high detergent/protein molar ratios, hydrophobic interactions appeared to be favored.

  14. [Effect of extrusion on the retention of amino acids and the nutritional value of the protein].

    PubMed

    Martinchik, A N; Sharikov, A Yu

    2015-01-01

    The data of the literature on the impact factors of the extrusion cooking on physical and chemical properties of food proteins, biological value and digestibility have been discussed. Extrusion cooking is a high temperature short-time process, characterizing by a minimal loss of nutrients. and biologically active substances compared to other methods of heat treatment of food. Studies of the properties of protein-containing products, protein isolates and concentrates in the extrusion are examined in different ways: the inactivation of antinutritional factors; improvement in digestibility and availability; changes in the content and chemical modification of amino acids; Maillard reactions involving amino acids; mutual enrichment of protein mixtures during the composite food extrusion; formation of functional technological properties of the extruded protein products.

  15. Ribonucleic Acid, Deoxyribonucleic Acid, and Protein Content of Cells of Different Ages of Mycobacterium tuberculosis and the Relationship to Immunogenicity

    PubMed Central

    Youmans, Anne S.; Youmans, Guy P.

    1968-01-01

    The amount of ribonucleic acid (RNA), protein, and deoxyribonucleic acid (DNA) was determined in pellicle cultures of different ages of the H37Ra strain of Mycobacterium tuberculosis, grown on a synthetic medium. We found that the highest content of RNA and protein was present in 2-week-old cultures, indicating that these cells were in the logarithmic phase of growth. DNA content was highest at 1 and 2 weeks. The amount of all three compounds then decreased about 50% during the following 6 weeks. Two-week-old cells should therefore be used for preparation of the immunogenic ribosomal fraction. The optimal concentration of zinc chloride increased RNA and protein synthesis, and also improved the appearance of the pellicle growth. Two-week-old cells, which contained the largest amount of RNA and protein, immunized mice significantly better than older cells. Since protein and DNA are not involved in the production of immunity, a correlation could be made between amount of RNA and the capacity of viable H37Ra cells to immunize mice. The immunizing capacity of these cells was not affected by ribonuclease, probably because the ribonuclease did not penetrate into the whole cells. PMID:4966539

  16. Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis.

    PubMed

    Ye, Shixin; Köhrer, Caroline; Huber, Thomas; Kazmi, Manija; Sachdev, Pallavi; Yan, Elsa C Y; Bhagat, Aditi; RajBhandary, Uttam L; Sakmar, Thomas P

    2008-01-18

    G protein-coupled receptors (GPCRs) are ubiquitous heptahelical transmembrane proteins involved in a wide variety of signaling pathways. The work described here on application of unnatural amino acid mutagenesis to two GPCRs, the chemokine receptor CCR5 (a major co-receptor for the human immunodeficiency virus) and rhodopsin (the visual photoreceptor), adds a new dimension to studies of GPCRs. We incorporated the unnatural amino acids p-acetyl-L-phenylalanine (Acp) and p-benzoyl-L-phenylalanine (Bzp) into CCR5 at high efficiency in mammalian cells to produce functional receptors harboring reactive keto groups at three specific positions. We obtained functional mutant CCR5, at levels up to approximately 50% of wild type as judged by immunoblotting, cell surface expression, and ligand-dependent calcium flux. Rhodopsin containing Acp at three different sites was also purified in high yield (0.5-2 microg/10(7) cells) and reacted with fluorescein hydrazide in vitro to produce fluorescently labeled rhodopsin. The incorporation of reactive keto groups such as Acp or Bzp into GPCRs allows their reaction with different reagents to introduce a variety of spectroscopic and other probes. Bzp also provides the possibility of photo-cross-linking to identify precise sites of protein-protein interactions, including GPCR binding to G proteins and arrestins, and for understanding the molecular basis of ligand recognition by chemokine receptors. PMID:17993461

  17. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm.

    PubMed

    Fulks, R M; Li, J B; Goldberg, A L

    1975-01-10

    A simple method is described for measuring rates of protein synthesis and degradation in isolated rat diaphragm. Muscles incubated in Krebs-Ringer bicarbonate buffer showed a linear rate of synthesis for 3 hours. At the same time, the muscle released tyrosine and ninhydrin-positive material, primarily amino acids, at a linear rate. This release was not a nonspecific leakage of material from the intracellular pools, but reflected net protein degradation. Tyrosine was chosen for studies of protein turnover, since it rapidly equilibrates between intracellular pools and the medium, it can be measured fluorometrically, and it is neither synthesized nor degraded by this tissue. To follow protein degradation independently of synthesis, muscles were incubated in the presence of cycloheximide. Under these conditions, the amount of tyrosine in the intracellular pools was constant, while the muscle released tyrosine at a linear rate. This tyrosine release was used as a measure of degradation. This preparation was used to study the influence of various factors known to be important for muscle growth on protein synthesis and degradation. Similar effects were obtained with diaphragms of normal and fasted rats although the latter showed decreased synthesis and increased protein degradation. Insulin by itself not only stimulated synthesis but also inhibited protein degradation (even in the presence of cycloheximide). These two effects served to reduce the net release of tyrosine from muscle protein to comparable extents. Effects of insulin on synthesis and degradation were greater when glucose was also present in the medium. Glucose by itself inhibited protein degradation but in the absence of insulin glucose had no significant effect on synthesis. Nevertheless, glucose stimulated incorporation of radioactivive tyrosine into protein, but this effect was due to an increased intracellular specific activity. Unlike glucose neither beta-hydroxybutyrate or octanoic acid had any

  18. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression.

  19. Determination of de novo synthesized amino acids in cellular proteins revisited by 13C NMR spectroscopy.

    PubMed

    Flögel, U; Willker, W; Leibfritz, D

    1997-04-01

    13C nuclear magnetic resonance spectroscopy was used to determine the absolute amounts to de novo synthesized amino acids in both the perchloric acid extracts and the hydrolyzed protein fractions of F98 glioma cells incubated for 2 h with 5 mmol/l [U-13C]glucose. 13C NMR spectra of the hydrolyzed protein fraction revealed a marked incorporation of 13C-labelled alanine, aspartate and glutamate into the proteins of F98 cells within the incubation period. Additionally, small amounts of 13C-labelled glycine, proline and serine could unambiguously be identified in the protein fraction. Astonishingly, approximately equal amounts of 13C-labelled glutamate and aspartate were incorporated into the cellular proteins, although the cytosolic steady-state concentration of aspartate was below 13C NMR detectability. Hypertonic stress decreased the incorporation of 13C-labelled amino acids into the total protein, albeit their cytosolic concentrations were increased, which reflects an inhibition of protein synthesis under these conditions. On the other hand, hypotonic stress increased the amount of 13C-labelled proline incorporated into the cellular proteins even though the cytosolic concentration of 13C-labelled proline was largely decreased. Apparently, hypoosmotic conditions stimulate the synthesis of proteins or peptides with a high proline content. The results show that already after 2 h of incubation with [U-13C]glucose there is a pronounced flux of 13C label into the cellular proteins, which is usually disregarded if cytosolic fluids are examined only. This means that calculations of metabolic fluxes based on 13C NMR spectroscopic data obtained from perchloric acid extracts of cells or tissues and also from in vivo measurements consider only the labelled 'NMR visible' cytosolic metabolites, which may have to be corrected for fast label flowing off into other compartments.

  20. Rh polypeptide is a major fatty acid-acylated erythrocyte membrane protein

    SciTech Connect

    de Vetten, M.P.; Agre, P.

    1988-12-05

    The erythrocyte Rh antigens contain an Mr = 32,000 integral protein which is thought to contribute in some way to the organization of surrounding phospholipid. To search for possible fatty acid acylation of the Rh polypeptide, intact human erythrocytes were incubated with (3H)palmitic acid prior to preparation of membranes and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Several membrane proteins were labeled, but none corresponded to the glycophorins or membrane proteins 1-8. An Mr = 32,000 band was prominently labeled on Rh (D)-negative and -positive erythrocytes and could be precipitated from the latter with anti-D. No similar protein was labeled on membranes from Rhmod erythrocytes, a rare phenotype lacking Rh antigens. Labeling of the Rh polypeptide most likely represents palmitic acid acylation through thioester linkages. The 3H label was not extracted with chloroform/methanol, but was quantitatively eluted with hydroxylamine and co-chromatographed with palmitohydroxamate and free palmitate by thin layer chromatography. The fatty acid acylations occurred independent of protein synthesis and were completely reversed by chase with unlabeled palmitate. It is concluded that the Rh polypeptide is fatty acid-acylated, being a major substrate of an acylation-deacylation mechanism associated with the erythrocyte membrane.

  1. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    PubMed Central

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states. PMID:25004958

  2. A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.

    PubMed

    Chen, Duo; Wang, Jiasong; Yan, Ming; Bao, Forrest Sheng

    2016-08-01

    Computationally assessing the functional similarity between proteins is an important task of bioinformatics research. It can help molecular biologists transfer knowledge on certain proteins to others and hence reduce the amount of tedious and costly benchwork. Representation of amino acids, the building blocks of proteins, plays an important role in achieving this goal. Compared with symbolic representation, representing amino acids numerically can expand our ability to analyze proteins, including comparing the functional similarity of them. Among the state-of-the-art methods, electro-ion interaction pseudopotential (EIIP) is widely adopted for the numerical representation of amino acids. However, it could suffer from degeneracy that two different amino acid sequences have the same numerical representation, due to the design of EIIP. In light of this challenge, we propose a complex prime numerical representation (CPNR) of amino acids, inspired by the similarity between a pattern among prime numbers and the number of codons of amino acids. To empirically assess the effectiveness of the proposed method, we compare CPNR against EIIP. Experimental results demonstrate that the proposed method CPNR always achieves better performance than EIIP. We also develop a framework to combine the advantages of CPNR and EIIP, which enables us to improve the performance and study the unique characteristics of different representations. PMID:27249328

  3. Polymerization and nucleic acid-binding properties of human L1 ORF1 protein.

    PubMed

    Callahan, Kathryn E; Hickman, Alison B; Jones, Charles E; Ghirlando, Rodolfo; Furano, Anthony V

    2012-01-01

    The L1 (LINE 1) retrotransposable element encodes two proteins, ORF1p and ORF2p. ORF2p is the L1 replicase, but the role of ORF1p is unknown. Mouse ORF1p, a coiled-coil-mediated trimer of ∼42-kDa monomers, binds nucleic acids and has nucleic acid chaperone activity. We purified human L1 ORF1p expressed in insect cells and made two findings that significantly advance our knowledge of the protein. First, in the absence of nucleic acids, the protein polymerizes under the very conditions (0.05 M NaCl) that are optimal for high (∼1 nM)-affinity nucleic acid binding. The non-coiled-coil C-terminal half mediates formation of the polymer, an active conformer that is instantly resolved to trimers, or multimers thereof, by nucleic acid. Second, the protein has a biphasic effect on mismatched double-stranded DNA, a proxy chaperone substrate. It protects the duplex from dissociation at 37°C before eventually melting it when largely polymeric. Therefore, polymerization of ORF1p seemingly affects its interaction with nucleic acids. Additionally, polymerization of ORF1p at its translation site could explain the heretofore-inexplicable phenomenon of cis preference-the favored retrotransposition of the actively translated L1 transcript, which is essential for L1 survival. PMID:21937507

  4. Uniformly 13C-labeled algal protein used to determine amino acid essentiality in vivo.

    PubMed Central

    Berthold, H K; Hachey, D L; Reeds, P J; Thomas, O P; Hoeksema, S; Klein, P D

    1991-01-01

    The edible alga Spirulina platensis was uniformly labeled with 13C by growth in an atmosphere of pure 13CO2. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly 13C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo. Images PMID:11607211

  5. Use of gel retardation to analyze protein-nucleic acid interactions.

    PubMed Central

    Lane, D; Prentki, P; Chandler, M

    1992-01-01

    Protein-nucleic acid interactions are crucial in the regulation of many fundamental cellular processes. The nature of these interactions is susceptible to analysis by a variety of methods, but the combination of high analytical power and technical simplicity offered by the gel retardation (band shift) technique has made this perhaps the most widely used such method over the last decade. This procedure is based on the observation that the formation of protein-nucleic complexes generally reduces the electrophoretic mobility of the nucleic acid component in the gel matrix. This review attempts to give a simplified account of the physical basis of the behavior of protein-nucleic acid complexes in gels and an overview of many of the applications in which the technique has proved especially useful. The factors which contribute most to the resolution of the complex from the naked nucleic acid are the gel pore size, the relative mass of protein compared with nucleic acid, and changes in nucleic acid conformation (bending) induced by binding. The consequences of induced bending on the mobility of double-strand DNA fragments are similar to those arising from sequence-directed bends, and the latter can be used to help characterize the angle and direction of protein-induced bends. Whether a complex formed in solution is actually detected as a retarded band on a gel depends not only on resolution but also on complex stability within the gel. This is strongly influenced by the composition and, particularly, the ionic strength of the gel buffer. We discuss the applications of the technique to analyzing complex formation and stability, including characterizing cooperative binding, defining binding sites on nucleic acids, analyzing DNA conformation in complexes, assessing binding to supercoiled DNA, defining protein complexes by using cell extracts, and analyzing biological processes such as transcription and splicing. Images PMID:1480106

  6. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  7. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  8. Stabilisation of proteins via mixtures of amino acids during spray drying.

    PubMed

    Ajmera, Ankur; Scherließ, Regina

    2014-03-10

    Biologicals are often formulated as solids in an effort to preserve stability which generally requires stabilising excipients for proper drying. The purpose of this study was to screen amino acids and their combinations for their stabilising effect on proteins during spray drying. Catalase, as model protein, was spray dried in 1+1 or 1+2 ratios with amino acids. Some amino acids namely arginine, glycine and histidine showed good retention of catalase functionality after spray drying and subsequent storage stress. A 1+1 combination of arginine and glycine in a 1+2 ratio with catalase resulted in a tremendously good stabilising effect. Storage at high temperature/humidity also showed beneficial effects of this combination. To evaluate whether this was a general principle, these findings were transferred to an antigenic protein of comparable size and supramolecular structure (haemagglutinin) as well as to a smaller enzyme (lysozyme). Upon spray drying with the combination of amino acids it could be shown that both proteins remain more stable especially after storage compared to the unprotected protein. The combination of arginine and glycine is tailored to the needs of protein stabilisation during spray drying and may hence be utilised in dry powder formulation of biomolecules with superior stability characteristics. PMID:24412336

  9. Augmentation of protein-derived acetic acid production by heat-alkaline-induced changes in protein structure and conformation.

    PubMed

    Wang, Xu; Li, Yanbo; Liu, Junxin; Ren, Nan-Qi; Qu, Jiuhui

    2016-01-01

    Waste-derived acetic acid (HAc) is an attractive feedstock for microbe-mediated biofuel production. However, fermentative conversion of HAc from waste-activated sludge (WAS) has low yield because of the high concentration of proteins not readily utilizable by microorganisms without prior hydrolysis. We investigated a combined technology for HAc augmentation during sludge protein fermentation. The maximal HAc yield increased over two-fold, reaching 0.502 ± 0.021 g/g protein (0.36 ± 0.01 g COD/g COD, ∼52% of the total volatile fatty acids) when synthetic sludge protein was heated at 120 °C for 30 min, treated at pH 12 for 24 h, and fermented at pH 9 for 72 h. Comprehensive analysis illustrated that the heat-alkaline pretreatment significantly induced protein fragmentation, simultaneously increasing the efficiency of protein biohydrolysis (from 35.5% to 85.9%) by inducing conformational changes indicative of protein unfolding. Consequently, the native α-helix content was decreased from 67.3% to 32.5% by conversion to an unordered shape, whose content increased from 27.5% to 45.5%; disulfide bonds were cleaved, whereas the main S-S stretching pattern was altered from gauche-gauche-gauche to gauche-gauche-trans, consequently causing increased protein susceptibility to proteolytic hydrolysis (76.3% vs. 47.0%). Economic analysis indicated that anaerobic fermentation with appropriate heat-alkaline pretreatment is a cost-effective approach for waste conversion to energy sources such as HAc.

  10. Olive oils modulate fatty acid content and signaling protein expression in apolipoprotein E knockout mice brain.

    PubMed

    Alemany, Regina; Navarro, María A; Vögler, Oliver; Perona, Javier S; Osada, Jesús; Ruiz-Gutiérrez, Valentina

    2010-01-01

    Atherosclerosis contributes to disruption of neuronal signaling pathways by producing lipid-dependent modifications of brain plasma membranes, neuroinflammation and oxidative stress. We investigated whether long-term (11 weeks) consumption of refined- (ROO) and pomace- (POO) olive oil modulated the fatty acid composition and the levels of membrane signaling proteins in the brain of apolipoprotein E (apoE) knockout (KO) mice, an animal model of atherosclerosis. Both of these oils are rich in bioactive molecules with anti-inflammatory and antioxidant effects. ROO and POO long-term consumption increased the proportion of monounsaturated fatty acids (MUFAs), particularly of oleic acid, while reducing the level of the saturated fatty acids (SFAs) palmitic and stearic acid. As a result, the MUFA:SFA ratio was higher in apoE KO mice brain fed with ROO and POO. Furthermore, both oils reduced the level of arachidonic and eicosapentaenoic acid, suggesting a decrease in the generation of pro- and anti-inflammatory eicosanoids. Finally, ROO and POO induced an increase in the density of membrane proteins implicated in both the Galphas/PKA and Galphaq/PLCbeta1/PKCalpha signaling pathways. The combined effects of long-term ROO and POO consumption on fatty acid composition and the level of signaling proteins involved in PKA and PKC activation, suggest positive effects on neuroinflammation and brain function in apoE KO mice brain, and convert these oils into promising functional foods in diseases involving apoE deficiency.

  11. Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in northwest Mexico.

    PubMed

    Caire-Juvera, Graciela; Vázquez-Ortiz, Francisco A; Grijalva-Haro, Maria I

    2013-01-01

    A better knowledge of the amino acid composition of foods commonly consumed in different regions is essential to calculate their scores and, therefore, to predict their protein quality. This paper presents the amino acid composition, amino acid score and in vitro protein digestibility of fifteen foods that are commonly consumed in Northwest Mexico. The foods were prepared by the traditional methods and were analyzed by reverse-phase HPLC. The chemical score for each food was determined using the recommendations for children of 1-2 years of age, and the digestibility was evaluated using a multienzyme technique. Lysine was the limiting amino acid in cereal-based products (scores 15 to 54), and methionine and cysteine were limiting in legume products (scores 41 to 47), boiled beef (score = 75) and hamburger (score = 82). The method of preparation had an effect on the content of certain amino acids, some of them increased and others decreased their content. Meat products and regional cheese provided a high amino acid score (scores 67 to 91) and digestibility (80.7 to 87.8%). Bologna, a processed meat product, had a lower digestibility (75.4%). Data on the amino acid composition of foods commonly consumed in Mexico can be used to provide valuable information on food analysis and protein quality, and to contribute to nutrition and health research and health programs.

  12. Environmental enrichment increases the GFAP+ stem cell pool and reverses hypoxia-induced cognitive deficits in juvenile mice.

    PubMed

    Salmaso, Natalina; Silbereis, John; Komitova, Mila; Mitchell, Patrick; Chapman, Katherine; Ment, Laura R; Schwartz, Michael L; Vaccarino, Flora M

    2012-06-27

    Premature children born with very low birth weight (VLBW) can suffer chronic hypoxic injury as a consequence of abnormal lung development and cardiovascular abnormalities, often leading to grave neurological and behavioral consequences. Emerging evidence suggests that environmental enrichment improves outcome in animal models of adult brain injury and disease; however, little is known about the impact of environmental enrichment following developmental brain injury. Intriguingly, data on socio-demographic factors from longitudinal studies that examined a number of VLBW cohorts suggest that early environment has a substantial impact on neurological and behavioral outcomes. In the current study, we demonstrate that environmental enrichment significantly enhances behavioral and neurobiological recovery from perinatal hypoxic injury. Using a genetic fate-mapping model that allows us to trace the progeny of GFAP+ astroglial cells, we show that hypoxic injury increases the proportion of astroglial cells that attain a neuronal fate. In contrast, environmental enrichment increases the stem cell pool, both through increased stem cell proliferation and stem cell survival. In mice subjected to hypoxia and subsequent enrichment there is an additive effect of both conditions on hippocampal neurogenesis from astroglia, resulting in a robust increase in the number of neurons arising from GFAP+ cells by the time these mice reach full adulthood.

  13. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance.

    PubMed

    Baier, L J; Sacchettini, J C; Knowler, W C; Eads, J; Paolisso, G; Tataranni, P A; Mochizuki, H; Bennett, P H; Bogardus, C; Prochazka, M

    1995-03-01

    The intestinal fatty acid binding protein locus (FABP2) was investigated as a possible genetic factor in determining insulin action in the Pima Indian population. A polymorphism at codon 54 of FABP2 was identified that results in an alanine-encoding allele (frequency 0.71) and a threonine-encoding allele (frequency 0.29). Pimas who were homozygous or heterozygous for the threonine-encoding allele were found to have a higher mean fasting plasma insulin concentration, a lower mean insulin-stimulated glucose uptake rate, a higher mean insulin response to oral glucose and a mixed meal, and a higher mean fat oxidation rate compared with Pimas who were homozygous for the alanine-encoding allele. Since the FABP2 threonine-encoding allele was found to be associated with insulin resistance and increased fat oxidation in vivo, we further analyzed the FABP2 gene products for potential functional differences. Titration microcalorimetry studies with purified recombinant protein showed that the threonine-containing protein had a twofold greater affinity for long-chain fatty acids than the alanine-containing protein. We conclude that the threonine-containing protein may increase absorption and/or processing of dietary fatty acids by the intestine and thereby increase fat oxidation, which has been shown to reduce insulin action. PMID:7883976

  14. Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae.

    PubMed

    Brody, S; Oh, C; Hoja, U; Schweizer, E

    1997-05-19

    The yeast gene, ACP1, encoding the mitochondrial acyl carrier protein, was deleted by gene replacement. The resulting acp1-deficient mutants had only 5-10% of the wild-type lipoic acid content remaining, and exhibited a respiratory-deficient phenotype. Upon meiosis, the lipoate deficiency co-segregated with the acp1 deletion. The role of ACP1 in long-chain fatty acid synthesis was studied in fast and fas2 null mutants completely lacking cytoplasmic fatty acid synthase. When grown on odd-chain (13:0 and 15:0) fatty acids, these cells showed less than 1% of C-16 and C-18 acids in their total lipids. Mitochondrial ACP is therefore suggested to be involved with the biosynthesis of octanoate, a precursor to lipoic acid. PMID:9187370

  15. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... fixer, and then incubate for 5 minutes in Tris-buffered saline (TBS): 200 mM NaCL, 60 mM Tris-HCl to pH...) Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto,...

  16. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), 5 mM Hepes, pH 7.4, 0.7 percent Triton X-100) to a final concentration of 0.25 mg total protein per... fixer, and then incubate for 5 minutes in Tris-buffered saline (TBS): 200 mM NaCL, 60 mM Tris-HCl to pH...) Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto,...

  17. Primary structures of three highly acidic ribosomal proteins S6, S12 and S15 from the archaebacterium Halobacterium marismortui.

    PubMed

    Kimura, J; Arndt, E; Kimura, M

    1987-11-16

    The amino acid sequences of three extremely acidic ribosomal proteins, S6, S12, and S15, from Halobacterium marismortui have been determined. The sequences were obtained by the sequence analysis of peptides derived by enzymatic digestion with trypsin. Stapylococcus aureus protease and chymotrypsin, as well as by cleavage with dilute HCl. The proteins, S6, S12 and S15, consist of 116, 147 and 102 amino acid residues, and have molecular masses of 12,251, 16,440 and 11,747 Da, respectively. Comparison of the amino acid sequences of these proteins with ribosomal protein sequences of other organisms revealed that halobacterial protein S12 has homology with the eukaryotic protein S16A from Saccharomyces cerevisiae, while S15 is significantly related to the Xenopus laevis S19 protein. No homology was found between these halobacterial proteins and any eubacterial ribosomal proteins.

  18. Effect of maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids on liver fatty acid desaturases and transport proteins in Wistar rats.

    PubMed

    Wadhwani, Nisha S; Manglekar, Rupali R; Dangat, Kamini D; Kulkarni, Asmita V; Joshi, Sadhana R

    2012-01-01

    A disturbed fatty acid metabolism increases the risk of adult non-communicable diseases. This study examines the effect of maternal micronutrients on the fatty acid composition, desaturase activity, mRNA levels of fatty acid desaturases and transport proteins in the liver. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B(12). The vitamin B(12) deficient groups were supplemented with omega 3 fatty acid. An imbalance of maternal micronutrients reduces liver docosahexaenoic acid, increases Δ5 desaturase activity but decreases mRNA levels, decreases Δ6 desaturase activity but not mRNA levels as compared to control. mRNA level of Δ5 desaturase reverts back to the levels of the control group as a result of omega 3 fatty acid supplementation. Our data for the first time indicates that maternal micronutrients differentially alter the activity and expression of fatty acid desaturases in the liver.

  19. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress. PMID:24702262

  20. Effect of increased protein intake on renal acid load and renal hemodynamic responses.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; van Baak, Marleen A

    2016-03-01

    Increased protein intake versus maltodextrin intake for 4 weeks lowers blood pressure. Concerns exist that high-protein diets reduce renal function. Effects of acute and 4-week protein intake versus maltodextrin intake on renal acid load, glomerular filtration rate and related parameters were compared in this study. Seventy-nine overweight individuals with untreated elevated blood pressure and normal kidney function were randomized to consume a mix of protein isolates (60 g/day) or maltodextrin (60 g/day) for 4 weeks in energy balance. Twenty-four-hour urinary potential renal acid load (uPRAL) was compared between groups. A subgroup (maltodextrin N = 27, protein mix N = 25) participated in extra test days investigating fasting levels and postprandial effects of meals supplemented with a moderate protein- or maltodextrin-load on glomerular filtration rate, effective renal plasma flow, plasma renin, aldosterone, pH, and bicarbonate. uPRAL was significantly higher in the protein group after 4 weeks (P ≤ 0.001). Postprandial filtration fraction decreased further after the protein-supplemented breakfast than after the maltodextrin-supplemented breakfast after 4 weeks of supplementation (P ≤ 0.001). Fasting and postprandial levels of glomerular filtration rate, effective renal plasma flow, renin, aldosterone, angiotensin-converting enzyme, pH and bicarbonate did not differ between groups. In conclusion, 4 weeks on an increased protein diet (25% of energy intake) increased renal acid load, but did not affect renal function. Postprandial changes, except for filtration fraction, also did not differ between groups. These data suggest that a moderate increase in protein intake by consumption of a protein mix for 4 weeks causes no (undesirable) effects on kidney function in overweight and obese individuals with normal kidney function. PMID:26997623

  1. Effect of increased protein intake on renal acid load and renal hemodynamic responses.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; van Baak, Marleen A

    2016-03-01

    Increased protein intake versus maltodextrin intake for 4 weeks lowers blood pressure. Concerns exist that high-protein diets reduce renal function. Effects of acute and 4-week protein intake versus maltodextrin intake on renal acid load, glomerular filtration rate and related parameters were compared in this study. Seventy-nine overweight individuals with untreated elevated blood pressure and normal kidney function were randomized to consume a mix of protein isolates (60 g/day) or maltodextrin (60 g/day) for 4 weeks in energy balance. Twenty-four-hour urinary potential renal acid load (uPRAL) was compared between groups. A subgroup (maltodextrin N = 27, protein mix N = 25) participated in extra test days investigating fasting levels and postprandial effects of meals supplemented with a moderate protein- or maltodextrin-load on glomerular filtration rate, effective renal plasma flow, plasma renin, aldosterone, pH, and bicarbonate. uPRAL was significantly higher in the protein group after 4 weeks (P ≤ 0.001). Postprandial filtration fraction decreased further after the protein-supplemented breakfast than after the maltodextrin-supplemented breakfast after 4 weeks of supplementation (P ≤ 0.001). Fasting and postprandial levels of glomerular filtration rate, effective renal plasma flow, renin, aldosterone, angiotensin-converting enzyme, pH and bicarbonate did not differ between groups. In conclusion, 4 weeks on an increased protein diet (25% of energy intake) increased renal acid load, but did not affect renal function. Postprandial changes, except for filtration fraction, also did not differ between groups. These data suggest that a moderate increase in protein intake by consumption of a protein mix for 4 weeks causes no (undesirable) effects on kidney function in overweight and obese individuals with normal kidney function.

  2. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  3. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly

    PubMed Central

    2013-01-01

    Background Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960’s, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear. We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex. Results We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different. Conclusions Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction

  4. Protein content and amino acids profile of pseudocereals.

    PubMed

    Mota, Carla; Santos, Mariana; Mauro, Raul; Samman, Norma; Matos, Ana Sofia; Torres, Duarte; Castanheira, Isabel

    2016-02-15

    Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and buckwheat (Fagopyrum esculentum) represent the main protein source in several diets, although these pseudocereals are not currently present in the FCDB nutrient profile information. The aim of this work is to characterise the AA profile of these pseudocereals and compare them with rice. Total protein content revealed to vary from 16.3g/100g (quinoa Salta) to 13.1g/100g (buckwheat) and lower values were found in rice samples (6.7g/100g). For pseudocereals the most abundant essential AA was leucine. Quinoa-Salta evidences the highest leucine content (1013mg/100g) and the minor methionine content (199mg/100g). Buckwheat was the cereal with the highest phenylalanine content (862mg/100g). Rice (Oryza sativa) presents the lowest content for all AA. Results showed pseudocereals as the best source of AA. EuroFIR guidelines where strictly followed and proved to be a crucial tool to guarantee data interchangeability and comparability. PMID:26433287

  5. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins.

    PubMed

    Peitzsch, R M; McLaughlin, S

    1993-10-01

    We studied the binding of fatty acids and acylated peptides to phospholipid vesicles by making electrophoretic mobility and equilibrium dialysis measurements. The binding energies of the anionic form of the fatty acids and the corresponding acylated glycines were identical; the energies increased by 0.8 kcal/mol per number of carbons in the acyl chain (Ncarbon = 10, 12, 14, 16), a value identical to that for the classical entropy-driven hydrophobic effect discussed by Tanford [The Hydrophobic Effect (1980) Wiley, New York]. The unitary Gibbs free binding energy, delta Gou, of myristoylated glycine, 8 kcal/mol, is independent of the nature of the electrically neutral lipids used to form the vesicles. Similar binding energies were obtained with other myristoylated peptides (e.g., Gly-Ala, Gly-Ala-Ala). The 8 kcal/mol, which corresponds to an effective dissociation constant of 10(-4) M for myristoylated peptides with lipids, provides barely enough energy to attach a myristoylated protein in the cytoplasm to the plasma membrane. Thus, other factors that reduce (e.g., hydrophobic interaction of myristate with the covalently attached protein) or enhance (e.g., electrostatic interactions of basic residues with acidic lipids; protein-protein interactions with intrinsic receptor proteins) the interaction of myristoylated proteins with membranes are likely to be important and may cause reversible translocation of these proteins to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Amyloid protein precursor stimulates excitatory amino acid transport. Implications for roles in neuroprotection and pathogenesis.

    PubMed

    Masliah, E; Raber, J; Alford, M; Mallory, M; Mattson, M P; Yang, D; Wong, D; Mucke, L

    1998-05-15

    Excitatory neurotransmitters such as glutamate are required for the normal functioning of the central nervous system but can trigger excitotoxic neuronal injury if allowed to accumulate to abnormally high levels. Their extracellular levels are controlled primarily by transmitter uptake into astrocytes. Here, we demonstrate that the amyloid protein precursor may participate in the regulation of this important process. The amyloid protein precursor has been well conserved through evolution, and a number of studies indicate that it may function as an endogenous excitoprotectant. However, the mechanisms underlying this neuroprotective capacity remain largely unknown. At moderate levels of expression, human amyloid protein precursors increased glutamate/aspartate uptake in brains of transgenic mice, with the 751-amino acid isoform showing greater potency than the 695-amino acid isoform. Cerebral glutamate/aspartate transporter protein levels were higher in transgenic mice than in non-transgenic controls, whereas transporter mRNA levels were unchanged. Amyloid protein precursor-dependent stimulation of aspartate uptake by cultured primary astrocytes was associated with increases in protein kinase A and C activity and could be blocked by inhibitors of these kinases. The stimulation of astroglial excitatory amino acid transport by amyloid protein precursors could protect the brain against excitotoxicity and may play an important role in neurotransmission. PMID:9575214

  7. Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements

    PubMed Central

    Wang, Y.; Jin, L.; Wen, Q. N.; Kopparapu, N. K.; Liu, J.; Liu, X. L.; Zhang, Y. G.

    2016-01-01

    The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a 4×4 Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established. PMID:26732449

  8. Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements.

    PubMed

    Wang, Y; Jin, L; Wen, Q N; Kopparapu, N K; Liu, J; Liu, X L; Zhang, Y G

    2016-02-01

    The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a 4×4 Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established.

  9. PROTEIN NUCLEIC ACID INTERACTIONS GRANT # DE-FG02-96ER62166 FINAL REPORT

    SciTech Connect

    Berman, Helen M.; Thornton, Janet

    2005-02-17

    The overall goal of this collaborative project is to develop methods for analyzing protein-nucleic acid interactions. Nucleic acid-binding proteins have a central role in all aspects of genetic activity within an organism, such as transcription, replication, and repair. Thus, it is extremely important to examine the nature of complexes that are formed between proteins and nucleic acids, as they form the basis of our understanding of how these processes take place. Over the past decade, the world has witnessed a great expansion in the determination of high-quality structures of nucleic acid-binding proteins. As a result, the number of such structures has seen a constant increase in the Protein Data Bank (PDB) (1) and the Nucleic Acid Database (NDB) (2). These structures, especially those of proteins in complex with DNA, have provided valuable insight into the stereochemical principles of binding, including how particular base sequences are recognized and how the nucleic acid structure is quite often modified on binding. In this project, we designed several approaches to characterize and classify the properties of both protein-DNA and protein-RNA complexes. In work done in the previous grant period, we developed methods to use experimental data to evaluate nucleic acid crystal structures in order to ensure that the structures utilized in future studies would be of high quality. The methodology was collated in the standalone software package SFCHECK (3) [A], and an applied survey of structures in the NDB produced very positive results. With this quality control mechanism in place, we then analyzed DNA-binding sites on proteins by studying the distortions observed in DNA structures bound to protein. From our observations, we found that DNA-binding proteins present a very different binding surface to those that bind other proteins and defined three modes of protein binding [B]. Following this survey, we classified DNA-binding proteins into eight different structural

  10. Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels.

    PubMed

    He, Sha; Zhang, Yi; Wang, Pei; Xu, Xingzhi; Zhu, Kui; Pan, Wenying; Liu, Wenwen; Cai, Kaiyong; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2015-01-01

    This work develops a high-throughput, high-efficiency and straightforward microfluidic blotting method for analyzing proteins and nucleic acids. Sample solutions containing antibodies (for protein detection) or hybridization probes (for nucleic acid detection) are introduced into the parallel, serpentine microchannels to specifically recognize the immobilized targets on the substrate, achieving the identification of multiple targets in multiple samples simultaneously. The loading control, molecular weight markers, and antigen/antibody titration are designed and integrated into the microfluidic chip, thus allowing for the quantification of proteins and nucleic acids. Importantly, we could easily distinguish the adjacent blotting bands inside parallel microchannels, which may be difficult to achieve in conventional blotting. The small dimensions of microfluidic channels also help to reduce the amount of probing molecules and to accelerate the biochemical reaction. Our microfluidic blotting could bypass the steps of blocking and washing, further reducing the operation time and complexity.

  11. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids.

    PubMed

    Ashkenazy, Haim; Erez, Elana; Martz, Eric; Pupko, Tal; Ben-Tal, Nir

    2010-07-01

    It is informative to detect highly conserved positions in proteins and nucleic acid sequence/structure since they are often indicative of structural and/or functional importance. ConSurf (http://consurf.tau.ac.il) and ConSeq (http://conseq.tau.ac.il) are two well-established web servers for calculating the evolutionary conservation of amino acid positions in proteins using an empirical Bayesian inference, starting from protein structure and sequence, respectively. Here, we present the new version of the ConSurf web server that combines the two independent servers, providing an easier and more intuitive step-by-step interface, while offering the user more flexibility during the process. In addition, the new version of ConSurf calculates the evolutionary rates for nucleic acid sequences. The new version is freely available at: http://consurf.tau.ac.il/.

  12. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism.

    PubMed

    Reidy, Paul T; Rasmussen, Blake B

    2016-02-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on

  13. Determination of free acidic and alkaline residues of protein via moving reaction boundary titration in microdevice electrophoresis.

    PubMed

    Wang, Hou-yu; Li, Si; Tang, Yun-yun; Dong, Jing-yu; Fan, Liu-yin; Cao, Cheng-xi

    2013-06-21

    As two important physico-chemical parameters, the acidic and alkaline residues of protein are of evident significance for the evaluation of protein properties and the design of relevant separation and analysis. However, there is still no electrophoretic method used for the direct detection of free acidic and alkaline residues of protein. Herein, we developed the concepts of moving reaction boundary (MRB) and MRB titration, relevant MRB titration theory, and the method of microdevice electrophoresis for the determination of free acidic and alkaline residues of protein. In the MRB titration, the boundary was created with acid or alkali and target protein immobilized via highly cross-linked polyacrylamide gel (PAG). It was theoretically revealed that the number of free acidic or alkaline residues of protein was as a function of MRB displacement in the electrophoretic titration system. As a proof of concept, seven model proteins were chosen for the determination of acidic or alkaline residues of protein via MRB titration. The results showed that the numbers of free acidic and alkaline residues of proteins detected were in good agreement with those obtained from the relevant amino sequences in the NCBI database, demonstrating the feasibility of the developed concept, theory and technique. The general methodology of MRB titration has potential application for inexpensive, facilitative and informative protein structure analysis of free acidic or alkaline residues of protein.

  14. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    SciTech Connect

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  15. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  16. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  17. Fatty acid binding protein 7 and n-3 poly unsaturated fatty acid supply in early rat brain development.

    PubMed

    Maximin, Elise; Langelier, Bénédicte; Aïoun, Josiane; Al-Gubory, Kaïs H; Bordat, Christian; Lavialle, Monique; Heberden, Christine

    2016-03-01

    Fatty acid binding protein 7 (FABP7), abundant in the embryonic brain, binds with the highest affinity to docosahexaenoic acid (DHA) and is expressed in the early stages of embryogenesis. Here, we have examined the consequences of the exposure to different DHA levels and of the in utero depletion of FABP7 on early rat brain development. Neurodevelopment was evaluated through the contents of two proteins, connexin 43 (Cx43) and cyclin-dependent kinase 5 (CDK5), both involved in neuroblast proliferation, differentiation, and migration. The dams were fed with diets presenting different DHA contents, from deficiency to supplementation. DHA brain embryos contents already differed at embryonic day 11.5 and the differences kept increasing with time. Cx43 and CDK5 contents were positively associated with the brain DHA levels. When FABP7 was depleted in vivo by injections of siRNA in the telencephalon, the enhancement of the contents of both proteins was lost in supplemented animals, but FABP7 depletion did not modify phospholipid compositions regardless of the diets. Thus, FABP7 is a necessary mediator of the effect of DHA on these proteins synthesis, but its role in DHA uptake is not critical, although FABP7 is localized in phospholipid-rich areas. Our study shows that high contents of DHA associated with FABP7 are necessary to promote early brain development, which prompted us to recommend DHA supplementation early in pregnancy.

  18. The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation.

    PubMed

    Dunlop, Rachael Anne; Cox, Paul Alan; Banack, Sandra Anne; Rodgers, Kenneth John

    2013-01-01

    Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and Progressive Supranuclear Palsy (PSP). Some forms of neurodegenerative illness are associated with mutations in genes which control assembly of disease related proteins. For example, the mouse sticky mutation sti, which results in undetected mischarging of tRNA(Ala) with serine resulting in the substitution of serine for alanine in proteins causes cerebellar Purkinje cell loss and ataxia in laboratory animals. Replacement of serine 422 with glutamic acid in tau increases the propensity of tau aggregation associated with neurodegeneration. However, the possibility that environmental factors can trigger abnormal folding in proteins remains relatively unexplored. We here report that a non-protein amino acid, β-N-methylamino-L-alanine (BMAA), can be misincorporated in place of L-serine into human proteins. We also report that this misincorporation can be inhibited by L-serine. Misincorporation of BMAA into human neuroproteins may shed light on putative associations between human exposure to BMAA produced by cyanobacteria and an increased incidence of ALS. PMID:24086518

  19. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  20. Protein and energy intake during weaning. III. Effects on plasma amino acids.

    PubMed

    Axelsson, I; Borulf, S; Abildskov, K; Heird, W; Räihä, N

    1988-01-01

    Preprandial plasma amino acid concentrations were measured at 5 and 6 months of age in 30 healthy term infants who were either breast-fed ad libitum or fed one of two different formulas (1.9 g of protein per 100 ml with a whey:casein ratio of 50:50; 2.9 g of protein per 100 ml with a whey:casein ratio of 20:80) ad libitum, plus the same supplementary food regimen. The mean plasma concentrations of total amino acids and especially total essential amino acids were higher in the formula-fed infants. Those fed formula also had plasma concentrations of methionine, isoleucine, phenylalanine, leucine, valine, threonine, aspartate, proline, lysine, tyrosine, histidine that exceeded plasma concentrations of breast-fed infants by 2 or more standard deviations. Concentrations of arginine, glutamic acid, glutamine, ornithine, serine, cystine did not differ and taurine was higher in the breast-fed infants. The data indicate that formulas in common use today during weaning (4-6 months) provide excessive protein intakes when compared to the breast-fed control infants. A lowering of protein concentration and a further manipulation of the whey:casein ratio is necessary if plasma amino acid patterns similar to those found in breast-fed infants is to be achieved with artificial feeding.

  1. Identification of amino acid residues important for the function of Agrobacterium tumefaciens Irr protein.

    PubMed

    Bhubhanil, Sakkarin; Ruangkiattikul, Nantaporn; Niamyim, Phettree; Chamsing, Jareeya; Ngok-Ngam, Patchara; Sukchawalit, Rojana; Mongkolsuk, Skorn

    2012-10-01

    The key amino acid residues that influence the function of the Agrobacterium tumefaciens iron response regulator protein (Irr(At) ) were investigated. Several Irr(At) mutant proteins containing substitutions in amino acids corresponding to candidate metal- and haem-binding sites were constructed. The ability of the mutant proteins to repress the promoter of the membrane bound ferritin (mbfA) gene was investigated using a promoter-lacZ fusion assay. A single mutation at residue H94 significantly decreased the repressive activity of Irr(At) . Multiple mutation analysis revealed the importance of H45, H65, the HHH motif (H92, H93 and H94) and H127 for the repressor function of Irr(At) . H94 is essential for the iron responsiveness of Irr(At) . Furthermore, the Irr(At) mutant proteins showed differential abilities to complement the H(2) O(2) -hyper-resistant phenotype of an irr mutant. PMID:22817265

  2. Alkali and Acid Solubilization Effects on Rheological Properties of Horse Mackerel Muscle Proteins

    NASA Astrophysics Data System (ADS)

    Campo-Deaño, L.; Tovar, C. A.

    2008-07-01

    Influence of the acid (Type A) and alkali (Type B) solubilization of muscle proteins in the viscoelastic properties of surimi and surimi gels made from horse mackerel (Trachurus trachurus) muscle were evaluated. Stress and frequency sweep tests showed that surimi from method B presents higher viscoelastic moduli, lowest values of phase angle and minimum viscoelastic moduli dependence with frequency than surimi A. These results show a high inicial protein aggregation in surimi B, that could explain the greater firmness and hardness of this sample, showing a more compact network structure. From static and dynamic tests, gel developed from alkali solubilization resulted in higher gel strength and more rigid network than that from acidic pH, despite the incial protein aggregation of surimi B its protein keeps better gelation capacity. The less structural quality of GA gel is likely due to the more lipid content on the surimi as compared to alkali treatment.

  3. Probing the structural dynamics of proteins and nucleic acids with optical tweezers.

    PubMed

    Ritchie, Dustin B; Woodside, Michael T

    2015-10-01

    Conformational changes are an essential feature of most molecular processes in biology. Optical tweezers have emerged as a powerful tool for probing conformational dynamics at the single-molecule level because of their high resolution and sensitivity, opening new windows on phenomena ranging from folding and ligand binding to enzyme function, molecular machines, and protein aggregation. By measuring conformational changes induced in a molecule by forces applied by optical tweezers, new insight has been gained into the relationship between dynamics and function. We discuss recent advances from studies of how structure forms in proteins and RNA, including non-native structures, fluctuations in disordered proteins, and interactions with chaperones assisting native folding. We also review the development of assays probing the dynamics of complex protein-nucleic acid and protein-protein assemblies that reveal the dynamic interactions between biomolecular machines and their substrates.

  4. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  5. Protein fatty acid acylation: enzymatic synthesis of an N-myristoylglycyl peptide

    SciTech Connect

    Towler, D.; Glaser, L.

    1986-05-01

    Incubation of Saccharomyces cerevisiae strain JR153 with either (/sup 3/H)myristate or (/sup 3/H)palmitate demonstrates the synthesis of proteins that contain covalently bound fatty acids. A unique set of proteins is labeled by each fatty acid. Detailed analysis of a 20-kDa protein labeled with myristic acid demonstrates that myristate is linked to the amino-terminal glycine. We describe an enzymatic activity in yeast that will transfer myristic acid to the amino terminus of the octapeptide Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg, whose sequence was derived from a known N-myristoylated acyl protein, the catalytic subunit of cAMP-dependent protein kinase of bovine cardiac muscle. The acylation reaction is dependent on ATP and CoA, is enriched in a crude membrane fraction, and will use myristate but not palmitate as the acyl donor. Specificity of the glycyl peptide substrate is demonstrated by the observation that other glycyl peptides do not competitively inhibit myristoylation of Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg.

  6. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    SciTech Connect

    Biedermannová, Lada Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  7. Cross-comparison of Protein Recognition of Sialic Acid Diversity on Two Novel Sialoglycan Microarrays*

    PubMed Central

    Padler-Karavani, Vered; Song, Xuezheng; Yu, Hai; Hurtado-Ziola, Nancy; Huang, Shengshu; Muthana, Saddam; Chokhawala, Harshal A.; Cheng, Jiansong; Verhagen, Andrea; Langereis, Martijn A.; Kleene, Ralf; Schachner, Melitta; de Groot, Raoul J.; Lasanajak, Yi; Matsuda, Haruo; Schwab, Richard; Chen, Xi; Smith, David F.; Cummings, Richard D.; Varki, Ajit

    2012-01-01

    DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature. However, although it is assumed that biologically significant protein-glycan binding is robustly detected by glycan microarrays, there are wide variations in the methods used to produce, present, couple, and detect glycans, and systematic cross-comparisons are lacking. We address these issues by comparing two arrays that together represent the marked diversity of sialic acid modifications, linkages, and underlying glycans in nature, including some identical motifs. We compare and contrast binding interactions with various known and novel plant, vertebrate, and viral sialic acid-recognizing proteins and present a technical advance for assessing specificity using mild periodate oxidation of the sialic acid chain. These data demonstrate both the diversity of sialic acids and the analytical power of glycan arrays, showing that different presentations in different formats provide useful and complementary interpretations of glycan-binding protein specificity. They also highlight important challenges and questions for the future of glycan array technology and suggest that glycan arrays with similar glycan structures cannot be simply assumed to give similar results. PMID:22549775

  8. Meal composition and plasma amino acid ratios: Effect of various proteins or carbohydrates, and of various protein concentrations

    NASA Technical Reports Server (NTRS)

    Yokogoshi, Hidehiko; Wurtman, Richard J.

    1986-01-01

    The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein

  9. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and

  10. Adhesion and structure properties of protein nanomaterials containing hydrophobic and charged amino acids.

    PubMed

    Shen, Xinchun; Mo, Xiaoqun; Moore, Robyn; Frazier, Shawnalea J; Iwamoto, Takeo; Tomich, John M; Sun, Xiuzhi Susan

    2006-03-01

    Protein polymers are being used or considered for biobased adhesives and coating materials. Most adhesives derived from macro protein molecules work through receptors or cross-links to bring about adhesion. The adhesion mechanism of protein polymers would lead to better understanding of adhesives and the discovery of new practical properties of protein polymers at both nano- and macro-scales. The objective of this research work was to study adhesion properties of protein polymers at nanoscale (a peptide adhesive with nanometer-scale units that range in size of several nanometers, defined as protein nanomaterial). Seven protein nanomaterial samples with different degrees of adhesive strength were designed and synthesized using solid phase chemistries. All protein nanomaterials contain a common hydrophobic core flanked by charged amino acid sequences. The adhesion properties of the protein nanomaterials were investigated at different pH values and curing temperatures. The protein nanomaterials self aggregate and interact with the wood surface. The protein nanomaterial KKK-FLIVIGSII-KKK identified in this study had high adhesive strength toward wood. It had the highest shear strength at pH 12, with an amino acid sequence that was very hydrophobic and uncharged. This protein nanomaterial underwent structural analyses using circular dichroism, laser-Fourier transform infrared, and laser desorption mass spectrometry. At pH 12 this peptide adopted a pH-induced beta-like conformation. Adhesive strength reflects contributions of both hydrogen bonding and van der Waals interactions. Ionic and covalent bonds do not appear to be significant factors for adhesion in this study.

  11. Incorporating significant amino acid pairs to identify O-linked glycosylation sites on transmembrane proteins and non-transmembrane proteins

    PubMed Central

    2010-01-01

    Background While occurring enzymatically in biological systems, O-linked glycosylation affects protein folding, localization and trafficking, protein solubility, antigenicity, biological activity, as well as cell-cell interactions on membrane proteins. Catalytic enzymes involve glycotransferases, sugar-transferring enzymes and glycosidases which trim specific monosaccharides from precursors to form intermediate structures. Due to the difficulty of experimental identification, several works have used computational methods to identify glycosylation sites. Results By investigating glycosylated sites that contain various motifs between Transmembrane (TM) and non-Transmembrane (non-TM) proteins, this work presents a novel method, GlycoRBF, that implements radial basis function (RBF) networks with significant amino acid pairs (SAAPs) for identifying O-linked glycosylated serine and threonine on TM proteins and non-TM proteins. Additionally, a membrane topology is considered for reducing the false positives on glycosylated TM proteins. Based on an evaluation using five-fold cross-validation, the consideration of a membrane topology can reduce 31.4% of the false positives when identifying O-linked glycosylation sites on TM proteins. Via an independent test, GlycoRBF outperforms previous O-linked glycosylation site prediction schemes. Conclusion A case study of Cyclic AMP-dependent transcription factor ATF-6 alpha was presented to demonstrate the effectiveness of GlycoRBF. Web-based GlycoRBF, which can be accessed at http://GlycoRBF.bioinfo.tw, can identify O-linked glycosylated serine and threonine effectively and efficiently. Moreover, the structural topology of Transmembrane (TM) proteins with glycosylation sites is provided to users. The stand-alone version of GlycoRBF is also available for high throughput data analysis. PMID:21034461

  12. Studies on the protein and sulfur amino acid requirements of young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1977-01-01

    Four experiments were conducted with purified diets to examine the influence of protein level and to estimate the sulfur amino acid (S.A.A.) requirement of young Bobwhite quail (Colinus virginianus). These studies demonstrated (I) that 26% protein was sufficient for rapid growth when the diet was supplemented with methionine; (2) that diets containing higher levels of protein (29.3% and 31.3%) failed to support satisfactory growth unless they contained supplemental methionine; and (3) that young Bobwhite quail require no more than 1.0% sulfur-containing amino acids for optimal growth and efficiency of feed utilization. A fifth experiment was conducted to examine the protein and S.A.A. requirements of young Bobwhite quail using practical rations and to compare results with those obtained with purified diets. Diets containing 24%, 26% and 28% protein were supplied with and without supplemental methionine in a five week study. Results showed significant growth responses to protein and supplemental methionine. Responses showed that Bobwhite quail require no more than 26% protein for maximum growth and efficiency of feed utilization when the S.A.A. level of the diet was approximately 1.0%. The results were in close agreement with those obtained with purified diets. These findings define more precisely than had been known the quantitative requirements of young Bobwhite quail for protein and for the S.A.A. necessary for optimal growth.

  13. Nucleic acid aptamers stabilize proteins against different types of stress conditions.

    PubMed

    Jetani, Hardik C; Bhadra, Ankan Kumar; Jain, Nishant Kumar; Roy, Ipsita

    2014-01-01

    It has been observed that the same osmolyte cannot provide protection to a protein exposed to more than one stress condition. We wanted to study the effect of nucleic acid aptamers on the stabilization of proteins against a variety of stress conditions. Adjuvanted tetanus toxoid was exposed to thermal, freeze-thawing, and agitation stress. The stability and antigenicity of the toxoid were measured. Using nucleic acid aptamers selected against tetanus toxoid, we show that these specific RNA sequences were able to stabilize alumina-adsorbed tetanus toxoid against thermal-, agitation-, and freeze-thawing-induced stress. Binding affinity of the aptamer-protein complex did not show any significant change at elevated temperature as compared with that at room temperature, indicating that the aptamer protected the protein by remaining bound to it under stress conditions and did not allow either the protein to unfold or to promote protein-protein interaction. Thus, we show that by changing the stabilization strategy from a solvent-centric to a protein-centric approach, the same molecule can be employed as a stabilizer against more than one stress condition and thus probably reduce the cost of the product during its formulation.

  14. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa.

    PubMed

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine.

  15. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa

    PubMed Central

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine. PMID:27066169

  16. Predicting the types of J-proteins using clustered amino acids.

    PubMed

    Feng, Pengmian; Lin, Hao; Chen, Wei; Zuo, Yongchun

    2014-01-01

    J-proteins are molecular chaperones and present in a wide variety of organisms from prokaryote to eukaryote. Based on their domain organizations, J-proteins can be classified into 4 types, that is, Type I, Type II, Type III, and Type IV. Different types of J-proteins play distinct roles in influencing cancer properties and cell death. Thus, reliably annotating the types of J-proteins is essential to better understand their molecular functions. In the present work, a support vector machine based method was developed to identify the types of J-proteins using the tripeptide composition of reduced amino acid alphabet. In the jackknife cross-validation, the maximum overall accuracy of 94% was achieved on a stringent benchmark dataset. We also analyzed the amino acid compositions by using analysis of variance and found the distinct distributions of amino acids in each family of the J-proteins. To enhance the value of the practical applications of the proposed model, an online web server was developed and can be freely accessed.

  17. Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins

    PubMed Central

    Li, Weiwei; Hu, Qin; Chan, Wan

    2015-01-01

    Aristolochic acid (AA) is a potent carcinogen and nephrotoxin and is associated with the development of “Chinese herb nephropathy” and Balkan endemic nephropathy. Despite decades of research, the specific mechanism of the observed nephrotoxicity has remained elusive and the potential effects on proteins due to the observed toxicity of AA are not well-understood. To better understand the pharmacotoxicological features of AA, we investigated the non-covalent interactions of AA with proteins. The protein-binding properties of AA with bovine serum albumin (BSA) and lysozyme were characterized using spectrofluorometric and mass spectrometric (MS) techniques. Moreover, the protein-AA complexes were clearly identified by high-resolution MS analyses. To the best of our knowledge, this is the first direct evidence of non-covalently bound protein-AA complexes. An analysis of the spectrofluorometric data by a modified Stern−Volmer plot model also revealed that both aristolochic acid I (AAI) and aristolochic acid II (AAII) were bound to BSA and lysozyme in 1:1 stoichiometries. A significantly stronger protein binding property was observed in AAII than in AAI as evidenced by the spectrofluorometric and MS analyses, which may explain the observed higher mutagenicity of AAII. PMID:26471474

  18. Revealing the amino acid composition of proteins within an expanded genetic code

    PubMed Central

    Aerni, Hans R.; Shifman, Mark A.; Rogulina, Svetlana; O'Donoghue, Patrick; Rinehart, Jesse

    2015-01-01

    The genetic code can be manipulated to reassign codons for the incorporation of non-standard amino acids (NSAA). Deletion of release factor 1 in Escherichia coli enhances translation of UAG (Stop) codons, yet may also extended protein synthesis at natural UAG terminated messenger RNAs. The fidelity of protein synthesis at reassigned UAG codons and the purity of the NSAA containing proteins produced require careful examination. Proteomics would be an ideal tool for these tasks, but conventional proteomic analyses cannot readily identify the extended proteins and accurately discover multiple amino acid (AA) insertions at a single UAG. To address these challenges, we created a new proteomic workflow that enabled the detection of UAG readthrough in native proteins in E. coli strains in which UAG was reassigned to encode phosphoserine. The method also enabled quantitation of NSAA and natural AA incorporation at UAG in a recombinant reporter protein. As a proof-of-principle, we measured the fidelity and purity of the phosphoserine orthogonal translation system (OTS) and used this information to improve its performance. Our results show a surprising diversity of natural AAs at reassigned stop codons. Our method can be used to improve OTSs and to quantify amino acid purity at reassigned codons in organisms with expanded genetic codes. PMID:25378305

  19. Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Hu, Qin; Chan, Wan

    2015-10-01

    Aristolochic acid (AA) is a potent carcinogen and nephrotoxin and is associated with the development of “Chinese herb nephropathy” and Balkan endemic nephropathy. Despite decades of research, the specific mechanism of the observed nephrotoxicity has remained elusive and the potential effects on proteins due to the observed toxicity of AA are not well-understood. To better understand the pharmacotoxicological features of AA, we investigated the non-covalent interactions of AA with proteins. The protein-binding properties of AA with bovine serum albumin (BSA) and lysozyme were characterized using spectrofluorometric and mass spectrometric (MS) techniques. Moreover, the protein-AA complexes were clearly identified by high-resolution MS analyses. To the best of our knowledge, this is the first direct evidence of non-covalently bound protein-AA complexes. An analysis of the spectrofluorometric data by a modified Stern-Volmer plot model also revealed that both aristolochic acid I (AAI) and aristolochic acid II (AAII) were bound to BSA and lysozyme in 1:1 stoichiometries. A significantly stronger protein binding property was observed in AAII than in AAI as evidenced by the spectrofluorometric and MS analyses, which may explain the observed higher mutagenicity of AAII.

  20. Effect of protein concentration, pH, lactose content and pasteurization on thermal gelation of acid caprine whey protein concentrates.

    PubMed

    Bordenave-Juchereau, Stéphanie; Almeida, Bruno; Piot, Jean-Marie; Sannier, Frédéric

    2005-02-01

    The influence of pH (4.5-6.5), sodium chloride content (125-375 mM), calcium chloride content (10-30 mM), protein concentration (70-90 g/l) and lactose content on the gel hardness of goat whey protein concentrate (GWPC) in relation to the origin of the acid whey (raw or pasteurized milk) was studied using a factorial design. Gels were obtained after heat treatment (90 degrees C, 30 min). Gel hardness was measured using texture analyser. Only protein concentration and pH were found to have a statistically significant effect on the gel hardness. An increase in the protein concentration resulted in an increase in the gel hardness. GWPC containing 800g/kg protein formed gels with a hardness maximum at the pHi, whereas GWPC containing 300 g/kg protein did not form true gels. Whey from pasteurized milk formed softer gels than whey from raw milk. A high lactose content (approximately 360 g/kg) also reduced the gelation performance of GWPC. PMID:15747729

  1. The Mediterranean diet: Effects on proteins that mediate fatty acid metabolism in the colon

    PubMed Central

    Djuric, Zora

    2012-01-01

    A Mediterranean diet appears to have health benefits in many domains of human health, mediated perhaps by its anti-inflammatory effects. Metabolism of fatty acids and subsequent eicosanoid production is a key mechanism by which a Mediterranean diet can exert anti-inflammatory effects. Both dietary fatty acids and fatty acid metabolism determine fatty acid availability for cyclooxygenase- and lipoxygenase-dependent production of eicosanoids, namely prostaglandins and leukotrienes. In dietary intervention studies and in observ